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Abstract

In this work, we consider direction-of-arrival estimation as well as model order
selection for systems with subarray sampling. These systems operate with fewer
radio frequency chains than antenna elements by utilizing a switching network that
sequentially connects different subarrays to the radio frequency chains. Due to this
sequential processing, the considered systems represent a special class of time-varying
arrays, which allows for a cost-efficient design of direction finders.

In this context, we discuss improvements to existing algorithms and present
new estimators that are based on machine learning techniques. In particular, for
the direction-of-arrival estimation, we revisit classical estimators, whose objective
function is derived from the stochastic model, discuss sparse recovery techniques for
this problem, and present solution strategies that rely on neural networks. Thereby, the
machine learning approaches follow three different rationales: end-to-end regression,
classification, and full covariance matrix reconstruction. For the model order selection
problem, we focus on an extension of the well known information criteria and neural
network-based approaches.

By means of simulations, we show that the new machine learning based techniques
are able to significantly outperform existing solutions in terms of accuracy and
computational complexity. Especially, in the critical regions of low signal-to-noise-
ratio, small number of snapshots and as many sources as radio frequency chains,
existing methods cannot compete with the neural network-based estimators.
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Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit der Winkel- und Modellordnungsschätzung
bei untergruppenabgetasteten Systemen. Diese Systeme arbeiten mit weniger Hochfre-
quenzketten als Antennen indem ein Schaltnetzwerk verwendet wird, das nacheinander
verschiedene Untergruppen mit den Hochfrequenzketten verbindet. Durch diese
sequentielle Verarbeitung stellen die betrachteten Systeme eine spezielle Form von
zeitveränderlichen Antennenarrays dar, die einen kostengünstigen Entwurf von Peilern
ermöglicht.

In diesem Zusammenhang diskutieren wir Verbesserungen von bestehenden Algo-
rithmen und präsentieren neue Schätzer, die auf maschinellem Lernen basieren. Im
Einzelnen betrachten wir klassische Schätzer, deren Zielfunktion aus dem stochastis-
chen Modell abgeleitet wird, diskutieren Sparse Recovery Methoden und präsentieren
Lösungsstrategien, die auf neuronalen Netzen aufbauen. Dabei folgen die verwendeten
neuronalen Netze drei verschiedenen Grundgedanken: der Ende-zu-Ende Regression,
der Klassifikation und der Rekonstruktion einer Kovarianzmatrix des vollabgetasteten
Systems. Zur Modellordnungsschätzung betrachten wir eine Erweiterung der bekan-
nten Informationskriterien und Verfahren basierend auf neuronalen Netzen.

Mit der Hilfe von Simulationen zeigen wir, dass die neuen Techniken basierend auf
maschinellem Lernen bestehende Lösungen in ihrer Genauigkeit übertreffen und eine
geringere Komplexität aufweisen. Besonders in den kritischen Regionen bei niedrigem
Signal-zu-Rausch-Verhältnis, wenigen Beobachtungen und gleich vielen Quellen
wie Hochfrequenzketten können bestehende Methoden nicht mit den Resultaten der
neuronalen Netze mithalten.

vii





Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 System Model for Subarray Sampling 7
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Cramér-Rao-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Classical Estimation Methods 17
3.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 17
3.2 Generalized Least Squares Estimation . . . . . . . . . . . . . . . . . 27

4 Sparse Recovery Methods 31
4.1 DoA Estimation as a Sparse Recovery Problem . . . . . . . . . . . . 31
4.2 Sparse Recovery Algorithms . . . . . . . . . . . . . . . . . . . . . 33

5 Machine Learning-Based Estimators 39
5.1 Data, Preprocessing and Architecture . . . . . . . . . . . . . . . . . 40
5.2 End-to-End Regression . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 End-to-End Classification . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Covariance Matrix Recovery . . . . . . . . . . . . . . . . . . . . . 48

6 Hybrid DoA Estimation 53

7 Simulation Results – DoA Estimation 55
7.1 Simulation Setting and Neural Network Parameters . . . . . . . . . 55
7.2 Fewer Sources than RF Chains . . . . . . . . . . . . . . . . . . . . . 57
7.3 Equal Number of Sources and RF Chains . . . . . . . . . . . . . . 63

ix



Contents

8 Model Order Selection 73
8.1 Problem Formulation and MAP Estimator . . . . . . . . . . . . . . . 74
8.2 Information Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Machine Learning Approach . . . . . . . . . . . . . . . . . . . . . 76

9 Simulation Results – Model Order Selection 79
9.1 Simulation Setting and Neural Network Parameters . . . . . . . . . 79
9.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Conclusion and Outlook 87

A More Simulation Results for DoA Estimation 89
A.1 Classification Based Estimators . . . . . . . . . . . . . . . . . . . . 89
A.2 ReconNet and GramNet Results . . . . . . . . . . . . . . . . . . . . 91

B Outlier Susceptibility of OMP-Based Estimators 97

Bibliography 101

x



Acronyms

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

CDF Cumulative Density Function
COMET Covariance Matching Estimation Technique
CRB Cramér-Rao Bound
CS Compressed Sensing

DML Deterministic Maximum Likelihood
DoA Direction-of-Arrival

GLS Generalized Least Squares

LMI Linear Matrix Inequality

MAP Maximum A Posteriori
MCE Mean Cyclic Error
MDL Minimum Description Length
ML Maximum Likelihood
MMV Multi Measurement Vector
MSE Mean Squared Error
MSPE Mean Squared Periodic Error
MUSIC Multiple Signal Classification
MVDR Minimum Variance Distortionless Response

NN Neural Network

OMP Orthogonal Matching Pursuit

xi



Acronyms

PDF Probability Density Function

ReLU Rectified Linear Unit
RF Radio Frequency
RMSE Root Mean Squared Error
RMSPE Root Mean Squared Periodic Error

SDP Semidefinite Programming
SML Stochastic Maximum Likelihood
SNR Signal-to-Noise-Ratio
SOCP Second Order Cone Program
SPICE Sparse Iterative Covariance-based Estimation

UCA Uniform Circular Array
ULA Uniform Linear Array

xii



Introduction 1
Direction-of-Arrival (DoA) estimation describes the process of estimating the directions
from which electromagnetic waves are impinging onto an antenna array. This task is a
crucial component for the localization of electromagnetic sources and reflectors, which
is relevant in military and civil applications such as autonomous driving, aviation,
astronomy, and mobile communications.

Traditionally, in these areas, suitable stochastic models for the received signals at
the individual antenna elements are available. Derived from these models, a plethora
of potent algorithms for DoA estimation have been proposed in the past (see, e.g.,
[1, 2]). These DoA estimation strategies encompass beamformer, super resolution and
maximum likelihood techniques. Yet, there are still some applications, where existing
solutions do not provide a satisfying performance.

In this work, we focus on systems that employ a subarray sampling strategy. The
idea is to sequentially sample subarrays, instead of sampling all antenna elements
simultaneously, to reduce the amount of required Radio Frequency (RF) chains. Since
manufacturing high grade RF chains makes up a large amount of the costs of an antenna
array, reducing the number of RF chains is a sound strategy for saving. Naturally,
this cost reduction is not for free. Due to the lower number of RF chains, we cannot
leverage the full array gain in a single time step, but have to switch between different
subarray constellations. This does not only require multiple time steps, but also
brings new challenges for the signal processing. In fact, subarray sampling is one of
these applications for which classical methods fail to provide fully satisfying results,
especially for more sources than RF chains [3].

Subarray sampling can be seen as a special case of the broader concept of time-
varying arrays. DoA estimation methods for time-varying arrays can be categorized
into two groups, which depend on the ratio of transmitting sources to simultaneously
sampled antenna elements. The case of fewer sources than sampled antennas per time
step has been first studied in [4]. In [5], the same authors have extended their analysis
of the single source case to multiple sources. Therein, they have proposed to apply
eigenstructure-based methods such as array interpolation and focusing matrices, a
technique that is well known from wideband array processing [6, 7], to time-varying
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Chapter 1. Introduction

arrays. In [8, 9], a more direct approach to employing Multiple Signal Classification
(MUSIC) andMinimumVariance Distortionless Response (MVDR) estimators in these
systems has been studied. The more interesting—but also more demanding—scenario
is the case with an equal amount of sources or more sources than simultaneously
sampled antennas. Fundamental work for this case has been presented in [10]. There,
the idea is to fit the subarray covariance matrices, which are parameterized by the
DoAs, to the observed sample covariance matrices with the help of a Generalized Least
Squares (GLS) criterion. Another approach that heavily relies on a special subarray
sampling scheme has been proposed in [11]. There, an estimate of the covariance
matrix of the fully sampled antenna array is first estimated, and then, a MUSIC
estimator [12] is applied to the reconstructed full covariance matrix to obtain the DoA
estimates. More recently, the non-coherent processing of partly calibrated arrays has
been investigated in [13]. The estimation approach followed in [13] uses a sparse
signal representation of the system model and is, due to the non-coherent processing
approach, applicable to subarray sampling. Finally, in [3], we have proposed a machine
learning-based approach to this DoA estimation problem that is able to outperform the
previously discussed estimators, especially for low Signal-to-Noise-Ratio (SNR) and a
small number of observations.

An accurate knowledge on the number of simultaneously transmitting sources
plays a crucial role for the performance of the DoA estimation techniques summarized
above. In general, this number is unknown a priori and has to be inferred from the
observations. The estimation of this quantity is called model order selection, as the
number of active sources defines the order of the underlying stochastic model. For
systems with subarray sampling, this model order estimation problem has been first
investigated in [14]. Later, in [3], we improved this method by deriving so called
information criteria that utilize better performing DoA estimators and we extended our
machine learning technique for model order selection [15] to the subarray sampling
case.

1.1 Overview

In this work, we discuss the DoA estimation problem as well as model order selection
for systems with subarray sampling. To that end, we consider classical methods based
on the underlying stochastic models and present new machine learning-based solutions.
The remainder of this thesis is structured as follows.

In Chapter 2, we describe the received signal model for the considered systems,
which forms the basis for the subsequent discussions. Furthermore, we consider the
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1.1 Overview

parameter identifiability of the respective stochastic models, and in this context, we
present and proof new sufficient and necessary conditions. We conclude this chapter
with a discussion of the Cramér-Rao Bound (CRB), which gives a performance bound
for any unbiased DoA estimator that can be derived directly from the distribution of
the received signals.

Then, we discuss the first class of DoA estimators, which we refer to by “classical”,
in Chapter 3. In the first part of this chapter, we focus on well known Maximum
Likelihood (ML) estimators. Apart from giving the respective optimization problems,
we also talk about how these estimators can be evaluated in practice and we derive
a Mean Squared Error (MSE) approximation for grid-based ML estimators. In the
second part, we present the GLS estimator that has been proposed in [10] and show
how the original optimization problem can be augmented to obtain feasible solutions
also in the low snapshot domain (cf. [3]).

The next class of DoA estimators, which we focus on in Chapter 4, uses sparse
recovery techniques. Hence, we first show how to formulate the DoA estimation task
as such a sparse recovery problem. Then, we discuss two possible solution approaches:
the Orthogonal Matching Pursuit (OMP) method, which is a well known greedy
approach for sparse recovery, and an extension of the Sparse Iterative Covariance-
based Estimation (SPICE) estimator [13], which has been developed as a non-coherent
processing technique for partly calibrated arrays.

In Chapter 5, we present DoA estimation techniques based on machine learning.
First, we discuss an end-to-end regression approach, which we have already published
in [3]. Then, we talk about another class of data-driven DoA estimators, which pose
the DoA estimation task as a classification problem. Here, we do not only present
existing estimation strategies, but derive a new estimator inspired by classification
chains. Finally, a completely new approach is investigated, where we use a Neural
Network (NN) to estimate the covariance matrix of the fully sampled array from the
sample covariance information of the individual subarrays. This full covariance matrix
estimate is then used to infer the DoAs by a subsequently applied MUSIC estimator.

Chapter 6 discusses how to combine the previously presented estimation principles
with consecutive refinement steps on the respective log-likehood function to obtain a
computationally more efficient approximation of the ML estimator. The goal of these
combined estimation approaches, which we denote by hybrid estimators, is to reduce
the grid mismatch problem of the sparse recovery based methods and to improve the
performance of the completely data-based machine learning techniques by leveraging
knowledge on the stochastic model.

The performance of the different DoA estimation approaches is compared in
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Chapter 1. Introduction

Chapter 7. Thereby, we differentiate between the case of fewer receivers than RF
chains and the more demanding opposite case.

Model order selection, i.e., estimating the number of active sources, is presented
in Chapter 8. After an explicit statement of the underlying estimation problem, we
discuss the Maximum A Posteriori (MAP) estimator and the application of information
criteria for systems with subarray sampling. Finally, we present a model order selection
approach via NNs from our paper [3] and a new method that is based on the estimation
of the full covariance matrix.

In Chapter 9, a comparison of the respective selection accuracy of the different
model order estimators is presented. Here, we do not only investigate the accuracy
over SNR and number of snapshots, but we also address how the NN-based approach
from [3] can be used in a real world implementation of a direction finder.

Finally, we conclude the thesis by a brief summary and an outlook on possible
extensions of the presented work in Chapter 10.

1.2 Notation

Throughout this work, we use lower case, bold letters to denote column vectors and
upper case, bold letters for matrices. For sets, we use calligraphic, capital letters. A
list of symbols and math operators used in this work is given in Table 1.1.

Symbol / Operator Description
<{•},={•} real part, imaginary part
R set of real numbers
C set of complex numbers
0M×N ,0M all zeros matrix of sizeM ×N , all zeros vector

of sizeM
1M×N ,1M all ones matrix of sizeM ×N , all ones vector of

sizeM
IM identity matrix of sizeM ×M
PX ,P

⊥
X projection matrices onto the range of X and

nullspace ofX
ei i-th canonical basis vector
(•)∗, (•)T, (•)H, (•)+ complex conjugated, transpose, conjugate trans-

pose, Moore-Penrose pseudo inverse
[•]i, [•]i,· i-th element, i-th row
‖ • ‖2, ‖ • ‖F Euclidean norm, Frobenius norm
X � 0,X � 0 X is positive definite,X is positive semidefinite
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1.2 Notation

null{X} nullspace ofX
span{X} span (range space) ofX
tr{X} trace ofX
det{X} determinant ofX
rank{X} rank ofX
X1/2 matrix square root of the positive semidefinite

matrixX
chol{X} Cholesky decomposition ofX
vec{X} vector obtained by column-wise stacking of the

elements ofX
diag{x} diagonal matrix, with the elements of x on its

diagonal
diag{x1, . . . , xM} diagonal matrix, with x1, . . . , xM on its diagonal
blockdiag{X1, . . . ,XM} block-diagonal matrix with blocksX1, . . . ,XM

on its diagonal
Pr[•] probability of a certain event
⊗, ◦ Kronecker and Kathri-Rao matrix products
mod(x, a) x modulo a
bxc floor of x
E[•] expectation of a random variable
N (µ,C) normal distribution with mean µ and covariance

matrix C
CN (µ,C) circularly-symmetric complex normal distribution

with mean µ and covariance matrix C
U(a, b) uniform distribution between a and b
Φ(x) Gauss error function at x

Table 1.1: Symbols and Math Operators
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System Model for Subarray Sampling 2
2.1 System Model

We consider a scenario, where we want to estimate the DoAs θ of L transmitters
located in the far-field of an antenna array consisting ofM antennas. The narrowband
transmit signals of the individual transmitters at the time ns are gathered in the vector
s(ns). Let us now denote the so called array manifold for the DoAs θ byA(θ), which
comprises the antenna array’s responses due to its geometrical and RF properties
parameterized by the DoAs θ. Then, we can express the received signal y(ns) at the
time instances ns as1

y(ns) = A(θ)s(ns) + η(ns), (2.1)

where η(ns) is some i.i.d. additive white Gaussian noise with covariance matrix
Cη = σ2

ηI. Furthermore, we assume that the DoAs θ are not changing in the time
interval ns = 1, . . . , Ns such that we can use Ns samples of y to jointly estimate θ.

Since high grade RF chains, which are used to obtain the received signals at each
antenna, are quite costly, we investigate a scenario where we use fewer RF chains than
receive antennas. This means that at each time instance ns, we only observe a subset
of antennas of the antenna array. Naturally, with this scheme, we do not leverage
the full array gain. Hence, we employ a switching network to sequentially sample
different subsets of antennas at each time step. This method has been previously
investigated in [8, 9, 10, 11] theoretically and is successfully utilized in some of todays
DoA estimation infrastructure.

To model this sequential sampling process, which we will refer to as subarray
sampling, we introduce the switching matrices G(k). To this end, let us first define
the index set G(k) that collects the indices of the active antennas of the k-th subarray.
Then, the switching matrixG(k) selects the response of the k-th subarray y(k)(ns) at

1For a basic introduction into the physical foundations behind the presented system model, i.e., how
the presented base band model can be derived from the geometry and wave propagation model, we refer
the reader to on of many textbooks on array processing, e.g., [2].
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Chapter 2. System Model for Subarray Sampling

time instance ns from the full vector of array responses y(ns), i.e.,

y(k)(ns) = G(k)y(ns), (2.2)

with [
G(k)

]
i,·

= eT
[G(k)]i . (2.3)

In total, we considerK different subarrays, for which we gather N samples each, such
that the number of total samples is Ns = KN . W.l.o.g. we choose the number of
active antennas of each subarray to be |G(k)| = W . Additionally, let us assume that
there exists a fixed mapping from the time ns to a pair of subarray and sample (k, n),
then, we can replace the time dependence of y(k) on ns with y(k)(n) for notational
brevity. With this we can write

ỹ(n) = Ã(θ)s̃(n) + η̃(n), (2.4)

with

ỹ(n) =
[
y(1),T(n),y(2),T(n), . . . ,y(K),T(n)

]T
, (2.5)

s̃(n) =
[
s(1),T(n), s(2),T(n), . . . , s(K),T(n)

]T
, (2.6)

η̃(n) =
[
η(1),T(n),η(2),T(n), . . . ,η(K),T(n)

]T
, (2.7)

A(k)(θ) = G(k)A(θ), (2.8)

Ã(θ) =


A(1)(θ) 0 . . . 0

0 A(2)(θ) . . . 0
...

... . . . ...
0 0 . . . A(K)(θ)

 , (2.9)

which resembles the well known form of the fully sampled antenna array in (2.1). We
will use this compound form of the system with subarray sampling in (2.4) whenever
it simplifies the notation.

Depending on the assumption about the transmit signals, we obtain two different
stochastic models. In the first case, which we will refer to by the name of the resulting
Deterministic Maximum Likelihood (DML) estimator, we assume that the transmit
signals are unknown and arbitrary, i.e., the transmit signals are not modeled as a
random variable, but deterministic unknowns. This leads to the following distribution
of the received signals

ỹ(n) ∼ CN
(
Ã(θ)s̃(n), σ2

ηIKW

)
. (2.10)

8



2.2 Identifiability

In the second case, the transmit signals are treated as realizations from a random
variable. This means that now the parameters of the distribution of s̃(n)—instead of
the individual realizations—parameterize the Probability Density Function (PDF) of
the received signals ỹ(n). Again, we name this case after its respective ML estimator,
i.e., the Stochastic Maximum Likelihood (SML) case. Usually the transmit signals are
modeled by a i.i.d. zero-mean complex Gaussian random variables, i.e.,

s(k)(n) ∼ CN (0,Cs) . (2.11)

Furthermore, s(k)(n) are uncorrelated over time, which can be written as

E
[
s(k)(n)s(`),H(m)

]
= 0, ∀n 6= m, k 6= `. (2.12)

Under these assumptions, the received signal is again Gaussian distributed according
to

ỹ(n) ∼ CN
(
0, Ã(θ) (I⊗Cs) ÃH(θ) + σ2

ηIKW

)
. (2.13)

2.2 Identifiability

The problem of identifiability naturally arises with any kind of estimation problem. A
stochastic model is said to be identifiable if two distinct choices for the parameters ϕ
never lead to the same PDF [16].

2.2.1 DML Identifiability

For fully sampled arrays, the identifiability of the DML system model has been
studied in [17]. There, a sufficient identifiability condition is derived that provides an
upper bound to the maximum number of active sources depending on the number of
antennas and the correlation between the transmit signals. Here, we provide a similar
identifiability condition for systems with subarray sampling, which ensures that the
PDF of the DML case is unique in θ, i.e., two distinct choices θ and θ′, θ 6= θ′ cannot
lead to the same distribution (2.10).

Theorem 1 (Sufficient Identifiability Condition - DML). Assume that for any choice
of q ≤ W distinct DoAs θ = [θ1, . . . , θq]

T, at least one of the subarray steering
matricesA(k)(θ) has full column rank and the corresponding signal matrix S(k) =

[s(k)(1), . . . , s(k)(N)] has rank r > 0 and no row that consists of zeros only. Then,
the inequality

L <
q + r

2
, (2.14)

9



Chapter 2. System Model for Subarray Sampling

provides a sufficient condition for the identifiability of the stochastic model of the DML
case (2.10) with respect to the DoAs θ.

Proof. We closely follow the argumentation of [18, Theorem 1], to show that the mean
of (2.10), and therewith, the PDF of Ỹ , with Ỹ = [ỹ(1), ỹ(2), . . . , ỹ(N)], is unique
with respect to θ under the given constraints, i.e.,

Ã(θ)S̃ 6= Ã(θ′)S̃′, (2.15)

where S̃ = [s̃(1), . . . , s̃(N)], for any θ 6= θ′ and any S̃′. Note that to show that (2.15)
holds, it suffices to show that

∃k ∈ {1, . . . ,K} A(k)(θ)S(k) 6= A(k)(θ′)S′(k). (2.16)

Now, let us consider two different cases analogously to [18].
Case 1: We have d pairs of equal DoAs θi = θ′j with 0 ≤ d < 2L − q. Let us

denote the index of the subarray that fulfills the rank constraints in Theorem 1 by
k. By comparing the dimension of the nullspace of [A(k)(θ),A(k)(θ′)] ∈ CW×2L,
denoted by ξ, with the rank of the matrix [S(k),T,−S′(k),T]T ∈ C2L×N , denoted by
ν, we see that (2.16) holds for

ξ = 2L− rank
{[
A(k)(θ),A(k)(θ′)

]}
< rank

{[
S(k)

−S′(k)

]}
= ν. (2.17)

Since any q subarray steering vectors with distinct DoAs are linearly independent, and
we consider the case q < 2L− d as stated above, we have

ξ = 2L− q. (2.18)

If the inequality from (2.14) holds, we now see that

ξ = 2L− q < r. (2.19)

Due to the construction of [S(k),T,−S′(k),T]T, we additionally have that r is smaller
or equal to ν, which in turn proves that for the considered case ξ < ν holds.

Case 2: Now, we consider the case of L > d ≥ 2L− q. Let us partition the DoAs
θ and θ′ into two sets θ = [θu,θe] and θ′ = [θ′u,θ

′
e], respectively, where θe = θ′e

corresponds to the d pairs with equal DoAs. Then, we can rewrite (2.16) as

[
A(k)(θu),A

(k)(θe),A
(k)(θ′u)

] S
(k)
u

S
(k)
e − S′(k)

e

−S′(k)
u

 6= 0, (2.20)
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2.2 Identifiability

where S(k)
u and S(k)

e collect the rows of S(k) that correspond to the columns in
A(k)(θu) andA(k)(θe), respectively.

Since the number of columns in [A(k)(θu),A
(k)(θe),A

(k)(θ′u)] is 2L − d ≤ q

and they all belong to distinct DoAs, these columns are linearly independent, i.e., the
matrix has full column rank. Therefore, the left hand side of (2.20) can become zero
only for S(k)

u = 0. Note that this would mean that the sources at θu would not send
any signals, which violates the assumptions in Theorem 1. �

Note that this sufficient condition for identifiability can only be fulfilled forL < W ,
as q and r are upper bounded by W . Furthermore, this condition does not ensure
that the PDF (2.10) is unique in S̃. In fact, Theorem 1 can be fulfilled even if there
exists some subarray, for which rank{A(k)(θ)} < L. Then, there exist infinitely
many S′(k) = S(k) +U , with U ∈ null{A(k)(θ)}, that lead to the same distribution
(2.10). To obtain a sufficient condition that guarantees the uniqueness of S̃ as well,
we could simply extend the requirement of full column rank of at least one subarray
steering matrix for each θ to demanding full column rank for every subarray steering
matrix. However, this is a very strict requirement that significantly limits the number
of appropriate array designs.

We conclude the identifiability discussion of the DML case with a brief look at
necessary conditions. It is clear that the PDF (2.10) is not unique in θ if there exist
two distinct DoAs θ and θ′, θ 6= θ′, such that

span
{
A(k)(θ)

}
⊆ span

{
A(k)(θ′)

}
, ∀k = 1, . . . ,K. (2.21)

This leads to the following trivial necessary condition for the identifiability with respect
to θ.

Theorem 2 (Necessary Identifiability Condition - DML). Assume that for any choice
ofM distinct DoAs θ = [θ1, . . . , θM ]T, the steering matrix of the fully sampled array
A(θ) has full rank. Then, the inequality

L < M, (2.22)

is a necessary condition for the identifiability of the stochastic model of the DML case
(2.10) with respect to the DoAs θ.

Proof. The steering matrix A(θ) has full row rank for L ≥ M . Furthermore, the
sampling matricesG(k) have full row rankW by construction. Hence, the subarray
steering matricesA(k)(θ) = G(k)A(θ) have full row rank as well. This means that
the span

{
A(k)(θ)

}
= CW for every θ and k, and therefore (2.21) is fulfilled. �
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Chapter 2. System Model for Subarray Sampling

Analogously, one can show that the necessary condition L < W holds if for every
θ ∈ RW the subarray steering matricesA(k)(θ) have full rank. However, as discussed
above this assumption is of practical significance.

2.2.2 SML Identifiability

The identifiability of the fully sampled antenna array in the SML case has been
investigated in [17] and [19]. For systems with subarray sampling, an extension of
these results is not straight-forward and still remains an open problem. However, under
the assumption of uncorrelated transmit sources, i.e.,

Cs = diag{σ2
s,1, σ

2
s,2, . . . , σ

2
s,L}, (2.23)

a sufficient condition has been derived for the noise-free case in [13]. There, the idea is
to employ a vectorization of the covariance matrices C(k)

y = A(k)(θ)CsA
(k),H(θ) +

σ2
ηIW , which leads to the following representation of the covariance matrix

vec
{
C

(k)
y

}
= V̆ (k)(θ)λ+ σ2

ηvec {IW } , (2.24)

where

V̆ (k)(θ) = A(k),∗(θ) ◦A(k)(θ), (2.25)

λ =
[
σ2
s,1, σ

2
s,2, . . . , σ

2
s,L

]T
. (2.26)

After stacking the left hand side of (2.24) for every k in a large vector cy, we obtain

cy = V̆ (θ)λ+ σ2
η1K ⊗ vec {IW } , (2.27)

with the co-array manifold V̆ (θ) = [V̆ (1),T(θ), . . . , V̆ (K),T(θ)]T. Ignoring the
noise, this new representation of the covariance matrix information in SML case now
resembles the structure of the mean of the PDF in the DML scenario. Unsurprisingly,
the conditions, under which an identification of θ can be guaranteed, again show
parallels to the sufficient conditions of the DML case.

Theorem 3 (Sufficient Identifiability Condition - SML [13]). Assume that for any
choice of q distinct DoAs θ = [θ1, . . . , θq]

T, the co-array manifold V̆ (θ) has full
column rank and the signal covariance matrix Cs is full rank and diagonal. Then, the
inequality

L ≤
⌊q

2

⌋
, (2.28)

provides a sufficient condition for the identifiability of the stochastic model of the
noise-free SML case (2.13) with respect to the DoAs θ.

12



2.2 Identifiability

Proof. See [13]. �

Again, we show that in the SML case the number of identifiable sources with
subarray sampling is upper bounded by number of sensors of the full array under the
same conditions as in Theorem 2.

Theorem 4 (Necessary Identifiability Condition - SML). Assume that for any choice
ofM distinct DoAs θ = [θ1, . . . , θM ]T, the steering matrix of the fully sampled array
A(θ) has full rank. Then, the inequality

L < M, (2.29)

is a necessary condition for the identifiability of the stochastic model of the SML case
(2.13) with respect to the DoAs θ.

Proof. We show that for L ≥ M , there exists a θ′, which is different from θ, and
some C ′s and σ′2η , such that

A(k)(θ)CsA
(k),H(θ)+σ2

ηIW = A(k)(θ′)C ′sA
(k),H(θ′)+σ′2η IW , ∀k = 1, . . . ,K.

(2.30)
Let us choose σ′2η = σ2

η , then we see that (2.30) holds if

A(k)(θ)CsA
(k),H(θ) = A(k)(θ′)C ′sA

(k),H(θ′), ∀k = 1, . . . ,K. (2.31)

Note that due to the assumption in Theorem 4, the matrixA(θ′) has full row rank for
any θ′ ∈ RL with L ≥M . Therefore, we can express anyA(θ) by

A(θ) = A(θ′)X, (2.32)

for every θ ∈ RL. Hence, for every θ there exist some θ′ andX such that

A(k)(θ) = G(k)A(θ) = G(k)A(θ′)X = A(k)(θ′)X, ∀k = 1, . . . ,K. (2.33)

Inserting (2.33) into (2.31), we obtain

A(k)(θ)CsA
(k),H(θ) = A(k)(θ′)XCsX

HA(k),H(θ′)

= A(k)(θ′)C ′sA
(k),H(θ′), ∀k = 1, . . . ,K,

(2.34)

i.e., for every θ and Cs there exists a θ′,θ′ 6= θ, and some positive semidefinite
C ′s = XCsX

H, which lead to the same covariance, and therefore, the PDF (2.13) is
not unique in θ for L ≥M . �
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Chapter 2. System Model for Subarray Sampling

Note that this necessary condition considers the case of a full transmit covariance
matrix Cs. If the transmit signals are known to be uncorrelated a priori, the bound on
the number of sources can be relaxed. In that case, a similar necessary condition that
limits L to be smaller thanKW can be obtained by using the vectorized system model
(2.27) and demanding linear independence for every KW columns of the co-array
manifold V̆ (θ). The proof then follows the proof of Theorem 2. This relaxed bound
plays a role, when sparse linear arrays are considered, where also in the fully sampled
caseM sources or more can be estimated (see, e.g., [20, 21, 22]).

2.3 Cramér-Rao-Bound

Although the previous section provides a condition, which guarantees that an esti-
mation of the underlying parameters of the stochastic model is possible, it makes no
statement about the achievable estimation accuracy. For a theoretical assessment of
the performance that we can expect from an estimator, we take a look at the CRB
[23, 24] corresponding to the different stochastic models. The CRB is a lower bound
for the variance of any unbiased estimator. It is given by the inverse of the so called
Fisher information matrix F , i.e.,

Cϕ̂ � F−1, (2.35)

where Cϕ̂ denotes the covariance matrix of the estimate of the parameter vector ϕ.
Thereby, the Fisher information matrix F is defined as

F (i, j) = E

[
∂ ln(p(x;ϕ′))

∂ϕ′i

∣∣∣
ϕ′=ϕ

∂ ln(p(x;ϕ′))

∂ϕ′j

∣∣∣
ϕ′=ϕ

]
. (2.36)

2.3.1 DML CRB

In the context of the deterministic DoA estimation problem presented in the previous
section, the CRB can be simplified. We employ the Slepian-Bangs formula [25] given
by

F (i, j) = 2<

{
∂µH(ϕ′)

∂ϕ′i

∣∣∣
ϕ′=ϕ

Cx(ϕ)
∂µ(ϕ′)

∂ϕ′j

∣∣∣
ϕ′=ϕ

}

+ tr

{
C−1
x (ϕ)

∂Cx(ϕ′)

∂ϕ′i

∣∣∣
ϕ′=ϕ

C−1
x (ϕ)

∂Cx(ϕ′)

∂ϕ′j

∣∣∣
ϕ′=ϕ

} (2.37)

that is applicable for any circularly-symmetric complex Gaussian distributed obser-
vations x ∼ CN (µ(ϕ),Cx(ϕ)), to obtain the elements of F . For the DML system
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2.3 Cramér-Rao-Bound

model, this formula can be used with the observations x = Ỹ and parameter vector
ϕ = [θT, vec{S(1)}T, . . . , vec{S(K)}T, σ2

η]
T to compute the respective Fisher infor-

mation matrix. From there, we obtain the CRB for the parameters of interest θ by
simply selecting the upper left L× L submatrix of F−1, i.e.,

CCRB = [e1, . . . , eL]TF−1[e1, . . . , eL]. (2.38)

2.3.2 SML CRB

The CRB for the SML case has been derived in [10]. A more compact form of the CRB
for the parameters of interest θ can be obtained by utilizing the Schur complement (as
in [13]). Then, the CRB reads as

CCRB =

[
∆H

1

(
R̃− R̃∆2

(
∆H

2 R̃∆2

)−1
∆H

2 R̃

)
∆1

]−1

, (2.39)

with

R̃ = blockdiag
{
R(1), . . . ,R(K)

}
, (2.40)

R(k) = N(C
(k),−T
y ⊗C(k),−1

y ), (2.41)

∆1 =
∂cy
∂θT

, (2.42)

∆2 =

[
∂cy
∂ϕT

s

,
∂cy
∂σ2

η

]
, (2.43)

where ϕs gathers the L2 free real parameters in Cs.
Interestingly, forL ≥W , the CRB does not go to zero if the SNR goes to infinity, in

contrast to the fully sampled case. This phenomenon has been thoroughly investigated
in [26].
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Classical Estimation Methods 3
3.1 Maximum Likelihood Estimation

The ML principle is probably the most prominent concept in parameter estimation and
has been thoroughly investigated in the context of DoA estimation (e.g. [1]). In general,
the ML estimator selects the parameters ϕ that maximize the likelihood function

p(x;ϕ), (3.1)

i.e., the PDF parameterized byϕ at the observationx. In the context of DoA estimation,
the distribution of interest is the PDF of the received signals, which is evaluated at
the observation Ỹ . However, depending on the statistical properties of the transmit
signals S̃, we obtain two different likelihood functions for our system model in (2.4),
which in turn leads to two different ML estimators, namely the deterministic and the
stochastic ML estimator.

3.1.1 Deterministic Maximum Likelihood Estimation

For the DML estimator, we assume that the received signal is distributed according to
(2.10). From there, it follows that the likelihood function for the DML case is given by

pDML(Ỹ ;θ, S̃, σ2
η) =

(
1

πσ2
η

)KNW N∏
n=1

e−‖ỹ(n)−Ã(θ)s̃(n)‖2/σ2
η . (3.2)

Instead of maximizing the likelihood function, we can maximize its logarithm
instead, which in our case reads as

ln
(
pDML(Ỹ ;θ, S̃, σ2

η)
)

= −KNW ln
(
πσ2

η

)
− 1

σ2
η

N∑
n=1

‖ỹ(n)− Ã(θ)s̃(n)‖2.

(3.3)
For fixed angles θ andW > L, we can give closed form maxima of (3.3) for σ2

η and
s̃(n) by

s̃(n) = Ã+(θ)ỹ(n), (3.4)

17



Chapter 3. Classical Estimation Methods

and
σ̂2
η =

1

KW
tr
{

P⊥
Ã(θ)

Ĉỹ

}
, (3.5)

where the sample covariance matrix of the received signals is given by

Ĉỹ = blockdiag{Ĉ(1)
y , . . . , Ĉ

(K)
y }, (3.6)

Ĉ
(k)
y =

1

N

N∑
n=1

ỹ(k)(n)ỹ(k),H(n). (3.7)

With the results from (3.4) and (3.5), we can eliminate some of the parameters in (3.3)
to obtain the concentrated log-likelihood function

ln
(
pDML(Ỹ ;θ)

)
= −KNW ln(π)−KW − ln

(
tr
{

P⊥
Ã(θ)

Ĉỹ

})
. (3.8)

Finally, from (3.8), the DML estimate θ̂DML forW > L can be obtained by

θ̂DML = argmin
θ

tr
{

P⊥
Ã(θ)

Ĉỹ

}
. (3.9)

The optimization problem (3.9) is still non-convex, however, we can find the global
optimum by employing a two stage optimization. First, we perform a grid search
in θ. To that end, we evaluate the log-likelihood function at a finite amount of grid
points. Then, the grid point with the largest log-likelihood is used as an initialization
for a gradient approach. If the initialization was close enough to the optimal θ, the
gradient approach converges to the global optimum of (3.9). Note that, as the domain
of θ is bounded, the distance between two grid points can become arbitrarily small by
increasing the number of grid points. Therefore, an initialization of the gradient steps
close to the optimum can be guaranteed by a sufficiently large number of grid points.
Unfortunately, the complexity of the grid search grows linearly with the number of grid
points, which itself grows exponentially with the number of sources. Hence, there is a
trade-off between accuracy and computational complexity when we are evaluating the
DML estimator in this way. This trade-off is discussed in more detail in Section 3.1.3.

For L ≥W , we cannot reduce the maximum likelihood estimation to a search in θ.
Also note that in this case, we cannot guarantee that the DML optimization problem
has a unique solution, as has been discussed in Section 2.2.1.

3.1.2 Stochastic Maximum Likelihood Estimation

As mentioned previously, we assume that the transmit signals follow a Gaussian
distribution in the SML case, such that the received signals are distributed according
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3.1 Maximum Likelihood Estimation

to (2.13). The respective log-likelihood function reads as

ln
(
pSML

(
Ỹ ;θ,Cs, σ

2
η

))
= −N

(
ln (det {Cỹ}) + tr

{
C−1
ỹ Ĉỹ

}
+W ln(π)

)
,

(3.10)
with

Cỹ = Ã(θ) (I⊗Cs) ÃH(θ) + σ2
ηIKW . (3.11)

Unfortunately, we cannot find closed form maximizers of (3.10) for Cs and σ2
η if θ is

fixed (not even for L < W ), in contrast to the DML case. Hence, evaluating the SML
estimator requires a multidimensional search in L2 + L+ 1 real parameters to find
the maximum of the non-concave log-likelihood function. In practice, the associated
computational load becomes intractable for any L ≥ 2, which might at first raise the
question of whether the SML model is of any practical relevance. However, based on
the SML model multiple estimators with lower complexity can be derived, and for the
special case of uncorrelated transmit signals, there exists a sufficient condition for the
number of identifiable DoAs for L ≥W , as has been discussed in Section 2.2.2.

3.1.3 MSE Approximation for the Grid-Based DML Estimators

In this section, we provide a method for an efficient characterization of the achievable
estimation accuracy of grid-based DML estimators1. The achievable performance
of ML estimators falls in three different regions [28]. The most prominent of those
regions is the asymptotic region, at high SNR, where the ML estimator attains the
CRB. For very low SNR, the received signals are dominated by noise such that it
becomes practically impossible to estimate the actual parameters, which is why this
region is called the no-information region. Lastly, the threshold region comprises
the SNR range in between the aforementioned regions, where we have a mixture of
meaningful estimates, which lie close to the actual parameters, and some inaccurate
estimates from observations that are dominated by noise. Ideally, when designing
a direction finder for a real world application, we want to ensure that the estimates
are reliable, i.e., an operation in the asymptotic region is desirable. To that end, the
achievable performance of the estimation algorithm needs to be assessed before a
deployment. One possible way to do this is by means of Monte Carlo simulations.
However, to achieve meaningful results, the necessary number of Monte Carlo runs,
and therefore, the computational complexity might be very high. Alternatively, lower
bounds based on the underlying stochastic model can be evaluated. Apart from the

1The presented approach is a direct extension from the fully sampled case, which has been discussed
in [27], and therefore, the presentation of this topic closely follows the discussion in [27].
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well known CRB, which is only tight in the asymptotic region, multiple other lower
bounds (e.g. Barankin-, Ziv-Zakai-, or Weiss-Weinstein-type bounds [29, 30, 31, 32])
have been proposed in the previous literature. Compared to the CRB, these lower
bounds are tighter at low SNR, but they are still not able to accurately predict the ML
performance in the threshold region.

Therefore, we present a way to obtain an approximation of the achievable MSE of
a grid-based DML DoA estimator, which provides a more accurate assessment of the
achievable performance compared to such stochastic lower bounds and has a much
lower complexity compared to extensive Monte Carlo simulations. Inital work on this
topic goes back to [28], where Athley proposed such an MSE approximation that is
able to accurately predict the MSE for an ML estimator in the asymptotic region and its
transition to the threshold region, for DoA estimation with gridless ML estimators and
fully sampled antenna arrays. Moreover, the approximation provides a more accurate
prediction of the achievable MSE than the Barankin bound. In contrast to [28], we
investigate a grid-based estimator that works on a finite grid for the DoAs, which is
relevant in two cases. First, scenarios where the array manifold is only known for
a finite number of DoAs. Such a scenario occurs if the array manifold cannot be
properly modeled by an analytic function, but is only available via measurement data,
for example, from calibration measurements of an array installation in the field [33,
Chapter 3]. Second, grid-based ML estimators can be used as an initialization for
gridless ML estimators as we have discussed in the previous sections. The grid-based
initialization should yield a point in the neighborhood of the global maximizer of
the likelihood function. Otherwise, the subsequent gradient steps converge to a local
maximum instead of the global maximum. Hence, outliers in the grid-based estimation
lead to outliers for the gridless ML estimator. Naturally, this kind of error propagation
can be eliminated if we use a very dense grid for the initialization. However, as
we have already discussed, using very dense grids leads to a prohibitive complexity,
due to its exponential growth in the number of sources L. This leads to a trade-off
between computational complexity and robustness against outliers. Especially for
finding the optimal number of grid points in regard to this trade-off, the presented
MSE approximation shines.

3.1.3.1 Preliminaries

We consider the DML model for the received signals given in (2.10). The respective
optimization task for the gridless DML estimator is shown in (3.9). To obtain
the grid-based DML estimator, we evaluate the gridless estimator only on a finite,
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multidimensional grid of DoAs T = {θ̌1, θ̌2, . . . , θ̌T }. The respective optimization
problem then reads as

θ̂ = argmax
θ̌∈T

U(θ̌)

= argmax
θ̌∈T

tr
{

PÃ(θ)Ĉỹ

}
.

(3.12)

Although we search for the best θ̌ on a finite grid, the true DoAs θ? of our sources
are not restricted to lie on the grid T . Hence, the MSE of the grid-based estimator is
given by

MSE =

T∑
t=1

Pt‖θ̌t − θ?‖2, (3.13)

where Pt denotes the probability that θ̌t is the maximizer of (3.12), i.e., the DML
estimate. Naturally, this probability depends on the SNR, the signal realizations S̃
and true DoAs θ?. Following the lines of [28], we decompose the MSE expression
into two parts. The first part captures the local errors from estimates that lie in the
vicinity of the actual DoAs θ?. The second part comprises the errors caused by outliers.
Under outliers we understand estimates that are far away from the true DoAs θ?. This
decomposition leads to the MSE expression

MSE =

(
1−

∑
i

P out
i

)
εloc +

∑
i

P out
i εouti , (3.14)

with the local error εloc, and the probability and error of the i-th outlier, which are
denoted by P out

i and εouti , respectively.
In the following, we will show that for the MSE of the grid-based DML estimator

this decomposition can be written as

E
[
‖θ̂ − θ?‖2

]
=

1−
|S|∑
i=1

P out
i

 |M|∑
`=1

P loc
` ‖θ̌main

` − θ?‖2

+

|S|∑
i=1

P out
i ‖θ̌sidei − θ?‖2.

(3.15)

3.1.3.2 Outlier Approximation

Let us first discuss the outlier approximation, which is the latter part of (3.15). As has
been shown in [28], the distribution of gridless ML estimates is proportional to the
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respective asymptotic log-likelihood function Ū(θ). This asymptotic log-likelihood is
up to some constant terms equal to the concentrated log-likelihood function (3.8) for
vanishing noise2, i.e.,

Ū(θ) = tr
{

PÃ(θ)Ã(θ?) (IL ⊗Cs̃) ÃH(θ?)
}
. (3.16)

For a single source and a fully sampled array, this asymptotic log-likelihood becomes
the well known beam pattern of the array at θ?, i.e.,

Ū(θ) =
|aH(θ)a(θ?)|
‖a(θ)‖2‖a(θ?)‖2

. (3.17)

In that sense, we can think of Ū(θ) as an extension of the beam pattern to subarray
sampling and multiple sources. In general, Ū(θ) has not only a global maximum at
θ?, but also multiple local maxima. We refer to the area around the global maximum
as mainlobe, whereas the area around the local maxima are called sidelobes3.

From the proportionality between the distribution of the gridless ML estimates
and Ū(θ), it is clear that it is much more likely to obtain estimates near the sidelobe
peaks than in the valleys of the asymptotic log-likelihood function. For estimates near
the sidelobe peaks, we can approximate their induced error by the distance between
the closest sidelobe peak and θ?, i.e., the for an estimate in the i-th sidelobe the error
can be reasonably well approximated by ‖θ? − θsidei ‖2, where θsidei is the i-th sidelobe
peak. Furthermore, to compute the probability of obtaining an ML estimate in the
i-th sidelobe P out

i a discretization of U(θ) at the sidelobe peaks is proposed in [28],
i.e., P out

i is the probability that U(θ) is larger at θ = θsidei than at the mainlobe peak
and any other sidelobe peak. With the help of the union bound, this probability can
be further approximated by Pr[U(θsidei ) > U(θ?)], as it is unlikely that U(θ) is larger
than U(θ?) at multiple sidelobe peaks simultaneously [28].

As for grid-based estimators, the log-likelihood function is sampled only at discrete
grid points θ̌ ∈ T , in general, there are no grid points coinciding with the true DoAs
θ? and the sidelobe peaks. In fact, there might not even be a grid point lying in
a specific sidelobe if the grid is very coarse and the respective sidelobe is narrow.
Hence, we no longer use the sidelobe peaks θsidei and the true DoAs θ? to compute the

2Since the SML estimator does not offer a concentrated formulation of the log-likelihood, which no
longer depends on the noise power and transmit covariance, a straight-forward extension of the presented
approximation to the SML case is not possible.

3The borders between the mainlobe and the individual sidelobes are the valleys in the function Ū(θ).
This means that from any point in these lobes, a gradient ascent approach with a sufficiently small step
size converges to the respective local maximum.
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outlier probabilities, but we select one grid point as a representative for the mainlobe
θ̌0 and for each sidelobe θ̌sidei . As representatives, we choose the grid point with
the highest asymptotic log-likelihood Ū(θ) among all grid points that belong to the
respective lobe. Again, we follow the lines of [28] and approximate the probability of
obtaining an estimate in the i-th sidelobe P out

i by comparing the likelihood function at
the representatives, i.e.,

P out
i = Pr

⋂
j∈S
j 6=i

{
U(θ̌sidei ) > U(θ̌sidej )

}
∩
{
U(θ̌sidei ) > U(θ̌0)

} , (3.18)

where the set S gathers all the sidelobe representatives. Applying the union bound to
the complementary event and keeping only the dominant term we finally obtain

P out
i ≈ Pr

[
U(θ̌sidei ) > U(θ̌0)

]
. (3.19)

The probability in (3.19) is the pairwise error probability between the i-th sidelobe
representative θ̌sidei and the mainlobe representative θ̌0.

In contrast to the fully sampled case [27, 28], for systems with subarray sampling,
we cannot find an analytic expression for the pairwise error probabilities (3.19) by
applying the results of [34, Appendix B]. However, we can employ the formulation for
the multi source case from [27, 28] to evaluate the probabilities in (3.19).

Pr
[
U(θ̌sidei ) > U(θ̌0)

]
= Pr

[
ỹH
NΨiỹN > 0

]
, (3.20)

with the stacked received signals ỹN = [ỹH(1), . . . , ỹH(N)]H and

Ψi = IN ⊗ (PÃ(θ̌sidei ) −PÃ(θ̌0)). (3.21)

We can observe that the outlier probabilities depend on the distribution of a non-central
quadratic form with the indefinite matrix Ψi. Evaluating such a probability is non-
trivial. We resort to the solution proposed by Athley in [28] that uses a saddlepoint
approximation [35] to approximate the outlier probability (3.20). Using the cumulant
generating function

κ(s) = ln (M(s)) = ln (E [esq]) , (3.22)

we can approximate the cumulative distribution of a quadratic form q by

Pr [q < x] ≈ Φ

(
w +

1

w
ln
( v
w

))
, (3.23)
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with

w = sgn(s0)
√

2(s0x− κ(s0)), (3.24)

v = s0

√
d2

d2s
κ(s)

∣∣∣∣
s=s0

, (3.25)

and the saddle point s0 defined by the unique root of

d

ds
κ(s) = x, (3.26)

that lies in the convergence region of the moment generating functionM(s) [36].
Following the lines of [28], the cumulant generating function for the quadratic

form in (3.21) can be obtained by

κ(s) =
∑
i

µ2
i ζis

1− ζis
−N

∑
i

ln (1− ζis) , (3.27)

with the non-zero eigenvalues ζi from the eigenvalue decomposition

σ2
η

(
PÃ(θ̌sideo ) −PÃ(θ̌0)

)
= QZQH =

KW∑
i=1

ζiqiq
H
i , (3.28)

and

µ2
i =

1

σ2
η

N∑
n=1

∣∣∣qiÃ(θ?)s̃(n)
∣∣∣2
2
. (3.29)

The saddle point s0 lies in the interval

1

min(Z)
< s0 <

1

max(Z)
, (3.30)

to guarantee convergence of the moment generating function [28].

3.1.3.3 Local Error Approximation

Now, let us discuss the local error part in (3.15). It is well known that the gridless ML
estimator is asymptotically efficient [37], i.e., it achieves the CRB for many snapshots
and high SNR. In this region, all the errors can be explained by the noise properties
and the local curvature of the log-likelihood function at the true DoAs θ?. Therefore,
it is proposed in [28] to use the CRB to approximate local error contributions in the
gridless case.
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3.1 Maximum Likelihood Estimation

For L < W , the CRB decreases and approaches zero for increasing SNR [26].
However, the MSE of a grid-based DML estimator usually saturates for high SNR,
as the minimum achievable error is determined by the distance between θ? and the
closest grid point. Therefore, in the grid-based case, the CRB is no longer a suitable
local error approximation, but a more sophisticated method needs to be employed.

As the error contribution of the estimates that lie in the sidelobes have already
been accounted for by the outlier approximation, we can focus on the mainlobe for the
local error performance of the grid-based ML estimator. Hence, we can express the
local error part of our MSE approximation by the sum of the errors induced by each
mainlobe grid point with the respective probability to obtain this grid point as the ML
estimate. This gives the local error

εloc =

|M|∑
`=1

P loc
` ‖θ̌main

` − θ?‖2, (3.31)

where the setM gathers all the grid points θ̌main
` , ` = 1, . . . , |M|, that are located in

the mainlobe and P loc
` is the probability to obtain the `-th mainlobe grid point. In the

following, we will explain how to determine P loc
` depending on the dimensionality of

θ.

Univariate Case: First we consider, that we have a single source, whose DoA can be
described by a scalar θ. Again under the assumption that no outlier occurs, the DML
estimator selects the `-th mainlobe grid point if

P loc
` = Pr

 ⋂
j∈M
j 6=`

{
U(θ̌main

` ) > U(θ̌main
j )

} . (3.32)

Let us assume that U(θ) is quasi-concave in the region of the mainlobe of the
asymptotic likelihood Ū(θ). Furthermore, the grid points θ̌main

i are sorted in ascending
order. Then, it directly follows from the quasi-concavity of U(θ) that

U(θ̌main
` ) > U(θ̌main

`−1 ) =⇒ U(θ̌main
` ) > U(θ̌main

j ),∀j < `. (3.33)

Equivalently, it holds that

U(θ̌main
` ) > U(θ̌main

`+1 ) =⇒ U(θ̌main
` ) > U(θ̌main

j ), ∀j > `. (3.34)

Thus, the probability from equation (3.32) collapses to:

P loc
` = Pr

[
U(θ̌main

` ) > U(θ̌main
`−1 ) ∧ U(θ̌main

` ) > U(θ̌main
`+1 )

]
, (3.35)
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and

P loc
` =1− Pr

[
U(θ̌main

` ) ≤ U(θ̌main
`−1 )

]
− Pr

[
U(θmain

` ) ≤ U(θ̌main
`+1 )

]
+ Pr

[
U(θ̌main

` ) ≤ U(θ̌main
`−1 ) ∧ U(θ̌main

` ) ≤ U(θ̌main
`+1 )

]
.

(3.36)

The last term in the formula vanishes due to the quasi-concavity of U(θ). The
remaining probabilities of the events U(θ̌main

i ) ≤ U(θ̌main
i−1 ) and U(θ̌main

i ) ≤ U(θ̌main
i+1 )

can be calculated using the formulas for the grid-based pairwise error probabilities
presented for the outlier approximation.

Note that even if the quasi-concavity assumption does not hold, the expression in
(3.35) gives an upper bound to the actual probability to select the `-th grid point in
(3.32). Recall that it is very unlikely to obtain estimates in the valley of the asymptotic
log-likelihood Ū(θ). This implies that the maximum of U(θ) is mostly close to the
true DoA θ?. In that case, the mainlobe width of U(θ) is approximately equal to the
mainlobe width of Ū(θ), and therefore, the quasi-concavity is only violated near the
valley of Ū(θ). Hence, the error introduced by using the upper bound in (3.35) affects
mostly the mainlobe grid points at the edge of the mainlobe. However, as discussed,
the probability to obtain one of these grid points is anyway very low such that the
impact on the overall local error in (3.31) is pretty limited.

Multivariate Case: For multiple sources, we obtain a multivariate log-likelihood
function U(θ). Under the assumption of independence of the individual elements
of the estimate θ̂ in the vicinity of the true DoAs, a straightforward extension of the
univariate case is possible (cf. [27]). However, in general, this assumption does
not hold. Therefore, a different method needs to be employed that is able to cope
with correlated entries of θ̂ [27]. To this end, we utilize that for the gridless case
θ̂ ∼ N (θ?,CCRB) holds in the asymptotic region [37]. If we know which θ̂ in
the gridless case correspond to estimating the `-th grid point in the grid-based case,
then, we can determine the probability of obtaining the `-th grid point by integrating
the Gaussian density of θ̂ over the respective area. This means that we numerically
determine the probabilities for each mainlobe grid point based on the L dimensional
density of θ̂. In contrast, a direct evaluation of the probabilities by plain numerical
integration would require an integration over the 2KWN dimensional density of the
received signals Ỹ . However, note that we require a description of the array manifold
by an analytic function to infer the mainlobe grid point probabilities with this method,
as otherwise the CRB for corresponding gridless estimators cannot be derived.
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3.2 Generalized Least Squares Estimation

Evaluating an arbitrary integral over a Gaussian PDF is not trivial. However,
numerical integration over a Gaussian density can be performed quite efficiently if
the integration region is a polyhedron [38]. Hence, our goal is to obtain a polyhedron
around the `-th grid point that approximates the area in which the gridless θ̂ is mapped
to the `-th grid point θ̌main

` . To this end, let us consider the second order Taylor
approximation of U(θ) around θ̂, which reads as

U(θ) ≈ U(θ̂) +
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂), (3.37)

whereH(θ̂) is the Hessian matrix of U(θ) evaluated at θ̂. Since the maximum of
U(θ) is at the θ̂, there is no first order term in (3.37).

Now, let us assume that
H(θ̂) ≈H(θ?), (3.38)

if θ̂ is close to θ?. Then, by using (3.37) and (3.38), the event U(θ̌`) > U(θ̌j) can be
approximated by the following linear decision rule in θ̂

2(θ̌j − θ̌`)TH(θ?)θ̂ − θ̌T
j H(θ?)θ̌j + θ̌T

` H(θ?)θ̌` > 0. (3.39)

This means that the event of obtaining the `-th grid point by the grid-based DML
estimator, given by the intersection

⋂
j 6=` U(θ̌`) > U(θ̌j), can be approximately

represented by the intersection of linear decisions, i.e., a polyhedron. Therefore,
the corresponding probability P loc

` can be computed numerically by the efficient
framework of [38].

3.2 Generalized Least Squares Estimation

As we have seen in the previous chapter, the SML system model enables the DoA esti-
mation for more sources L than RF chainsW under certain conditions (cf. Theorem 3).
However, the optimization problem corresponding to the SML estimator turned out to
be computationally too demanding such that a direct evaluation of the SML estimator is
intractable. Therefore, Sheinvald and Wax [10] developed the so called GLS estimator
for systems with subarray sampling. In this chapter, we will revisit the original GLS
estimator as presented in [10] and propose some augmentations that enable its usage
even for a small number of samples N .

Instead of utilizing the likelihood function of the stochastic model to obtain the
parameter estimates, the GLS estimator uses a covariance matching criterion. As
the PDF (2.13) is fully parameterized by it covariance matrix, the idea is to find the
parameters θ,Cs, and σ2

η which produce the best fit between the respective covariance
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matrix and the sample covariance matrix of the observed received signals. This
rationale is also used for the class of Covariance Matching Estimation Technique
(COMET) estimators discussed in [39]. For the GLS estimator, the proposed cost
function for the covariance matching reads as [10]

K∑
k=1

‖T (k)
(
Ĉ

(k)
y −C(k)

y

)
T (k),H‖2F, (3.40)

where T (k) is a whitening filter, for which the choice T (k) = Ĉ
(k),−1/2
y leads to an

asymptotically consistent and efficient estimator [10].
For the minimization of (3.40), closed form solutions of Cs and σ2

η can be found
for fixed θ by solving a simple least squares problem if the positive semidefiniteness
constraint on Cs and the fact that any feasible σ2

η is larger than zero is neglected [10].
Unfortunately, this approach yields infeasible estimates for Cs and σ2

η if the number
of snapshots is small. Furthermore, the resulting optimization problem in θ remains
non-convex. Therefore, we consider a GLS solution that accounts for these constraints
[3].

The GLS optimization problem including the constraints reads as

min
θ,Cs�0,σ2

η≥0

K∑
k=1

‖T (k)
(
Ĉ

(k)
y −A(k)(θ)CsA

(k),H(θ)− σ2
ηIW

)
T (k),H‖2F. (3.41)

For fixed θ this problem can be written as a Semidefinite Programming (SDP) [40,
Ch. 4.6.2]. To that end let us first introduce the slack variable b to rewrite the problem
for fixed θ as

min
b,Cs,σ2

η

b

s. t.: b > 0, Cs � 0, σ2
η ≥ 0,

‖E‖2F ≤ b2,

E = T̃
(
Ĉỹ − Ã(θ) (IK ⊗Cs) ÃH(θ)− σ2

ηIKW

)
T̃H,

(3.42)

with T̃ = blockdiag{T (1), . . . ,T (K)} and Ĉỹ = blockdiag{Ĉ(1)
y , . . . , Ĉ

(K)
y }. Now,

we can replace the Frobenius norm ofE by the Euclidean norm of the vectorization of
E to obtain

‖E‖2F ≤ b2 ⇐⇒ ‖vec{E}‖22 ≤ b2 ⇐⇒

[
bIK2W 2 vec{E}

vec{E}H b

]
� 0, (3.43)
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3.2 Generalized Least Squares Estimation

where the final equivalence to the Linear Matrix Inequality (LMI) can be shown by
the Schur complement, since the LMI only holds if and only if its respective Schur
complement is positive semidefinite [40, A.5.5]. Hence, the optimization problem
reads as

min
b,Cs,σ2

η

b

s. t.: b > 0, Cs � 0, σ2
η ≥ 0,[

bIK2W 2 vec{E}
vec{E}H b

]
� 0,

E = T̃
(
Ĉỹ − Ã(θ) (IK ⊗Cs) ÃH(θ)− σ2

ηIKW

)
T̃H,

(3.44)

which is a SDP, since vec{E} is linear in the optimization variables.
In the special case of uncorrelated transmit signals, the optimization problem

reduces to a non-negative least squares problem, i.e., a quadratic program. Using
similar steps as for the reformulation of (3.40) to a least squares objective in [10], i.e.,
vectorizing the whitened covariance matrices and exploiting the diagonal structure of
Cs (cf. (2.27)), we can write the optimization problem (3.41) as

min
λ≥0,σ2

η≥0

∥∥∥∥∥ξ − Γ

[
λ

σ2
η

]∥∥∥∥∥
2

2

, (3.45)

with

ξ = [ξ(1),T, . . . , ξ(K),T]T, (3.46)

ξ(k) = vec
(
T (k)Ĉ

(k)
y T (k),H

)
, (3.47)

Γ = [Γ(1),T, . . . ,Γ(K),T]T, (3.48)

Γ(k) =
[(
T (k),∗A(k),∗(θ)

)
◦
(
T (k)A(k)(θ)

)
, vec

(
T (k)T (k),H

)]
. (3.49)

With the optimization problems above, signal and noise estimates for fixed θ can
be obtained. Therefore, the solution of the non-convex optimization problem (3.41)
reduces to a search in θ, which can again be solved by a grid search approach.

29





Sparse Recovery Methods 4
In this chapter, we study another class of estimators that are based on a sparse
representation of the considered system model. Motivated by the theoretical results
from the framework of Compressed Sensing (CS) that go back to the seminal paper of
[41], sparse recovery algorithms have found its way to more and more applications.
The main result from the CS theory lies in the fact that under some conditions on the
so called dictionaryD ∈ CF×G sparse signals x can be reconstructed from the noisy
observations z given by

z = Dx+ η, (4.1)

even if F � G.
The algorithms used to recover the sparse signal x from z can be grouped into

three different categories namely convex optimization techniques, greedy methods and
combinatorial approaches [42]. A detailed study of sparse methods for DoA estimation
can be found in [43]. In this work, we will discuss a cost effective greedy approach
as well as a technique that uses convex optimization for the signal reconstruction in
Section 4.2. But first, we take a look on how the DoA estimation task can be modeled
such that sparse recovery techniques can be applied.

4.1 DoA Estimation as a Sparse Recovery Problem

To develop the formulation of the DoA estimation problem as a sparse recovery task,
we first look at the fully sampled case with a single snapshot. The received signal
model in the fully sampled case, given by

y = A(θ)s+ η, (4.2)

which already shows a structural resemblance to the CS observation model (4.1).
However, in contrast to the CS framework, the received signal model in (4.2) features
a dense rather than sparse signal vector s. Furthermore, the steering matrixA(θ) =

[a(θ1), . . . ,a(θL)] ∈ CM×L has more rows than columns. To achieve a form that
is suitable for the CS framework, we construct a grid Θ = {θ̌1, . . . , θ̌G} consisting
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Chapter 4. Sparse Recovery Methods

of G�M grid-points that spans the whole field of view [0, 2π). Let the matrix Ǎ
collect all the steering vectors associated with the angular grid-points, i.e.,

Ǎ =
[
a(θ̌1), . . . ,a(θ̌G)

]
. (4.3)

Now, assume that the individual DoAs in θ lie on the constructed grid, i.e., θ` =

θ̌ρ(`), ` = 1, . . . , L, then we can write

A(θ)s = Ǎš, (4.4)

where all entries of š are zeros except for the entries with indices ρ(`), ` = 1, . . . , L.
This means that now š is a sparse vector with supp(š) = L. Note that the information
of interest, namely the DoAs, are now encoded in the support of š. The resulting
sparse recovery formulation of (4.2) reads as

y = Ǎš+ η. (4.5)

For the received signal model with subarray sampling (2.1), we take similar
steps as above for the fully sampled case. Now, each individual DoA θ is no
longer represented by a single steering vector, but by K reduced steering vectors
a(k)(θ) = G(k)a(θ), k = 1, . . . ,K. Hence, one dictionary element (also called atom)
is no longer a single vector, but a matrix

Ã(θ) = blockdiag
{
a(1)(θ), . . . ,a(K)(θ)

}
. (4.6)

Then, the corresponding dictionary matrix ˇ̃A is the concatenation of these elements,
i.e., ˇ̃A = [Ã(θ̌1), . . . , Ã(θ̌K)]. With this, we can write (2.1) for a single snapshot and
under the assumption that all DoAs in θ lie on the grid as

ỹ = ˇ̃Aˇ̃s+ η̃(n), (4.7)

where ˇ̃s consists of zeros except for L blocks withK entries each. Each one of these
blocks gathers theK transmit signals s(k)

` (n), k = 1, . . . ,K, that stem from the `-th
source. Due to this association of each block to one source, the non-zero blocks do
not appear at arbitrary positions in ˇ̃s, but only at a position corresponding to a certain
atom (4.6). The signal vector ˆ̃s displays a special kind of structured sparsity, known
as block-sparsity, which has led to an extension of the CS theory and algorithms
[44, 45, 46].

Up to now, we considered the single snapshot case. As we have already introduced
the concept of block sparsity, an extension to the multi snapshot case (also called
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Multi Measurement Vector (MMV) case in the CS community) is straight forward.
We construct a large observation vector ỹN by stacking the individual observations for
each snapshot, i.e., ỹN = vec{Ỹ }. Then, we can write

ỹN = ˇ̃AN
ˇ̃sN + η̃N , (4.8)

where η̃N = [η̃(1)T, . . . , η̃(N)T]T and each atom in ˇ̃AN is ÃN (θ) = IN ⊗ Ã(θ).
Therefore, ˇ̃sN has L non-zero blocks of sizeKN .

An alternative way to obtain a sparse formulation of the DoA estimation problem
in the SML case with uncorrelated transmit signals uses a sparse representation of the
covariance matrix [47, 48, 13]. Again, using a grid Θ for the individual DoAs, we can
obtain a sparse representation of the k-th subarray covariance matrix by first writing

C
(k)
y = Ǎ(k) diag

{
λ̌
}
Ǎ(k),H + σ2

ηIW , (4.9)

where λ̌ is a L-sparse vector, whose g-th entry denotes the power from a source at θ̌g
and Ǎ(k) = G(k)Ǎ. By stacking the vectorizations of C(k)

y and after some further
reformulations similar to (2.24)-(2.27), we obtain

cy = V̌ λ̌+ σ2
η1K ⊗ vec {IW } , (4.10)

where the g-th atom in V̌ is the co-array manifold V̆ (θ̌g).
Note that when we derived the sparse representations above, we assumed that the

actual DoAs θ lie exactly on the grid Θ. This assumption is in general not feasible,
which leads to a model mismatch. The errors induced by this so called grid mismatch
problem are well studied in the literature and led to the development of many off-grid
and gridless approaches that focus on alleviating this problem (see, e.g., [43]). In this
work, we will mainly investigate an off-grid approach that combines the grid-based
estimates of a sparse recovery method with gradient steps on the respective likelihood
function (details on these hybrid estimators will be discussed in Chapter 6).

4.2 Sparse Recovery Algorithms

4.2.1 Orthogonal Matching Pursuit

As many other algorithms that are used to solve CS problems, the OMP method
[49] has originally been developed before the major breakthrough in the CS theory
[41]. The OMP algorithm is a greedy approach, and therefore, its computational
complexity is much lower compared to convex optimization-based alternatives, such
as basis pursuit. Nevertheless, under certain conditions, there exist reconstruction
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guarantees for OMP that ensure the perfect reconstruction in a noiseless case and limit
the estimation error in the presence of noise [50, 51]. The same holds for the extension
of OMP to block-sparse vectors, so called Block OMP (BOMP), as has been shown in
[46, 52].

The main steps of OMP and BOMP are conceptually identical and can be
summarized as follows. The algorithm starts with the observation vector as the
residuum. In each step, we first search for the atom in the dictionary with the highest
correlation to the residuum, i.e., the atom that can explain the most signal portions of
the residuum, and add the DoA of the respective atom to the vector of DoA estimates.
Then, we determine the new residuum by eliminating all the signal portions from
the observation that can be explained by the current DoA estimates. This process
is repeated until either the number of DoA estimates is equal to the known sparsity
level of ˇ̃s, or until the norm of the residuum is smaller then a predefined threshold
if the sparsity level is unknown a priori. As we assume to know the model order L,
which gives us the sparsity level of ˇ̃s, we are performing a known number of steps.
A summary of BOMP in pseudo-code for the system model in (4.8) can be found in
Algorithm 1.

Algorithm 1: BOMP Algorithm for (4.8)
1 Initialize residuum ρ = ỹN and DoA estimates θ̂ = ∅
2 for ` = 1, . . . , L do
3 imax = argmaxi ‖ÃH

N (θ̌i)ρ‖22
4 θ̂ = [θ̂T, θ̌imax ]

T

5 ˆ̃s = Ã+
N (θ̂)ỹ

6 ρ = ỹN − ÃN (θ̂)ˆ̃sN

7 end

As mentioned above, reconstruction guarantees exist for OMP and BOMP [50, 51,
46, 52]. What is common for all of these guarantees is that the sufficient conditions
for a successful reconstruction provide an upper bound for the sparsity level (in our
case L) that depends on the so called mutual coherence of the dictionary. For a higher
sparsity level, the coherence of the dictionary has to be smaller. In the case of a fully
sampled array, the mutual coherence is given by

µ = max
i 6=j

|aH(θ̌i)a(θ̌i)|
‖a(θ̌i)‖2‖a(θ̌j)‖2

, (4.11)

and the sufficient condition for an exact reconstruction in the noiseless case is given by
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[50]
L <

1

2
(µ−1 + 1). (4.12)

Note that for noisy observations the sufficient condition is stricter than the inequality
given above [51]. For BOMP with the system model (4.8) a similar condition [46]
depends on the block-coherence

µB = max
i 6=j

1

KN
ρ
(
Ã′HN (θ̌i)Ã

′
N (θ̌j)

)
, (4.13)

with the spectral norm ρ and the normalized atom Ã′N (θ), which is formed by
normalizing the columns of ÃN (θ), and on the sub-coherence ν that describes the
coherence between individual columns of an atom ÃN (θ), which in our case is zero
by construction. In this scenario, exact reconstruction via BOMP for the noiseless case
is guaranteed for

L <
1

2

(
1

KN
µ−1
B + 1

)
. (4.14)

Comparing the mutual coherence expression (4.11) with (3.17), we see that it is
strongly connected to the beampattern of the antenna array. In fact, from the sufficient
condition above, we can again identify a trade-off in the number of samples used for
the DoA grid Θ, similar to the trade-off between complexity and outlier-probability
for grid-based ML estimatiors discussed in Section 3.1.3. In general, the mutual
coherence decreases if the beampattern is sampled by fewer samples, however, with
fewer samples the grid mismatch problem increases.

Note that for the remainder of the work, we will only distinguish between OMP
and BOMP if we want to emphasize some specific differences, otherwise we will
simply refer to both of them as OMP; which of the two OMP algorithms can always be
inferred from the used model (4.8) or (4.9).

4.2.2 Sparse Iterative Covariance-Based Estimation

The SPICE method has been developed in [47] and uses the sparse representation
of the covariance matrix (4.9) for the DoA estimation in the fully sampled case. In
[13], the SPICE method was extended to a non-coherent processing approach for
partly calibrated arrays. In fact, a non-coherent processing of partly calibrated arrays,
i.e., knowledge about fixed phase differences between the individual subarrays is not
used, yields the same system model as for time-varying arrays [4]. As the considered
subarray sampling is a special case of time-varying arrays, the application of the
non-coherent processing method of [13] to the systemmodel at hand is straight-forward.
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In the following, we briefly discuss the main ideas behind this non-coherent processing
approach, which we simply refer to as SPICE in the following (the distinction between
the SPICE method [47] for the fully sampled case and the non-coherent approach [13]
is clear from the considered system model). Furthermore, we present an extension
of the iterative update rules for SPICE proposed for fully sampled arrays in [47] to
systems with subarray sampling [3].

Starting from the sparse representation of the subarray covariance matrices in
(4.9), the parameter estimates are found by a covariance matching scheme similar to
[39, 10]. The cost function of the matching reads as

K∑
k=1

‖C(k),−1/2
y

(
Ĉ

(k)
y −C(k)

y

)
Ĉ

(k),−1/2
y ‖2F. (4.15)

After some reformulation steps (cf. [47]), the minimization of (4.15) can be written
as [13]

min
p,σ2

η

K∑
k=1

tr
{
Č

(k),−1
y Ĉ

(k)
y

}
s. t.: λ̌ ≥ 0, σ2

η ≥ 0,

G∑
g=1

wgλ̌g + w̄σ2
η = 1.

, (4.16)

with the weights

wg =
1

KW

K∑
k=1

aH(θ̌g)G
(k),HR̂

(k),−1
y G(k)a(θ̌g), (4.17)

w̄ =
1

KW

K∑
k=1

tr
{
Ĉ

(k),−1
y

}
. (4.18)

Note that we added a missing factor of 1/K compared to [13, Equation (46)], as
(cf. [47, Equation (17)])

K∑
k=1

G∑
g=1

λ̌ga
H(θ̌g)G

(k),HĈ
(k),−1
y G(k)a(θ̌g)

+
K∑
k=1

σ2
η tr

{
Ĉ

(k),−1
y

}
−−−−→
N→∞

KW.

(4.19)
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The optimization problem (4.16) is a SDP (in fact, it can also be rewritten as
a Second Order Cone Program (SOCP) [47]) and can be solved with any general
purpose solver. Alternatively, we solve (4.16) by some iterative update rules as has
been proposed in [47, Section III] for the fully sampled array. The resulting iterative
update rules in the i+ 1-th iteration for subarray sampling can be derived by following
the derivations in [47, Section III]1 and result in

λ̌[i+1]
g = λ̌[i]

g

∥∥∥∥ K∑
k=1

aH(θ̌g)G
(k),HČ

(k),−1
y Ĉ

(k),1/2
y

∥∥∥∥
2

w
1/2
g ξ[i]

, (4.20)

σ2,[i+1]
η = σ2,[i]

η

(
K∑
k=1

tr
{
Č

(k),−1
y Ĉ

(k)
y Č

(k),−1
y

})1/2

w̄1/2ξ[i]
, (4.21)

with

ξ[i] =
G∑
g=1

w1/2
g λ̌[i]

g

∥∥∥∥∥
K∑
k=1

aH(θ̌g)G
(k),HČ

(k),−1
y Ĉ

(k),1/2
y

∥∥∥∥∥
2

+ w̄σ2,[i]
η

K∑
k=1

tr
{
Č

(k),−1
y Ĉ

(k)
y Č

(k),−1
y

}
.

(4.22)

1Due to notational brevity, we omit the full derivation of these update rules. However, let us briefly
summarize the necessary steps. First, an equivalent optimization problem to (4.16) is formulated. This
equivalent problem can be solved by an alternating optimization. For each step of this alternating
optimization a closed form solution can be found. Finally, the iterative update rules follow from combining
these closed form solutions.
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In contrast to the previous estimators, which derived their estimation strategy directly
from the underlying stochastic model, we discuss data-based estimators in this chapter.
The use of data-based machine learning techniques for DoA estimation dates back to
Rastogi et al. [53], who first described the use of a NN for such a task. A comprehensive
review of the published literature on machine learning techniques for DoA estimation
up to the early 2000s can be found in [54]. Later, motivated by the astonishing results
of NNs in the image and speech processing domain, the methods shifted towards larger
fully connected and convolutional multilayer NNs [55].

Existing NN approaches for DoA estimation fall into three categories [3]. The idea
behind the methods of the first category of NNs is to pose the DoA estimation problem
as a classification problem (e.g., [56, 57, 58, 59, 60, 61]). To this end, the field of view
is split into several non-overlapping sectors. Now, the NN should determine, which of
these sectors contains an active source. For the single source case, this problem is a
simple multiclass classification problem, where the number of sectors corresponds
to the number of classes. However, for multiple sources, finding a suitable model
becomes much more difficult. A possible solution in that case can be obtained by
modeling the DoA estimation as a multilabel classification problem, which we will
discuss in more detail in Section 5.3.

For the second category, the goal of the NN is to estimate a discretized spatial
spectrum, from which we can derive the DoAs. One possible spatial spectrum that
can be utilized as such a proxy is the transmit power spectrum [62]. In this case, the
resulting training procedure shows a strong resemblance to a multilabel classification
approach based on the binary relevance principle (see Section 5.3). Alternatively, in
[63], the MUSIC spectrum that corresponds to the observed received signals is used
as the target of a regression network.

A more direct approach is the rationale behind methods from the third category.
There, the idea is to produce the DoA estimates at the output of the NN. Then, the cost
function of interest, e.g., MSE, can be directly used for the training of these regression
networks. This approach has the advantage that it works without a discretization of the
field of view. Due to this discretization, the methods of the previous categories only
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work if there is a large enough angular spread between two sources, such that each
grid point or sector can be associated with exactly one source. In [64], two different
DoA regression networks are used to resolve two narrowly spaced sources. The choice
between the two networks is realized by an SNR classification network. A more
general approach is presented in [65], where a NN is proposed that simultaneously
estimates the number of sources and their respective DoAs.

In the remainder of this chapter, we first discuss the design of the training data
set and a common architecture of the proposed NNs. Then, we present a regression
approach from the third category, before we take a look at several classification-based
approaches to the DoA estimation task. Here, we will also discuss similarities between
some classification approaches and spatial spectrum estimation methods, which fall
in category number two. Finally, a new NN-based scheme is presented that obtains
the DoA estimates by reconstructing the covariance matrix of the full array from the
subarray measurements.

5.1 Data, Preprocessing and Architecture

In contrast to the case of more RF chains than sources, for L ≥ W , the achievable
performance of classical estimators and sparse recovery methods is not satisfying for a
small number of snapshots (cf. Chapter 7). Hence, a special attention lies on the case
of L ≥W , when we develop the NN-based estimators. Therefore, we use data from
the SML system model (2.13) for the training of the NNs, because then, sufficient
identifiability conditions exist (see Section 2.2.2). Thereby, the model order L is fixed.
For each realization, the L DoAs θ are each drawn from a uniform distribution over
the complete field of view for the covariance reconstruction and regression-based
NNs. To ensure that two sources do not lie in the same sector when applying a
classification-based scheme, we first select L distinct sectors randomly and draw the
DoA within each sector again from a uniform distribution. According to (2.13), the
noise and transmit signal realizations follow a complex normal distribution. To ensure
identifiability, the transmit signals are assumed to be uncorrelated. Furthermore, we
apply some kind of data preprocessing by fixing the power of the strongest source
to σ2

s,max = 1, which works as some kind of data normalization. The power of
each weaker source in decibel is drawn from a uniform distribution between 0 dB
and σ2

s,min. This ensures that the power of a source cannot become arbitrarily small,
which would effectively reduce the model order. The noise power is uniformly
distributed between σ2

η,min and σ2
η,max as well. With these settings, we can produce

arbitrarily many data samples, each consisting ofKN i.i.d. received signal realizations
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y(k)(n), n = 1, . . . , N, k = 1, . . . ,K, for the training set. This allows us to feed new,
previously unseen realizations to the NN in each step of the gradient descent of the
learning algorithm, which makes the training inherently robust towards overfitting. As
we know the true DoAs for each data sample, the proposed NN estimators are based
on supervised learning.

As input data, we do not directly pass the complex-valued received signal realiza-
tions, since state-of-the-art machine learning frameworks such as TensorFlow [66] can
only model real-valued NNs. One way to overcome this problem is passing the real
and imaginary parts of the received signals to the NN. However, we use a different kind
of preprocessing of the input data. As has been shown in [67, 15], sample covariance
matrix information is a suitable format for the input data of NNs when we are working
in the DoA context. This is not very surprising, as the stochastic model of the input
data (2.13) is uniquely parameterized by the subarray covariance matrices. Hence, we
first form theK subarray sample covariance matrices Ĉ(k)

y , k = 1, . . . ,K, from the
received signal realizations. Then, we stack their real parameters, i.e., their diagonal
elements and the real and imaginary parts of their upper triangle, in one large vector
per data sample. The size of the input data is therefore KW 2, and thus, it does not
depend on the number of snapshots N , which allows us to pass data samples with a
different number of snapshots to the same network.

To obtain some comparability between the different NN approaches, we use a
very similar architecture for each network. We use fully connected, feedforward NNs
with Nh hidden layers, each consisting of Nu neurons. For the non-linear activation
function of the hidden layers, we employ the Rectified Linear Unit (ReLU). Therefore,
the architectural differences between the different NNs that we discuss below lie in the
structure of the respective output layers, which depend on the individual cost function
of each method.

5.2 End-to-End Regression

The end-to-end regression approach discussed in this section falls in the third of the
previously discussed categories and has been published in [3]. For the considered
NN, the output layer consists of L neurons, which directly provide the estimates of the
DoAs θ̂. Therefore, the ideal outputs would be the true DoAs θ of each data sample.
To achieve this goal, we train the NN directly on the cost function of interest.

The most common cost function for parameter estimation is the MSE. However,
the MSE criterion does not reflect that for DoA estimation the DoAs are subject to
a 2π-periodicity. A more suitable cost function for DoA estimation is therefore the
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Mean Squared Periodic Error (MSPE), given by

MSPE(θ, θ̂) = Eθ

[∣∣∣mod[−π,π)

(
θ − θ̂

)∣∣∣2] , (5.1)

that has been proposed [68], or the Mean Cyclic Error (MCE) [69], which is given by

MCE(θ, θ̂) = Eθ

[
2
(

1− cos
(
θ − θ̂

))]
. (5.2)

Both criteria coincide with the MSE for small deviations of θ̂ from the true DoA θ. An
advantage of the MCE over the MSPE lies in its differentiability at every point, whereas
the MSPE is non-differentiable at π. Although this non-differentiability of the MSPE
is only at one point, and hence, can be simply replaced by its left derivative without
any adverse impact on the learning procedure, we use the MCE with its continuous
derivative for the cost function of the NN.

Apart from the periodicity of the individual DoAs, an additional property should
hold for any distance between two DoAs. The order of the DoAs in θ̂, for L > 1,
should be irrelevant for the value of the cost function. To this end, we take the minimum
of the sum of the element-wise errors between the true DoA and all permutations of θ̂
when we compute the cost function f(θ, θ̂), i.e.,

f(θ, θ̂) = min
Π

L∑
`=1

f
(
θ`,π

T
` θ̂
)
, (5.3)

where we minimize over all permutation matrices Π = [π1, . . . ,πL]T. Such a
minimization over all permutations in the cost function of the NN adds a significant
computational load on the training procedure. However, in our simulations we observed
that if we compute the minimum over all permutations as in (5.3) and feed the labels
sorted in ascending order to the NN, then, at the end of the training, it produces ordered
DoA estimates where the optimal permutation matrix Π is the same for all realizations.
Furthermore, our simulations showed that if the minimization over all permutations
matrices is omitted, the NN produces the outputs in the optimal order such that we can
simply use the sum of the element-wise MCEs for the cost function. In the following,
we refer to this NN as MCENet.

5.3 End-to-End Classification

In this section, we discuss several schemes that formulate the DoA estimation problem
as a classification task. All of the presented methods share a common notion. The field
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of view from [0, 2π) is split into G distinct sectors with the same width θw = 2π/G,
such that the g-th sector ranges from [(g−1)θw, gθw). Now, we are no longer interested
in obtaining the continuous estimates of the DoAs directly, as in the previous section,
but in the indices of the sectors that include an active source. If the NN determines
that the g-th sector contains an active source, we can obtain an estimate for the DoA of
this source by taking the mid point of this sector (g − 1

2)θw.

5.3.1 Single Source Case

We first consider the single source case. For this scenario, the formulation of the
classification problem is straight-forward and has been presented in [56, 70]. Since
there is only one source, we are trying to find the one sector out of all G sectors,
which is most probable to include the active source. This is a standard multiclass
classification problem, which can be solved by training on the so called categorical
cross-entropy loss function. To that end, we encode the index of the true sector for
each training data sample in a one-hot vector, i.e., the label of the true sector is 1,
whereas the label for all other sectors is 0. At the neurons of the output layer a softmax
operation is applied, which produces G outputs z(g), g = 1, . . . , G, between zero
and one, whose sum is again one [71]. In combination with a training based on the
cross-entropy loss, given by

max
w

ln (z(g∗|x;w)) . (5.4)

wherew are the weights and biases of the NN and g∗ is the index of the active sector of
the training data sample x, these output values z(g) can be interpreted as estimates of
the posterior probabilities for each class g conditioned on x1. As has been discussed
in [72], the training based on (5.4) can be interpreted as a heuristic approach to the
theoretically optimal MAP estimator, as the NN is tuned to maximize the estimate of
the posterior probability of the correct class g∗ of the input vector x.

5.3.2 Multiple Source Case

For more than one source, things get a bit more difficult. First of all, let us assume that
in each sector, there can be at most one source. Otherwise, if the number of active
sectors is smaller then the number of sources L, we do not know which active sector
contains multiple sources. Note that this assumption requiresG to be sufficiently large.

1Hence, we denote the elements of the output vector z by z(·) to emphasize that they can be interpreted
as a density.
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The DoA estimation task can then be expressed as a multilabel-multiclass classification
problem, also referred to as multidimensional classification (see, e.g., [73, 74]), i.e.,
we try to find a subset consisting of L labels, where each label can attain G different
classes.

5.3.2.1 Power-Set Method

A direct extension of the multiclass formulation from the single source case to multiple
sources leads to the label power-set method [75]. There, we assign each combination
of sectors to one class. Since we do not care for the order of the DoA estimates and
two sources cannot lie in the same sector, for modeling the DoA estimation problem
with the label power-set method it suffices to consider all unordered L-tuples of sectors
without repetition, i.e., the necessary number of classes is given by the binomial
coefficient

(
G
L

)
. This means that, for G� L, the number of classes, which is equal to

the number of neurons in the output layer, grows exponentially with the number of
sources. Hence, the power-set method quickly becomes computationally infeasible.

5.3.2.2 Binary Relevance Method

A more tractable alternative is the binary relevance approach [75], which has been
used for DoA estimation in [58, 60, 61]. The idea is to train a network that realizes G
binary classifiers, i.e., one for each sector, where the g-th classifier tries to produce the
probability that a given data sample stems from a scenario where there is an active
source in the g-th sector. The label vector v for each training data sample is therefore a
vector of lengthG, which has a one at each element that corresponds to an active sector
and zeros elsewhere. To obtain outputs z(g), g = 1, . . . , G, between 0 and 1 that can
be interpreted as probabilities, a sigmoid activation is employed at every output neuron.
The loss function for the whole network is the sum of the binary cross-entropies of
each binary classifier, i.e.,

−
G∑
g=1

[vg ln (z(g)) + (1− vg) ln (1− z(g))] . (5.5)

This approach has two major drawbacks. First, with the binary relevance method,
the a priori knowledge about the number of sources L is not directly taken into account,
but only through the training data2. And second, the output of g-th binary classifier is

2In scenarios where the model order is not known a priori, this can be an advantage, as a single NN
can be trained for multiple model orders and the model order selection can be accomplished by the same
NN (e.g., using thresholding of the output).
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formed independently from the decision of the other G− 1 binary classifiers. This
means that the g-th classifier does not consider the output of the classifier for sector
g′, g′ 6= g, which might indicate that a source lying in sector g′ is much more probable
than in sector g. Especially in the considered DoA estimation scenario, this is a
problem, as the outputs between two binary classifiers corresponding to neighboring
sectors are highly correlated. This can be seen in the Fig. 5.1, which shows the
outputs z of the trained NN for an exemplary realization in blue. We would expect
that the resulting probabilities are close to zero except for three sectors such that the
DoA estimates can be found by taking the three largest entries (or thresholding if the
number of sources is unknown), but in fact, they take the shape similar to a spectrum
with three modes around the true DoAs. This resembles the spatial spectra that we
know from MUSIC or beamformer methods, where this behavior can be explained
by the respective spectrum generating function and the fact that there are only small
differences between the steering vectors for two closely spaced DoAs. Hence, for these
methods the L largest peaks in the spatial spectrum are chosen as the estimates, instead
of the L largest points. For DoA estimation based on a binary relevance classification
this peak finding procedure has been proposed in [58]. We will refer to the NN based
on the binary relevance scheme in combination with peak detection as BRClaNet.

Note that there is some connection between the discussed binary relevance scheme
and the estimation of the power spectrum via NNs presented in [62]. In both cases,
the field of view is first discretized, then, the training objective tries to obtain non-zero
outputs for the true positions while bringing the other outputs close to zero. Finally,
the largest peaks in the respective spatial spectrum serve as the DoA estimates.

A similar approach to the BRClaNet is considered in [59], where the output layer
again consists of G neurons. In contrast to the binary relevance scheme, a softmax
activation is employed in the last layer. The authors claim to train the network with the
cross-entropy loss function, however, in our attempts to replicate this method, this led
to a divergence of the NN. Instead, we scale the outputs of the softmax activation z
before we apply the cross-entropy loss function, i.e.,

−
G∑
g=1

vg ln (Lz(g)) (5.6)

is used as the training objective. However, an interpretation of this approach, which
we will refer to by CEClaNet, as an approximation of the MAP estimator, as in the
single source case, does no longer suggest itself. Again, we obtain a spatial spectrum
at the outputs (cf. Fig. 5.1), which is not very surprising since CEClaNet shares the
rationale behind the training loss with BRClaNet and the power spectrum estimation in
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Figure 5.1: Exemplary Classifier Output for Three Equally Powered Sources at
θ = [−135◦, 0◦, 60◦] at 20 dB SNR and N = 10.

[62], i.e., increasing the outputs corresponding to the active sectors, while maintaining
the outputs of the inactive sensors close to zero.

5.3.2.3 Classifier Chains

Another approach to multilabel classification that is able to cope with dependencies
between labels are binary classifier chains [76, 77]. One of these binary classifier
chains consists of a concatenation of G binary classifiers (one for each label), where
each node in this chain bases its decision on the original input data sample and the
output of the previous nodes. One problem with such an architecture is that its
performance is heavily dependent on the order of the binary classifiers. Therefore, the
averaging of the outputs over an ensemble of binary classifier chains with different
orders have been investigated in [76].

For the DoA estimation problem, we propose a different architecture, which has
been heavily inspired by these binary classifier chains. As we have a multilabel-
multiclass classification problem, where we know the number of true labels L a priori,
we can construct a classifier chain consisting of L multiclass classifiers. This means
that each node of this multiclass classifier chain shall provide an estimate for one
of the L sources. In other words, the proposed classifier chain estimates the DoAs
sequentially. To that end, each multiclass classifier in the chain has—apart from the
input data—the structure of a multiclass classifier for a single source as discussed
above, i.e., a neural network with G output neurons, whose outputs are subject to a
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Figure 5.2: Illustration of ChainNet Architecture for L = 3.

softmax activation and is trained based on a cross-entropy loss function. Again, each
node in the chain obtains the original sample covariance matrices of the subarrays and
the DoA estimates of the previous nodes as its input (see Fig. 5.2). We refer to such a
multiclass classifier chain as ChainNet3.

What we did not talk about yet, is how the training for each of those nodes looks
like. Each multiclass classifier shall produce the DoA estimate for one of the sources,
however, it is still unclear which source should be estimated by which classifier.
Therefore, we propose to estimate the sources in an ascending order of their true
DoAs4 similar to the order in which the MCENet approach produces its outputs. For
the training of the individual nodes, we can follow two different paths. One way is
training the first classifier as for the single source case. Then, using the first node of the
classifier chain to estimate the first DoA for the whole training set. This information
alongside the subarray sample covariance information is subsequently used in the
second node, etcetera. Another option is to train all of the nodes simultaneously with
the assumption that the estimates from the previous nodes are perfect. In that case, the
training data for the second node again consists of the sample covariance matrices of
the subarrays and the perfect information on which sector comprises the first source.
This variant does not only allow to train all the nodes simultaneously, but provided a
better estimation accuracy in our simulations.

Finally, wewant to discuss a final augmentation to themulticlass classifier approach,
denoted by ProjNet. In ChainNet, every node has to learn how to take the previous DoA

3After the submission of this dissertation, a more detailed discussion of the ChainNet approach has
been published in [78].

4We have also investigated an ordering of the sources by their aggregated instantaneous transmit
power. However, this approach resulted in a very poor estimation accuracy for more than two sources.
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estimates into account such that it can identify the next source. So to say, the NN has
to find a way to ignore the portions of the input data, which already led to the previous
estimates. This reminds us of the OMP algorithm discussed in Section 4.2.1. There,
we also estimate the source DoAs in an iterative procedure and use an orthogonal
projection in between steps to remove the signal portions that can be explained by the
already found estimates. Such a projection step can also be used between two nodes
of the classifier chain. Then, the input for the `-th multiclass classifier is no longer
the original subarray covariance information and the `− 1 previous DoA estimates
θ̂`−1, but the projected version of the original input data, i.e., the projected subarray
covariance matrices

P⊥
A(k)(θ̂`−1)

Ĉ
(k)
y P⊥

A(k)(θ̂`−1)
, (5.7)

and the `− 1 previous DoA estimates θ̂`−15. In other words, we replace the search
for the atom with the highest correlation in the OMP algorithm with a multiclass
classification network.

5.4 Covariance Matrix Recovery

The last method that we investigate in detail follows a concept, which does not perfectly
fit in one of the three NN categories discussed above. Similar to the methods from
the second category, the NN estimates some proxy that can be used to infer the DoAs.
However, for this approach, the NN does not estimate a spectrum of some sense, but
we try to reconstruct a covariance matrix for the fully sampled array from the subarray
sample covariance matrices.6 This estimate of the full covariance matrix can then
be used with any kind of classical DoA estimation algorithm such as MUSIC [12] to
obtain the DoA estimates θ̂.

At first, one might wonder if the estimation of the full covariance matrix from
subarray observations can be feasible. Recall that the subarray observations include all
the necessary information to estimate the parameters of the PDF of the received signals
(2.13), i.e., the DoAs θ, the transmit powers λ, and the noise power σ2

η . From these
parameters, we can naturally form an estimate of the full covariance matrix, by utilizing
the steering vectors of the full array. Hence, there exists a function that maps the sample
covariance matrices of the subarrays to a matrix that has the form of a covariance
matrix of the fully sampled array. Then, by the universal approximation theorem

5One might consider not feeding the previous DoA estimates to the next stage, as the respective
signal portions have been removed. However, this approach led to a much worse performance in our
simulations.

6The discussed approach has been published in [79] after the submission of this thesis.
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[80, 81], a multilayer, feedforward NN of appropriate width is able to approximate this
mapping. So, this covariance matrix reconstruction approach is feasible in general and
a NN should be able to solve this task.

The more interesting question is if the NN estimates the parameters internally and
reconstructs the full covariance matrix from there, or if there is a more direct mapping
between the subarray covariance matrices and their fully sampled counterpart. In the
former case, any subsequent classical DoA estimation scheme that is applied to the
full covariance matrix estimate can only be as good as the internal DoA estimate of the
NN. In that case, a NN which directly produces these parameter estimates at its output
should be superior, as we know the mapping from these parameters to the respective
full covariance matrix perfectly and can therefore train the NN with the same cost
function as in the case where the output forms the full covariance matrix estimate. On
the other hand, if the NN finds a direct mapping from the subarray covariance matrices
to the full covariance information, then, this suggests that there is some additional
structural information embedded in the full covariance matrix that can be leveraged by
the NN.

In fact, such structural information is well known for the case of Uniform Linear
Arrays (ULAs), where the fully sampled covariance matrix is a hermitian Toeplitz
matrix. For ULAs, we can construct a primitive estimator for the full covariance
matrix by averaging the (weighted) entries of the subarray covariance matrices that
correspond to the same covariance lag7 and completing the full covariance matrix
from these estimates, similar to the construction of the co-array manifold of sparse
linear arrays (e.g., [82]). For example, suppose that we have a four element ULA and
two RF chains. We write the covariance matrix of the full array as

Cfull =


c0 c1 c2 c3

c∗1 c0 c1 c2

c∗2 c∗1 c0 c1

c∗3 c∗2 c∗1 c0

 , (5.8)

where ci denotes the i-th covariance lag. Furthermore, let us assume that for the
k-th subarray we always sample the first antenna and the (k + 1)-th antenna, i.e.,
Gk = {1, k + 1}. Then each of the K = 3 subarrays samples the zeroth covariance

7For ULAs, combinations of two antenna elements that belong to the same covariance lag have the
same distance between both antennas. The resulting entries in the full covariance matrix are located on
the same off-diagonal.
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lag twice and the k-th covariance lag once, i.e.,

C
(k)
y =

[
c0 ck
c∗k c0

]
. (5.9)

Then a primitive estimate of the full covariance matrix from the subarray sample
covariance matrices

Ĉ
(k)
y =

[
ĉ

(k)
0,1 ĉ

(k)
k

ĉ
∗,(k)
k ĉ

(k)
0,2

]
(5.10)

can be constructed by

Ĉfull =


γ0 γ1 γ2 γ3

γ∗1 γ0 γ1 γ2

γ∗2 γ∗1 γ0 γ1

γ∗3 γ∗2 γ∗1 γ0

 , (5.11)

with

γ0 =
1

2K

K∑
k=1

2∑
i=1

ĉ
(k)
0,i , (5.12)

γk = ĉ
(k)
k . (5.13)

In the low snapshot domain, we can replace (5.13) with

γk =
γ0

2∑
i=1

ĉ
(k)
0,i

ĉ
(k)
k , (5.14)

to combat differences in the amplitude of the transmit signal realizations between
different snapshots. However, note that for both variants, the resulting estimate of the
full covariance matrix (5.11) is not guaranteed to be positive semidefinite, especially
if the number of snapshots is low.

Now, let us discuss the design of a NN for the covariance matrix reconstruction.
Again, we use a supervised learning approach, where now, the labels are the ideal
full covariance matrices for each realization. By ideal full covariance matrix, we
understand the data generating covariance matrix for a certain realization, i.e., the
matrix

Cfull = A(θ) diag{λ}AH(θ) + σ2
ηIM , (5.15)

where the realizations of θ,λ and σ2
η have been drawn according to the data model

described in Section 5.1. This means, that the labels do not depend on the observed
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transmit signal and noise realizations but the true second oder moments, in contrast to
the sample covariance matrices of the subarrays that are used for the input data.

For the output format and cost function of the NN, we investigate two different
approaches. In the first approach, which we will refer to by ReconNet, the outputs of
the network are estimates of the real parameters of the full covariance matrix, i.e., its
diagonal entries, and the real and imaginary parts of the upper triangular elements.
Therefore, the ReconNet hasM2 output neurons. From these parameter estimates,
we can reconstruct an estimate of the full covariance matrix, which we denote by
Ĉrecon. The training on the network is then based on the MSE between the label
covariance matrix Cfull and the estimate Ĉrecon. Note that the estimate of the full
covariance matrix Ĉrecon is not a positive semidefinite matrix, which leads us to the
second approach, which we denote by GramNet. There, the output consists of 2M2

neurons, which form the real and imaginary entries of a matrix F ∈ CM×M . The
estimate of the full covariance matrix is then formed by the regularized Gramian
Ĉgram = FHF + εIM . This ensures that the estimate Ĉgram is not only hermitian, but
a positive definite matrix (with smallest eigenvalue larger or equal to ε). Hereby, the
regularization parameter ε is chosen much smaller than σ2

η,min such that its influence
on the estimate is negligible, but large enough to guarantee strict positive definiteness
during training. With this, we can use any distance d(A,B) between two positive
definite matricesA andB to obtain a cost function

fgram

(
Cfull, Ĉgram

)
=
(
d
(
Cfull, Ĉgram

))2
, (5.16)

for the training of GramNet.
We can find many different distance measures between two positive definite

matrices. One of them is the well known Frobenius norm, which can be used to
compute a distance between any two matrices of the same size. However, we are
especially interested in distances, which measure the length of the shortest path
between the two matrices that lies completely inside the positive definite cone. So
called geodesic distances fulfill this property (see, e.g., [83, Chapter 7.1]). For the
positive definite cone, the affine invariant distance, given by [84, Chapter 6.1]

dAffInv(A,B) =
∥∥∥ln
(
A−1/2BA−1/2

)∥∥∥
F
, (5.17)

where ln(A) denotes the matrix logarithm ofA, and the log-euclidean distance, which
reads as [85]

dLogEuc(A,B) = ‖ln (A)− ln (B)‖F (5.18)

are such geodesic distances. Apart from these geodesic distances, we study the use of
several other non-geodesic distance measures summarized in Table 5.1, which have
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Name d(A,B)

Frobenius ‖A−B‖F
Affine Invariant [84, Chapter 6.1]

∥∥ln
(
A−1/2BA−1/2

)∥∥
F

Log-Euclidean [85] ‖ln (A)− ln (B)‖F
Cholesky-Frobenius [87] ‖ chol{A} − chol{B}‖F
J-Divergence [88] 1

2

√
tr{AB−1 +BA−1 − 2I}

Jensen-Bregman LogDet Diver-
gence [89]

√
ln(det{1

2(A+B)})− 1
2 ln(det{AB})

Bures-Wasserstein [90]
√

tr{A}+ tr{B} − 2 tr{(A1/2BA1/2)1/2}

Table 5.1: Distance Measures for Positive Definite Matrices

been proposed for positive semidefinite matrices (cf. [86]), for the cost function of
GramNet.

We conclude this section by a brief summary of the MUSIC estimator [12], as
we will use it to obtain DoA estimates from the estimated full covariance matrix in
our simulations. The main concept behind the MUSIC estimator lies in the spectral
representation of the true full covariance matrixCfull. The eigenvectors corresponding
to the L largest eigenvalues span the so called signal subspace, in which the steering
vectors corresponding to the true DoAs lie. The space spanned by the other eigenvectors
is denoted by noise subspace and is orthogonal to the signal subspace. Therefore,
we can estimate the noise subspace from the covariance estimate Ĉ by means of
an eigenvalue decomposition and identifying theM − L smallest eigenvalues. The
respective eigenvectors Unoise form a basis of the estimated noise subspace. Hence,
for an ideal estimate of the noise subspace, any steering vector that lies in the signal
subspace is orthogonal to Unoise. In practice, the estimate of the noise subspace is
not ideal, therefore, we cannot expect that there exist steering vectors that are truly
orthogonal to the estimated noise subspace. Instead, we look for the steering vectors
whose projection on to the estimated noise space is small, i.e., the angle between these
steering vectors and the noise subspace is large. To that end, we evaluate the so called
MUSIC spectrum

SMUSIC(θ) =
1

aH(θ)UnoiseUH
noisea(θ)

, (5.19)

and identify the DoA estimates by finding the L largest peaks in SMUSIC(θ).
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Hybrid DoA Estimation 6
As we have already discussed in Chapter 4, the considered sparse recovery methods
are grid-based estimators, which suffer from the so called grid mismatch problem.
Similarly, the GLS estimator presented in Section 3.2, the classification NNs as well as a
MUSIC estimator applied to the covariance recovery NNs provide estimates for a finite
grid of DoA values. Increasing the number of grid-points to reduce the grid mismatch
is not always feasible due to the resulting increase in computational complexity or the
coherence of the dictionary. Instead, we can employ a so called hybrid DoA estimation
scheme. By hybrid DoA estimation we understand the combination of two different
estimation approaches in a two-stage process. In the first step, we evaluate one of
the estimators, which has been presented in the previous chapters. Then, we improve
the estimate obtained in the first step by gradient steps on the respective likelihood
function. From another perspective, hybrid DoA estimation is an approximation of the
ML estimator, where the initial grid search on the likelihood function is replaced by
a different estimator with reduced complexity. In that sense, hybrid DoA estimation
cannot only alleviate the grid mismatch problem, but also improve the estimates of the
MCENet, which can produce continuous estimates by construction, as it provides a
direct way to combine the purely data based approach with the knowledge about the
underlying stochastic model.

In the case of the NN-based estimators described in Chapter 5, an additional
intermediate step is necessary in the SML case. As these estimators do not provide
estimates for the noise variance and transmit covariance matrix, we have to find initial
values of these parameters for the subsequent gradient steps. To that end, we can use
the GLS estimates of these nuisance parameters for the fixed angular estimates θ̂, which
requires the solution of a convex optimization problem as discussed in Section 3.2. In
the DML case, explicit estimates of the noise power and the transmit signals are not
necessary as the gradient steps can be implemented on the concentrated log-likelihood
function (3.8).

At the end of this brief chapter, we want to address an issue that we encountered
when performing gradient steps on the SML likelihood in the case of more sources than
RF chains. There, we observed that the gradient is often dominated by the derivative
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w.r.t. the noise variance σ2
η , i.e., the partial derivative in this direction is by magnitudes

larger than for the other directions. This, in turn, can lead to a slow progress in DoA
estimates, which are the parameters of interest, if a simple gradient ascent approach is
employed. Instead, we propose to use a block coordinate ascent method that alternates
between updating the DoA estimates, the estimate of the signal covarianceRs, and
an estimate of σ2

η . This circumvented the aforementioned problem and led to a much
faster convergence in our simulations, as the stepsize can be adapted individually in
each step of the block coordinate ascent.

54



Simulation Results – DoA Estimation 7
In this chapter, we assess the achievable MSE performance of the previously presented
DoA estimation algorithms by means of Monte Carlo simulations. After discussing
some of the common parameters for our simulations, we take a look at scenarios with
fewer sources than RF chains. Finally, we present simulation results for a scenario
with an equal number of sources and RF chains.

7.1 Simulation Setting and Neural Network Parameters

In our simulations, we focus on Uniform Circular Arrays (UCAs) with a field of view
from 0 to 2π. For a UCA with M omnidirectional antennas, the steering vector is
given by

aUCA(θ) =


e−j2π

R
λ

cos(θ) cos(φ)

e−j2π
R
λ

cos(θ− 2π
M

) cos(φ)

...
e−j2π

R
λ

cos(θ− 2π(M−1)
M

) cos(φ)

 , (7.1)

where θ is the azimuth angle and φ is the elevation angle to the source, R denotes
the array radius, and λ is the wavelength of the impinging electro-magnetic wave.
In the following we assume that all the sources lie in the same plane as the antenna
elements, such that the elevation φ is 0 for all sources, and therefore, the DoAs are
fully described by the azimuth angles θ. If not stated otherwise, the considered array
consists ofM = 9 antennas and the ratio of radius to wavelength is 1. Furthermore,
we consider a scenario with W = 3 RF chains, which are used to sample K = 4

subarray configurations. The selected antennas per subarray are given in Table 7.1,
which uses a clockwise numbering of the antenna elements of the UCA.

In general, we use an oversampling factor Q = 32 for the DoA estimation
algorithms. This means that for the sparse recovery methods OMP and SPICE the
field of view is sampled by Q timesM is G = 288 grid points. Similarly, the MUSIC
spectrum of the NN-based methods from Section 5.4 is evaluated on the same grid and
the number of sectors for the classification based methods in Section 5.3 is also Q ·M .
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k Antenna Elements
1 1, 2, 9

2 1, 3, 8

3 1, 4, 7

4 1, 5, 6

Table 7.1: Subarray Sampling Scheme

Parameter Value
σs,min −9 dB
ση,min −10 dB
ση,max 30 dB
Nh 4

Nu 4096

Weight Initialization Glorot [91]
Batch Size 256

Optimizer Adam [92]
Learning Rate 10−4

Samples per Training Set 64 · 106

Table 7.2: Simulation Parameters DoA Estimation

However, due to the exponentially growing complexity of the initial grid search in
the ML and GLS estimators, we utilize a reduced oversampling factor in these cases.
For L = 2, we choose an oversampling factor of 16, and for L = 3, Q is only 8, as
otherwise the evaluation of meaningful amount of Monte Carlo simulations becomes
intractable.

As discussed in Chapter 5, the architecture of the employed NNs is identical apart
from the input and output layers. The common parameters for the hidden layers, the
training set, and the optimizers is summarized in Table 7.2. The respective dimensions
of the input and output layers of each network can be easily inferred from the parameter
values provided above.
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7.2 Fewer Sources than RF Chains

7.2 Fewer Sources than RF Chains

7.2.1 MSE Approximation

First, we verify the MSE approximation presented in Section 3.1.3. In Fig. 7.1, we
consider the single source case and show the Root Mean Squared Periodic Error
(RMSPE) of the grid-based DML estimator and the corresponding grid-based MSE
approximation for different SNR. For comparison, we add the performance of the
gridless DML estimator that is initialized by a grid search, Athley’sMSE approximation
for the gridless case [28], and the CRB (cf. Section 2.3.1). To obtain accurate DML
estimates, 105 Monte Carlo runs were performed for each SNR. The source is located
at the fixed DoA θ? = 10.5◦. Furthermore, we consider a single snapshot only
and the respective transmit signal is 1. The oversampling factor is Q = 1, i.e., we
have an extremely coarse grid. In Fig. 7.1, we see that our proposed grid-based
approximation can predict the threshold point, i.e., the transition from the threshold to
asymptotic region, accurately. In contrast, Athley’s MSE approximation predicts the
threshold point at a significantly lower SNR. Additionally, we can identify that with
the initialization on a very coarse grid, Athley’s gridless approximation can no longer
predict the performance of the gridless DML estimator, as the subsequent gradient
steps cannot recover from a grid-based outlier initialization.

The effect of the local error approximation can be observed in Fig. 7.2 for an
oversampling factor of 12. In this case, we can see that the local error approximation
is not only an accurate approximation for the high SNR regime (above 16 dB SNR),
where the MSE saturates to the grid resolution, but also between 8 dB and 16 dB.
There, we are also operating in the asymptotic region and the grid-based approximation
gives a more precise prediction than the CRB approximation that is used by Athley’s
method.

For multiple sources, we see similar results as for the single source case. Fig. 7.3
depicts the simulation results for two sources at 0.25◦ and 50.5◦, respectively, for an
oversampling factor of 16. Again, the transition between the asymptotic region and
the threshold region is well predicted in this scenario. More importantly, Fig. 7.3
shows that our derived local error approximation is able to accurately approximate the
MSE in the asymptotic region (above 16 dB), which validates the proposed local error
approximation also for the multiple source case.

As has been discussed in [27] there exist some pathologic cases for very low
oversampling factors, when the true DoAs lie centered between two or more grid
points, and the asymptotic log-likelihood Ū(θ) is almost equal for these grid points, but
significantly lower than the asymptotic log-likelihood at the true DoAs Ū(θ?). Then, it
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Figure 7.1: Approximated RMSPE vs. Simulated RMSPE, Single Source at θ? =

10.5◦, Constant Signal (s = 1), N = 1, 105 Monte Carlo Trials, Q = 1.
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Figure 7.2: Approximated RMSPE vs. Simulated RMSPE, Single Source at θ? =

10.5◦, Constant Signal (s = 1), N = 1, 105 Monte Carlo Trials, Q = 12.
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Figure 7.3: Approximated RMSPE vs. Simulated RMSPE, Two Sources at θ? =

[0.25◦, 50.5◦]T, Constant Signal (s = [1, 1]T), N = 1, 105 Monte Carlo Trials,
Q = 16.

can happen that the selected mainlobe grid point θ̌0 is no longer representative for the
whole mainlobe. In order to clarify this, we may obtain a high outlier probability P out

i

for specific sidelobe i by computing the pairwise error probability between θ̌0 and θ̌sidei .
However, if we compute the error probability between this sidelobe representative
and the mainlobe grid-point with the second highest Ū(θ), we may obtain a very low
P out
i . Then, some of the noise realizations, which lead to U(θ̌sidei ) > U(θ̌0), do not

result in an estimate in the i-th sidelobe, but have the maximum of the corresponding
log-likelihood U(θ) at the mainlobe grid point with the second highest asymptotic
log-likelihood Ū(θ). Such a scenario then leads to an overestimation of the outlier
probability by the proposed grid-based MSE approximation.

7.2.2 Comparison of DoA Estimators

Now, we assess the performance of the DoA estimators presented in the previous
chapters for fewer RF chains than sources. To this end, we performed Monte Carlo
simulations with L = 2 equally powered sources. The DoAs for each realization are
drawn from a uniform distribution between 0 and 2π. This enables a fair comparison
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of all the methods, in contrast to focusing on a fixed angle, where the results of the
NN-based methods might be skewed by the training set realizations. Note that we do
not enforce a minimal separation between the sources and we do not evaluate multiple
noise and transmit signal realizations for each DoA. Therefore, we include the results
of a Genie ML estimator as a benchmark for the achievable performance rather than
comparing the algorithms with the CRB1. The Genie ML estimator is an ML estimator
that is initialized with the true DoAs, instead of performing a grid search, and from
there uses a gradient approach to find the closest local maximum of the likelihood
function, which is does not coincide with the true DoAs due to noise.

In Fig. 7.4, we show the RMSPE averaged over 104 Monte Carlo runs for a selection
of the discussed DoA estimation algorithms2. We can observe that the hybrid ChainNet
approach attains the Genie ML performance. Second comes the hybrid MCENet. The
DML estimator, which uses a reduced oversampling factor of 16 in this case, is able
to attain the MCENet performance at high SNR. From the sparse recovery methods,
the hybrid SPICE method achieves the best results, while the OMP based estimators
(“OMP” and “CovOMP” for the system models (4.8) and (4.9), respectively) achieve
the worst performance of all the presented approaches. However, apart from the hybrid
ChainNet approach, none of the hybrid DoA estimators achieves the performance of
the Genie ML benchmark. This means that the considered DoA estimators are affected
by outliers. To confirm this conclusion, we take a look at the RMSPE of the best
95% of realizations for each method in Fig. 7.5. There, we see that apart from the
OMP-based approaches3, the hybrid DoA estimators achieve the Genie ML bound, i.e.,
the large difference between some of the hybrid DoA estimators and the Genie ML in
Fig. 7.4 comes from less than 5% of the realizations. This means that the differences
observed in Fig. 7.4 reflect the robustness of the different methods with respect to
outliers.

To obtain a better comparison of the susceptibility to outliers of the different
methods, we show a cutout of the empirical Cumulative Density Functions (CDFs)
at 20 dB SNR in Fig. 7.6. Again, we can observe that the best performing method of
Fig. 7.4, viz. the hybrid ChainNet estimator, does not experience any outliers at this
SNR. Also, we see that the hybrid MCENet approach and the DML estimator have the
least amount of outlier estimates of all the other estimators, which explains their good

1By pairing only one realization of the noise and transmit signals with each DoA, an immense number
of Monte Carlo trials would be necessary to obtain a meaningful bound by the CRB. Furthermore, for
closely spaced DoAs, the evaluation of the CRB becomes numerically instable, and also, the true value of
the CRB may become so large that the periodicity of the angular domain must be considered (cf. [69]).

2The results of the missing DoA estimators can be found in Appendix A.
3The high susceptibility of the OMP methods to outliers is discussed in more detail in Appendix B
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Figure 7.4: RMSPE vs. SNR, L = 2, N = 10.
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Figure 7.5: RMSPE vs. SNR, L = 2, Top 95% of Realizations, N = 10.
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Figure 7.6: Empirical Cumulative Density Function, L = 2, SNR= 20 dB, N = 10.

performance in Fig. 7.4.

Interestingly, the realizations that lead to outliers in the estimates of the different
methods are not the same. This can be observed in Fig. 7.4, where we filtered the
realizations with a distance smaller than 10◦ from all the Monte Carlo runs. In that
case, the hybrid GramNet approach, which has been trained on the affine invariant
distance and applies a MUSIC estimator on the reconstructed full covariance matrix,
and the DML estimator are now able to also achieve the Genie ML results. Their
performance is apparently heavily affected by closely spaced sources. Also for the
hybrid BRClaNet, we observe a significant improvement, as for closely spaced sources
the peak detection in the NN output becomes an issue. On the contrary, introducing a
minimum separation between the sources has no major impact on the hybrid MCENet
results. The same applies to the hybrid SPICE method, however, the hybrid OMP
estimators are benefitting from the introduced minimum distance (cf. Appendix B).

Apart from theChainNet approach, theMCENet estimator showed a high robustness
with respect to outliers. This robustness can be motivated by its training objective,
which is the cost function of interest, i.e., minimizing the distance between the estimates
and the true DoAs. As we have seen, outliers lead to a huge degradation. Therefore,
the training objective lies first and foremost on outlier reduction. However, this
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Figure 7.7: RMSPE vs. SNR, L = 2, 10° Gap Between Sources, N = 10.

comes at a cost, which can be seen in Fig. 7.8, where we show the results of the non-
hybrid version of the algorithms. The MCENet approach provides robustness against
outliers, but without subsequent gradient steps, its performance for the non-outlier
realizations cannot compete with most of the other methods. In contrast, the ChainNet
estimator does not suffer from a trade-off between robustness and high accuracy for all
realizations. Additionally, the DML estimator and the non-hybrid GramNet approach
yield a comparable accuracy as the ChainNet method for all realizations, and still
feature a higher outlier robustness than SPICE, especially for sources that are not
narrowly spaced.

7.3 Equal Number of Sources and RF Chains

For L = 3 sources, we are operating in the domain of L ≥ W . Here, a direct
evaluation of the ML estimators becomes practically infeasible. For this case, we plot
the simulation results in Fig. 7.9 for 103 Monte Carlo trials with randomly drawn DoAs,
similar to the simulations for L = 2. Now, with more sources, none of the presented
algorithms achieves the performance of the Genie ML estimator. Furthermore, the
hybrid ChainNet and MCENet approaches still provide the best RMSPE averaged
over all DoA realizations. A method that we have not considered before is the
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Figure 7.8: Empirical Cumulative Density Function, L = 2, SNR= 20 dB, N = 10.
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Figure 7.9: RMSPE vs. SNR, L = 3, N = 10.

GLS estimator4. Unfortunately the hybrid GLS estimator (operating on a grid with
oversampling factor of 8) provides an unsatisfying performance, especially compared
to the more cost efficient hybrid SPICE method, which is not based on a NN as well.

As for the two source case, we show the results for the top 90% of realizations
in Fig. 7.10 and the performance for all realizations with a minimum gap of 10◦

between two sources in Fig. 7.11. Again, we can observe in Fig. 7.10 that the machine
learning-based methods achieve the Genie ML performance for 90% of the realizations.
However, removing the 10% worst estimates is not enough for the classical methods to
prevent all of the outliers. Introducing a 10◦ gap between sources, also yields similar
results as for the two source case. Fig. 7.11 shows a significant improvement for the
hybrid GramNet and BRClaNet approaches, which use a peak detection algorithm,
and are able to draw even with the hybrid ChainNet and MCENet estimators for the
remaining realizations. Yet, this gap is not enough for the GramNet to attain the Genie
ML results, as has been the case for L = 2.

Again, we can observe that the MCENet estimator is only viable with a subsequent
gradient approach on the likelihood function in Fig. 7.12 and Fig. 7.13, which show
the empirical CDF for the hybrid and non-hybrid DoA estimators. In contrast, the

4For L < W , the DML estimator provides a better alternative, with the same computational
complexity.
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Figure 7.10: RMSPE vs. SNR, L = 3, Top 90% of Realizations, N = 10.
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Figure 7.11: RMSPE vs. SNR, L = 3, 10° Gap Between Sources, N = 10.
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Figure 7.12: Empirical Cumulative Density Function of the Hybrid Estimators, L = 3,
SNR= 20 dB, N = 10,M = 9.

ChainNet and GramNet approaches yield a very good estimation performance even in
their non-hybrid forms, while suffering from fewer outliers than the SPICE estimator.

What we have not discussed yet, is how the different algorithms behave for a
varying number of snapshots. To that end, we first take a look at Fig. 7.14, which
shows the empirical CDFs for N = 1000 snapshots as solid lines. The CDF plot
for N = 10, shown in Fig. 7.12, has been added to Fig. 7.14 as dashed lines. From
the CDFs for N = 1000, we can see that more snapshots improve not only the
overall achievable RMSPE (shift to the left), but we have fewer outliers than for
N = 10. Especially, the SPICE method profits heavily from the increased number of
observations. This behavior of the SPICE estimator is not surprising, as it is based
on a covariance-matching criterion, similar to the GLS estimator, which has been
proven to be a consistent estimator (for a sufficiently dense grid) [10]. For a high
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Figure 7.13: Empirical Cumulative Density Function, L = 3, SNR= 20 dB, N = 10,
M = 9.
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Figure 7.14: Comparison of Empirical Cumulative Density Functions for Varying N ,
L = 3, SNR= 20 dB,M = 9.

number of snapshots N , the sample covariance matrices are consistent estimates
of the true subarray covariance matrices, which again justifies the validity of the
covariance-matching objective.

In a similar fashion to Fig. 7.14, the CDFs for a differing number of antenna
elements are compared in Fig. 7.15. The plot shows the results for an antenna array with
M = 25 antennas andW = 3 RF chains in comparison to the previously considered
9-element antenna array. Again, we observe an improvement of the overall RMSPE
and a decline in the number of outliers. However, 25 antennas are not enough to
fully close the gap between the SPICE algorithm and the NN-based methods. Note
that with the number of antennas, the number of subarrays that need to be sampled
increases as well. Depending on the time that is required to switch between two
subarray constellations, a trade-off between more antenna elements and an increased
number of snapshots is necessary.

Last but not least, we take a brief look at the computational complexity of the
presented estimators. To this end, we provide computation times of the MCENet,
ChainNet, GramNet, GLS and SPICE algorithms in Table 7.3. Naturally, computation
times do not achieve the same validity as a rigorous complexity analysis in Landau
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Figure 7.15: Comparison of Empirical Cumulative Density Functions for VaryingM ,
L = 3, SNR= 20 dB, N = 10.

notation, due to their dependence on the used hardware and implementation, however,
they may still yield some qualitative insights. The figures given in Table 7.3 denote
the times to compute estimates for 1000 realizations in MATLAB on a simulation
server equipped with two Intel Xeon Gold 6134 processors. Apart from the necessary
computation time for the hybrid approaches, we also show results for the evaluation
of each algorithm without consecutive gradient steps. From our simulations, we see
that without the consecutive gradient approach, the required time for the MCENet
inference steps is about one tenth of the evaluation time of the “SPICE” estimator5. The
ChainNet evaluation takes roughly the time of three MCENet inferences, as expected.
A similar time is required for the GramNet estimator, due to the additional MUSIC
algorithm that is applied after the NN evaluation, but it is still significantly faster
than “SPICE”. In comparison, the iterative solution of the SPICE method “SPICE
iter.” with a fixed iteration count of 104 iterations6 and the GLS estimator, whose
complexity grows exponentially with the number of sources, are again about a factor

5Here, the “SPICE” implementation uses YALMIP [93] for modeling the optimization problem,
which is then solved by the MOSEK solver [94].

6In fact, 104 iterations is still not enough to obtain the same solution as the general purpose solver
(cf. [3]).
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MCENet ChainNet GramNet SPICE SPICE iter. GLS
non-hybrid 5.4 s 15.8 s 15.3 s 127.2 s 1002.8 s 1486.2 s
hybrid 52.3 s 61.8 s 62.5 s 174.7 s 1045.3 s 1697.9 s

Table 7.3: Computation Times of DoA Estimators

10 slower than the “SPICE” solution. For the hybrid versions of these algorithms,
we see that these steps, which have been implemented by a block coordinate ascent,
take roughly the same time for the hybrid MCENet, ChainNet, GramNet, and SPICE
approaches7. In contrast, for the hybrid GLS approach the gradient steps take much
longer to converge, due to the numerous poor initial estimates provided by the GLS
estimator. Note that the computation times for BRClaNet are not listed here, but are
expected to be close to the MCENet times, as the additional effort for the peak search
is negligible.

7Note that the required time for the gradient steps heavily depends on the target accuracy. A looser
stopping criterion may significantly reduce the required computation times. For the presented simulations,
the stopping criterion for the gradient steps is very tight (< 10−6 absolute change in the log-likelihood).
This high accuracy is necessary to achieve meaningful results for the information criteria discussed in the
next chapter.
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Model Order Selection 8
Up to this point, we have assumed that we know the number of sources L. Knowing the
correct number of sources is essential for obtaining accurate DoA estimates. However,
in general, this a priori knowledge is not available. Instead, L has to be estimated from
the same observations that the DoA estimation is based on. This problem is called
model order selection and will be the subject of this chapter.

Model order selection problems do not only arise for DoA estimation, but in a
plethora of different applications. Two excellent overview articles that summarize the
most common techniques for model order selection are [95] and [96]. In [95], the focus
lies on so called information criteria, which are arguably the most well known and
broadly used methods for this task. We will discuss information criteria in more detail
in Section 8.2. Apart from information criteria, the authors of [96] present further
parametric and non-parametric model order selection techniques, such as Bayes factors
and cross validation, and discuss common pitfalls and misconceptions in this field.

In the context of DoA estimation, information criteria have been the method of
choice over the last decades. The most famous work on model order selection for
DoA estimation problems is probably [18]. There, the authors derive a formulation
of the information criteria for the SML case that only depends on the eigenvalues of
the sample covariance matrix. The major benefit of the closed form solutions for the
information criteria derived therein is that they work without a direct computation of
the maximum likelihood estimates of the DoAs, which are computationally expensive.
In [97], it has been shown that this estimator is consistent, i.e., the probability of a
misclassification goes to zero for increasing N .

Employing NNs for model order selection has been first proposed in [98, 67] for
differentiating between no source, one source, or two sources. To this end, the authors
train the NN on an MSE cost function, where each class is mapped to a point in the
two dimensional plane, similar to a modulation scheme in communications. Recently,
the model order selection problem for fully sampled arrays has been revisited for state
of the art feedforward NNs in [65, 99, 15].

In the context of subarray sampling, the formulation of the information criteria
presented in [18] is no longer applicable. Instead, the authors of [14] propose to simply

73



Chapter 8. Model Order Selection

replace the ML estimates of the DoAs, which are usually needed for the evaluation
of information criteria, by GLS estimates. However, as we have seen in Chapter 7,
the GLS estimator suffers heavily from outliers, while having a high computational
complexity. Therefore, in [3], utilizing hybrid DoA estimators for this task has been
investigated. Moreover, an extension of the NN approach to model order selection
[15] to systems with subarray sampling, which provides significant improvements
in the selection accuracy compared to information criteria based methods, has been
discussed in [3].

This chapter is structured as follows. First, we will formulate the model order
selection problem and discuss the theoretically optimal MAP estimator. Then, we
will take a look at information criteria and how they can be applied to systems with
subarray sampling. Finally, we discuss an end-to-end NN-based model order selection
approach1 and a method that uses the covariance reconstruction technique presented
in Section 5.4.

8.1 Problem Formulation and MAP Estimator

The goal of model order selection is to select the model with the “best predictive
power” p̂ from a set of model candidates p`, with model order ` in the set L, based on
a finite number of observations [96]. Here, the predictive power is measured by the
out-sample prediction loss given by [96]

E [f(Y ; p̂)] , (8.1)

where Y follows the distribution of the true data-generating model and f is a loss
function that measures the goodness of fit between the samples Y and the model p̂,
e.g., the negative log-likelihood. In the DoA estimation scenario, the model selection
problem fits to the parametric framework [96], i.e., the true model is included in the
set of model candidates, since we assume perfect knowledge of the array manifold. In
that case, the true data-generating model generally is the best model. This means that
we try to find the true number of sources L from the set of all possible model orders
L = {0, 1, . . . , Lmax}.

In theory, the estimator that maximizes the probability to select the true model
order L ∈ L is the MAP estimator, as has been proven in [95]. The MAP selection

1The extension of the information criteria to systems with subarray sampling and the model order
selection with NNs has been recently published in [3]. Throughout this chapter, we closely follow our
presentation therein.
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rule reads as [95]

L̂ = argmax
`∈L

p(H`|Y )

= argmax
`∈L

p(Y |H`)p(H`),
(8.2)

whereH` denotes the hypothesis that the true model order is `. However, in general,
the MAP estimator cannot be evaluated as the true prior p(H`) is generally unknown,
and more importantly, the probability

p(Y |H`) =

∫
S`
p`(Y |ϕ`)p`(ϕ`) dϕ`, (8.3)

with the parameters of the `-th model ϕ`, which lie in the space S`, and their prior
p`(ϕ`), cannot be computed efficiently.

8.2 Information Criteria

Since MAP estimation is generally not available, several other techniques have been
developed in the past. Among these model order selection methods, there exists a
group of approaches denoted by information criteria (see [95] for details), which all
feature a common structure. They all base their model order estimate on the sum of the
negative log-likelihood function of the observations at the respective ML estimates of
the parameters ϕ̂ML,` and a penalty term c(`), which combats overfitting of the model
order. Therefore, the model order estimate L̂ can be written as

L̂ = argmin
`∈L

− ln (p` (Y ; ϕ̂ML,`)) + c(`). (8.4)

Note that the importance of the penalty term can be seen from the stochastic models
(2.10) and (2.13). In both cases, for varying model order L, we have a family of nested
stochastic models, i.e., the stochastic model for a certain number of sources L includes
the models with model order smaller than L for a special choice of the parameters
ϕ. Therefore, the log-likelihood of Y is monotonically increasing in the number of
sources. Hence, for c(`) = 0, ` ∈ L, we would always obtain the maximum model
order Lmax from (8.4).

As mentioned above, for fully sampled arrays and under the SML system model,
an analytic expression for the value of the log-likelihood depending on the eigenvalues
of the sample covariance matrix has been derived in [18]. The idea is to use a
reparameterization of the received signal covariance matrix by its eigenvalues and
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eigenvectors, instead of the DoAs and signal covariance matrix. Then, it can be shown
that the value of the log-likelihood function that is parameterized by the ML estimates
of the eigenvalues ψ̂, eigenvectors and the noise power σ2

η reads as [18]

ln (p` (Y ; ϕ̂ML,`)) = N

[
ln

(
M∏

i=`+1

ψ̂i

)
− (M − `) ln

(
1

M − `

M∑
i=`+1

ψ̂i

)]
.

(8.5)
The huge benefit of this method is that compared to computing ML estimates of
the DoAs for each model order ` ∈ L, which has a demanding complexity, only
the eigenvalue decomposition of the sample covariance matrix has to be computed
once. Additionally, an advantage of this parameterization is that it works without any
knowledge on the array manifold, i.e., the method works without any array calibration.

Unfortunately, this reparameterization does not work for systems with subarray
sampling. There, the likelihood function depends on multiple subarray covariance
matrices each of dimensionW ×W withW potentially smaller than Lmax. Evaluating
the ML estimators for each model order provides no feasible solution as well, as
the complexity becomes quickly intractable for Lmax > 2. Therefore, replacing the
ML estimates of the parameters with the GLS estimates has been proposed in [14].
As this might be a viable option for a very large number of snapshots, where the
GLS estimator provides consistent estimates, we observed that the GLS estimator
fails to produce reasonable estimates in the low snapshot domain. Additionally, the
complexity of the GLS estimators also scales poorly with the maximum number of
sources Lmax. Therefore, we propose to replace the ML estimates in (8.4) by one of the
better performing hybrid estimators presented in the previous chapters. For example,
the SPICE estimator combined with subsequent gradient steps can be used to this end,
and will be used as a benchmark for the NN-based approaches presented in the next
section.

8.3 Machine Learning Approach

8.3.1 End-to-End Classification

Aiming to select the true model order out of a finite set of possible model orders is
a multiclass classification problem. In this section, we discuss a NN-based solution
to this classification problem for systems with subarray sampling, which has been
published under the name CovNet in [3].

Similar to the NNs that have been presented in Chapter 5, we utilize a fully
connected, feedforward NNwithNh hidden layers with a ReLU activation function. As
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input data x, we again use the real parameters of artificially generated subarray sample
covariance matrices with random DoAs, transmit powers and SNR (see Section 5.1).
In contrast to the data generation for the DoA estimation task, we vary the number of
sources in our input data between 0 and Lmax and label each input data sample with
the correct model order of the respective data-generating model. Thereby, we generate
an equal amount of data samples for each model order in L. The output layer consists
of Lmax + 1 neurons followed by a softmax activation. For the training, we use the
cross-entropy loss function defined in (5.4), such that the output values of the neural
network z(`|x;w) can be interpreted as estimates of the posterior density p(H`|Y )

[72]. In that sense, the NN forms a data-based approximation of the MAP estimator
(8.2) rather than being based on some information criterion.

In addition to the aforementioned training for a perfectly known, fixed array
manifold, we are also interested in how we can adapt the NN to array imperfections.
This problem has already been discussed for the fully sampled case in [15] for model
order selection, and in [100] for DoA estimation. There, the idea is to train the NN
based on a theoretic model for the array manifold with a large amount of artificial data.
Then, after deployment, we use an online learning procedure to adapt the NN to the
array imperfections by utilizing only a limited number of calibration measurements2.
This method showed promising results and can be easily applied to the subarray
sampling case as well. The results for this scenario can be found in the following
chapter and show that this approach might be a viable alternative to training from
scratch with the knowledge of the calibrated array manifold, if enough labeled data for
the online training is available.

Another interesting question is if it is possible to utilize a single network over a
broad frequency range for a frequency scanning direction finder, which are used in
frequency monitoring and surveillance applications, for example. Although the array
geometry remains fixed, the frequency of interest, and therefore, the array manifold
changes rapidly. Here, utilizing a NN-based approach is particularly interesting, due
to the very short time required for a network inference in comparison to an eigenvalue
decomposition or DoA estimation for all model orders. However, storing an individual
network for each frequency is infeasible, as it would require an immense amount of
memory. Instead, we propose to train a single network for multiple frequencies. To that
end, we draw the frequency for the data-generating received signal model uniformly
from a range [fmin, fmax] during the training. Again, the results for this approach that
are presented in the next chapter show that this is indeed a feasible solution.

2For details on array calibration we refer the reader to [33].
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8.3.2 Covariance Matrix Reconstruction

An alternative method to the direct solution of the classification problem by a NN, uses
the covariance reconstruction technique presented in Section 5.4. There, we trained
a NN that estimates the full covariance matrix from the subarray sample covariance
matrices for a fixed model order L. Now, we train a similar NN, however, for the
training data, we use data samples with varying model order as described for the
classification approach above. The respective label per data sample is again the true
data-generating covariance matrix for the fully sampled array. Apart from the training
data, no changes compared to the case with fixed model order are necessary, as the
architecture of the GramNet NNs does not directly exploit the knowledge about the
number of sources for the case of a fixed model order.

From the reconstructed full covariance matrix, we estimate the model order with
some information criterion. To that end, we directly utilize the expression for the
log-likelihood function (8.5) that depends only on the eigenvalues of the reconstructed
full covariance matrix. Note that this procedure is a heuristic. In fact, we cannot
give an expression for the likelihood function of the observations parameterized
by the eigenvalues of the estimated full covariance matrix. Therefore, we do not
even know how the log-likelihood scales in the number of observations. To obtain
the best accuracy, should we use the factor N as above or KN or something else
completely? Due to the lack of a fitting stochastic model for the full covariance
estimates3, this question cannot be readily answered by a theoretical argument. Instead,
a cross-validation approach can be used to determine the best prefactor in (8.5) and
penalty term.

In terms of complexity, the GramNet approach adds an eigenvalue decomposition
compared to the end-to-end approach presented above. However, for a subsequent DoA
estimation by means of a MUSIC estimator based on the reconstructed covariance
matrix, the eigenvalue decomposition is necessary anyway.

3At first thought one might suggest to approximate the PDF by a Wishart distribution. Then, however,
the problem still remains that it is unclear how many degrees of freedom we should choose for said
Wishart distribution.
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Selection 9

Here, we present simulation results of the model order selection problem for systems
with subarray sampling. The chapter is again split into two parts. First, we explain the
simulation parameters that we used in our simulations. Then, we discuss the results of
the Monte Carlo simulations.

9.1 Simulation Setting and Neural Network Parameters

As for the DoA simulations, we consider a 9-element UCA with steering vectors given
in (7.1). The subarray sampling scheme with the K = 4 constellations is given in
Table 7.1, i.e., the system usesW = 3 RF chains. The maximum number of sources
that are transmitting simultaneously is Lmax = 3. Hence, we are operating in the
critical region, where the number of sources is not always smaller than the number of
RF chains.

The test sets, on which we evaluate the different model order selection methods,
consist of an equal amount of data samples from each model order. The distribution
of the DoAs, transmit powers, and SNR follow that of the training set described at
the beginning of Section 5.1. Thereby, the respective parameters of the distributions
can be found in Table 9.1, which are also used for the training of the CovNet NNs.
Additionally, Table 9.1 summarizes the architecture used for CovNet. Compared to
the NNs that are used for the DoA estimation, the CovNet NNs are smaller1. In
contrast, the GramNet network trained with a varying model order, which we use
for the full covariance matrix reconstruction, uses the same parameters as the other
DoA estimation networks (cf. Table 7.2). For the cost function of the GramNet, we
used the affine invariant distance. The information criterion, which we employ in
combination with the GramNet reconstruction, is the Minimum Description Length

1We use the same architecture as for the CovNet NNs that have been proposed for the fully sampled
case in [15].

79



Chapter 9. Simulation Results – Model Order Selection

Parameter Value
σs,min −9 dB
ση,min −10 dB
ση,max 30 dB
Nh 3

Nu 1024

Weight Initialization Glorot [91]
Batch Size 64

Optimizer Adam [92]
Learning Rate 10−4

Samples per Training Set 64 · 106

Table 9.1: CovNet Parameters

(MDL) criterion2. Its respective penalty term in (8.4) is given as

c(`) =
2`+ 1

2
ln (KN) . (9.1)

As the prefactor for the log-likelihood we choose N , like in (8.5), since this choice
provided better results than KN . However, we want to emphasize again that the
choice of the prefactor and penalty term does not come naturally, due to the heuristic
character of GramNet model order selection approach. These parameters have not been
optimized by a cross-validation approach, for example, but we selected a combination
that provides acceptable results for our simulations. In that sense, the presented results
for the GramNet approach should be understood more as a proof of concept.

As a reference for the NN-based approaches, we use an MDL estimator that obtains
its parameter estimates for the individual model orders by evaluating a hybrid SPICE
estimator. The oversampling factor for this SPICE estimator has been chosen as
Q = 32, as for the DoA estimation simulations in Chapter 7.

9.2 Simulation Results

In Fig. 9.1, we look at the accuracy of the different model order selection techniques for
N = 10 snapshots at different SNR. To this end, we evaluated the different methods on
test sets with a fixed SNR, each consisting of 4 ·103 data samples. Note that in this case

2The MDL criterion is the same as the Bayesian Information Criterion (BIC). Depending on which
rationale leads to the common penalty term, one or the other name is preferred.
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fixed SNR means that the noise power σ2
η , and therefore, the ratio between the transmit

power of the strongest source and noise, is fixed. However, the transmit power of the
other sources still varies. From Fig. 9.1, we can see that the CovNet approach clearly
outperforms the MDL criterion, which uses the hybrid SPICE estimates, over the whole
SNR range. This can be explained by the insufficiency of the hybrid SPICE estimator
to produce good estimates for all realizations (cf. Chapter 7), which heavily impacts
the performance of any information criterion. The GramNet approach trained with
varying L, denoted by “GramNet L ∈ L”, is able to surpass the accuracy of CovNet in
the high SNR regime. However, we observe a substantial performance degradation at
low SNR. There, the GramNet approach is prone to underfitting the model order3. In
this region, the estimates of the eigenvalues are dominated by noise, which leads to a
poor selection accuracy. A similar performance at low SNR can be observed if the
GramNet NN has been trained on data with the maximum model order, referred to by
“GramNet L = 3”. This approach, however, sees a performance degradation in the
high SNR regime, due to some overfitting of the model order. Intuitively, this behavior
can be explained by the fact that this GramNet implementation has been trained to
match the covariance matrices with a signal subspace of dimension L = 3. For high
SNR scenarios, its training data always featured three eigenvalues that are well above
the noise power, and the network tries to replicate this even for input data stemming
from fewer sources.

The results of the CovNet and theMDL criterion with SPICE estimates for different
N is shown in Fig. 9.24. For eachN , the test sets consist of 4 · 103 realizations, where
the SNR for each realization has been drawn from a uniform distribution between
−10 dB and 30 dB. Again, we see that the CovNet approach is superior to the MDL
estimator that is based on SPICE, for the same reasons as described above. Since we
use sample covariance matrix information as the input data, we are able to pass data
from a system model with N 6= Ntrain to a network, which has been trained on data
consisting of Ntrain snapshots. In Fig. 9.2, we added the results for such a scenario,
where we use a network trained withNtrain = 10 to classify the input data with varying
N ∈ [3, 20]. This approach is able to achieve almost the same performance as the
CovNet, which has been trained with data matching the number of snapshots in the
test set, i.e., N = Ntrain. A possible explanation for this kind of robustness towards

3Again, note that the choice of the prefactor and penalty term has not been heavily optimized. To
alleviate this problem a different information criterion, such as the Akaike Information Criterion (AIC)
with a smaller penalty term, can be used. However, in general, this may impact the performance at a
higher number of snapshots.

4Throughout the remainder of this section, we will focus on these two methods, since their respective
results are not subject to uncertainties in the choice of parameters, as is the case for the GramNet approach.
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Figure 9.1: Model Order Selection Accuracy vs. SNR, N = 10

the number of snapshots lies in the effect of the number of snapshots on the input data.
For the subarray sample covariance matrices a change in the number of snapshots
translates to a change in the effective SNR, for which we have chosen a broad range
during training. In fact, this robustness property is pretty important for a deployment
in a direction finder that has to be able to cope with a differing number of snapshots.
For such a system, we do not have to store an individual network for each N , but a
single NN can cover multiple N .

Similarly to the robustness with respect to N , we are also interested in the
performance of a single network for covering a certain frequency range. To this end,
we provide simulation results in Fig. 9.3. There, we investigate the performance of
a CovNet NN that has been trained on a single frequency R/λ = 1 and a CovNet
approach trained on data samples with a randomly drawn frequency per sample. We
see the accuracy for the different CovNet variants over the frequency, which is given by
the ratio of radius R and the frequency dependent wavelength λ5. For each frequency
point, we evaluated the different methods on a test set containing 4 · 103 data samples
with the respective frequency. As a reference, we added the performance of several
CovNet NNs that have been trained on the same frequency as is used in the respective

5This ratio is a common design parameter for direction finders. Note that this ratio of aperture and
wavelength is found in the UCA steering vectors in (7.1) and needs to lie in a certain range to ensure
identifiability of the DoAs. The considered range in R/λ can be easily translated to a frequency band, by
fixing the radius R, e.g., the investigated range from 0.5 to 2 reflects a frequency band between 150MHz
and 600MHz for a radius of R = 1m.
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Figure 9.2: Model Order Selection Accuracy vs. N

test set in red. Fig. 9.3 shows that a CovNet approach that is trained over a whole
range of frequencies is able to achieve almost the same accuracy at each frequency
as the CovNet NNs, which have seen data from the respective frequency during the
training process. In contrast, the CovNet NN that has been trained only on R/λ = 1 is
not able to generalize well to other frequencies.

Next, we investigate the performance of the online learning procedure discussed
in Section 8.3.1. For this purpose, let us consider a deployment of the previously
considered UCA in the field. Due to some imperfections and effects that have not
been accounted for in our model for the steering vectors, the true array manifold is
different from the ideal UCA manifold in (7.1). We model these imperfections by a
global calibration matrix F , which is multiplied to the ideal UCA manifoldAUCA to
form the calibrated manifold

Acal = FAUCA. (9.2)

Such a global calibration matrix is often used for modeling the effects of mutual
coupling among the antenna elements [33, Ch. 3]. For our simulations, we assume a
tridiagonal calibration matrix, which reads as

F =


1 0.25 0 . . . 0

0.25 1 0.25 . . . 0

0 0.25 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

 . (9.3)
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Figure 9.3: Model Order Selection Accuracy for Different Frequencies

Now, Fig. 9.4 shows the achieved accuracy of the online learning procedure starting
from a random initialization and the proposed initialization by training on artificial
data with the ideal UCA manifoldAUCA. Thereby, the abscissa denotes the amount of
available data in the number of batches, each with 64 data samples from the true signal
model that uses the calibrated manifoldAcal, which can be used for the online learning.
As a reference, we included the achievable accuracy of the CovNet NN trained on 64

million data samples from the calibrated model. With an initialization by artificial
data from the ideal UCA model, the online training is able to achieve an accuracy of
over 70% after only one batch of data. In contrast, the random initialization needs
about 500 batches to do so. This amount of data leads to a performance close to the
reference NN if the proper initialization is chosen.

Finally, we conclude this chapter by a brief discussion of the computational
complexity behind the differentmodel order selection approaches. For 1000 realizations
with varying SNR evaluated on the same simulation server as discussed in Chapter 7,
the evaluation of the CovNet estimator takes about 2.6 seconds. The GramNet
evaluation lies in the order of 15 seconds (see Table 7.3). However, the MDL estimator
based on SPICE takes 505.2 seconds for estimating the model order. In contrast to the
other two methods, for the MDL information criterion, DoA estimates for all possible
model orders—including the computationally expensive high model orders—have to
be performed, which explains this enormous difference by a factor of 200. Although
the MDL approach automatically yields the respective DoA estimate, its execution
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Figure 9.4: Model Order Selection Accuracy for Online Learning Procedure

time is still larger than a CovNet evaluation and a consecutive DoA estimation for the
estimated model order (cf. Table 7.3 for L = 3).
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Conclusion and Outlook 10
In this work, we have investigated DoA estimation techniques and model order
selection approaches for systems that employ subarray sampling. For the DoA
estimation problem, we have revisited and augmented classical estimators that are
based on the underlying stochastic model. In particular, we have discussed ML
techniques, the GLS estimator, and sparse recovery methods. Furthermore, we have
proposed multiple, new data-based estimators that tackle the DoA estimation problem
from three different directions: an end-to-end regression formulation that directly
optimizes on the cost function of interest, a formulation of the DoA estimation as a
multilabel, multiclass classification problem, which utilizes a sectorization of the field
of view, and an estimation of the fully sampled covariance matrix from the subarray
sample covariance information.

In our simulations, we have observed that these NN-based estimators are able to
clearly outperform classical solutions in terms of estimation accuracy and computational
complexity. Especially in the low snapshot domain and for the critical case with
as much sources as RF chains, the classical estimators like GLS and SPICE do not
provide a competitive performance, due to their covariance matching objective. In
contrast, the proposed NN-based techniques show a superior precision because of a
higher robustness against outliers. Additionally, we have shown that these machine
learning techniques can be combined with a subsequent gradient approach to benefit
from the knowledge of the stochastic model such that in most cases the same estimation
error as an ML estimator is achieved.

Regarding the model order selection problem, we have discussed the extension of
information criteria to the subarray sampling case. Here, the problem is that the ML
estimators cannot be directly evaluated for potential model orders above or equal to the
number of RF chains. Instead, a replacement of these estimates by the GLS estimator
(as has been proposed in [14]), or better, one of the superior hybrid estimators, can be
used. Alternatively, the problem can be treated as a standard multiclass classification
problem and solved by a NN that has been trained on a cross-entropy objective. Finally,
we have discussed the possibility to reuse the estimator of the fully sampled covariance
matrix and derive the model order from the eigenvalues of the reconstructed covariance
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matrix.
Again, we have seen that the classification-based NN approach has been able to

significantly outperform the classical information criteria. The NN achieves a higher
selection accuracy at a fraction of the computational cost. The model order selection
based on the reconstructed covariance matrix turned out to yield good results at high
SNR, but failed to provide reasonable estimates at lower SNR. For the eigenvalue based
parameterization of the information criteria used in this method, the correct choice for
the penalty terms and the number of observations is still unknown. For future work, a
more in-depth investigation of this method and optimization of these parameters, e.g.,
by a cross-validation approach, might be interesting, as the full covariance estimate
can be used for DoA estimation and model order selection.

In general, an extension of the investigated DoA estimation and model order
selection methods based on machine learning techniques to other scenarios, where
either no satisfying performance is obtained by known estimators, or the evaluation
of well performing estimators is very expensive, may be worthwhile. Especially, the
field of wideband DoA estimation comes to mind. There, we have a similar system
model as for the subarray sampling case. Instead of working with different subarrays,
in wideband processing, we obtain received signals at different frequencies. As has
been discussed in the introduction, these parallels have already been explored in [5]
by employing focusing matrices that have been originally proposed in the context of
wideband signals [6, 7]. In particular, using the principle behind the full covariance
matrix reconstruction described in Section 5.4 may provide a promising starting
point for estimating a narrowband covariance matrix at a center frequency based on
the sample covariance information from multiple frequencies. Another interesting
application are sparse linear arrays, such as minimum redundancy arrays, nested arrays,
and co-prime arrays, where the construction of the co-array manifold allows the DoA
estimation for more sources than antenna elements (see, e.g., [20, 21, 22]).
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More Simulation Results for DoA
EstimationA

In this chapter, we provide additional simulation results and compare the classifier
based DoA estimators, and the covariance reconstruction techniques. For a more in
depth discussion and the underlying simulation parameters see Chapter 7.

A.1 Classification Based Estimators

In Fig. A.1 and Fig. A.2, we depict the simulation results for the classifier-based DoA
estimators, for L = 2 and L = 3, respectively. In contrast to Chapter 7, we include
the hybrid CEClaNet and ProjNet methods in these plots. The hybrid CEClaNet
performs very similar to the hybrid BRClaNet method, which is also based on a peak
detection in the output spectrum, but uses a different loss function and activation in
the output layer. Comparing the classifier chain approaches, we can observe that the
hybrid ProjNet estimator, which in between its stages removes the signal portions
that can be explained by DoA estimates from the previous stages, shows a similar
behavior as its ChainNet counterpart for L = 2. However, for L = 3, ProjNet fails to
provide meaningful estimates for the third DoA, and therefore, it shows a poor overall
estimation performance in this case.

To confirm that the poor performance of the ProjNet for L = 3 indeed stems from
the estimate of the last stage, let us first look at the CDFs of the non-hybrid estimators
for L = 3 in A.3. We can clearly see that ChainProjNet provides poor estimates for
all realizations. Now, we look at the estimation performance of the first two stages of
the classifier chains in the CDF plot in Fig. A.4. As a reference, we added the results
of the first two stages of ChainNet, and for the other estimators, the estimates of the
two sources with the smallest estimation error. We see that the performance of the
ProjNet is reasonable and not dominated by outliers, i.e., the large estimation errors for
L = 3 stem from the last stage. Apparently, the projection steps eliminate too much of
the received signals to be able to infer the DoA of the last source. Furthermore, we
can identify in Fig. A.4 that the BRClaNet and CEClaNet approach are able to attain
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Figure A.1: Performance of Classifiers, L = 2, N = 10.
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Figure A.2: Performance of Classifiers, L = 3, N = 10.
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Figure A.3: Empirical Cumulative Density Function of the Hybrid Estimators, L = 3,
SNR= 20 dB, N = 10.

a similar estimation performance as the ChainNet approach for two of the sources,
which means that for their respective outlier realizations the estimate of one source
must be far from the true value.

A.2 ReconNet and GramNet Results

In this section, we compare the performance of the different covariance reconstruction
techniques that have been presented in Section 5.4. To this end, Fig. A.5 shows the
simulation results of ReconNet and the different GramNet versions1 for L = 3 sources.
There, we can see that ReconNet and GramNet trained on the Frobenius norm have
the worst performance. The best performing GramNet NNs have been trained on the
Jensen-Bregman LogDet divergence and the affine invariant distance between two
positive definite matrices. Similar results can also be seen if a gap of 10◦ between two
sources is introduced. In that case, the distance between the NNs that have been trained
on the Frobenius norm, i.e., ReconNet and “GramNet Fro”, and the other GramNet

1To differentiate between the different GramNet versions, we indicate which distance measure has
been used during the training process. Thereby, we use the following abbreviation: Frobenius norm (Fro),
Affine Invariant distance (AffInv), Log-Frobenius (LogFro), Cholesky-Euclidean (Chol), J-Divergence
(J-Div), and Jensen-Bregman LogDet Divergence (JBD).
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Figure A.4: Empirical CDF for the two First Stages of the Classifier Chains, L = 3,
SNR= 20 dB, N = 10.

NNs increases. Note that we do not include the results for the GramNet trained on the
Bures-Wasserstein distance, as the resulting NN did not yield meaningful estimates.

In Table A.1, we show the squared distance between the reconstructed covariance
matrix by the different GramNet implementations and the true covariance matrix. To
obtain these results, we performed 106 Monte Carlo simulations. For each Monte
Carlo run, we create a full covariance matrix with L = 3 uniformly distributed DoAs,
random SNR between 0 dB and 20 dB, and random transmit powers between 0 dB
and −9 dB, as for the training data in Section 5.1. For each full covariance matrix,
we draw a N = 10 snapshots per subarray, and feed the respective subarray sample
covariance matrices to the GramNet. Each column contains the results for one of the
distances described in Table 5.1. Interestingly, the NN that is trained on a certain
distance measure does not always achieve the best result in the respective distance2.
Nevertheless, we can see that the best performing NNs in terms of RMSPE, i.e.,
“GramNet AffInv” and “GramNet JBD”, perform among the worst with regard to the
Frobenius Norm, however, they are among the best for all other distances, especially
for the geodesic ones.

2Note that we are dealing with NNs that all employ the same architecture, but are trained on different
objectives. Naturally, the objective has a huge impact on the local minimum to which the NN converges.
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Figure A.5: Performance of MUSIC, RMSPE vs. SNR, L = 3, N = 10.
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Figure A.6: Performance of MUSIC, RMSPE vs. SNR, L = 3, 10° gap between two
sources, N = 10.
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Distance Fro AffInv LogFro Chol JBD JDiv Bu.-Wa.
GramNet Fro 0.1745 15.34 13.39 0.2609 1.594 7.500 1.636

GramNet AffInv 0.2550 7.985 6.033 0.2005 0.9077 2.563 1.360
GramNet LogFro 0.1916 9.466 6.487 0.1901 1.055 3.259 1.554
GramNet Chol 0.1580 8.99 6.136 0.1603 1.000 4.548 1.540
GramNet JBD 0.2233 7.902 5.948 0.1910 0.8979 2.542 1.403
GramNet JDiv 0.4401 9.275 7.346 0.2730 1.045 3.039 1.188

Table A.1: Distance Between True Covariance Matrices and Reconstructed Covariance
Matrices

Finally, we want to compare the GramNet approach to the trivial covariance
reconstruction techniques for ULAs discussed in Section 5.4. To that end, we present
simulation results for an 8-element ULA with λ

2 spacing and L = 2 equally powered
sources. The subarray sampling scheme follows the description above (5.9), i.e., we
always sample the first antenna, while the second RF chain consecutively samples the
other antennas. The resulting Root Mean Squared Error (RMSE) for 104 samples per
SNR with a 10◦ gap between the sources can be found in Fig. A.7, and the CDF of
all realizations at 20 dB is depicted in Fig. A.8. We can see that the GramNet clearly
outperforms the trivial estimators “ULA Recon (5.13)” and “ULA Recon (5.14)”,
which are heavily affected by outliers.
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Figure A.7: ULA Reconstruction Techniques, RMSE vs. SNR, L = 2, 10◦ gap
between two sources, N = 10.
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Figure A.8: Empirical CDF for ULAReconstruction Techniques,L = 2, SNR= 20 dB,
N = 10.
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Outlier Susceptibility of OMP-Based
Estimators B

As we can see in the simulation results presented in Chapter 7, the OMP estimators
provide only poor estimation results. However, in many other applications, OMP
algorithms have been shown to be quite potent. Here, we take a closer look on the
reasons why the OMP based estimators cannot cope with the DoA estimation problem.

As we have discussed in 4.2.1, in theory, there exist nice recovery guarantees for
the OMP and BOMP methods that are based on the mutual coherence of the dictionary.
Unfortunately, for the considered systems with subarray sampling and even for fully
sampled arrays none of these theoretical guarantees hold. This is confirmed in Fig. B.1,
where we show on the left hand side the mutual coherence of the dictionaries for the
UCA considered in Chapter 7 for a single snapshotN = 1. Here, we depict the mutual
coherence for the sparse model of the received signals (4.8) in blue, the covariance
formulation (4.9) in green and the mutual coherence for the fully sampled case as a
dashed red line. For the fully sampled array and the covariance-based formulation of
the subarray sampling case, the mutual coherence quickly approaches 1 for a growing
oversampling factorQ, and for the received signal formulation with subarray sampling,
which uses the BOMP algorithm, the coherence is almost at its maximum value of
K−1 = 0.25 even for Q = 1. Hence, the upper bound for the reconstructible number
of sources in (4.12) and (4.14) compute to the numbers shown on the right hand side
of Fig. B.1. Since these are below two, for every oversampling factor, we cannot
guarantee reconstruction for two sources even in the noiseless case.

In the following, we want to briefly discuss a case, where the OMP systematically
fails to resolve both sources. To that end, let us look at an example. We consider L = 2

sources located at θ = [0◦, 105◦]T with transmit signals s(k) = 1L, k = 1, . . . ,K.
The UCA with the parameters from Chapter 7 collects a single, noise free snapshot,
i.e., η(k) = 0, k = 1, . . . ,K. The corresponding beam pattern for the source at 0◦ is
depicted at the top of Fig. B.2. Note that at 105◦, the second source lies directly at a
sidelobe peak of the beam pattern of the first source. In the middle of Fig. B.2, we
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Figure B.1: Mutual Coherence and Reconstruction Guarantee for Different Oversam-
pling Factors.

show the correlation of the received signal with the dictionary, i.e., the correlation
function that is formed in the first stage of the OMP algorithm. There, we can clearly
recognize two peaks with equal height close to the true DoAs. However, when we
look at the correlation function in the second stage, shown at the bottom of Fig. B.2,
we now see that after the projection, the maximum correlation with the residuum is
not obtained at the DoA of the second source, but at about −120◦. This means that
in the second stage, the DoA estimate of the OMP algorithm is about −120◦ and
thus very far away from the true DoA of the second source. Hence, this realization
would lead to an outlier, although we considered no noise. The problem is that as the
second source lies in a sidelobe of the first source, the projection of the elimination
of the signal portion of the first detected DoA does not only remove the signal of
the first source, but a significant portion of the second source gets eliminated by the
projection1. Therefore, the correlation with the residuum in the second stage of OMP
has its maximum not in the vicinity of the true DoA of the second source.

The example above illustrates that the OMP based estimators may experience
systematic outliers in the case where two sources lie in each others sidelobe. A way to
reduce this effect lies in utilizing antenna arrays with lower sidelobe levels. However,
in general, for such arrays the curvature of the mainlobe is smaller, i.e., the overall
estimation accuracy decreases.

1The same happens for closely spaced sources.
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