

Sensitivity Analysis of a Deep Learning

Model for Discharge

Prediction in the Regen Catchment

Master’s Thesis (M.Sc. Environmental Engineering)

Department of Civil, Geo and Environmental Engineering

Technical University of Munich

Supervised by Dr. phil. Jorge Eduardo Teixeira Leandro

 Chair of Hydrology and River Basin Management, TUM

 Dr. Wolfgang Kurtz

 Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

 Ivana Jovanovic Buha, M.Sc. (hons)

 Chair of Scientific Computing, TUM

Submitted by Leon Fiedler (03642227)

 Friedrich – Ebert – Straße 5

 82256 Fürstenfeldbruck

Place and Date Munich, 27.11.2020

Declaration of Authorship

I, Leon Fiedler, hereby declare that this Master Thesis, titled "Sensitivity Analysis of a Deep Learning

Model for Discharge Prediction in the Regen Catchment” and the work presented in it are my own,

except where stated otherwise.

The information and statements asserted in this master’s thesis are based on technical data,

as well as available information and materials which are part of arbitration processes. All references

have been quoted, and all sources of information have been specifically acknowledged. This thesis as

not previously presented to another examination board and has not been published.

Munich,

Ort, Datum, Unterschrift

ii

Acknowledgment

This thesis was supported by many people and various researchers of both, the Technical University of

Munich and the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities.

First of all, I would like to send special thanks to Alexander von Ramm, who, although no longer with

us, continues to inspire me by his example and dedication. I am particularly thankful that he supported

me in my decision to choose this challenging – and to me completely new – field of studies for my

master thesis.

Huge thanks to Ivana Jovanovic Buha, M.Sc. (hons) and Dr. Wolfgang Kurtz, who took over the intensive

consultation, continuous motivation, and endless discussions on theoretical and practical program-

ming concepts. Furthermore, I would like to offer huge thanks to Dr. phil. Jorge Eduardo Teixeira

Leandro at the Chair of Hydrology and River Basin Management TUM, who has not only made this

innovative master thesis topic possible, but also guided me patiently and faithfully through the process

of writing my thesis.

The support of these four dedicated supervisors had a huge impact on the completion of this thesis –

not only because of their profound professional knowledge, but also due to their emotional support.

Finally, I would like to thank my friends and family for being my backup system when things get tough.

Abstract

Estimating rainfall-runoff relationship and streamflow modeling is a significant element in operational

flood management. In order to be conducted successfully the rainfall-runoff relationship and discharge

behavior in a watershed have to be predicted accurately. Thus, simplified physically based or concep-

tual models are still routinely applied for operational purposes. However, the development of accurate

rainfall-runoff and streamflow models is still a challenging task since hydrological processes inherently

exhibit nonlinear and complex behavior. In recent years data-driven approaches have increased hy-

drologists’ attention due to their modeling simplicity and high accuracy for rainfall-runoff modeling.

This thesis explores the idea of using a Long Short-Term Memory (LSTM) network model to predict the

runoff in daily and hourly resolution within the Regen catchment, Germany. This is a special type of

neural network that proved to be a powerful tool in learning long-term dependencies between pro-

vided input and output and in finding abstract patterns within long sequences. As model input point-

based measurement series of 9 different meteorological parameters is used, recorded over a period of

14 years. A method is provided, which enables the LSTM to not only handle missing data gaps but also

to potentially enhance its prediction accuracy. In the scope of a sensitivity analysis various combina-

tions of input features are examined to evaluate their impact on the model performance and to identify

the most appropriate sets for both temporal resolutions. The ability of LSTMs to forecast multiple time

steps ahead regarding different lead times is explored, whereby also a novel approach is introduced to

bring LSTMs closer to a real-world operational forecasting scenario. This approach essentially decom-

pose the prediction process of an LSTM into individual steps through which model's output can be fed

back into itself and predictions can potentially be made conditioned on forecasted meteorological

data. Throughout the thesis, the prediction accuracy of the LSTM is compared to the deterministic,

physically based Large Area Runoff Simulation Model (LARSIM), which serves as a benchmark. The re-

sults indicate that LSTMs are principally able to predict discharge with reasonable accuracy in a multi-

step scenario with lead times of up to 24 hours. In a single step scenario the LSTM model, when trained

on suitable input feature sets, proved to replicate the discharge hydrograph almost perfectly on un-

seen data, outperforming the physically based benchmark model. By tuning crucial hypermeters of the

model with respect to a hydrological understanding improved the accuracy of the LSTM further. The

findings in this thesis suggest that that LSTM models have the capability to learn the complete rainfall-

runoff process purely from a properly selected data basis, underlining the potential of data-driven ap-

proaches for hydrological modelling applications.

iv

Table of Contents

Declaration of Authorship ... i

Acknowledgment .. ii

Abstract .. iii

Table of Contents .. iv

List of Tables ... vi

List of Abbreviations .. xii

1. Introduction .. 1

1.1. Machine Learning Basics .. 3

1.2. Machine Learning in Hydrology .. 4

1.3. Objectives and Outline .. 9

2. Deep Learning Fundamentals ... 10

2.1. Introduction to Artificial Neural Networks .. 11

2.1.1. Anatomy of a Neural Network .. 11

2.1.2. Training, Backpropagation and Optimization .. 13

2.1.3. Evaluation and Regularization ... 16

2.2. Deep Learning for Time Series ... 18

2.2.1. Long-term Short Memory Networks... 19

2.2.2. Development of a multivariate forecasting model 23

3. Methodology... 29

3.1. Overview of Investigation Steps .. 30

3.2. Study Area – Regen Catchment ... 32

3.3. Data Overview ... 33

3.4. Data Preparation ... 35

3.4.1. Data Cleaning .. 35

3.4.2. Imputation techniques for Missing Data .. 36

3.4.3. Feature Scaling Techniques .. 39

3.4.4. Final Dataset preparation .. 40

3.5. Model Architectures... 41

3.6. Validation of the different Models.. 46

3.7. Methods for Multi-Step Forecasting .. 56

4. Results .. 59

4.1. First Model Test ... 60

4.2. Preliminary Analysis .. 64

4.2.1. Standard versus Robust Scaling ... 64

4.2.2. Methods for Missing Values... 67

4.2.3. Imputation techniques for Precipitation Data .. 67

4.3. Model Sensitivity to Feature Selection .. 70

4.3.1. Daily Resolution ... 71

4.3.2. Hourly Resolution ... 79

4.4. Hyperparameter Tuning .. 83

4.5. Multi-step Predictions .. 89

5. Discussion .. 93

5.1. Scaling ... 93

5.2. Missing Data .. 93

5.3. Imputation of Precipitation... 94

5.4. Sensitivity analysis .. 95

5.5. Hyperparameter Tuning .. 98

5.6. Multi-step Forecasting ... 99

6. Conclusion and Outlook .. 101

Appendix ... 106

A. Tables .. 106

A. Figures ... 116

Publication bibliography .. 120

vi

List of Tables

Table 1: Overview of available meteorological and hydrological parameter in the dataset

 .. 34

Table 2: Defined hyperparameters based on hyperparameter optimization conducted by

Unnikrishnan (2019) ... 45

Table 3: Overview of Training, Validation and Test set size regarding the normal Holdout

Method ... 47

Table 4: Overview of the used performance metrices in this thesis 52

Table 5: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 62

Table 6: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 66

Table 7: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 68

Table 8: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 69

Table 9: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric across

all input feature sets (including Table 10) with respect to daily (left) or hourly (right) data

basis. .. 77

Table 10: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric across

all input feature sets (including Table 9) with respect to daily (left) or hourly (right) data

basis. .. 78

Table 11: Overview of tested hyperparameter configuration with respect to temporal

resolution. Bolt values indicate tested settings, whereby the other values remain

constant. ... 84

Table 12: Complete list of available measurement stations. "Parameters" refers to

observed parameters at corresponding station. "Parameters_considered" refers to the

parameters actually considered in the input dataset. Some parameters had to be

discarded due to a large amount of missing data. .. 106

Table 13: Pseudo Code of the customized prediction loop (left) and corresponding array

dimensions (right) .. 109

Table 14: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

one input feature set. ... 110

Table 15:Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 111

Table 16: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 111

Table 17: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 111

Table 18: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

one input feature set. ... 112

Table 19: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table. ... 113

Table 20: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores highlighted in red indicate best score per metric within

the complete table .. 114

Table 21: Resulting performance metric scores calculated for Training, Validation and

Test Period, respectively. Scores are calculated by averaging over the respective lead

time. 12 Steps, 24 Steps and 36 Steps refer to multi-step one shot LSTM models. The

customized prediction loop was only applied to the Test period. 115

viii

List of Figures

Figure 1: Scheme of an Artificial Neural Network (La Fuente et al. 2019) 12

Figure 2: Illustration of a neuron in a feedforward network. The jth neuron receives inputs

from neurons (a1, a2, … , ai) of the preceding layer multiplied by their respective weights

and applies a nonlinear transformation (f). The output of the neuron, called activation, is

passed to the neurons of the succeeding layer. (Shen 2018) 12

Figure 3: Schematic flow chart of a full training cycle in a Neural Network (Chollet 2018)

 .. 14

Figure 4: Training History of a Neural Network, showing the learning curves on the

training and validating dataset according to (Géron 2019) ... 17

Figure 5: A recurrent neuron (left) unrolled through time (right) (Géron 2019) 19

Figure 6: A layer of recurrent neurons (left) unrolled through time (right) (Géron 2019)

 .. 19

Figure 7: Visualization of the standard LSTM cell as defined by Eq. (1-6) (Kratzert et al.

2019c) .. 21

Figure 8: Visualization of the sliding window method for single step predictions 24

Figure 9: Schematic illustration of how features within one window in one batch are

processed by a LSTM unrolled through time predicting the next time step.................. 25

Figure 10: Visualization of the sliding windows method for multi-step one shot

predictions .. 26

Figure 11: Schematic illustration of how features within one window in one batch are

processed by a LSTM unrolled through time predicting the next n time step (in this

example the next 3 time steps) .. 27

Figure 12: Illustration of the individual views along the axis of the 3D input array. The

three dimensions are: (i) batch size (number of simultaneously processed windows), (ii)

window size (number of consecutive time steps considered in the lookback window), (iii)

number of available input features .. 28

Figure 13: Flow chart of the consecutive investigation and analysis steps carried out in

this thesis ... 31

Figure 14: Overview of study area ... 32

Figure 15: Architecture of the LSTM model with corresponding Layers (left) unrolled over

time (right) according to Unnikrishnan (2019) (except Masking Layer). In case missing

values Method 3 is applied, a masking layer is added to the model architecture. In the

other both cases (Method 1 & Method 2) the input features are passed directly to the 1st

LSTM layer. .. 42

Figure 16: Computational graph that visualizes the array shape manipulation during a

forward pass through the LSTM model. In this example 32 input features are processed

with a window size 60 time steps. The defined number of LSTM units is 120. The “?”

corresponds to the batch size but is indicated a variable sized within the network, since

the batch size can be varied between model run calls. .. 44

Figure 17: Visualization of the normal Holdout Method. The dataset is split into three

subsets. .. 47

Figure 18: Normal Holdout Method visualized on the discharge hydrograph at Marienthal

station (left) and corresponding Boxplots (right) based on the underlying data distribution

(log-transformed) of the three different subsets .. 48

Figure 19: Visualization of the Rep-Holdout Method. Split point p is randomly selected

within a specified window. Percentages correspond to the total number of samples of

the combined Training and Validation set and define the range of the window. For each

training of the model a new split point is selected. .. 49

Figure 20: Visualization of the k-fold cross validation. In this example the training and

validation set is split in 3 folds, which results in three different validation sets. The three

model runs are evaluated on the same test set. ... 50

Figure 21: Schematic illustration of the customized prediction loop. As an example, the

procedure of the loop is demonstrated for two iterations, whereby the model predicts 3

steps ahead (n) for each iteration based on cached input windows from the

measurement series (inner loop). For illustration purposes, an example data frame is

depicted, which consists of random samples from three input features (X1,X2,X3) and

one target variable(Y). Green shaded rows imply measured values, whereas blue

shaded rows are assumed to be forecasted values. After each time step the predicted

value is replace with the target value of the next input window. The second iteration is

restarted, e.g. every 3 hours (update step u) (outer loop) and the forecasted values

could be replaced by true observations within the measurement series before getting

cached again to compute the next n steps ahead (inner loop). 57

Figure 22: Study Area, only showing stations that are within or close (<2km) to the

catchment boundary. The Orange square frames the Leming gauge (blue rhombus) and

precipitation station at Neukirchen bei Heiligen Blut (gray circle) 60

Figure 23: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on the input of one

precipitation station (Neukirchen bei Heiligen Blut). ... 62

Figure 24: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on the input of one

precipitation station (Neukirchen bei Heiligen Blut) & one discharge gauge

(Leming = target station) .. 63

x

Figure 25: Kernel Density Estimation plots for different tested scaling techniques. For

each plot one example feature (station) per meteorological parameter was selected, that

showed a high number of outliers. ... 65

Figure 26: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on input feature set 1. 73

Figure 27: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on input feature set 5. 74

Figure 28: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on input feature set 4. 75

Figure 29: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in hourly resolution. LSTM predictions are based on input feature set 1. ... 80

Figure 30: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in hourly resolution. LSTM predictions are based on input feature set 5. ... 81

Figure 31: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in hourly resolution. LSTM predictions are based on input feature set 4. ... 82

Figure 32: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on input feature set 5 and

model is trained with MSE as objective function. .. 85

Figure 33: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in daily resolution. LSTM predictions are based on input feature set 5, window

size 60 steps and 256 LSTM units. ... 87

Figure 34: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in hourly resolution. LSTM predictions are based on input feature set 5,

window size 120 steps and 256 LSTM units. .. 88

Figure 35: Comparison between measured, predicted (LSTM) and simulated discharge

(LARSIM) in hourly resolution. LSTM predictions are based on input feature set 3,

window size 120 steps and 256 LSTM units. .. 89

Figure 36: Progression of the NSE score on Test Data over future time steps for all

tested models (indicated by different line styles). In order to have more zoomed in view,

the graph of the single-shot model with a lead time of 36 steps (yellow triangles), is cut

off. For the 36th step this model reached a NSE score of 0.654. 91

Figure 37: Progression of the KGNP score on Test Data over future time steps for all

tested models (indicated by different line styles). In order to have more zoomed in view,

the graph of the single-shot model with a lead time of 36 steps (yellow triangles), is cut

off. For the 36th step this model reached a KGNP score of 0.912. 92

Figure 38: Training history of the trained LSTM model based on one precipitation station

as input feature. ... 116

Figure 39: Rep-Holdout Method visualized on the discharge hydrograph at Marienthal

station (left) and corresponding Boxplots (right) based on the underlying data distribution

(log-transformed) of the three different subsets. Here, as example, 6 model iterations

are shown, each having a slightly different split point between Training and Validation

set. .. 117

Figure 40: K-fold cross validation visualized on the discharge hydrograph at Marienthal

station (left) and corresponding Boxplots (right) based on the underlying data distribution

(log-transformed) of the three different subsets. Here, as example, 3 model iterations

are shown, where each model is trained on different training subsections within the

measurement series. ... 118

Figure 41: Progression of the MAE/ RSME score on Test Data over future time steps for

all tested models (indicated by different line styles). ... 119

xii

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Networks

AVwC Arithmetic Averaging Nearer Stations Based on Conditions

B Batch size

CNN Convolutional Neural Network

CONUS Continental United States

DL Deep Learning

DNN Deep Neural Network

ERNN Elman Recurrent Neural Network

ESN Echo State Network

F Features

FDC Flow Duration Curve

GRU Grouped Response Units

HU Hydraulic Units

IDW Inverse Distance Weighting

IQR Interquartile Range

KDE Kernel Density Estimation

KGE Kling-Gupta-Efficiency

KGNP Nonparametric Kling-Gupta-Efficiency

LARSIM Large Area Runoff Simulation Model

LR Linear Regression

LSTM Long-Short Term Memory

Max-Error Maximum Error

MeAE Median-Absolute-Error

ML Machine Learning

MLP Multilayer Perceptrons

MSE Mean-Squared-Error

MTS-LSTM Multi timescale LSTM

NARX Nonlinear Autoregressive Exogenous Neural Network

NN Neural Networks

NRM_D Normal Ratio Method with Respect to Distance

NSE Nash-Sutcliff-Efficiency

NWM US National Water Model

NWP Numerical Weather Prediction

PUB Prediction in Ungauged Basins

ReLU Rectified Linear Units

REV Relative Error in Volume

RMSE Root-Mean-Squared-Error

RNN Recurrent Neural Network

SAC-SMA Sacramento Soil Moisture Accounting Model

SVM Support Vector Machines

W Window size

1

1. Introduction

Artificial Intelligence (AI) is the field of computer science that aims to make intelligent computer

systems, by trying to mimic human behavior. This specific type of intelligence includes the abil-

ity to interact with the environment by learning from and modeling it to make predictions, even

in the case of unexpected scenarios. AI techniques are adopted for resolving a huge area of

science and engineering problems. One area, in which the application of AI-based methods in-

creased in recent years is the field of hydrology. Especially flood management and flood fore-

casting are popular scenarios (Fotovatikhah et al. 2018).

In flood forecasting, describing the relationship between rainfall and runoff is one of

the central tasks. This involves the prediction of river discharge using meteorological observa-

tions of a river basin. The basin or catchment of a river is defined by the area from which all

(surface) runoff drains to a common outlet. Streamflow forecasting, i.e. predicting the dis-

charge of a river, especially in a long-term perspective, is of great importance to water resource

management. Short-term streamflow forecasting is crucial for flood defense, whereas medium-

range forecasting is highly beneficial for reservoir operation.

In general, a better understanding of the streamflow process is fundamental for im-

proving the skill of streamflow forecasting (Wang 2006). In order to accurately predict stream-

flow, the components of hydrological processes in a catchment have to be modeled in some

way as well. According to Freeze and Harlan (1969) two basic approaches can be distinguished:

a physical model approach and a hydrologic system investigation. Physical hydrology should

examine the fundamental process in the hydrophilic cycle in a systematic and scientific way.

Freeze and Harlan (1969) state that, if each part of this process are formulated by a physical

law in an implicit mathematical way, it should be possible to model the complete process within

an entire watershed. Alternatively, the system approach to hydrological investigations strives

to develop explicit relationships between parameters that can be determined from direct meas-

urements in the watershed. Therefore, mathematical models to describe watershed hydrology

can be derived from physically-based mathematical methods or by parametric or stochastic

methods of system investigation (Freeze and Harlan 1969).

All rainfall-runoff models can be applied in order to model streamflow processes that

are influenced by different runoff sources (Wang 2006). Streamflow processes are usually dom-

inated by rainfall events. However, also other streamflow processes resulting from the drainage

of the groundwater storage or other delayed sources, like snow melt, play an important role

(Wang 2006).

2

In the last decades, these basic modelling concepts have been continuously developed

by integrating physically-based process concepts into the model formulations (Kratzert et al.

2018). Some of these concepts encompass directly addressing the spatial variability of pro-

cesses, boundary conditions and physical properties of the catchments (Kratzert et al. 2019a).

There is a variety of available methods - based on the aforementioned concepts - to model

streamflow, which may fall into two general categories: process-driven methods (also known

as white-box, physical or conceptual models) and data-driven methods (also called black-box,

meta-models or surrogate models) (Wang 2006). Process-driven models, or physically-based

models, can further be divided into lumped, semi-distributed and distributed models (Wang

2006).

In process-driven models, rainfall-runoff processes are described by combining physi-

cally-based equations, empirical relationships and parametric assumptions (Wang 2006). This

type of models abstract a streamflow process as the output of a watershed system, by mathe-

matically approximate the internal processes within a catchment that guide the streamflow be-

havior (Wang 2006). These internal processes involve two fundamental sub-processes: rainfall-

runoff transformation and channel routing. Thus, a typical physically-based conceptual rainfall-

runoff model is composed of two modules. One of them simulates the process of rainfall to

runoff transformation; the other module simulates the process of channel routing (Wang 2006).

The result of a rainfall-runoff model is a hydrograph in response to a precipitation event

and to the internal storage leakages of the catchment. Although physical models show great

capabilities for predicting a diverse range of flooding scenarios, they often require various types

of hydro-geomorphological monitoring datasets (Mosavi et al. 2018). Furthermore, the devel-

opment of physically-based models often requires in-depth knowledge and expertise regarding

hydrological processes, since internal model parameters need to be cautiously calibrated.

By contrast, data-driven methods are fundamentally black-box methods, which math-

ematically characterize the relationship between the inputs and the outputs, without consider-

ing the internal underlying physical mechanism in the watershed (Wang 2006). Hence, data-

driven models have the advantage of representing almost indefinitely complex processes

(Wang 2006). What is more, data-driven models can also sometimes reveal useful information

on the dynamics of the subject of analysis. For example, Machine Learning (ML) can support

with revealing distinct relationships between landcover, climate, soil, and geomorphology

(Shen 2018).

Due to the development of modern measuring techniques (e.g. remote sensing), more

and more data has become available at a high spatial and temporal resolution. Moreover, be-

3

cause of the expanded computational capabilities of increasingly advanced computer tech-

niques, data driven-model applications in the field of hydrology have grown progressively

within the last decades (Wang 2006). Furthermore, the growing amount of available discharge

data in combination with the enhanced development of more sophisticated ML algorithms uti-

lized in data-driven models have accelerated the improvement of rainfall-runoff models (Seo et

al. 2018).

1.1. Machine Learning Basics

Over the past decades data availability increased explosively, especially Earth System

Data (Reichstein et al. 2019). Machine learning (ML) plays an increasingly important role in an-

alyzing these large datasets. According to Reichstein et al. (2019), the major tasks in the up-

coming years are extracting knowledge from these datasets and utilizing models that are able

to learn much more from the data than traditional data assimilation methods, while still com-

plying with nature’s laws. As the name suggests, data-driven methods try to learn complex cor-

relations within large datasets (Cerqueira et al. 2019). Thus, these type of methods can be clas-

sified into symbolic approaches (rules, trees, and logical data representations) and statistical

approaches. The latter include methods such as k-nearest neighbors, Bayesian methods, Neural

Networks (NN), and Support Vector Machines (SVM), among others (Fotovatikhah et al. 2018).

Unlike other statistical approaches, ML is able to extract new, nontrivial information from large,

complex databases, for which classical statistical analysis – such as Bayesian methods – would

be impractical (Chollet 2018). As mentioned in Goodfellow et al. (2016), ML can be broadly

categorized into supervised learning and unsupervised learning. The former is trained to predict

some observed target variable, either categorical or continuous, given some input attributes.

Alternatively, the target variable is also called dependent variable or labeled data. Supervised

learning is suitable for classification or regression tasks. During classification procedures, the

model tries to identify, which previously defined categories a new instance belongs to, for ex-

ample, whether an image shows a cat or a dog. In case of regression tasks, a continuous predic-

tion of the target variable is produced (Géron 2019).

In contrast, in unsupervised learning environments, a target value is not given to the

model. Unsupervised learning is used in descriptive data analysis, i.e. the model seeks to learn

how to represent input data efficiently and meaningfully by looking for hidden patterns or clus-

ters (Goodfellow et al. 2016). Unsupervised learning is thus often employed for dimensional

reduction or feature extraction, because – after removing less important details – the remaining

key bits of information are the most important ones to characterize the data (Shen 2018).

4

One main reason for the popularity of ML models in hydrology is their ability to numer-

ically formulate the flood’s non-linearity, solely based on measurement data without requiring

knowledge about the underlying physical processes (Mosavi et al. 2018). Data-driven prediction

models using ML are promising tools, as they are easier to develop with minimal inputs. An-

other advantage over physical models is, that ML models often provide a more straightforward

implementation due to reduced complexity (Mosavi et al. 2018). Thus, ML models offer faster

testing and evaluation without the usually intensive process of calibration. Within the last two

decades, the continuous advancement of ML methods demonstrated their suitability for flood

prediction by outperforming conventional approaches at an acceptable rate (Mosavi et al.

2018). Numerous studies have compared the prediction performance between physical and ML

models, showing at least equal performances of ML methods.

1.2. Machine Learning in Hydrology

This thesis focuses on a special subfield of ML, called Deep Learning (DL). DL methods

aim at learning representations from data with multiple levels of abstraction by focusing on

learning successive layers of increasingly meaningful representations (Hu et al. 2018). All these

layers learn automatically when exposed to training data. In almost every case these layered

representations are gathered via models called Neural Networks (NN), structured in stacked

layers (Chollet 2018). According to Shen (2018), some potential applications include modeling

land management decisions in response to water constraint or flooding risks, irrigation and

consumptive water demands, water saving strategies, ecosystem responses, and urban water

flows. For these problems, a process-based model could involve too many interdependent pro-

cesses and parameters without clear ways of obtaining reliable values. Both, the mathematical

structure and the boundary conditions of these problems, as well as the relationships between

model-internal variables could also be too complex and interdependent to fully resolve (Shen

2018).

In hydrology, there are three types of DL applications so far: (i) extracting hydromete-

orological and hydrological information from images, (ii) dynamic modeling of hydrologic vari-

ables or data collected by sensor networks, and (iii) learning and generating complex data dis-

tributions (Shen 2018). A common conclusion reported in these studies is that, as could have

been expected, DL models have surpassed traditional statistical methods (Shen 2018). One

study investigated how the uncertainty of flood predictions can be reduced to support early

flood warning systems (Doycheva et al. 2017).The study assessed the correct weighting of me-

teorological ensemble forecast members with the aim to incorporate them in rainfall-runoff

simulations performed by three different ML methods in the Mulde river basin in Germany.

5

SVM, NN and Rotation Forest were used as ML methods, while the latter method showed the

best performance in classifying the best ensemble of member pairs. Thus, the uncertainty range

in flood risk prediction was reduced and the overall performance of the ensemble system was

improved (Doycheva et al. 2017).

Another study used Artificial Neural Networks (ANN) for accuracy enhancements in

real-time flood forecasting scenarios. Coupling Numerical Weather Prediction (NWP) and hy-

drological models allows a connection between meteorology and hydrology to generate real-

time flood forecasting (Jabbari and Bae 2018). The aim of the study was to evaluate real-time

bias correction of precipitation data from a hydro-meteorological point of view. Jabbari and Bae

(2018) used a mesoscale and operational NWP model to forecast heavy rainfall predictions (72h

ahead, every 6h) at high spatial (1km x 1km) and temporal (10 min) resolution in real-time.

Additionally, in order to consider rainfall loss and to stimulate the streamflow, a soil moisture

accounting model was applied. Finally, the ANN model was utilized for bias correction of the

real-time precipitation produced by the NWP model, which resulted in a significantly improved

rainfall forecast in all statistical terms and in an overall improved real-time flood forecast in the

Imjin basin in North/South Korea (Jabbari and Bae 2018).

A similar study used DL to develop an effective weather-runoff forecasting system to

support real-time decision making in the Metropolitan Region of Chile (La Fuente et al. 2019).

For this purpose, a coupled model of a near-future global meteorological forecast with a short-

range runoff forecasting system was implemented. The hydro-meteorological and geomorpho-

logical variables were obtained through statistical scaling of the Global Forecast System (GFS),

thus enabling near-future prediction. Furthermore, two data-driven approaches were imple-

mented to predict the entire hourly flow time series up to three days into the future all at once.

The first model was a simple ANN and the second approach was based on Long Short-Term

Memory (LSTM) cells, which outperformed the prediction performance of the ANN by far, since

the temporal capacity of remembering sequences for long periods of LSTM-based algorithms

allows the more accurate prediction of temporal changes in the flow. The study concluded that

the whole system is capable of predicting the streamflow in a finer temporal resolution (1h)

than the input time-series (6h) with high accuracy enabling a reliable flow forecast (La Fuente

et al. 2019).

The main disadvantage of the “black box-ness” of NNs is their lack of ability to adhere

the mechanistic understandings of the underlying physical processes in hydrological modeling.

To circumvent this issue, Karpatne et al. (2018) introduced a novel framework, in which a NN is

coupled with a physic-based model. The so-called physics-guided NN uses simulated outputs of

a physic-based numerical model as one additional input. Additionally, a physic-based objective

6

function achieves better generalization performance by ensuring physical consistency of model

outputs. Karpatne et al. (2018) applied the model to simulate the temperature of water in a

lake at varying depths and time. It was shown that this model is in fact closer to the actual

observations than SVM, normal NN and other non-linear regression models, always revealing

physically consistent results (Karpatne et al. 2018).

There are further studies that developed hybrid models: Tian et al. (2018) applied a

lumped hydrological model (GR4J model) in the Xiangjiang and Qujiang River basins in China to

conduct a rainfall-runoff simulation. Further, four modifications of a standard Recurrent Neural

Network (RNN) were applied to predict discharges. These are namely: the Elman Recurrent

Neural Network (ERNN), Echo State Network (ESN), Nonlinear Autoregressive Exogenous inputs

neural network (NARX) and a LSTM network. After a performance assessment, the best two

RNNs (LSTM and NARX) and the integrated GR4J model were selected to forecast streamflow.

The performance of the GR4J model coupled with an LSTM model showed best performance

and reduced the uncertainty intervals further, especially in high flow conditions (Tian et al.

2018).

In general, it seems that LSTMs outperform normal ANNs in almost every experimental

setting for rainfall-runoff simulation. Hu et al. (2018) confirmed this in a paper, where 98 flood

events in the Fen river basin in China were simulated on an hourly basis by ANNs and LSTMs

models. In contrast to conceptual and physical-based models, these black-box models worked

well, simulating rainfall-runoff processes with excellent performance evaluation criteria. How-

ever, the LSTM model outperformed the ANN model considering different lead times and better

stability, holding better overall simulation performance (Hu et al. 2018).

The most intensive research so far, reflecting the applicability and interpretability of

LSTMs in the context of rainfall-runoff simulations was carried out in various studies by Kratzert

et al. (2018, 2019a, 2019b, 2019c, 2020). In the first study, Kratzert et al. (2018) explored the

potential of LSTMs to describe the rainfall-runoff behavior and further investigated the ability

of LSTMs of regionalization. In this work, the authors trained LSTM models to predict the

streamflow for 241 catchments across the Continental United States (CONUS) and compared

the results to the Sacramento Soil Moisture Accounting Model (SAC-SMA) as a benchmark.

Their results show that LSTMs are able to predict runoff (on daily resolution) solely from grided

meteorological observation data (averaged daily precipitation, solar radiation, min/max air

temperature, vapor pressure) with accuracies comparable to the benchmark model. Moreover,

the authors suggest that pre-trained knowledge can be transferred into different catchments,

possibly reducing the data demand and implying the applicability of these models in ungauged

basins (Kratzert et al. 2018).

7

Kratzert et al. (2019a) also investigated the question, if there is some sort of correlation

between the internal memory cells of a LSTM network and the hydrological states (snow-water

equivalent, upper zone storage and lower zone storage) in the catchment. They compared two

different catchments, one that is snow-influenced and one that is not influenced by snowmelt.

Thus, they were able to show that the hydrological understanding of preceding days influencing

the runoff signal at specific succeeding days matches quite well. In general, the detailed inter-

pretability of all internal memory cell states of an LSTM was limited, but nevertheless, some

cells showed high correlation to other hydrological system states, indicating a strong relation

between them. This suggests that the LSTM realistically represents short- as well as long-term

dynamics in snow cell storage in the catchment. Overall, the processes learned by the LSTM

matches the hydrological comprehension of the real-world environmental system, thus taking

away some of the “blackbox-ness” (Kratzert et al. 2019a).

In another paper, Kratzert et al. (2019c) demonstrate that – by the use of large-sample

hydrology data – a regional LSTM rainfall-runoff model that attaches importance to additional

data in form of catchment attributes produces more accurate streamflow estimates compared

to several existing hydrologic models. This was achieved by proposing a new form of LSTM, in

which a static set of catchment characteristics is used as additional input data to provide the

network with some information for discriminating between different catchments. The newly

introduced entity aware LSTM links catchment characteristics to the dynamics of specific sites

and is able to learn from the combined data of all catchments. In terms of performance, the

regionally trained entity aware LSTM outperformed not only the regionally calibrated bench-

mark models but also the models calibrated separately for individual catchments.

The biggest advantage though is the possibility of a level of interpretability about how

the model learns to differentiate between different catchment-specific behaviors (Kratzert et

al. 2019c). To corroborate their findings so far and to show that they can leverage the afore-

mentioned capability of LSTMs concerning prediction in ungauged basins (PUB), Kratzert et al.

(2019b) demonstrated a ML strategy for PUB in a technical note. Their results show that – in

ungauged basins (on average) – out-of-sample LSTMs outperform both a conceptual model

(SAC-SMA) calibrated independently for each catchment, as well as a distributed, process-based

National Water Model (NWM). Further, they show that the LSTM is able to extrapolate to new

catchments from catchment attributes, advocating the hypothesis that such ML methods can

synthesize information from multiple sites and situations into a single model Kratzert et al.

(2019b).

In a recent study, Kratzert et al. (2020) investigated the ability how LSTMs can leverage

different precipitation products in a spatio-temporally way to improve discharge predictions.

8

This is interesting in view of the fact that many hydrological models usually require gridded data

fields, which are products gained from spatial interpolation and/or satellite retrieval algorithms.

Those are, in turn, based on different sets of assumptions potentially introducing different

types of error and information loss (Kratzert et al. 2020). In their experiments, Kratzert et al.

(2020) showed that there are systematic, location- and time- specific differences between dif-

ferent precipitation products. However, the proposed LSTM trained simultaneously on multiple

precipitation products, outperformed all LSTMs trained on single/pairwise precipitation prod-

ucts and all classical hydrological models. Hence, LSTMs are able to learn and leverage these

differences mitigating uncertainty in data products (Kratzert et al. 2020). Overall, the results

imply that DL models not only have the capability to use a larger number and a broader variety

of input data than classical hydrology models, but are also able to learn spatio-temporally vari-

able interactions between distinct multi data products (Kratzert et al. 2020).1

In the most recent paper published by Gauch et al. (2020), they examined whether

LSTM-based modeling generalizes to multiple timescales, since flood forecasting requires sub-

daily predictions. They introduced a specific configuration of LSTMs, called multi-timescale

LSTM (MTS-LSTM), which is able to generate daily predictions and the corresponding 24 hourly

predictions during the same model run. The key insight of this model is that the hourly predic-

tion phase utilizes the internal LSTM states from the daily prediction phase, which act as a sum-

mary of long-term information up to that point. This setting emphasizes the idea that for rain-

fall-runoff modelling the history of total mass and energy inputs to the watershed are in fact

important. However, the impact of high-frequency variations becomes less significant at long

lead times (Gauch et al. 2020). By using this specific configuration Gauch et al. (2020) are able

to provide multiple output timescales through processing long-past input data at coarser tem-

poral resolution than recent time steps. As a result, the size of the input sequences can be sub-

stantially shortened, because high-resolution inputs are only necessary for the last few time

steps. Testing the newly introduced LSTM model configurations, the results suggest that the

shared state between daily and hourly LSTM predictions holds as much information as the naïve

model (trained only on hourly resolution data). Besides that, this MTS-LSTM achieves a perfor-

mance beyond the best single forcing models. One small drawback of the MTS-LSTM is that, at

daily and hourly target timescales, it predicts 24 hourly steps once a day. For general analysis

settings this might be sufficient, but in an operational forecasting setting, it is essential to gen-

erate these 24 hourly prediction steps more frequently within one day (Gauch et al. 2020).

1 Paper is still open for discussion (last checked: 12.11.2020)

9

1.3. Objectives and Outline

Overall, the previous section shows that a diversity of ML methods has already been applied

across several major subdomains of hydrology. The focus is on LSTM models and their potential

modifications as they have been increasingly integrated into operational schemes and used to

discover patterns, to improve our understanding and to evaluate traditional physical-based

models in terms of rainfall-runoff forecasting. In general, the most accurate precipitation data

are collected by point-based measurement stations within a catchment, which are in situ

gauges to detect complex spatial processes (Kratzert et al. 2020).

However, there is a significant problem in this context: measurement stations hardly

ever capture observational data on a complete continuous timescale due to e.g. system failures

or maintenance suspensions. This leads to commonly missing data, so called data gaps, in the

available measurement datasets. However, most hydrological models typically require a com-

plete time series of observation data. Thus, data gaps have to be filled during preprocessing,

which potentially can be a time-consuming issue. It would be advantageous to have a type of

model that is able to actually deal with missing values in a dataset in an unrestrained way.

Furthermore, process-based models often require information on physical characteris-

tics (e.g. soil characteristics) of the catchment as inputs, which are frequently missing and highly

heterogeneous in space and time. Hence, these models are determined by spatially and tem-

porally distributed system states and physical parameters, which are often unknown (Kratzert

et al. 2019a). Moreover, hydrologic information is required at different timescales depending

on the application area. Flood forecasting needs streamflow predictions in a considerably

higher temporal resolution than for example reservoir management for hydropower operation.

Yet, as described in the previous section, much of the research of DL in runoff prediction has

been conducted at a daily timescale. All the aforementioned aspects lead to several objectives

that are investigated in this thesis, which are the following:

- It is examined if a LSTM model achieves reasonable accuracy in rainfall-runoff predic-

tions based on raw point-based observation data (non-gridded data) in the Regen

catchment in Germany with respect to both, daily and hourly temporal data resolution.

For this purpose, the performance of the LSTM model is compared to a conceptual

physical-based model (LARSIM), which is used in flood forecasting operation through-

out Germany and Switzerland.

- Then, the LSTM model performance is optimized regarding the scaling of the input fea-

tures, the imputation technique of missing precipitation data and the used hyperpa-

10

rameter configurations. Regarding the latter, the focus is on tuning specific hyperpa-

rameters, that are likely - according to the author’s impression - to be a decisive factor

for discharge prediction from a hydrological perspective.

- Further, three different strategies are explored, in order that the LSTM model can cope

with incomplete datasets. One of these strategies explores the idea of a model that

could learn from missingness patterns in the data.

- Next, it is investigated in how far the LSTM model is sensitive to the type and volume

of input data, or, in other words, how the model performs on different input feature

sets. More precisely, these input feature sets are supposed to independently test the

influence of specific parameter groups on the model performance. This analysis in-

cludes the scenario in which the LSTM is trained exclusively on meteorological forcing

data to examine if the LSTM can model rainfall-runoff relations within the catchment

without any prior knowledge of discharge.

- To approach a real-world scenario of operational flood forecasting, tests of predicting

discharge at multiple (hourly) time steps ahead are conducted. It is investigated

whether the LSTM model is able to forecast streamflow with different lead times with

reasonable accuracy – compared to the physical-based LARSIM simulation.

In the beginning, an introduction to DL is given with emphasis on the conceptual ideas of ANNs

and LSTMs along with the fundamental aspects of using LSTM models in the context of multi-

variate streamflow forecasting. In the next section, the methodology of preprocessing the da-

tasets with respect to data cleaning, scaling methods and imputation techniques is presented,

followed by a detailed description of the used LSTM model architecture. On top of that, the

evaluation strategies for assessing the performance of the LSTM model and a short summary

of the concept of the LARSIM model are provided. In the next step, the results are presented

and discussed in detail. Finally, suggestions are made – on further research directions and op-

portunities for even more advanced investigations.

2. Deep Learning Fundamentals

Deep Neural Networks (DNNs) have proven to be quite successful in recognizing complicated

patterns in the field of image processing, language models, handwriting recognition and se-

quential data being applied in complex real-world systems (Ogunmolu et al. 2016). Among

these, three general groups of NNs, which have been frequently applied in the aforementioned

fields, are: (1) Multilayer Perceptrons (MLPs), (2) Recurrent Neural Networks (RNNs) and (3)

Convolutional Neural Networks (CNNs). These types of networks are referred to as “deep”,

11

since they are created by accumulating multiple layers of non-linear operations on top of each

other (Chollet 2018). On the one hand, MLPs, also called Artificial Neural Networks (ANNs), have

been applied to examine static and dynamic simple non-linear systems; on the other hand,

RNNs and their variants have been used to analyze timeseries or sequential optimization prob-

lems. (Ogunmolu et al. 2016). In this section, the most important DL fundamentals with their

underlying principles regarding ANNs and recurrent neural networks are examined. Further-

more, it is explained which steps are essential for developing a multivariate forecasting model,

when utilizing RNN structures for discharge predictions.2

2.1. Introduction to Artificial Neural Networks

ANNs are models that are data-driven and work with a flexible mathematical structure, which

enables them to identify complex non-linear relations between input and output datasets,

while not requiring an understanding of the phenomena’s nature (Wang 2006). Thus, ANNs use

a supervised learning approach to approximate functions by interconnecting units called neu-

rons across various layers. The network consists of three different types of layers: input, hidden

and output layer, which are all composed of an arrangement of neurons (Chollet 2018).

2.1.1. Anatomy of a Neural Network

NNs are typically called “feedforward”, because the information flows through the network in

only one direction, from the input layer to the output layer. There are not any feedback con-

nections (cycles or loops) between the layers, in which outputs of the model are fed back into

itself. An example of a multilayer network is shown in Figure 1. NNs are referred to as fully

connected, as every neuron on one layer is connected to every neuron on the adjacent layer.

In principle, NNs try to learn deterministic mappings from an input to an output (La Fuente et

al. 2019). The training process consists of finding the weights and biases that will minimize an

objective loss function between the network predictions and the corresponding targets

(Goodfellow et al. 2016). The input and output layers have direct connections to inputs and

outputs and thus are called visible layers – as opposed to hidden layers in the middle. The num-

ber of neurons in one layer is called width, while the number of layers is called the depth of the

network. Hence, a deep network implies a large depth dependent on the complexity of the

problem (Géron 2019).

2 All the proposed conceptual principals and fundamental ideas described in the sections 2.1 to and in-
cluding 2.2.1 are predominantly summarized based on Chollet 2018, Géron 2019 and Goodfellow et al.
2016. For further and more in-depth information, please refer to them.

12

Figure 1: Scheme of an Artificial Neural Network (La Fuente et al. 2019)

The units of connection are called “neural”, because they are inspired by neuroscience. The

human brain is composed of nerve cells called neurons that are connected with each other by

axons. Analogous to this, ANNs are composed of multiple nodes, which imitate the biological

neurons of a human brain. In Figure 2 an illustration of a standard artificial neuron within a

feedforward network is shown.

Figure 2: Illustration of a neuron in a feedforward network. The jth neuron receives inputs from neurons (a1, a2, … , ai)
of the preceding layer multiplied by their respective weights and applies a nonlinear transformation (f). The output of

the neuron, called activation, is passed to the neurons of the succeeding layer. (Shen 2018)

Since each hidden layer in the network is typically vector-valued, the layer can be described as

not representing a single vector-to-vector function, but rather as consisting of many intercon-

nected neuron units that act in parallel; each representing a vector-to-scaler function. Each unit

resembles a neuron in the sense that it receives input from many other units and computes its

own activation value (Goodfellow et al. 2016). According to Shen (2018), a neuron on layer L

receives inputs from the input layer or from multiple neurons on layer L-1, where all the inputs

are stored in vectors or tensors; i.e. the jth neuron receives inputs from neurons (1, 2, … , i) of

the upstream layer. The connections are represented by linear weights between neurons, e.g.

wij denoting the connection between the ith neuron and the jth neuron, which are in layer L-1

and L, respectively. Further, to each neuron, a bias parameter bij is added (Shen 2018). Accord-

13

ing to Goodfellow et al. (2016), a forward pass of input data through the network can be de-

scribed stepwise as follows: The input tensors to an artificial neuron contain either raw data

values or may also comprise outputs from preceding artificial neurons (e.g. in hidden layers),

which are then multiplied by their respective weights. Afterwards, the bias parameter is added

and a linear or non-linear transformation 𝜃 is applied to the linearly combined inputs of all

preceding connections. This transformation function squashes the linearly combined inputs to

produce a desired bounded and constant non-linear output. The output of a neuron, called its

activation, is then sent to the succeeding layer.

Common non-linear activation functions used in practice include the logistic sigmoid

function, the hyperbolic tangent function (tanh), or the point-wise Rectified Linear Units (ReLU)

(Géron 2019). The logistic sigmoid function is relevant to functions that map into probability

output spaces [0,1], while the secondly mentioned, hyperbolic tangent function, maps to the

output range [−1, 1]. The output of the latter, the ReLU function, however, is equal to the input

if the input is greater than zero or zero otherwise. It has the advantage of being easier to opti-

mize and providing faster convergence in network (Ogunmolu et al. 2016). After a forward pass,

the corresponding network weights are updated by the use of a specific algorithm called Back-

propagation. This tuning process, which “trains” the network, is described in more detail in the

next section. To summarize it in an abstract way: By consolidating a large number of neurons,

a nonlinear function is obtained, which uniformly approximates the continuous function be-

tween the input and the output space to an acceptable bounded error (Ogunmolu et al. 2016).

2.1.2. Training, Backpropagation and Optimization

In the training process, the weights and biases of a network are adjusted to approximate an

optimal solution to a problem. For this optimization procedure, i.e. during training, a quality

measure for the performance of the neural networks is needed to compare the ground truth

(label/target) with the prediction of the network and to calculate the error signal in the net-

work. Optimization refers to the task of either minimizing or maximizing some function f(x) by

altering x (Goodfellow et al. 2016). The measure of performance that is used in neural networks

is called objective function. This function should typically be minimized and is thus often re-

ferred to as the cost function, loss function, or error function.

The different procedure steps of training inside a neural network are illustrated in Fig-

ure 3 in a simplified form. The different layer transformations in the network are mapping the

input data to predictions. The loss function then compares these predictions to the true targets,

14

producing a scalar loss value. The optimizer, which determines how the network will be up-

dated based on the loss function, uses this loss value to update the network’s weights (Chollet

2018).

Figure 3: Schematic flow chart of a full training cycle in a Neural Network (Chollet 2018)

According to Goodfellow et al. (2016), a linear model, mapping from features to outputs via

matrix multiplication, can by definition represent only linear functions. As a consequence, many

loss functions, while applied to linear models, result in convex optimization problems. This has

the advantage that linear models are easy to train since for convex functions, any local mini-

mum is guaranteed to be a global minimum (Goodfellow et al. 2016). However, the nonlinearity

of a neural network causes most loss functions to become non-convex in an n-dimensional

space and its error surface is often chaotic and possesses several local minima (Goodfellow et

al. 2016).

In order to adjust the weights, the following approach is commonly used. At first, the

weights for feedforward NNs are initialized to small random values, whereas the biases may be

initialized to zero or to small positive values. This defines the starting point for the optimization.

The gradient is then calculated for this point. The gradient gives the direction of the steepest

descent on the error surface and a step is taken in this direction. Hereafter, the gradient is

estimated again and a new point is determined in the direction of the gradient. These steps are

repeated until (ideally) a global minimum is reached. The algorithm for finding the minimum is

called gradient descent (Goodfellow et al. 2016). With the gradient descent algorithm described

before, only the weights of the single neurons in the last layer are adjusted. However, the neu-

rons in the hidden layers have no value, which can be compared to the ground truth. For this

reason, the so-called backpropagation algorithm is used, which is a form of gradient descend

15

method that propagates the loss as a signal into the network and updates network weights of

the hidden layers based on the chain rule (Chollet 2018). The algorithm computes the error

derivatives, which depend on the activation of the single neurons in each layer through the

whole network, starting from the output layer. From this, the influence of a single weight on

the global error can be concluded. With the backpropagation algorithm, the gradient-descent

based optimization can be performed for large networks.3 Compared to other optimization

methods, such as evolutionary algorithms, backpropagation is highly efficient thanks to the dif-

ferentiability and linear nature of the network connections (Ogunmolu et al. 2016). Since gra-

dient descent applied to non-convex and complex error spaces has no convergence guarantee,

the algorithm is sensitive to initial parameter values and thus is not able to always reach the

global minimum. This means it can get stuck on local minima. In order to prevent these draw-

backs, specific variants of training algorithms exist, which improve or refine the use of the gra-

dient to minimize the loss function in any possible way. The version of the gradient descent

discussed before is called batch gradient descent (Goodfellow et al. 2016). In this approach, the

error is calculated with the whole dataset. The model is updated after all the training examples

have been evaluated.

As the data set size grows very large, the time to take a single gradient step becomes

prohibitively long. In order to reduce training time, the stochastic gradient descent (SGD) algo-

rithm can be used. The perception of stochastic gradient descent is that the gradient is an ex-

pectation, which is approximately estimated using a small set of samples, partitioned into

batches of definable size. These batches of samples, typically chosen to be a relatively small

number of samples ranging from one to a few hundred, are also called minibatches, and they

are drawn uniformly from the training set (Goodfellow et al. 2016). For each minibatch, an ap-

proximation of the gradient is computed, and the weights of the model are updated.

One cycle across all batches in a training dataset is called epoch. All batches are evalu-

ated once in an epoch, so the weights and biases are adjusted in each epoch
𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

times, before the whole training process starts all over again (Chollet 2018). Moreover, the ef-

ficiency of batch gradient descent is combined with preventing getting stuck in a local minimum

and minimizing training time by the SGD algorithm (Géron 2019). In this thesis, an algorithm

called Adagrad is used for optimization; it is described in section 3.5.

3 A detailed mathematical description of the backpropagation algorithm can be found in Goodfellow et al.
2016.

16

2.1.3. Evaluation and Regularization

The central challenge in ML is that we must perform well on new, previously unseen inputs —

not only those that our model was trained with. The ability to perform well on previously un-

observed inputs is called generalization (Chollet 2018). Thus, not only the error on trained data,

but also the error on new input data, called generalization error, should be as low as possible.

Typically, the used dataset is divided into three parts: (1) training dataset, (2) validation

dataset and (3) test dataset. The training set is used to adapt the weights and biases during the

training process. Besides the weights and biases, NN models have several settings that can be

used to control their behavior during training and define the training process of the networks.

These settings are called hyperparameters and their values are usually not adapted by the

learning algorithm itself. Furthermore, if the model were able to learn the hyperparameter on

the training set, it would always choose the maximum possible model capacity, which would

lead to overfitting (Goodfellow et al. 2016). Thus, the hyperparameters have to be adjusted

before training. In DL, the model’s capacity is often referred to as the number of learnable pa-

rameters, which is determined by the number of layers and the number of units per layer.

To solve this problem, a validation set of examples is needed, which the training algo-

rithm does not observe (Goodfellow et al. 2016). Hence, a validation subset is used to evaluate

the error during training on that validation data. With a subroutine, the hyperparameters can

be tuned accordingly to the validation error. In order to tune the hyperparameters, there are

different approaches. A popular approach is to use a grid search, in which sets of various com-

binations of hyperparameters are tested and the best one is chosen.

The third subset of the complete dataset, the test set, is used for the final model eval-

uation. It is of utmost importance that the test examples are not used in any way to make

choices about the model, including its hyperparameters. This is crucial to avoid that the model

gets any information about the data, on which its generalization ability should be tested. For

this reason, no sample from the test set can be used in the validation set. Therefore, the vali-

dation set is always constructed from the training data (Chollet 2018). During the final evalua-

tion of the model on the test set, the generalization error is estimated. This error, also named

testing error, refers to errors incurred when the algorithm is applied to new data, neither in-

cluded in the training nor in the validation set [Goodfellow et al. 2016, Géron 2019]. During the

training process, the expected validation error is usually greater than or equal to the expected

value of training error. Generally, there are two factors determining how well a NN model per-

forms. On the one hand, the training error should be reduced as much as possible. On the other

hand, the gap between training and validation error should be considerably small as well. These

two factors correspond to the two central challenges in ML: underfitting and overfitting. The

17

former occurs when the model is not able to obtain a sufficiently low error value on the training

set, whereas the latter occurs when the gap between the training error and the test error is too

large (Goodfellow et al. 2016). As mentioned before, an epoch corresponds to one full training

cycle, in which the weights and biases are adapted on the training dataset. As shown in Figure

4, in the beginning of training, optimization and generalization are correlated.

Figure 4: Training History of a Neural Network, showing the learning curves on the training and validating dataset ac-
cording to (Géron 2019)

The training error as well as the validation error usually decreases during training (along

the epoch number). While this is happening, the model is said to underfit. This means the net-

work has not yet modeled all relevant patterns in the training data. However, after a certain

epoch generalization stops improving. At that point, the validation loss begins to degrade,

which implies that the model is starting to overfit. Overfitting is the result of the model describ-

ing a particular dataset too accurately. This intents that the model is beginning to learn patterns

that are specific to the training data, but that are misleading or irrelevant when it comes to new

data, so it fails to generalize (Chollet 2018). The optimal number of epochs – after which the

training is stopped – should be chosen in a way that, on the one hand, the model converges

and, on the other hand, overfitting does not take place.

The procedure in order to reduce or prevent overfitting and to reduce generalization

errors is called regularization. For an effective regularization, several techniques have been de-

veloped. The best solution is to get more training data, since a model trained on a broader

dataset will naturally generalize better (Chollet 2018). However, the availability of data is often

limited. Then, the second-best solution is to modulate the quantity of information that the

model is allowed to store or to add constraints to the learning process. To accomplish this, the

simplest way is to reduce the size of the model, i.e. the number of learnable parameters in the

model (Chollet 2018).

A deep model with more parameters has more capacity and therefore it can – with its

higher degree of freedom – easily learn a virtually perfect mapping between samples and their

18

targets. Nevertheless, if the network has limited memorization resources, it will not be able to

learn this mapping effortlessly. Hence, the model capacity should not be reduced too much to

avoid an underfitting of the model. A compromise between too much capacity and not enough

capacity must be found. Another method to mitigate overfitting is to constrain the complexity

of the model by forcing its weights to generate a more regular distribution of weight values,

which is called weight regularization. This is achieved by adding a cost to the objective function,

which is associated with having large weights (Chollet 2018).

Another frequently used strategy to cope with high generalization errors are ensemble

methods. This strategy employs the idea of training a few different models independently and

then averaging the results on test examples (Goodfellow et al. 2016). In general, NNs can have

multiple model outcomes even if trained on the same dataset, which is due to random initiali-

zation, random shuffled batches and/or disparity in hyperparameters (Goodfellow et al. 2016).

According to Kratzert et al. (2019b), this implies that a certain amount of uncertainty in these

models derives from randomness, rather than from systematic model structural error. There-

fore, evaluating models by averaging across several model runs is a robust and proven approach

for reducing generalization error (Goodfellow et al. 2016).

Nevertheless, the most commonly used regularization technique is called dropout. The

method randomly blocks a fraction (defined by the dropout rate) of the connections in a net-

work. This operation is implemented via a randomly generated mask with the same dimension

as the connections between two layers (Chollet 2018). This mask is 0 for the blocked connec-

tions and 1 for those kept open. The dropout is only implemented during training, while during

testing the output values of the layer are scaled down by a factor that is equivalent to the drop-

out rate. This is done in order to balance the surplus of active units during testing compared to

training time (Chollet 2018). Dropout introduces some noise into the optimization, which im-

proves robustness (Shen 2018). Another commonly used regularization is early stopping,

whereby the training of the model is stopped before it fully achieves its best performance and

the validation error reaches the minimum (Géron 2019).

2.2. Deep Learning for Time Series

Despite the advantages of ANNs, there are a number of drawbacks associated with using them.

These types of networks are not exactly adequate for the analysis of sequential data (Ogunmolu

et al. 2016). In order to process sequential data and to make predictions, it is necessary that

the model is able to memorize previous states of the system, thus taking advantage not only

from the present information but also from previous states (La Fuente et al. 2019). However,

ANNs do not have that concept of temporary storage integrated in their model structure. That

19

is why it is difficult for them to perceive temporal dynamics in sequential data. Thus, their ability

to approximate sequential data may not be robust, which is reflected in a greater error when

predicting floods and therefore they tend to underestimate the flow (La Fuente et al. 2019).

One very successful method to circumvent the mentioned shortcomings is the use of Long-

Short Term Memory (LSTM) cells, which are based on Recurrent Neural Networks (RNN)

(Hochreiter and Schmidhuber 1997). This specific type of model architecture is explained in the

following section in more detail, since it was applied in this thesis.

2.2.1. Long-term Short Memory Networks

RNNs are one of the most powerful types of NNs, capable of processing sequences of arbitrary

input patterns. RNNs incorporate cells with content addressable memory, thus being able to

capture entire sequences of information (Hochreiter and Schmidhuber 1997). Simple recurrent

neurons are similarly constructed to the units used in ANNs, except that they have a feedback

connection for each neuron in the hidden layer(s) (Ogunmolu et al. 2016). In principle, a recur-

rent neuron can utilize these feedback connections to store representations of previous inputs

in form of activations (Hochreiter and Schmidhuber 1997). This principle of one recurrent neu-

ron is illustrated on the left side in Figure 5.

Figure 5: A recurrent neuron (left) unrolled through time (right) (Géron 2019)

Figure 6: A layer of recurrent neurons (left) unrolled through time (right) (Géron 2019)

At each time step t, the recurrent neuron receives the input vector 𝒙𝒕 as well as the output from

the previous time step 𝒚𝒕. Unrolling the feedback connection of one recurrent neuron through

20

time, as shown on the right side in Figure 5, the idea of how the network can benefit from a

form of memory becomes explicit. With this architecture, the RNN can preserve some states

across multiple time steps. One single or multiple of these recurrent neurons can be concate-

nated in one cell or unit, called memory cell, as depicted on the left side in Figure 6. Again,

unrolling these memory cells through time, as depicted on the right side in Figure 6, the RNN is

capable of remembering short patterns by passing its memory cell state to the next cell (Géron

2019). On the contrary, the traditional RNN can only learn dependencies around 10 or less time

steps (Hochreiter and Schmidhuber 1997). The reason for this is the so-termed “vanishing or

exploding gradients” phenomenon, which becomes apparent in an error signal that either di-

minishes towards zero or grows against infinity during Backpropagation, thus preventing the

effective learning of long-term dependencies (Hochreiter and Schmidhuber 1997). Neverthe-

less, as stated in Kratzert et al. (2018), from the perspective of streamflow modeling, the dis-

charge in a catchment is influenced by various hydrological processes with dependencies well

above 10 hours or even well above 10 days (when assuming hourly or daily data basis). There-

fore, the memory of standard RNNs with a maximum 10 time steps is too short for considering

catchment processes including groundwater recharge, snow accumulation during winter or

even glacier storages, with lag times between precipitation and discharge of several months or

even a few years. However, to accurately predict the discharge, hydrological models need to

somehow replicate these processes as correctly as possible (Kratzert et al. 2018). To overcome

the weakness of the limited amount of memory in basic RNN cells, alternative designs of these

recurrent cells have been developed. The most promising configuration is called the Long-Term

Short Memory (LSTM) cell, which was first proposed by Hochreiter and Schmidhuber in 1997.

An LSTM is a special kind of RNN structure, that is deep in time and can learn when to forget or

retain the state information of previous time steps. Thus, a specific configuration of operations

in this network, so-called gates, control the information flow within a memory cell over long

time periods within the LSTM. The gates help the LSTM network to decide what to forget and

what to remember, so it avoids error signal decay by keeping the errors in memory (Hochreiter

and Schmidhuber 1997). To explain how an LSTM works, it is helpful to look at the unfolded

acyclic graph of one LSTM layer (see Figure 7).

Given an input sequence 𝒙 = [𝒙[𝟏], . . , 𝒙[𝑻]] with T consecutive time steps, in which

each element 𝒙[𝒕] is a vector or tensor containing input features for the model at time step t

(1 ≤ t ≤ T), the following equations describe the forward pass through the LSTM to predict the

discharge at time step t:

21

𝐢𝐭 = 𝛔(𝐖𝐢𝐱𝐭 +𝐔𝐢𝐡𝐭−𝟏 + 𝐛𝐢) (1)

𝐟𝐭 = 𝛔(𝐖𝐟𝐱𝐭 +𝐔𝐟𝐡𝐭−𝟏 + 𝐛𝐟) (2)

𝐠𝐭 = 𝐭𝐚𝐧𝐡(𝐖𝐠𝐱𝐭 +𝐔𝐠𝐡𝐭−𝟏 + 𝐛𝐠) (3)

𝐨𝐭 = 𝛔(𝐖𝐨𝐱𝐭 +𝐔𝐨𝐡𝐭−𝟏 + 𝐛𝐨) (4)

𝐜𝐭 = 𝐟𝐭⊙ 𝐜𝐭−𝟏 + 𝐢𝐭⊙𝐠𝐭 (5)

𝐡𝐭 = 𝐨𝐭⊙ 𝐭𝐚𝐧𝐡(𝐜𝐭) (6)

𝐲́ = 𝐖𝐝𝐡𝐓 + 𝐛𝐝 (7)

Here, 𝒊𝒕, 𝒇𝒕 and 𝒐𝒕 are the input gate, the forget gate and the output gate, respectively (Kratzert

et al. 2019c). 𝒄𝒕 is the cell output (cell state) at time step t, and 𝒈𝒕 is the cell input computed

by the recurrent input (hidden state) 𝒉𝒕−𝟏from the previous time step t-1. In the above equa-

tions, 𝑾 and 𝑼 are the adjustable weight matrices for each gate, whereby subscripts indicate

to which particular gate they belong. Together with the adjustable bias vector 𝒃, these metrices

represent the learnable parameters of the network. Furthermore, two different activation func-

tions are used: the sigmoid-function (𝛔) and the hyperbolic tangent function (𝐭𝐚𝐧𝐡). The sym-

bol ⊙ refers to the element-wise multiplication of metrices/vectors.

Figure 7: Visualization of the standard LSTM cell as defined by Eq. (1-6) (Kratzert et al. 2019c)

In the first time step, the hidden state and the cell state are each initialized as a vector of zeros

or a vector with very small random values with specific distribution (Chollet 2018). The size of

the hidden state is directly related to and defined by the chosen number of LSTM units, which

is a user-defined hyperparameter of the network. As with other NNs, the number of LSTM units

can be interpreted as the number of neurons inside one LSTM memory cell.

The following description of the calculations within the forward pass through a LSTM is

outlined in Kratzert et al. (2018) and developed by Hochreiter and Schmidhuber (1997). The

first gate is the forget gate, which controls, based on recurrent hidden state, to which degree

the elements of the cell state vector will be forgotten. This is computed by equation (1), which

decides how long and what past state memory should be retained. In the next step, a potential

update vector 𝒈𝒕 for the cell state is computed from the current input 𝒙[𝒕], and the last hidden

state 𝒉𝒕−𝟏 (equation (3)). Simultaneously, the input gate, defining which (and to what degree)

information of 𝒈𝒕 is used to update the cell state in the current time step is calculated by equa-

tion (2). With the results of equations (1) – (3) the cell state 𝒄𝒕 is updated by the use of equation

22

(5). Since both the vectors 𝒊𝒕 and 𝒇𝒕 have entries in the range [0, 1], equation (5) can be inter-

preted in the way that it defines which information stored in the previous cell state 𝒄𝒕−𝟏 will be

forgotten (values of approx. 0) and which will be kept (values of approx. 1). Likewise, 𝒊𝒕 deter-

mines which new information stored in 𝒈𝒕 will be added to the cell state (values of approx. 1)

and which will be ignored (values of approx. 0). The dimension of the cell state vector always

corresponds to the dimension of the hidden state vector. The third and last gate is the output

gate, calculated by equation (4), which controls the information of the cell state 𝒄𝒕 that flows

into the new hidden state 𝒉𝒕 at time step t. As the last step, the new hidden state is calculated

by the use of the vector of the output gate and the cell state (equation (6)). It is in particular the

cell state 𝒄𝒕 that allows for an effective learning of long-term dependencies. Due to its very

simple linear interactions within the LSTM cell, it can store information unchanged over a long

period of time steps (Hochreiter and Schmidhuber 1997). During training, this characteristic

helps to prevent the problem of the exploding or vanishing gradients in the backpropagation

step (Hochreiter and Schmidhuber 1997). In order to get predicted values, the output from a

LSTM cell is passed through a traditional dense layer (normal layer as in a feed-forward NN) to

a single output neuron, which computes the final prediction (equation (7)) (Kratzert et al.

2018)). This final dense layer has again its own learnable parameters. The user, i.e. model ar-

chitect, can decide whether either the network should produce predictions after each time

step, or only the hidden state at the last time step 𝒉[𝑻] should be outputted. This kind of setting

is application-specific and depends on the research purpose. For the prediction of discharge in

future time steps, as it is done in this thesis, only the hidden state of the last time step is used

to compute the predicted values. As for normal feed forward NNs, multiple LSTM layers can be

stacked on top of each other in order to increase the model depth.

Regarding the training of a LSTM or a RNN, the computational principle works the same

way as for traditional NNs, meaning that the learnable parameters of the network, the weights

and biases, are updated depending on a given objective function (loss function) for each itera-

tion step. Equivalent to regular backpropagation, there is first a forward pass through the un-

rolled network. Then, the output is evaluated using an objective function (loss function) and

the loss, which is the cumulative loss of each time step, is computed. Dependent on the model

setting, the loss function will ignore some outputs, for instance when only the last hidden state

of the network at the last time step is calculated. After that, the gradients of that loss function

are computed by backpropagation through time. Finally, the learnable parameters are updated

after a complete sequence of forward and backward passes by the use of these gradients

(Géron 2019).4

4 For a very detailed description see e.g. Goodfellow et al. (2016.

23

The advantages of a LSTM network are that the constant error backpropagation within

memory cells results in LSTM’s ability to bridge very long time lags and that it can handle noise,

distributed representations and continuous input sequences (Hochreiter and Schmidhuber

1997). The gradient-based algorithm assures constant error flow through internal states of spe-

cial gates, thus eliminating exploding or vanishing gradients (Hochreiter and Schmidhuber

1997).

2.2.2. Development of a multivariate forecasting model

Time series forecasting involves developing and using a predictive model on data, in which there

is an ordered relationship between observations. A time series forecasting problem, in which

one or more future numerical values should be predicted in a quantitative way, is called a re-

gression type modeling problem (Géron 2019). If for a forecast more than one input variable is

used as input for a NN model, the forecasting is said to be multivariate (Jason Brownlee 2018).

That is the case in this thesis, since several meteorological measurement parameters are fed

into the model. This classification can also be transferred to the output, meaning that a model

can also be used to predict several different variables (Jason Brownlee 2018). However, in this

thesis, the output is univariate as the discharge is the only variable to be predicted.

Within a basin of a river, various hydrological processes take place that influence and

lead to the river discharge, including, e.g., evapotranspiration, snow accumulation and snow

melt, water movement in the soil or groundwater recharge and discharge. These processes

have highly non-linear correlations and are predominantly contingent on the states of the sys-

tem, which represent the memory of a river basin (Kratzert et al. 2019a). As a consequence the

discharge at a given time step t is driven by these system states and by meteorological events

of the preceding time steps (Kratzert et al. 2019a). One of the central questions of the forecast-

ing problem is how many of the preceding time steps should be considered, i.e. how long the

observation history fed to the model should be. This time window should be chosen in such a

way that the long time lag in discharge generation in snow-influenced basins can be captured

by the model. Therefore, from a hydrological point of view, the precipitation during all winter

months might be influential for the correct prediction of the discharge. In contrast, in arid pe-

riods or in less snow-influenced and purely precipitation-driven watersheds, the discharge likely

depends only on the response time of the catchment, thus requiring far fewer time steps of the

meteorological observation history (Kratzert et al. 2019a). Hence, the appropriate length of

time steps within an input window is dependent on the research domain and on the catchment

characteristics.

24

In general, time series forecasting can be framed as a supervised learning problem.

Given a sequence of numbers in a time series dataset, the data can be restructured in such a

way that previous time steps of the variables in the dataset are used as input, and the target

variable, i.e. the predicted variable of the next time step, is used as output (Chollet 2018). This

method is called window method, sliding window method or lag method – depending on the

literature. The number of previous time steps that are used as model input is called the window

length, size or width. In Figure 8, this technique is visualized for an example dataset containing

random values to demonstrate the idea.

Figure 8: Visualization of the sliding window method for single step predictions

The window of past input time steps can contain any number of different input varia-

bles. However, the size of the window, i.e. the number of considered time steps, is the same

for each input variable. Figure 8 visualizes that input arrays are created based on the input

window size of for example five time steps. These windows are shifted by one time step along

the time axis of the input data frame. In this example, each of the created input windows con-

tains three individual variables (X1-X3) and the target variable (Y). The corresponding target

value – that the model tries to predict based on the input window – is the target variable of the

next time step subsequent to the last time step of the input window. The time index of the

target value is thus compared to the input window shifted by one time step. Another important

aspect is that the order of the observations within a window is preserved and must continue to

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

5 12 334 2.1 43

6 6 100 0.9 23

7 4 234 0.4 10

8 15 123 0.2 11

9 12 234 0.2 14

10 23 543 0.2 34

11 34 333 0.7 46

12 45 300 1.5 47

13 32 287 2.5 53

14 23 294 4.7 33

15 12 159 3.1 22

… ... … … …

Time X1 X2 X3 Y

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

5 12 334 2.1 43

Time X1 X2 X3 Y

10 23 543 0.2 34

11 34 333 0.7 46

12 45 300 1.5 47

13 32 287 2.5 53

14 23 294 4.7 33

Input windows
Corresponding
targets/ labels

22

23

43

W
in

d
o

w
 slid

e d
irectio

n

Window 1

Window 2

Window n

Complete Data frame

Input Variables Target/Label

25

be preserved when using this dataset to train the model. To understand how the model pro-

cesses the times steps inside an input window, maintaining an internal state from time step to

time step, the following Figure 9 is provided.

Figure 9: Schematic illustration of how features within one window in one batch are processed by a LSTM unrolled
through time predicting the next time step

This model setting is called many-to-one setting, in which – at each time step – a set of

specific input variables is processed (black squares in Figure 9), but the model will only output

the very last hidden state at the last time step of the window. This output is then compared to

the true measurement, i.e. the target, of the subsequent time step. After one window is pro-

cessed, the next window with the same size is fed into the network. There is no need to have

the windows consecutively ordered along the time axis, since the model updates its learnable

parameters only based on the continuous time steps within one window. As a result, the indi-

vidual windows can be randomly shuffled when being passed to the network (Chollet 2018).

Furthermore, it can be seen that in the beginning of the time series, when the model

has not received the complete sequence length of the predefined window size yet, the model

is not able to compute any predictions. This is called the warmup phase. Therefore, at the be-

ginning of a time series no predictions can be made by the model for the number of time steps

of the defined window size. Similarly, at the end of the time series, the model can only predict

as close to the last time step of the complete sequence as there are target values available for

the comparison between true observations and model predictions. In other terms, for the very

t = 0 t = 1 t = 2 t = 3 t = 4Input window

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

43

Warmup t = 5Predictions

t = 5Target/Label

LSTM - cells

26

last time step in a time series (in case of single step predictions), the model cannot output any

value, since at the end of a time series there is no next true observation for comparison availa-

ble.

The scenario described above can be referred to as a single step forecast, in which only

the target value of the very next time step should be predicted. However, it is also possible for

the model to predict multiple time steps ahead based on one single past window. In this multi-

step scenario, the only difference is that the output consists not only of the value of the next

time step, but also of the values of the next n time steps, which the model should predict. The

number of future time steps, i.e. how far the model should predict ahead, corresponds to the

target steps, which is a user-defined setting. Hence, in the further course of this thesis, a model

with a target step number greater than one serves as a multi-step prediction model. During

training, a multi-step model does not compare one output value with the corresponding true

measurement, but it compares a vector of n outputs with the corresponding n observations of

the subsequent target steps. In a multi-step scenario, the arrangement of the windows with

their corresponding targets is illustrated in Figure 10. In this example, the next three time steps

of the target (Y) should be predicted, based on the input windows of size 5, containing 4 differ-

ent variables (X1, X2, X3, Y).

Figure 10: Visualization of the sliding windows method for multi-step one shot predictions

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

5 12 334 2.1 43

6 6 100 0.9 23

7 4 234 0.4 10

8 15 123 0.2 11

9 12 234 0.2 14

10 23 543 0.2 34

11 34 333 0.7 46

12 45 300 1.5 47

13 32 287 2.5 53

14 23 294 4.7 33

15 12 159 3.1 22

… ... … … …

Time X1 X2 X3 Y

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

5 12 334 2.1 43

Time X1 X2 X3 Y

10 23 543 0.2 34

11 34 333 0.7 46

12 45 300 1.5 47

13 32 287 2.5 53

14 23 294 4.7 33

Input windows
Corresponding
targets/ labels

W
in

d
o

w
 slid

e d
irectio

n

Window 1

Window 2

Window n

Complete Data frame

Input Variables Target/Label

53

33

22

23

10

11

23

10

11

27

In contrast to the many-to-one model setting, the model is now said to have a many-to-many

setting, since several inputs are processed, and several predictions are produced. The model

predicts the entire output sequence of future values at once, i.e. in one step. Thus, it is called a

single shot model. This model behavior is shown in Figure 11 by way of illustration.

Figure 11: Schematic illustration of how features within one window in one batch are processed by a LSTM unrolled
through time predicting the next n time step (in this example the next 3 time steps)

One general drawback of the single shot approaches mentioned above is the fact that the model

predicts future values of the next n time steps without additional incorporation of input varia-

bles during the forecasting period of these n target steps. To put it differently: the predictions

are only based on the observation of the past window and not on additionally estimated input

variables for the forecasting period.

To project this onto the scenario in this thesis, in which the discharge should be pre-

dicted based on meteorological input parameters, meteorological forcing data (e.g. precipita-

tion) is not considered during the n prediction steps the model conducts (in one shot). It should

be mentioned here that this does not necessary imply a possibly wrong assumption of zero

precipitation during the target steps, but rather the model does not receive any meteorological

data. In other words: from a computational perspective, there is a significant difference be-

tween the model being provided with precipitation values of zero during the future prediction

steps and the model not receiving any information about the future precipitation at all. From a

t = 0 t = 1 t = 2 t = 3 t = 4Input window

Time X1 X2 X3 Y

0 10 165 0.7 25

1 54 34 0.8 43

2 23 234 0.9 78

3 43 233 2.5 76

4 76 12 1.7 66

Warmup t = 5Predictions

t = 5Target/Label

LSTM - cells

23

10

11

t = 6 t = 7

t = 6 t = 7

28

hydrological forecasting perspective, it might be advantageous for the model to receive mete-

orological information during the prediction steps. Hence, to somehow evade the aforemen-

tioned drawback a customized prediction loop is provided in this thesis, which suggests a pre-

diction algorithm for the LSTM model to incorporate forecasted data during multi-step predic-

tions.5

In order to create either the single-step or the multi-step scenario, the dataset of the

complete time series has to be split in a training, validation and test set, as described in section

2.1.3. Before these three subsets are transformed into the right format for the model, the user

has to define the number of target steps, the size of the lookback window and the batch size.

The next step is to reshape each of the three subsets (training, validation and test set), so that

it can be processed by the model. This results in an input array for each subset that is three-

dimensional, whereby one of the dimensions indicates the number of batches (B) in the array.

Each batch consists of a specific number of input variables, i.e. features (F), which create an-

other dimension in the input array. Finally, each of these considered features are processed in

the network simultaneously step by step for a sequence of n consecutive recorded time steps,

which matches the predefined lookback window size (W). Thus, in total, there are three inde-

pendent views along the input array with the size: [B, W, F] as displayed in Figure 12. The total

number of windows the network processes within one subset can be calculated by: number of

time steps – window size – target steps.

Figure 12: Illustration of the individual views along the axis of the 3D input array. The three dimensions are: (i) batch
size (number of simultaneously processed windows), (ii) window size (number of consecutive time steps considered

in the lookback window), (iii) number of available input features

However, before the input arrays are fed into the network, the features are scaled. Many

ML algorithms perform better or converge faster when features are on a relatively similar scale

5 The customized prediction loop is described in detail in section 3.7.

29

and/or are close to normally distributed (Goodfellow et al. 2016). Scaling tends to make the

training process work better by improving the numerical condition of the optimization problem

and by ensuring that various default values involved in initialization are appropriate (Kratzert

et al. 2018). It is of high importance that each feature is individually scaled and that the scalers

are fitted to the training data only, not to the full dataset (including the test set). After that, the

scalers can be applied to scale the validation and the test set, ensuring that there are no infor-

mation leaks from the training data into the validation or test set (Géron 2019, Chollet 2018).

The scaling techniques that were applied in this thesis are described in section 3.4.3.

After the scaling process, the data is in the right format to be handled by the model. Now

the model has to be created and initialized, with its desired settings of hyperparameters. The

batch size is one hyperparameter that has already been defined at this point. Within traditional

hydrological model calibration, the number of iteration steps defines the total number of model

runs performed during calibration (Kratzert et al. 2018). The corresponding term for NNs is

called an epoch, as already mentioned in section 2.1.2, and it also has to be specified before

fitting the model to the data. In addition, other hyperparameters, e.g. the number of LSTM units

and the used objective function, need to be set. A full list of the applied hyperparameters in

this thesis is provided in section 3.4.

After the model is fitted or calibrated to the training data for the selected number of

epochs, the model with its optimized weights can be used to predict an individual sequence of

the target variable. Finally, these predicted values can be compared to the true observations,

and the model performance can be evaluated using individual performance metrices. These

performance metrices should give an indication of how accurate the model predictions are and

how well the model performs on unseen data. The choice of performance metrices is strongly

domain-specific and depends on the research purpose. For regression tasks such as runoff pre-

diction, the Mean-Squared-Error (MSE) is commonly used. Hydrologists also commonly use the

Nash-Sutcliff-Efficiency (NSE) because it has an interpretable range (Kratzert et al. 2019c). Fur-

ther details on which performance metrices are used for evaluating the model in this thesis are

given in section 3.5.

3. Methodology

The topic of this chapter involves providing the reader with an overview over the concrete

methods that are applied to investigate on the different objectives of this thesis. At the very

beginning the general procedure of the sensitivity analysis is explained. This is accompanied by

a flow chart to visualize also all the intermediate analysis steps. Afterwards an overview over

30

the catchment characteristics and its meteorological stations is provided. Then all the necessary

information about the meteorological measurements together with a basic statistical overview

is given. Furthermore, the basic workflow and necessary preprocessing steps of the input data

are described. This section explains how the data is cleaned and further prepared to serve as

input for the neural network. In the next section, the specific LSTM architecture with selected

hyperparameter is explained in detail. As next step, different fundamentals of validating the

model are presented. Finally, the principle of the customized prediction loop is explained.

3.1. Overview of Investigation Steps

To get an overview, about all aspects of investigation within this thesis and to be able to follow

along the different analysis steps in a structural manner a flow chart is provided in Figure 13.

After the Raw Data is preprocessed, the analysis starts with testing very basic scenarios, in

which the model with its primary model settings - as a result of the research in (Unnikrishnan

2019) - is used to predict the discharge at one example station. Hereby, only one close by pre-

cipitation station is considered as meteorological input and the effect of additionally including

the target discharge gauge, as part of the input data, is investigated. Since the model might

behave differently with respect to input data scaling applied during preprocessing and to the

chosen method of dealing with missing values, a grid search of model runs is carried out. This

should give the most suitable combination of both aforementioned methods regarding model

performance. This preceding analysis is performed on daily data basis only and the most suita-

ble setting is used in further course of analysis steps. The succeeding research steps are con-

ducted in both, daily and hourly resolution. As a next step, the influences of the different impu-

tation techniques on the model performance are identified. The best imputation techniques for

precipitation data is then used in the further course of the thesis. The approved dataset config-

urations based on the aforementioned preliminary analysis are then applied in the sensitivity

analysis. In this analysis the impact on model performance of having various input feature com-

binations of meteorological stations and/or discharge gauges in the input data is examined.

Considering the most promising configuration of input features, it should be investigated, if the

model performance can further be enhanced by basic hyperparameter tuning. Finally, the over-

all optimal model configuration on an hourly basis is used to explore the LSTM’s performance

of predicting discharge multiple time steps ahead with different methods. To round the inves-

tigations off a customized prediction loop is introduced, in which a pre-trained single step LSTM

model is used to predict several time steps ahead. Within this prediction loop the LSTM model

is fed continuously with new data for each prediction step.

31

Since no truly forecasted meteorological data was available, instead true observations of me-

teorological input features - naively assumed as “forecasted” – are considered.

Figure 13: Flow chart of the consecutive investigation and analysis steps carried out in this thesis

Raw Data

Daily Data

Best Performing Setting

Imputed Datasets
Comparison

Primary Model
Configuration

Hyperparameter Tuning

Missing Value Methods -
Comparison

Scaling Comparison:
Standard vs. Robust

Hourly DataPreprocessing:
• Data Cleaning
• Resampling the Data

to daily values
• Creating datasets

with different
imputations

Primary Model
Configuration

Best Dataset
Configuration

Test Model on two close
by stations

Sensitivity Analysis
• Stations inside

catchment
• Precipitation

stations only
• Adding Discharge

stations
• Exclude Target

Station

Best Performing Setting

Imputed Datasets
Comparison

Hyperparameter Tuning

Best Dataset
Configuration

Sensitivity Analysis
• Stations inside

catchment
• Precipitation

stations only
• Adding Discharge

stations
• Exclude Target

Station

Multi-step Predictions
• Single Shot multi-

step LSTM models
with different lead
times

• Single step Model
with customized
prediction loop

32

3.2. Study Area – Regen Catchment

The Regen catchment has an area of 2878,13 km² and is located in the upper Palatinate in Ba-

varia, Germany.6 The Western boundary of the watershed area follows the border to the Czech

Republic, where the main headstream of the river Regen has its source. The Regen is the second

longest left sided tributary of the Danube. The river's total length, including its headstreams,

the Great Regen and Black Regen, is 191 km. The riverhead of the Great Regen, is in the Bohe-

mian Forest on the territory of the Czech Republic, near Železná Ruda.7 The river crosses the

border after a few kilometers, at Bayerisch Eisenstein. At Zwiesel, the Great Regen is joined by

the Little Regen to form the Black Regen. The Black Regen flows through the villages Regen and

Viechtach and is joined by the White Regen near Bad Kötzting. Beyond this confluence, the river

is called Regen. The outlet of the Regen catchment is the point where the Regen flows into the

Danube in Regensburg. In Figure 14 an overview of the catchment area and the available me-

teorological stations as well as the gauging stations of the biggest tributaries is provided.

Figure 14: Overview of study area

[Sources of shape files: river network from Ecrins (https://www.eea.europa.eu/data-and-maps/data/european-catch-
ments-and-rivers-network); the catchment outline from HydroSheds (www.hydrosheds.org), the DEM from EU_DEM

v1.1 (https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=download)]

6 http://www.lfu.bayern.de/wasser/gewaesserverzeichnisse/doc/tab_alle.xls by the Bavarian State Office
for the Environment
7 https://en.wikipedia.org/wiki/Regen_(river)

http://www.lfu.bayern.de/wasser/gewaesserverzeichnisse/doc/tab_alle.xls

33

 The elevation of the watershed area extends between 316 m and 1446 m above sea level.8 The

annual mean precipitation in across all available stations is about 793.19 mm and the annual

mean temperature is around 8.81°C with temperature ranges roughly between -25°C and +

38°C.9 The maximum rainfall amount in 24h was 104.06 mm at the Station in Neukirchen bei

Heiligen Blut.9 In total there are 20 available discharge gauges and 55 meteorological stations,

which measure several numbers of meteorological parameters. Some of the meteorological

stations are actually located outside the catchment boundaries. However, since the weather

patterns are no strict local phenomenon, these stations may still capture useful input data. This

especially applies to the stations close to the watershed boundaries. Additionally, these stations

can be used for interpolation purposes. The symbolization of the meteorological stations in Fig-

ure 14, is dependent on the particular parameters, that are recorded. The green rhombus in

Figure 14, indicates the gauge at Marienthal. This is the target station at which the discharge of

the Regen should be predicted. At this station, the mean annual discharge is 37.70 m³/s and the

annual peak discharge is around 304.00 m³/s. The highest ever recorded value is 720.00 m³/s.10

However, the highest measured discharge in the available time period (2003 – 2018) is 410.17

m³/s, which corresponds to a return period between five and 10 years. The two red rhombi as

well the red crosses in Figure 14 indicate gauges and meteorological stations, that had to be

excluded from the dataset due to a high amount of missing data. The remaining blue rhombi

specify discharge gauges, that have enough records and can thus be potentially considered as

additional input data for the model.

3.3. Data Overview

The dataset that is used in this thesis was provided by the Flood Forecast Center from the Ba-

varian Water Authorities (Landesamt für Umwelt (LFU)). As mentioned above there is data from

55 meteorological stations and 20 discharge gauges available. Principally, all the meteorological

stations measure the precipitation, but 29 of these stations additionally measure several other

meteorological parameters (e.g. temperature). In Table 1 an overview of all existing parameters

is given.

8 Source: EU_DEM v1.1 (https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=download)
9 Source: LARSIM input files provided by Flood Forecast Center from the Bavarian Water Authorities; Ref-
erence period: 2003 - 2018
10 https://www.gkd.bayern.de/de/fluesse/abfluss/naab_regen/marienthal-15207507/hauptwerte;
Reference period: 1901 - 2013

https://www.gkd.bayern.de/de/fluesse/abfluss/naab_regen/marienthal-15207507/hauptwerte

34

Table 1: Overview of available meteorological and hydrological parameter in the dataset

Parameter
Abbrevia-

tion
Unit

Number of
Stations

Percentage of missing values

hourly daily

Precipitation n [mm] 55 12.11 11.29

Discharge q [m³/s] 20 4.73 4.64

Relative humidity rflu % 28 23.36 22.61

Air temperature tlu [°C] 29 19.57 18.67

Dew point temperature ttau [°C] 4 6.62 6.07

Global radiation xglob [w/m²] 15 27.97 27.35

Air pressure xludr [hPa] 4 26.67 26.45

Wind speed xwind [m/s] 23 26.81 25.03

Sunshine duration zsos [min] 7 33.31 27.40

An input feature describes on specific measurement parameter at one particular station. Alto-

gether this results in a total of 185 input features. The station data of all 9 available parameters

are recorded on hourly basis between the 1st of November 2003 and the 1st of January 2018.

However, for necessary preprocessing steps as well as for some sections of the sensitivity anal-

ysis, the temporal resolution is resampled to daily resolution in order to reduce computational

intensity (less amount of data) and to investigate the difference of some other temporal reso-

lution on the performance of the model. The resampling procedure is conducted for the differ-

ent parameters individually. For precipitation, the cumulative sum is calculated to get the total

amount of rain in one day. Also, the global radiation and sunshine duration it makes sense to

use the total amount measured over the period of one day. The parameters discharge, relative

humidity, air pressure, dew point temperature and wind speed are resampled by taking the

mean value over 24 hours, respectively. The approach to calculate the daily air temperature is

differently. With the intention to not lose the valuable information of the minimum and maxi-

mum temperature for one day, the parameter air temperature is duplicated. Instead of taking

the mean of the air temperature, now two parameters are considered as input, which are min-

imum and maximum temperature in one day, respectively. This increases the available number

of input features for the dataset based on daily resolution by 29. There are now 214 accessible

input features in the daily dataset. Nevertheless, it is often the case, that for such a long meas-

urement period the available data comes along with missing data gaps due to e.g. measuring

system failures or maintenance work. This holds also true for the dataset in this thesis. In total

there are 18.3% of all possibly available measurements missing (hourly values). After

resampling to daily values this percentage drops to 17.5%. The percentage of missing values

compared to the amount of available records per parameter is shown in Table 1. The amount

35

of missing values is quite significant and requires preparing a strategy for dealing with these

missing values. Thus, one essential step before the data is fed into any type of hydrological or

data-driven model, the input data have to go through necessary cleaning and further prepro-

cessing steps, which are described in the following section. A complete list of all available sta-

tions including station IDs and recorded parameters can be found in Table 12 in the Appendix.

3.4. Data Preparation

Data preparation and preprocessing is usually designed to serve different purposes, for instance

removing some variability in the input data, determining extreme outliers, filling in data gaps,

changing the underlying data formats, etc. In this thesis some basic preprocessing seems rea-

sonable and necessary due to a high percentage of missing data, as pointed out in the previous

section. Various approaches have been developed to address missing values in time series.

Probably the simplest solution is to discard missing samples and to perform the analysis only

on the available measurements. However, when the rate of missing data is high and faulty ob-

servations are conserved, this method does not provide good performance (Che et al. 2018). In

this thesis reducing the quantity of missing values is accomplished by disregarding complete

features from the dataset and imputing missing gaps by applying appropriate techniques. The

following subsections explain the necessary steps to prepare the dataset to be fed into the

LSTM model.

3.4.1. Data Cleaning

As mentioned above, there are two datasets with two different temporal resolutions available:

one on hourly basis with 185 possible input features and one with 214 possible input features

with daily records, which incorporates both, min and max temperature at each station. The

former data contains 22,981,440 samples and the latter one has 1,107,664 samples. Since the

recorded resolution is on hourly basis, the cleaning process is applied to the hourly dataset and

then adopted to the resampled daily dataset. All the decisions on disregarding specific features

is done after viewing and examining the data manually. Even though data has been available

since 1st of November 2003, the chosen start date is 11th of January 2005, because since this

date continuous measurements have been available from all meteorological stations. This en-

sures that a maximum number of features are available. Furthermore, some stations show ob-

vious errors (e.g. constant values over several months) in their recordings and therefore their

measured parameters are excluded completely from the dataset. This is done to make sure to

not introduce any systematic bias. All the remaining missing values are either present as larger

gaps of up to a few months or show up as occasionally scattered intervals of few hours across

36

the measurement period. As a next step, the remaining percentages of missing values com-

pared to the available samples per features is examined. To be able to have a sufficient time

span over 10 years of available data per feature to train the model, a threshold percentage for

missing samples is defined to be 10%. Consequently, all features showing a higher amount of

missing values than this threshold are dropped from the input dataset. Regarding the discharge

gauges, two stations have a noticeable quantity of missing data. The discharge gauge at

Cham/Regen, began its operation on 24th of November 2009, whereas the recordings at

Eschlkam /Chamb have only been available since 22nd of June 2007. Due to their short meas-

urement series both of aforementioned gauges are not considered as possible input features,

although these stations could have been of importance. Overall, the potentially available input

features based on hourly resolution were reduced from a total of 185 to 92 features. Hereby,

the number of meteorological features dropped by 91 features, whereas the number of dis-

charge gauges are reduced by two. Hence, after the cleaning procedure the total size of both

datasets (hourly & daily resolution) changed: the daily dataset consists of 488,117 samples with

103 considerable input features, while the hourly dataset comprises 10,463,712 samples from

92 considerable input features. An overview of all included stations together with its meta data

can be found in Table 12 in the Appendix.

3.4.2. Imputation techniques for Missing Data

The two cleaned datasets still contain a not neglectable amount of missing values. To reduce

the amount of missing measurement even further, it is common practice to either substitute

them by utilizing information from surrounding measurement stations, also known as data im-

putation, or use interpolation and spline methods between adjacent measurement points

within the measurement series (Che et al. 2018). There are also more modern and sophisticated

methods to fill data gaps in time series. Especially ANNs and SVMs have proven to be effective,

when approximating non-linear relations. However, these methods require intensive calcula-

tions with high computational cost (Campozano et al. 2014). This thesis focuses on the applica-

tion of deterministic methods, since they are computational efficient, easy to implement and

robust in settings with high spatial variability (Campozano et al. 2014). According to Campozano

et al. (2014), deterministic methods are mathematical models that provide the same output

from a given initial condition, and neither contemplates the existence of randomness nor at-

tribute a probability of occurrence. The choice of imputation methods in general is highly de-

pendent on the catchment characteristics, the number of available precipitation stations in the

catchment and their spatial arrangement. Since after the cleaning process the majority of the

37

remaining percentage of missing data concentrates on precipitation data, the focus is on apply-

ing different imputation techniques only to the precipitation samples. For imputing missing pre-

cipitation values, 4 different techniques are examined and evaluated: (i) simple arithmetic av-

eraging, (ii) normal ratio method, (iii) inverse distance weighting and (iv) linear regression anal-

ysis.

ARITHMETIC AVERAGING NEARER STATIONS BASED ON CONDITIONS (AVWC)

A simple deterministic method is the imputation by the arithmetic mean of the corresponding

precipitation measurement of the stations near the station of concern. This method is suitable

for areas where the variable under consideration possesses small spatial variability. This can be

calculated via equation (8) (Caldera et al. 2016),

px(t) =
1

m
∑ pi(t)

m

i=1
 (8)

where m is the total number of nearby stations, i indicates the ith considered station and t is the

time stamp. Which surround precipitation stations for imputing one specific target station are

selected is based on two conditions that both have to be met: (1) a threshold for the Pearson

correlation coefficient between the target station and the surrounding stations of at least 0.8

for daily values and 0.6 for hourly values, respectively; (2) only nearby precipitation stations are

considered, that are within a radius of 15 km.

NORMAL RATIO METHOD WITH RESPECT TO DISTANCE (NRM_D)

This method uses the ratio of normal annual precipitation of the target station (Nx) to the nor-

mal annual precipitation of the selected surrounding stations (NI) as additional weight for com-

puting the arithmetic mean for these stations, calculated by equation (9) (Caldera et al. 2016).

px(t) =
1

m
∑ (

Nx
Ni
) pi(t)

m

i=1
 (9)

The additional parameter m is the total number of nearby stations, i indicates the ith considered

station and t is the time stamp. In this case only nearby stations are selected that are within a

radius of 15 km, but no threshold for the person correlation coefficient is considered.

INVERSE DISTANCE WEIGHTING (IDW)

Inverse distance weighting (IDW) is probably the most commonly used method to estimate

missing data in hydrology and geographical sciences. The success of this method depends on

the existence of a positive spatial autocorrelation and is be calculated by equation (10) (Caldera

et al. 2016).

38

px(t) =

∑
1
di
2 pi(t)

m
i=1

∑ m
i=1

1
di
2

 (10)

The parameter m is the total number of nearby stations with verified conditions, i indicates the

ith considered station and t is the time stamp. This method basically weights each precipitation

record according to the inverse proportion to its squared distance d of the neighboring station

to the target station. Here, it is chosen to have no requirement of conditions to be fulfilled.

LINEAR REGRESSION (LR)

This technique uses a linear regression model to estimate the missing precipitation data. The

adjacent station for the regression model input is chosen based on the highest correlation co-

efficient between the surrounding stations and the target station (Caldera et al. 2016).

px = c1pi (11)

The regression model is obtained by the use of the scikit-learn library for python11. In order to

be able to generate zero values together with non-zero values, the regression line is forced

through the origin, as stated in equation (11), where the parameter c1 is the regression coeffi-

cient.

For some time stamps, the selected nearby stations have missing observations as well,

thus not all missing precipitation values in the input dataset can be eliminated. Furthermore,

regarding the AVwC-Method, the desired conditions are not always met and thus measure-

ments of these surrounding stations are not considered to impute missing values of the target

stations. Overall, 10 different input datasets for both daily and hourly measurements have been

created: Two dataset with no imputed precipitation data (one hourly dataset & one daily da-

taset) and eight additional datasets for each applied imputation technique (four hourly datasets

& four daily datasets). In the further course of this thesis it is analyzed, which of these different

datasets works best for LSTM model with respect to both temporal resolutions. In addition, in

order to train the LSTM model successfully, the target feature (discharge measurements at Ma-

rienthal station) must not contain any missing values. Therefore, these missing values are line-

arly interpolation between adjacent records along the time axis. Overall the total amount of

missing values for the daily measurements have been reduced to 0.71% after data cleaning and

further to 0.48% after the applied imputation. For the dataset on hourly basis, the total per-

11 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

39

centage drops to 1.07% after data cleaning and further to 0.65% after the imputation of precip-

itation data.12 The next step before the data can be fed into the network is feature scaling,

which is described in the following.

3.4.3. Feature Scaling Techniques

It is common practice to scale data before feeding it into a NN model, due to several reasons.

The main reason is, that ML algorithms commonly, with a few exceptions, do perform better

when numerical input attributes have similar scales. To “scale” generally means to change the

range of the values of one feature, whereby the shape of the distribution stays the same, unlike

using non-linear transformations (Goodfellow et al. 2016). The input datasets contain features

highly varying in magnitudes, unit and range. Hence, to regularize the variance of the features

to be in the same range, feature scaling is applied to the data. In this thesis two methods are

applied and comparted: Standard Scaling, commonly called standardization, and Robust Scal-

ing.

STANDARD SCALING

Standard scaling standardizes a feature by subtracting the mean and then dividing by standard

deviation and is given by following equation (12) (Chollet 2018):

xs =
xi − x̅

s
=

xi − x̅

√ 1
N− 1

∑ (xi − x̅)2
N
i=1

(12)

The Parameter N is the number of samples, 𝒙 ̅ is the sample mean of one feature and xi is the

ith value of one feature. The parameter s is the sample standard deviation of one feature. The

standard scaling results in a distribution, which has zero mean and unit variance.

ROBUST SCALING

If the input data contains many outliers, scaling using the mean and variance of the data is likely

to not work very well. Since some of the available features in the dataset used in this thesis

contains outliers, robust scaling is tested as an alternative method. This method uses more ro-

bust estimates for the center and range of the underlying data and thus reduce the effects of

outliers and prove to work better for data, that have a heavy-tailed distribution.13 Robust scal-

ing can be achieved by the following equation (13):

12 How the remaining missing values are treated is explained in section 3.4.4.
13 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.pre-
processing.RobustScaler

40

xr =
xi − x̃

IQR
=

xi − x̃

Q3(x) − Q1(x)
 (13)

A robust scaler transforms the feature data by subtracting the sample median 𝒙 from each value

of one feature and then dividing by the interquartile range (IQR) of the data. The IQR is a meas-

ure of variability, based on dividing a data set into quartiles. The interquartile range is the dif-

ference between the third quartile (Q3) the first quartile (Q1) of the data, corresponding to the

75th and 25th percentile, respectively.13 However, this quantile range can be adapted and is set

to the 95th and 5th percentile in this thesis, to address only the very large outliers.

3.4.4. Final Dataset preparation

Much of missing data was substantially reduced to this point. Besides that, the data was scaled.

However, there is still missing data in the different input datasets, as previously mention in

section 3.4.2. As mentioned in section 1.3, one objective of this thesis is to analyze three basic

methods of how a LSTM networks could deal with missing data. Since the LSTM model cannot

handle missing values (indicated as NaN values) from a computational perspective, a final da-

taset preparation has to be done. The three basic methods applied in this thesis to deal with

the last bit of missing data are explained in the following:

METHOD 1 – DROP MISSING VALUES

This method is the simplest one to implement. All remaining missing values are dropped. How-

ever, since the developed model cannot deal with input features of unequal sample size per

feature, the complete row (all features along on time stamp) for one missing data entry is

dropped additionally. Therefore, a lot of usable information get lost and the dataset shrinks

quite a bit. For example, in case of the not imputed dataset based on daily records around

39.5% of the total data is lost. If only a dataset with a small sample size is available, this method

may not be ideal, since too much data gets lost in order to train the model properly.

METHOD 2 – IMPUTATION BY UNPHYSICAL VALUES

The idea behind this method is to let the model try to learn by its own, that a sample is consid-

ered missing. This should be achieved by filling the remaining missing records by an unphysical

value or by a value that does not occur naturally in this region. During the training process if

these unphysical values run through the model, the model should teach itself to recognize this

specific value as being missing. Since the imputation by unphysical values is done after the fea-

ture scaling, just one specific defined value can be used for all unique parameters. It must be

assured, that this specific fill values result in an unnatural or unphysical value after inversing

the parameters back to their original ranges. Of course, the fill value must not match with any

41

other measurement value in the scaled dataset and should be small or big enough to be within

the scaling range of the dataset. As the two scaling methods produce different dataset ranges,

the fill value has to be chosen individually for the two scaling techniques. For the investigations

in this thesis the fill value is set to -7.0 for standard scaling and to -3.0 for robust scaling, re-

spectively.

METHOD 3 – USE MASKING LAYER

In this method the LSTM model is “told” beforehand, which values it should consider as missing.

This is achieved by adding a masking layer as the very first layer of the LSTM model. For each

time step in the input data, if all values in the input tensor at that time step are equal to one

specific mask value, the timestep will be skipped (masked out)14. Again, it has to be assured,

that the chosen mask value does not match any other non-missing data value, which, if true,

could get accidentally masked out. As an appropriate mask value, the corresponding fill values

from Method 2 are chosen with respect to the applied scaling technique. Because this method

requires a slightly different model architecture, two model configurations are used in the first

steps of the analysis. In the later course of this thesis the model architectures are slightly con-

figured to optimize the model in response to changed input data. The exact model architectures

are explained in more detail in the next section.

3.5. Model Architectures

As mentioned earlier there are two slightly different LSTM model architectures used in this the-

sis with respect to the method for dealing with missing values. Both of them are illustrated in

Figure 15. The right hand side in Figure 15, shows the network unrolled through time. This ar-

chitecture is identical to the one used in the study conducted by Unnikrishnan (2019). Regarding

Method 1 and Method 2, this LSTM model is composed of two layers containing LSTM cells. In

between these two layers are Dropout layer is added for regularization purposes, as described

in section 2.1.3. Concerning Method 3, the only modification is an additional masking layer ap-

plied before input data is processed by the first LSTM layer. In this case, the missing samples

per input features are masked out for the corresponding time step, which implies that they are

skipped by the model during training.

14 https://www.tensorflow.org/api_docs/python/tf/keras/layers/Masking

42

Figure 15: Architecture of the LSTM model with corresponding Layers (left) unrolled over time (right) according to
Unnikrishnan (2019) (except Masking Layer). In case missing values Method 3 is applied, a masking layer is added to
the model architecture. In the other both cases (Method 1 & Method 2) the input features are passed directly to the 1st

LSTM layer.

In the input layer of the LSTM model the data is fed into the network in a specifically

shaped array, as described in section 2.2.2 (see Figure 9). According to Figure 12 in section 2.2.2,

this input array is three-dimensional with the size [B, W, F]. The first dimension in this array is

related to the batch size B. Each batch considers F input features. Within one batch all consid-

ered features are fed simultaneously into the network are processed in the network step by

step for a sequence of n consecutive recorded time steps, which matches the predefined look-

back window size W. During model training each batch is shown exactly once per epoch to the

model. During the training steps in the first LSTM layer, the individual outputs, i.e. hidden

states, are returned by the LSTM cells after each time step and passed to the Dropout layer to

prevent overfitting, as explained in section 2.1.3. The remaining outputs are then passed to the

second LSTM layer, which contains LSTM cells with the identical number of LSTM units as the

cells in the first layer. However, the second LSTM layer, does not return the cell state for each

time step, but only conveys the one of the very last time step (n) before passing it to a dense

layer. This dense layer is a layer as found in an ANN (see section 2.2.1) consisting of neurons,

 𝑛

Ŷ

Dense

LSTM
cell

LSTM
cell

Dropout

Input Data (3D-
Arrays)

 𝑛

Ŷ

mask

 𝑛−1 1 2

2nd LSTM Layer

Dropout Layer

1st LSTM Layer

Dense Layer

Output Layer

Masking Layer
(only for Method 3)

Input Layer

43

which finally compresses the last hidden state of the LSTM cell to one scalar value. This value

represents the predicted discharge value of the consecutive time step.

Figure 16 displays how the shape of the input array changes, while beeing process by

the individual layers and being forwarded through the network. This is especially useful to

understand, how the different mathematical operations (see equation (1) to (7) in section 2.2.1)

modify each individual batch when computing the predictions. In the exampel, shown in Figure

16, 32 individual feautres are included in the input data, for which each a measurement series

of 60 consecutive time steps is conserdered (W = 60). In general, the number of LSTM units (e.g.

120), the window size (w) and the number of input features (F) must be defined before the

model is initialized. The question marks in first positions of the shape vector of each layer indi-

cates the batch size. When the graph is compiled it is not denoted as a specific size in the figure,

because the batch dimension is effectively variable sized and could be varied between run calls.

Overall the input array of size [B, W, F] is reduced to a single predicted value for each batch, as

describe in the previous paragraph.

Apart from the three parameters (B, W, U) the model needs additional internal param-

eters to be defined, i.e. hyperparameters, as mentioned in section 2.2.1. The preliminary hy-

perparameter setting for the LSTM model used in this thesis, are listed in Table 2. Unnikrishnan

(2019) carried out an extensive hyperparameter optimization on a daily data basis and these

settings proved to provide the best fit within the problem domain in his analysis. On daily basis,

the length of the input sequence fed to the network to predict the next discharge value is set

to 120 time steps corresponding to 4 months. This value is chosen to capture possible internal

storage processes in the catchment that are present over a four month period (e.g. snow accu-

mulation) and could potentially result in a delayed release into the receiving waters. In the

hourly case, however, the lookback is substantially reduced to 5 days (i.e. 120 time steps) to

focus more on capturing potentially short response times within the catchment during and after

heavy precipitation events.

44

Figure 16: Computational graph that visualizes the array shape manipulation during a forward pass through the LSTM
model. In this example 32 input features are processed with a window size 60 time steps. The defined number of LSTM

units is 120. The “?” corresponds to the batch size but is indicated a variable sized within the network, since the
batch size can be varied between model run calls.

The batch size is set to 20 for daily values and to 200 for hourly resolution, respectively. This

increase in batch size while lowering the temporal resolution is due to higher computation ef-

ficiency and reduced training time of the model on hourly data. The number of internal LSTM

units, that defines the capacity of cell states in the model, as mentioned in section 2.2.1 is set

to 120 for daily and hourly resolution. With respect to the iterations the model is trained, 25

Epochs turned out to be adequate in terms of run time and convergence without leading to an

overfit of the model (Unnikrishnan 2019). In order to determine to which degree the LSTM

model should be regularized to be less susceptible to overfitting, is defined by dropout rate. As

mentioned in section 2.1.3, this rate denotes a certain percentage of values within the output

of the cell states, that are set to zero during training. This forces the network into a more robust

feature learning (Goodfellow et al. 2016). In both model configurations this value is set to 45%.

The model is trained to minimize the Mean Absolut Error (MAE) between observed and pre-

dicted discharge. This objective function is explained in detail in the next section.

B: batch size
W: lookback window size (i.e. number of timesteps)
U: number of hidden LSTM units
F: number of features

45

Table 2: Defined hyperparameters based on hyperparameter optimization conducted by Unnikrishnan (2019)

Hyper- Parameter daily hourly

Lookback (Number of timesteps/ Win-
dow size)

120 (-> 4 months) 120 (-> 5 days)

Batch Size 20 200

Number of internal LSTM units in each
Layer

120 120

Epochs 25 25

Number of LSTM Layers 2 2

Dropout-Rate 45% 45%

Loss Function Mean Absolut Error Mean Absolut Error

Kernel & Bias - Initializer Random Uniform Random Uniform

Optimization Algorithm Adagrad Adagrad

To speed up training and to break symmetry between LSTM units, kernel and bias initializer are

commonly used, which pre-set the weights with a specific distribution instead of setting them

to zero (Géron 2019). According to Unnikrishnan (2019), the best performance was achieved

with a random uniform initialized distribution. As mentioned in section 2.1.3, a significant frac-

tion of the uncertainty in in LSTM models is introduced by these random weights/bias initiali-

zations. In order to eliminate the source of randomness in the model, an identical seed value is

set for every model configuration before training. This should ensure that the weights/bias vec-

tors are initialized with the same values for every model run. Additionally, since the lookback

windows within one batch are randomly shuffled, there is also a seed value determined, ensur-

ing that the windows are passed to the network always in the same order. As a result a LSTM

model produces consistently the exact same results when trained with identical model config-

urations. However, the issue that the defined seed values might not lead to the optimal model

outcome is neglected, since finding the optimal seed value is not part of the objectives. Finally,

the optimization algorithm has to be chosen, which the model uses during the training phase

to compute the gradients and weight updates. The chosen Adagrad algorithm allows the learn-

ing rate parameter to be adaptive based on model parameters. As stated in Goodfellow et al.

(2016), the mechanism in this algorithm allows, that the learning rate is decrease relatively to

the values of the partial derivatives of the loss function. The larger the partial derivatives the

more rapid the decrease in their learning rate. The effect is a that greater progress of finding

46

the global minimum is made in the more gently sloped directions of parameter space. In con-

trast, this is also a drawback, since the learning rate is always decaying, with the result, that the

model converges more slowly (Goodfellow et al. 2016).

To implement the above described LSTM model Keras15 is used, which is an open-source

neural-network library written in Python16. It is a high-level neural network API capable of run-

ning on top of many different machine learning frameworks. TensorFlow17 is the framework of

choice in this thesis. It is a free and open-source software library for dataflow and differentiable

programming across a range of ML tasks. It is developed by Google and is a useful tool for re-

search work conducted in any fields of machine learning. TensorFlow also provides GPU (graph-

ical processing unit) support, which enables the user to rapidly reduce training time of NNs

while increasing model complexity. To evaluate the performance of the models there are dif-

ferent validation methods used in this thesis, which will be examined in the following section.

3.6. Validation of the different Models

As already mentioned in section 2.2, the normal way of evaluating your model is to split the

data into training, validation and test set, since the goal in machine learning is to achieve mod-

els that generalize well on data, which has the model never seen before (Chollet 2018). There

are numerous ways of doing this, but in this thesis the following three methods are applied.

NORMAL HOLDOUT

The Out-of-samples approach, also called Normal Holdout method, is the simplest evaluation

protocol and is used as a standard method in machine learning. This method has been tradi-

tionally used to estimate predictive performance in time-dependent data. Essentially, normal

holdout methods split the time-series into two parts: an initial training period in which a model

is fitted to the data, and a testing period of the last part of the time series, which is held out for

estimating the model performance on new data. In order to prevent information leaks into the

test dataset while tuning your model, it is common practice to further subdivide the training

dataset and reserve a validation set (Chollet 2018).

To visualize this principle, Figure 17 is provided. An overview of how the daily and

hourly data are subdivided in each individual set is given in Table 3. This table also shows the

number of available samples within each subset.

15 https://keras.io/; Version: 2.3.0-tf
16 https://www.python.org/; Version: 3.8.5
17 https://www.tensorflow.org/; Version: 2.2.0

https://keras.io/
https://www.python.org/
https://www.tensorflow.org/

47

Figure 17: Visualization of the normal Holdout Method. The dataset is split into three subsets.

 To get an idea on how these splits appear on the dataset that is used in this thesis, in

Figure 18 the normal holdout method is visualized on the hydrograph of daily averaged values

of the Marienthal station. This is the target station at which the model should predict the dis-

charge. The training, validation and test set are colored individually. On the right-hand side of

the Figure 18 boxplots for the discharge of each particular set is shown. Boxplots display the

variation in samples of a statistical population without making any assumptions of the underly-

ing statistical distribution. Boxplots are composed of a rectangular box, a horizontal line inside

the box and two horizontal lines above and below the box, which are connected to box bound-

aries. These lines outspreading form the boxes, called whiskers, indicating the variability out-

side the interquartile range, which is derived by the 75th percentile (upper bound) and the 25th

percentile (lower bound) of the data, respectively. The line inside the box corresponds to the

median of the dataset. In addition, outliers are plotted as individual points. The spacings be-

tween the different parts of the box show the degree of dispersion and skewness in the data.

For improving the interpretability and the appearance of the boxplot, a log-transformation was

previously applied to the discharge data.

Table 3: Overview of Training, Validation and Test set size regarding the normal Holdout Method

Data Training Validation Test

Daily
samples 3317 900 522

[%] 70 19 11

Hourly
samples 79615 21609 12512

[%] 70 19 11

The Normal Holdout method preserves the temporal order within the measurement

series, which might be an important property to cope with the dependency among measure-

ments and attributes the potential temporal correlation between consecutive time steps

(Cerqueira et al. 2019). Nevertheless, it suffers from on disadvantage: if little data is available,

then the validation and test sets may contain too few samples to be statistically representative

of the data at hand. As a result, this implies statistical uncertainty around the estimated average

test error (Goodfellow et al. 2016).

Time

 Training Set Validation Set Test Set

70% 19% 11%

All Data

48

Figure 18: Normal Holdout Method visualized on the discharge hydrograph at Marienthal station (left) and corresponding Boxplots (right) based on the underlying data distribution (log-transformed) of the

three different subsets

49

This problem is intensified, if the split points of the validation and test set are not properly

chosen. The split point should be selected in a way that the variability and the frequency distri-

bution of the individual sets are similar. As a consequence, the performance on the validation

set might change a lot depending on which time period is used for validation and which for

training. Hence the model loss on the validation set might have a high variance with respect to

the validation split point (Chollet 2018). The following two methods are based on the idea re-

peating the training and validation computation on different chosen subsets or splits of the

complete dataset.

REP-HOLDOUT

In order to produce a robust estimate of predictive performance, it is recommended to employ

validation strategies, regarding training, validation and test set separation, on multiple training

and test periods. Among the strategies, the split point could be altered during multiple training

runs, for instance by selecting the point within a growing or sliding window. For a more general

setting one can also adopt a randomized approach, indicating a randomly selected split points

(Cerqueira et al. 2019).

In this thesis, a strategy is used, in which random sub-sampling is repeatedly applied to

the dataset. This is implemented by utilizing the Normal Holdout method several times using

different sized and possibly overlapping time periods for training and validation. This approach

is called rep-holdout method and its principle is illustrated in Figure 19, that shows one iteration

of training the model on chosen split point p.

Figure 19: Visualization of the Rep-Holdout Method. Split point p is randomly selected within a specified window. Per-
centages correspond to the total number of samples of the combined Training and Validation set and define the range

of the window. For each training of the model a new split point is selected.

In this validation method, for one iteration, a point p is randomly chosen from a defined window

within the time series constrained by the size of the training and validation set. The available

window is set to a range from 60% to 80% of the total training data size (training + validation

set). This should assure, that both the training and validation set have still sufficient length. The

split point p then divides the data into two sets, while the preceding part is used for training

Time

 Training Set (p) Test Set

Available Window

p

60% 80%

All Data

Validation Set (p)

50

and the subsequent one for validation. Furthermore, only an even number of iterations are

used in order to split the data into training and validation subsets. Hereby, half of the iterations

are splited below the 70% mark (which is the default for the normal holdout method) and the

other half is splited above the 70% mark, but still within the defined window range. This is done

to verify that some of the resulting training and validation sets contain more or less samples

compared to the original normal holdout method. Moreover, the resulting subsets should not

be too similar in size and the independence between the sets should be increased. After the

model is trained on the individual training sets, its performance is evaluated on a test set. In

this thesis, this test set is chosen to stay the same for all iterations, for a better comparison to

models validated by the other two methods. In order to get the overall performance across all

iterations, the performance indicators are averaged. The Rep-Holdout method is particularly

applied in the preliminary analysis (see section 4.2). The method applied to the hydrograph at

Marienthal station is pictured in Figure 39 with a total of 6 iterations, which is attached to the

Appendix. In this figure the different training and validation sets for all iterations are displayed

along with the specific frequency distributions, illustrated by the boxplots on the right.

K-FOLD CROSS VALIDATION

Another validation approach that is applied in a specific step in the sensitivity analysis (see sec-

tion 4.3.2) is called k-fold cross validation. The typical approach when using k-fold cross-valida-

tion is to split the data in k equally sized and non-overlapping folds or blocks. Each fold is a

subset of the data comprising of training and validation set. For each fold i, the model is

trained on the remaining k – 1 folds and fitted to remaining fold i for validation. Thus, after

splitting the data into K-folds, each fold is iteratively picked for validation. The performance

obtained by k-fold cross-validation is then the average of the performance estimate computed

on the final evaluation on a left-out test set across k trails (Cerqueira et al. 2019, Goodfellow et

al. 2016). Schematically, k-fold cross-validation looks like depicted in Figure 20.

Figure 20: Visualization of the k-fold cross validation. In this example the training and validation set is split in 3 folds,
which results in three different validation sets. The three model runs are evaluated on the same test set.

Time

Training Set + Validation Set Test Set

All Data

 Training Set Validation Set

 Training Set Training Set Validation Set

 Training Set Validation Set

Fold 1

Fold 2

Fold 3

Evaluation
on Test

Data

51

In Figure 40, attached to the Appendix, the k-fold cross validation with three folds is shown on

the discharge hydrograph for Marienthal station along with the boxplots of the individual sub-

sets of data. It can be seen that the validation set is shifted to the right throughout the training

period. The test set remains the same for each iteration. The size the validation and training

subsets is defined by the total number of available samples and the desired number of folds.

This method is helpful when the performance of the model shows significant variance

based on your train-test split (Doycheva et al. 2017). Furthermore, cross-validation is com-

monly applied to mitigate any bias caused by the particular subset of sample (Chollet 2018). In

case of limited training and test datasets, the cross-validation guarantees that the results ob-

tained for the specified test set would be the same as results obtained by independent test sets.

However, one drawback in this approach is, that it can be computationally expensive (Doycheva

et al. 2017, Chollet 2018).

PERFORMANCE METRICES

After the model is fitted, i.e. calibrated to the validation data using the training set, the model

with its adjusted weights is used to predict the discharge hydrograph for the test period. Since

the model still operates on scaled data, the predicted values have to be inverse transformed.

Then the performance of the model can be evaluated. In general, the application of rainfall-

runoff models requires some form of performance estimation to ensure reliable discharge sim-

ulations for the catchment of interest. Performance estimation is usually based on comparing

simulated and observed discharge using a goodness-of-fit measure (Pool et al. 2018). Because

no single evaluation metric can fully capture the consistency, reliability, accuracy, and precision

of a streamflow model, a variety of performance metrics for model benchmarking are used

(Kratzert et al. 2019c). Evaluation metrics utilized in this thesis to compare models are listed in

Table 4. Some of the metrics focus specifically on assessing the ability of the neural network to

model high-flows and low-flows, as well as assessing overall performance using a decomposi-

tion of the standard squared error metrics that is less sensitive to bias (Gupta et al. 2009).

52

Table 4: Overview of the used performance metrices in this thesis

Metric Equation Reference

Maximum Error (Max
Error)

𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥 (|𝑄𝑠𝑖𝑚,𝑡 − 𝑄𝑜𝑏𝑠,𝑡|) 18

Relative Error in Vol-
ume (REV)

𝑅𝐸𝑉 =
∑ (𝑄𝑠𝑖𝑚,𝑡 − 𝑄𝑜𝑏𝑠,𝑡)
𝑛
𝑡=1

∑ 𝑄𝑜𝑏𝑠,𝑡
𝑛
𝑡=1

∗ 100% (Jabbari and
Bae 2018)

Median-Absolute-Er-
ror (MeAE)

𝑀𝑒𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑄𝑠𝑖𝑚,1 − 𝑄𝑜𝑏𝑠,1|,… , |𝑄𝑠𝑖𝑚,𝑡 − 𝑄𝑜𝑏𝑠,𝑡|) 19

Mean-Absolute-Error
(MAE)

𝑀𝐴𝐸 =
1

𝑛
∑|𝑄𝑠𝑖𝑚,𝑡 −𝑄𝑜𝑏𝑠,𝑡|

𝑛

𝑡=1

 (Wang 2006)

Mean-Squared-Error
(MSE)

𝑀𝑆𝐸 =
1

𝑛
∑(𝑄𝑠𝑖𝑚,𝑡 − 𝑄𝑜𝑏𝑠,𝑡)

2
𝑛

𝑡=1

 (Gupta et al.
2009)

Root-Mean-Squared-
Error (RMSE)

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (Wang 2006)

Nash-Sutcliff-Effi-
ciency (NSE)

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑡 −𝑄𝑠𝑖𝑚,𝑡)

2𝑛
𝑡=1

∑ (𝑄𝑜𝑏𝑠,𝑡 − 𝜇𝑜𝑏𝑠)
2𝑛

𝑡=1

= 1 −
𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
2 (Gupta et al.

2009)

Nonparametric Kling-
Gupta-Efficiency
(KGNP)

𝛼𝑁𝑃 = 1 −
1

2
∑ |

𝑄𝑠𝑖𝑚(𝐼(𝑘))

𝑛𝜇𝑠𝑖𝑚
−
𝑄𝑜𝑏𝑠(𝐽(𝑘))

𝑛𝜇𝑜𝑏𝑠
|

𝑛

𝑘=1

(Pool et al.
2018)

𝛽 =
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

𝑟𝑠 =
∑ (𝑅𝑜𝑏𝑠,𝑡 − 𝑅̅𝑜𝑏𝑠
𝑛
𝑡=1)(𝑅𝑠𝑖𝑚,𝑡 − 𝑅̅𝑠𝑖𝑚)

√(∑ (𝑅𝑜𝑏𝑠,𝑡 − 𝑅̅𝑜𝑏𝑠)
2𝑛

𝑡=1)(∑ (𝑅𝑠𝑖𝑚,𝑡 − 𝑅̅𝑠𝑖𝑚)
2𝑛

𝑡=1)

𝐾𝐺𝑁𝑃 = 1 − √(𝛽 − 1)2 + (𝛼𝑁𝑃 − 1)2 + (𝑟𝑠 − 1)²

In Table 4 n is the total number of samples, i.e. time steps, 𝑄𝑠𝑖𝑚,𝑡 is the simulated discharge

value at time step t, 𝑄𝑜𝑏𝑠,𝑡 is the observed discharge value at time step t, and 𝜇𝑜𝑏𝑠 and 𝜎𝑜𝑏𝑠

are the mean and standard deviation of the observed values, respectively. Further, 𝐼(𝑘) and

𝐽(𝑘) are the time steps when the kth largest flow occurs within the simulated and observed time

series. The Spearman rank correlation (rs) was calculated on the ranks of the observed 𝑅𝑜𝑏𝑠 and

simulated 𝑅𝑠𝑖𝑚 discharge time series, where 𝑅̅𝑠𝑖𝑚 and 𝑅̅𝑜𝑏𝑠 are the mean ranks.

The max error function computes the maximum residual error, which is the worst-case

error between the predicted and measured discharge. Another performance metric is the rela-

tive error of volume (REV), which is an indicator the total model accuracy of predicting discharge

volume over the complete time series. It is calculated by ratio of the absolute error of the sim-

ulated and observed discharge. Negative percentages indicate that the total runoff volume is

underestimated, whereas the ideal value is zero (Jabbari and Bae 2018). The median absolute

error (MeAE) is calculated by taking the median of all absolute differences between the target

and the prediction. It is particularly interesting since it is robust to outliers. It is unit-dependent,

18 https://scikit-learn.org/stable/modules/model_evaluation.html#max-error
19 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_er-
ror.html#sklearn.metrics.median_absolute_error

53

and the optimal value is zero. An additional very important performance metric is the mean

absolute error (MAE) function, since it is used as the loss function for the LSTM model. It can

be seen as a risk metric corresponding to the expected (average) value of the absolute errors.

Again, the optimal value is zero and the MAE has the same unit as the underlying data.

The mean-squared-error (MSE) metric and its related normalization, the Nash–Sut-

cliffe efficiency (NSE) are the two criteria most widely used for calibration and evaluation

of performance of hydrological models. With respect to optimization MSE is subject to mini-

mization, whereas NSE is subject to maximization. In this thesis the main focus is on the NSE,

but the results can be generalized to MSE and similar criteria such as RMSE (Gupta et al. 2009).

The values of MSE and RMSE are unit-dependent and vary on the interval [0 to ∞], whereas

NSE is dimensionless, being scaled onto the interval [-∞ to 1]. Further, NSE can be inter-

preted as a classical skill score, where skill is interpreted as the comparative ability of a

model with respect to a baseline. According to Gupta et al. (2009) the baseline of NSE is

considered to be the mean of all observations, which implies that if the NSE is less than 0

the model is no better than using the observed mean as a predictor. As a consequence,

this can lead to overestimation of model skill for highly seasonal variables such as runoff

in snowmelt dominated basins (Gupta et al. 2009). The MSE, as well as the NSE, consist of

three components. On the one hand MSE can be decomposed into a mean, variability and

dynamics term, whereas on the other hand NSE can be splited in terms of correlation, bias

and a measure of variability (Pool et al. 2018). Estimating model parameters by optimizing the

MSE or the NSE is critical in several ways. Gupta et al. (2009) demonstrated that a high model

performance for discharge dynamics is directly linked to an underestimation of discharge vari-

ability. Furthermore, the decomposition shows that in order to maximize NSE the variability

and thus the runoff peaks have to be underestimated. Additionally, this means that in basins

with high runoff variability the bias component will tend to have a smaller impact on the com-

putation and optimization of NSE, possibly leading to model simulations having large volume

balance errors (Pool et al. 2018, Knoben et al. 2019). Because of these reasons Gupta et al.

(2009) suggest an objective function, the so called Kling-Gupta efficiency (KGE), that is based

on an improved combination of the three meaningful components of the MSE, which are the

variance ratio 𝛼, the mean ratio 𝛽 and the linear correlation coefficient r. The alternative model

performance criterion KGE is easily formulated by computing the Euclidian distance of the three

components from the ideal point (Gupta et al. 2009). Nevertheless, Knoben et al. (2019)

showed that the interpretation of the KGE should not be guided by the understanding of NSE

values, since these two metrics cannot be compared in a straightforward manner. However,

since assumptions on linearity and normality of the data and on the absence of outliers were

54

made during formulation of the KGE, a modification was proposed by Pool et al. (2018) to take

into account that discharge time series and model simulation errors are often highly skewed.

The modification comprises adopted efficiency decompositions by reformulating the variability

and the correlation term of the KGE in a non-parametric form. This is achieved by using the

flow–duration curve (FDC) as a non-parametric alternative to the standard deviation. The FDC

describes the relationship between the frequency and magnitude of streamflow and is an indi-

cator of flow variability across all flow magnitudes of a catchment, whereas the standard devi-

ation only reveals the variability of flows around the mean flow. Besides this adaption, instead

of the Pearson correlation coefficient the Spearman rank correlation is used to describe dis-

charge dynamics, which is less sensitive to extreme values and hence providing a more robust

characterization of the correlation (Pool et al. 2018). Further, it has to be mentioned, that the

KGE as well as the non-parametric KGE (KGNP) are both unit-independent and are scaled onto

the same interval as the NSE ([-∞ to 1]).

Overall, with these 8 different performance metrics the ability of the model to cap-

ture different aspects of the discharge hydrograph can be evaluated. Nevertheless, to get

an impression of how well the LSTM model is able to predict the discharge for the Regen

catchment compared to another type of hydrological rainfall-runoff models, a benchmark

model is used for additional validation. In this thesis, the Large Area Runoff Simulation

Model (LARSIM) serves as benchmark, which was specifically calibrated for the study area.

This physically based model is described in the following.

LARGE AREA RUNOFF SIMULATION MODEL20

The LARSIM model is a water balance model, which describes hydrological processes in a spe-

cific catchment area. The application is not limited to the simulation of larger areas but can be

applied to a whole range of different catchment scales. This scale includes subarea sizes ranging

from a few hectares up to several hundred square kilometers. However, it is usually operating

on a meso-scale level. LARSIM represents a deterministic and conceptual modeling approach,

while considering special dimensions during modeling. Thus, the distributed model quantifies

the spatial and temporal distribution of important hydrometeorological data and hydrologic

conditions like precipitation, evaporation, seepage, water storage in the catchment and runoff.

Water balance models, as an extension of conventional precipitation-runoff models, allow con-

tinuous, process-oriented simulations and forecasts for the entire runoff process. LARSIM de-

scribes the following water balance subprocesses: interception, evapotranspiration, snow ac-

cumulation, compaction and melt, soil water retention, storage and lateral water transport, as

20 This section is summary based on Leibundgut et al. 2006.

55

well as flood-routing in channels and retention in lakes. On the one hand water balance models

use catchment specific data like elevation, land use, soil parameters and channel geometry. On

the other hand, LARSIM uses hydrometeorological time series data including precipitation, air

temperature, air pressure, air humidity, wind speed, global radiation, duration of sunshine, wa-

ter temperature and discharge. The model can be operated either on grid-based subareas or

on subareas according to hydrologic sub-catchments, where interception, evapotranspiration,

snow processes and soil water storage are modelled separately within a subarea. These output

results of hydrologic sub-models for different types of land use and field capacities (referred to

as grouped response units (GRU)) without regarding their spatial allocation within the subarea.

The runoff resulting from the different GRU of a subarea is separated into three soil storages:

on for direct runoff, one for interflow and one for groundwater runoff. The water release from

these three storages forms the total runoff from a subarea. Besides the use of LARSIM as a

water balance model with a continuous simulation, it can also be used as an event-based flood

forecast model. In case of LARSIM is used as a flood forecast model while snow-influence is

irrelevant, it requires only precipitation as meteorological input. As flood forecasting model

LARSIM can have different possible time intervals ranging from 5 min up to 1 day. Several Ger-

man flood forecasting centers enhance the LARSIM model for an operational continuous fore-

cast of discharge. The operational calculation mode differs from offline simulation runs insofar,

as it comprises a combination of simulation and forecast in each run. The computed period can

thus be separated into two phases, whereby during the first one model-parameters are opti-

mized by minimizing the deviation between simulated and measured data to improve the qual-

ity of the forecast, and the latter one, whereby the actual discharge is forecasted. During auto-

mated operational forecast mode, gaps in hydrometeorological data input will be automatically

identified and filled by using suitable interpolation techniques. For the operational forecast,

measured discharge time series (up to two days) at a gauge with respect to low, mean or high

flow conditions is analyzed if data is available and of good quality, which is verified by the model

itself. The automated model optimization within LARSIM evaluates MS-differences and subse-

quently applies data assimilation and other different types of correction methods depending

on the actual range of discharge forecasting (Leibundgut et al. 2006).

For the LARSIM model, that is used as a benchmark in this thesis, exactly the same data

basis is used. This means the LARSIM model is provided with the same meteorological input

data on hourly basis for the same time period. The model is used in operational forecast mode

and it had received true observations of meteorological input data, which was assumed to be

“forecasted” withing the lead time. Real forecasted meteorological data, e.g. by the German

Meteorological Service, was not considered in order to eliminate the uncertainties within this

56

forecast. For each forecast run the LARSIM model predicted the discharge at Marienthal station

with a lead time of 24 hours. A new forecast run started every day at 5:00 am. Prior to each

start of a new 24h discharge simulation, an ARIMA correction procedure was applied based on

an internal calibration period over 53 hours. During this calibration period internal parameter

of the LARSIM model are adjusted and the predicted discharge hydrograph is shifted into the

measured discharge at the start of each new forecast. The LARSIM input data, which serve as

data basis in this theses, as well as the LARSIM simulation data was provided by the Flood Fore-

cast Center from the Bavarian Water Authorities21.

3.7. Methods for Multi-Step Forecasting

In general, forecasts on a daily basis are reasonable in a medium- to long-range forecast per-

spective, however, daily input resolution mutes sub daily dynamics in the data that might be

influential on the temporal fluctuations in the discharge hydrograph. Hence, predictions on the

daily basis are often too coarse for a short-range forecast to reliably provide indications for

action measures in the view of flood management (Gauch et al. 2020).

As a consequence, rainfall-runoff models used for forecasting discharges in a real-world

operational scenario need to be able to predict the potential runoff not in single, but with mul-

tiple time steps ahead. For example, the LARSIM model used as a benchmark model in this

thesis, is applied in such operational flood forecasting scenarios. As part of the objectives within

this thesis, it is investigated if LSTMs reach comparable accuracy compared to the LARSIM

model, when forecasting multiple time steps ahead.

To test this, two methods, which potentially reflect two contrasting prediction princi-

ples, are applied in this thesis to forecast discharge for different lead times (12, 24, 36 hours).

The first method makes use of multi-step single shot (or one shot) LSTM models. The principle

here, as explained in section 2.2.2, is that the model predicts the runoff for e.g. the next 12 time

steps, based only on the input data of the past 120 hours (size of the lookback window) in one

shot. Regarding each tested lead time, one LSTM model is specifically trained to predict one

particular number of time steps. In other words, three different LSTM models are created, in-

dividually trained to predict a particular number of steps into the future (one for each lead

time). In general, one major difference in the prediction procedure between the LARSIM and

the LSTM model, despite the fundamental conceptual structure, is the fact that the LARSIM

model does incorporate forecasted meteorological data. The LARSIM model, as noted in section

3.5, had received measured data during the forecasting period of 24 hours.

21 Bayrisches Landesamt für Umwelt (LFU)

57

In contrast, the single shot LSTM models do not consider any additional data during the

forecasting timesteps, i.e. the models get absolutely no information about precipitation or

other meteorological conditions during the prediction period. Therefore, as the second method

a customized prediction loop for LSTM models is introduced. This customized prediction loop

should allow the model to also consider forecasted (or measured) meteorological data during

the prediction process. Hence, this should provide a method to better compare the prediction

accuracy of the LSTM model against the LARSIM model and further provide one possible ap-

proach towards an operational flood forecasting setting. The principle of this customized pre-

diction loop as visualized in Figure 21.

Figure 21: Schematic illustration of the customized prediction loop. As an example, the procedure of the loop is
demonstrated for two iterations, whereby the model predicts 3 steps ahead (n) for each iteration based on cached in-
put windows from the measurement series (inner loop). For illustration purposes, an example data frame is depicted,

which consists of random samples from three input features (X1,X2,X3) and one target variable(Y). Green shaded
rows imply measured values, whereas blue shaded rows are assumed to be forecasted values. After each time step
the predicted value is replace with the target value of the next input window. The second iteration is restarted, e.g.

every 3 hours (update step u) (outer loop) and the forecasted values could be replaced by true observations within the
measurement series before getting cached again to compute the next n steps ahead (inner loop).

The introduced prediction loop separates the training procedure and prediction process of a

LSTM model. To put it differently, the LSTM model is used for another scenario as it is trained

for. Hence, in order to apply the customized prediction loop, first a LSTM model needs to be

trained to predict single steps on measured data (see Figure 9 in section 2.2.2). Then this trained

model is used to predict a defined number of steps ahead (hereafter referred do as: prediction

58

steps ≡ lead time n) in a customized prediction loop, which can be subdivided into two separate

loops. The inner loop, starting at time t, basically cache the number of future lookback windows

in consecutive order from the measurement series (in this thesis: test data) according to the

defined lead time (n). Then for each of these windows the model predicts the discharge of the

next hour (t + 1[h]). This predicted value is used to replace the true observed discharge value

of the last time step within the next window. This is repeated for the number of defined lead

time steps (n). Once the inner loop has finished, the outer loop shifts the new starting point of

the forecast within the test period by an independently defined number (hereafter referred do

as: update steps u). Basically, this defines how frequently the model restarts a new forecast of

n steps ahead. This principle is demonstrated in an example, in which the customized prediction

loop with a defined lead time and a defined updated step of 3 hours (n, u = 3) for the first two

iterations is shown (see Figure 21). The first iteration of the inner loop predicts the discharge

for time steps t + 1[h], t + 2[h], t + 3[h] (starting at t = 0), whereas the second iteration starts

at t + 3[h] (= t + u) and forecasts the discharge for the time steps t + 4[h], t + 5[h], t + 6[h],

respectively. If the update step is lower than the defined lead time the customized prediction

loop provides multiple discharge predictions for the same time step. Moreover, right before

each iteration of the inner loop starts, in which new data is cached, the herby used true obser-

vations could be potentially exchanged with forecasted meteorological data. However, such

data was not available and further, to maintain the comparability to the LARSIM model, true

measurements were considered as theoretically “forecasted” input data during, just as it was

done for the benchmark model. 22

In order to have an indication of how well the different models predict the discharge

for several time steps ahead and to validate model performance changes, the same perfor-

mance metrices as presented in section 3.5 are applied. The scores are calculated by the same

functions, however the measured and predicted values that are compared one by one are dif-

ferent for this multi-step prediction scenario. The performance metric scores are calculated

separately for every individual prediction step in the future. In other words, e.g. for a 12 step

ahead prediction, the observed discharge value at t + 1[h] is compared to the predicted dis-

charge of the LSTM model at t + 1[h], where t corresponds to the starting time stamp of a new

prediction. However, calculating this only once would result in the performance metric scores

for only the first prediction step. Hence, the calculation is repeated for the remaining prediction

steps (hours) from t + 2[h] up to t + 12[h]. Therefore, 12 single scores per performance metric

22 For a more detailed understanding please refer to the pseudo code, provided in Table 13, attached to
the Appendix.

59

are obtained (one score for each time step ahead). The performance metric scores are calcu-

lated analogously for different lead times.

UNCERTAINTY ESTIMATION

Hydrological flood forecasting involves the prediction of complex processes, occurring at a va-

riety of scales (Leandro et al. 2019). Hence, streamflow flood forecasting is a complicated task

with multiple sources of uncertainty. These uncertainties may arise from various sources like,

for example, model parameters, model structure or hydrological input data. Discharge predic-

tion estimates are commonly given in ranges, indicated by upper and lower bounds, which may

result from a reasonable fit of several distributions of multiple model runs to the observed data

(Viglione et al. 2013). In operational flood forecasting decision making is more difficult under

large uncertainty, making it essential to somehow incorporate methods, based on forecast per-

formance statistics or other principles, into hydrological discharge modeling (Leandro et al.

2019). Thus, estimating the predictive uncertainty is important for assessing how much to trust

the forecast produced by a model. However, there are no standard tools in the field of deep

learning to capture model uncertainties within neural networks (Gal and Ghahramani 2015).

Therefore, integrating available methods in the field of deep learning with respect flood statis-

tics and/or probabilistic modeling into this study would go beyond the objectives and scope of

this thesis. Nonetheless, some efforts were made to reduce at least some sources of random-

ness within the LSTM model, as mentioned in section 3.4. Additionally, true measurements

were assumed as “forecasted” observations during the multi-step prediction analysis, which

eliminates the uncertainty within the meteorological input data considered during the lead time

of the forecast. Of course, this uncertainty in the input data is not entirely eliminated, since

there could potentially remain sources of uncertainty introduced by the measuring device

and/or technique.

4. Results

The structure of this chapter follows the visualized procedure (see Figure 13: Flow chart of the

consecutive investigation and analysis steps carried out in this thesis) in section 3.1. It starts off

with the first model test on two stations close together, followed by presenting the results of

the preliminary analysis, in which different scaling and missing value methods are compared.

After identifying the optimal configurations of model settings, the influence of input feature

selection on model performance is highlighted. Additionally, the improvement in performance

by tuning specific hyperparameters is described. All model tests up this point are conducted as

60

single step predictions (see section 2.2.2). Hence, as a final step, the performance of the LSTM

with respect to predicting multiple steps into the future is presented. It is important to mention

once again that for the LSTM (in contrast to the LARSIM model) meteorological data during the

forecasting period (time steps the model predicts ahead) was not considered within section 4.1

till section 4.4.

4.1. First Model Test

Within a catchment, the contribution of the direct runoff is the most influential factor during

the rainfall-runoff process on the temporal dynamics of a discharge hydrograph. The direct run-

off is mainly generated by highly intensive precipitation events. Hence, this relation should be

reflected in the hydrograph signatures in a way. The effect is more easily observable in stations

that are close to one another. To test whether the model with its preliminary settings is capable

of capturing such short-term changes in the hydrograph, two stations are selected, which are

located close to each other. As the precipitation measurement location, the station at Neu-

kirchen bei Heiligen Blut is selected, whereas the target discharge gauge is the Leming station,

which is located approximately 4.1 km further downstream near the river Freybach. The loca-

tion of both stations is depicted in Figure 22, framed by an orange square.

Figure 22: Study Area, only showing stations that are within or close (<2km) to the catchment boundary. The Orange
square frames the Leming gauge (blue rhombus) and precipitation station at Neukirchen bei Heiligen Blut (gray circle)

It is common practice in DL to utilize the preceding information within the lookback window of

the same feature that the LSTM model is designed to predict. In other words, past discharge

61

observations at the target station are incorporated in the input data for the model. This is also

practiced in the LARSIM model to a certain extent, as stated in section 3.5. Thus, taking ad-

vantage of available discharge measurements is feasible and considered to be reasonable.

Therefore, one objective, which should be tested within this first model test, is the effect of the

aforementioned practice on the prediction accuracy. In order to accomplish this, two scenarios

are investigated. In one scenario, the only input features for the model are the observations of

the single precipitation station. In contrast, in the other scenario, the model additionally re-

ceives the past discharge measurements at the gauge Leming. For both scenarios, the data on

a daily basis is used, and the model is tested with its preliminarily selected hyperparameters as

described in section 3.4. As the optimal scaling method is yet to be found at this stage, the initial

methods had to be selected in advance according to common practices in literature. Hence, the

data was scaled using standardization, as explained in section 3.4.3. Furthermore, the missing

values are imputed with unphysical values (Method 2, see section 3.4.4). The model is evaluated

by the normal Holdout method (see section 3.6).

The results of the model runs for both scenarios are presented in Table 5. Within each

row, one particular performance metric score (see section 3.6) for each scenario is displayed.

These individual scores are calculated separately on the training, validation and test data, re-

spectively. Comparing the performance metric scores, the scenario that includes the discharge

at the target station shows significantly better scores with respect to each metric. This is unsur-

prising, since the model receives more input data, and it could probably learn from patterns

within the lookback window of four months of the past hydrograph. Thus, the LSTM model can

use information about past discharge observations to update its internal parameters potentially

better during training. This finding is confirmed when examining Figure 23 and Figure 24, which

show the predicted discharge hydrograph for the test period compared to the true observations

and to the simulations of the LARSIM model. Each of these figures displays the aforementioned

hydrographs for one of the scenarios. Comparing both figures, it can clearly be seen that the

model indeed captures the discharge dynamics better if the discharge at the target station is

part of the input features.

62

Table 5: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores
highlighted in red indicate best score per metric within the complete table.

In contrast, evaluating the MAE, the almost constant values across the three different periods

(in both scenarios; see Table 5) suggest that the model does not actually “learn” from the input

data, as its scores hardly decrease. It must be noted that in Figure 23 and Figure 24, the lack of

discharge predictions of the model at the beginning of the test period (until the start of Decem-

ber 2016) is due to the chosen window size of the model. Since the model has learned to make

prediction based on the lookback window, it can only start to make discharge predictions after

having seen the complete time series within the first lookback window.

Figure 23: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on the input of one precipitation station (Neukirchen bei Heiligen Blut).

As the model is fitted to the training data, the metrics of the loss function should usually

be substantially lower for that period (and the validation period) than for the testing period.

This conjecture is confirmed by examining the training history of one scenario. Figure 38 (see

Appendix) shows the training history for the scenario without the discharge as input. In Figure

38, it can be observed that both, the training and validation loss during the learning process

over 25 epochs stagnate after the first two epochs. This implies that the model is not able to

properly converge to a more optimal solution after the second epoch. In addition, it seems as

Dataset
Comparison

without discharge at target station with discharge at target station

Training Validation Test Training Validation Test

Max Error 10.368 7.768 6.620 10.716 7.361 5.875

MAE 0.509 0.446 0.505 0.306 0.279 0.294

MSE 1.248 0.916 0.880 0.771 0.712 0.525

RMSE 1.117 0.957 0.938 0.878 0.844 0.725

MeAE 0.224 0.228 0.243 0.071 0.069 0.069

REV -30.661 -14.928 -34.753 -20.761 -19.153 -19.835

NSE 0.090 0.143 -0.017 0.438 0.334 0.393

KGNP 0.325 0.463 0.301 0.735 0.750 0.758

63

though the validation set is not as “challenging” to learn as the training set, which results in the

validation loss graph laying below the training loss graph.

Figure 24: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on the input of one precipitation station (Neukirchen bei Heiligen Blut) & one discharge

gauge (Leming = target station)

It can be assumed that the limitation of the LSTM model to properly learn the dependencies of

precipitation and discharge for these two scenarios might be due to the not exactly optimal

selection of both stations. By taking a closer look at the map, some tributaries to the river Frey-

bach can be recognized in between the target gauge and the precipitation station. As a result,

the rainfall-runoff relation between these two stations might get blurred by the inflows of these

tributaries, inhibiting the model from properly learning the rainfall-runoff relations between

the selected stations.

Nevertheless, these results from the first model test suggest that incorporating the past

discharge measurements at the target stations lead to a meaningful increase of performance

and could enhance the prediction accuracy of the model. Thus, in the further course of this

thesis, the discharge measured at a target station is included in the input data, unless stated

otherwise. Furthermore, throughout the rest of this thesis, the target station is not selected to

be in Leming, but in Marienthal, which is the actual station of interest (target station) for pre-

dicting the discharge.

64

4.2. Preliminary Analysis

4.2.1. Standard versus Robust Scaling

As already mentioned before in this thesis, scaling the input features is important in order to

achieve better and faster convergence during training. The input features potentially have dif-

ferent units and value ranges. Therefore, by scaling them, it can be assured that especially input

features with high values and ranges will not dominate, and that the algorithm is able to learn

from all different features. Thus, feature scaling ensures that every feature is brought to the

same basis, whereby any prior accentuation of a feature should be reduced.

Since the meteorological parameters used as input features contain some outliers (even

when log-transformed), it should be tested whether using a robust scaler, which is less sensitive

to outliers, makes a difference compared to standard scaling. Figure 25 visualizes the charac-

teristic influence of the distinct scaling technique on the density distribution of the various input

parameters. Figure 25 shows the Kernel Density Estimation (KDE) plots of one example feature

(one specific station) per parameter (containing outliers), in order to illustrate the effect of dif-

ferent scaling techniques. A KDE plot visualizes the distribution of samples in a dataset, similar

to a histogram23. In this thesis, the Standard Scaler (upper righthand figure) is compared to the

Robust Scaler with a specifically selected IQR (0.05 – 0.95) (lower righthand figure). Neither of

the two scaling techniques bound the values to a specific range (in contrast to e.g. normaliza-

tion), nor are the underlying distributions changed during scaling. After the application of stand-

ard scaling, the values for all features concentrate around -5 and +5, which is a slightly broader

range than for robust scaling, in which the values cluster between -2 and + 2.

In order to detect, which of the scaling techniques indeed produces more accurate pre-

dictions, the model is used with its primary model settings as described in section 3.5. The

model is fed with data on daily basis and is evaluated using the Rep-Holdout method (see sec-

tion 3.6), with 10 iterations of model training. In this case the input dataset contains all the

available meteorological input data after the cleaning processes (see section 3.3) as well as the

discharge observations at Marienthal gauge (86 input features). The resulting performance

metrices are averaged across the 10 iterations.

23 https://seaborn.pydata.org/generated/seaborn.kdeplot.html

65

Figure 25: Kernel Density Estimation plots for different tested scaling techniques. For each plot one example feature
(station) per meteorological parameter was selected, that showed a high number of outliers.

Furthermore, to investigate if the scaling technique has also an effect on performance

with respect to the choice of the method for dealing with missing values, a small grid search

has been carried out. In this grid search, the two scaling techniques are evaluated individually

for each of the three different missing value methods. Thus, six individual model configurations

are tested, and the performance scores are averaged across 10 runs for each model. The results

of the averaged performance metrices are presented in Table 6. It becomes apparent that both

scaling techniques generally lead to a very similar performance regarding each individual miss-

ing value method. The model does not perform consistently better across all performance met-

rics throughout the three different missing values methods. With respect to some performance

metrices, the Robust Scaler actually performs better, whereas for others, the opposite applies.

However, focusing on the NSE and KGNP score for the individual missing value methods, stand-

66

ardized values (applied Standard Scaler; left column in Table 6) lead to a slightly better perfor-

mance on average during the test periods compared to robust scaling. Therefore, in the further

course of this thesis, the Standard Scaler is applied to the input data.

Table 6: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores
highlighted in red indicate best score per metric within the complete table.

Scaling vs. Missing Values
Methods

Standard Scaler Robust Scaler

Training Validation Test Training Validation Test

Method 1

Max Error 241.667 144.798 96.431 241.874 152.094 100.837

MAE 4.767 6.342 7.226 5.381 5.670 6.718

MSE 180.392 147.302 172.023 198.015 145.314 176.021

RMSE 13.424 12.125 13.111 14.067 12.044 13.265

MeAE 1.585 3.900 4.222 2.022 3.377 3.706

REV -4.955 7.690 -3.489 -4.940 4.369 -6.188

NSE 0.770 0.670 0.666 0.747 0.675 0.658

KGNP 0.926 0.874 0.880 0.914 0.903 0.874

Method 2

Max Error 207.845 196.061 94.536 209.609 185.002 99.359

MAE 4.283 5.787 5.814 4.943 5.763 5.751

MSE 127.490 159.550 109.508 149.112 156.956 114.708

RMSE 11.289 12.291 10.462 12.209 12.314 10.707

MeAE 1.647 3.645 3.745 1.912 3.492 3.930

REV -4.082 4.094 -0.071 -4.458 3.004 1.354

NSE 0.835 0.738 0.746 0.807 0.733 0.734

KGNP 0.940 0.880 0.906 0.926 0.888 0.888

Method 3

Max Error 207.479 196.159 94.840 209.559 184.879 99.231

MAE 4.277 5.802 5.839 4.947 5.780 5.724

MSE 127.049 160.213 110.218 149.295 156.993 114.405

RMSE 11.269 12.313 10.494 12.217 12.316 10.693

MeAE 1.641 3.659 3.766 1.913 3.515 3.898

REV -4.062 4.135 0.058 -4.390 3.093 1.198

NSE 0.836 0.737 0.744 0.807 0.733 0.734

KGNP 0.941 0.879 0.904 0.926 0.888 0.889

At this point, it should be mentioned that in the further course of this thesis, an im-

provement or deterioration of performance of a model mostly refers to only some of the per-

formance metric scores and not to all eight of them. For instance, when the performance of a

model is said to increase, it refers to the fact that some performance metric scores might im-

prove, but some might deteriorate at the same time. For some performance metrices, the

change might be quite marginal (differences in the second to third decimal place), so that dif-

ference is assumed to be neglectable. The focus is on the NSE score, since it is the most com-

monly used performance metric, as already mentioned in section 3.6. Thereby arising, for ex-

ample a model with higher NSE score is said to perform better, even though some other per-

formance metrices might show slightly worse scores. This holds true for the complete course

of this thesis.

67

4.2.2. Methods for Missing Values

As mentioned in section 3.4.2, there is still a small percentage within the input dataset left after

the preprocessing steps, which raises a computational problem for the LSTM model, since it

cannot handle NaN values during training. Hence, in this section, three different methods (see

section 3.4.4) are tested; each one reflects a separate approach to deal with any remaining

missing values in the input data. As mentioned in the previous section, the examination of the

three different methods was also part of the grid-search, carried out to find the better perform-

ing scaling technique. Thus, the same model settings, the same input data and the same evalu-

ation method (Rep-Holdout) are used as for the scaling comparison. Looking at the different

performance metrices, shown in Table 6 in the previous section, the model prediction capabil-

ities seem to be distinctively depending on the choice of the missing values method. Again, the

model does not perform consistently better with respect to every performance metric through-

out one of the three different missing values methods. Because standardization was identified

to the more appropriate scaling technique, looking at the left column in Table 6 (standard scal-

ing), the NSE as well as the KGNP metric for Method 1 shows slightly worse scores compared to

the other two methods during the test period. This was to be expected, since during Method 1,

in which missing values are dropped from the input data, the input dataset is substantially re-

duced, as described in section 3.3.4. Thus, the model has less data available to learn from than

the other methods have. Comparing Method 2 and Method 3 (for standard scaling), the quan-

tity of all performance metrices, except the REV score, is slightly greater on average (across 10

iterations) for the test period than for Method 2. Additionally, this method does not need an

extra masking layer as Method 3 does (see section 3.5), which slightly simplifies the model ar-

chitecture. The imputation of missing values by unphysical values shows, that the model seems

to draw useful information from the imputed unphysical values or their distribution pattern (to

a certain extent), as it performs at least as good as the Method 3, which provides the model

with the information of which values to ignore during computation. The model setting, used in

the further course of the thesis, is applying standardization in combination with the missing

values Method 2.

4.2.3. Imputation techniques for Precipitation Data

In contrast to the aforementioned idea of a model, which can handle the interpretation of miss-

ing data on its own, for the parameter precipitation it is nevertheless desirable to have a com-

plete observation series. This is due to the fact, that precipitation is the most influential factor

on discharge generation. As an exception, the model actually should not try to learn from miss-

ing data patterns in precipitation time series, but rather increase the prediction accuracy even

68

further. Hence, to increase the accuracy it is desirable to train the model on data, in which

missing precipitation records are fill in with reasonable estimates. For addressing this purpose

four different imputation techniques, as described in section 3.3.2, should be assessed in this

section. This analysis is carried out on both, daily and hourly basis, given that the correlation of

rainfall among the precipitation stations is different dependent on the temporal resolution.

Thus, the imputation procedure has to be done separately for daily and hourly data, resulting

in a total of eight different datasets, each comprising potentially different estimates for missing

rainfall observations. To be able to assess the model’s generalization capability more accu-

rately, the performance was evaluated using the Rep-Holdout method again (see section 3.6),

in which performance metric scores are averaged over 10 individual model runs. The averaged

performance metric scores are given in Table 7 (daily data) and Table 8 (hourly data), respec-

tively. As a reference, these tables also include the model performance on the original dataset

without imputed precipitation samples.

Table 7: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores
highlighted in red indicate best score per metric within the complete table.

Imputation
Methods

(daily resolution)

No Imputation AVwC

Training Validation Test Training Validation Test

Max Error 207.845 196.061 94.536 205.906 188.441 92.450

MAE 4.283 5.787 5.814 4.229 5.352 5.327

MSE 127.490 159.550 109.508 122.578 136.078 96.665

RMSE 11.289 12.291 10.462 11.069 11.385 9.831

MeAE 1.647 3.645 3.745 1.627 3.315 3.346

REV -4.082 4.094 -0.071 -3.989 5.016 1.706

NSE 0.835 0.738 0.746 0.842 0.774 0.775

KGNP 0.940 0.880 0.906 0.941 0.895 0.922

 NRM_d IDW
 Training Validation Test Training Validation Test

Max Error 205.577 189.132 91.810 203.593 188.868 95.832

MAE 4.235 5.362 5.295 4.195 5.230 5.323

MSE 122.374 136.755 95.558 119.221 134.496 100.869

RMSE 11.060 11.412 9.774 10.917 11.316 10.039

MeAE 1.634 3.324 3.314 1.616 3.251 3.340

REV -3.943 5.082 1.719 -3.857 4.360 -0.445

NSE 0.842 0.773 0.778 0.846 0.777 0.766

KGNP 0.941 0.896 0.924 0.942 0.900 0.915

 LR

 Training Validation Test

Max Error 204.281 188.700 96.321

MAE 4.204 5.251 5.284

MSE 119.864 135.033 101.018

RMSE 10.946 11.339 10.047

MeAE 1.623 3.263 3.331

REV -3.847 4.441 -0.660

NSE 0.845 0.776 0.765

KGNP 0.942 0.900 0.916

69

Investigating the imputation strategies for daily datasets, the metrices across the dif-

ferent imputed datasets, including the not imputed dataset, do show only minor differences.

However, it seems that the performance of the model does generally increase slightly when

using imputed precipitation datasets. This is expectable, since the model potentially receives

accurately reproduced precipitation estimates for the missing records. On the average of 10

model runs the Normal Ratio method with respect to distance (NRM_d) d, reveals the greatest

number of best performance metrics scores on the test period compared to the other four dif-

ferent input datasets. In other terms the model trained on the imputed dataset based on the

NRM_d method produces slightly better scores for the Max Error, MSE, RMSE, NSE and KGNP

metric on the test period, respectively, across all other analyzed datasets.

Table 8: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores
highlighted in red indicate best score per metric within the complete table.

Imputation
Methods

(hourly resolution)

No Imputation AVwC

Training Validation Test Training Validation Test

Max Error 67.576 82.693 45.477 60.354 64.206 47.636

MAE 1.387 2.587 2.425 1.315 2.032 1.697

MSE 7.156 24.967 17.067 6.110 13.693 10.265

RMSE 2.675 4.997 4.131 2.472 3.700 3.204

MeAE 0.812 1.260 1.383 0.763 1.111 0.954

REV -0.436 4.816 0.984 -0.270 2.613 -0.295

NSE 0.992 0.944 0.959 0.993 0.969 0.975

KGNP 0.990 0.917 0.953 0.991 0.959 0.982

 NRM_d IDW
 Training Validation Test Training Validation Test

Max Error 61.653 64.640 44.886 57.961 62.270 45.336

MAE 1.288 2.023 1.661 1.282 1.989 1.638

MSE 6.081 13.454 10.402 5.893 13.293 10.041

RMSE 2.466 3.668 3.225 2.428 3.646 3.169

MeAE 0.739 1.108 0.932 0.736 1.082 0.909

REV -0.298 2.652 0.012 -0.285 2.514 0.078

NSE 0.993 0.970 0.975 0.994 0.970 0.976

KGNP 0.991 0.959 0.983 0.991 0.961 0.984

 LR

 Training Validation Test

Max Error 58.327 65.516 43.374

MAE 1.278 1.983 1.640

MSE 5.875 13.163 9.915

RMSE 2.424 3.628 3.149

MeAE 0.734 1.082 0.913

REV -0.321 2.561 0.068

NSE 0.994 0.970 0.976

KGNP 0.991 0.961 0.984

Similar observations can be made for the models trained on hourly datasets. Likewise

to the results for daily resolution, imputing missing precipitation data minimally improves the

70

performance scores regardless of the used method. However, the differences in performance

metric scores are even smaller than in the daily scenario. There is one imputed dataset, that is

just slightly better for at least some of the performance metrices on average (10 iterations) with

respect to test period. In hourly scenario it is not the NRM_d method, but the applied LR

method, that lead to the best model results. Moreover, for the first time it can be observed,

that the overall performance of the model trained on hourly data is significantly better than

trained on resampled daily data. This is verified by comparing e.g. the NSE scores for the differ-

ent temporal resolutions. On the one hand the highest NSE score (NRM_d method) is 0.778 on

daily data basis and on the other hand the highest NSE score (LR method) is 0.976 based on

hourly resolution. This is an increase of 25%. This is definitely not attributable to the unequal

number of imputed missing precipitation samples, but rather to the in general higher amount

of received input data in case of hourly observations. This issue is investigated in more detail in

the further course of this thesis. On the premise of this analysis, the NRM_d-imputed dataset

is used for daily discharge predictions, whereas the LR-imputed dataset is utilized for hourly

predictions throughout the rest of this thesis.

4.3. Model Sensitivity to Feature Selection

After the preliminary analysis, the best model settings with respect to the scaling technique of

the input data, the method for dealing with missing values and the most suitable approach of

imputing missing rainfall observations are identified at this point. At this stage of the thesis, the

complete set of input features in the dataset is utilized. Since there are a lot of different mete-

orological parameters in the dataset, it might be difficult for the model to learn the potential

non-linear correlations among all of them, since these correlations are somehow fuzzy. Further-

more, some input parameters might be more decisive for the rainfall-runoff process within this

specific study area than others and some might be not relevant for the model at all. To test this

hypothesis a sensitivity analysis is carried, in which the number of input features is reduced

stepwise and the change in model performance is evaluated. Since generally precipitation is the

most dominating parameter in a rainfall-runoff process, the focus lays of excluding other pa-

rameters than rainfall measurements. Moreover, the model performance of the LSTM model

has not been compared to performance of the calibrated LARSIM model yet, which is assessed

as well in the following sections. This sensitivity analysis is conducted separately for the daily

and hourly resolution datasets. First the analysis is carried out the daily datasets to test if there

is a considerable difference in model performance, while reducing the number of input fea-

tures. Afterwards the identical analyses steps are conducted for the hourly dataset. The sensi-

tivity analysis section, despite the division in daily and hourly resolution is further organized in

71

two parts. In the first part of the analysis, the performance of the model based on three differ-

ent groups/sets of input features for the datasets are investigated. In the second part of the

analysis, the effect of including or excluding discharge gauges in the input data is examined.

Hence, once more three different groups/sets of input features are tested. The model perfor-

mance in both parts is evaluated based on the normal Holdout method (see section 3.5).

4.3.1. Daily Resolution

Influence of Meteorological Forcing Data

For each of the three analyzed input datasets the number of input features is different. The first

group of input features excludes all stations that are de facto located outside the catchment

boundary (hereafter referred to as: input feature set 1). Hence, this dataset only contain input

features measured by stations, which are situated within the catchment boundary or have at

least a distance of less than 2km to the boundary (but still outside the boundary; see Figure 22

in section 4.1). By excluding the aforementioned stations, the number of input features is re-

duced in this first group by a total of 53 features from 86 (complete dataset) to 33 (dataset

containing only features measured inside the catchment boundaries). The second set of input

features does only contain the rainfall observation stations from the previous group (stations

inside the catchment). Hereby, the number input features is further reduced from 33 to 15

input features (hereafter referred to as: input feature set 2). For the sake of completeness, it is

important to note that during this first section of the analysis the discharge at the target station

is always part of the input data, thus counted as one input feature. Moreover, there are the

performance metric scores given of the model with unchanged input data (86 features), which

should serve as a reference (hereafter referred to as: reference set).

In the summary Table 9 (first part) and Table 10 (second part) the results of both parts

of the analysis procedures are presented regarding both temporal resolutions. The black

dashed line in the middle divides both tables in two bigger columns. The left column comprises

the results based on the daily datasets, whereas the right column shows the results based on

the hourly resolution. Table 9 also contains the performance scores of the LARSIM model. For

each input feature set each performance metric score is separately calculated for three time

periods (Training, Validation and Test subset). Comparing the original model performance (ref-

erence set) and input feature set 1, in which all features located outside the catchment are

disregarded, a slight performance increase can be observed with respect to all performance

metric scores (except REV) on the test period. The model receives data of 53 less input features

but performs slightly better. The model trained on input feature set 1 shows the second highest

KGNP score (0.925) and the lowest MAE score (4.309) on test data for daily resolution. This

72

suggests that some of the original 86 input features are less or even of zero importance for the

model, i.e. the internal model weights corresponding to these features are close to zero. This

result seems reasonable since some of the measuring stations are positioned quite far outside

the catchment boundaries and the parameters observed at these stations might not have a

direct influence on the rainfall-runoff processes within the watershed at all. It must be noted

that there is still at least on input feature for each available parameter present in the input data

(see section 3.2). In other words the model still receives the complete variety of meteorological

parameters (precipitation, air temperature, air pressure, etc.), even though the number of fea-

tures per parameter (stations) is substantially reduced. However, within this group of recued

input features the most frequent input parameter is precipitation, which constitutes with 14

measurement stations the biggest portion (almost the half) of input features. At this stage it is

still too early to make assumptions about, which specific parameter is most affecting the model

performance. To investigate the importance of parameter precipitation alone, in the second set

of input features, just the 14 precipitation are included (as a reminder: the discharge at Mari-

enthal station is still additionally considered). As a result, the model predictions with input fea-

ture set 2 are slightly worse (except KGNP and MeAE) compared to input feature set 1. As ex-

pected, precipitation is the most significant parameter. However, this reveals that at least a few

other parameters than precipitation does actually contribute valuable information to the

model, even though the effect on the performance seems to be almost negligible. Which of

these parameters affects the model performance most besides precipitation could be part of

future investigations. Moreover, none of the above mentioned dataset configurations does

reach nearly the performance of the LARSIM simulation (see Table 9), even though the perfor-

mance metric scores regarding the LARSIM simulation are resampled from the natural output

resolution of hourly values to daily values (see section 3.6).

Influence of Discharge Observations

Besides meteorological data there are discharge measurements at other gauges within the

catchment available, which have not been utilized yet. In this second part of the analysis based

on daily data these runoff observations should be considered as additional input features.

Moreover, the effect of including or excluding the runoff observations at the target (Marien-

thal) station as an extra input feature should be investigated. As a reminder, in the very first

model test (see section 4.1) this influence of incorporating the discharge at the target (Leming)

station as added input feature was significant. However, conceivably the model was provided

with too less meteorological forcing data (only one close by precipitation station) at that stage

to predict the discharge accurately. Hence, once more three different sets of input data are

73

examined to test the impact of added discharge features as part of the input on the model

performance in more detail. One of these datasets does solely contain the meteorological sta-

tion data (within the catchment), but the observed discharge at the target station is excluded

as a feature (hereafter referred to as: input feature set 5). Another dataset does consider the

meteorological input features plus all available additional discharge stations, including the tar-

get station (hereafter referred to as: input feature set 4). The third dataset holds the meteoro-

logical features and the additional discharge gauges as well, but the discharge at the target

station is excluded (hereafter referred to as: input feature set 3). This set is tested to assess

exclusively the influence of the target station on the model performance.

In general, there is data of 17 supplementary discharge gauges (in addition to Marien-

thal station) available (see section 3.1 and 3.2). In all the previous investigations, the runoff at

the target station was regularly an included feature in the input data. Thus a first logical step

would be to drop the target station form the input. As a result, the LSTM model experienced

quite a significant drop in performance, when trained purely on meteorological forcing data

(input feature set 5), compared to input feature set 1. In this case not only the NSE score drops

from 0.787 (33 input features) to 0.590 (32 input features), but also all other performance

scores deteriorate on the test period. This drop in performance can additionally be observed

by comparing the predicted discharge hydrographs of the model with the observations on the

test period. In Figure 26 the discharge predictions of the model trained on input feature set 1 is

shown, whereas Figure 27 displays the discharge predictions of the same model but trained

without the runoff at the target station (input feature set 5).

Figure 26: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on input feature set 1.

74

Figure 27: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on input feature set 5.

In Figure 27, during the period from February till April in 2017 the discharge is heavily underes-

timated, whereas the discharge during the end of the test period (starting around December

2017) is slightly overestimated by the model. When incorporating the discharge in the input

data, these effects are well reduced (see figure x). Along with the first model test presented in

section 4.1, this result proves the fact, that considering the discharge at the target station im-

proves the model performance by a noteworthy amount, as expected. Nonetheless, flood peaks

with a steep rising limp above 75 m³/s in the test period are hardly captured (with few excep-

tions) by either of both models (Figure 26 and Figure 27). The most likely reason for this might

be choice of the MAE as objective function for training the LSTM model, which has a lower

responsiveness, i.e. gives less weight, to high values. In contrast during baseflow dominated

periods in the prediction hydrograph match largely well with the observations. The aforemen-

tioned outstanding performance of the LARSIM simulation (NSE = 0.976) is reflected in the al-

most perfect fit between prediction and observations, merely flood peaks are slightly overesti-

mated in a few cases (Figure 26 and Figure 27).

When enlarging the number of input features by utilizing the discharge observations of

all other discharge gauges except from Marienthal Station (input feature set 3), the perfor-

mance metric scores increase fairly compared to the use of input feature set 5 (see Figure 27).

This seems reasonable, since the information of the discharge rate at Marienthal station, even

though the target station is excluded, is partially comprised of the discharge dynamics at all

other discharge gauges. In other words all the runoff generated in the catchment is routed

through Marienthal station to a certain extent. Thus, the model might be able to exploit useful

information about the non-linear correlations among other discharge gauges. The NSE score

75

increases from 0.590 (input feature set 5) to 0.860 (input feature set 3) (see Table 10), which is

higher compared to input feature set 1 and reference set. Indeed, not only the NSE scores are

better, but all performance metric scores show a superior value. This suggests that the model

can harness useful information of the temporal dynamics of the runoff at other discharge

gauges to improve its overall prediction accuracy.

The accuracy with respect to the performance metrices can even slightly be improved

when the discharge at target station is included as well (input feature set 4). When the data of

all measuring stations inside the catchment boundaries is utilized (50 input features), namely

meteorological data and discharge data, the model achieves its best performance on test data

for a daily resolution so far. This manifests in the highest performance metric scores for daily

data with respect of the MAX-ERROR, MSE, RMSE and NSE score, respectively (see Table 10).

This outcome can further be approved by looking at the predicted discharge hydrograph of the

model during the test period depicted in Figure 28. In contrast to the discharge hydrographs in

Figure 26 (input feature set 1) and Figure 27 (input feature set 5), the model in this scenario

seems to capture the temporal dynamics especially during high flow conditions better (see Fig-

ure 28). This coincides with the improved scores of the performance metrices, which are more

sensitive to high values, i.e. MAX-ERROR, MSE, RMSE and NSE. On the contrary, during low flow

periods (e.g. August till November in 2017) the discharge seems to be systematically overesti-

mated (see Figure 28), when adding the observation of all discharge gauges to the input data

(input feature set 4).

Figure 28: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on input feature set 4.

Overall, not a single LSTM-model trained on any of the input datasets in daily resolution

reached nearly the accuracy of the LARSIM simulation. Every individual performance metric of

76

the LARSIM simulation showed exceptional good scores. Nevertheless, it has to be mentioned

that the LARSIM model actually never predicts on a daily timescale. Thus, the model perfor-

mance of the LARSIM and LSTM model are only comparable with some reservations.

77

Table 9: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores highlighted in red indicate best score per metric across all input feature sets (includ-
ing Table 10) with respect to daily (left) or hourly (right) data basis.

Daily Datasets (with NRM_d imputation of precipitation features) Hourly Datasets (with LR imputation of precipitation features)

Dataset
Comparison

Reference:
all meteorological Stations & target sta-

tion [86 input features]

Input feature set 1:
Stations inside Catchment & target sta-

tion [33 input features]

Reference:
all meteorological Stations & target station

[75 input features]

Input feature set 1:
Stations inside Catchment & target station

[29 input features]

Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Max Error 198.844 138.931 102.739 200.747 138.856 98.098 58.327 65.516 43.374 58.499 57.786 31.889

MAE 4.063 5.271 5.452 4.554 4.528 4.309 1.278 1.983 1.640 1.114 1.414 1.291

MSE 117.322 95.609 111.445 136.049 93.884 91.759 5.875 13.163 9.915 4.396 7.724 5.000

RMSE 10.832 9.778 10.557 11.664 9.689 9.579 2.424 3.628 3.149 2.097 2.779 2.236

MeAE 1.584 3.683 3.524 1.686 2.792 2.189 0.734 1.082 0.913 0.608 0.795 0.754

REV -3.858 7.698 0.212 -4.638 2.045 -2.518 -0.321 2.561 0.068 -0.249 1.231 -0.105

NSE 0.859 0.786 0.741 0.837 0.789 0.787 0.994 0.970 0.976 0.995 0.983 0.988

KGNP 0.943 0.902 0.906 0.931 0.940 0.925 0.991 0.961 0.984 0.993 0.980 0.988

Input feature set 2:

Precipitation Stations (inside catchment)
& target station [15 input features]

LARSIM Simulations
Input feature set 2:

Precipitation Stations (inside catchment) &
target station [15 input features]

LARSIM Simulations

 Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Max Error 180.545 146.770 99.638 59.833 25.131 39.277 179.904 62.874 35.436 103.620 80.570 74.100

MAE 4.884 3.887 4.419 1.392 1.105 1.239 1.732 1.487 1.376 2.137 1.800 1.878

MSE 134.319 97.305 98.426 9.888 4.897 10.120 36.153 14.257 7.957 28.395 18.951 21.045

RMSE 11.590 9.864 9.921 3.145 2.213 3.181 6.013 3.776 2.821 5.329 4.353 4.587

MeAE 1.746 1.817 2.113 0.611 0.542 0.582 0.575 0.607 0.672 0.786 0.773 0.904

REV -4.272 -1.201 -3.770 0.411 0.321 -0.054 -0.582 0.664 0.262 0.325 0.367 0.606

NSE 0.839 0.782 0.771 0.988 0.989 0.976 0.960 0.968 0.981 0.969 0.957 0.948

KGNP 0.927 0.954 0.927 0.991 0.991 0.990 0.989 0.987 0.989 0.984 0.983 0.979

78

Table 10: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively. Scores highlighted in red indicate best score per metric across all input feature sets (in-
cluding Table 9) with respect to daily (left) or hourly (right) data basis.

Daily Datasets (with NRM_d imputation of missing precipitation samples) Hourly Datasets (with LR imputation of missing precipitation samples)

Dataset
Comparison

Input feature set 3:
No Target station & with additional Dis-
charge gauges & meteorological stations

inside catchment [49 input features]

Input feature set 4:
With target station & with additional

Discharge gauges & meteorological sta-
tions inside catchment

[50 input features]

Input feature set 3:
No Target station & with additional Discharge
& meteorological stations inside catchment

gauges [45 input features]

Input feature set 4:
With target station & with additional Dis-
charge gauges & meteorological stations

inside catchment [46 input features]

Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Max Error 166.486 61.248 54.738 163.798 62.612 51.462 71.547 62.998 65.484 61.028 49.083 51.973

MAE 3.014 3.626 4.957 2.986 3.535 5.087 1.410 2.788 5.532 1.008 1.704 3.932

MSE 54.836 41.507 60.401 53.833 41.542 58.183 6.837 23.182 60.272 4.113 11.943 33.361

RMSE 7.405 6.443 7.772 7.337 6.445 7.628 2.615 4.815 7.764 2.028 3.456 5.776

MeAE 1.319 2.348 3.499 1.299 2.292 3.858 0.878 1.864 3.817 0.595 0.947 2.236

REV -2.458 -1.430 -0.348 -2.212 -1.249 1.724 0.205 -0.658 4.507 0.056 0.414 3.902

NSE 0.934 0.907 0.860 0.935 0.907 0.865 0.992 0.948 0.856 0.995 0.973 0.920

KGNP 0.963 0.937 0.820 0.965 0.940 0.819 0.988 0.943 0.716 0.993 0.971 0.820

Input feature set 5:

Meteorological Stations only (inside
Catchment) [32 input features]

Input feature set 5:

Meteorological Stations only (inside
Catchment) [28 input features]

 Training Validation Test Training Validation Test

 Max Error 213.863 142.739 121.848 Max Error 134.433 157.244 168.279

 MAE 4.870 6.342 6.477 MAE 5.771 12.828 9.569

 MSE 147.327 120.476 176.354 MSE 96.674 448.474 294.303

 RMSE 12.138 10.976 13.280 RMSE 9.832 21.177 17.155

 MeAE 1.933 4.273 3.269 MeAE 3.254 8.004 5.499

 REV -5.058 8.829 -5.594 REV -4.600 24.870 12.641

 NSE 0.823 0.730 0.590 NSE 0.893 -0.008 0.297

 KGNP 0.926 0.870 0.832 KGNP 0.842 0.482 0.707

79

4.3.2. Hourly Resolution

Influence of Meteorological Forcing Data

The model sensitivity analysis procedures based on hourly data is repeated in the same way as

for daily resolution. Similarly, in the first part of the analysis, the performance of the model

based on hourly resolution is investigated on the same three groups/sets of input features as

in the daily scenario. The only difference is the number of features each of these sets consists

of compared to the examined daily input feature sets. Since the hourly datasets do not consider

minim and maximum air temperature separately as input features, as described in section. 3.2,

the analyzed hourly datasets contain generally less features as the daily ones. The first set of

input features excludes all stations that are located outside the catchment boundary (input fea-

ture set 1). By excluding the stations, the number of input features is reduced in this first group

by a total of 46 features from 75 (complete dataset) to 29 (dataset containing only features

measured inside the catchment). The second set of input data does only contain rainfall obser-

vation data (input feature set 2). Hereby, the number input features is further reduced from 29

to 15 input features. Again it is worth mentioning, that in this part of the analysis the discharge

at the target station is always part of the input data and is counted as one feature. For compar-

ison purpose the performance metric scores of the model with unchanged input data (reference

set) with 75 features is provided as well.

The results of both parts of the analysis are shown in Table 9 and Table 10. When re-

ducing the amount of input features in the input features set 1, the model performance metric

scores increase by a minor amount compared to the reference set. These findings coincide with

the results from the daily scenario, supporting the hypothesis, that a major of the original input

features (reference dataset) have less or even zero influence on the model accuracy and rather

obscuring the model with irrelevant information. The resulting model trained on input feature

set 1 results in the overall highest model performance on the test period so far. With this spe-

cific input feature set the best performance metric scores are reached (except for MeAE and

KGNP) within the complete sensitivity analysis. For example the model predictions show a re-

markable NSE score of 0.988, which suggests almost a perfect fit between predicted and ob-

served discharge hydrograph. This assumption is revealed in Figure 29, which depicts the pre-

dicted discharge of the model. Furthermore, it can be observed in Figure 29, that the LARSIM

simulation overestimates particularly the peak flows, as already noticed for the daily scenario.

This might be an indication for the worse performance compared to the LSTM model with re-

spect to each individual performance metric score. The LSTM model trained on input feature

set 1 is able to capture the complete range of hydrograph dynamics (see Figure 29). However,

80

at this stage it is unclear to which extent the discharge at the target station, as part of the input

features, has an impact on this high prediction accuracy.

Figure 29: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in hourly resolution.
LSTM predictions are based on input feature set 1.

Reducing the amount of input features further to only 15 precipitation stations (input

feature set 2), the model performance drops faintly (except to the KGNP and MeAE score), as it

does, when considering the same procedure step for the daily resolution dataset. This implies

once more that at least some other parameters than precipitation does actually contribute val-

uable data to the model. However, this positive effect on the performance seems to be almost

negligible, as it is the case for the daily scenario. It should be mentioned that actually each

LSTM-model, independent of the input feature group, showed superior performance compared

to the LARSIM simulation in this first part of the sensitivity analysis.

Influence of Discharge Observations

As also in the daily scenario the first test in the second part of the sensitivity analysis is to ex-

clude the discharge observations at the target gauge from the input dataset and train the model

solely on meteorological input data (input feature set 5). After training the model on the new

input feature set 5, the performance experienced a substantial drop comparted to the input

feature set 1. In this case, it seems that the model is as not able to learn the rainfall-runoff

relation at all. This is reflected in the lowest performance metric scores on test period ever

observed throughout the thesis, which is far beyond the lowest performance of any model

trained on daily input data. The relative drop in performance in the hourly scenario is excep-

tionally higher than for the same analysis step in daily resolution. Regarding the NSE score for

the validation period, which in fact drops below zero (see Table 10), the model shows a poorly

prediction accuracy. This is confirmed by looking at the predicted hydrograph (see Figure 30).

81

It can be clearly seen that the model is not able to capture the temporal dynamics simply from

meteorological forcing data, which results in a deficient fit between observed and predicted

hydrograph.

Figure 30: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in hourly resolution.
LSTM predictions are based on input feature set 5.

Doing the opposite by adding all available discharge stations (input feature set 4) to the

input data the performance significantly increases again. This is expected, since the model gets

potentially relevant information about the discharge rate at other stations, as previously shown

for the daily scenario. However, with the additional information of all upstream located dis-

charge gauges, the model trained on input feature set 4 does not reach the performance scores

as the model that considers solely the target station as added discharge feature (input feature

set 1). This is proven by comparing the performance metric scores, while the former mentioned

model has e.g. a NSE score of 0.920 (see Table 10), the latter one has a NSE score of 0.988 (see

Table 9). Thus, incorporating all available discharge observations in the input data seems to be

counterproductive for the “learning” process of the model. On top of that the model shows less

accurate predictions than the LARSIM simulation. These findings contrasts with the results for

the same scenario in daily resolution, in which the model performance actually increased, when

including more information from other discharge gauges additionally to meteorological input

data. Looking at the predicted discharge hydrograph in Figure 31 during the test period for this

scenario, it appears that the model misses to accurately predict the baseflow conditions for

particular time periods. From August till October in 2016 and 2017 the model overestimated

the baseflow constantly, whereas around February 2017 the streamflow is underestimated for

a period of two months. To make sure that these issues are not due to an adversely selected

point to split the data into a training, validation and test subsets, the both models either trained

82

on input feature set 4 or input feature set 1 are once more evaluated by the k-fold cross valida-

tion method (see section 3.6). A badly chosen point might have the effect that the training or

validation dataset do have a lack of periods with specific flow conditions, which would prevent

the model to properly learn the necessary correlations.

Figure 31: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in hourly resolution.
LSTM predictions are based on input feature set 4.

However, the k-fold cross validation with three iterations, lead to the same results, which indi-

cate that additional information of other discharge gauges have rather a negative impact on

model performance. Hereby, another reason could be, that the concentration time of the run-

off within the catchment tributaries might be shorter than the window size, i.e. 5 days. As a

consequence, the discharge information at Marienthal is “overlapped” and blurred by the run-

off measured at other gauges that reaches the gauge at Marienthal in a time delay. Because of

that the model might be unable to learn the complex non-linearities among the 46 input fea-

tures.

If the discharge information only at the target station is dropped form the model input

dataset (input feature set 3) the LSTM-model performs slightly worse than with the discharge

at the target station included (input feature set 4). This is also the case for the same scenario in

daily data resolution. However, the drop in performance metric scores is relatively seen higher

(see Table 9). For the performance of the model trained on daily input data the difference be-

tween input feature set 3 or 4 for e.g. the NSE score is about 0.6%, whereas this difference the

hourly scenario is ca. 7.2%. This suggests that an hourly model is more responsive to the pres-

ence of the target station as an included feature in the input data. Moreover, the model accu-

83

racy trained on input feature set 4 decreases slightly compared to input feature set 3. Subse-

quently, analyzing the predicted discharge and the observed one shows especially during high

flow conditions, i.e. the peak flows, and during low flow conditions a poor fit.

Overall it seems, that the model trained on data with hourly data is quite a lot more

sensitive to the presence of discharge measurements of the target station in the input data

than the model trained on daily basis. When the discharge of the target station is considered

as part of the input features, the LSTM model in hourly resolution clearly outperforms the

model trained on daily data. Furthermore, an hourly LSTM model shows superior discharge

prediction accuracy compared to the LARSIM model, as long as no additional discharge features

are incorporated in the input, except the target gauge.

4.4. Hyperparameter Tuning

As it turned out in the preceding section, the LSTM model trained on daily resolution data does

not reach the performance metric scores of the LARSIM model. Specifically, this is also valid for

a model in hourly resolution, when trained exclusively on meteorological forcing data. Once

there are not any discharge measurements incorporated in the input, the forecasting accuracy

of the LSTM model drops significantly resulting in an incommensurate fit of the predicted hy-

drograph. As a consequence, in this scenario the model is not to make any predictions with

reasonable accuracy. One main reason might be a not ideal choice of hyperparameters. The

previously presented sensitivity analysis was carried out on the preliminary setting of hyperpa-

rameters (see Table 2 in section 3.5), based on the hyperparameter optimization performed by

Unnikrishnan 2019). However, the hyperparameter selection suggested by Unnikrishnan (2019)

might not be completely appropriate for all the scenarios examined in this thesis, since

Unnikrishnan (2019) used an input dataset to optimize the hyperparameter with not ne-

glectable differences (e.g. a dissimilar input feature combination). Moreover, the search space

of some specific hyperparameters was limited. These individual hyperparameters include the

number of LSTM units, the size of the lookback window and the choice of the objective function.

The LSTM units is directly related to the number of trainable parameters of one LSTM cell,

whereas the size of the lookback window determines the time period the model can learn from

input features. From a hydrological perspective in a snow-influenced catchment, where poten-

tially quite a big time delay exists between accumulation of snow and released runoff, the

model might profit from a long lookback window size to capture such processes. However, in

the Regen Catchment, which is not located in mountain regions is not snow-influenced. Thus, a

84

the original chosen window size of four months (120 days) might not be necessary in case of

daily data and might actually have a negative impact on model performance. For hourly resolu-

tion data, a window size of five days (120 hours) seems reasonably long to capture the rainfall

concentration and flood routing processes within the catchment. Furthermore, models operat-

ing on this window size (120 hours) already proved to provide very good result for some input

datasets (e.g. input feature set 1, see section 4.3.2). The choice of the loss-function used to train

the model might also have an influence on the performance of the model, as the MSE or the

NSE respond more sensible to high values (as explained in section 3.6). Hence, a change of the

objective function is expected to increase the accuracy of the predicted runoff for specific dis-

charge ranges (especially high flow conditions).

To test how much the changed hyperparameters affect the model performance separately, the

tuning is conducted in two parts, each carried out for both temporal resolutions. In the first

part only the objective model function is varied, whereas in the second part different combina-

tions of window size and number of LSTM units analyzed, respectively. Each model run is eval-

uated by the normal holdout method. In Table 11 the selected hyperparameter settings regard-

ing the two parts are shown. The specific LSTM-unit numbers (256/512) in part 2 are chosen

according to commonly used values in literature, e.g. (Kratzert et al. 2018). To verify all the

following results of the hyperparameter tuning process, the tables containing the computed

performance metric scores for both parts can be found in Table 14, Table 15, Table 16, Table

17, Table 18, Table 19 and Table 20 in the Appendix.

Table 11: Overview of tested hyperparameter configuration with respect to temporal resolution. Bolt values indicate
tested settings, whereby the other values remain constant.

Hyperparameter Configuration Hourly Data Daily Data

Change objective function
(Part 1)

Loss-function MAE | MSE | NSE MAE | MSE | NSE

LSTM units 120 120

Window Size 120 (5 days) 120 (4 months)

Change LSTM units and
Window size

(Part 2)

Loss-function MAE MAE

LSTM units 120 | 256 120 | 256 | 512

Window Size 120 (5 days) 120 | 60 | 30

Switching the objective function

In the first part of the hyperparameter tuning, the model is trained on two different input da-

tasets, namely input feature set 5 and input feature set 3. The latter one is picked to see if having

discharge observations in the input data does have a noticeable impact on performance, while

the model is trained with distinct objective functions. The target station is generally excluded

85

from the input during the tuning, since, as mentioned above, the model performance (inde-

pendent of the temporal resolution) is poor and the biggest improvements in performance are

expected on these two input feature sets. In general the choice of the loss-function does not

seem to have a big influence on the performance, as the metric scores vary insignificantly on

the test period throughout the tests on the three different loss-functions. When switching to

the MSE or NSE as objective function, the performance metrices scores particularly susceptible

to high discharge values, i.e. the MAX-ERROR, MSE, RMSE and NSE improved slightly on test

data. This is observed for both of the two different input datasets. With respect to the NSE

score the biggest jump in model performance is found when trained to minimize the MSE rather

than the MAE on input feature set 5. In this case the NSE increase from 0.590 (trained with MAE

as loss-function) to 0.686 (trained with MSE as loss-function). At large the model with the MAE

as objective function does capture conditions around low flow periods better (see Figure 27 in

section 4.3.1), whereas a model trained using the MSE as objective function does capture con-

ditions around high flow periods more accurately, see Figure 32 below. Nonetheless, it can be

observed in Figure 32 that the predicted discharge peaks still do not fit very well to the meas-

ured peaks. Yet, the discharge at high peaks is sporadically underestimated, whereas at smaller

peaks the discharge seems to be systematically overestimated.

Figure 32: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on input feature set 5 and model is trained with MSE as objective function.

The results for the first part of the hyperparameter tuning in case of a daily data basis reveal

that the model solely trained on meteorological forcings can still not be considered as a model

with reasonable prediction accuracy when switching the objective function. When the 17 dis-

charge gauges within the catchment are added (input feature set 3) changing the objective

86

function to NSE or MSE, the model performance does hardly show any significant differences

(compared to the MAE function) regarding the performance metric scores.

Looking at the same hyperparameter tuning procedure but for models trained on

hourly data a converse picture can be drawn. For models trained on either of the two different

input feature sets, changing the loss-function to MSE or NSE results in a performance drop for

either of these two objective functions. Therefore, models trained on input data with hourly

resolution show the highest accuracy, when trained using the preliminary chosen MAE function.

Changing model capacity and lookback window size

In the second part of the hyperparameter tuning the same two datasets as in part 1 are used.

For each model run the window size is reduced and simultaneously the model capacity is in-

creased by changing the number of hidden LSTM units. In daily scenario, a 3x3 grid-search

(three different LSTM units vs. three different window sizes) is carried out for both datasets

(input feature set 5 & 3). In an hourly scenario, the model capacity is increased to 256

LSTM units when trained on both of the two datasets. Unfortunately, the model capacity in this

experiment was limited to 256 units, because increasing the number further resulted consist-

ently in a crash during the training execution of the model. This might has happened due to

memory issues of the GPU of the local machine. However this is only an assumption and the

true underlying problem has not been found and could not be solved throughout working on

this thesis.

Regarding the input feature set 5 in daily resolution, the grid-search revealed that generally

decreasing the window size improved the model performance slightly (compared to window

size 120), regardless the number of used LSTM units. Further, a reduced window size of 30 time

steps do not increase the performance metric scores with a higher number of LSTM units. In

contrast, a reduced window size of 60 time steps results in a slight increase in performance

metric scores while increasing the number of LSTM units simultaneously. Models trained with

a window size of 60 time steps (compared to other window sizes) generally showed the best

performance metric scores aside from the number of hidden LSTM units. For a window size of

120 time steps the performance metric scores first drop when changing the LSTM units to 256,

but then increase again for 512 LSTM units. The highest NSE score provides the model trained

with a lookback window size of 60 time steps and 256 LSTM units. Changing the window size

and the LSTM units from the original setting (120/120) to the optimal setting (60/256) results

in a significant increase of the NSE-score from 0.590 (original model) to 0.771 (model with tuned

hyperparameters). Looking at the predicted discharge hydrograph (see Figure 33) for the model

with optimized hyperparameters trained only on meteorological data (input feature set 5), it

can be observed that the model predictions increased a little in accuracy compared to the

87

model with original hyperparameter settings (see Figure 27 in section 4.3.1). This is especially

true during the high flood peaks around March 2017.

Figure 33: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in daily resolution.
LSTM predictions are based on input feature set 5, window size 60 steps and 256 LSTM units.

Switching to the other daily dataset, in which the 17 discharge gauges are added to the input

set (input feature set 3), the hyperparameter tuning lead to contrasting findings. On the one

hand generally decreasing the window size resulted in negligible small decrease of performance

metric scores (regardless the three different LSTM units). On the other hand generally increas-

ing the LSTM units with respect to one particular window size the model resulted once more in

negligible small decrease of performance metric scores. These are rather opposite results to

the first input feature set. The effect of the hyperparameter tuning on the model performance

seems to be barely different. In this case the best performing hyperparameter combination on

input feature set 3 is the original setting (Window size: 120/ LSTM units: 120).

As a next step, it should be analyzed if a scaled up model capacity, i.e. increasing the

LSTM units to 256, results in a higher model performance when trained on hourly resolution. It

turns out, that the model performance with respect to the performance metric scores indeed

increase for both datasets. When the model is trained on meteorological data only (input fea-

ture set 5), the NSE score jumps from 0.297 (120 LSTM units) to 0.520 (256 LSTM units), which

is quite a significant increase. However, the prediction accuracy of this model for the runoff is

still very loose, as it can be seen in the Figure 34.

88

Figure 34: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in hourly resolution.
LSTM predictions are based on input feature set 5, window size 120 steps and 256 LSTM units.

Thus, just increasing the model capacity seems not enough for the model to learn the non-linear

relations in the rainfall-runoff processes for this catchment alone from meteorological meas-

urements, even though the performance metric scores indicate a significant improvement. Sub-

sequently, adding the 17 discharge gauges located somewhere upstream of Marienthal station

(input feature set 3) and train the model while increasing the LSTM units, the model perfor-

mance increase as well. However, the relative increase in this case compared to the other input

feature set is less significant. As an example, the NSE score advance slightly from 0.856 to 0.890.

This small difference is mainly due to the fact, that the model trained on input feature set 3

with 120 LSTM units is quite accurate in the first place. Nonetheless, this minor increase of

performance, affects the prediction accuracy of the model to a certain extent. Comparing the

discharge predictions of the model with original hyperparameter settings (Figure 30 in section

4.3.2) with the model with increased capacity (256 LSTM units) (see Figure 35), it can be ob-

served that specifically the baseflow during low flow periods is captured more accurately. There

is one exception to that: during December 2017 the discharge is consistently underestimated.

89

Figure 35: Comparison between measured, predicted (LSTM) and simulated discharge (LARSIM) in hourly resolution.
LSTM predictions are based on input feature set 3, window size 120 steps and 256 LSTM units.

As an add on for the hourly resolution data: If the model with optimized hyperparame-

ter settings is not trained on input feature 5 or 3 but rather on input feature set 1, the model

performance can even be further enhanced. As a reminder: This is the dataset, which includes

measurement data from meteorological stations plus the discharge at the target station (29

input features). This data was originally not part of the hyperparameter tuning procedure, since

the model with the preliminary hyperparameter settings showed already extremely good per-

formance. However, when training the model with increased model capacity (256 LSTM units)

on this input feature set 1, the model performance can further be increased with respect to all

performance metric scores (except MAX-Error). Nevertheless, this increase in performance is

hardly noticeable in the view of prediction accuracy, when comparing the predicted hydrograph

to the measured one.

4.5. Multi-step Predictions

To this point all LSTM models predicted the discharge in single steps, which means, that a model

predicts only the very next time step (see section 2.2.2). However, this operational mode is

more used in a specific analysis environment, like in this thesis, rather than actually performing

real-time streamflow forecasts. In this section it should be investigated if the LSTM model can

also predict multiple time steps (hours) ahead with reasonable accuracy compared to the LAR-

SIM model. The single step model that reached the highest accuracy during the previous anal-

ysis, is the LSTM model trained on input feature set 1 with 256 hidden LSTM-units considering

the preceding 120 time steps. This input feature set includes meteorological measurement data

90

(inside the catchment) plus the discharge observations at Marienthal station (in total 29 fea-

tures). Hence, this configuration is used to predict the discharge of different lead times, which

are 12, 24 and 36 hours, respectively. In this section the prediction capability is investigated in

two ways, as described in section 3.7. On the one hand the LSTM model predicts the discharge

in one single shot (all hours at once) without incorporating “forecasted” meteorological data

during the prediction period. On the other hand the single- step model with customized predic-

tion loop is used (hereafter referred to as: customized loop model), which introduces a method

of considering real forecasted meteorological data during the multi-step prediction process.

This customized prediction loop is tested for two different prediction scenarios in this analysis.

In the first test it is used to predict 12 hours ahead, with an update step of 12 hour. To put it in

another way, the model predicts the next 12 steps every other 12 hours. In the second test it is

used to predict the next 24 hours, but the model restarts the prediction loop with a frequency

of one hour.

After calculating the individual performance metric scores of the different models over

the course of future time steps, as described in section 3.7, their progression against the pre-

diction steps can plotted. In Figure 36 and Figure 37, the evolution of model performance

against future prediction steps can be observed with respect to NSE and KGNP scores, respec-

tively. A figure showing this evolution in the same manner but with respect to the MAE and

RMSE score can be found attached to the Appendix (see Figure 41). In Figure 36, which shows

the progression regarding the NSE scores, it can be observed that for all models, except for the

custom loop models, the NSE score decreases steadily if the lead time increases. As a result the

further the model predicts ahead, the more inaccurate the discharge predictions are. In general

the progression of NSE scores of all single-shot LSTM models follow the same trend as the scores

of the LARSIM model. Around a lead time of 16 hours, all models, except the custom loop mod-

els, experience a slight stronger decrease of the NSE score indicated by a tiny trend change. The

almost perfect NSE score of 1 for the LARSIM simulation at the very first prediction step can be

explained by the fact that after each 24 hours the predicted hydrograph is shifted into the

measured one (ARIMA correction). Since the LARSIM is feed continuously with forecasted data

for the prediction period of 24 hours, it has a clear advantage over the LSTM-model. As a con-

sequence, the NSE scores of the LARSIM model for a lead time of up to 20 hours are above the

ones of the 24-step single shot model. At the 20th prediction step ahead, the NSE scores of the

24-step single shot LSTM model and the LARSIM model are almost equal. For further prediction

steps the NSE of the LARSIM model drops below the NSE of the single shot models. At a lead

time of 24 hours the NSE score of the single shot LSTM models (24-step and 36-step model) are

91

above a NSE of 0.86, which suggests, that their prediction accuracy is reasonably well and com-

parable to the LARSIM simulation. In contrast the customized loop model show for both lead

times a nearly constant NSE score and thus a progressively high prediction accuracy. This is due

to the nature of the developed double loop function, which basically provides the model with

new input data after each time step, as described in section 3.7. The customized loop model

receives, similar to the LARSIM model, some information about the “future” meteorological

conditions. Specifically this new data is composed of true observations meteorological data (see

section 3.7) and the predicted discharge values of the previous steps. These advantageous char-

acteristics can explain this continuous good performance of the customized loop model.

Figure 36: Progression of the NSE score on Test Data over future time steps for all tested models (indicated by differ-
ent line styles). In order to have more zoomed in view, the graph of the single-shot model with a lead time of 36 steps

(yellow triangles), is cut off. For the 36th step this model reached a NSE score of 0.654.

 To also have a qualitative measure rather than only a quantitative measure, the de-

crease of the KGNP score over a prediction time period of up to 30 hours ahead is shown in

Figure 37. In principal the aforementioned outcomes and indications are confirmed, when

transferred to this figure. Again, the progression of KGNP scores of the single-shot models gen-

erally follow the same trend as the scores of the LARSIM model, with the exception of the two

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0 5 10 15 20 25 30

N
SE

PREDICTION STEPS [H]

PROGRESSION OF THE NSE SCORE ON TEST DATA

24-Step LSTM-Model (one shot)

36-Step LSTM-Model (one shot)

12-Step LSTM-Model (one shot)

Single Step LSTM-Model predicting 12 steps ahead with forecasted values with update step
12h (costumized prediction loop)
Single Step LSTM-Model predicting 24 steps ahead with forecasted values with update step
1h (costumized prediction loop)
Larsim Simulation (update step 24h)

92

model runs based on the customized prediction loop. The KGNP metric, which is essentially a

goodness-of-fit measure provides an indication of how well the observed and predicted hydro-

graph matches with respect to the volume, variability and dynamics of the discharge. The slight

decrease of KGNP scores with increasing lead times implies that the individual model predic-

tions deviates more from the observations as the prediction steps are further ahead. Trans-

ferred to predicted and measured hydrograph, these deviations are mainly reflected in overes-

timating peak flows. Furthermore, it seems that, e.g. for the 24th prediction step of a single shot

LSTM model, the dynamics of spiking flood peaks are captured with a delay of one or two hours.

In contrast, the customized loop model is able to provide a constant high accuracy, which even-

tually reflects in a strong match of predicted and observed hydrograph for the complete lead

time of 24 hours.

Figure 37: Progression of the KGNP score on Test Data over future time steps for all tested models (indicated by dif-
ferent line styles). In order to have more zoomed in view, the graph of the single-shot model with a lead time of 36

steps (yellow triangles), is cut off. For the 36th step this model reached a KGNP score of 0.912.

It has to be mentioned that the minor deviations in both Figure 36 and Figure 37 between the

graphs of the three one shot LSTM models with different lead times has two reasons. On the

one hand, each of these three LSTM-models has its own set of trainable parameters, because

every particular model is trained on a target window of another size. On the other hand during

0,94

0,95

0,96

0,97

0,98

0,99

1

0 5 10 15 20 25 30

K
G

N
P

PREDICTION STEPS [H]

PROGRESSI ON OF THE KGNP SCORE ON TEST D ATA

24-Step LSTM-Model (one shot)

36-Step LSTM-Model (one shot)

12-Step LSTM-Model (one shot)

Single Step LSTM-Model predicting 12 steps ahead with forecasted values with update step
12h (customized prediction loop)
Single Step LSTM-Model predicting 24 steps ahead with forecasted values with update step 1h
(costumized prediction loop)
Larsim Simulation (update step 24h)

93

the training of the models the MAE should be minimized, which is averaged over the lead time

(only during training process). Since the lead times is different across the LSTM-models these

calculated averages of the MAE differ and though the progression of the metric scores are

slightly off. With respect to averaged performance metric scores over the lead time of 24 hours,

the LARSIM model shows slightly better performance in reference to the corresponding single

shot LSTM model (see Table 21 in Appendix). However, obviously the model with customized

prediction loop shows superior performance on average (compared to the LSTM model & LAR-

SIM model), as the performance metric scores stay almost constant over the course of 24 hours

ahead.

5. Discussion

5.1. Scaling

Regarding the preliminary analysis steps, results show that the LSTM model produces the best

performance metric scores on average (10 iterations) if the input data is standardized. How-

ever, the discrepancy in performance between the LSTM model and models trained on robustly

scaled data is small, especially regarding the NSE. This might be due to the fact that outliers in

the measurements are substantially reduced when resampled to daily values (at least for aver-

aged parameters). Thus, robust scaling might not have a considerable influence on the scaling

ranges of various parameters in the input data, reducing its leverage effect. Overall, scaling

should be considered when training LSTMs, since it generally improves convergence and per-

formance, even though the two described methods do not actually show significant differences

in model performance.

5.2. Missing Data

Three different methods for dealing with missing values in the input data have been investi-

gated. It can be argued that Method 1 and Method 2 are incorporated in the preprocessing

phase, since the input dataset must be modified accordingly. In contrast, for Method 3, a spe-

cific model structure is required, i.e. the model architecture has to be adjusted in addition. This

is actually a disadvantage compared to the other two methods, as the model structure is less

complex. Method 2 is essentially most comparable to the original concept of having a model

that is ideally able to learn to identify specific samples/records in the input data as missing.

Further, using this approach, the model might be capable of drawing useful information from

the missingness patterns within the datasets. As a possible consequence, complex imputation

94

techniques are not required for eliminating data gaps. The LSTM model, which integrates

Method 2 or Method 3, showed similar performance, although the performance metric scores

of Method 2 are slightly better.

Therefore, the conclusion can be drawn that, to some degree, knowledge about missing

samples is gained by the model without the previous knowledge that a value is signed as miss-

ing. Method 1 performed noticeably worse. This is not surprising, since by applying Method 1

the amount of input data is substantially reduced, so there are fewer samples that the model

could learn from remaining in the input data. However, even if all time stamps (all features) are

removed from the input data, the LSTM model is still able to reproduce the observed hydro-

graph in the original timescale at least with modest accuracy. This suggests that the LSTM model

is still able to deal with discontinuous measurement series with irregular measurement inter-

vals.

Method 3 should be applied when the model architect wants to ensure that missing sam-

ples in the input are reliably neglected by the model. Nevertheless, this does not necessarily

result in a higher model performance. After all, these findings have to be treated with care,

because the overall percentage of missing data samples is very low (about 1% or less) compared

to the total number of available observations. Hence, the results of the model runs as well as

the aforementioned learning effect by the model itself might not be statistically significant. It is

hardly distinguishable whether the model shows better performance for Method 2 or Method

3 (compared to Method 1) either because of the presence of more data, or because the model

is actually able to learn from patterns of missing samples. Either way, more extensive research

has to be carried out, in which the samples are systematically dropped from the data resulting

in a higher percentage of missing observations.

5.3. Imputation of Precipitation

Precipitation is the main streamflow affecting input parameter in a rainfall-runoff simulation,

as the name already suggests. Since a continuous rainfall time series is often unavailable, it is a

common practice in hydrology to impute missing data samples. Independently of the applied

technique, this is always a possible source of uncertainty and could introduce a strong bias to

the model, which might not be easy to detect. However, in the framework of this analysis, the

application of imputation methods on precipitation data seems to have a positive effect on the

prediction results of the LSTM model.

When imputation techniques are applied to the input data, the models show a slight im-

provement regarding the performance metric scores for a daily and hourly scenario. It appears

to be trivial which exact technique is used, as long as the missing rainfall samples are replaced

95

with reasonable values. Additionally, this leads to the conclusion that the applied imputation

techniques indeed provide reasonable estimates for missing precipitation data, which is re-

flected in a higher rainfall-runoff prediction accuracy. Notwithstanding, the percentage of im-

puted values is very low (only up to approx. 0.4%). Thus, even more sophisticated methods, e.g.

multiple linear regression, would probably not have improved the accuracy of the discharge

prediction. As mentioned in the preceding paragraph, the level of common statistical signifi-

cance for the different model tests between various imputed datasets might not be given. How-

ever, this hypothesis is not proved and should be one part of future investigations.

5.4. Sensitivity analysis

One of the objectives was to identify parameters that are most responsive to the LSTM model

performance. The sensitivity analysis was carried out with the intention of finding suitable input

feature sets rather than identifying individual parameters or features that might be most rele-

vant for the model to predict discharge accurately. Within the first part of the sensitivity anal-

ysis, in which especially the influence of meteorological features was investigated, the LSTM

model showed similar behaviors in both temporal resolutions. Reducing the number of mete-

orological input features by considering stations only within the watershed boundaries resulted

in a slight increase of performance.

These contrasting relations support the intuitive assumption from a hydrological per-

spective that the influence of stations – regardless of their observation parameters – which are

located outside a watershed, might not be decisive for the model performance. This further

corroborates that including features of all available stations does not only fail to add any valu-

able information to the model but also threatens to obscure the model with redundant infor-

mation. Regarding the scenario analyzed in this thesis, having up to three quarters fewer input

features means a less complex input features space with fewer non-linear correlations between

meteorological features. The results suggest that this potentially leads to a better convergence

to a global optimal point in the search space.

Nevertheless, one advantage of having access to a spatially well distributed measuring

network is that it provides a valuable source for imputation and interpolation of missing pre-

cipitation data. As expected, it turns out that precipitation is the most crucial meteorological

parameter for accurate predictions. However, the model seems to be slightly sensitive to other

parameters apart from precipitation as well, even though their effect on the performance

seems to be almost negligible. This is confirmed by the fact that the LSTM model produced

accurate predictions with an NSE over 0.75, regardless of the temporal resolution – if the input

96

feature set includes the complete variety of available meteorological parameters besides pre-

cipitation.

With respect to the applied performance metrices, the LSTM model trained on hourly

data shows significantly higher scores compared to the one trained on daily input features.

Moreover, only an hourly model outperforms the conceptual benchmark model (LARSIM) with

respect to all applied performance metric scores. However, this high accuracy could be ex-

plained by taking into account that past discharge observations at the target stations have also

been incorporated in the input, suggesting that the model does predominantly learn from the

feature it actually tries to predict. To examine this hypothesis, another objective was to exclu-

sively investigate the influence of additionally considering discharge measurements as part of

the model input.

In the second part of the sensitivity analysis, the LSTM model fails to continue showing

consistent results when comparing daily and hourly predications. In a daily scenario, adding the

upstream located discharge gauges leads to an overall performance increase of the model. Be-

fore including additional discharge observations in the input, it was difficult for a daily model

to capture peak flows. There are two possible reasons for this. On the one hand, using the MAE

as loss function gives less weight to high values and on the other hand, the temporal infor-

mation about periods with high rain intensities is lost during the resampling process. Though,

these high intensity rain events might lead to fast surging discharge peaks in this catchment.

However, as soon as data from discharge gauges is considered as part of the input, a daily model

is able to capture the peaks in the hydrograph more accurately, whereas baseflow conditions

were slightly overestimated. This holds true even if the discharge at the target station is ex-

cluded from the input. Apparently, the information of the hydrograph at Marienthal station is

partially composited of the discharge rates at all other upstream discharge gauges, although

the discharge gauges are widely distributed across the catchment area. In other words, all the

runoff generated in the catchment is routed through Marienthal station to a certain extent,

reflecting the dynamics of rainfall-runoff response more transparently for the model.

In an hourly setting, once additional discharge data is incorporated, the model perfor-

mance drops, which is the opposite behavior to the one observed in the daily scenario. This

discrepancy could be attributed to low correlations among hourly discharge observations be-

tween all gauges compared to daily resolution, making it harder for the hourly model to learn

valuable dependencies. This is mainly reflected in a worse prediction accuracy regarding the

peak flows, but especially the baseflow periods are systematically overestimated. Hence, the

LSTM model based on hourly resolution performance drops below the one of the benchmark

97

model, when considering discharge measurements in the input data at other gauges apart from

the target station.

Furthermore, a third objective was to test how well the LSTM can model the rainfall-

runoff relation within the catchment without any knowledge on discharge, i.e. solely using me-

teorological data. Neglecting any discharge stations and training the model exclusively on me-

teorological data resulted in the worst LSTM performance with respect to both temporal reso-

lutions. In both scenario, the LSTM model does not provide satisfactory performance metric

scores. This is demonstrated by examining the predicted hydrographs visually for the models,

which both yield an overall poorly fit compared to the observed discharge. However, for a daily

data basis, the discharge hydrograph indeed captures temporal dynamics of the discharge to a

certain extent, which is consistent to the general hydrological understanding. This suggests that

the model can, at least to some degree, approximate hydrological rainfall-runoff relations

within the catchment when trained on a coarser resolution.

In contrast, the LSTM model trained on data with hourly resolution does not appear to

be able to learn the complex dependencies in rainfall-runoff processes in this catchment at all.

This is slightly surprising, since for instance short and highly intensive rain events ordinarily have

an impact on streamflow on a sub-daily timescale. Hence, the conception of this causal relation

should be better reflected in a model that receives hourly measurement data. One possible

explanation is that high peak flows might not mainly be driven by these types of rain events

within this watershed. From a computational perspective, another potential explanation is that

the hyperparameters might not have been properly chosen. For example, there might not be

enough trainable parameters in the current model configuration to enable it to converge to a

more optimal solution. Moreover, these findings corroborate with the previously mentioned

hypothesis that the model trained on hourly data, in which the target discharge is included in

the input, does predominantly learn from the feature it actually tries to predict, i.e. the dis-

charge measurements at Marienthal station. Overall, the prediction capability of a model ex-

clusively trained on meteorological input data, independent of the temporal units of the data,

is unreliable and cannot provide satisfying accuracy.

In order to be able to identify individual parameters or stations (rather than sets of

features) that have the most or the least influence on model performance, a more detailed

analysis should be undertaken. This further analysis should put the main focus on a structural

search of particular parameters or features that are the most decisive ones for model response.

Besides this, a more advanced method exists that could be utilized in further research to iden-

tify the most dominant input features. This method is called integrated gradients, first intro-

98

duced by Sundararajan et al. (2017), and follows a more mathematical perspective. These inte-

grated gradients can quantify how the LSTM model combines meteorological features over time

and space to predict the current streamflow (Kratzert et al. 2020). Additionally, it would be

interesting to investigate the effect of the spatial distribution of measuring stations within a

catchment.

5.5. Hyperparameter Tuning

One of the main objectives of the hyperparameter tuning was to investigate whether the pre-

liminary chosen lookback windows, regarding both temporal resolutions, were appropriately

chosen considering an unknown catchment response time regarding precipitation events. Fur-

thermore, it should be examined whether the model capacity, reflected in the number of LSTM-

units, is sufficient for particular problem domains and whether the model performance could

be enhanced. The grid-search procedure focused specifically on input feature sets, which

showed a poor performance in the sensitivity analysis. Moreover, the influence of changing the

objective function on model prediction accuracy should be explored.

Due to the mathematical formulation of the MSE and NSE, models trained with these

functions resulted in the expected model behavior on daily data basis. The MSE and NSE put

more weight on larger errors than on smaller ones. This is reflected in an increased prediction

accuracy for flood peaks considering exclusively meteorological input data. However, changing

the objective function the model is trained with does generally not provide an increase in per-

formance as big as previously assumed.

In contrast, as soon as other discharge measurements are incorporated, changing the

objective function does not show any significant differences anymore. In an hourly scenario,

switching the objective functions even resulted in a minor performance drop and decreased

accuracy in all tested cases, respectively. All these findings suggest that switching the objective

function does not have a significant impact and that the MAE, which provides a generic and

even measurement of how well the LSTM model is performing, is proven to be a decent choice

for hydrological streamflow forecasting.

Modifying the LSTM-units and the lookback window size showed very diverse results,

which suggests that there is an irregular interaction between these two hyperparameters,

which is in turn dependent on the input features. For example, once additional discharge sta-

tions are part of the input, the hyperparameter tuning showed less effect; this was indicated by

either a slight decrease or a neglectable increase of performance. Both hyperparameters seem

to have a higher impact on model performance than changing the objective function. Regarding

99

models predicting on a daily timescale, reducing the window size to 60 days while simultane-

ously increasing the LSTM units to 256 lead to the overall best performance. This suggests that

hydrological catchment processes that are relevant for the rainfall-runoff relation within the

study area are no longer delayed than 60 days. In other words, the additional 60 precedent days

(the period of 60 to 120 days in the past compared to current prediction time t) might not be

influential on the discharge prediction.

In combination with an increased model capacity, i.e. increased dimensionality of each

hidden unit, the model can potentially learn to remember more distinctive attributes that are

hidden within the input features. Thus, more of these hidden characteristics can be kept in the

memory of the LSTM for the previous 60 days, which might provide additional information for

the model to predict the discharge with higher precision. In contrast, LSTM models that predict

on hourly timescale are configured by setting the window size to 120 hours to focus on pro-

cesses in the catchment with short response times. The choice of 120 hours as a lookback win-

dow seems reasonable for the catchment size and proved to be appropriate as soon as any

discharge observation was included in the input. Just increasing the model capacity while train-

ing an hourly model exclusively on meteorological data does not seem to be sufficient enough

for the model to learn the non-linear relations in the rainfall-runoff processes for this catch-

ment. Hence, there is abundant space for further progress in analyzing LSTM models exclusively

trained on meteorological data and how their prediction accuracy can be enhanced. This could

be done, on the one hand, from a hydrological perspective and, on the other hand, from a

model-architectural perspective, in which for instance the hyperparameter optimization is car-

ried out in a wider search space.

5.6. Multi-step Forecasting

For all tested models, the performance metric scores decrease over the course of prediction

steps, which is expected, as it gets more difficult for the model to accurately predict multiple

steps with increasing lead time. This is specifically true for the single-shot LSTM models, which

do not receive any data and thus no information of future meteorological conditions at all. Nev-

ertheless, their performance can well compete with the prediction accuracy of the conceptual

benchmark model at least for a lead time of up to 24 hours. The benchmark model starts off

with a slightly higher NSE score for short lead times. However, with further prediction steps,

the performance metric slowly converges to the scores of the single shot LSTM models and

eventually drops below them. This is to some extent surprising, since the LARSIM model incor-

porates “forecasted” data within the lead time window during the model prediction process.

Further, the result is even more unexpected considering that these “forecasted” observations,

100

in this case, are actually real recorded measurements. This suggests that the LSTM models is

able to remember not only characteristic patterns within the past discharge observations over

a certain period but also the sequence of these patterns. As a consequence, the LSTM model

seems capable of mapping the correlations in the input features to a single output step (dis-

charge value) roughly as well as to at least a multiple of up to 24 time steps. This is confirmed

by comparing the performance of the single step model with the averaged performance of the

multi-step model, as they both show reasonably good performance metric scores. Regarding

the averaged performance, the LARSIM model shows slightly better performance metric scores

for a lead time of 24 hours compared to the corresponding single shot LSTM model. This is also

reflected in the comparison of predicted hydrographs, in which the temporal dynamics, espe-

cially the timing of the flow peaks and their rising limps, seem to be more accurately captured

by the benchmark model.

In contrast, the introduced method takes the advantage of a customized prediction

loop, which partly circumvents the drawbacks of the single shot multi-step LSTM model by reg-

ularly updating the lookback window the predictions are based on. This procedure offers the

possibility to feed the model with forecasted meteorological forcing data for each future pre-

diction step. However, in this thesis, this feature is used to provide the LSTM model with true

measurements and the predicted discharge values of the past steps, which the LARSIM model

receives as well. Despite this affinity, there is one difference between the benchmark and the

customized loop model. The latter one is not able to update its internal parameters or to apply

any other kind of correction procedure during the prediction process. Nonetheless, due to the

aforementioned advantages, the customized loop model shows superior performance com-

pared to all other tested models. After all, these results have to be treated with care, since the

customized prediction loop actually utilizes a trained single step LSTM model but within a loop

to predict multiple steps ahead. However, to employ true forecasted meteorological data, it

would require a potential link to a weather forecasting model. Theoretically, the analysis fore-

casting models could be used to predict other meteorological or hydrological features in addi-

tion to streamflow. This has already been achieved by operational conceptual hydrological

models. There are architectural configurations, in which the LSTM model can be trained in an

autoregressive loop, but this requires the model to predict all used meteorological input fea-

tures simultaneously (in addition to discharge), before feeding the forecasted values back as

input for the next time step. Hence, multi-objective optimization of LSTM models is an open

branch of future research.

Apart from all the above mention limitations, there are another two substantial limita-

tions of the research conducted in this thesis. The first one is the fact that all presented LSTM

101

models were only tested on discharge events, which are (almost twice) below the annual peak

discharge (Q = 304 m³/s) and not very close to generally observed extreme events (highest peak

in test data: Q ≈ 170 m³/s; highest peak ever observed: Q = 720 m³/s). Hence, there is no evi-

dence of the generalization ability of the LSTM models in predicting extreme events of this

magnitude (e.g. HQ100). The main reason for this is that the available test period does not in-

clude such high extreme events. However, to compensate these limitation, further studies

could explore the LSTMs on new available data, which contain a particularly high number of

extreme events. Furthermore, more sophisticated data splitting methods could be applied for

creating training, validation and test sets, respectively.

The second main limitation is the missing estimation of predictive uncertainty, as al-

ready stated previously. However, the prediction uncertainty is important for assessing in how

far to trust the forecast produced by the models. Hence, another part of further research should

incorporate methods, such as the “relative error method”, “Discharge Intervals” or “Slope in-

terval methods” introduced in Leandro et al. (2019). These methods could be applied to quan-

tify the predictive uncertainty of discharge forecasts, by providing upper and lower uncertainty

bounds (Leandro et al. 2019). There are also alternative approaches, which can take model un-

certainties, inherent noise, and model misspecifications into account from a Bayesian perspec-

tive. For example, this could be achieved by using a Bayesian NN, which is a basic framework to

provide uncertainty estimations of DL models (Zhu and Laptev 2017).

6. Conclusion and Outlook

This thesis utilizes a state-of-the art deep learning method to test its potential applicability for

rainfall-runoff modeling and streamflow forecasting in the watershed of the river Regen located

in Germany. That deep learning method is called long short-term memory network and has the

powerful ability to extract information from a large and diverse dataset containing any possible

hydrological and meteorological variables. This thesis demonstrated that a developed data-

driven model has the capability to learn the complete “hydrological model” purely from the

available data. The data basis in this study did not consist of, as commonly used in other papers,

highly preprocessed meteorological forcing products, but raw measurement records of stations

located within the catchment. Further, this study also identified the most valuable input feature

combination among all available stations. What is more, a method is proposed to handle miss-

ing data gaps within the input features simultaneously enhancing the prediction accuracy of the

LSTM. The results indicate how well LSTM networks can predict cases they were not trained for

and principally not only in a single step manner but also in a multi-step scenario with lead times

102

of up to 24 hours. Moreover, to approach a real-world operational flood forecasting scenario,

a possible method is provided to theoretically consider forecasted meteorological data in the

input of a LSTM during the prediction period.

The research in this study was conducted in a continuously progressive way. It started

off with a preliminary assessment, which provided the foundation for the preprocessing steps

and helped to create a proper data basis the LSTM model could handle. Furthermore, this as-

sessment explored suitable methods of dealing with missing samples in data. A sensitivity anal-

ysis was carried out to investigate the influence of particular combinations of features in the

input data for the LSTM model. Further, the sensitivity analysis explored the effect of consider-

ing multiple other discharge gauges besides the discharge measurements at the target station

as part of the input. Moreover, the solitary impact of including observations at the target sta-

tion in the input data on the model prediction accuracy was investigated. In the next step, hy-

perparameters were adapted in a grid-search manner to find more appropriate model settings

from a hydrological perspective with respect to the problem domain. Additionally, the ability of

LSTMs to forecast multiple time steps ahead regarding different lead times was examined. Fi-

nally, the customized prediction loop was tested in order to explore the possibility to feed po-

tentially forecasted meteorological data to the LSTM during the forecasting procedure. The per-

formance of the different LSTM models was continuously compared to the conceptual and

physical-based LARSIM model throughout the thesis.

The preliminary analysis showed that for the underlying data basis in general, the stand-

ard scaling procedure in combination with applying missing values Method 2 are the most ap-

propriate settings regardless of the temporal resolution of the data. Further, it was demon-

strated that imputing missing precipitation samples by using appropriate techniques generally

improved the model performance. Despite the small number of samples, imputing these data

gaps with unphysical values proved to be a valid technique to deal with remaining missing sam-

ples and resulted in an enhanced prediction performance.

The sensitivity analysis demonstrated that the combination of input features out of a

mixture of various meteorological parameters has a significant impact on the model perfor-

mance. Investigation showed that the model trained on hourly data is more sensitive to the

presence of discharge measurements at the target station in the input data than the model

trained on daily basis. This result suggests – although this could not be proven within the scope

of this thesis – that the model is able to remember the sequence of characteristic patterns in

the data, especially in the hydrograph observed at the target station. Moreover, the results

revealed that precipitation is the most crucial meteorological parameter for accurate discharge

103

prediction, although concurrently not the stand-alone feature either. What is more, other me-

teorological parameters proved to have at least a minor impact on the performance of a rain-

fall-runoff LSTM model. With the appropriate combination of input features and suitable hy-

perparameter settings, the LSTM model could outperform a conceptual physic-based model,

which calibrated for area of investigation. On hourly basis, the generalization ability of the sin-

gle step LSTM model proved to replicate the discharge hydrograph almost perfectly on unseen

data. In contrast, results from the sensitivity analysis also revealed that within the framework

of this thesis none of the configurations of the LSTM model is able to reproduce the rainfall-

runoff processes in the catchment exclusively from meteorological input data. Overall, it can be

concluded that more data does not necessarily lead to a better prediction model, which is a

common misconception regarding DL models. It is rather the right combination of input fea-

tures and the correct type of data that leads to the most accurate predictions.

The hyperparameter tuning revealed that changing the objective function the model is

trained on does not have as much of an impact on model performance as changing the window

size and the number of LSTM-unit. Adapting these specific hyperparameters showed especially

an enhanced accuracy in capturing flow peaks and base flow periods. It was proved that adapt-

ing the window size and the model’s capacity, a quite significant increase in performance could

be achieved. It was found that this impact on performance is again dependent on the type and

amount of input features, supporting the conclusion that the configuration and model settings

of each LSTM model has to be accurately adapted regarding the desired prediction task and the

available data foundation.

The research on multi-step short-range streamflow forecasting demonstrated that

LSTM models can compete in terms of prediction accuracy with the LARSIM model regarding a

lead time of up to 24 hours. Moreover, it was proven that the LSTM models were able to reach

the performance of the benchmark model in an operational setting, in which the LSTM had no

access to any forecasted meteorological data for the prediction period, in contrast to the LAR-

SIM model. Furthermore, the investigation revealed that with increasing lead time, the predic-

tion accuracy of the LSTM models decreases in terms of peak-timing. The introduced method

of applying a customized prediction loop demonstrated one valid procedure of potentially in-

corporating forecasted meteorological data in the prediction process. By using a single step

model within this customized prediction loop, the multi-step ahead prediction showed a con-

stant high performance for all future prediction steps and outperformed every other model

tested in this thesis. The aforementioned outcomes highlight the flexibility of machine learning

models and demonstrate the ability of LSTM networks to learn abstract patterns of complex

104

input-to-output relationships. Besides the ideas mentioned in the discussion section, there still

remain a number of steps to be taken before these models can be truly operational.

A first step would be to investigate the performance of the presented LSTM model in

more detail, with respect to correlation errors between hydrologic signatures of observed and

predicted discharge. With more advanced performance metrices, a better interpretation, com-

parability and a stronger indicator of good prediction accuracy could be provided to compare

different LSTM models. In turn, this could help to optimize hyperparameter settings and to find

the most favorable input feature combinations for LSTMs with respect to the problem domain.

A second step would be to apply different techniques to obtain the whole spectrum of sources

for uncertainties within the LSTM model and the prediction process. For reliable flood forecast-

ing, it is important to understand where these sources are, how to accurately estimate uncer-

tainties, and most importantly how to reduce them. This is especially important when LSTM

models should be able to forecast extreme flood events with peak flows of a return period of

100 years or above. A third step would be to find a suitable way to link an appropriate weather

forecast model to a LSTM model. The former one could provide the necessary forecasted me-

teorological input data for the prediction period, whereas the latter one would conduct the

streamflow predictions. In conclusion, LSTM models could help to obtain a more general un-

derstanding of the rainfall–runoff processes and may play a key role in the design of environ-

mental forecasting systems in the near future.

105

106

Appendix

A. Tables

Table 12: Complete list of available measurement stations. "Parameters" refers to observed parameters at corresponding station. "Parameters_considered" refers to the parameters actually considered in
the input dataset. Some parameters had to be discarded due to a large amount of missing data.

Station
Stationsnum-

mer
Stationsken-

nung
X-Koordi-

nate
Y-Koordi-

nate
Höh

e
Koordinaten-

system
Parameters Parameters_considered

Aholfing 46 AHOL 4534250 5423180 330 31468 ['n'] ['n']

Hagelstadt 103 HAGE 4516000 5417680 365 31468 ['n'] ['n']

Altendorf 118 ALTE 4520820 5474280 391 31468 ['n'] ['n']

Beratzhausen 359 BERA 4485190 5440570 463 31468 ['n'] ['n']

Bogen-Pfelling 589 BOGE 4554760 5416630 345 31468 ['n'] ['n']

Kelheim 2550 KELH 4491410 5420780 350 31468 ['n'] ['n']

Lindberg-Buchenau 3012 LIND 4597170 5433560 740 31468 ['n'] ['n']

Metten 3271 METT 4567500 5413420 313 31468 ['n', 'rflu', 'tlu', 'zsos'] ['n']

Nabburg 3429 NABB 4512680 5480320 366 31468 ['n'] ['n']

Neukirchen bei Heiligen
Blut

3525 NEUH 4570020 5458380 460 31468 ['n'] ['n']

Nittenau-Harting 3617 NITT 4520450 5447660 430 31468 ['n'] ['n']

Oberviechtach 3739 OBEV 4531758 5479545 596 31468 ['n', 'rflu', 'tlu'] ['n', 'rflu', 'tlu']

Roding-Neubäu 4224 RODI 4530140 5456100 388 31468 ['n'] ['n']

Saldenburg-Entschenreuth 4354 SALE 4596705 5405909 456 31468 ['n', 'rflu', 'tlu', 'zsos'] []

Sankt Englmar 4387 SANK 4560410 5429840 810 31468 ['n'] ['n']

Schmidgaden 4493 SCHM 4505620 5474990 416 31468 ['n'] ['n']

Schmidmühlen 4494 SMID 4493900 5460340 453 31468 ['n'] ['n']

Schorndorf-Knöbling 4559 SCHK 4545140 5447650 399 31468 ['n', 'rflu', 'tlu'] ['n', 'tlu']

107

Schwandorf 4592 SCHO 4506440 5465649 356 31468 ['n', 'rflu', 'tlu', 'zsos'] []

Stallwang 4816 STAL 4546870 5435720 390 31468 ['n'] ['n']

Teisnach 5002 TEIS 4572814 5434399 400 31468 ['n'] ['n']

Teublitz 5013 TEUB 4506830 5453700 350 31468 ['n'] ['n']

Treffelstein-Witzelsmühle 5036 TIEF 4544106 5474255 470 31468 ['n'] ['n']

Weiding, Kreis Cham-Dal-
king

5401 WEID 4554330 5459700 425 31468 ['n'] ['n']

Wiesenfelden-Utzenzell 5548 WIES 4540360 5432900 680 31468 ['n'] ['n']

Osterhofen-Thundorf 6161 OSTH 4574600 5402720 310 31468 ['n'] ['n']

Kirchberg/Niederbayern -
Zell

6191 KIBE 4583960 5418950 705 31468 ['n'] ['n']

Lam-Lambach 6215 LAML 4577790 5453680 692 31468 ['n'] ['n']

Neunburg vorm Wald-Ei-
xendorf

6281 NENB 4532630 5469430 420 31468 ['n'] ['n']

Moos, Kr. Deggendorf-
Maxmühle

6296 MOOS 4570510 5404650 320 31468 ['n'] ['n']

Prackenbach-Neuhäusel 7350 PRNE 4560206 5441601 588 31468 ['n', 'rflu', 'tlu'] []

Regensburg WST 10776 REGE 4507283 5434477 366 31468 ['n', 'rflu', 'tlu', 'ttau', 'xglob', 'xludr',
'xwind', 'zsos']

['n', 'rflu', 'tlu', 'ttau', 'xludr',
'xwind', 'zsos']

Waldmünchen 10782 WALU 4549742 5472914 499 31468 ['n', 'rflu', 'tlu', 'ttau', 'xglob', 'xludr',
'xwind', 'zsos']

[]

Grosser Arber 10791 GROA 4582449 5442870 144
6

31468 ['n', 'rflu', 'tlu', 'ttau', 'xludr', 'xwind',
'zsos']

[]

Zwiesel 10796 ZWIE 4589909 5432976 612 31468 ['n', 'rflu', 'tlu', 'ttau', 'xludr', 'xwind',
'zsos']

['n']

Eging am See-Rohrbach-
holz

14301 EGIG 4593837 5399947 415 31468 ['n'] []

Regensburg-Uniklinik 107740 REUN 4507319 5427778 406 31468 ['n', 'rflu', 'tlu', 'xwind'] []

Nabburg 107780 NABU 4514502 5479693 385 31468 ['n', 'rflu', 'tlu', 'xwind'] []

Eschlkam 107890 ESCH 4566669 5463395 500 31468 ['n', 'rflu', 'tlu', 'xwind'] []

Lalling 107900 LALL 4583176 5413565 430 31468 ['n', 'rflu', 'tlu', 'xwind'] []

Klingenbrunn 108900 KLIN 4598912 5423092 790 31468 ['n', 'rflu', 'tlu', 'xwind'] []

108

Großer Falkenstein 108961 GROE 4593750 5439894 130
8

31468 ['n', 'tlu', 'xwind'] []

Uttenkofen 200003 UTTE 4562132 5408813 323 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob', 'xwind']

Köfering 200017 KOEF 4514285 5422075 350 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'tlu']

Sarching 200018 SARC 4517028 5430644 330 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob', 'xwind']

Kitzenried 200033 KITE 4530300 5463450 470 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob', 'xwind']

Steinach 200042 STEC 4544810 5426840 350 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob', 'xwind']

Wullnhof 200066 WULL 4543681 5472182 510 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob', 'xwind']

Sitzenhof 200107 SITZ 4504440 5465982 370 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xwind']

Eiersdorf 200119 EIER 4487698 5435171 537 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] []

Pösing 200120 POES 4540800 5455050 380 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] ['n', 'rflu', 'tlu', 'xglob']

Allmannsdorf 200127 ALMD 4559056 5443944 557 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] []

Eiserszell 200132 EISZ 4544195 5435272 617 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] []

Kirchberg 200135 KIRG 4587321 5418452 624 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] []

Eschlkam 200146 ESCL 4565700 5463845 444 31468 ['n', 'rflu', 'tlu', 'xglob', 'xwind'] []

109

Table 13: Pseudo Code of the customized prediction loop (left) and corresponding array dimensions (right)

1. Input: test_x Array: [#windows, window size,
#features]

2. Define parameters: update_step (u), prediction_steps(n) Scalar

3. Initialize: test_y_predict_multi Array:[]

4. For i ….. #windows[test_x] – n step: u do:

 Initialize: window_prediction_steps Array:[]

 Copy: test_x[i : i + n][:,:] → test_x_C Array:[n, window size ,features]

 For s ….. n do:

 Expand array dimension: test_x_C[s] Array: [window size, features] →
Array: [1, window size, features]

 Predict: y_s Array:[1, 1]

 Convert to scalar: y_s → y_s Scalar

 Append: y_s → window_prediction_steps Array:[1, …, s]

 If s < prediction_steps - 1:

 test_x_C[s + 1][-1,-1] → y_s

 Append: window_prediction_steps →
 test_y_predict_multi

5. Reshape: test_y_predict_multi Array: [(windows – n)/ u, n]

110

Table 14: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within one input feature set.

Loss Functions vs. Hourly Data
Input feature set 3 Input feature set 5

Training Validation Test Training Validation Test

MAE

Max Error 71.54691 62.99847 65.48376 134.43320 157.24356 168.27906

MAE 1.41036 2.78776 5.53163 5.77063 12.82795 9.56902

MSE 6.83703 23.18207 60.27196 96.67410 448.47428 294.30330

RMSE 2.61477 4.81478 7.76350 9.83230 21.17721 17.15527

MeAE 0.87801 1.86386 3.81733 3.25380 8.00427 5.49932

REV 0.20512 -0.65835 4.50727 -4.60044 24.86953 12.64088

NSE 0.99246 0.94787 0.85610 0.89341 -0.00845 0.29733

KGNP 0.98774 0.94254 0.71620 0.84249 0.48211 0.70729

MSE

Max Error 23.34827 69.41605 82.74979 63.10980 169.88589 147.66061

MAE 1.50714 2.93569 6.85119 6.59831 13.90105 11.18246

MSE 4.97889 26.65503 92.90125 84.43324 500.44116 326.86888

RMSE 2.23134 5.16285 9.63853 9.18876 22.37054 18.07952

MeAE 1.06070 1.92925 4.48065 4.88747 8.99265 6.74408

REV 0.15255 0.24336 5.66633 -0.44768 36.08189 20.90230

NSE 0.99451 0.94006 0.77819 0.90691 -0.12531 0.21958

KGNP 0.98676 0.92841 0.64515 0.80862 0.43561 0.65726

NSE

Max Error 22.83310 68.62089 82.40802 71.51025 169.32424 167.50821

MAE 1.48860 2.93261 6.64309 6.54957 14.27290 11.15339

MSE 4.87928 26.11210 87.99399 83.95735 528.54998 347.21338

RMSE 2.20891 5.11000 9.38051 9.16282 22.99021 18.63366

MeAE 1.05234 1.95192 4.41806 4.81946 9.05518 6.57384

REV 0.09439 0.16406 5.40550 -0.62398 36.97774 21.69642

NSE 0.99462 0.94128 0.78991 0.90744 -0.18851 0.17101

KGNP 0.98705 0.93150 0.65244 0.80945 0.42608 0.65888

111

Table 15:Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within the complete table.

 Input feature set 5

Lookback vs. LSTM-Units
Hourly Data

Units: 120 Units: 256

Training Validation Test Training Validation Test
W

in
d

o
w

 s
iz

e:
 1

2
0

Max Error 134.43320 157.24356 168.27906 67.85744 201.81418 77.28967

MAE 5.77063 12.82795 9.56902 4.07998 12.48574 9.78383

MSE 96.67410 448.47428 294.30330 48.57171 421.32800 201.22729

RMSE 9.83230 21.17721 17.15527 6.96934 20.52628 14.18546

MeAE 3.25380 8.00427 5.49932 2.44656 7.66227 6.36482

REV -4.60044 24.86953 12.64088 -1.81391 23.54498 7.34105

NSE 0.89341 -0.00845 0.29733 0.94645 0.05259 0.51956

KGNP 0.84249 0.48211 0.70729 0.89969 0.47015 0.66390

Table 16: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within the complete table.

 Input feature set 3

Lookback vs. LSTM-Units
Hourly Data

Units: 120 Units: 256

Training Validation Test Training Validation Test

W
in

d
o

w
 s

iz
e:

 1
2

0

Max Error 71.54691 62.99847 65.48376 29.58212 44.99391 52.68394

MAE 1.41036 2.78776 5.53163 1.11393 2.75309 4.72466

MSE 6.83703 23.18207 60.27196 3.35386 18.88645 46.48347

RMSE 2.61477 4.81478 7.76350 1.83136 4.34585 6.81788

MeAE 0.87801 1.86386 3.81733 0.72577 1.86360 3.35900

REV 0.20512 -0.65835 4.50727 0.24226 -2.22571 -5.35895

NSE 0.99246 0.94787 0.85610 0.99630 0.95753 0.88902

KGNP 0.98774 0.94254 0.71620 0.99008 0.93383 0.86405

Table 17: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within the complete table.

 Input feature set 1

Lookback vs. LSTM-Units
Hourly Data

Units: 120 Units: 256

Training Validation Test Training Validation Test

W
in

d
o

w
 s

iz
e:

 1
2

0

Max Error 58.49919 57.78577 31.88927 49.63545 58.03492 36.29649

MAE 1.11405 1.41415 1.29055 0.91396 1.22933 1.16665

MSE 4.39644 7.72361 5.00020 2.66143 5.97628 4.72741

RMSE 2.09677 2.77914 2.23611 1.63139 2.44464 2.17426

MeAE 0.60758 0.79544 0.75433 0.52032 0.67076 0.68197

REV -0.24937 1.23141 -0.10534 -0.16919 0.82414 -0.01669

NSE 0.99515 0.98263 0.98806 0.99707 0.98656 0.98871

KGNP 0.99328 0.97993 0.98836 0.99451 0.98471 0.99027

112

Table 18: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within one input feature set.

Loss functions vs. Daily Data
Input feature set 3 Input feature set 5

Training Validation Test Training Validation Test

MAE

Max Error 166.48567 61.24812 54.73794 213.86329 142.73939 121.84778

MAE 3.01417 3.62553 4.95731 4.87026 6.34230 6.47695

MSE 54.83620 41.50689 60.40066 147.32681 120.47554 176.35427

RMSE 7.40515 6.44258 7.77179 12.13783 10.97613 13.27984

MeAE 1.31925 2.34818 3.49870 1.93344 4.27259 3.26866

REV -2.45806 -1.43021 -0.34832 -5.05781 8.82931 -5.59361

NSE 0.93414 0.90690 0.85968 0.82306 0.72977 0.59030

KGNP 0.96322 0.93654 0.82007 0.92622 0.87023 0.83190

MSE

Max Error 83.51384 63.52064 57.31191 119.86014 132.78917 96.06190

MAE 3.41231 4.42887 4.74316 5.60231 7.51185 7.04087

MSE 32.45247 47.80842 57.60874 87.44698 137.26683 134.96428

RMSE 5.69671 6.91436 7.59004 9.35131 11.71609 11.61741

MeAE 2.05856 3.26372 3.05917 3.40603 5.26221 4.85161

REV 0.57259 3.55432 -3.21988 -0.59915 13.12392 6.80926

NSE 0.96102 0.89277 0.86616 0.89497 0.69211 0.68645

KGNP 0.95683 0.89571 0.84760 0.89621 0.80277 0.82030

NSE

Max Error 168.73225 54.78302 58.70370 212.31050 141.30550 111.96499

MAE 3.21596 3.86554 4.70676 5.56273 7.42264 6.52151

MSE 50.33928 42.36220 62.94731 149.42563 142.79438 149.90292

RMSE 7.09502 6.50863 7.93393 12.22398 11.94966 12.24348

MeAE 1.80856 2.60728 2.89322 3.03413 5.30825 4.26812

REV -0.97073 1.79079 -4.27555 -3.29526 11.91166 0.16780

NSE 0.93954 0.90498 0.85376 0.82053 0.67971 0.65175

KGNP 0.96359 0.92641 0.82220 0.91342 0.82149 0.83727

113

Table 19: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within the complete table.

Lookback vs. LSTM-Units
Daily Data:

Input feature set 5

Units: 120 Units: 256 Units: 512

Training Validation Test Training Validation Test Training Validation Test
W

in
d

o
w

 s
iz

e:
 3

0
Max Error 242.508 127.867 84.995 189.468 100.770 65.482 116.082 82.751 62.856

MAE 6.435 8.307 6.096 4.755 8.760 6.884 3.438 9.496 7.350

MSE 199.789 138.699 124.386 101.317 141.772 142.319 46.633 175.133 127.749

RMSE 14.135 11.777 11.153 10.066 11.907 11.930 6.829 13.234 11.303

MeAE 2.890 6.548 3.555 2.324 6.817 3.897 1.764 6.891 4.736

REV -5.845 17.239 4.354 -3.464 20.678 9.418 -1.322 23.838 14.316

NSE 0.772 0.677 0.703 0.884 0.670 0.660 0.947 0.592 0.695

KGNP 0.882 0.741 0.883 0.925 0.704 0.849 0.959 0.664 0.822

W
in

d
o

w
 s

iz
e:

 6
0

Max Error 203.354 148.287 103.775 140.766 132.144 85.256 86.151 119.624 83.141

MAE 5.002 7.372 5.641 3.712 6.830 5.696 2.902 6.846 5.718

MSE 143.300 140.544 113.625 67.662 114.716 91.093 36.626 104.280 91.558

RMSE 11.971 11.855 10.660 8.226 10.711 9.544 6.052 10.212 9.569

MeAE 2.084 5.379 3.399 1.648 5.211 3.639 1.296 5.592 3.544

REV -4.242 13.052 -0.333 -3.363 13.015 0.545 -1.939 12.221 0.634

NSE 0.830 0.681 0.715 0.920 0.740 0.771 0.957 0.764 0.770

KGNP 0.926 0.820 0.867 0.948 0.813 0.861 0.966 0.809 0.844

W
in

d
o

w
 s

iz
e:

 1
20

Max Error 213.863 142.739 121.848 143.496 125.343 121.102 85.628 115.657 100.658

MAE 4.870 6.342 6.477 3.703 5.644 6.775 2.787 6.159 6.050

MSE 147.327 120.476 176.354 70.714 89.737 182.955 34.250 92.925 122.328

RMSE 12.138 10.976 13.280 8.409 9.473 13.526 5.852 9.640 11.060

MeAE 1.933 4.273 3.269 1.539 4.159 3.546 1.172 4.551 3.647

REV -5.058 8.829 -5.594 -4.594 10.120 -8.723 -1.959 11.496 0.566

NSE 0.823 0.730 0.590 0.915 0.799 0.575 0.959 0.792 0.716

KGNP 0.926 0.870 0.832 0.940 0.871 0.834 0.966 0.847 0.856

114

Table 20: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores highlighted in red indicate best score per metric within the complete table

Lookback vs. LSTM-Units
Daily Data:

Input feature set 3

Units: 120 Units: 256 Units: 512

Training Validation Test Training Validation Test Training Validation Test

W
in

d
o

w
 s

iz
e:

 3
0

Max Error 168.240 61.730 69.567 91.432 32.844 57.622 43.477 33.013 58.234

MAE 3.168 3.543 5.580 2.350 3.015 5.151 1.977 3.145 5.105

MSE 63.706 38.986 75.123 23.449 22.224 68.934 15.194 25.932 90.246

RMSE 7.982 6.244 8.667 4.842 4.714 8.303 3.898 5.092 9.500

MeAE 1.404 2.267 4.504 1.152 2.097 3.721 0.965 2.120 2.428

REV -2.601 -1.723 1.319 -0.917 -1.088 -3.595 -0.302 -2.046 -8.556

NSE 0.927 0.909 0.820 0.973 0.948 0.835 0.983 0.940 0.784

KGNP 0.962 0.932 0.803 0.978 0.950 0.823 0.984 0.935 0.805

W
in

d
o

w
 s

iz
e:

 6
0

Max Error 162.369 57.916 54.260 96.652 36.952 51.109 45.466 43.054 47.967

MAE 3.009 3.696 5.083 2.326 3.093 5.133 1.901 3.196 5.140

MSE 53.422 43.036 61.435 23.598 24.211 65.598 13.982 27.544 81.606

RMSE 7.309 6.560 7.838 4.858 4.920 8.099 3.739 5.248 9.034

MeAE 1.357 2.331 3.763 1.104 2.186 3.331 0.891 2.185 2.881

REV -1.877 -1.414 -0.400 -0.993 -1.811 -6.614 -0.564 -3.007 -8.635

NSE 0.937 0.902 0.846 0.972 0.945 0.835 0.983 0.938 0.795

KGNP 0.967 0.927 0.819 0.978 0.946 0.813 0.984 0.934 0.803

W
in

d
o

w
 s

iz
e:

 1
20

Max Error 166.486 61.248 54.738 91.642 39.292 52.210 45.245 43.977 45.368

MAE 3.014 3.626 4.957 2.345 3.021 5.123 1.937 3.196 5.121

MSE 54.836 41.507 60.401 23.331 24.295 67.037 14.056 29.915 82.567

RMSE 7.405 6.443 7.772 4.830 4.929 8.188 3.749 5.469 9.087

MeAE 1.319 2.348 3.499 1.114 2.104 2.881 0.928 2.019 2.658

REV -2.458 -1.430 -0.348 -1.272 -1.874 -9.289 -0.526 -3.036 -10.832

NSE 0.934 0.907 0.860 0.972 0.946 0.844 0.983 0.933 0.808

KGNP 0.963 0.937 0.820 0.976 0.952 0.803 0.983 0.932 0.797

115

Table 21: Resulting performance metric scores calculated for Training, Validation and Test Period, respectively.
Scores are calculated by averaging over the respective lead time. 12 Steps, 24 Steps and 36 Steps refer to multi-step
one shot LSTM models. The customized prediction loop was only applied to the Test period.

Average
Scores multi-
step predic-

tions

12 Steps 24 Steps

Training Validation Test Training Validation Test

Max Error 128.384 65.961 45.137 146.374 82.211 69.147

MAE 1.385 1.986 1.808 1.724 2.481 2.375

MSE 13.833 18.854 11.925 22.656 33.547 25.696

RMSE 3.710 4.293 3.409 4.703 5.675 4.884

MeAE 0.729 0.993 0.981 0.848 1.163 1.175

REV -0.610 1.575 0.178 -1.076 1.610 0.225

NSE 0.985 0.958 0.971 0.975 0.925 0.938

KGNP 0.989 0.974 0.983 0.983 0.969 0.975

 LARSIM Simulation (24 Steps) 36 Steps

 Training Validation Test Training Validation Test

Max Error 103.620 80.570 44.117 160.839 92.888 87.292

MAE 2.137 1.800 1.879 2.318 3.057 3.038

MSE 28.395 18.951 21.067 47.177 61.896 51.792

RMSE 5.329 4.353 4.236 6.449 7.483 6.712

MeAE 0.786 0.773 0.934 0.991 1.329 1.353

REV 0.325 0.367 0.605 -1.991 0.529 -0.752

NSE 0.969 0.957 0.948 0.948 0.861 0.874

KGNP 0.984 0.983 0.977 0.970 0.961 0.962

 12 Steps (customized prediction loop) 24 Steps (customized prediction loop)

 Training Validation Test Training Validation Test

Max Error not calculated not calculated 27.454 not calculated not calculated 38.262

MAE not calculated not calculated 1.216 not calculated not calculated 1.214

MSE not calculated not calculated 5.318 not calculated not calculated 5.300

RMSE not calculated not calculated 2.299 not calculated not calculated 2.302

MeAE not calculated not calculated 0.704 not calculated not calculated 0.701

REV not calculated not calculated -0.027 not calculated not calculated -0.027

NSE not calculated not calculated 0.987 not calculated not calculated 0.987

KGNP not calculated not calculated 0.989 not calculated not calculated 0.990

116

A. Figures

Figure 38: Training history of the trained LSTM model based on one precipitation station as input feature.

117

Figure 39: Rep-Holdout Method visualized on the discharge hydrograph at Marienthal station (left) and corresponding Boxplots (right) based on the underlying data distribution (log-transformed) of the
three different subsets. Here, as example, 6 model iterations are shown, each having a slightly different split point between Training and Validation set.

118

Figure 40: K-fold cross validation visualized on the discharge hydrograph at Marienthal station (left) and corresponding Boxplots (right) based on the underlying data distribution (log-transformed) of the
three different subsets. Here, as example, 3 model iterations are shown, where each model is trained on different training subsections within the measurement series.

119

Figure 41: Progression of the MAE/ RSME score on Test Data over future time steps for all tested models (indicated by
different line styles).

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40

M
A

E/
 R

M
SE

PREDICTION STEPS [H]

P RO GRES S IO N O F T HE MA E/RMS E S C O RE O N T ES T DA T A

RMSE: 12-Step LSTM-Model (one shot)

RMSE: 24-Step LSTM-Model (one shot)

RMSE: 36-Step LSTM-Model (one shot)

MAE: 12-Step LSTM-Model (one shot)

MAE: 24-Step LSTM-Mode (one shot)

MAE: 36-Step LSTM-Model (one shot)

MAE: Larsim Simulation (update step 24)

RMSE: Larsim Simulation (update step 24)

MAE: Single Step LSTM-Model predicting 24 steps ahead with forecasted values with
update step 1h (costumized prediction loop)
RMSE: Single Step LSTM-Model predicting 24 steps ahead with forecasted values with
update step 1h (costumized prediction loop)

120

Publication bibliography

Caldera, H.P.G.M.; Piyathisse, V.R.P.C.; Nandalal, K.D.W. (2016): A Comparison of
Methods of Estimating Missing Daily Rainfall Data. In ENGINEER - Vol. XLIX (04),
pp. 1–8.

Campozano, L.; Sanchez, E.; Aviles, A.; Samaniego, E. (2014): Evaluation of infilling
methods for time series of daily precipitation and temperature: The case of the Ecua-

dorian Andes. In MASKANA (Vol. 5, No. 1).

Cerqueira, Vitor; Torgo, Luis; Mozeti, Igor (2019): Evaluating time series forecasting
models. An empirical study on performance estimation methods. Available online at
https://arxiv.org/pdf/1905.11744.pdf.

Che, Zhengping; Purushotham, Sanjay; Cho, Kyunghyun; Sontag, David; Liu, Yan
(2018): Recurrent Neural Networks for Multivariate Time Series with Missing Values.
In Scientific reports 8 (1), p. 6085. DOI: 10.1038/s41598-018-24271-9.

Chollet, François (2018): Deep learning with Python. Shelter Island, NY: Manning (Sa-
fari Tech Books Online). Available online at http://proquest.safaribook-
sonline.com/9781617294433.

Doycheva, Kristina; Horn, Gordon; Koch, Christian; Schumann, Andreas; König,
Markus (2017): Assessment and weighting of meteorological ensemble forecast mem-
bers based on supervised machine learning with application to runoff simulations and
flood warning. In Advanced Engineering Informatics 33, pp. 427–439. DOI:
10.1016/j.aei.2016.11.001.

Fotovatikhah, Farnaz; Herrera, Manuel; Shamshirband, Shahaboddin; Chau, Kwok-
wing; Faizollahzadeh Ardabili, Sina; Piran, Md. Jalil (2018): Survey of computational
intelligence as basis to big flood management: challenges, research directions and fu-
ture work. In Engineering Applications of Computational Fluid Mechanics 12 (1),
pp. 411–437. DOI: 10.1080/19942060.2018.1448896.

Freeze, R. Allan; Harlan, R. L. (1969): Blueprint for a physical-based digitally-simu-
lated hydrologic response model. In Journal of Hydrology (9), pp. 237–258.

Gal, Yarin; Ghahramani, Zoubin (2015): Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. Available online at

http://arxiv.org/pdf/1506.02142v6.

Gauch, Martin; Kratzert, Frederik; Klotz, Daniel; Nearing, Grey; Lin, Jimmy; Hochreiter,
Sepp (2020): Rainfall-Runoff Prediction at Multiple Timescales with a Single Long
Short-Term Memory Network. Available online at http://arxiv.org/pdf/2010.07921v1.

Géron, Aurélien (2019): Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow. Concepts, Tools, and Techniues to Build Intelligent Systems. Second
Edition: O’Reilly Media.

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016): Deep Learning. Available

online at www.deeplearningbook.org.

Gupta, Hoshin V.; Kling, Harald; Yilmaz, Koray K.; Martinez, Guillermo F. (2009): De-
composition of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling. In Journal of Hydrology 377 (1-2), pp. 80–91. DOI:

10.1016/j.jhydrol.2009.08.003.

Hochreiter, Sepp; Schmidhuber, Jürgen (1997): Long Short-Term Memory.

121

Hu, Caihong; Wu, Qiang; Li, Hui; Jian, Shengqi; Li, Nan; Lou, Zhengzheng (2018):
Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Run-
off Simulation. In Water 10 (11), p. 1543. DOI: 10.3390/w10111543.

Jabbari, Aida; Bae, Deg-Hyo (2018): Application of Artificial Neural Networks for Accu-
racy Enhancements of Real-Time Flood Forecasting in the Imjin Basin. In Water 10
(11). DOI: 10.3390/w10111626.

Jason Brownlee (2018): Deep Learning for Time Series Forecasting. - Predict the Fu-

ture with MLPs, CNNs and LSTMs in Python. Edition: v1.4.

Karpatne, Anuj; Watkins, William; Read, Jordan; Kumar, Vipin (2018): Physics-guided
Neural Networks (PGNN): An Application in Lake Temperature Modeling. Available
online at http://arxiv.org/pdf/1710.11431v2.

Knoben, Wouter J. M.; Freer, Jim E.; Woods, Ross A. (2019): Technical note: Inherent
benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. In
Hydrol. Earth Syst. Sci. 23 (10), pp. 4323–4331. DOI: 10.5194/hess-23-4323-2019.

Kratzert, Frederik; Herrnegger, Mathew; Klotz, Daniel; Hochreiter, Sepp; Klambauer,
Günter (2019a): NeuralHydrology - Interpreting LSTMs in Hydrology. In 0302-9743
11700 (7), pp. 347–362. DOI: 10.1007/978-3-030-28954-6_19.

Kratzert, Frederik; Klotz, Daniel; Brenner, Claire; Schulz, Karsten; Herrnegger,
Mathew (2018): Rainfall–runoff modelling using Long Short-Term Memory (LSTM) net-
works. In Hydrol. Earth Syst. Sci. 22 (11), pp. 6005–6022. DOI: 10.5194/hess-22-
6005-2018.

Kratzert, Frederik; Klotz, Daniel; Herrnegger, Mathew; Sampson, Alden K.; Hochreiter,
Sepp; Nearing, Grey S. (2019b): Toward Improved Predictions in Ungauged Basins:
Exploiting the Power of Machine Learning. In Water Resour. Res. 55 (12), pp. 11344–
11354. DOI: 10.1029/2019WR026065.

Kratzert, Frederik; Klotz, Daniel; Hochreiter, Sepp; Nearing, Grey S. (2020): A note on
leveraging synergy in multiple meteorological datasets with deep learning for rainfall-

runoff modeling. In Hydrol. Earth Syst. Sci. DOI: 10.5194/hess-2020-221.

Kratzert, Frederik; Klotz, Daniel; Shalev, Guy; Klambauer, Günter; Hochreiter, Sepp;
Nearing, Grey (2019c): Benchmarking a Catchment-Aware Long Short-Term Memory
Network (LSTM) for Large-Scale Hydrological Modeling. In Hydrol. Earth Syst. Sci.

DOI: 10.5194/hess-2019-368.

La Fuente, Alberto de; Meruane, Viviana; Meruane, Carolina (2019): Hydrological
Early Warning System Based on a Deep Learning Runoff Model Coupled with a Mete-
orological Forecast. In Water 11 (9), p. 1808. DOI: 10.3390/w11091808.

Leandro, J.; Gander, A.; Beg, M.N.A.; Bhola, P.; Konnerth, I.; Willems, W. et al.
(2019): Forecasting upper and lower uncertainty bands of river flood discharges with
high predictive skill. In Journal of Hydrology 576, pp. 749–763. DOI: 10.1016/j.jhy-
drol.2019.06.052.

Leibundgut, Christian; Demuth, Siegfried; Lange, Jens (Eds.) (2006): The Water Bal-
ance Model Larsim. - Design, Content and Applications. Universität Freiburg: Institut
für Hydrologie (Freiburger Schriten zur Hydrologie, Band 22).

Mosavi, Amir; Ozturk, Pinar; Chau, Kwok-wing (2018): Flood Prediction Using Machine
Learning Models: Literature Review. In Water 10 (11), p. 1536. DOI:
10.3390/w10111536.

Ogunmolu, Olalekan; Gu, Xuejun; Jiang, Steve; Gans, Nicholas (2016): Nonlinear
Systems Identification Using Deep Dynamic Neural Networks. Available online at
http://arxiv.org/pdf/1610.01439v1.

122

Pool, Sandra; Vis, Marc; Seibert, Jan (2018): Evaluating model performance: towards
a non-parametric variant of the Kling-Gupta efficiency. In Hydrological Sciences Jour-
nal 63 (13-14), pp. 1941–1953. DOI: 10.1080/02626667.2018.1552002.

Reichstein, Markus; Camps-Valls, Gustau; Stevens, Bjorn; Jung, Martin; Denzler, Joa-
chim; Carvalhais, Nuno; Prabhat (2019): Deep learning and process understanding for
data-driven Earth system science. In Nature 566 (7743), pp. 195–204. DOI:
10.1038/s41586-019-0912-1.

Seo, Youngmin; Kim, Sungwon; Singh, Vijay (2018): Machine Learning Models Cou-
pled with Variational Mode Decomposition: A New Approach for Modeling Daily Rain-

fall-Runoff. In Atmosphere 9 (7), p. 251. DOI: 10.3390/atmos9070251.

Shen, Chaopeng (2018): A Transdisciplinary Review of Deep Learning Research and
Its Relevance for Water Resources Scientists. In Water Resour. Res. 54 (11),
pp. 8558–8593. DOI: 10.1029/2018WR022643.

Sundararajan, Mukund; Taly, Ankur; Yan, Qiqi (2017): Axiomatic Attribution for Deep
Networks. Available online at http://arxiv.org/pdf/1703.01365v2.

Tian, Ye; Xu, Yue-Ping; Yang, Zongliang; Wang, Guoqing; Zhu, Qian (2018): Integra-
tion of a Parsimonious Hydrological Model with Recurrent Neural Networks for Im-

proved Streamflow Forecasting. In Water 10 (11), p. 1655. DOI: 10.3390/w10111655.

Unnikrishnan, Vyshakh (2019): Implementation of a deep learning based model for
rainfall-runoff modelling. Master's Thesis. Technische Universität München, München.

Viglione, Alberto; Merz, Ralf; Salinas, José Luis; Blöschl, Günter (2013): Flood fre-
quency hydrology: 3. A Bayesian analysis. In Water Resour. Res. 49 (2), pp. 675–692.
DOI: 10.1029/2011WR010782.

Wang, Wen (2006): Stochasticity, nonlinearity and forecasting of streamflow pro-
cesses. Amsterdam, Fairfax VA: IOS Press.

Zhu, Lingxue; Laptev, Nikolay (2017): Deep and Confident Prediction for Time Series
at Uber, pp. 103–110. DOI: 10.1109/ICDMW.2017.19.

