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Abstract—Image restoration is a critical component of image
processing pipelines and for low-level computer vision tasks.
Conventional image restoration approaches are mostly based
on hand-crafted image priors. The inter-channel correlation of
color images is not fully exploited. Motivated by the special
characteristics of the inter-channel correlation (higher correlation
for red/green and green/blue channels than for red/blue) in color
images and general characteristics (green channel always shows
the best image quality among the three color components) of
distorted color images, in this paper, a 3-stage convolutional
neural network (CNN) structure is proposed for color image
restoration tasks. Since the green channel is found to have the
best quality among all three channels, in the first stage, the
network is designed to reconstruct the green component. Then,
with the guidance of the reconstructed green channel from the
first stage, the red and blue channels are reconstructed in the
second stage with two parallel networks. Finally, the intermediate
reconstructions from the previous stages are concatenated and
further refined jointly. We demonstrate the capabilities of the
proposed 3-stage structure with three typical color image restora-
tion tasks: color image demosaicking, color compression artifacts
reduction, and real-world color image denoising. In addition, we
integrate pixel-shuffle convolution into our scheme to improve the
efficiency, and also introduce a quality-blind training strategy
to simplify the training process for the compression artifacts
reduction task. Extensive experimental results and analyses show
that the proposed structure successfully exploits the spatial and
inter-channel correlation of color images and outperforms the
state-of-the-art image reconstruction approaches.

Index Terms—Color image restoration, Inter-channel Correla-
tion, Convolutional Neural Network, Demosaicking, Compression
artifacts reduction, Realistic image denoising

I. INTRODUCTION

IMAGE restoration (IR) is a fundamental task in image pro-
cessing, which aims at reconstructing high-quality images

from distorted observations. Color images suffer from different
kinds of distortions introduced during image acquisition or
along the processing pipeline, including missing samples,
sensor noise, compression, and transmission distortion. In
order to solve these issues, many image restoration approaches
have been proposed in the past years. Conventional image
restoration approaches are mostly based on image priors [1].
The IR problems are formulated as iterative optimization
problems and regularized by image priors, including low-rank,
sparsity, patch-wise smoothness, and non-local similarity [2]–
[4]. These image priors have clear physical meaning, and they
are general features that can handle different IR problems.
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However, most of them are hand-crafted and not optimal for a
specific task. Also, solving an iterative optimization problem
is usually time-consuming.

Recently, with the success of convolutional neural networks
(CNN) and deep learning (DL) in image processing, many
learning-based image restoration approaches have been pro-
posed (e.g. [5]–[10]). These approaches are based on data-
driven end-to-end learning, and most of them outperform
conventional approaches for various IR tasks.

However, no matter for conventional algorithms or learning-
based approaches, most of them are focusing only on spatial
correlation exploration. The algorithms are usually only per-
formed on gray-scale images or the luminance component of
color images. Although some approaches [6], [10]–[14] are
extended to deal with color image restoration (CIR) tasks,
the inter-channel correlation is still not well exploited. These
approaches directly apply the algorithm on different color
channels separately, adopt hand-designed pipeline or simply
expand the input number of channels, which does not leverage
the statistics of different color channels.

In this paper, inspired by the special characteristics of the
inter-channel correlation among red (R), green (G), blue (B)
channels in color images, and the general characteristics of
distorted color images, a 3-stage CNN structure is proposed
for CIR tasks. For distorted color images, we have observed
that the G channel usually has the best quality among the
three channels. In the first stage, the network is designed to
reconstruct the G channel. Then, in the second stage, due to
the strong but different inter-channel correlations between the
R/G and the G/B channels, two parallel networks are designed
to restore R and B channels with the guidance of the high-
quality G values reconstructed in the first stage. Finally, the
intermediate R, G, B reconstructed from the previous stages
are concatenated and further refined jointly in the third stage.

A preliminary version of the 3-stage CNN scheme was
presented in our previous work [15] for color image demo-
saicking and in [16] for compression artifacts reduction. They
outperform the related works and achieve the state-of-the-art
performance for the corresponding CIR tasks. In addition to
our previous works, the main contributions of the proposed
approach in this paper are:

(1) A detailed analysis of the inter-channel correlation
of natural color images which indicates that the R/G and
G/B channels exhibit much stronger correlations than R/B.
Additionally, the analysis shows that the correlations for R/G
and G/B have different characteristics. By theoretical and
experimental analyses of the statistics for typical distorted
color images, we prove that the G channel has the best quality
among all three channels, and that this is a general feature of
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various types of distorted color images.
(2) Inspired by the specific inter-channel correlation and the

distorted color image characteristics, a 3-stage CNN scheme
is proposed for the CIR tasks, in which the inter-channel
correlation is fully exploited to improve the quality of the
reconstructed images. Compared to the preliminary version in
[15], [16], we modify the network structure to make it more
compact and efficient. For this, the pixel-shuffle scheme [17]
is integrated into the 3-stage CNN, which not only solves the
initialization issue for the demosaicking task but also further
improves the efficiency and performance.

(3) Along with the proposed 3-stage CNN scheme, a
quality-blind training strategy is introduced for the color
compression artifacts reduction task. It makes the training
process much more manageable and allows a single trained
network to handle the images compressed with a wide-range
of distortion levels. To the best of our knowledge, this is
the first work that shows the suitability of a single trained
model to cover the whole quality factor (QF) range of JPEG
encoders and which brings consistent quality improvements
for any JPEG QF value.

(4) Extensive evaluation, comparison with existing ap-
proaches, and comprehensive analyses on multiple CIR tasks
and datasets have been performed, which prove the superiority,
efficiency, and effectiveness of the proposed scheme.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related works. Section III presents a
detailed analysis of natural color images, including inter-
channel correlation and the characteristics of different kinds of
distorted color images. Section IV explains the details of our
proposed 3-stage CNN-based CIR scheme. Section V presents
the experimental details, results, and analysis. Section VI
analyzes the computational complexity, the effectiveness of the
3-stage structure, the pixel-shuffle layer, and the quality-blind
training strategy. Finally, Section VII concludes the paper.

II. RELATED WORK

In this paper, we solve CIR problems with CNNs and DL.
In particular, we focus on three important CIR tasks, including
color image demosaicking (CDM), color compression arti-
facts reduction (CAR), and real-world color image denoising
(RIDN). In the remainder of this section, we first discuss
general CIR approaches, and then mainly focus on the existing
CNN and DL-related approaches that are targeting these three
problems.

A. Color Image Restoration
Conventional CIR approaches are usually inspired by the

corresponding gray-scale IR algorithms. CBM3D proposed
in [11] is one of the examples. The color images are first
decorrelated into a luminance-chrominance color space by
a hand-crafted linear transform. Then the gray-scale BM3D
[18] method is applied to each transformed channel. Color
image priors are also often adopted in CIR approaches, and
these priors are usually the extension of the gray-scale image
priors. In [12], [19], [20], sparse color image representation ap-
proaches were proposed. By extending the K-SVD from gray-
scale images to color images, these proposed approaches learn

the correlation between R/G/B channels. They achieve better
performance compared to modeling each channel separately.
In [14], the color non-local prior was introduced to CIR tasks
and outperforms other local regularization methods. Color total
variation minimization models were proposed in [13] and [21]
for CIR tasks. The gray-scale total variation (TV) is extended
to the color TV and the inter-channel vectorial color TV. The
color TV regularization brings performance improvements for
various types of CIR tasks. For DL-based CIR algorithms,
most approaches [6], [10], [22] directly expand the input of the
channels to three and increase the depth of the network. The
correlation of different color channels is explored implicitly
in the network through supervised training.

B. Color Image Demosaicking

CDM is a typical CIR task in which the distortion is
introduced by missing samples. In Bayer pattern-based [23]
cameras, half of the green and three-fourths of the red and
blue samples are missing. Bayer pattern color filter array
(CFA) based CDM has been extensively studied in the past
years. Many image priors have been introduced to reconstruct
the full-color images from the mosaicked CFA images [24].
Recently, CNN-based CDM algorithms have been proposed.
In [25], a deep joint demosaicking and denoising structure
was proposed, which can solve these two problems with a
single trained network. A residual denoising network was
proposed in [26] to solve the same joint problem, which
adopts an iterative network structure to demosaick and enhance
CFA images distorted by a wide range of noise levels. In
[27], a 2-stage network was proposed, which reconstructs the
G channel in the first stage and further refines the R/G/B
channels jointly in the second stage. In [28], a multiple-model
fusion-based network was proposed. A general model, a rough
texture, and a smooth texture model are adopted to generate
multiple estimations of the image. Then these estimations
are weighted and fused to generate the final demosaicked
image. These CNN-based approaches achieve much better
performance than conventional algorithms and represent the
state-of-the-art performance.

C. Compression Artifacts Reduction

CAR effectively improves the visual quality of compressed
images without increasing the bit-rate. Traditional blockwise
transform-based image codecs, especially JPEG, suffer from
strong blocking and ringing artifacts. Conventional approaches
design filters based on the position of block boundary and
image priors [1]. Recently, CNN-based CAR algorithms have
been proposed. ARCNN was proposed in [29], which is a
simple structure of only four CNN layers. It achieves sig-
nificant performance improvements compared to conventional
approaches. Residual learning and batch normalization based
network structure DnCNN was proposed in [6] to solve
multiple image restoration problems, including denoising,
super-resolution and JPEG deblocking with a single trained
network. Recently, many CNN-based approaches are focusing
on transform domain enhancement and multi-scale feature ex-
traction and fusion [30], [31]. In [32], the compressed images
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are converted to the frequency domain using the multi-scale
discrete wavelet transform (DWT), and all the convolution
operations are performed in the wavelet domain. A dual-
domain compression algorithm artifact reduction approach
called IDCN was proposed in [10]. With the pixel position
labeling map, quantization table, and quality factor (QF) as
side information, the network explores the priors in the discrete
cosine transform (DCT) domain. However, most of these
approaches were proposed only for gray-scale images, and the
inter-channel correlation is neglected.

D. Real-world Color Image Denoising

Conventional denoising algorithms assume that the noise
in an image is additive white Gaussian noise (AWGN). The
noise in different regions of the images and the color channels
are assumed to be independent and to have the same noise
levels. However, these algorithms usually fail in the RIDN
task because realistic noise is more complex than AWGN
and has quite different distributions [33]–[35]. In order to
solve these issues, a multi-channel optimization model was
proposed in [34]. The realistic denoising task is formulated
as a weighted nuclear norm minimization problem, and a
weight matrix is introduced to balance the data fidelity of
the three channels in consideration of their different noise
statistics. In [35], a trilateral weighted sparse coding scheme
was proposed to characterize the statistics of realistic noise.
Recently, more real-world noisy image datasets with a large
number of images became publicly available [36], [37], and
data-driven learning-based approaches were proposed. In [38],
a convolutional blind denoising network was proposed. The
network consists of a noise estimation subnetwork to estimate
the noise levels and a U-Net like structure to reconstruct the
clean images. In [39], a residual learning and feature attention
based denoising network was proposed, in which the feature
attention is adopted to exploit the channel dependencies. These
two CNN-based approaches achieve much better performance
than other approaches for many RIDN benchmark datasets.

III. INTER-CHANNEL CORRELATION AND DISTORTED
COLOR IMAGE CHARACTERISTICS ANALYSIS

A. Inter-channel Correlation Analysis

Since exploiting the inter-channel correlation is a key point
for CIR tasks, we first analyze its characteristics. The inter-
channel correlation of a color image can be explained from
both the structural and spectral points of view. From the
structural aspect, the samples of the three color channels share
similar texture, structures, and edges of the objects, which
leads to strong dependencies and correlation among the three
channels.

From the spectral point of view, the captured wavelengths
of R, G, and B are quite close to each other, and often
have significant overlap. In [40]–[42], the spectral sensitivity
functions of various types of color camera sensors are ana-
lyzed. Fig. 1 shows the typical spectral sensitivities of each
color channel for a digital color camera sensor. The spectral
sensitivity curves show that the sensors capture the visible
color spectrum with the wavelength range 400nm–700nm. The

Fig. 1. The typical spectral sensitivities of a modern digital RGB camera
sensor. The figure is adapted from Fig. 6 in [40].

sensitivity curves of the three color channels are overlapping.
This means that the reconstruction of the other two color
channels can significantly benefit from the samples which are
measured for the current channel.

However, the correlation of R/G, G/B, and R/B shows differ-
ent characteristics. The wavelength differences of R/G and G/B
are much smaller than those of R/B, and the three channels
usually show quite different intensity value distributions. As
shown in Fig. 1, the spectral sensitivity curves of R/G and G/B
have large overlapping areas, and the sensitivity amplitude in
the overlapping areas is high. The R/B curves have a much
smaller overlapping area, and the sensitivity amplitude in that
overlapping area is much lower.

In order to illustrate these characteristics of the inter-channel
correlation quantitatively, several publicly available bench-
mark datasets are adopted to evaluate the inter-channel correla-
tion coefficients between R/G, G/B, and R/B, respectively. The
Kodak [43] and McMaster [44] datasets are adopted because
these two are the most commonly used CIR benchmark
datasets. Kodak HD is the original high-resolution version of
the Kodak dataset. These three datasets have a very limited
number of images and scenes, which may lead to an undesired
bias when evaluating the correlation coefficients. Therefore,
we also adopt high-quality image datasets with a larger number
of natural images, including the DIV2K [45], the WED [46],
and the RAISE dataset [47]. The number of images in each
dataset is marked in Tab. I.

The Pearson correlation coefficient is employed to measure
the inter-channel correlation, which is shown in Equation (1).

r =

M∑
i=1

N∑
j=1

(Aij − Ā)(Bij − B̄)√
(
M∑
i=1

N∑
j=1

(Aij − Ā)2)(
M∑
i=1

N∑
j=1

(Bij − B̄)2)

Ā =
1

MN

M∑
i=1

N∑
j=1

Aij , B̄ =
1

MN

M∑
i=1

N∑
j=1

Bij

(1)

where A and B are intensity values for the considered color
components of an image, Ā and B̄ are the corresponding mean
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TABLE I
MEAN AND VARIANCE OF INTER-CHANNEL CORRELATION COEFFICIENTS FOR VARIOUS IMAGE DATASETS

Correlation Channels Kodak (24) Kodak HD (24) McMaster (18) DIV2K (800) WED (4744) RAISE (8156)

Mean
R/G 0.8722 0.7866 0.7445 0.8985 0.9010 0.9401
G/B 0.9056 0.9083 0.7114 0.9036 0.9149 0.8970
R/B 0.7669 0.7086 0.5618 0.7590 0.7892 0.8021

Variance
R/G 0.0172 0.0529 0.0606 0.0180 0.0149 0.0082
G/B 0.0133 0.0090 0.0887 0.0160 0.0105 0.0166
R/B 0.0365 0.0642 0.0841 0.0623 0.0407 0.0397

values of these color components, and M and N are the width
and height of the image.

Tab. I shows the mean and variance of the correlation
coefficients between R/G, G/B, and R/B for these datasets.
From the results, it can be seen that, first, for all the datasets,
the correlation values of the R/G and G/B channels are
consistently higher than those of the R/B channels (higher
mean values and lower variance values of the correlation
coefficients). This is in line with the observation mentioned
above that the wavelength differences of R/G and G/B are
smaller than those of R/B.

We also observe that for R/G and G/B, both of them have
high correlations, but the characteristics of the correlation are
quite different. They have very similar mean values but quite
different variance values, which means that the correlation
coefficients have quite different distributions. As the Kodak
dataset is a downsampled version of the Kodak HD dataset, the
results for these two datasets show that the resolution also af-
fects the correlation characteristics. The loss of high-frequency
details caused by downsampling leads to higher inter-channel
correlation. The correlation values of the McMaster dataset
are abnormally low compared to the other datasets, which
may be caused by the very small number of images (18
images) and their unique characteristics. The DIV2K, WED,
and RAISE datasets contain large amounts of images, and the
results better represent the general case of natural images. All
three datasets show very typical characteristics as we analyzed
before. In summary, the three channels have strong pairwise
correlations, but the correlation between every two channels
is quite different.

B. Characteristics of Distorted Color Images

In our experiments with raw, compressed, and real-world
noisy images, in almost all cases, the G channel shows the
best image quality among the three channels. In Bayer pattern
raw images, the G channel has twice as many samples than the
R and B channels. Apparently, for the corresponding demo-
saicked images, the G channel has much better reconstruction
quality compared to the other two channels. For compressed
and real-world noisy color images, the explanation is not
that straightforward. In the remainder of this section, we will
analyze the characteristics of compressed and real-world noisy
color images in detail.

We take the JPEG image codec as an example for ana-
lyzing the characteristics of compressed color images. JPEG
has a simple structure, and it is the most commonly used

Fig. 2. Blockwise transform-based color image compression scheme.

image compression standard. Many other advanced image
compression algorithms are based on the blockwise transform
compression scheme proposed in JPEG. JPEG compression is
an 8 ∗ 8 blockwise DCT based image compression scheme,
and the major encoding and decoding steps are shown in Fig.
2. These steps include color transform, DCT, quantization,
entropy encoding, and the corresponding inverse processing
steps. The distortion of the compressed image is majorly
introduced by the quantization step Q. Other steps are lossless
or approximately lossless considering rounding errors.

In image and video compression, the YCbCr color space
is usually used instead of RGB. The YUV420 color format
is the most commonly adopted color format, in which the
chrominance components are downsampled by a factor of 2
horizontally and vertically. This is based on the assumption
that the human visual system is less sensitive to color dif-
ferences compared to brightness changes. The uncompressed
original image in RGB color space is IRGB and it has three
color components IR, IG and IB. The color space conversion
matrix and the corresponding inverse conversion matrix of the
JPEG standard [48] are shown in Equation (2) and (3). IY

ICb

ICr

=

 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

IRIG
IB

+

 0
128
128

 (2)

IRIG
IB

 =

1 0 1.402
1 −0.344 −0.714
1 1.772 0

 IY − 0
ICb − 128
ICr − 128

 (3)

After color space conversion, the image IYCbCr has the
three channels IY, ICb and ICr, which represent luminance,
blue and red chrominance, respectively. Then, if defining the
image compression process as CODEC(·), which includes
Encoder and Decoder shown in Fig. 2, the reconstructed image
in YCbCr color space is:

I′YCbCr = CODEC(IYCbCr) (4)
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The Y, Cb, and Cr channels have different statistics.
The luminance channel contains many high-frequency de-
tails, while the chrominance channels are mainly composed
of low-frequency color difference signals. Considering these
statistics and the human vision system, different compression
parameters and different quantization matrices for the lumi-
nance channel and the chrominance channels are adopted in
CODEC(·). Defining the compression process of IY, ICb

and ICr as CODECY(·), CODECCb(·) and CODECCr(·),
respectively, then the compression error in the YCbCr color
space ∆IYCbCr is expressed as:

∆IYCbCr =I′YCbCr − IYCbCr

=


∆IY = CODECY(IY)− IY

∆ICb = CODECCb(ICb)− ICb

∆ICr = CODECCr(ICr)− ICr

(5)

where ∆IY, ∆ICb, and ∆ICr are the compression errors for
Y, Cb and Cr, respectively.

The compression loss is mainly introduced by the quanti-
zation process of a codec. In the JPEG compression standard,
a base quantization matrix Qb is defined, and different com-
pression qualities are achieved by adjusting the quantization
coefficient (QC). Therefore, the quantization matrix for a
specific quality Q is defined as:

Q =

[
50 + QC ∗Qb

100

]
(6)

where [·] is the rounding operation. For simplicity, in practice,
an integer quality factor (QF ∈ [0. . 100]) is defined to adjust
the compression levels. The mapping relationship between QF
and QC is defined in Equation (7).

QC =


5000

QF
, QF ∈ [0. . 50]

200− 2 ∗QF, QF ∈ [51. . 100]
(7)

As analyzed in [49], after the inverse quantization step Q−1,
the errors between the reconstructed DCT coefficients and the
true values can be formulated as a uniform distribution with
a range of [−0.5, 0.5) ∗ Q. Since the DCT is an orthogonal
transform, according to the Lindeberg-Feller Central Limit
Theorem, when performing the inverse DCT (IDCT) for these
quantized DCT coefficients, the compression error in the
YCbCr color space ∆IYCbCr is modeled as an approximate
Gaussian distribution as follows:

∆IY ∼ N (µY, σ
2
Y)

∆ICb ∼ N (µCb, σ
2
Cb)

∆ICr ∼ N (µCr, σ
2
Cr)

(8)

where N (·) is the Gaussian distribution, µY, µCb, µCr and
σ2
Y, σ2

Cb, σ2
Cr are the expectations and variances of ∆IY,

∆ICb, ∆ICr, respectively.
As the Y channel and Cb, Cr channels are compressed inde-

pendently in the codec, we assume that the compression errors
∆IY, ∆ICb, and ∆ICr also are approximately independent
random variables. Then, when the compressed image I′YCbCr

is converted to RGB color space I′RGB with Equation (3), the
compression error in RGB domain ∆IRGB is represented as:

∆IRGB = I′RGB − IRGB

=


∆IR ∼ N (µY + 1.402µCr, σ

2
Y + 1.4022σ2

Cr)

∆IG ∼ N (µY − 0.344µCb − 0.714µCr,

σ2
Y + 0.3442σ2

Cb + 0.7142σ2
Cr)

∆IB ∼ N (µY + 1.772µCb, σ
2
Y + 1.7722σ2

Cb)

(9)

where ∆IR, ∆IG, and ∆IB are the compression error for R,
G and B, respectively.

As Cb and Cr are both color difference signals, these two
channels share the same compression parameters in the codec.
We assume hence that µCb ≈ µCr, σ2

Cb ≈ σ2
Cr. Then

Equation (9) can be simplified as:
∆IR ∼ N (µY + 1.402µCb, σ

2
Y + 1.966σ2

Cb)

∆IG ∼ N (µY − 1.058µCb, σ
2
Y + 0.628σ2

Cb)

∆IB ∼ N (µY + 1.772µCb, σ
2
Y + 3.140σ2

Cb)

(10)

Assuming that µY, µCb, µCr are close enough to 0, then the
error levels mainly depend on the error variance. Therefore,
from Equation (10), we can conclude that ∆IB > ∆IR >
∆IG. It means that when the reconstructed RGB image I′RGB

is obtained, the G channel has the best quality, and the R and
B channels have lower quality. The B channel suffers from
more distortion than R.

We can also conclude from Equation (10) that this kind of
characteristic is caused by the adopted color transform matri-
ces shown in Equation (2) and (3). For images and videos of
different resolutions and different codecs, the color transform
matrices and the offsets adopted are slightly different, which
are defined in the ITU-R BT.601 [50], ITU-R BT.709 [51],
and ITU-R BT.2020 [52] standards. However, no matter which
standard is adopted, similar conclusions are obtained.

In order to prove the rationality and correctness of the
assumptions and simplifications adopted in the analysis, val-
idation experiments are performed. The MATLAB built-in
JPEG codec is employed as the image codec, and the LIVE1
dataset [53] is adopted as the validation dataset. There are
29 color images in the LIVE1 dataset. These images are
compressed using QF ∈ [0. . 100] with a step size of 1.
The average Peak Signal-to-Noise Ratio (PSNR) is adopted
to evaluate the distortion of the compressed image. The rate-
distortion results are shown in Fig. 3. The average PSNR
values are offered for each color component separately, and
for the RGB images as a whole. The 0.3–0.7 bit/pixel region
is enlarged to show the details at low bit-rate.

As illustrated in Fig. 3, the G channel shows the highest
PSNR values among all three channels. The R channel shows
higher values than B, and the average PSNR for the RGB
images are close to the performance of the R channel. Even
when the bit-rate is low, as shown in the zoomed-in patch,
the same characteristics can be observed. These observations
are consistent with the aforementioned conclusions. Similar
observations were mentioned in our previous work [16], in
which the BPG image codec and the Kodak dataset were
adopted to test the rate-distortion performance. This shows that
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the assumptions adopted in the analysis are reasonable, and
obtained conclusions are general characteristics of compressed
color images caused by the color transform matrices.

Fig. 3. PSNR of the R, G and B channels and the Composite PSNR (CPSNR)
of the RGB images (JPEG, QF ∈ [0. . 100], the LIVE1 dataset).

For real-world noisy images, similar characteristics are
expected. Noise is introduced by the image sensor and the
processing pipeline inside the camera. Most of the modern
cameras are still based on the Bayer pattern CFA, in which
the green channel has twice as many samples compared to the
other two channels. These raw samples are distorted by noise.
Then the noise is propagated and heavily mixed during the
in-camera processing, including CDM, gamut mapping, tone
mapping [33]. This leads to different noise levels and statistics
for different color channels.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Example image patch from the SIDD dataset. (a) noisy image,
(b) groundtruth, (c) difference between noisy and groundtruth images, (d)
difference of red channel, (e) difference of green channel, (f) difference of
blue channel.

In order to better visualize these differences, real-world
noisy/clean image pairs are adopted for analysis. Several real-
world noisy image datasets are publicly available [33], [36],
[37]. The SIDD dataset is adopted in our experiment as both
the noisy images and the clean counterparts are provided.
There are 320 high-resolution noisy/clean image pairs of

various scenes and illumination conditions. Other datasets
usually have a limited number of images and provide only
the noisy images. The evaluation can only be performed with
an online submission system.

First, an example image patch is shown in Fig. 4 (a). It can
be seen that the image suffers from very strong noise, and the
noise is spatially-variant. From the differences of each channel
in Fig. 4 (d)-(e), we observe that the noise level of the green
channel is much smaller compared to the other two channels.

In order to ensure that this is a general characteristic
for noisy images, we evaluate the average PSNR, MS-SSIM
(Multi-scale Structural Similarity Index) [54], and noise vari-
ance for the red, green, and blue channels of the whole dataset.
As shown in Tab. II, the values for the green channel are about
4dB PSNR and 0.12 MS-SSIM higher compared to the red and
blue channels, and the noise variance is about half compared
to the other two channels. The red and blue channels have
similar PSNR, MS-SSIM values, and noise variances.

TABLE II
NOISE ANALYSIS FOR THE SIDD DATASET

Channel PSNR MS-SSIM Noise variance

R 26.92 0.7257 267.13
G 30.47 0.8426 133.92
B 26.70 0.7103 288.12

In summary, all these observations and analyses show that
the green channel has the best quality among the three color
channels and that this is a general characteristic of distorted
color images. Inspired by these observations, we design a 3-
stage CIR scheme, which is presented in Section IV.

IV. PROPOSED 3-STAGE CNN SCHEME FOR COLOR IMAGE
RESTORATION

The proposed 3-stage CIR scheme is illustrated in Fig. 5.
For simplicity, we take the CAR and RIDN tasks as examples
to explain how the scheme works. We will explain how to
adapt it to the CDM task in Section IV-A.

First, the distorted image I′RGB is processed by the pixel-
shuffle layer, which rearranges each channel into four smaller
image patches with quarter resolution and concatenates them
as X′RGB. Then, it is fed into the first stage to enhance
the G channel. In the first stage, the spatial correlation and
redundancies are exploited to enhance the quality of the G
channel leading to X′G1. Since the G channel has better quality
than the other two, and R/G, G/B have very strong inter-
channel correlation and the correlation usually has different
characteristics, in the second stage, X′G1 is adopted to guide
the reconstruction of the R and B channel, respectively. By
concatenating X′G1 with X′R and X′B as the inputs of two
parallel networks, the two subnetworks in the second stage
explore the inter-channel correlation between R/G and G/B. As
a result, the enhanced X′R1G2 and X′G3B1 are obtained. In the
third stage, the intermediate R, G, B values are concatenated as
X′R1G1B1, fed into the third stage to further refine the quality
of the image, and the 12-channel output X̂RGB is obtained.
Finally, in the last step, the 12-channel X̂RGB is reshaped
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Fig. 5. Overall structure of the proposed 3-stage CNN-based color image restoration scheme.

back to the original resolution, and the enhanced RGB image
ÎRGB is obtained.

Fig. 6. Structure of the network unit for each stage (Conv: convolutional
layer, ReLU: relu activation layer, BN: batch normalization layer).

Compared to our original 3-stage approach in [15] and [16],
we improve the network structure to make it more compact
and efficient. First, the RGB images are adopted as the input
of the first stage, as the reconstruction of the G channel also
benefits from the samples of the other two channels. Second,
we concatenate the reconstructed G from the first stage and
the R, B channels from the second stage as the input of the
third stage. These modifications make sure that each stage has
a clear target. The first stage is focusing on the reconstruction
of the G channel. The two sub-networks in the second stage
are designed to reconstruct the R and B channels, respectively.
The third stage is aiming at refining the performance jointly.

Fig. 6 shows the detailed structure of the network unit for
each stage. In the first layer, 64 filters of size 3×3×d are used
to generate feature maps. The last convolutional layer adopts d
filters of size 3×3×64 to generate the corresponding output.
For the hidden layers, 64 filters of size 3×3×64 are adopted.
The number of layers in each unit K is set to 10, and d is set
to 4, 8, 12 in the three stages, respectively. Stride is set to 1,
and zero-padding of size 1 is used to ensure that each feature
map has the same size as the input.

A. Pixel-shuffle CNN Layer for Color Image Restoration

Pixel-shuffle convolution was initially proposed in [17]
for gray-scale image super-resolution tasks. For most of the
super-resolution algorithms, the input low-resolution images

are first up-sampled to the desired-resolution with simple
interpolation algorithms, and then adopted as the input of the
super-resolution algorithms to refine the results. CDM tasks
suffer from similar issues. Existing approaches mostly first
interpolate the Bayer pattern image to a three-channel full-
resolution image as the initialization. The result is then refined
with image priors and other advanced algorithms. Our previous
work in [15] also follows the same pipeline.

In [17], the authors showed that the interpolation + refine-
ment structure is sub-optimal and adds unnecessary compu-
tational complexity. They proposed a pixel-shuffle convolu-
tion scheme to solve these issues. The sub-pixel convolution
scheme extracts features in low-resolution space. Only in the
last layer, the pixels from the low-resolution feature maps are
rearranged to generate the high-resolution images.

There are three significant advantages of the pixel-shuffle
convolution scheme. The first one is that the initialization is
not required anymore. The second is the lower computational
complexity, as only 1/N2 convolution operations are needed
compared with interpolation + refinement approaches when the
network settings are the same, where N is the scale factor of
the super-resolution. The third is that it has a larger receptive
field for the same kernel size, as more information in the
contextual area can be integrated into the reconstruction of
the current pixel, which is beneficial to spatial information
exploration and reconstruction quality. In [7], a similar scheme
is adopted in a denoising network to boost both the running
speed and performance.

Therefore, we integrate pixel-shuffle convolution into our
scheme to reduce the computational complexity and improve
the reconstruction performance. For the CAR and RIDN tasks,
the situation is similar to color image super-resolution with
N = 2. As shown in Fig. 5, the original distorted color image
is rearranged into a 12-channel structure before feeding it to
the network and reshaped back to the original dimensions after
obtaining the output of the network.

For the CDM task, it is slightly different. The R and B
channels are sub-sampled both vertically and horizontally by
a factor of 2 compared to the desired full-resolution output.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSTSP.2020.3043148

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMIT TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, OCT 2020 8

For the G channel, since it is sampled with a quincunx pattern,
we need to split the G plane into two channels. Considering
X is a Bayer CFA image, it is reshaped to a 4-channel RGGB
images Xr as follows:

Xr(i, j, 0) =X(2i, 2j)

Xr(i, j, 1) =X(2i, 2j + 1)

Xr(i, j, 2) =X(2i+ 1, 2j)

Xr(i, j, 3) =X(2i+ 1, 2j + 1)

(11)

where i = 0, . . . ,H/2, j = 0, . . . ,W/2, H and W are the
height and width of the CFA image. Xr is fed as input to the
network for demosaicking.

Fig. 7. Pixel-shuffle CNN for CDM (for the Bayer pattern RGGB CDM case).
Illustration of how the pixel-rearrangement is performed in the first layer and
in the last layer.

Fig. 7 shows the modified pixel-shuffle CNN layer for CDM
and the reshaping order of the RGB image in the first and the
last layer. The Bayer pattern RGGB case is illustrated here.
The proposed scheme can easily be modified for other CFA
patterns.

B. Quality-blind Training Strategy for CAR tasks

Most CAR approaches take JPEG compression as a bench-
mark to evaluate the performance. The images compressed
with a specific QF, such as 10 or 20, are adopted for training,
and the compressed JPEG images of the same QF are adopted
for testing. In DnCNN [6], a wider range (QF ∈ [10. . 40])
can be covered by a single trained model, but still far from
covering the whole range and only the luminance channel is
considered. In IDCN [10], a limited range (QF ∈ [5. . 20]) can
be covered. However, they need the QF values, quantization
table, and the pixel position labeling map as side information.
These limitations make it difficult to apply these approaches
for practical CAR.

In order to solve these issues, we propose a simple but
effective training strategy — quality-blind training for CAR
tasks. The images in the training dataset are compressed to
various distortion levels, and then these pairs of clean and
compressed images are fed into the network for training.
When the trained model is obtained, it has the capability to
enhance the compressed color images covering the whole QF
range without any side information. This strategy makes the
training process much more manageable. Compared to training
separately for each QF, we observe a minimal compromise on
performance for our 3-stage CNN network.

For easier generation and to ensure an equal number
of samples for different distortion levels, we generate the
training images with QF ∈ [0. . 100] and a step size of

5. Assuming there is a ground-truth RGB image I, a se-
quence of 21 compressed images of different distortion levels
{I′QF=0, I

′
QF=5, · · · , I′QF=100} is generated. In order to guar-

antee the trained model does not have any preference for a
specific QF or type of image, these training image pairs are
randomly sorted, and a training input image queue of size 5000
is created. During training, each mini-batch consists of image
patches of different distortion levels randomly selected from
the image input queue.

C. Loss Function

Consider the training dataset (I′i, Ii)
N
i=1, where I′i is the i-

th distorted RGB image, Ii is the corresponding ground-truth
RGB image, and N is the number of the images in the training
data. During training, a loss function is defined to optimize the
parameters of the networks. The mean squared error (MSE)
function is adopted as the loss function which is defined in
Equation (12).

L(ω1, ω21, ω22, ω3) =

1

N

N∑
i=1

(‖F(I′i;ω1, ω21, ω22, ω3)− Ii‖2)
(12)

where ωj are the corresponding network parameters of the j-th
stage. F(I′i;ω1, ω21, ω22, ω3) is the i-th output of the 3-stage
network.

In order to ensure the generalizability of the trained model,
a regularization term is adopted in the final loss function as
shown in Equation (13). The regularization coefficient λ is set
to 0.0005.

Lall(ω1, ω21, ω22, ω3) = L+
1

2
λ
∑
j

(‖ωj‖2) (13)

V. EXPERIMENTAL RESULTS AND ANALYSIS

The WED database is adopted as training data for the CDM
and CAR tasks. In this dataset, there are 4744 high-quality
natural images of various scenes. We randomly select 4644
images for the training dataset, and the remaining 100 images
are used as test dataset. For the CDM task, RGGB Bayer
pattern images are generated as the input of the network for
training. For the CAR task, compressed images of different
quality levels are generated with the MATLAB JPEG codec
following the strategy introduced in Section IV-B. The SIDD
dataset is adopted as the training dataset for real-world denois-
ing tasks. It contains 320 noisy/clean image pairs for training
and an additional 40 for testing.

The high-resolution images in the training datasets are
cropped into small patches for training. The patch size of
the input is set to 160 × 160. Random flip and rotation are
adopted as the augmentation option of the training dataset.
The mini-batch size is set to 64. The weights of the networks
are initialized according to [55], and the Adam solver is used
to optimize the parameters. The four sub-networks in the
3-stage CNN are trained end-to-end and optimized jointly.
The starting learning rate is 0.001, and it is divided by ten
every twenty epochs. There are 100 epochs in total. Other
hyper-parameters are using the default settings from [56].
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8. Visual quality comparison on image 03168.bmp of the WED-NEW dataset (best seen on a computer monitor). (a) Groundtruth. (b) Groundtruth
Zoom-in. (c) AHD (29.01dB). (d) DLMMSE (31.09dB). (e) LDI-NAT (29.86dB). (f) RI (29.69dB). (g) MLRI (30.16dB). (h) ARI (29.98dB). (i) 2-stage
(33.57dB). (j) 3-stage (33.90dB). (k) Proposed (34.62dB). (l) Proposed+ (34.73dB).

All the experiments are performed using TensorFlow 1.12,
and the source code, the trained models will be available at
https://github.com/amnesiack/CNNCDM3CIR.

A. Color Image Demosaicking
There are two commonly used datasets for CDM perfor-

mance evaluation, the Kodak and the McMaster dataset. How-
ever, for the Kodak dataset, the images have relatively low-
resolution and limited color gradations, which is not optimal
for the evaluation of CDM algorithms for modern digital
cameras [27]. The McMaster dataset also has limitations
concerning scene variety since it contains only 18 images, and
also as can be seen from Tab. I, this dataset has atypically low
inter-channel correlation compared to the other natural image
datasets. In order to evaluate the proposed scheme compre-
hensively, we also adopt the WED-NEW dataset proposed in
our previous work [15] for evaluation, which is the remaining
100 images from the WED dataset.

First, an example is presented in Fig. 8 to show the visual
quality of the proposed method in comparison to existing
algorithms. The texture-rich and sharp color transition areas
are the challenging cases for CDM. We zoom in the tree
part of the image 03168.png from the WED-NEW dataset to
show the details. The results are generated with the source
code provided for the reference papers without modification.
Proposed+ refers to the proposed scheme with geometric self-
ensemble strategy [57].

In Fig. 8, the tree part has a very complex texture and
irregular edges. With conventional approaches, many false-
color artifacts can be observed, and pseudo-color pixels are
generated. With the 2-stage and the original 3-stage approach,

the results improve significantly, but some artifacts can still
be observed along the edges of the tree. With the proposed
3-stage+pixel-shuffle approaches, these artifacts are almost
eliminated, and the visual quality is further improved. Even
when compared side-by-side with the groundtruth, it is difficult
to see any differences.

The average PSNR and composite PSNR (CPSNR) are
adopted to evaluate the objective quality of different ap-
proaches. MS-SSIM is also adopted because it is usually
more robust and provides closer to human visual evaluation
results. Ten pixels along the border are cropped because some
algorithms suffer from border effects. The results are listed in
Tab. III. The best performance of each metric is marked in
red, and the second best in blue.

Tab. III reveals that compared to conventional image prior-
based approaches, CNN-based approaches achieve significant
PSNR improvements (usually more than 1.5dB). The proposed
method leads to an additional 0.6–0.8dB PSNR improvement
on different datasets in comparison to other CNN-based algo-
rithms. The self-ensemble strategy brings about an additional
0.2dB improvement compared to the baseline approaches. The
PSNR improvements for the Kodak and WED-NEW dataset
are about 0.8 dB, for the McMaster dataset, it is about 0.6 dB,
which is reasonable considering the inter-channel correlation
in Tab. I.

B. Color Compression Artifacts Reduction
The LIVE1 and the classic5 dataset are two commonly

adopted datasets for CAR tasks. However, the classic5 dataset
consists of gray-scale images, which cannot be used for testing
color CAR algorithms. The images in the LIVE1 dataset have
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TABLE III
AVERAGE PSNR, CPSNR (IN DB) AND MS-SSIM RESULTS FOR THREE CDM BENCHMARK DATASETS. THE BEST PERFORMANCE IS MARKED IN RED

AND THE SECOND BEST IN BLUE

Methods
Kodak (24) McMaster (18) WED-NEW (100)

R G B RGB R G B RGB R G B RGB

AHD [58] 37.00 39.64 37.31 37.77/0.9947 33.00 36.98 32.16 33.49/0.9835 34.20 37.78 34.56 35.12/0.9915
DLMMSE [59] 39.18 42.63 39.58 40.11/0.9963 34.03 37.99 33.04 34.47/0.9878 35.56 39.57 35.91 36.55/0.9935
LDI-NAT [44] 37.14 39.48 37.01 37.71/0.9933 36.19 39.52 34.37 36.12/0.9922 35.62 38.69 35.71 36.37/0.9928

MLRI [60] 38.87 41.83 38.86 39.58/0.9959 36.35 39.90 35.36 36.62/0.9936 36.53 39.93 36.82 37.42/0.9945
RI [61] 38.62 41.18 38.49 39.21/0.9957 36.72 40.23 35.59 36.91/0.9941 36.49 39.64 36.76 37.32/0.9943

ARI [62] 39.27 42.43 39.10 39.95/0.9962 37.45 40.68 36.21 37.60/0.9949 36.73 40.20 36.93 37.58/0.9944
2-stage [27] 41.38 44.85 41.04 42.04/0.9974 39.14 42.10 37.31 38.98/0.9956 38.98 42.69 38.99 39.84/0.9965
3-stage [15] 42.07 45.18 41.09 42.39/0.9975 39.60 42.60 37.68 39.39/0.9958 39.32 43.04 39.37 40.19/0.9967

Proposed 42.76 45.94 41.55 42.97/0.9978 39.96 42.77 38.05 39.72/0.9960 40.04 43.60 39.98 40.84/0.9970
Proposed+ 42.99 46.13 41.72 43.17/0.9978 40.22 42.93 38.22 39.91/0.9962 40.22 43.79 40.17 41.02/0.9971

relatively low resolution (768 × 512 or smaller) compared to
images captured by modern cameras and smartphones. Also,
it has only 29 images with limited scene diversity, which may
lead to biases for some evaluation metrics. To avoid these
potential issues, we adopt the image dataset proposed in the
CLIC image compression challenge [63] as the evaluation
dataset. The CLIC dataset includes 61 high-resolution images
of daily life scenes captured with mobile devices and 41 high-
quality artistic images captured by professional cameras and
photographers. This dataset better represents the CAR tasks in
practice.

Most of the existing CAR approaches deal with gray-scale
images only and are trained for a specific quality level. In
order to make a fair comparison, ARCNN [29] and DnCNN
[6] are adopted and retrained for color images. The number
of channels of the input layer and the output layer is modified
to 3. Other parameters are the same as the original approach.
These two retrained approaches are noted as ARCNN-RGB
and DnCNN-RGB. 3-stage refers to the retrained version of
our previous work [16] for the JPEG codec. Since these
trained models can deal with multiple distortion levels with
a single trained network, we select QF ∈ {10, 30, 50, 70, 90}
to illustrate the achieved visual quality improvement. Fig. 9
provides the visual quality comparison of different algorithms.
Image areas with texture, sharp edges, and color transition
are the challenging cases for CAR tasks. We zoom in for the
shown patches to better visualize the details.

As shown in Fig. 9, when the QF value is low (QF =
{10, 30}), strong compression artifacts including block, ring-
ing, and pseudo-color pixel artifacts are observable in the
compressed images. With ARCNN-RGB, these artifacts are
slightly alleviated, but many visible artifacts remain. For the
other three approaches, the artifacts are well removed. Among
all these approaches, the proposed approach achieves the best
visual quality. When the QF value is higher (QF = {50, 70}),
only some ringing artifacts are still visible along the sharp
edges. ARCNN-RGB removes some of them, but there are still
slight remaining artifacts. The other three approaches perform
well, and the visual quality is improved. When the QF is very
high (QF = 90), the compressed images and the enhanced
ones are visually similar.

The average PSNR, MS-SSIM are adopted as objective

evaluation metrics. Since blocking is one of the most important
compression artifacts, average PSNR-B is also adopted, which
is a specially designed metric to evaluate the block artifacts
in a compressed image. QF ∈ [0. . 100] with a step size of 10
is used to evaluate the performance improvement for different
quality levels. Tab. IV lists the results for these three metrics
on the CLIC dataset.

As can be seen from Tab. IV, even a simple four-layer
CNN, such as ARCNN-RGB covers a wide range of QF
values and brings improvements. However, compared to the
other approaches, the improvements are relatively small for
all three metrics. DnCNN-RGB achieves better performance
than ARCNN-RGB, because more layers are adopted. Our
original 3-stage approach already outperforms the DnCNN-
RGB by 0.1–0.2 dB regarding PSNR and achieves the best
performance for PSNR-B. With the integration of the pixel-
shuffle layer to our scheme, the proposed algorithm achieves
an additional 0.1–0.2 dB PSNR improvement and corre-
sponding MS-SSIM improvement. The PSNR-B performance
of the proposed approach is comparable to the original 3-
stage approach, which means that the pixel-shuffle structure
maintains similar performance while significantly reducing the
computational complexity. The proposed approach leads to the
best performance for PSNR and MS-SSIM for all tested QF
values.

In order to better visualize the improvements of different
approaches for images compressed with different QF values,
Fig. 10 presents the PSNR as a function of QF for the different
approaches on the CLIC dataset. From Fig. 10, it can be seen
that when the QF is very high, the PSNR of the enhanced
images may even be lower than for the original JPEG images.
For ARCNN-RGB, this happens when QF is greater than 85.
It is mainly because of the limitation of ARCNN itself. It
has a very limited number of trainable parameters. When the
compressed image quality is high, it considers some high-
frequency details as artifacts and smoothes them out. For
DnCNN-RGB and the 3-stage approach, this happens only
when the QF is very close to 100. The proposed approach
brings consistent improvements for the whole QF range.
Compared to the JPEG baseline, the PSNR is improved by
1.2–1.8 dB for a wide range of QF values.
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(1) Groundtruth bikes.bmp (2) Groundtruth IMG 2072.png (3) Groundtruth zoom-in

(4) JPEG QF = 10 (5) ARCNN-RGB (6) DnCNN-RGB (7) 3-stage (8) Proposed

(9) JPEG QF = 30 (10) ARCNN-RGB (11) DnCNN-RGB (12) 3-stage (13) Proposed

(14) JPEG QF = 50 (15) ARCNN-RGB (16) DnCNN-RGB (17) 3-stage (18) Proposed

(19) JPEG QF = 70 (20) ARCNN-RGB (21) DnCNN-RGB (22) 3-stage (23) Proposed

(24) JPEG QF = 90 (25) ARCNN-RGB (26) DnCNN-RGB (27) 3-stage (28) Proposed

Fig. 9. Visual quality comparison on image bikes.bmp of the LIVE1 dataset and the IMG 2072.png of the CLIC dataset (best seen on a computer monitor).

Fig. 10. PSNR performance as a function of QF on the CLIC dataset.

C. Real-world Color Image Denoising

For the RIDN task, the validation subset of the SIDD dataset
is adopted to evaluate the performance of different algorithms.
This dataset consists of 1280 noisy/clean image patch pairs of
size 256 × 256 cropped from 40 high-resolution validation

image pairs. We compare the proposed approach with several
state-of-the-art approaches including TWSC [35], CDnCNN-
B [6], CBDNet [38] and RIDNet [39]. The results here are
generated using the source code downloaded from the original
project pages. CDnCNN-B is one of the variants of DnCNN,
which is targeting the blind color image denoising task for
synthetic AWGN noise. In order to make a fair comparison,
we retrain it with the SIDD dataset, which is noted as DnCNN-
RGB in the results. Other parameters are the same as presented
in the original paper.

Fig. 11 compares the visual quality of the different ap-
proaches. The noisy images suffer from strong noise. TWSC
performs well for patch-wise smooth images. However, details
are smoothed out when the image contains edges or textures.
CDnCNN-B brings little improvements, as it is trained for
synthetic AWGN noise. The retrained version DnCNN-RGB
and CBDNet perform better, but obvious artifact patterns are
observed. The RIDNet and the proposed approach generate
clean output, and the proposed approach better reconstructs
details.

Tab. V presents the average PSNR and MS-SSIM values.
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TABLE IV
AVERAGE PSNR (IN DB), PSNR-B (IN DB) AND MS-SSIM RESULTS FOR THE JPEG CAR TASK (THE CLIC VALIDATION DATASET)

QF of JPEG JPEG ARCNN-RGB DnCNN-RGB 3-stage Proposed

0 22.61 / 25.74 / 0.7578 22.86 / 26.00 / 0.7681 24.11 / 27.33 / 0.8231 24.16 / 27.54 / 0.8279 24.31 / 27.52 / 0.8331
10 28.41 / 30.94 / 0.9036 29.14 / 31.90 / 0.9191 30.12 / 32.96 / 0.9416 30.27 / 33.21 / 0.9440 30.51 / 33.25 / 0.9475
20 31.10 / 33.37 / 0.9496 32.01 / 34.60 / 0.9597 32.67 / 35.27 / 0.9676 32.86 / 35.50 / 0.9689 32.99 / 35.51 / 0.9703
30 32.46 / 34.70 / 0.9654 33.42 / 36.04 / 0.9723 33.98 / 36.53 / 0.9765 34.17 / 36.75 / 0.9774 34.26 / 36.75 / 0.9783
40 33.38 / 35.61 / 0.9730 34.32 / 36.99 / 0.9783 34.85 / 37.39 / 0.9811 35.03 / 37.61 / 0.9818 35.11 / 37.59 / 0.9824
50 34.08 / 36.36 / 0.9778 34.99 / 37.74 / 0.9819 35.52 / 38.08 / 0.9841 35.69 / 38.30 / 0.9847 35.76 / 38.28 / 0.9851
60 34.74 / 37.09 / 0.9811 35.59 / 38.43 / 0.9844 36.14 / 38.76 / 0.9863 36.31 / 38.96 / 0.9868 36.38 / 38.94 / 0.9872
70 35.65 / 38.10 / 0.9850 36.37 / 39.33 / 0.9871 37.00 / 39.69 / 0.9889 37.16 / 39.87 / 0.9892 37.24 / 39.84 / 0.9895
80 36.92 / 39.57 / 0.9888 37.32 / 40.47 / 0.9898 38.15 / 40.99 / 0.9915 38.30 / 41.16 / 0.9917 38.40 / 41.09 / 0.9919
90 39.18 / 42.43 / 0.9930 38.59 / 41.99 / 0.9924 40.17 / 43.48 / 0.9944 40.29 / 43.60 / 0.9945 40.43 / 43.45 / 0.9946

100 46.23 / 53.95 / 0.9985 39.78 / 43.19 / 0.9944 46.10 / 52.74 / 0.9984 46.11 / 52.36 / 0.9983 47.27 / 52.84 / 0.9989

(a) Groundtruth (b) Noisy (c) TWSC (d) CDnCNN-B (e) CDnCNN-RT (f) CBDNet (g) RIDNet (h) Proposed

Fig. 11. Visual quality comparison on images patches of the SIDD validation dataset (best seen on a computer monitor).

TABLE V
AVERAGE PSNR, CPSNR (IN DB) AND MS-SSIM RESULTS FOR THE

SIDD VALIDATION DATASET

Methods R G B RGB

Noisy 23.17 26.41 22.68 23.66 / 0.6237
TWSC [35] 35.12 37.49 35.04 35.53 / 0.9347

CDnCNN-B [6] 23.20 26.46 22.80 23.74 / 0.6242
DnCNN-RGB 30.91 32.57 30.77 31.17 / 0.8788
CBDNet [38] 32.65 37.26 31.79 33.07 / 0.9059
RIDNet [39] 38.31 40.84 38.05 38.71 / 0.9565

Proposed 38.73 40.99 38.35 39.04 / 0.9576

Except for CDnCNN-B, all other approaches bring signif-
icant PSNR and MS-SSIM improvements compared to the
original noisy image. TWSC performs well. However, it is
much slower than the other approaches because it solves an
iterative optimization problem. The performance of DnCNN-
RGB improves a lot after retraining with the SIDD dataset,
but it is still not satisfactory. CBDNet performs slightly better
than DnCNN. RIDNet outperforms the other approaches.
Compared to RIDNet, the proposed approach brings additional
PSNR and MS-SSIM improvements, especially for the red and
blue channels.

VI. FURTHER DISCUSSION AND ANALYSIS

A. Computational Complexity Analysis

Computational complexity and running time are also critical
for CIR tasks. The running time varies significantly with dif-
ferent hardware setups. To make a fair comparison, we take the

CAR task as an example, in which the comparison approaches
are re-implemented and re-trained for color images with the
same hardware and software configurations. Since CNN-based
approaches benefit significantly from GPU acceleration, we
adopt both Intel i7-8700k Hexa-core CPU and Nvidia GeForce
GTX 1080 Ti GPU for testing.

Fig. 12. PSNR performance as a function of the running time. The chart is
based on the total running time in seconds for the CLIC dataset and PNSR
values of QF = 10 in Tab. IV.

Fig. 12 shows the PSNR performance as a function of the
running time of various approaches. We take the CLIC dataset
and QF = 10 as an example. The closer to the upper-left
corner, the better the algorithm performs. The CNN-based
methods benefit a lot from GPU acceleration, usually more
than 50 times faster than running on the CPU. ARCNN-
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RGB is very fast, but it also has a significant performance
drop. The running time of the original 3-stage approach is
double compared to DnCNN. The proposed approach not
only achieves state-of-the-art performance but also is three
times faster compared to the original 3-stage approach. Even
compared to DnCNN, the running time is only half.

B. Pixel-shuffle Convolution and Kernel Size

Another major advantage of the pixel-shuffle convolution
is that it better explores the spatial and context information
for the same kernel size and parameter settings. In order to
prove this, different kernel sizes are adopted for the original 3-
stage and the proposed improved 3-stage variants for the CDM
task. These models are retrained with the same aforementioned
parameter settings.

TABLE VI
AVERAGE PSNR AND CPSNR RESULTS (IN DB) OF VARIOUS KERNEL

SIZES FOR THE WED-NEW DATASETS

Methods R G B RGB

3-stage (3× 3) 39.32 43.04 39.37 40.19
3-stage (5× 5) 39.79 43.41 39.75 40.61

Proposed (3× 3) 40.04 43.60 39.98 40.84
Proposed (5× 5) 40.11 43.65 40.05 40.90

As shown in Tab. VI, in general, larger kernel sizes bring
better performance. For the original 3-stage approach, an
additional 0.4dB PSNR improvement is observed. However,
for the proposed approach, increasing the kernel size from 3×3
to 5× 5, only a very small PSNR difference can be observed
(less than 0.1dB), which means that most of the achievable
improvement is already observed for the smaller kernel size.
Also, the 3-stage pixel-shuffle CNN with 3×3 kernel achieves
even better performance than the original 3-stage approach
with 5 × 5 kernel, which proves that the pixel-shuffle CNN
effectively and efficiently extracts spatial information.

C. The Effectiveness of the 3-stage Structure

Compared to a plain structure neural network, one of the
key features of the proposed approach is the 3-stage CNN
design. To prove that the reported improvements stem from
the 3-stage structure rather than from the increasing number of
parameters, we test a plain network structure that has a similar
number of parameters without the 3-stage design. Without the
3-stage design, our model degrades to a DnCNN-like structure
with the pixel-shuffle layer and three-channel color images as
input and output.

In Tab. IV and V, we have shown that the proposed approach
outperforms DnCNN for both CAR and RIDN tasks. There are
20 convolutional layers adopted in DnCNN, as suggested in
the original paper for color image denoising tasks. To make
the number of parameters roughly the same, we increase the
number of convolutional layers in DnCNN to 35 and adopt
the pixel-shuffle layer for the input and output images. This
modified DnCNN is noted as DnCNN-RGB+. The modified
network is retrained for RIDN and CAR tasks, and the results
for each task are shown in Tab. VII and VIII, respectively.

TABLE VII
AVERAGE PSNR, CPSNR (IN DB) AND MS-SSIM RESULTS OF

DNCNN-RGB+ FOR RIDN TASK (THE SIDD VALIDATION DATASET).

Methods R G B RGB

DnCNN-RGB (20 layers) 30.91 32.57 30.77 31.17 / 0.8788
DnCNN-RGB+ (35 layers) 35.31 35.52 35.40 35.31 / 0.9386

Proposed 38.73 40.99 38.35 39.04 / 0.9576

The results in Tab. VII show that the DnCNN-RGB+ brings
additional performance improvement compared to the original
DnCNN for the RIDN task. However, compared to TWSC,
RIDNet, and the proposed method, DnCNN-RGB+ still per-
forms worse. Considering the channel-wise reconstruction
quality, the deeper model DnCNN-RGB+ brings the PSNR
values for all three color channels to a similar level (about
35dB). For all other approaches, the reconstructed green chan-
nel always has better PSNR values. The possible reason is that
DnCNN-RGB+ is a plain structure, and the three channels are
reconstructed jointly. All the feature maps extracted are shared
among all three channels and contribute to reconstructing
these three channels. However, as analyzed in Tab. II, the
color channels of real-world noisy images suffer from different
distortion levels and require different compensation generated
from the feature maps. One shared group of feature maps is
not optimal to compensate for different levels of distortion.

TABLE VIII
AVERAGE PSNR (IN DB) RESULTS OF DNCNN-RGB+ FOR JPEG CAR

TASK (THE LIVE1 DATASET).

QF of JPEG DnCNN-RGB DnCNN-RGB+ Proposed(20 layers) (35 layers)

0 22.28 22.59 22.45
10 27.21 27.35 27.49
20 29.60 29.65 29.86
30 30.93 30.93 31.17
40 31.85 31.81 32.09
50 32.59 32.52 32.83
60 33.30 33.19 33.54
70 34.25 34.09 34.50
80 35.58 35.32 35.84
90 37.86 37.35 38.15

100 42.77 41.92 43.99

Tab. VIII presents the performance of the deeper model
DnCNN-RGB+ compared to the original DnCNN and the
proposed approach for the CAR task. For low quality levels
(QF = {0, 10, 20}), DnCNN-RGB+ perform slightly better
than DnCNN-RGB. When QF comes to 0, it performs better
than the proposed approach. This is because, for extremely low
quality, the images are highly distorted to a minimal number
of colors or even gray-scale blocking images. Exploiting the
inter-channel correlation in this case is less beneficial.

For medium to high quality levels (QF ∈ [40. . 100]), com-
pared to DnCNN-RGB and the proposed network, DnCNN-
RGB+ even suffers from some performance loss. On the one
hand, a deeper model is usually more difficult to optimize and
suffers from degradation issues. On the other hand, when qual-
ity levels become high, the inter-channel correlation becomes
more critical to achieve accurate reconstruction. The proposed
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3-stage network fully exploits the inter-channel correlation and
benefits from it.

Another important characteristic of the proposed approach
is that the green channel is reconstructed first, and then the red
and blue channels are reconstructed with the guidance of the
reconstructed green channel. To prove that the reconstruction
of the green channel in the first stage is necessary, we
reorder the reconstruction of color channels and perform an
experiment with the CDM task.

In this experiment, the red channel is reconstructed in
the first stage. In the second stage, the reconstructed red
channel is adopted to guide the reconstruction of the green and
blue channels in two parallel networks. All the intermediate
reconstructed color components are concatenated and further
refined in the third stage. This reordered version is noted as
Proposed-reorder. Other settings and the number of trainable
parameters remain the same. The experimental results are
shown in Tab. IX.

TABLE IX
AVERAGE PSNR AND CPSNR RESULTS (IN DB) OF THE REORDERED

3-STAGE CNN FOR THE WED-NEW DATASETS

Methods R G B RGB

Proposed 40.04 43.60 39.98 40.84
Proposed-reorder 39.62 43.22 39.54 40.42

The results show that with the same network topology,
reordering the reconstruction of the color channels results in
more than 0.4dB PSNR loss. In the second stage of Proposed-
reorder, the red channel is adopted to guide the reconstruction
of the green and blue channels, which means the R/G and
R/B correlation is considered and the G/B correlation is not
well-exploited. From the analysis in Tab. I and Fig. 1, the
correlation of G/B is much higher than that of R/B. Even this
can be partiality compensated in the third stage when jointly
refining, but there is still a noticeable performance loss. It
proves that the reconstruction of the green channel in the first
stage is necessary, and using two separate networks to explore
the R/G, G/B correlation in the second stage is beneficial.

D. Analysis of the Quality-blind Training for CAR tasks
By introducing the quality-blind training strategy to the

CAR task, a single trained model covers the whole quality
range of JPEG and brings consistent quality improvement.
It simplifies the training process significantly and makes the
approach more practical in a real codec. In order to analyze
the performance compromise of this strategy for different
approaches, we have trained separate models for some QF
values (QF ∈ [0. . 100] with a step size of 10). The comparison
results with the LIVE1 dataset are shown in Tab. X. There are
three columns of results under each approach. The column
blind represents the performance with the quality-blind train-
ing strategy. The column separate indicates the performance
of the model specially trained for the specific quality level.
The column gain is the PSNR value difference between the
separately training and the quality-blind training.

As shown in Tab. X, considering extreme low and high
quality levels (QF = {0, 90, 100}), there are noticeable PSNR

drops when using quality-blind training strategy. ARCNN-
RGB has the largest performance compromise compared to the
others, and the proposed approach has the least performance
loss.

Considering the quality range QF ∈ [10. . 80], for ARCNN-
RGB, separate training brings additional 0.2–0.6dB PSNR
improvements. The main reason is that the model capacity
and trainable parameters in ARCNN-RGB are very limited
(only four convolutional layers), which cannot cover so many
different quality levels with a single trained model. However,
compared to the JPEG baseline, the quality-blind trained
ARCNN-RGB model still brings most of the achievable
improvement. For DnCNN-RGB, the performance difference
between separate training and quality-blind training is about
0.1dB. The proposed approach narrows the difference to
less than 0.1dB for a wide range of quality levels. These
results prove that this simple quality-blind training strategy
is effective, and it leads to minimal performance compromise.

VII. CONCLUSION

This paper presents a 3-stage CNN-based color image
restoration scheme exploiting the inter-channel correlation.
With detailed theoretical and experimental analyses, we
demonstrate that the inter-channel correlation has special
characteristics, and the green channel has the best quality
among all three channels in many distorted images. Based
on these characteristics, a 3-stage CNN scheme is proposed,
in which the inter-channel correlation is fully exploited stage
by stage. Stage one is designed to reconstruct the green
channel. In the second stage, the red and blue channels are
enhanced with two parallel networks with the guidance of the
high-quality green channel obtained from the first stage. The
intermediate results are concatenated and further refined in the
third stage. By integrating the pixel-shuffle convolution to the
3-stage network, both the efficiency and the performance of
the network are significantly improved. By introducing the
quality-blind training strategy to the CAR task, the whole
quality range of JPEG is covered by a single trained model,
which makes the training more manageable and the approach
more practical. Extensive experiments on different CIR tasks
show that the proposed scheme can be applied for various CIR
tasks and outperforms the state-of-the-art approaches.

REFERENCES

[1] L. Zhang and W. Zuo, “Image restoration: From sparse and low-rank
priors to deep priors [lecture notes],” IEEE Signal Processing Magazine,
vol. 34, no. 5, pp. 172–179, Sept. 2017.

[2] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,” IEEE Transactions on Image
Processing, vol. 22, no. 2, pp. 700–711, Feb. 2013.

[3] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation for
image restoration,” IEEE Transactions on Image Processing, vol. 23,
no. 8, pp. 3336–3351, Aug. 2014.

[4] N. Eslahi and A. Aghagolzadeh, “Compressive sensing image restoration
using adaptive curvelet thresholding and nonlocal sparse regularization,”
IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3126–3140,
July 2016.

[5] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, Feb. 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSTSP.2020.3043148

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMIT TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, OCT 2020 15

TABLE X
AVERAGE PSNR (IN DB) RESULTS OF QUALITY-BLIND TRAINING AND SEPARATE TRAINING FOR EACH QF (THE LIVE1 DATASET). SEPARATE TRAINING
FOR EACH QF RESULTS ARE MARKED IN CYAN AND THE PSNR GAINS BETWEEN SEPARATE AND QUALITY-BLIND TRAINING ARE MARKED IN MAGENTA

QF of JPEG JPEG
ARCNN-RGB DnCNN-RGB Proposed

blind separate gain blind separate gain blind separate gain

0 20.89 21.16 22.38 1.22 22.28 22.62 0.34 22.45 22.65 0.20
10 25.69 26.37 26.93 0.56 27.21 27.29 0.08 27.49 27.51 0.02
20 28.06 28.91 29.28 0.37 29.60 29.68 0.08 29.86 29.89 0.03
30 29.37 30.26 30.53 0.27 30.93 31.01 0.08 31.17 31.21 0.04
40 30.28 31.18 31.43 0.25 31.85 31.94 0.09 32.09 32.13 0.04
50 31.03 31.90 32.12 0.22 32.59 32.68 0.09 32.83 32.89 0.06
60 31.77 32.58 32.81 0.23 33.30 33.42 0.12 33.54 33.63 0.09
70 32.77 33.44 33.70 0.36 34.25 34.39 0.14 34.50 34.58 0.08
80 34.23 34.52 35.02 0.50 35.58 35.77 0.19 35.84 35.96 0.12
90 36.86 35.96 37.40 1.44 37.86 38.38 0.52 38.15 38.47 0.32
100 43.07 37.13 40.59 3.46 42.77 44.57 1.80 43.99 44.69 0.70

[6] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, July
2017.

[7] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for cnn-based image denoising,” IEEE Transactions on Image
Processing, vol. 27, no. 9, pp. 4608–4622, Sept. 2018.

[8] Z. Jin, M. Z. Iqbal, D. Bobkov, W. Zou, X. Li, and E. Steinbach, “A
flexible deep CNN framework for image restoration,” IEEE Transactions
on Multimedia, vol. 22, no. 4, pp. 1055–1068, Apr. 2020.

[9] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior
driven deep neural network for image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 10, pp. 2305–
2318, Oct. 2019.

[10] B. Zheng, Y. Chen, X. Tian, F. Zhou, and X. Liu, “Implicit dual-
domain convolutional network for robust color image compression
artifact reduction,” IEEE Transactions on Circuits and Systems for Video
Technology, pp. 1–1, 2019.

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Color image
denoising via sparse 3d collaborative filtering with grouping constraint in
luminance-chrominance space,” in 2007 IEEE International Conference
on Image Processing, vol. 1, Sept. 2007, pp. 313–316.

[12] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Transactions on Image Processing, vol. 17, no. 1, pp.
53–69, Jan. 2008.

[13] Y. Wen, M. K. Ng, and Y. Huang, “Efficient total variation minimization
methods for color image restoration,” IEEE Transactions on Image
Processing, vol. 17, no. 11, pp. 2081–2088, Nov. 2008.

[14] M. Jung, X. Bresson, T. F. Chan, and L. A. Vese, “Nonlocal mumford-
shah regularizers for color image restoration,” IEEE Transactions on
Image Processing, vol. 20, no. 6, pp. 1583–1598, June 2011.

[15] K. Cui, Z. Jin, and E. Steinbach, “Color image demosaicking using
a 3-stage convolutional neural network structure,” in 2018 25th IEEE
International Conference on Image Processing (ICIP), Oct. 2018, pp.
2177–2181.

[16] K. Cui and E. Steinbach, “Decoder side image quality enhancement
exploiting inter-channel correlation in a 3-stage CNN: Submission to
CLIC 2018,” in 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018, pp. 2571–2574.

[17] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 1874–1883.

[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
with block-matching and 3D filtering,” in Image Processing: Algorithms
and Systems, Neural Networks, and Machine Learning, vol. 6064,
International Society for Optics and Photonics. SPIE, Feb. 2006, pp.
354 – 365.

[19] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using
the higher order singular value decomposition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 4, pp. 849–862,
Apr. 2013.

[20] H. S. Mousavi and V. Monga, “Sparsity-based color image super

resolution via exploiting cross channel constraints,” IEEE Transactions
on Image Processing, vol. 26, no. 11, pp. 5094–5106, Nov. 2017.

[21] T. Miyata, “Inter-channel relation based vectorial total variation for
color image recovery,” in 2015 IEEE International Conference on Image
Processing (ICIP), Sept. 2015, pp. 2251–2255.

[22] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser
prior for image restoration,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017, pp. 2808–2817.

[23] B. E. Bayer, “Color imaging array,” Jul. 20 1976, US Patent 3,971,065.
[24] D. Menon and G. Calvagno, “Color image demosaicking: An overview,”

Signal Processing: Image Communication, vol. 26, no. 8, pp. 518–533,
Oct. 2011.

[25] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demo-
saicking and denoising,” ACM Transactions on Graphics, vol. 35, no. 6,
pp. 191:1–191:12, Nov. 2016.

[26] F. Kokkinos and S. Lefkimmiatis, “Iterative joint image demosaicking
and denoising using a residual denoising network,” IEEE Transactions
on Image Processing, vol. 28, no. 8, pp. 4177–4188, Aug. 2019.

[27] R. Tan, K. Zhang, W. Zuo, and L. Zhang, “Color image demosaicking
via deep residual learning,” in 2017 IEEE International Conference on
Multimedia and Expo (ICME), July 2017, pp. 793–798.

[28] D. S. Tan, W. Chen, and K. Hua, “Deepdemosaicking: Adaptive image
demosaicking via multiple deep fully convolutional networks,” IEEE
Transactions on Image Processing, vol. 27, no. 5, pp. 2408–2419, May
2018.

[29] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Dec. 2015, pp. 576–584.

[30] K. Cui and E. Steinbach, “Decoder side color image quality enhance-
ment using a wavelet transform based 3-stage convolutional neural
network,” in 2019 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2019.

[31] H. Chen, X. He, L. Qing, S. Xiong, and T. Q. Nguyen, “DPW-SDNet:
Dual pixel-wavelet domain deep cnns for soft decoding of JPEG-
compressed images,” in 2018 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2018, pp. 824–833.

[32] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-
CNN for image restoration,” in 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2018, pp. 886–
894.

[33] S. Nam, Y. Hwang, Y. Matsushita, and S. J. Kim, “A holistic approach
to cross-channel image noise modeling and its application to image
denoising,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 1683–1691.

[34] J. Xu, L. Zhang, D. Zhang, and X. Feng, “Multi-channel weighted
nuclear norm minimization for real color image denoising,” in 2017
IEEE International Conference on Computer Vision (ICCV), Oct. 2017,
pp. 1105–1113.

[35] J. Xu, L. Zhang, and D. Zhang, “A trilateral weighted sparse coding
scheme for real-world image denoising,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer International
Publishing, Sept. 2018, pp. 21–38.

[36] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising
dataset for smartphone cameras,” in 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018, pp. 1692–1700.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSTSP.2020.3043148

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMIT TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, OCT 2020 16
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