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Abstract

We develop an efficient sampling-free approximation scheme for moment-based distributionally
robust nonlinear optimization problems. Our approach utilizes a smoothing method that allows
the use of gradient-based optimization methods. We apply our scheme to finite-dimensional opti-
mization problems and to optimal control problems with nonlinear partial differential equations.
Furthermore, we apply the sample average approximation method to convex risk-neutral optimal
control problems posed in Hilbert spaces and derive non-asymptotic error bounds, including ex-
ponential tail bounds, for their optimal controls and optimal values. Finally, we establish large
deviations for the multilevel Monte Carlo mean estimator.

Zusammenfassung

Der Großteil der Arbeit befasst sich mit der Analyse und numerischen Umsetzung eines effizien-
ten Ansatzes zur Approximation von momentenbasierten verteilungsrobusten nichtlinearen Opti-
mierungsproblemen. Wir behandeln sowohl endlich-dimensionale Probleme als auch Steuerungs-
probleme, die sich durch nichtlineare partiellen Differentialgleichungen ergeben. Desweiteren
approximieren wir konvexe risikoneutrale Optimalsteuerungsprobleme, die in Hilberträumen ge-
stellt sind, mittels empirischer Mittelwerte und leiten nicht-asymptotische Fehlerabschätzungen
für optimale Steuerungen und Optimalwerte her. Im letzten Kapitel leiten wir große Abweichun-
gen für Multilevel-Monte-Carlo-Schätzer her.
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Basic Notation and Preliminaries

General Sets
N0 N ∪ {0}
R+, R++ [0,∞), (0,∞)
R̄ R ∪ {±∞}
D bounded domain, D ⊂ Rd
convA convex hull of A
Bε(x) { y ∈ V : ‖x− y‖V < ε } for x ∈ V
Ā (Ā‖·‖V ) (‖ · ‖V -)closure of S
|A| (|α|) cardinality of A (length of multiindex α ∈ Nd0)
dim(V ) dimension of V
span{ fk : k = 1, . . . ,K } span of f1, . . . , fK

General Notation
(xk), (xk) sequences
(xk)K , (xk)K subsequences
(xk, yk)N0 , (xk, yk)N0 ((xk, yk)), ((xk, yk))
(xk, yk)K , (xk, yk)K ((xk, yk))K , ((xk, yk))K
(·)+ max{0, ·} (componentwise)
‖ · ‖p vector p-norm (1 ≤ p ≤ ∞)
〈·, ·〉V ∗,V duality paring
1A indicator function of A
f : V1 ⇒ V2 set-valued mapping, multifunction
A∗ (Hilbert space-)adjoint operator of A

Derivatives, Gradients and Subdifferentials

∇f (∇xf) (partial) gradient of f
∇xxf partial Hessian of f
Df Gâteaux, Hadamard or Fréchet derivative of f
Dxf , fx partial Gâteaux or Fréchet derivative of f
f ′(x;h) directional derivative of f at x in the direction h
∂f (convex) subdifferential of f , Clarke’s generalized gradient of f
Dαf weak derivative of f of order α, α ∈ Nd0 is a multiindex

vii



Matrices
I identity matrix
· • · Frobenius inner-product
Diag(a) diagonal matrix with Diag(a)ii = ai
Sp, (Sp+), [Sp++] set of sym. (positive semidefinite) [positive definite] p× p matrices
4 Löwner partial order
λmax(A) (λmin(A)) maximum (minimum) eigenvalue of A ∈ Sp
λ(A) eigenvalues of A ∈ Sp with λ1(A) ≥ · · · ≥ λp(A)
λ : Sp → Rp eigenvalue mapping

A1/2 square root of A ∈ Sp++

‖ · ‖2 spectral norm

‖ · ‖A ‖A1/2 · ‖2 for A ∈ Sp++

N(A) null space of A
A+ Moore–Penrose inverse of A

Probability and Measure

(Ω,F , P ) probability space
M set of probability measures on Rp
E (EP ) expectation (w.r.t. P ∈M)

EN [Z] sample mean, (1/N)
∑N

i=1 Zi
Cov (CovP ) covariance (w.r.t. P ∈M)
N (µ,Σ) normal distribution with mean µ and covariance Σ
B(V ) Borel-σ-field of V
Prob(A) probability of event A
(T,A, ν) measurable space
L0(T ;V ) L0(T,A, ν;V ), class of strongly (ν-)measurable functions f : T → V

Normed and Banach Spaces

L (V1, V2) space of bounded, linear operators from V1 to space V2, equipped with
‖ · ‖L (V1,V2) = supv∈V1, ‖v‖V1

=1 ‖ · v‖V2

V ∗ L (V,R)

V1 × V2 Cartesian product, equipped with ‖ · ‖V1×V2 = (‖ · ‖2V1
+ ‖ · ‖2V2

)1/2

Lp(T ;V ) space of Z ∈ L0(T ;V ) with ‖Z‖Lp(T ;V ) = (
∫
T Z(t)dν(t))1/p <∞ (1 ≤ p <∞)

L∞(T ;V ) space of Z ∈ L0(T ;V ) with ‖Z‖L∞(T ;V ) = ess supt∈T ‖Z(t)‖V <∞
Lp(T ) Lp(T ;R) (1 ≤ p ≤ ∞)
W s,p(D) {u ∈ Lp(D) : Dαu ∈ Lp(D), |α| ≤ s }, Sobolev space (s ∈ N0, 1 ≤ p <∞),

equipped with ‖ · ‖W s,p(D) = (
∑
|α|≤s ‖Dα · ‖pLp(D))

1/p

Hs(D) W s,2(D)

| · |Hs(D) seminorm on Hs(D), (
∑
|α|=s ‖Dα · ‖2L2(D))

1/2 (s ∈ N)

H1
0 (D) ‖ · ‖W 1,2(D)-closure of C∞0 (D), equipped with ‖ · ‖H1

0 (D) = | · |H1(D)

For each normed space, the underlying field is R. For a locally Lipschitz continuous function
h : Rn → R, the Clarke subdifferential ∂h(x) at x ∈ Rn is considered a subset of Rn. Let
ι : V1 → V2 be the embedding operator of the continuous embedding V1 ↪−→ V2 [46, Def. 6.1]. We
identify V1 with ι(V1), and write v ∈ V2 instead of ιv ∈ V2 for v ∈ V1. The dual of V1×V2 is often
identified with V ∗1 × V ∗2 . Here, V1 and V2 are normed spaces. For a normed space (V, ‖ · ‖V ),
‖ · ‖V ∗ is called the dual norm to ‖ · ‖V . We use the fact that ‖f‖V ∗ = sup‖v‖V ≤1 〈f, v〉V ∗,V for
f ∈ V ∗ [211, p. 75].
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A normed space is endowed with its Borel-σ-field if not specified otherwise. Unless stated
otherwise, all relations between random variables hold w.p. 1 (with probability one). We use
ξ to denote a measurable mapping ξ : Ω → Ξ as well as a deterministic element ξ ∈ Ξ. A
function Z ∈ L0(T ;V ) is called Bochner/strongly measurable, and Z ∈ L1(T ;V ) is referred to as
Bochner/strongly integrable. A random variable ξ : Ω→ R is sub-Gaussian with parameter τ if
τ ≥ 0 and E[exp(λξ)] ≤ exp(λ2τ2/2) for all λ ∈ R [57, p. 2]. For example, a centered Gaussian
random variable with variance σ2 is sub-Gaussian with parameter σ [57, p. 9].
The notion of a probability space is defined, for instance, in [39, p. 25]. The definition of the
Bochner spaces and the Borel-σ-algebra is provided, for example, in [159, pp. 2 and 21]. The
Lebesgue spaces Lp(D), the Sobolev spacesW s,p(D) andH1

0 (D), and weak derivatives are defined
in [1, pp. 21–22 and 44–45], for example. Since D ⊂ Rd is a bounded domain, (H1

0 (D), ‖·‖H1
0 (D))

is a Hilbert space [151, pp. 21–22]. Clarke’s generalized gradient is defined in [79, p. 10], and
the (convex) subdifferential in [46, p. 81].
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Introduction

Parameters in physics-based models may be uncertain, such as diffusion coefficients in partial
differential equations (PDEs). Such uncertainty can arise from a lack of knowledge about the
process being modeled or an inherent variability of the model’s parameters [132].
In the field of (PDE-constrained) optimization under uncertainty, several approaches have been
proposed for obtaining decisions that are resilient to uncertainty. When uncertain parameters
are modeled as a random vector, such approaches include risk-neutral, risk-averse and distribu-
tionally robust (stochastic) optimization [190, 186, 269, 292].
If the random vector’s distribution is known, we can formulate a risk-neutral optimization prob-
lem, that is, the minimization of the expected value of a parameterized objective function where
the expectation is taken w.r.t. the known probability distribution [292].
The framework of distributionally robust optimization allows for incomplete knowledge about the
parameter vector’s distribution. For example, while the distribution of the parameter vector may
be unknown, its first and second centered moment may be available [94, 283], or its distribution
is known to be contained in some ball about a known reference probability measure [107, 119].
The knowledge about the parameter vector’s distribution is collected in a set of probability
measures, the ambiguity set. A distributionally robust optimization problem is formulated as
the minimization of the worst-case expected value of the parameterized objective function, where
the worst-case is computed w.r.t. all probability measures contained in the ambiguity set.
The dissertation’s main focus is on the development of an effective sampling-free approximation
scheme for distributionally robust nonlinear optimization problems where the ambiguity set
is defined by conditions on the parameter vector’s moments. Furthermore, we provide non-
asymptotic performance guarantees for the sample average approximation method—an approach
for approximating risk-neutral optimization problems—applied to stochastic convex optimal
control problems. Finally, we develop a further analysis of the Multilevel Monte Carlo mean
estimator that complements the mean-squared error analysis available in the literature [37, 134].
In the following, we provide a more detailed introduction and overview of the topics covered in
the dissertation and outline the main contributions made.

An Introduction to Distributionally Robust Optimization. Stochastic programming of-
fers a methodology for optimization under uncertainty. Its application requires the uncertain
parameters to be modeled as a random vector distributed according to a probability distribu-
tion. Distributionally robust optimization (DRO) (also called distributionally robust stochastic
optimization) is a framework that allows for incomplete knowledge about the parameter vector’s
distribution with the goal of computing an optimal solution that is resilient to the distributional
uncertainty. For example, the unknown parameter vectors’ distribution may be approximated
by a known nominal probability measure defined by, for instance, historical data. In this case,
DRO allows the decision maker to incorporate the “uncertainty” of the nominal probability
distribution [94, 300]. The task is formulated as a min-max problem—the minimization of the
worst-case expected value of a parameterized objective function.
The maximization problem’s feasible set is defined by the probability measures contained in
an ambiguity set. This set models the distributional uncertainty and can be defined through
moment constraints [283, 94, 344, 264, 136] and/or various probability distances [119, 253, 293,
107, 120]. Popular choices for such probability distances are: the Wasserstein distance [119, 299,
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2 Introduction

43, 359, 107], the Prokhorov metric [106], and the φ-divergence [100, 293, 340, 21]. When the
ambiguity set is defined by moment constraints, we refer to the resulting DRO problem (DROP)
as a moment-based DROP.
A typical solution approach for certain moment-based DROPs exploits Lagrangian duality [94,
344, 75, 346]. For example, if the ambiguity set is conic representable, then the maximization
problems are conic linear programs [344]. Under mild conditions, strong duality is satisfied and
the Lagrangian dual of the linear program can be concatenated with the upper-level problem
to obtain an equivalent reformulation of the DROP as a single-level problem with linear matrix
inequalities as constraints [94, 344, 290].
The tractability of the maximization problem’s dual depends on the structure of the param-
eterized objective function [94, 344, 23]. For example, if this function, as a mapping of the
parameters, is the pointwise maximum of affine functions or quadratic functions and the am-
biguity set is conic representable, then the dual is tractable (see [94, sect. 4.1], [344, sect. 2],
and Proposition 2 in the supplementary material accompanying [344]). Without such struc-
tural properties, the maximization problems with the ambiguity set as the feasible set may be
intractable [94, 344].
The moment-based DROPs considered in this dissertation differ from those in [94, 344, 75] in
that, for example, the parameterized objective functions, as mappings of the parameters, are
generally non-quadratic and nonlinear. Moreover, the DROPs involving PDEs are defined by
parameterized objective functions that are, in addition to being non-quadratic and nonlinear,
implicitly defined by the solution operators of the parameterized PDEs. For these DROPs, the
solution approach developed in [94, 344, 75] does not result in single-level programs with explicit
representations of their objective and constraint functions that allow the application of available
PDE-constrained optimization methods.
DRO is one approach to optimization under uncertainty. Further methodologies for optimiza-
tion under uncertainty are: risk-neutral optimization [294], risk-averse optimization [269, 294],
(ambiguous) chance-constrained programming [245, 106, 354, 361, 63], and robust optimiza-
tion [24, 23, 30, 137, 206]. DRO has several links to these approaches. For example, if the
ambiguity set is a singleton, then a DROP is a risk-neutral problem, and if the ambiguity set
consists of all probability measures supported on some (compact) set, then a DROP becomes a
robust optimization problem [295, 23]. Moreover, risk-averse optimization problems with coher-
ent risk measures can be equivalently reformulated as min-max problems where the maximum
is taken over the domain of the convex conjugate of the risk measure [269, 274, 294].

Approximation Scheme for Distributionally Robust Nonlinear Optimization. In
Chapter 1, we consider the moment-based distributionally robust nonlinear optimization prob-
lem

min
x∈Rn

sup
P∈P

EP [f0(x, ξ)] s.t. sup
P∈P

EP [fk(x, ξ)] ≤ 0, k ∈ K \ {0}, (1)

and develop an approximation scheme and a solution approach for it. Here, fk : Rn×Rp → R are
the parametrized functions, and {0} ⊂ K ⊂ N0 with |K| <∞. The moment-based ambiguity set
P is defined in (1.1.2) and built on those considered in [94, 344, 75]. It ensures that the DROP (1),
defined by the parametrized functions fk with nonlinear and non-quadratic dependence on the
parameters, is well-posed under mild conditions on fk while retaining a statistical interpretation
and enabling a data-driven definition (see section 1.8.2). In contrast to the above motivation of
DRO, we also allow distributionally robust constraints in (1).
Instead of using Lagrangian duality to reformulate the DROP (1) as in [94, 344, 75], we use
second-order expansions of the parameterized functions w.r.t. the parameters, allowing us to
compute the expected value of the surrogate functions explicitly. For x ∈ Rn, we approximate
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fk(x, ·) using a quadratic surrogate mk(x, ·), formally defined in (1.1.3), and we formulate the
approximated DROP as

min
x∈Rn

sup
P∈P

EP [m0(x, ξ)] s.t. sup
P∈P

EP [mk(x, ξ)] ≤ 0, k ∈ K \ {0}.

Since mk(x, ·) is quadratic, the definition of the ambiguity set P will allow us to explicitly
compute supP∈P EP [mk(x, ξ)] for x ∈ Rn. For each k ∈ K, the function supP∈P EP [mk(·, ξ)]
is the sum of the optimal value functions defined by a nonconvex trust-region problem and a
semidefinite program. These optimal value functions can be efficiently evaluated, as opposed
to those in (1). However, they are generally nonsmooth. For these optimal value functions,
we construct smoothing functions, that is, smooth approximations with explicit bounds on the
smoothing error, exploiting the strong Lagrangian duality for the trust-region problems and a
solution formula for the semidefinite programs. Moreover, we demonstrate that the smoothing
functions can efficiently be evaluated and that they satisfy gradient consistency.
For the numerical solution of the approximated DROPs, we develop a smoothing method that
computes a sequence of (approximate) stationary points of smoothed DROPs, defined by the
smoothing functions, while it decreases smoothing parameters to zero. We prove the convergence
of the sequence generated by the smoothing method towards stationary points of the approx-
imated DROP exploiting the gradient consistency of the smoothing functions. Moreover, we
show that the approximated DROP can be equivalently formulated as a nonlinear semidefinite
program. We compare our algorithmic approach with the application of the solver PENLAB [110]
for nonlinear semidefinite programs and the proximal bundle method MPBNGC [223, 224]. For the
proximal bundle method, we implemented the Julia interface MPBNGCInterface.jl.
Chapter 1 is based on the article [234].

Approximation Scheme for Distributionally Robust PDE-Constrained Optimiza-
tion. In Chapter 2, we extend our approximation scheme and solution approach to the distri-
butionally robust PDE-constrained optimal control problem

min
u∈Uad

{
sup
P∈P

EP [J(S(u, ξ), u, ξ)]
}
, (2)

where the set of admissible controls Uad is a subset of the Hilbert space U . Moreover, J :
Y × U × Rp → R is the parametrized objective function, S : Uad × Rp → Y is the solution
operator of a parameterized nonlinear PDE, and Y is a Banach space. The ambiguity set P is
defined in (2.1.2), motivated by the results established in section 1.8.2.
The surrogate function, which we use to approximate the DROP (2), is defined by a second-order
Taylor’s expansion of the function ξ 7→ J(S(u, ξ), u, ξ). The smoothing functions constructed
in Chapter 1 are used to define smoothed DROPs. We prove the existence of optimal solutions
for the DROP (2), and the associated approximated and smoothed DROPs. The ambiguity set
defined in (2.1.2) is weakly-star sequentially compact, allowing us to establish the existence of
a worst-case distribution of the maximization problem in (2).
We extend the smoothing method developed in Chapter 1 to allow the numerical treatment of
the approximated DROPs posed in Hilbert spaces using existing, derivative-based solvers for
PDE-constrained optimization. We show that a sequence of global solutions, generated by the
smoothing method, converges towards an optimal solution of the approximated DROP. In order
to evaluate the surrogate function as well as the smoothing functions and their derivatives, we
use the adjoint approach.
We present numerical results for the DRO of the steady Burgers’ equation and of the unsteady
Burgers’ equation. The Burgers’ equation is a one-dimensional PDE that models convection-
diffusion phenomena, such as shock waves and supersonic flow [92, p. 203], [317, p. 649].

http://web.mat.bham.ac.uk/kocvara/penlab/
http://napsu.karmitsa.fi/proxbundle/
https://julialang.org/
https://github.com/milzj/MPBNGCInterface.jl
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Moreover, we provide conditions sufficient to ensure the weak-weak continuity of solution oper-
ators of PDEs.
Chapter 2 is based on the manuscript [235].

Sample Average Approximation for Stochastic Convex Optimal Control Problems:
Non-Asymptotic Sample Size Estimates. In Chapter 3, we investigate performance guar-
antees for the sample average approximation (SAA) approach applied to the stochastic optimal
control problem

min
u∈Uad

{ f(u) = E[Ĵ(u, ξ)] + Ψ(u) }, (3)

where Uad is a convex subset of the Hilbert space U , ξ : Ω → Ξ is a random vector, and
Ψ : Uad → R ∪ {∞} is convex. Moreover, Ĵ : U × Ξ→ R is a Carathéodory function and Ĵ(·, ξ)
is α-strongly convex for all ξ ∈ Ξ and some α ≥ 0.
The SAA method approximates the expected value in (3) using the sample average computed
with N independent samples of ξ, thereby defining the SAA problem [291]. Our main focus is
on deriving the following exponential tail bound for the distance between an optimal solution u∗

to (3) and a minimizer u∗N to its SAA problem (under additional assumptions on Ĵ and α > 0):

Prob(‖u∗ − u∗N‖U ≥ ε) ≤ 2 exp(−τ−2Nε2α2/3) for all ε > 0,

where τ > 0 depends on certain properties of the parameterized objective function Ĵ .
The exponential tail bound yields the following non-asymptotic sample size estimate: if ε > 0,
δ ∈ (0, 1) and N ≥ 3 ln(2/δ)(τ/εα)2, then ‖u∗ − u∗N‖U < ε with a probability of at least 1− δ.
Chapter 3 also offers the non-asymptotic analysis of the SAA problem’s optimal value, allowing
us to derive non-asymptotic confidence intervals for the optimal value of (3).
We demonstrate that our assumptions are fulfilled for a class of linear-quadratic optimal control
problems governed by parameterized affine-linear PDEs with essentially bounded random inputs;
a problem class that has extensively been investigated in the literature [125, 226, 230].
The SAA problem for (3) is an infinite-dimensional optimization problem. In section 3.3, we
discretize an instance of this SAA problem using finite elements, and we derive reliable error
bounds on the distance between the optimal solution of the discretized SAA problem and the
minimizer of the risk-neutral control problem (3).
Finally, we analyze the expected value of the SAA problem’s optimal value for risk-averse convex
control problems using the superquantile/conditional value-at-risk.

Exponential Tail Bounds for Multilevel Monte Carlo Mean Estimators in a Class of
Smooth Banach Spaces. In Chapter 4, we derive exponential tail bounds for the Multilevel
Monte Carlo (MLMC) mean estimator. To estimate the mean of solutions to PDEs with random
inputs, the MLMC mean estimator has been identified as an effective method, as it can exploit
low and high fidelity PDE models resulting from, for example, finite element approximations
[37, 134, 311]. MLMC methods utilize several low and high fidelity models and are designed
to perform many simulations with the low fidelity models, but relatively few with accurate
approximations.
We augment the available mean-squared error analysis [37, 134, 146] by deriving exponential tail
bounds/large deviations for the MLMC mean estimator. These exponential tail bounds provide
complementary performance guarantees for the MLMC mean estimator, but the analysis requires
more restrictive assumptions on the models than that of the mean-squared errors.
The exponential tail bounds are derived for random variables that take values in certain smooth
Banach spaces. Examples of such spaces are all Hilbert spaces and all Sobolev spaces of at least
square integrable functions.



Introduction 5

A Common Theme of the Dissertation. All chapters make use of the notions of sub-
Gaussianity in one way or another. For example, the concept of sub-Gaussianity forms the basis
for defining the ambiguity set P in section 1.1 and is used in section 1.6.4 to provide a data-
driven definition of the ambiguity set. The existence of a worst-case distribution and the uniform
integrability of the (reduced) parameterized objective function also rely on the properties of sub-
Gaussian distributions as discussed in sections 2.3 and 2.7. We derive exponential tails bounds
for the sums of independent, sub-Gaussian Hilbert and Banach space-valued random variables,
and use them for analyzing the reliability and accuracy of the SAA problem’s optimal solutions
in Chapter 3 and of the MLMC mean estimator in Chapter 4.
Sub-Gaussianity and closely related concepts form the basis of non-asymptotic statistics [57,
337, 167] and are used in different fields of optimization, such as robust optimization [25],
chance-constrained programming [244], risk-neutral and risk-averse optimization [243, 208], and
distributionally robust optimization [94, 107, 300]. Further areas of application include com-
pressed sensing [115, 167], scientific simulation [318], and numerical analysis [149].

Structure of the Dissertation. The dissertation is divided into four chapters, each of which
focuses on a different topic. The topics in the first two chapters have a strong link, whereas the
third and fourth chapters are mostly independent. Technical proofs and auxiliary results, if any,
are presented at the end of each chapter. We provide a comprehensive literature review in each
chapter. Basic notation and some preliminaries are summarized on pp. vii–ix.
For some calculations, such as the computation of integrals or solutions to boundary value prob-
lems, we adapt the approach used in [49, p. viii] and provide external links to Wolfram|Alpha
that show these calculations. When clicking on the corresponding formula, the reader is redi-
rected to Wolfram|Alpha. (Unfortunately, the links are unavailable in the printed version.) For
example, y(x) = x(1 − x) for x ∈ [0, 1] is the solution to the boundary value problem −y′′ = 2
in (0, 1) with y(0) = y(1) = 0.

https://www.wolframalpha.com
https://www.wolframalpha.com
https://tinyurl.com/yy455e5m




1 Approximation Scheme for Distributionally
Robust Nonlinear Optimization

We develop a sampling-free approximation scheme for distributionally robust optimization prob-
lems (DROPs) with nonlinear, nonconcave dependence on uncertain parameters. We define the
ambiguity set through moment constraints. In order to make the computation of first-order sta-
tionary points computationally tractable, we approximate nonlinear functions using quadratic
expansions with respect to the parameters, resulting in lower-level problems defined by trust-
region problems and semidefinite programs. Subsequently, we construct smoothing functions for
the approximated lower-level functions which can efficiently be evaluated. We use a smoothing
method that computes a sequence of stationary points of the smoothed DROPs while smooth-
ing parameters are decreased to zero, and establish the convergence to stationary points of the
approximated DROP. For the numerical simulations, we construct twenty test problems from
the Moré–Garbow–Hillstrom test set. We compare the performance of the smoothing method
with a bundle method and a solver for nonlinear semidefinite optimization problems.
The chapter is mainly based on the article

[234] J. Milz and M. Ulbrich, An approximation scheme for distributionally robust nonlinear
optimization, SIAM J. Optim., 30 (2020), pp. 1996–2025, https://doi.org/10.1137/

19M1263121. First Published in SIAM Journal on Optimization in vol. 30 no. 3, published
by the Society for Industrial and Applied Mathematics (SIAM), Copyright c© by SIAM.
Unauthorized reproduction of this article is prohibited.

The results of the work [234] are reproduced under the Author’s Rights statute of the SIAM
Consent to Publish agreement.
To be consistent with the notation used in Chapter 2, we use a slightly different definition
of the optimal value functions defined by the trust-region problems (1.1.6) than in [234], and
use a notion of a smoothing function that implies that used in [234, Def. 3.1]. To underpin
the statements made in [234, pp. 2002 and 2019], we report numerical results comparing the
performance of solvers for certain semidefinite programs with an implementation of the solution
formulas provided by Proposition 1.3.1 in section 1.8.4. In section 1.6.1, we report the results
on the numerical simulations announced in [234, p. 2019] where we used Ipopt [336] with a
modified line search within the smoothing method. We provide a further discussion on the data-
driven definition of the ambiguity set and some of its properties in section 1.8.2. In section 1.8.3,
a proof of the equivalent formulation of the approximated DROP as a nonlinear semidefinite
program used in [234] is provided.
Lemma 1.8.2 is taken from the manuscript

[235] J. Milz and M. Ulbrich, An approximation scheme for distributionally robust
PDE-constrained optimization, Preprint No. IGDK-2020-09. Technische Universität
München, München, Jun. 2020, in review, http://www.igdk.eu/foswiki/pub/IGDK1754/
Preprints/MilzUlbrich-PDEDRO.pdf.

Parts of the numerical simulations were preformed using an earlier version of the Julia interface
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https://doi.org/10.1137/19M1263121
https://doi.org/10.1137/19M1263121
https://github.com/coin-or/Ipopt
http://www.igdk.eu/foswiki/pub/IGDK1754/Preprints/MilzUlbrich-PDEDRO.pdf
http://www.igdk.eu/foswiki/pub/IGDK1754/Preprints/MilzUlbrich-PDEDRO.pdf
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J. Milz, MPBNGCInterface.jl: A Julia package for interfacing the multiobjective proximal
bundle method MPBNGC, Technische Universität München, München, Mar. 2020, https:
//github.com/milzj/MPBNGCInterface.jl.

The current version provides a full interface to MPBNGC [223, 224], and has an extended set of
examples and tests.

1.1 Introduction

Distributionally robust optimization (DRO) is a popular methodology used to obtain solutions
to optimization problems that are resilient to distributional uncertainty [94, 107, 136, 293, 344,
264, 253]. We develop a sampling-free approximation scheme for the distributionally robust
nonlinear optimization problem (DROP)

min
x∈Rn

sup
P∈P

EP [f0(x, ξ)] s.t. sup
P∈P

EP [fj(x, ξ)] ≤ 0, j ∈ J \ {0}, (1.1.1)

where fj : Rn×Rp → R, and {0} ⊂ J ⊂ N0 with |J | <∞. The ambiguity set P is defined through
moment constraints and an entropic dominance constraint similar to those in [75, 94, 300]:

P = {P ∈M : ‖Σ̄−1/2(EP [ξ]− µ̄)‖2 ≤ ∆, Σ̄0 4 CovP [ξ] 4 Σ̄1,

lnEP [exp (dT (ξ − EP [ξ]))] ≤ (1/2)dT Σ̄1d for all d ∈ Rp },
(1.1.2)

where ∆ > 0, µ̄ ∈ Rp, Σ̄0, Σ̄1, Σ̄1 − Σ̄0 ∈ Sp+, and Σ̄ ∈ Sp++. The first two conditions in
(1.1.2) model confidence regions for the mean and the covariance of the random vector ξ. The
ambiguity set P contains all distributions of strictly sub-Gaussian random vectors, in particular
all normal distributions, with mean µ satisfying ‖Σ̄−1/2(µ− µ̄)‖2 ≤ ∆ and covariance matrix Σ
fulfilling σ0Σ̄ 4 Σ 4 σ1Σ̄; see [57, pp. 185–186]. In section 1.8.2, we show that the data, such as
µ̄ and Σ̄, used in (1.1.2) may be defined using empirical estimates, similar to the choices made
in [94, sect. 3.4] and [300, sect. 3.3]. The entropic dominance constraint in (1.1.2) implies that
supP∈P EP [fj(·, ξ)] is finite-valued under mild conditions on fj(x, ·) for x ∈ Rn (see section 2.3),
and implicitly imposes higher-order moment constraints (see Lemma 1.8.2). We provide further
details on the ambiguity set P in section 1.8.2.
To obtain tractable approximations of the objective function and each of the constraint functions
in (1.1.1), we approximate fj(x, ·) using a second-order expansion mj(x, ·) defined by

mj(x, ξ) = aj(x) + bj(x)T (ξ − µ̄) + (1/2)(ξ − µ̄)TCj(x)(ξ − µ̄), (1.1.3)

where mj : Rn × Rp → R, aj : Rn → R, bj : Rn → Rp, and Cj : Rn → Sp. If, for each
x ∈ Rn, fj(x, ·) is twice differentiable at µ̄, possible choices for aj , bj , and Cj are aj = fj(·, µ̄),
bj = ∇ξfj(·, µ̄), and Cj = ∇ξξfj(·, µ̄), respectively. We formulate the approximated DROP

min
x∈Rn

sup
P∈P

EP [m0(x, ξ)] s.t. sup
P∈P

EP [mj(x, ξ)] ≤ 0, j ∈ J \ {0}. (1.1.4)

We show that each lower-level optimization problem in (1.1.4) separates into the semidefinite
program (SDP)

ϕj(x) = max
Σ∈Sp

{
(1/2)Cj(x) • Σ : Σ̄0 4 Σ 4 Σ̄1

}
(1.1.5)

and the nonconvex trust-region problem (TRP)

ψj(x) = max
d∈Rp

{
bj(x)Td+ (1/2)dTCj(x)d : ‖Σ̄−1/2d‖2 ≤ ∆

}
. (1.1.6)

https://github.com/milzj/MPBNGCInterface.jl
https://github.com/milzj/MPBNGCInterface.jl
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Here ψj : Rn → R and ϕj : Rn → R. We have

EP [mj(x, ξ)] = aj(x) + bj(x)Td+ (1/2)dTCj(x)d+ (1/2)Cj(x) • CovP [ξ], (1.1.7)

where d = EP [ξ]− µ̄; see, e.g., [42, Lem. 1.1.2]. Combined with the definition of the ambiguity
set P provided in (1.1.2), and (1.1.7), we find that, for each j ∈ J ,

sup
P∈P

EP [mj(x, ξ)] = aj(x) + ϕj(x) + ψj(x).

Hence, the approximated DROP (1.1.4) is equivalent to

min
x∈Rn

a0(x) + ϕ0(x) + ψ0(x) s.t. aj(x) + ϕj(x) + ψj(x) ≤ 0, j ∈ J \ {0}.

The optimal value functions (1.1.6) and (1.1.5), which are generally nonsmooth, provide tractable
approximations of the lower-level problems in (1.1.1). We construct smoothing functions of
them, and we use these functions to define smoothed DROPs. Using a smoothing method,
which is similar to those developed in [72, 349], we compute a sequence of stationary points of
the smoothed DROPs while decreasing smoothing parameters to zero. Our approach allows us
to obtain Clarke stationary points of the approximated DROP (1.1.4).
In order to obtain a smoothing function for the optimal value function defined in (1.1.5), we
use the fact that the SDP (1.1.5) can be solved analytically provided that the eigenvalues of a
transformation of Cj(x) are available [350, Thm. 2.2]. Combined with the theory on spectral
functions established in [215, 319], we construct a smoothing function for (1.1.5). Besides the
construction of a smoothing function, the solution formula allows for a significantly faster solu-
tion of the SDP (1.1.5) than state-of-the-art SDP solvers as we demonstrate in section 1.8.4. Our
smoothing approach for the optimal value function of the TRP (1.1.6) utilizes strong duality for
TRPs [306, 28, 116, 351, 310, 111], and we apply a reciprocal barrier function to its smoothed
Lagrangian dual. For the error analysis and the numerical computations, we exploit the fact
that the primal problem of the smoothed dual is a TRP.
The approximated DROP (1.1.4) is generally a nonsmooth, nonconvex optimization problem.
Hence, algorithms for nonsmooth, nonconvex optimization can be applied to (1.1.4), such as,
subgradient and bundle methods [175], gradient sampling algorithms [61], and quasi-Newton
methods [216]. The approximated DROP (1.1.4) can also be reformulated as a nonlinear SDP
(NSDP). We derive an equivalent reformulation of (1.1.4) as an NSDP in section 1.8.3 using
Lagrangian duality for (1.1.5) and for (1.1.6) (see, e.g., [26, Chap. 4] and [53, sect. B.1]). We
refer the reader to [352] for a survey on optimization methods for NSDPs.
We compare our algorithmic approach with the proximal bundle method MPBNGC [223, 224]
applied to (1.1.4), and PENLAB [110] applied to an NSDP reformulation of (1.1.4) in section 1.6.

Related Work

A popular choice for constructing an ambiguity set is based on moment constraints of the
parameters, such as the one in (1.1.2); see, e.g., [94, 295, 300, 344, 264, 283, 34]. Another
approach is to define the set by probability measures close to a reference measure w.r.t. a
certain distance [119, 293, 359, 340, 299], resulting in distance-based DROPs. Some nonconvex,
data-driven, distance-based DROPs can equivalently be formulated as nonlinear programs with
explicit objective and constraint functions, such as those considered in [340, sect. 2], [21] and [293,
sect. 3.2]. We refer the reader to Shapiro [293] for an overview of distance-based DRO. A short
discussion on the tractability of certain moment-based DROPs as opposed to DROPs defined by
the Wasserstein distance is provided in [107, p. 117]. We refer the reader to [75, 94, 300, 344] for
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further information on moment-based ambiguity sets, and to [340, pp. 243 and 249] and [119,
p. 2] for discussions on the potential shortcomings of such sets.
Some specific classes of moment-based DROPs can be transformed into one-level problems us-
ing Lagrangian duality. For example, if ambiguity sets are conic representable, maximization
problems w.r.t. probability measures become conic linear programs and, therefore, it can be
transformed into minimization problems and concatenated with the upper-level problems [94,
sect. 2.2]. If suitable assumptions, such as the convexity of the objective function w.r.t. design
variables, are satisfied, the resulting optimization problem is tractable [94, 344, 346]. The re-
formulation of lower-level problems similar to those in (1.1.4) as linear matrix inequalities has
been discussed in the supplementary material of [344].
Without the SDP (1.1.5) in (1.1.4), we obtain the robust optimization problem

min
x∈Rn

aj(x) + ψ0(x) s.t. aj(x) + ψj(x) ≤ 0, j ∈ J \ {0}. (1.1.8)

Hence, our algorithmic approach can also be applied to (1.1.8). The robust nonlinear optimiza-
tion problem (1.1.8) can be reformulated as an NSDP using either [23, Lem. 14.3.7] (see also [23,
sect. 1.4]) or Proposition 1.8.3. Contributions on robust optimization may be divided into those
exploiting concave dependence w.r.t. parameters (see, e.g., [22, 23, 26, 30]) and those developing
schemes for robust nonlinear optimization (see, e.g., [96, 158, 358, 144, 218]).
We refer the reader to [218] for a recent survey on robust nonlinear optimization. Houska
and Diehl [158] develop a numerical scheme for min-max optimization problems via sequential
quadratic programming, and Ben-Tal and den Hertog [20] propose “sequential robust quadratic
optimization”. Robust nonlinear optimization without approximation techniques but heuristic
numerical schemes are considered, for example, in [32, 33]. Some approaches are built on the
methods of outer approximation [218, 232], originating from semiinfinite programming [305].
Derivative-free methods for robust nonlinear optimization are provided in [232, 83], a cutting
plane method is proposed in [239], and a bundle method is developed in [199]. First-order
Taylor expansions are used in [96, 358, 144] to obtain tractable approximations of the lower-
level problems of robust nonlinear optimization problems. Instead of first-order expansions,
second-order models are used, for example, in [298, 181, 209, 180]. These expansions may be
more effective than first-order ones and may provide a trade-off between accuracy and tractability
[4, 209]. The use of second-order expansions yields constraints such as those in (1.1.8), which are
reformulated using its necessary and sufficient optimality conditions in [181, 209]. The resulting
problem is a mathematical program with complementarity constraints and with linear matrix
inequalities [181, 209]. These inequalities require the Hessian matrix of a Lagrangian function
to be positive semidefinite which are reformulated using nonsmooth eigenvalue constraints in
[181, 209]. We refer the reader to [171, 304] for an overview of numerical schemes for the solution
of optimization problems with complementarity constraints.
The approximation of parameterized functions is a common approach to obtain simpler ob-
jective functions for optimization under uncertainty; see, e.g., [20, 96, 358, 181, 4] for robust
optimization, [94, 31] for DRO, and [271] for reliability engineering.
Smoothing methods are popular schemes for nonconvex, nonsmooth optimization [58, 72, 349].
Our algorithmic scheme is related to those in [58, 59, 72, 349] in that we provide further examples
of smoothing functions and apply their concepts and methodology. We use an NLP solver to
compute approximate stationary points of a sequence of smoothed DROPs while the smoothing
parameters converge to zero. Therefore, our algorithmic approach is similar to those in [72, 349].
Our scheme is built on the use of second-order approximations of the lower-level problems of
the DROP (1.1.1). However, our approach allows the computation of stationary points of the
approximated DROP (1.1.4) without the requirement that computationally available bounds on
the Hessian matrix of fj(x, ·) are known as required by the approach developed by Houska and
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Diehl [158]. Moreover, we do not require expensive numerical schemes as in [32, 33]. Our formu-
lation avoids mathematical programs with complementarity constraints and with linear matrix
inequalities as well as NSDPs, and the number of optimization variables in (1.1.4) is the same
as in (1.1.1). Furthermore, we obtain smooth NLPs in standard form and their objective and
constraint functions can efficiently be evaluated. Finally, different from the approach proposed
in [158], our scheme allows the application of existing computer codes, making our approach
applicable to many problems.

1.2 Smoothing Functions and Smoothing Method

We outline our algorithmic scheme to compute a first-order stationary point of (1.1.4). For each
j ∈ J , we define Fj : Rn → R by

Fj(x) = aj(x) + ϕj(x) + ψj(x), (1.2.1)

where ϕj and ψj are defined in (1.1.6) and (1.1.5), respectively. Using the functions Fj , the
approximated DROP (1.1.4) reads as

min
x∈Rn

F0(x) s.t. Fj(x) ≤ 0, j ∈ J \ {0}, (1.2.2)

which is generally a nonsmooth optimization problem. In the subsequent sections, we construct
smooth approximations F̃j : Rn × R3

++ → R of Fj parameterized by t ∈ R3
++. The formal

definition of the functions F̃j is provided in (1.5.1). They are used in Algorithm 1 to compute
a sequence of approximate KKT-points of the smoothed DROPs

min
x∈Rn

F̃0(x, t) s.t. F̃j(x; t) ≤ 0, j ∈ J \ {0}, (1.2.3)

as t → 0+. Since these DROPs are smooth, we can apply state-of-the-art NLP software to

compute KKT-tuples of them. Here, (x̄, ϑ̄) ∈ Rn×R|J |−1
+ is a KKT-tuple of (1.2.2) if ϑ̄jFj(x̄) = 0,

Fj(x̄) ≤ 0, j ∈ J \ {0}, and 0 ∈ ∂F0(x̄) +
∑

j∈J\{0} ϑ̄j∂Fj(x̄). If a constraint qualification holds,
these conditions are necessary optimality conditions for (1.2.2) [225, Cor. 5.1.8].
We construct smoothing functions of ϕj and of ψj , which satisfy the conditions of the following
definition. Our notion of a smoothing function is based on those used in [73, Def. 3.1] and [72,
Def. 1]; however, we allow for multiple smoothing parameters because the smoothing function
for Fj constructed in section 1.5 depends on three.

Definition 1.2.1. Let φ : Rn → R be continuous. A function φ̃ : Rn × Rm++ → R is a

smoothing function for φ if, for each t > 0, φ̃(·; t) is continuously differentiable and there exists
γ : Rm+ → R+ with γ(t) → 0 as Rm++ 3 t → 0 such that, for each x ∈ Rn and t > 0, we have

|φ(x)− φ̃(x; t)| ≤ γ(t).

Lemma 1.2.2. If φ̃ : Rn × Rm++ → R is a smoothing function for φ : Rn → R, then, for each

x ∈ Rn, limRn3xk→x, tk→0+ φ̃(xk; tk) = φ(x).

Proof. Fix (xk) ⊂ Rn and (tk) ⊂ Rm++ with xk → x as k →∞ and tk → 0 as k →∞, respectively.

By assumption, φ is continuous, and there exists γ : Rm+ → R+ such that |φ(x)− φ̃(x; t)| ≤ γ(t)
for each x ∈ Rn and t ∈ Rm++. Combined with triangle inequality, we find that, for each k ∈ N,

|φ(x)− φ(xk; tk)| ≤ |φ(xk)− φ(xk; tk)|+ |φ(xk)− φ(x)| ≤ γ(tk) + |φ(xk)− φ(x)|.

Putting together the statements, we conclude that limRn3xk→x, tk→0+ φ̃(xk; tk) = φ(x).
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Algorithm 1 Smoothing method

Choose t0 ∈ R3
++, tmin ∈ R3

+, ε0 > 0, εmin ≥ 0 and ρ ∈ (0, 1).
For k = 0, 1, . . .

1. Compute an εk-KKT-tuple (xk, ϑk) of (1.2.3) for t = tk.
2. If tk ≤ tmin and εk ≤ εmin, then STOP and return (xk, ϑk).
3. Compute 0 < tk+1 ≤ ρtk and εk+1 = ρεk.

Lemma 1.2.2 shows that a smoothing function according to [73, Def. 3.1] is a smoothing function
according to [72, Def. 1].
In Algorithm 1, it is sufficient to compute inexact KKT-tuples of (1.2.3), which may be important
for an efficient numerical scheme for the approximated DROP (1.2.2). Different notions of
approximate KKT-points have been proposed in the literature; see, e.g., [8, 103, 142]. We refer
to (x, ϑ) ∈ Rn × R|J |−1 as an ε-KKT-tuple of (1.2.3) if χ(x, ϑ; t) ≤ ε. Here, the criticality
measure χ : Rn × R|J |−1 × R3

++ → R+ is defined by

χ(x, ϑ; t) = max
j∈J\{0}

{∥∥∥∇xF̃0(x; t) +
∑

j∈J\{0}
ϑj∇xF̃j(x; t)

∥∥∥
∞
, |min{−F̃j(x; t), ϑj}|

}
. (1.2.4)

An important notion to establish convergence of Algorithm 1 to first-order stationary points of
(1.2.2) is gradient consistency. Let φ̃ : Rn × Rm++ → R be a smoothing function for the locally
Lipschitz continuous function φ : Rn → R. Similar to the definition made by Chen [72, p. 73],
we define

S
φ̃
(x) = conv {z ∈ Rn : ∃Rn × Rm++ 3 (xk, tk)→ (x, 0), ∇xφ̃(xk; tk)→ z }. (1.2.5)

Gradient consistency of φ̃ for φ requires the following relation to hold [58, 59, 72]:

S
φ̃
(x) = ∂φ(x) for all x ∈ Rn. (1.2.6)

The next lemma adapts [234, Lem. 3.2] to the notion of a smoothing function given in Defini-
tion 1.2.1. Lemma 1.2.3 is a consequence of [60, Lem. 3.1], whose proof is build on [276, Thm.
7.11 and Cor. 8.47].

Lemma 1.2.3. If φ̃ : Rn×Rm++ → R is a smoothing function for the locally Lipschitz continuous
function φ : Rn → R, then, for all x ∈ Rn, ∂φ(x) ⊂ S

φ̃
(x).

Proof. Fix x ∈ Rn, and define v = (1, . . . , 1) ∈ Rm and g̃ : Rn × R++ → R by g̃(x; t) = φ̃(x; tv).
The function g̃ is a smoothing function for φ. Combining Lemma 1.2.2 and [60, Lem. 3.1] yields
∂φ(x) ⊂ Sg̃(x). Using (1.2.5), we obtain Sg̃(x) ⊂ S

φ̃
(x). Hence ∂φ(x) ⊂ S

φ̃
(x).

In the next two sections, we construct smoothing functions for the optimal value functions defined
in (1.1.6) and in (1.1.5). We show that these smoothing functions as well as their gradients can
be evaluated efficiently, and establish their gradient consistency.

1.3 Smoothing Approach for the SDPs

We construct a smoothing function for the optimal value function ϕj defined in (1.1.5) exploiting
the fact that the optimal values of the SDPs (1.1.5) can be computed analytically using the
eigenvalues of a transformation of Cj(x) for x ∈ Rn [350, Thm. 2.2]. We show that the smoothing
function and its gradient can efficiently be evaluated, and that gradient consistency holds.
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Proposition 1.3.1. Let C ∈ Sp and suppose that X0, X1 ∈ Sp satisfy X0 ≺ X1. Define
G = (X1 −X0)1/2C(X1 −X0)1/2. Then

C •X0 +

p∑

i=1

min{0, λi(G)} = min
X∈Sp

{C •X : X0 4 X 4 X1 }. (1.3.1)

Moreover, X∗ = X0 +(X1−X0)1/2[QDiag(y∗)QT ](X1−X0)1/2 is an optimal solution of (1.3.1),
where Q ∈ Rp×p fulfills QTQ = I and G = QDiag(λ(G))QT , and y∗ ∈ Rp satisfies y∗i = 1 if
λi(G) < 0 and y∗i = 0 else.

Proof. The statements follow from an application of [350, Thm. 2.2].

The numerical results presented in section 1.8.4 indicate that the evaluation of the optimal value
of (1.3.1) using the formula provided in (1.3.1) is significantly faster than some state-of-the-art
SDP solvers. We define Gj : Rn → Sp by Gj(x) = (Σ̄1 − Σ̄0)1/2Cj(x)(Σ̄1 − Σ̄0)1/2. If Σ̄0 ≺ Σ̄1,
then (1.1.5) and (1.3.1) yield

ϕj(x) = (1/2)Cj(x) • Σ̄0 + (1/2)

p∑

i=1

(λi(Gj(x)))+ for all x ∈ Rn. (1.3.2)

In particular, ϕj is generally nonsmooth. We define w̃ : Rn × R++ → R by

w̃(z; τ) = τ

p∑

i=1

ln (1 + exp (zi/τ)) . (1.3.3)

In order to prevent overflow when evaluating w̃(·; τ) and its gradient, we use, if z > 0, the
identity τ ln(1 + exp(z/τ)) = z + τ ln(exp(−z/τ) + 1), valid for each z ∈ R and τ > 0.
Now, we show that ϕ̃j : Rn × R++ → R defined by

ϕ̃j(x; τ) = (1/2)Cj(x) • Σ̄0 + (1/2)w̃(λ(Gj(x)); τ), (1.3.4)

is a smoothing function for ϕj .

Theorem 1.3.2 ([234, Thm. 4.2]). Let Σ̄0 ≺ Σ̄1, q ∈ N and j ∈ J . Suppose that Cj : Rn → Sp
is q-times continuously differentiable. Then the following conditions hold true:
(a) For each (x, τ) ∈ Rn × R++, we have

ϕj(x) ≤ ϕ̃j(x; τ) ≤ ϕj(x) + (1/2)τp ln 2, (1.3.5)

where ϕj and ϕ̃j are defined in (1.3.2) and (1.3.4), respectively.
(b) The function ϕ̃j is a smoothing function for ϕj, ϕ̃j(·; τ) is q-times continuously differentiable

for each τ > 0, and gradient consistency holds.
(c) If (xk) ⊂ Rn and (τk) ⊂ R++ fulfill xk → x ∈ Rn and τk → 0 as k →∞, respectively, then

there exists a convergent subsequence (∇xϕ̃j(xk; τk))K of (∇xϕ̃j(xk; τk)).

Proof. (a) Since, for each (z, τ) ∈ R × R+, we have (z)+ ≤ τ ln(1 + exp(z/τ)) ≤ (z)+ + τ ln 2
(see, e.g., [263, sect. 2]), we deduce (1.3.5) from (1.3.2).
(b) We establish that ϕ̃j is a smoothing function for ϕj . Fix τ > 0. The mapping λ is Lipschitz
continuous [157, Cor. 6.3.8]. Using (1.3.2), we find that ϕj is the composition of locally Lipschitz
continuous functions and, hence, it is locally Lipschitz continuous. Moreover, w̃(·; τ) defined in
(1.3.3) is symmetric, and analytic because it is the composition of analytic functions.1 Combined

1A function h : Rn → R is symmetric if its evaluations are invariant under coordinate permutations [217, p. 369].
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with [319, Thm. 2.1], we find that w̃λ(·; τ) = w̃(·; τ) ◦ λ is analytic. The chain rule implies that
ϕ̃j(·; τ) = (1/2)Cj(·) • Σ̄0 + (1/2)w̃λ(·; τ) ◦ Gj is q-times continuously differentiable. Combined
with the error estimate (1.3.5), we find that ϕ̃j is a smoothing function for ϕj .
Now, we prove that gradient consistency holds, that is, we establish Sϕ̃j (x) = ∂ϕj(x) for each
x ∈ Rn, where Sϕ̃j (x) is defined in (1.2.5). Fix x ∈ Rn. Since ϕ̃j is locally Lipschitz continuous,
Lemma 1.2.3 yields ∂ϕj(x) ⊂ Sϕ̃j (x).
It must yet be shown that Sϕ̃j (x) ⊂ ∂ϕj(x). We fix z ∈ Sϕ̃j (x). Then, by the definition of

Sϕ̃j (x) provided in (1.2.5), there exist (xk) ⊂ Rn and (τk) ⊂ R++ converging to x and 0 as
k →∞, respectively, and, moreover,

∇xϕ̃j(xk; τk)→ z as k →∞. (1.3.6)

In order to show that z ∈ ∂ϕj(x), we compute ∇xϕ̃j(xk; τk) for each k ∈ N0, and ∂ϕ(x).
Fix k ∈ N0. The function w̃(·; τk) is continuously differentiable and symmetric and, hence, the
classical chain rule and [214, Thm. 1.1] imply that the directional derivative Dxϕ̃j(·; τk)h of
ϕ̃j(·; τk) w.r.t. x evaluated at xk in direction h ∈ Rp is

Dxϕ̃j(x
k; τk)h = (1/2)Σ̄0 •DCj(x

k)h+ (1/2)(Qj,kMj,kQ
T
j,k) •DGj(x

k)h,

where Qj,k ∈ Rp×p fulfills Qj,kQ
T
j,k = I and Gj(x

k) = Qj,kDiag(λ(Gj(x
k)))QTj,k, and where

Mj,k = Diag(∇xw̃(λ(Gj(x
k)); τk)). Using the adjoint operators DCj(x

k)∗ and DGj(x
k)∗ of

DCj(x
k) and DGj(x

k), respectively, we obtain

∇xϕ̃j(xk; τk) = (1/2)DCj(x
k)∗Σ̄0 + (1/2)DGj(x

k)∗(Qj,kMj,kQ
T
j,k). (1.3.7)

For every P ∈ Sp, we have

DCj(x)∗P = ∇x(Cj(x) • P ) and DGj(x
k)∗P = ∇x(Gj(x

k) • P ). (1.3.8)

Indeed, for each s ∈ Rn and P ∈ Sp, we get

sTDCj(x)∗P = P •DCj(x)s = D(Cj(x) • P )s = sT∇x(Cj(x) • P ).

The second equation in (1.3.8) can be shown similarly.
Using (1.3.3), we obtain, for all (z, τ) ∈ R× R++ and i = 1, . . . , p,

(∇zw̃(z; τ))i = 1/(1 + exp (−zi/τ)). (1.3.9)

Hence (∇xw̃(λ(Gj(x
k)); τk)) is bounded. Moreover, (Qj,k) is bounded. Combined with the

(Lipschitz) continuity of λ [157, Cor. 6.3.8], we can assume without loss of generality that there
exist ūj ∈ Rp and Q̄j ∈ Rp×p such that Q̄Tj Q̄j = I, Gj(x) = Q̄jDiag(λ(Gj(x)))Q̄Tj , and

∇xw̃(λ(Gj(x
k)); τk)→ ūj and Qj,k → Q̄j as k →∞.

In addition, for i = 1, . . . , p, (1.3.9) implies that

(∇xw̃(λ(Gj(x
k)); τk))i → (ūj)i ∈





{0} if λi(Gj(x)) < 0,

[0, 1] if λi(Gj(x)) = 0,

{1} if λi(Gj(x)) > 0,

as k →∞.

Combined with (1.3.7), (1.3.6), and the continuity of DCj and DGj , we find that

∇xϕ̃j(xk; τk)→ (1/2)DCj(x)∗Σ̄0 + (1/2)DGj(x)∗Q̄jDiag(ūj)Q̄Tj = z as k →∞.
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Next, we compute ∂ϕj(x) using the representation of ϕj provided in (1.3.2). The function
Sp 3 G 7→ ∑p

i=1 (λi(G))+ is regular [215, Cor. 4], sums of regular functions are regular [79,
Prop. 2.3.6], and continuously differentiable functions are regular [79, Prop. 2.3.6]. Combined
with the chain rule [78, Thm. 2.3.10], and the formula for Clarke’s subgradients of the eigenvalue
mapping λ provided in [215, Thm. 8], we deduce

∂ϕj(x) = 1
2

{
DCj(x)∗Σ̄0 + DGj(x)∗QDiag(u)QT : Q ∈ Oj(x), u ∈ ∂w(λ(Gj(x)))

}
, (1.3.10)

where Oj(x) = {Q ∈ Rp×p : QTQ = I, Gj(x) = QDiag(λ(Gj(x)))QT } and w : Rp → R is
defined by w(z) =

∑p
i=1(z)+. For each z ∈ Rp, i ∈ {1, . . . , p}, and every g ∈ ∂w(z), we have

gi = 0 if zi < 0, gi ∈ [0, 1] if zi = 0, and gi = 1 if zi > 0. Putting together the pieces, we find
that ūj ∈ ∂w(λ(Gj(x))). Hence z ∈ ∂ϕj(x).
(c) Under the stated assumptions, the proof of the second assertion can be used to deduce the
existence of a subsequence of (∇xϕ̃j(xk; τk)).

Based on a spectral decomposition of Gj(x), the gradient ∇xϕ̃j(x; τ) can efficiently be evaluated
using (1.3.7) for x ∈ Rn and τ > 0.

1.4 Smoothing Approach for the TRPs

We construct a smoothing function for the optimal value function v : Rn → R defined by

v(x) = min
s∈Rp

{
(1/2)sTH(x)s+ g(x)T s : (1/2)‖s‖22 ≤ (1/2)∆2

}
, (1.4.1)

where g : Rn → Rp and H : Rn → Sp. Throughout, let ∆ > 0. The smoothing function for v
allows us to construct one for the optimal value function defined in (1.1.6).
We obtain a smoothing function for (1.4.1) as the optimal value function of a “lifted” TRP, which
results from a barrier formulation of a Lagrangian dual of (1.4.1). Since TRPs are theoretically
and computationally tractable (see [28, sect. 2] and [238, sect. 5]), our construction implies that
our smoothing function for v can be evaluated efficiently. Moreover, using Danskin’s theorem, we
show that the evaluations the gradient of this smoothing function is computationally tractable
as well. In addition, we establish the gradient consistency for the smoothing function.

1.4.1 Lagrangian Dual of the TRP

We state the necessary and sufficient optimality conditions and review properties of the La-
grangian dual of the nominal TRP

min
s∈Rp

(1/2)sTHs+ gT s s.t. (1/2)‖s‖22 ≤ (1/2)∆2, (1.4.2)

where g = g(x0) ∈ Rp, H = H(x0) ∈ Sp for x0 ∈ Rn.

Theorem 1.4.1 ([301, Lems. 2.4 and 2.8]). The point s∗ ∈ Rp is an optimal solution to (1.4.2)
if and only if there exists λ∗ ∈ R such that

(H + λ∗I)s∗ = −g, ‖s∗‖2 ≤ ∆, λ∗(‖s∗‖2 −∆) = 0, λ∗ ≥ 0, H + λ∗I < 0. (1.4.3)

In addition, if (s∗, λ∗) fulfills (1.4.3) and λ∗ > −λmin(H), then s∗ is the unique optimal solution
to (1.4.2). Moreover, if (s∗1, λ

∗
1) and (s∗2, λ

∗
2) satisfy (1.4.3), then λ∗1 = λ∗2.

The TRP (1.4.2) has an optimal solution because its feasible set is nonempty and compact,
and its objective function is continuous. If (s∗, λ∗) satisfies (1.4.3), we refer to it as optimal
primal-dual solution to (1.4.2).
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Definition 1.4.2. Let (s∗, λ∗) be an optimal primal-dual solution of (1.4.2). If λ∗ = −λmin(H)
holds, the hard case occurs for (1.4.2), and otherwise the easy case occurs.

The term “hard case” is due to Moré and Sorensen [238], and the term “easy case” has been
used, for example, by Stern and Wolkowicz [306].
Now, we state a result on Lagrangian duality of (1.4.2).

Theorem 1.4.3 (see [310, Prop. 3.1, Thm. 3.3, and Cor. 3.4]). A Lagrangian dual problem of
(1.4.2)—phrased as a minimization problem—is

min
λ∈R

d(λ) s.t. H + λI < 0, λ ≥ 0, (1.4.4)

where d : R→ R ∪ {∞} is defined by

d(λ) =

{
1
2g
T (H + λI)+g + 1

2∆2λ if λ ≥ (−λmin(H))+, g ⊥ N(H + λI),

∞ else.
(1.4.5)

Moreover, (1.4.4) has a unique optimal solution λ∗, which is the unique Lagrange multiplier
corresponding to (1.4.2). In addition, strong duality holds, that is, the optimal value of (1.4.2)
equals −d∗, where d∗ is the optimal value of (1.4.4).

We define the solution mapping s : R→ Rp corresponding to (1.4.2) by

s(λ) = −(H + λI)+g, (1.4.6)

and state properties of the dual function d.

Lemma 1.4.4 ([234, Lem. 5.4]). The following conditions hold true:
(a) The function d defined in (1.4.5) is convex, and d(λ)→∞ as λ→∞.
(b) If λ > (−λmin(H))+, then d is twice continuously differentiable at λ, and

d′(λ) = −(1/2)‖s(λ)‖22 + (1/2)∆2. (1.4.7)

(c) If g 6= 0, then d′′(λ) > 0 for all λ > (−λmin(H))+.

Proof. The claims follow from [310, Prop. 3.2] and from the proof of [310, Thm. 3.3].

1.4.2 Barrier Formulation for the Dual of a TRP

We state a barrier problem for the dual (1.4.4) of the TRP (1.4.2) using a reciprocal barrier
function. We show that an optimal solution to the barrier problem is an approximate solution
to (1.4.4). In section 1.4.3, it is shown that the dual problem to the barrier problem corresponds
to a “lifted” TRP. Since the dual to barrier problem is a TRP, it can be solved with any TRP
solver, enabling us to define smoothing function for ψj (see (1.1.6)). The smoothing function
and its gradient can efficiently be evaluated, allowing us to compute stationary points of the
approximated DROP (1.2.2).
The barrier problem for (1.4.4) is

min
λ∈R

d(λ) + νBη(λ) s.t. λ > E(−H; η), λ > 0, (1.4.8)

where ν, η > 0, and the reciprocal barrier Bη : ((E(−H; η))+,∞)→ R is defined by

Bη(λ) =
1

λ
+

1

λ− E(−H; η)
. (1.4.9)
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Reciprocal barriers are also called inverse interior functions [112, sect. 3.1]. Here, E : Sp×R++ →
R is an entropy function defined by

E(A; η) = η ln

p∑

i=1

exp(λi(A)/η). (1.4.10)

The entropy function E has successfully been used in nonsmooth optimization [74, 247]. For
each η > 0, E(·; η) is twice continuously differentiable [217, Thm. 4.2], and for each A ∈ Sp,

λmax(A) ≤ E(A; η) ≤ λmax(A) + η ln p; (1.4.11)

[247, eqns. (17) and (18)]. The above properties, when combined with the (Lipschitz) continuity
of λmax [157, Cor. 6.3.8], imply that E is a smoothing function for λmax. In order to prevent
overflow when evaluating E(A; η), we use, if λmax(A) > 0, the identity E(A; η) = λmax(A) +
η ln

∑p
i=1 exp((λi(A)− λmax(A))/η), valid for each A ∈ Sp and η > 0.

We could use the self-concordant barrier function ((−λmin(H))+,∞) 3 λ 7→ − lnλ− ln det(H +
λI) in (1.4.8) which may not require the computation of λmin(H) and to smooth λmin. However,
the resulting primal problem would not be a TRP and requires, for example, an adapted version
of the Moré–Sorensen algorithm [238, Alg. 3.2] for its numerical solution.
Before, we show that, for each ν, η > 0, the barrier problem (1.4.8) has a unique optimal
solution, we observe that (1.4.11) yields, for each A ∈ Sp and η > 0,

λmin(A) = −λmax(−A) ≥ −E(−A; η). (1.4.12)

Lemma 1.4.5 ([234, Lem. 5.5]). For each ν, η > 0, the barrier problem (1.4.8) has a unique
optimal solution λ∗(ν, η), and λ∗(ν, η) > (E(−H; η))+, where E is defined in (1.4.10).

Proof. Fix ν, η > 0. We define the objective function of (1.4.8) by

Bν,η : ((E(−H; η))+,∞)→ R, Bν,η = d+ νBη, (1.4.13)

where d and Bη are defined in (1.4.5) and (1.4.9), respectively. Fix λ > (E(−H; η))+. Using
(1.4.12), we have (E(−H; η))+ ≥ (−λmin(H))+. Hence

Bν,η(λ) =
1

2
gT (H + λI)−1g +

1

2
∆2λ+

ν

λ
+

ν

λ− E(−H; η)
≥ 1

2
∆2λ,

showing that Bν,η(λ)→∞ as λ→∞. From (1.4.5), (1.4.9), and (1.4.13), we obtain

Bν,η(λ) ≥ ν

λ
+

ν

λ− E(−H; η)
→∞ as λ→ (E(−H; η))+.

Consequently, (1.4.8) has an optimal solution λ∗(ν, η), and λ∗(ν, η) > (E(−H; η))+.
Now, we prove that Bν,η defined in (1.4.13) is strictly convex. Lemma 1.4.4 implies that Bν,η is
twice continuously differentiable at λ with

B′ν,η(λ) = −1

2
gT (H + λI)−2g − ν

λ2
− ν

(λ− E(−H; η))2
+

1

2
∆2,

B′′ν,η(λ) = gT (H + λI)−3g +
2ν

λ3
+

2ν

(λ− E(−H; η))3
. (1.4.14)

Hence B′′ν,η(λ) > 0, which implies the strict convexity of Bν,η. Putting together the pieces, we
conclude that λ∗(ν, η) is the unique optimal solution of (1.4.8).



18 Chapter 1. Distributionally Robust Nonlinear Optimization

Theorem 1.4.6 ([234, Lem. 5.6]). For fixed ν, η > 0, the following conditions hold true:
(a) We have

λ∗(ν, η) ≥
√

2ν/∆ and λ∗(ν, η)− E(−H; η) ≥
√

2ν/∆, (1.4.15)

where λ∗(ν, η) is the optimal solution of (1.4.8) and E is defined in (1.4.10).
(b) The point λ∗(ν, η) is a (

√
2ν∆ + (1/2)∆2η ln p)-optimal solution of (1.4.4), that is,

d∗ ≤ d(λ∗(ν, η)) ≤ d∗ +
√

2ν∆ + (1/2)∆2η ln p, (1.4.16)

where d∗ is the optimal value of (1.4.4), and d is defined in (1.4.5).
(c) It holds that

d∗ ≤ d(λ∗(ν, η)) + νBη(λ
∗(ν, η)) ≤ d∗ + 2

√
2ν∆ + (1/2)∆2η ln p, (1.4.17)

where the barrier function Bη is defined in (1.4.9).

We apply the following result to prove Theorem 1.4.6.

Lemma 1.4.7 ([234, Lem. 5.7]). Let η, ε > 0 be arbitrary, and consider

min
λ∈R

d(λ) s.t. λ ≥ ε, λ ≥ E(−H; η) + ε. (1.4.18)

Then (1.4.18) has a unique optimal solution λ̄η,ε, and

d∗ ≤ d(λ̄η,ε) = d∗η,ε ≤ d∗ + (1/2)∆2(η ln p+ ε), (1.4.19)

where d∗ is the optimal value of (1.4.4) and d∗η,ε that of (1.4.18).

Proof. We establish the existence and uniqueness of solutions to (1.4.18). If g = 0, then d(λ) =
∆2λ/2, and the optimal solution λ̄η,ε of (1.4.18) is λ̄η,ε = (E(−H; η))+ + ε. If g 6= 0, then
Lemma 1.4.4 and (1.4.12) imply that the objective of (1.4.18) is coercive, twice continuously
differentiable on a neighborhood of the feasible set of (1.4.18), and d′′(λ) > 0 for each λ >
(E(−H; η))+. Hence, there exists a unique optimal solution λ̄η,ε of (1.4.18).
Now, we establish (1.4.19). Since λ̄η,ε ≥ (E(−H; η))+ + ε, we have d∗ ≤ d(λ̄η,ε). Moreover, if
λ∗ > (E(−H; η))+ + ε, then d∗ = d∗η,ε, where λ∗ is the optimal solution of (1.4.4). Hence, the
remaining case to be considered is

(−λmin(H))+ ≤ λ∗ ≤ (E(−H; η))+ + ε.

We define λ̄ = λ∗ + η ln p+ ε. We have λ̄ ≥ ε. From (1.4.11), we deduce

E(−H; η) ≤ −λmin(H) + η ln p ≤ λ∗ + η ln p

showing that λ̄ ≥ E(−H; η) + ε. Hence, λ̄ is feasible for (1.4.18). Lemma 1.4.4 implies that d is
convex, and differentiable at λ̄. Hence

d(λ∗)− d(λ̄) ≥ d′(λ̄)(λ∗ − λ̄) = −d′(λ̄)(η ln p+ ε)

resulting in
d(λ∗) + d′(λ̄)(η ln p+ ε) ≥ d(λ̄) ≥ d(λ̄η,ε).

Combined with (1.4.6), Lemma 1.4.4 and (1.4.7), we find that d′(λ̄) ≤ (1/2)∆2 and, hence,
(1.4.19) holds.
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In order to prove the estimates in (1.4.16), we use the fact that the functions G1 : (0,∞) → R
and G2 : (E(−H; η),∞)→ R defined by

G1(λ) = − lnλ, and G2(λ) = − ln(λ− E(−H; η))

are 1-self-concordant barrier functions of their domains [249, sect. 2.3.1, Ex. 2].

Proof of Theorem 1.4.6. (a) We establish (1.4.15). Recall that the objective of (1.4.8) is Bν,η,
which is defined in (1.4.13). Lemma 1.4.5 implies that B′ν,η(λ

∗(ν, η)) = 0. Combined with
(1.4.14), we have

gT (H + λ∗(ν, η)I)−2g +
2ν

λ∗(ν, η)2
+

2ν

(λ∗(ν, η)− E(−H; η))2
= ∆2.

Lemma 1.4.5 and (1.4.12) further yield H + λ∗(ν, η)I � 0. Hence

2ν

λ∗(ν, η)2
≤ ∆2 and

2ν

(λ∗(ν, η)− E(−H; η))2
≤ ∆2,

showing the estimates in (1.4.15).
(b) We verify (1.4.16). Using (1.4.15), we find that λ∗(ν, η) is feasible for (1.4.4). Hence d∗ ≤
d(λ∗(ν, η)). Now, fix λ > (E(−H; η))+. Both G1 and G2 defined prior the proof are 1-self-
concordant for their domains. Combined with [249, Prop. 2.3.2], we find that

− 1

λ∗(ν, η)
(λ− λ∗(ν, η)) = G′1(λ∗(ν, η))(λ− λ∗(ν, η)) ≤ 1,

− 1

λ∗(ν, η)− E(−H; η)
(λ− λ∗(ν, η)) = G′2(λ∗(ν, η))(λ− λ∗(ν, η)) ≤ 1.

(1.4.20)

Since B′ν,η(λ
∗(ν, η)) = 0 implies

d′(λ∗(ν, η)) = −νB′η(λ∗(ν, η)),

the estimates in (1.4.15) and (1.4.20), and λ∗(ν, η) > (E(−H; η))+ ensure

d′(λ∗(ν, η))(λ− λ∗(ν, η)) = −νB′η(λ∗(ν, η))(λ− λ∗(ν, η))

=
ν

λ∗(ν, η)2
(λ− λ∗(ν, η)) +

ν

(λ∗(ν, η)− E(−H; η))2
(λ− λ∗(ν, η))

≥ − ν

λ∗(ν, η)
− ν

λ∗(ν, η)− E(−H; η)
.

Combined with the convexity of d (see Lemma 1.4.4) and (1.4.15), we find that

d(λ∗(ν, η))− d(λ) ≤ d′(λ∗(ν, η))(λ∗(ν, η)− λ)

≤ ν

λ∗(ν, η)
+

ν

λ∗(ν, η)− E(−H; η)
≤ 2ν√

2ν
∆ =

√
2ν∆.

(1.4.21)

Now, we fix ε > 0. Let λ̄η,ε the optimal solution of (1.4.18). Lemma 1.4.7 gives λ̄η,ε ≥
(E(−H; η))+ + ε. Furthermore, Lemma 1.4.7, (1.4.19) and (1.4.21) with λ = λ̄η,ε show that

d(λ∗(ν, η)) ≤ d(λ̄η,ε) +
√

2ν∆ ≤ d∗ +
√

2ν∆ + (1/2)∆2(η ln p+ ε).

The latter inequalities hold for all ε > 0 and, hence, we obtain (1.4.16).
(c) We show (1.4.17). Using (1.4.9) and (1.4.15), we have νBη(λ

∗(ν, η)) > 0 and νBη(λ
∗(ν, η)) ≤√

2ν∆, and λ∗(ν, η) is feasible for (1.4.4). Hence (1.4.16) implies (1.4.17).

The error estimates presented in Theorem 1.4.6 depend on ln p and on the prescribed trust-region
radius ∆. Therefore, the data dependence is weak.
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1.4.3 Smoothing Function for the TRPs

We show that the optimal value function ṽ : Rn × R2
++ → R defined by

ṽ(x; ν, η) = min
s̃∈Rp+2

{
(1/2)s̃T H̃η(x)s̃+ g̃ν(x)T s̃ : (1/2)‖s̃‖22 ≤ (1/2)∆2

}
. (1.4.22)

is a smoothing function for the function v in (1.4.1), and establish its gradient consistency. Here

H̃η(x) =



H(x)

0
−E(−H(x); η)


 ∈ Sp+2 and g̃ν(x) =



g(x)√

2ν√
2ν


 ∈ Rp+2, (1.4.23)

and E(·; η) is defined in (1.4.10). Then, we apply these results to define a smoothing function
for ψj defined in (1.1.6), to deduce its gradient consistency. In order to prove these properties,
we use the fact that a Lagrangian dual of (1.4.22) is

max
λ∈R

−d(λ;x)− ν

λ
− ν

λ− E(−H(x); η)
s.t. λ > (E(−H(x); η))+, (1.4.24)

where x ∈ Rn and d : ((−E(H(x); η))+,∞)× Rn → R is defined by

d(λ;x) = (1/2)g(x)T (H(x) + λI)−1g(x) + (1/2)∆2λ. (1.4.25)

Lemma 1.4.8 ([234, Lem. 5.8]). Let x ∈ Rn and ν, η > 0 be arbitrary. Then the problem
(1.4.24) has a unique optimal solution λ̃(x; ν, η), and λ̃(x; ν, η) > (E(−H(x); η))+. Moreover,
the optimal value of (1.4.22) equals that of (1.4.24), the easy case occurs for (1.4.22), and

ṽ(x; ν, η) = −(1/2)g̃ν(x)T (H̃η(x) + λ̃(x; ν, η)I)−1g̃ν(x)− (1/2)∆2λ̃(x; ν, η). (1.4.26)

Proof. Lemma 1.4.5 implies that (1.4.24) has a unique minimizer λ̃(x; ν, η), and λ̃(x; ν, η) >
(E(−H(x); η))+. From (1.4.12), we deduce λmin(H(x)) ≥ −E(−H(x); η), and (1.4.23) gives
λmin(H̃η(x)) = −(E(−H(x); η))+.

If E(−H(x); η) > 0, then (1.4.23) ensures y = (0, . . . , 0, 1) ∈ N(H̃η(x) − λmin(H̃η(x))I) and

yT g̃ν(x) 6= 0. If E(−H(x); η) ≤ 0, then w = (0, . . . , 0, 1, 0) ∈ N(H̃η(x) − λmin(H̃η(x))I) and

wT g̃ν(x) 6= 0. Hence g̃ν(x) 6⊥ N(H̃η(x) − λmin(H̃η(x))I). Theorem 1.4.3 yields λ̃(x; ν, η) >
(E(−H(x); η))+ and, hence, the easy case occurs for (1.4.22).
Next, for each λ > (E(−H(x); η))+, (1.4.23) and (1.4.25) yield

d(λ;x) +
ν

λ(x; ν, η)
+

ν

λ(x; ν, η)− E(−H(x); η)
=

1

2
g̃ν(x)T (H̃η(x) + λI)−1g̃ν(x) +

1

2
∆2λ.

Combined with Theorem 1.4.3, we deduce the strong duality and (1.4.26).

We establish an error estimate for ṽ (see (1.4.22)), and show that it is a smoothing function for
v (see (1.4.1)). We define, similarly to (1.4.6), the mapping s : R× Rn → R by

s(λ;x) = −(H(x) + λI)+g(x). (1.4.27)

For ν, η > 0, let (s̃(x; ν, η), λ̃(x; ν, η)) be the optimal primal-dual solution of (1.4.22), where

λ̃(·; ν, η) : Rn → R and s̃(·; ν, η) : Rn → Rp. (1.4.28)
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From (1.4.3), Lemma 1.4.8, the block structure of H̃η(x) ((1.4.23)), and (1.4.27), we obtain that,
for all x ∈ Rn,

s̃(x; ν, η) = (s(λ̃(x; ν, η);x), s̃p+1(x; ν, η), s̃p+2(x; ν, η)). (1.4.29)

In particular, the first p components of s̃(x; ν, η) are given by s(λ̃(x; ν, η);x). Applying (1.4.3)
and (1.4.23) yields

s̃p+1(x; ν, η) =

√
2ν

λ̃(x; ν, η)
and s̃p+2(x; ν, η) =

√
2ν

λ̃(x; ν, η)− E(−H(x); η)
. (1.4.30)

Theorem 1.4.9 ([234, Thm. 5.9]). Let ν, η > 0, and let q ∈ N. Suppose that g : Rn → Rp and
H : Rn → Sp are q-times continuously differentiable. Then the following conditions hold:
(a) For every x ∈ Rn, we have

v(x) ≥ ṽ(x; ν, η) ≥ v(x)− 2
√

2ν∆− (1/2)∆2η ln p, (1.4.31)

where v is defined in (1.4.1) and ṽ in (1.4.22).
(b) The mappings s̃(·; ν, η) and λ̃(·; ν, η) defined in (1.4.28) are q− 1-times continuously differ-

entiable, ṽ(·; ν, η) is q-times continuously differentiable, and

∇xṽ(x; ν, η) = ∇x℘(x, s)|
s=s(λ̃;x)

+ (1/2)(s̃p+2)2∇x(−E(−H(x); η)). (1.4.32)

Here, ℘ : Rn × Rp → R is defined by

℘(x, s) = g(x)T s+ (1/2)sTH(x)s, (1.4.33)

and (s̃, λ̃) = (s̃(x; ν, η), λ̃(x; ν, η)) is the optimal primal-dual solution of (1.4.22).
(c) The function ṽ is a smoothing function for v.

Proof. (a) Fix x ∈ Rn. Combining Theorem 1.4.6 and Lemma 1.4.8, and (1.4.17) and (1.4.26)
yields (1.4.31).
(b) Lemma 1.4.8 further implies λ̃(x; ν, η) > (E(−H(x); η))+, implying that strict complemen-
tarity slackness holds for (1.4.22). Moreover, the entropy function E(·; η) defined in (1.4.10)
is analytic since z 7→ η ln

∑p
i=1 exp(zi/η) is analytic (see [319, Thm. 3.1]) and, therefore, the

mapping H̃η (see (1.4.23)) is q-times continuously differentiable. Hence, the implicit function
theorem applies to the first-order optimality conditions (1.4.3) of (1.4.22) and implies that
λ̃(·; ν, η) and s̃(·; ν, η) are q − 1-times continuously differentiable.
Combined with (1.4.22), (1.4.23), (1.4.29), (1.4.33), and Danskin’s theorem [46, Thm. 4.13 and
Rem. 4.14] we find that ṽ(·; ν, η) is differentiable and that its gradient is given by (1.4.32).
Next, [154, Cor. 8.2] implies that s̃(·; ν, η) is continuous showing that ∇xṽ(·; ν, η) is continuous.
Moreover, the chain rule and (1.4.22) imply that ṽ(·; ν, η) is q-times continuously differentiable.
(c) The function v is continuous by [154, Thm. 7], ṽ(·; ν, η) is continuously differentiable and,
hence, (1.4.31) shows that ṽ is a smoothing function for v.

The next result asserts gradient consistency of the function ṽ defined in (1.4.22).

Theorem 1.4.10 ([234, Thm. 5.10]). If the hypotheses of Theorem 1.4.9 hold, then the following
conditions are satisfied:
(a) Gradient consistency of ṽ for v holds, where v is defined in (1.4.1) and ṽ in (1.4.22).
(b) If (xk) ⊂ Rn fulfills xk → x ∈ Rn, and (νk), (ηk) ⊂ R++ both converge to 0, then there

exists a convergent subsequence (∇xṽ(xk; νk, ηk))K of (∇xṽ(xk; νk, ηk)).
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We apply Lemmas 1.4.11 and 1.4.12 to establish Theorem 1.4.10.

Lemma 1.4.11 ([234, Lem. 5.11]). Let (xk) ⊂ Rn and (ηk) ⊂ R++. Suppose that xk → x ∈ Rn
as k → ∞ and ηk → 0 as k → ∞. Moreover, let A : Rn → Sp be continuously differentiable.
Then there exist a subsequence (∇x(E(·; ηk) ◦A)(xk))K of (∇x(E(·; ηk) ◦A)(xk)), θi ∈ [0, 1] and
ui ∈ Rp such that

∇x(E(·; ηk) ◦A)(xk)→
r∑

i=1

θiDA(x)∗[uiuTi ] ∈ DA(x)∗∂λmax(A(x)) as K 3 k →∞.

Here, E is the entropy function defined in (1.4.10), 1 ≤ r ≤ r(A(x)), r(A(x)) is the multiplicity
of λmax(A(x)),

∑r
i=1 θi = 1, and ui are pairwise orthonormal eigenvectors of A(x) corresponding

to λmax(A(x)).

Proof. We compute ∂(λmax ◦A)(x) and ∇x(E(·; ηk)◦A)(xk). Since λmax is convex and Lipschitz
continuous, [79, Prop. 2.3.6] implies that λmax is regular in the sense of [79, Def. 2.3.4]. Combined
with the continuous differentiability of A, the chain rule [79, Thm. 2.3.9] yields

∂(λmax ◦A)(x) = DA(x)∗∂λmax(A(x)). (1.4.34)

Since E(·; ηk) is analytic [319, Thm. 3.1], the chain rule implies

∇x(E(·; ηk) ◦A)(xk) = DA(xk)∗∇AE(A(xk); ηk). (1.4.35)

We define Ak = A(xk) and A = A(x), and we establish the existence of a subsequence
(∇AE(Ak; ηk))K of (∇AE(Ak; ηk)) such that

∇AE(Ak; ηk)→
r∑

i=1

θiuiu
T
i ∈ ∂λmax(A) as K 3 k →∞. (1.4.36)

For all k ∈ N0, we have

∇AE(Ak; ηk) =

p∑

i=1

θi,kui(Ak)ui(Ak)
T , and θi,k =

exp λi(Ak)−λmax(Ak)
ηk∑p

i=1 exp λi(Ak)−λmax(Ak)
ηk

,

where Akui(Ak) = λmax(Ak)ui(Ak), and ui(Ak) are pairwise orthonormal for i = 1, . . . , p [247,
sect. 4]. We have

∑p
i=1 θi,k = 1 and θi,k ∈ [0, 1]. Hence, we can assume without loss of generality

that for i ∈ {1, . . . , p}, it holds that ui(Ak) → ui ∈ Rp as k → ∞, and θi,k → θi ∈ [0, 1] as
k → ∞, ‖ui‖2 = 1, and

∑p
i=1 θi = 1. Combined with Akui(Ak) = λi(Ak)ui(Ak), valid for each

k ∈ N0, Ak → A as k →∞, and the (Lipschitz) continuity of λ [157, Cor. 6.3.8], we find that ui is
an eigenvector of A corresponding to λi(A). Moreover 0 = ui(Ak)

Tuj(Ak)→ uTi uj as k →∞ for
each i 6= j implies that ui are pairwise orthogonal. Now, let i ∈ {1, . . . , p} be an index such that
λi(A) < λmax(A), that is, i > r(A). We obtain that λi(Ak)−λmax(Ak) ≤ (λi(A)−λmax(A))/2 < 0
for all sufficiently large k ∈ N0. Therefore θi,k → 0 as k →∞ implying θi = 0. Combined with

∂λmax(A) = conv
{
uuT : Au = λmax(A)u, ‖u‖2 = 1, u ∈ Rp

}

(see [247, sect. 4]), we obtain (1.4.36). We have DA(xk) → DA(x) as k → ∞ and, hence,
(1.4.34), (1.4.35), and (1.4.36) imply the claim.

Lemma 1.4.12 ([234, Lem. 5.12]). Let the hypotheses of Theorem 1.4.9 hold. Let (xk) ⊂ Rn
and (νk), (ηk) ⊂ R++. Suppose that xk → x̄ ∈ Rn and νk, ηk → 0 as k → ∞. We define
(s̃k, λ̃k) = (s̃(xk; νk, ηk), λ̃(xk; νk, ηk)), where (s̃(x; ν, η), λ̃(x; ν, η)) is defined in (1.4.28). Then
the following conditions hold true.
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(a) The sequence (s̃k, λ̃k)N0 has a convergent subsequence (s̃k, λ̃k)K . In particular, there exist
(s̄, λ̄) ∈ Rp × R+ and ᾱ, β̄ ∈ R such that

s̃k = (s(λ̃k;x
k), s̃kp+1, s̃

k
p+2)→ (s̄, β̄, ᾱ) and λ̃k → λ̄ as K 3 k →∞. (1.4.37)

(b) If λ̄ > −λmin(H(x̄)), then ᾱ = 0 and (s̄, λ̄) is an optimal primal-dual solution of (1.4.1)
for x = x̄.

(c) If λ̄ = −λmin(H(x̄)) and wi ∈ Rp for i = 1, . . . , r ∈ N, are pairwise orthonormal eigenvec-
tors of H(x̄) corresponding to λmin(H(x̄)), then (s̄+γ+

i wi, λ̄) and (s̄+γ−i wi, λ̄) are optimal
primal-dual solutions of (1.4.1) for x = x̄, where

γ+
i = −wTi s̄+ ((wTi s̄)

2 + ᾱ2)1/2 and γ−i = −wTi s̄− ((wTi s̄)
2 + ᾱ2)1/2. (1.4.38)

Proof. (a) We show that (s̃k, λ̃k)N0 is bounded. Since ‖s̃k‖2 ≤ ∆, (s̃k) is bounded. Now, fix

k ∈ N0. Lemma 1.4.8 gives λ̃k = λ̃(xk; νk, ηk) > (E(−H(xk); η))+ and, hence, (1.4.12) implies

λ̃k > −(λmin(H(xk)))+. (1.4.39)

Combined with (1.4.26), Lemma 1.4.8, and (1.4.39), we obtain ṽ(xk; νk, ηk) ≤ −(1/2)∆2λ̃k ≤ 0.
Theorem 1.4.9 yields ṽ(xk; νk, ηk) → v(x̄) as k → ∞. Combined with ∆ > 0, we find that
(λ̃k) is bounded. In particular, (s̃k, λ̃k)N0 is bounded and has a convergent subsequence. Hence,
(1.4.29) implies (1.4.37) for some (s̄, λ̄) ∈ Rp × R+ and ᾱ, β̄ ∈ R.
Next, we prepare the proofs of the second and third assertion. Using (1.4.14) and (1.4.30), we
find that the first-order necessary optimality condition of (1.4.22) is

∆2 = ‖s(λ̃k;xk)‖22 +
2νk

λ̃2
k

+
2νk

(λ̃k − E(−H(xk); ηk))2
= ‖s̃k‖22.

Therefore, (1.4.37) ensures

∆2 = ‖s̃k‖22 → ‖s̄‖22 + β̄2 + ᾱ2 as K 3 k →∞, (1.4.40)

and (1.4.39) implies

H(x̄) + λ̄I < 0 and λ̄ ≥ 0. (1.4.41)

Moreover, using (1.4.27) and (1.4.39), we have

0 = (H(xk) + λ̃kI)s(λ̃k;x
k) + g(xk)→ (H(x̄) + λ̄I)s̄+ g(x̄) as K 3 k →∞. (1.4.42)

(b) We verify that (s̄, λ̄) is an optimal primal-dual solution of (1.4.1) for x = x̄ and ᾱ = 0
if λ̄ > −λmin(H(x̄)). By assumption H(x̄) + λ̄I is invertible and, hence, (1.4.42) implies that
s̄ is the unique solution to (H(x̄) + λ̄I)s̄ = −g(x̄). Therefore, (1.4.27) and (1.4.42) result in
s(λ̄; x̄) = s̄. Moreover, (1.4.40) implies that ‖s̄‖2 ≤ ∆.
If λ̄ > 0, then the continuity of λmin, λ̄ > −λmin(H(x̄)), λ̃k → λ̄ as K 3 k → ∞ and (1.4.11)
imply that λ̃k ≥ λ̄/2 > 0 and λ̃k − E(−H(xk); ηk) ≥ (λ̄+ λmin(H(x̄)))/2 > 0 for all sufficiently
large k ∈ K. Combined with (1.4.30), we find that

s̃kp+1 =

√
2νk

λ̃k
→ 0 and s̃kp+2 =

√
2νk

λ̃k − E(−H(xk); ηk)
→ 0 as K 3 k →∞, (1.4.43)

and, therefore, ᾱ, β̄ = 0. Now, (1.4.40) yields ∆2 = ‖s̄‖22. Hence, (s(λ̄; x̄), λ̄) satisfies λ̄(‖s̄‖22 −
∆2) = 0 and, therefore, it fulfills (1.4.3) implying that it is an optimal primal-dual solution of
(1.4.1) for x = x̄ by Theorem 1.4.1.
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(c) We establish that (s̄+γ+
i wi, λ̄) and (s̄+γ−i wi, λ̄) are optimal primal-dual solutions of (1.4.1)

for x = x̄ and i = 1, . . . , r if λ̄ = −λmin(H(x̄)). Fix i ∈ {1, . . . , r}. The numbers γ+
i and γ−i

defined in (1.4.38) solve
γ2
i + 2γiw

T
i s̄− ᾱ2 = 0.

Combined with ‖wi‖2 = 1 and (1.4.40), we obtain, for γi ∈ {γ−i , γ+
i },

‖s̄+ γiwi‖22 = ‖s̄‖22 + 2γiw
T
i s̄+ γ2

i = ∆2 − ᾱ2 − β̄2 + 2γiw
T
i s̄+ γ2

i ≤ ∆2 (1.4.44)

with equality if β̄ = 0. Moreover, (1.4.42) and (H(x̄) + λ̄I)wi = 0 result in

(H(x̄) + λ̄I)(s̄+ γiwi) = (H(x̄) + λ̄I)s̄ = −g(x̄). (1.4.45)

If λ̄ > 0, then (1.4.43) and (1.4.37) imply β̄ = 0. Hence, (1.4.44) ensures λ̄(‖s̄+γiwi‖22−∆2) = 0.
Combined with (1.4.41), (1.4.42), (1.4.44), (1.4.45), and Theorem 1.4.1, we conclude that (s̄ +
γ+
i wi, λ̄) and (s̄+ γ−i wi, λ̄) are optimal primal-dual solutions of (1.4.1) for x = x̄.

The proof of Theorem 1.4.9 requires the gradient of the function ℘ defined in (1.4.33). Using
(1.4.46) and a similar derivation as in (1.3.8), we obtain

∇x℘(x, s) = ∇xg(x)T s+ 1
2∇xsTH(x)s = ∇xg(x)T s+ 1

2DH(x)∗[ssT ]. (1.4.46)

Proof of Theorem 1.4.10. (a) Fix x̄ ∈ Rn. The optimal value function v defined in (1.4.1) is
locally Lipschitz continuous [109, Thm. 4.1], and, hence, ∂v(x̄) is well-defined [225, Def. 3.1.3].
Combined with the definition of ℘ provided in (1.4.33), and [78, Thm. 2.1], we obtain

∂v(x̄) = conv {∇x℘(x̄, s∗) : s∗ ∈ Sol∗TR(x̄) }, (1.4.47)

where Sol∗TR(x̄) is the set of optimal solutions of the parameterized TRP (1.4.1) for x = x̄.
Next, we establish gradient consistency, that is, we prove ∂v(x̄) = Sṽ(x̄). Here, Sṽ(x) is defined
in (1.2.5). Since v is locally Lipschitz continuous, Lemma 1.2.3 gives ∂v(x̄) ⊂ Sṽ(x̄). It must
yet be shown that Sṽ(x̄) ⊂ ∂v(x̄), which we establish by distinguishing whether the easy or the
hard case occurs for (1.4.1) with x = x̄.
Fix z ∈ Sṽ(x̄). By assumption, there exist (xk) ⊂ Rn and (νk), (ηk) ⊂ R++ with xk → x̄ and
νk, ηk → 0, and

∇xṽ(xk; νk, ηk)→ z as k →∞. (1.4.48)

Next, we derive a formula for z that allows us to deduce z ∈ ∂v(x̄).
Lemma 1.4.12 implies that the sequence (s̃k, λ̃k)N0 of optimal primal-dual solutions (s̃k, λ̃k) of

(1.4.22) for (x, ν, η) = (xk, νk, ηk) has a convergent subsequence (s̃k, λ̃k)K , and (s(λ̃k;x
k), λ̃k)K

converges to (s̄, λ̄) and s̃p+2 → ᾱ as K 3 k →∞, where s̄ ∈ Rp, λ̄ ≥ 0 and ᾱ ∈ R, and s(λ;x) is
defined in (1.4.27). In addition, Lemma 1.4.11 applies to A = −H and yields the existence of a
subsequence (∇x(E(−H(xk); ηk)))K′ of (∇x(E(−H(xk); ηk)))K such that

∇x(E(−H(xk); ηk))→ −
r∑

i=1

θiDH(x̄)∗[wiwTi ] as K ′ 3 k →∞, (1.4.49)

where 1 ≤ r ≤ r(A(x̄)), r(A(x̄)) is the multiplicity of λmax(A(x̄)), θi ∈ [0, 1], and
∑r

i=1 θi =
1. Moreover, wi are pairwise orthonormal eigenvectors of A(x̄) = −H(x̄) corresponding to
λmax(A(x̄)) = −λmin(H(x̄)). Combined with (1.4.32), (1.4.48), (1.4.49), and the fact that g and
H are continuously differentiable, we find that

∇xṽ(xk; νk, ηk)→ ∇x℘(x̄, s̄) + (ᾱ2/2)

r∑

i=1

θiDH(x̄)∗[wiwTi ] = z as K ′ 3 k →∞. (1.4.50)
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If the easy case occurs for (1.4.1) with x = x̄, then Lemma 1.4.12 implies that s̄ ∈ Sol∗TR(x̄) and
ᾱ = 0. By applying (1.4.47), (1.4.48) and (1.4.50), we find that z ∈ ∂v(x̄).
If the hard case occurs for (1.4.1), then Lemma 1.4.12 further implies that s̄+γ+

i wi and s̄+γ−i wi
are optimal solutions of (1.4.1) for x = x̄, where γ+

i and γ−i are defined in (1.4.38). If ᾱ = 0,
then (1.4.38) implies that either γ+

i or γ−i is zero and, hence, s̄ is an optimal solution of (1.4.1)
for x = x̄. Consequently, (1.4.47), (1.4.48) and (1.4.50) imply that z ∈ ∂v(x̄). If ᾱ > 0, then
(1.4.38) yields γ+

i − γ−i = 2((wTi s̄)
2 + ᾱ2)1/2 > 0. We define

τ+
i =

−γ−i
γ+
i − γ−i

and τ−i =
γ+
i

γ+
i − γ−i

. (1.4.51)

Owing to (1.4.38), we have γ+
i > 0 and γ−i < 0. Together with (1.4.51), we obtain

τ+
i > 0, τ−i > 0, τ+

i + τ−i = 1,

τ+
i γ

+
i + τ−i γ

−
i =

−γ−i γ+
i + γ+

i γ
−
i

γ+
i − γ−i

= 0, and τ+
i (γ+

i )2 + τ−i (γ−i )2 = ᾱ2.
(1.4.52)

Using (1.4.33) and (1.4.46), we obtain, for γi ∈ {γ−i , γ+
i },

∇x℘(x̄, s̄+ γiwi) = ∇xg(x̄)T s̄+ (1/2)DH(x̄)∗[s̄s̄T ] + γi∇xg(x̄)Twi

+ (1/2)γiDH(x̄)∗[wis̄T + s̄wTi ] + (1/2)(γi)
2DH(x̄)∗[wiwTi ]

resulting in

τ+
i ∇x℘(x̄, s̄+ γ+

i wi) + τ−i ∇x℘(x̄, s̄+ γ−i wi)

= (τ−i + τ+
i )∇xg(x̄)T s̄+ (1/2)(τ−i + τ+

i )DH(x̄)∗[s̄s̄T ]

+ (τ+
i γ

+
i + τ−i γ

−
i )∇g(x̄)Twi + (1/2)(τ+

i γ
+
i + τ−i γ

−
i )DH(x̄)∗[wis̄T + s̄wTi ]

+ (1/2)(τ+
i (γ+

i )2 + τ−i (γ−i )2)DH(x̄)∗[wiwTi ].

Combined with (1.4.52), we get

τ+
i ∇x℘(x̄, s̄+ γ+

i wi) + τ−i ∇x℘(x̄, s̄+ γ−i wi)

= ∇xg(x̄)T s̄+ (1/2)DH(x̄)∗[s̄s̄T ] + (ᾱ2/2)DH(x̄)∗[wiwTi ],

implying, with
∑r

i=1 θi = 1 and (1.4.46), that

r∑

i=1

θiτ
+
i ∇x℘(x̄, s̄+ γ+

i wi) +

r∑

i=1

θiτ
−
i ∇x℘(x̄, s̄+ γ−i wi)

= ∇x℘(x̄, s̄) + (ᾱ2/2)
r∑

i=1

θiDH(x̄)∗[wiwTi ].

(1.4.53)

Moreover, using (1.4.52), we have
∑r

i=1 θiτ
+
i +

∑r
i=1 θiτ

−
i =

∑r
i=1 θi(τ

+
i + τ−i ) = 1. The limit

in (1.4.50) equals (1.4.53). Now, we use the fact that ∇x℘(x̄, s̄ + γ+
i wi) and ∇x℘(x̄, s̄ + γ−i wi)

are contained in ∂v(x̄) (see Lemma 1.4.12) implying that (1.4.53) is a convex combination of
elements of ∂v(x̄). Hence, (1.4.47), (1.4.48) and (1.4.50) yield z ∈ ∂v(x̄).
(b) If xk → x and νk, ηk → 0+ as k → ∞, then the proof of the first assertion and (1.4.32),
imply the existence of a converging subsequence of (∇xṽ(xk; νk, ηk)).
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Theorems 1.4.9 and 1.4.10 imply that ψ̃j : Rn × R2
++ → R defined by

ψ̃j(x; ν, η) = − min
s̃∈Rp+2

{
(1/2)s̃T H̃η,j(x)s̃+ g̃ν,j(x)T s̃ : ‖s̃‖2 ≤ ∆

}
, (1.4.54)

is a smoothing function for the function ψj defined in (1.1.6). Here gj(x) = −Σ̄1/2bj(x), and

Hj(x) = −Σ̄1/2Cj(x)Σ̄1/2. Moreover, H̃η,j and g̃ν,j are defined as in (1.4.23) with H and g

replaced by Hj and gj , respectively. The representation of ψ̃j results from (1.1.6) being trans-
formed into the TRP (1.4.1) using d 7→ s = Σ̄−1/2d.

Theorem 1.4.13 ([234, Thm. 5.13]). Let Σ̄ ∈ Sp++, q ≥ 1 and j ∈ J . Suppose that aj : Rn → R,
bj : Rn → Rp and Cj : Rn → Rp are q-times continuously differentiable. Then the following
conditions hold true:
(a) The function ψ̃j defined in (1.4.54) is a smoothing function for ψj, ψ̃j(·; ν, η) is q-times

continuously differentiable for each ν, η > 0, and gradient consistency holds.
(b) If (xk) ⊂ Rn fulfills xk → x ∈ Rn as k →∞, and (νk), (ηk) ⊂ R++ converge 0 as k →∞,

then there exists a convergent subsequence (∇xψ̃j(xk; νk, ηk))K of (∇xψ̃(xk; νk, ηk)).

The computational cost of evaluating (1.4.54) is essentially the same as the evaluation of (1.1.6)
since the Hessian matrix H̃η,j(x) defined in (1.4.23) is a block-diagonal matrix for x ∈ Rn
implying that our smoothing approach is tractable both theoretically and practically.

1.5 Convergence of the Smoothing Method

We show that the accumulation points of the sequence of approximate KKT-tuples generated
by Algorithm 1 are KKT-tuples of the approximated DROP (1.2.2) under mild assumptions.
For each j ∈ J , we define the smoothing function F̃j : Rn × R3

++ → R for Fj by

F̃j(x; t) = aj(x) + ϕ̃j(x; τ) + ψ̃j(x; ν, η). (1.5.1)

Here t = (τ, ν, η). We recall that Fj : Rn → R is given by Fj(x) = aj(x) + ϕj(x) + ψj(x)

(see (1.2.1)), where ϕ̃j and ψ̃j are defined in (1.3.4) and (1.4.54), respectively. Under suitable
assumptions on the approximated DROP (1.1.4), the smoothed DROP (1.2.3) has feasible points.

Proposition 1.5.1 ([234, Prop. 6.1]). Let the hypotheses of Theorems 1.3.2 and 1.4.13 hold
for each j ∈ J \ {0}. Suppose that z ∈ Rn is strictly feasible point for (1.2.2), that is, z ∈ Rn
satisfies Fj(z) < 0 for each j ∈ J \{0}. Then, for all sufficiently small t > 0, z is strictly feasible
for (1.2.3).

Proof. Theorems 1.3.2 and 1.4.13, and (1.2.1) and (1.5.1) yield, for each j ∈ J \ {0},

F̃j(z; t) = aj(x) + ϕ̃j(z; τ) + ψ̃j(z; ν, η)→ Fj(z) as t = (τ, ν, η)→ 0+.

Hence, for all sufficiently small t > 0, the point z is strictly feasible for (1.2.3).

Theorem 1.5.2 provides a global convergence result for Algorithm 1.

Theorem 1.5.2 ([234, Thm. 6.2]). Let the conditions of Theorems 1.3.2 and 1.4.13 hold for each
j ∈ J . Choose εmin, tmin = 0. Suppose that the sequence (xk, ϑk)N0 is generated by Algorithm 1.
Then each accumulation point of (xk, ϑk)N0 is a KKT-point of (1.2.2).
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Proof. Let (x̄, ϑ̄) be an accumulation point of (xk, ϑk)N0 . Then there exists a subsequence
(xk, ϑk)K of (xk, ϑk)N0 converging to (x̄, ϑ̄) as K 3 k →∞. Furthermore 0 ≤ χ(xk, ϑk; tk) ≤ εk
for all k ∈ N0, where the criticality measure χ is defined in (1.2.4). Since εk → 0 as k → ∞,
(1.5.1), Theorems 1.3.2 and 1.4.13 give, for each j ∈ J \ {0},

εk ≥ |min{−F̃j(xk; tk), ϑkj }| → |min{−Fj(x̄), ϑ̄j}| = 0 as K 3 k →∞.
Since (a, b) 7→ min{a, b} is a complementarity function (see, e.g., [321, sect. 1.3]), we have
ϑ̄jFj(x̄) = 0, Fj(x̄) ≤ 0, and ϑ̄j ≥ 0 for all j ∈ J \ {0}. Owing to Theorems 1.3.2 and 1.4.13, we

can assume without loss of generality that the sequences (∇xϕ̃j(xk; τk))K and (∇xψ̃j(xk; νk, ηk))K
for j ∈ J are convergent. Hence, for each j ∈ J , there exist vj , wj ∈ Rn such that

∇xϕ̃j(xk; τk)→ vj and ∇xψ̃j(xk; νk, ηk)→ wj as K 3 k →∞.
Now, fix j ∈ J . We verify that ∇aj(x̄) + vj + wj ∈ ∂Fj(x̄). Theorems 1.3.2 and 1.4.13 give
vj ∈ ∂ϕj(x̄) and wj ∈ ∂ψj(x̄) because of gradient consistency. Since ϕj and ψj are optimal value
functions, [78, Thm. 2.1] implies their regularity. Moreover, sums of regular functions are regular
[79, Prop. 2.3.6]. Combined with the continuous differentiability of aj , and the sum rule [79, Cor.
3 on p. 40], we find that ∂Fj(x̄) = ∇aj(x̄) +∂ϕj(x̄) +∂ψj(x̄). Hence ∇aj(x̄) + vj +wj ∈ ∂Fj(x̄)
and, consequently,

∇a0(x̄) + v0 + w0 +
∑

j∈J\{0}
ϑ̄j(∇aj(x̄) + vj + wj) ∈ ∂F0(x̄) +

∑

j∈J\{0}
ϑ̄j∂Fj(x̄).

Moreover, χ(xk, ϑk; tk)→ 0 as k →∞ ensures

∇xF̃0(xk; tk) +
∑

j∈J\{0}
(ϑk)j∇xF̃j(xk; tk)→ 0 as K 3 k →∞.

Putting together the statements, we conclude that 0 ∈ ∂F0(x̄) +
∑

j∈J\{0} ϑ̄j∂Fj(x̄).

If we only assume that (xk) has a convergent subsequence, we may need to impose a suitable
constraint qualification for the approximated DROP (1.2.2) in order to deduce the convergence of
a subsequence of (ϑk) [349, Thm. 3.2]. Moreover, the existence of KKT-tuples for the smoothed
DROP (1.2.3) may be shown under suitable constraint qualifications for the approximated DROP
(1.2.2); see [349, sects. 2 and 3].

1.6 Numerical Simulations

We construct DROPs from the Moré–Garbow–Hillstrom test set [237] consisting of unconstrained
NLPs. In order to obtain DROPs, we model design variables as uncertain. This type of un-
certainty is referred to as implementation errors in the literature on robust optimization [23, p.
4], [31, p. 166]. Robust nonlinear optimization with implementation errors is considered in, for
example, [31, 32, 209, 162].
We consider the nonlinear DROP

min
x∈Rn

sup
P∈Pε

EP [f0(x+ ξ)], (1.6.1)

where Pε is defined in (1.1.2) with µ̄ = 0, ∆ =
√
ε, Σ̄0 = 0, and Σ̄ = Σ̄1 = εI. We choose

ε ∈ {10−3, 10−2} and refer the reader to section 1.8.1 for a description of how we selected
problems from the Moré–Garbow–Hillstrom test set. We consider the approximated DROP

min
x∈Rn

F0(x), (1.6.2)
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where F0 is defined in (1.2.1), and a0(x) = f0(x), b0(x) = ∇f0(x), and C0(x) = ∇2f0(x) are
chosen in (1.1.6) and (1.1.5).
One goal of our numerical tests is to show that stationary points of (1.6.2) are more resilient to
distributional uncertainty than those of the nominal problem

min
x∈Rn

f0(x), (1.6.3)

and of the sample average approximation (SAA) of the stochastic program

min
x∈Rn

EP̄ε [f0(x+ ξ)], (1.6.4)

with P̄ε = N (0, (ε/10)I), despite the fact that we approximate the DROP (1.6.1) by the DROP
(1.6.2). We compare these stationary points in section 1.6.4. We chose the nominal distribution
P̄ε = N (0, (ε/10)I) to mimic the setup considered by Delage and Ye [94, sect. 4.3].
A further goal of our experiments is to show that Algorithm 1 is an efficient method to compute
stationary points of (1.6.2). We compare the performance of Algorithm 1 with the bundle
method MPBNGC [223, 224] applied to (1.6.2), and the NSDP solver PENLAB [110] applied to

min
x∈Rn, γ∈R, λ∈R+, y∈Rp,Λ,Υ∈Sp+

a0(x)− (1/2)γ + (1/2)I •Υ

s.t.

[
λI + Υ− Λ y

yT −λ∆2 − γ

]
< 0,

svec(Υ− Λ + Σ̄1/2C0(x)Σ̄1/2) = 0,

y + Σ̄1/2b0(x) = 0,

(1.6.5)

where svec : Sp → Rp(p+1)/2 transforms the lower triangular part of a symmetric matrix into a
vector. Using Proposition 1.8.3, we find that the NSDP (1.6.5) is equivalent to the approximated
DROP (1.6.2). Different from (1.8.12), we have introduced a slack variable in (1.6.5) and
“preconditioned” b0 and C0 using Σ̄1/2. PENLAB [110] preforms better when applied to the
NSDP reformulation (1.6.5) than when applied to (1.8.12).
Out of eight solvers for nonsmooth, nonconvex optimization, the decision tree for nonsmooth
optimization software, Solver-o-matic [174], recommended the use of MPBNGC for the approxi-
mated DROP (1.6.2).

1.6.1 Implementation Details

We provide implementation details for Algorithm 1, and for the applications of MPBNGC to (1.6.2)
and PENLAB to (1.6.5). Algorithm 1 was implemented in Julia [35] using Ipopt [336] and its
Julia interface Ipopt.jl. We chose the same stopping criterion for each iteration of Algo-
rithm 1. We used the default settings of Ipopt, with the exception of modifying the overall
termination tolerance tol. The gradient of the smoothing functions ϕ̃0 (see (1.3.4)) and ψ̃0 (see
(1.4.54)) were computed with the formulas (1.3.7) and (1.4.32), respectively, and Ipopt was used
with L-BFGS. We chose νmin = 10−8, ηmin, τmin =

√
νmin, η0, τ0 =

√
ν0, νk+1 = min{ρ2νk, νmin},

and ηk+1, τk+1 = min{ρηk, νmin}, where ν0 > 0, ρ = 0.1. For tol = 10−4 and ν0 = 0.1, the above
choices of the smoothing parameters are motivated by Theorems 1.3.2 and 1.4.6. Evaluating
the smoothing function F̃0 (see (1.5.1)) of F0 (see (1.6.2)) at (x, t) requires f0(x) (see (1.6.3)),
∇f0(x) and ∇2f0(x). To obtain ∇xF̃0(x; t), we computed the gradients of x 7→ s̃T∇2f0(x)s̃,
where s̃ are the first p components of the optimal solution of the TRP (1.4.54), and of two
mapping of the form x 7→ ∇2f0(x) •R, where R ∈ Sp; see (1.3.7) and (1.4.32). To initialize the
solution of the smoothed problem (1.2.3) in the (k + 1)th iteration of Algorithm 1, we used the
approximate stationary point obtained in the kth iteration.
We implemented and used a Julia interface for MPBNGC. For MPBNGC, we used the same setup
as in [223, sect. 6], except that we chose different termination tolerances and set GAM = 0.5

https://github.com/JuliaOpt/Ipopt.jl
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for each test problems. Since MPBNGC is a bundle method, it requires function and subgradient
evaluations of F0 = a0 +ϕ0 +ψ0. We exploited the regularity of the optimal value functions ϕ0

and ψ0 (see (1.1.5) and (1.1.6)) and computed subgradients of F0 via the sum rule [79, Cor. on
p. 39]. We obtained subgradients of ϕ0 and of ψ0 using (1.3.10) and (1.4.47), respectively.
PENLAB requires first and second derivatives of the objective function and each constraint function
of the NSDP (1.6.5). For PENLAB, we computed derivatives of f0 up to fourth order using the
automatic differentiation tool ADiGator [341]. We excluded the test function mgh35 from the
tests with PENLAB as ADiGator does not support automatic differentiation for the objective
function of this problem. We chose the same initial values for x that we passed to Algorithm 1.
We obtained the remaining initial points for the variables in (1.6.5) by applying PENLAB to (1.6.5)
for fixed x. We chose outer stop limit=kkt stop limit. For the remaining settings, we used
PENLAB’s default.
We scaled f0 using Ipopt’s the gradient scaling, which is described in [336, sect. 3.8]. We chose
x∗N as initial value for Algorithm 1 and MPBNGC, where x∗N is the stationary point computed by
Ipopt for the nominal problem (1.6.3) with termination tolerance 10−5 and the above settings.
The TRPs (1.1.6) and (1.4.54) were solved using [238, Alg. 3.14]. For the Julia codes, we
computed derivatives of f0 using the automatic differentiation package ForwardDiff [266]. We
took advantage of the fact that the DROP (1.6.1) models uncertain decision variables, and made
use of ∇f0 = ∇a0 = b0 and ∇b0 = C0.

1.6.2 Comparison of the Smoothing Method with MPBNGC and PENLAB

We compare the performance of the smoothing method, Algorithm 1, with that of MPBNGC

and of PENLAB in terms of evaluations of f0 and its derivatives. The termination criteria of
Ipopt (see [336, sect. 2.1]), MPBNGC (see [224, sect. 3.3]), and PENLAB (see [110, Alg. 1]) are
different. To be able to make a fair comparison or nearly so, we applied Ipopt to each nominal
problem (1.6.3) with known exact solution (see [237, sect. 3]) and computed the median of the
absolute errors of the final objective function values returned by Ipopt and the true ones with
tol = 10−2, 10−4. Then, we applied MPBNGC and PENLAB to the same problems with termination
tolerances 10−1, 10−2, . . . , 10−10, and from this list computed the largest ones such that we
obtained the same order of magnitude of the errors as with Ipopt for the tolerances 10−2, 10−4.
The corresponding criteria are 10−4, 10−8 for MPBNGC, and 10−2, 10−5 for PENLAB. This type
of “calibration” tries to ensure that stationary points obtained via Algorithm 1, MPBNGC, and
PENLAB are of similar accuracy.
Ipopt preforms many line search calls in Algorithm 1. To account for inexact evaluations of
ϕ = F̃0(·; tk) resulting from the inexact solution of the TRPs (1.4.54), we provide, in addition
to using Ipopt’s line search, numerical results using the modified line search

ϕ(xi + αid
i)− 10εmach|ϕ(xi)| − 2

√
εmach|ϕ(xi)| ≤ ϕ(xi) + καi∇ϕ(xi)Tdi,

where εmach ≈ 10−16 is the machine precision, tk = (νk, ηk, τk), κ ∈ (0, 1/2) is a default value of
a parameter of Ipopt, xi is the current iterate, di is a step, and αi > 0 is a line search parameter
[336, sect. 3.10]. The modified line search differs from that used by Ipopt [336, sect. 3.10] in
that we subtract 2

√
εmach|ϕ(xi)|.2 Ipopt’s line search is only designed to account for round-off

errors via the term −10εmach|ϕ(xi)| [336, sect. 3.10]. For each Moré–Garbow–Hillstrom test
problem, Ipopt using the modified line search has similar convergence behavior as Ipopt using
its line search.

2We assume that we can evaluate ϕ = F̃0(·; tk) with approximately eight significant figures. Define u = ϕ(xi +
αid

i) and w = ϕ(xi) and denote by û and ŵ their numerical approximation, respectively. We have |u− û| ≈√
εmach|u| and |w − ŵ| ≈ √εmach|w|. If |u| ≈ |w|, then |u − û − (w − ŵ)| ≈ 2

√
εmach|u| motivating the term

2
√
εmach|ϕ(xi)| in the modified line search.

https://github.com/matt-weinstein/adigator
https://github.com/JuliaDiff/ForwardDiff.jl
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Table 1.1: Median number of evaluations of derivatives of f0, x 7→ dT∇2f0(x)d, d ∈ Rp, and of
x 7→ ∇2f0(x) • R, R ∈ Sp, used by Algorithm 1, MPBNGC, and PENLAB with ε = 10−3. Each number is
rounded to its nearest integer. SgM(tol, ν0) refers to Algorithm 1 with termination tolerance tol and
initial smoothing parameter ν0 using Ipopt as NLP solver. mSgM(tol, ν0) refers to SgM(tol, ν0) using
Ipopt with the modified line search.

Method #f0, #∇f0, #∇2f0 #∇(dT∇2f0d) #∇(∇2f0 •R) #D3f0 #D4f0

SgM(10−2, 10−1) 76 15 30
SgM(10−2, 10−3) 61 15 30

mSgM(10−2, 10−3) 52 12 25
MPBNGC 24 24 24
PENLAB 54 29 23

SgM(10−4, 10−1) 120 37 75
SgM(10−4, 10−3) 101 32 64

mSgM(10−4, 10−3) 85 27 54
MPBNGC 69 69 69
PENLAB 88 59 46

We report the median number of evaluations of f0, of its derivatives, and of the derivatives
∇(dT∇2f0(·)d), d ∈ Rp, and ∇(∇2f0(·) • R), R ∈ Sp, used by Algorithm 1, MPBNGC, and
PENLAB with ε = 10−3 in Table 1.1. For each selected test problem, the number of evalua-
tions used in Algorithm 1 is the sum of all evaluations of the inner iterations. We chose initial
smoothing parameters ν0 = 10−1, 10−3, and η0, τ0 =

√
ν0. Moreover, we used the termination

tolerances tol = 10−2, 10−4 for Algorithm 1, and for MPBNGC and PENLAB the corresponding ones
as stated above. Instead of evaluating gradient of x 7→ dT∇2f0(x)d, and of x 7→ ∇2f0(x) •R for
two R ∈ Sp, we could have computed D3f0 once.
Table 1.1 indicates that Algorithm 1 requires about half as many gradient evaluations of F̃0 as
MPBNGC requires subgradient evaluations of F0. PENLAB requires, as opposed to Algorithm 1 and
MPBNGC, third and fourth derivatives of f0. Combined with the results displayed in Table 1.1,
we may conclude that PENLAB is the most expensive method in terms of evaluations of f0 and of
its derivatives. Table 1.1 indicates that small initial smoothing parameters can be beneficial, as
they result in fewer evaluations. It also indicates that using Ipopt with the modified line search
can lead to fewer function evaluations of F̃0(·; tk).

1.6.3 Details on Performance of Smoothing Method

We discuss the performance of Algorithm 1 as a smoothing method with tol = 10−4 and
ν0 = 0.1. Table 1.2 displays the number of inner and outer iterations for mgh01 and mgh03.
Moreover, it displays the KKT-error, the distance of the stationary point of the current iteration
to that of the previous iteration and the smoothing parameter νk for each outer iteration k of
Algorithm 1. Empirically the distance of subsequent stationary points (1.2.3) converges to
zero and the number of inner iterations decreases monotonically, indicating that the smoothing
method is efficient.
The solution of the TRPs (1.4.54) using the Moré–Sorensen algorithm, [238, Alg. 3.14], for all
iterations of Algorithm 1 required fewer than six iterations which is in accordance with the
results presented in [238, sect. 5].

1.6.4 Comparison of Stationary Points

For each selected problem, we compare the stationary points x∗DR of (1.6.2) computed with
Algorithm 1 using tol = 10−4 and ν0 = 0.1, x∗N of (1.6.3) and x∗S of an SAA of (1.6.4) using
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Table 1.2: For each outer iteration of Algorithm 1 applied to (1.6.1) and ε = 10−3, the number of
iterations required to compute a stationary point of (1.2.3), the final KKT-error, the relative distance
of the initial point and the stationary point, and the value of the smoothing parameter νk are displayed.

Problem k #-iter KKT-error ‖xk−xk−1‖2
max{1,‖xk−1‖2}

νk

mgh01 0 17 2.272 · 10−7 0.3329 0.1
1 10 2.756 · 10−6 9.633 · 10−2 10−3

2 2 4.34 · 10−5 5.013 · 10−5 10−5

3 2 6.355 · 10−5 3.975 · 10−5 10−7

4 2 9.689 · 10−5 3.345 · 10−5 10−8

mgh03 0 25 7.654 · 10−5 0.9994 0.1
1 7 6.938 · 10−7 5.542 · 10−5 10−3

2 7 2.303 · 10−7 5.495 · 10−6 10−5

3 5 4.997 · 10−7 5.494 · 10−7 10−7

4 5 1.015 · 10−6 4.07 · 10−8 10−8

the following two quantities:

VE(x) = max
1≤i≤10

EPi [f0(x+ ξi)] and VStD(x) = max
1≤i≤10

StDPi [f0(x+ ξi)], (1.6.6)

where Pi = N (µi, σ
2
i I) ∈ Pε, and µi and σi are independent and uniformly distributed on

{µ ∈ Rp : ‖µ‖2 ≤ ∆ } and {σ ∈ R : 0 ≤ σ2 ≤ ε }, respectively. Here, StD is the standard
deviation. We approximated expected values using empirical averages with 1000 independent
samples.
The quantities in (1.6.6) mimic the maximum mean and standard deviations of repeated imple-
mentations of x, and VE is a lower bound on the objective function of (1.6.1). We computed
the stationary points x∗N and x∗S using Ipopt with tol = 10−5 and exact Hessian informa-
tion for nominal and stochastic programs. Tables 1.3 and 1.4 display VE(x) and VStD(x) for
x ∈ {x∗DR, x

∗
N , x

∗
S}, and ε ∈ {10−3, 10−2}. In most cases, the distributionally robust stationary

points have lower mean and standard deviation than the nominal and the stochastic stationary
points. We conclude that the stationary points of the approximated DROP are more resilient
to distributional uncertainty than those of the nominal and stochastic problems, for many test
problems.
The problems mgh33 and mgh34 are quadratic w.r.t. ξ (see [237, sect. 3]). Consequently, the
approximation scheme is exact, that is, the DROP (1.6.1) is equivalent to the approximated
DROP (1.6.2). For the problems mgh10, mgh11 and mgh17, we obtained very different orders
of magnitude of VE(x), and of VStD(x) for x ∈ {x∗N , x∗DR, x

∗
S}, resulting from exponential terms

in the corresponding objective functions [237, sect. 3].
Table 1.5 lists the median number of corresponding objective function, gradient and Hessian
evaluations used by Ipopt to compute a stationary point of (1.6.2) using Algorithm 1, of (1.6.3),
and of the sample average approximation of (1.6.4).
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Table 1.3: Quantities VE and VStD (see (1.6.6)) evaluated at x∗N , x∗DR, x∗S for ε = 10−3.

Problem VE(x∗N ) VE(x∗DR) VE(x∗S) VStD(x∗N ) VStD(x∗DR) VStD(x∗S)

mgh01 0.1867 0.1536 0.1761 0.2559 0.1528 0.2399
mgh03 3.175 · 106 3.135 · 101 2.899 · 101 4.507 · 106 8.083 · 101 7.328 · 101

mgh04 3.756 · 108 3.754 · 108 3.754 · 108 5.256 · 108 5.246 · 108 5.252 · 108

mgh06 1.884 · 102 1.798 · 102 1.863 · 102 1.076 · 102 8.388 · 101 1.028 · 102

mgh07 0.1778 0.1778 0.1779 0.2089 0.2086 0.209
mgh10 9.626 · 1010 1.356 · 106 2.134 · 106 1.303 · 1011 3.482 · 105 1.993 · 106

mgh11 6.237 · 10278 3.283 · 101 2.258 · 10133 ∞ 0.8311 7.134 · 10134

mgh13 4.387 · 10−2 4.387 · 10−2 4.385 · 10−2 5.662 · 10−2 5.662 · 10−2 5.66 · 10−2

mgh14 0.7525 0.7492 0.752 0.7223 0.7144 0.7229
mgh17 7.9421 · 1017 1.133 1.735 · 1011 2.19 · 1019 3.551 · 10−2 4.959 · 1012

mgh20 0.1318 0.1291 0.1309 0.1461 0.1425 0.1453
mgh21 3.92 3.19 3.702 1.723 1.045 1.621
mgh22 0.2164 0.2163 0.2163 0.1219 0.1219 0.1219
mgh25 0.3078 0.3078 0.3073 0.6784 0.6784 0.6768
mgh27 4.855 · 10−2 4.853 · 10−2 4.85 · 10−2 6.864 · 10−2 6.854 · 10−2 6.859 · 10−2

mgh30 0.1408 0.1406 0.1408 7.52 · 10−2 7.485 · 10−2 7.519 · 10−2

mgh31 0.194 0.1924 0.1936 9.437 · 10−2 8.959 · 10−2 9.399 · 10−2

mgh33 4.514 · 102 4.514 · 102 4.508 · 102 6.369 · 102 6.369 · 102 6.365 · 102

mgh34 2.394 · 102 2.394 · 102 2.391 · 102 3.203 · 102 3.203 · 102 3.204 · 102

mgh35 6.772 · 10−2 5.266 · 10−2 0.1244 0.3531 2.726 · 10−2 1.383

Table 1.4: Quantities VE and VStD (see (1.6.6)) evaluated at x∗N , x∗DR, x∗S for ε = 10−2.

Problem VE(x∗N ) VE(x∗DR) VE(x∗S) VStD(x∗N ) VStD(x∗DR) VStD(x∗S)

mgh01 1.866 0.7566 1.174 2.581 0.5774 1.548
mgh03 3.178 · 107 2.829 · 103 2.81 · 103 4.511 · 107 7.443 · 103 7.414 · 103

mgh04 3.752 · 109 3.728 · 109 3.744 · 109 5.246 · 109 5.142 · 109 5.233 · 109

mgh06 1.903 · 103 8.186 · 102 1.528 · 103 5.762 · 103 2.055 · 103 4.626 · 103

mgh07 1.793 1.781 1.792 2.129 2.09 2.125
mgh10 9.616 · 1011 9.616 · 1011 3.502 · 106 1.294 · 1012 1.294 · 1012 3.261 · 106

mgh11 8.08 · 10256 3.283 · 101 7.044 · 10129 ∞ 0.7971 2.228 · 10131

mgh13 0.4413 0.4413 0.4412 0.5675 0.5675 0.5674
mgh14 7.537 7.262 7.466 7.318 6.657 7.245
mgh17 3.857 · 1068 1.374 8.32 · 1046 1.135 · 1070 0.3561 2.527 · 1048

mgh20 1.321 1.262 1.279 1.487 1.427 1.445
mgh21 3.941 · 101 1.556 · 101 2.496 · 101 1.758 · 101 3.972 1.083 · 101

mgh22 2.184 2.183 2.183 1.219 1.219 1.219
mgh25 1.647 · 101 1.647 · 101 1.643 · 101 5.02 · 101 5.021 · 101 5.0 · 101

mgh27 0.4891 0.4876 0.488 0.7019 0.6896 0.6995
mgh30 1.408 1.382 1.402 0.7588 0.7236 0.755
mgh31 2.063 1.846 2.01 1.217 0.8228 1.166
mgh33 4.516 · 103 4.516 · 103 4.506 · 103 6.392 · 103 6.392 · 103 6.381 · 103

mgh34 2.378 · 103 2.378 · 103 2.372 · 103 3.207 · 103 3.207 · 103 3.204 · 103

mgh35 1.221 · 103 3.846 · 103 3.717 · 102 2.563 · 104 4.247 · 104 7.365 · 103

Table 1.5: Median number of objective function, gradient, and Hessian evaluations required by Ipopt

for the nominal (N), distributionally robust (DR) and stochastic optimization problem (S) of all selected
test problems. The number of evaluations for the approximate DROPs (1.6.2) are the sum of all
evaluations used within Algorithm 1.

N DR S N DR S N S

ε #-f0 #-F̃0 #-f0 #-∇f0 #-∇xF̃0 #-∇f0 #-∇2f0 #-∇2f0

10−3 14 120 1.25 · 104 14 37.5 1.2 · 104 13 1.1 · 104

10−2 14 190.5 1.0 · 104 14 56 1.0 · 104 13 0.9 · 103
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1.7 Conclusion and Discussion

We developed an approximation scheme for moment-based distributionally robust nonlinear
optimization. Using second-order expansions of the parameterized objective function and each
of the constraint functions, we obtained an approximated DROP defined by nonsmooth optimal
value functions. We constructed smoothing functions for these nonsmooth functions which
satisfy gradient consistency in section 1.2. Our approach allowed us to apply derivative-based
optimization methods within our smoothing method, Algorithm 1. The global convergence of
the smoothing method to stationary points of the approximated DROP was shown using the
gradient consistency of the smoothing functions in section 1.5.
In section 1.6, we compared our algorithmic approach with the application of a bundle method to
the approximated DROP and of a solver for NSDPs applied to an equivalent reformulation of it
as a NSDP. Our numerical results indicate that the smoothing method, Algorithm 1, computes
fewer derivatives than the bundle method MPBNGC evaluates subgradients. PENLAB applied to
the NSDP reformulation (1.6.5) of the approximated DROP (1.6.2) requires the computation
of derivatives of matrix-valued constraints, making it the most expensive method to compute
stationary points of the approximated DROP (1.6.2).
Our scheme has the following features: (i) the number of constraints and of optimization vari-
ables of the approximated and smoothed DROPs is the same as for the nominal problem; (ii)
mathematical programs with complementarity constraints and NSDPs are avoided; (iii) the
smoothing functions can efficiently be evaluated using existing computer codes and satisfy gra-
dient consistency; and (iv) within our smoothing method, Algorithm 1, any NLP solver can be
applied to compute a sequence of approximate stationary points of the smoothed DROPs.
Our approximation scheme and algorithmic approach can also be used for a different ambiguity
set. We define the ambiguity set P̂ by

P̂ = {P ∈M : ‖Σ̂−1/2(EP [ξ]− µ̄)‖2 ≤ ∆, σ0Σ̂ 4 EP [ξξT ] 4 σ1Σ̂,

lnEP [exp (dT (ξ − EP [ξ]))] ≤ (σ1/2)dT Σ̂d for all d ∈ Rp },

where ∆ > 0, σ0 < σ1, and Σ̂ ∈ Sp++. As opposed to imposing an explicit bound on the

covariance as in (1.1.2), the ambiguity set P̂ restricts the second moments. Let P ∈ P̂ and
x ∈ Rn be arbitrary. Using (1.1.3), we have

EP [mj(x, ξ)] = aj(x) + bj(x)T (EP [ξ]− µ̄) + (1/2)Cj(x) • EP [ξξT ].

Combined with maxd∈Rp { bj(x)T (d − µ̄) : ‖Σ̂−1/2(d − µ̄)‖2 ≤ ∆ } = ‖Σ̂1/2bj(x)‖2 [250, p. 90],
we obtain, for each x ∈ Rn,

sup
P∈P

EP [mj(x, ξ)] = aj(x) + ‖Σ̂1/2bj(x)‖2 + max
σ0Σ̂4Σ4σ1Σ̂

{
(1/2)Cj(x) • Σ

}
.

The optimal value function is an instance of those considered in section 1.3.
Our scheme provides an alternative to those used, for example, in [181, 209, 199, 218, 158]
for robust nonlinear optimization. An open research task is to compare our approximation
scheme and algorithmic approach to those used in [181, 209, 199, 218, 158] for robust nonlinear
optimization.
We used second-order Taylor’s expansion about the nominal parameter of the parameterized
objective and each of the constraint functions to derive accurate approximations. However, for
some problems, more accurate surrogate functions may be desirable. For robust nonlinear opti-
mization, Lass and Ulbrich [209] propose a strategy to adaptively shift the expansion point (see
also [181, 180]). This approach may be extended to and used for nonlinear DROPs. If samples
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Table 1.6: The quantity Zε(x
∗
N ) defined in (1.8.1), the problems from the Moré–Garbow–Hillstrom test

set with Zε(x
∗
N ) exceeding 1/10 for ε = 10−3, and the corresponding number of parameters p.

Problem p Zε(x
∗
N )

mgh01 2 0.5778
mgh03 2 1.006 · 107

mgh04 2 1.234 · 109

mgh06 2 1.903
mgh07 3 0.4727
mgh10 3 3.524 · 109

mgh11 3 2.567 · 10127

Problem p Zε(x
∗
N )

mgh13 4 0.1262
mgh14 4 1.911
mgh17 5 8.83 · 1024

mgh20 6 0.3353
mgh21 20 7.056
mgh22 20 0.4509
mgh25 10 1.282

Problem p Zε(x
∗
N )

mgh27 10 0.1403
mgh30 10 0.2737
mgh31 10 0.3551
mgh33 10 5.505 · 102

mgh34 10 2.243 · 102

mgh35 10 0.8223

ξ1, . . . , ξN of the random vector ξ are available, the functions aj , bj , and Cj , which define the sur-

rogate functions mj (see (1.1.3)), may be defined via the empirical averages (1/N)
∑N

i=1 fj(·, ξi),
(1/N)

∑N
i=1∇ξfj(·, ξi), and (1/N)

∑N
i=1∇ξξfj(·, ξi), respectively.

1.8 Supplementary Materials

1.8.1 Selection of Test Problems

For the numerical simulations in section 1.6, we selected problems from the Moré–Garbow–
Hillstrom test set [237] as follows: We computed for each test problem a stationary point x∗N of
the nominal problem (1.6.3), and

Zε(x
∗
N ) = EN (0,εI)[X(x∗N )] + StDN (0,εI)[X(x∗N )], X(x∗N )(ξ) =

f0(x∗N + ξ)− f0(x∗N )

max{1, |f0(x∗N )|} . (1.8.1)

We selected those problems with Zε(x
∗
N ) ≥ 1/10 for ε = 10−3. We report the test problems and

the corresponding values of Zε(x
∗
N ) in Table 1.6. A related approach is used by Ben-Tal and

Nemirovski [25] to select uncertain linear programs from a test set.
The Moré–Garbow–Hillstrom test set is available in Julia through the package NLSProblems.jl,
and in MATLAB through SolvOpt [172, 173].

1.8.2 Ambiguity Set

We show that the ambiguity set in (1.1.2) may be defined using samples of the random vector
ξ : Ω→ Rp. We build our derivations on those established by So [300].
We provide conditions on the distribution P of ξ and on the sample size N such that, with high
probability,

‖Σ̄−1/2
N (EP[ξ]− µ̄N )‖2 ≤ ∆, σ0Σ̄N 4 CovP[ξ] 4 σ1Σ̄N

lnEP[exp(dT (ξ − EP[ξ]))] ≤ (1/2)σ1d
T Σ̄Nd for all d ∈ Rp.

(1.8.2)

Here σ0 ≤ σ1, and ξi, i = 1, . . . , N , are independent copies of ξ. Moreover, the empirical mean
and covariance matrix are defined by

µ̄N =
1

N

N∑

i=1

ξi and Σ̄N =
1

N

N∑

i=1

(ξi − µ̄N )(ξi − µ̄N )T , (1.8.3)

respectively. The conditions in (1.8.2) suggest the use of the data µ̄ = µ̄N , Σ̄ = Σ̄N , Σ̄0 = σ0Σ̄N ,
and of Σ̄1 = σ1Σ̄N for the definition of the ambiguity set P (see (1.1.2)). The first condition in
(1.8.2) requires that Σ̄N is invertible. Hence N ≥ p.

https://github.com/JuliaSmoothOptimizers/NLSProblems.jl
https://de.mathworks.com/products/matlab.html
https://imsc.uni-graz.at/kuntsevich/solvopt/index.html
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Proposition 1.8.1. Let ξ : Ω → Rp be a random vector with distribution P ∈ M such that
EP[ξ] ∈ Rp, CovP[ξ] ∈ Sp++ and

lnEP[exp(dT (ξ − EP[ξ]))] ≤ (1/2)dTCovP[ξ]d for all d ∈ Rp. (1.8.4)

Let δ ∈ (0, 2e−3), and let ξi, i = 1, . . . , N ∈ N, be independent copies of ξ with

N > 32 max{(2/e)2p2, 1}(2e/3)3(ln(4p/δ))3. (1.8.5)

Define c(p) = (2/e)p, and

tm =
4c(p)e2(ln(2/δ))2

N
, tc =

4 max{c(p)2, 1}(2e/3)3/2(ln(2/δ))3/2

N1/2
,

∆ =
( tm

1− tm − tc

)1/2
, σ0 =

1

1 + tc
, σ1 =

1

1− tm − tc
.

(1.8.6)

Then, with probability at least 1− δ, (1.8.2) holds, where µ̄N and Σ̄N are defined in (1.8.3).

We apply Lemma 1.8.2 to prove Proposition 1.8.1.

Lemma 1.8.2 ([235, Lem. A.2]). Let Σ ∈ Sp++ be arbitrary. Suppose that ξ : Ω → Rp is a
random vector with distribution P ∈M, EP[ξ] ∈ Rp, and

lnEP[exp(dT (ξ − EP[ξ]))] ≤ (1/2)dTΣd for all d ∈ Rp. (1.8.7)

Then, for each γ ≥ 2,

EP[‖Σ−1/2(ξ − EP[ξ])‖γ2 ] ≤ 2(γ/e)γ/2pγ/2,

EP[‖ξ − EP[ξ]‖γ2 ] ≤ 2(γ/e)γ/2(I • Σ)γ/2.
(1.8.8)

Proof. Fix γ ≥ 2. We define W, Z : Ω → Rp by W(ω) = ξ(ω) − EP[ξ] and Z(ω) = Σ−1/2W(ω),
respectively. We have EP[W] = EP[Z] = 0. Minkowski’s inequality (see, e.g., [57, p. 220]) yields

EP[‖Z‖γ2 ] ≤
( p∑

i=1

(EP [|Zi|γ ])2/γ
)γ/2

and EP[‖W‖γ2 ] ≤
( p∑

i=1

(EP [|Wi|γ ])2/γ
)γ/2

. (1.8.9)

Using (1.8.7), we obtain, for each d ∈ Rp, lnEP[exp(dTZ)] ≤ (1/2)dTd. Hence, W and Z are
sub-Gaussian [57, Def. 1.1 (p. 185)]. For i = 1, . . . , p, we obtain from [57, Lems. 1.4 (p. 7) and

1.4 (p. 187)] that EP[|Zi|γ ] ≤ 2(γ/e)γ/2 and EP[|Wi|γ ] ≤ 2(γ/e)γ/2Σ
γ/2
ii . Combined with (1.8.9),

we deduce (1.8.8).

Proof of Proposition 1.8.1. We apply [300, Props. 4 and 5] to establish the assertion. From
(1.8.4), Lemma 1.8.2, we obtain, for each γ ≥ 2,

EP[‖CovP[ξ]−1/2(ξ − EP[ξ])‖γ2 ] ≤ (c(p)γ)γ/2. (1.8.10)

Owing to (1.8.5) and (1.8.6), we have tm+tc ∈ (0, 1) (see also [300, p. 149]). Because of (1.8.10),
we can apply [300, Props. 4 and 5] to conclude that, with probability at least 1− δ,

‖CovP[ξ]−1/2(EP[ξ]− µ̄N )‖22 ≤ tm, (1− tc)CovP[ξ] 4 Σ̂N 4 (1 + tc)CovP[ξ], (1.8.11)
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where µ̄N is defined in (1.8.3) and Σ̂N = (1/N)
∑N

i=1(ξi − EP[ξ])(ξi − EP[ξ])T (see also [300,
Thm. 9]).3 Using (1.8.11) and the derivations in [94, p. 604], we find that

Σ̂N = Σ̄N + (µ̄N − EP[ξ])(µ̄N − EP[ξ])T and (µ̄N − EP[ξ])(µ̄N − EP[ξ])T 4 tmCovP[ξ]

and, hence, (1 − tm − tc)CovP[ξ] 4 Σ̄N 4 (1 + tc)CovP[ξ]. Combined with (1.8.6) and (1.8.11),
we conclude that, with probability at least 1− δ, σ0Σ̄N 4 CovP[ξ] 4 σ1Σ̄N , and, for all d ∈ Rp,

‖Σ̄−1/2
N (EP[ξ]− µ̄N )‖22 ≤ (1− tm − tc)−1(EP[ξ]− µ̄N )TCovP[ξ]−1(EP[ξ]− µ̄N ) ≤ ∆2,

lnEP[exp(dT (ξ − EP[ξ]))] ≤ (1/2)dTCovP[ξ]d ≤ (1/2)σ1d
T Σ̄Nd.

The condition in (1.8.4) holds if ξ − EP[ξ] is a strictly sub-Gaussian [57, p. 188]. For example,
centered Gaussian random vectors are strictly sub-Gaussian [57, pp. 186 and 228].
The ambiguity set (1.1.2) can be defined using the data in (1.8.2) if samples of random vector
ξ are available. Under the hypotheses of Proposition 1.8.1, we find that, for fixed p and δ,
the scalars σ0 and σ1 converge to one as N → ∞, and ∆ converges to zero as N → ∞. The
convergence ensures that the data-driven ambiguity sets “shrink”. However, even if ∆ = 0,
σ0 = σ1, the ambiguity set is not a singleton in general. For example, if p = 1, Σ̄N = 1,
σ0 = σ1 = 1, ∆ = 0, and µ̄N = 0, then the following distributions are contained in the ambiguity
set: the normal distribution N (0, 1), the distribution of a Rademacher random variable4, and
the uniform distribution over [−1, 1] [57, pp. 13–14].

1.8.3 Formulation as Nonlinear Semidefinite Program

Proposition 1.8.3 implies that the approximated DROP (1.1.4) is equivalent to an NSDP. We
recall that ψj is the optimal value function defined by the TRP (1.1.6), and ϕj is the one defined
by the SDP (1.1.5).

Proposition 1.8.3. Let x ∈ Rn, ρ ∈ R and j ∈ J . Suppose that Σ̄0 ≺ Σ̄1. Then aj(x)+ψj(x)+
ϕj(x) ≤ ρ if and only if there exists (γj , λj ,Λj ,Υj) ∈ R× R≥0 × Sp+ × Sp+ such that

2aj(x)− γj − Σ̄0 • Λj + Σ̄1 •Υj ≤ 2ρ, Υj − Λj = −Cj(x),
[
λjI − Cj(x) −bj(x)
−bj(x) −λj∆2 − γj

]
< 0.

(1.8.12)

We apply Lemma 1.8.4 to establish Proposition 1.8.3.

Lemma 1.8.4. If C ∈ Sp and Σ̄0 ≺ Σ̄1, then

min
Σ∈Sp

{
C • Σ : Σ̄0 4 Σ 4 Σ̄1

}
= max

Λ1,Λ2∈Sp+

{
Σ̄0 • Λ1 − Σ̄1 • Λ2 : Λ1 − Λ2 = C

}
, (1.8.13)

and both problems have an optimal solution.

Proof. We transform the SDP (1.8.13) to the standard conic problem given in [26, Thm. 2.4.1
and sect. 4.1.1], and apply the duality theorem [26, Thm. 2.4.1]. We define

B =

[
Σ̄0 0
0 −Σ̄1

]
∈ S2p and A : Sp → S2p by AΣ =

[
Σ 0
0 −Σ

]
.

3The proofs of [300, Props. 4 and 5] show that it suffices to require (1.8.10) to hold for each γ ≥ 2 rather than
for each γ ≥ 1, as in [300, Condition (G) on p. 144].

4A Rademacher random variable takes the values ±1 equiprobably.
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Combined with [26, Thm. 2.4.1], we find that the optimal values in (1.8.13) is equal to

min
Σ∈Sp

{
C • Σ : AΣ < B

}
= max

Λ∈S2p
+

{
B • Λ : A∗Λ = C

}
,

and these optimization problems have optimal solutions. It remains to compute the adjoint
operator A∗ : S2p → Sp of A, and B • Λ for Λ ∈ S2p. We have

A∗Λ = Λ1 − Λ2 with Λ =

[
Λ1 Λ3

ΛT3 Λ2

]
∈ S2p.

Indeed, for each Σ ∈ Sp and Λ ∈ S2p, we have (AΣ) • Λ = ΣΛ1 − ΣΛ2 = Σ • (A∗Λ). Moreover,
for each Λ ∈ S2p, B • Λ = Σ̄0 • Λ1 − Σ̄1 • Λ2.

Proof of Proposition 1.8.3. Using the strong duality for the TRP (1.1.6) [53, sect. B.1, eq. (B.2)]
(see also [306, Cor. 5.3]), we find that

2ψj(x) = max
s∈Rp

{
2bj(x)T s+ sTCj(x)s : ‖s‖22 ≤ ∆2

}

= −min
s∈Rp

{
−2bj(x)T s− sTCj(x)s : ‖s‖22 ≤ ∆2

}

= − max
(γj , λj)∈R2

{
γj :

[
λjI − Cj(x) −bj(x)
−bj(x) −λj∆2 − γj

]
< 0, λj ≥ 0

}

= min
(γj , λj)∈R2

{
−γj :

[
λjI − Cj(x) −bj(x)
−bj(x) −λj∆2 − γj

]
< 0, λj ≥ 0

}
.

Lemma 1.8.4 and the definition of ϕj provided in (1.1.5) give

2ϕj(x) = max
Σ∈Sp

{
Cj(x) • Σ : Σ̄0 4 Σ 4 Σ̄1

}

= min
Λj ,Υj∈Sp+

{
− Σ̄0 • Λj + Σ̄1 •Υj : Υj − Λj = −Cj(x)

}
.

Now, we use the arguments from the proof of [23, Thm. 2.1] to deduce the equivalence of
aj(x) + ψj(x) + ϕj(x) ≤ ρ and (1.8.12).

1.8.4 Performance of SDP Solvers on Box-Constrained SDPs

We compare the performance of state-of-the-art SDP solvers applied to a sequence of the
“(Löwner-)box-constrained” SDPs

max
X∈Sp

C •X s.t. 0 4 X 4 I.

with an implementation of the formulas for the optimal value and an optimal solution provided
by Proposition 1.3.1. The performance is compared in terms of run time, number of allocations
and memory usage. Box-constrained SDPs also appear in [23, sect. 4.5.6 and eq. (4.5.45)], where
tractable approximations of quadratically perturbed chance constraints are derived.
We defined the matrices C ∈ Sp for p ∈ {5, 10, 15, . . . , 100} using the symmetric part of randomly
generated matrices. The entries of these random matrices are realizations of independent stan-
dard normal random variables. For each p ∈ {5, 10, 15, . . . , 100}, we generated ten independent
realizations of C ∈ Sp which define a sequence of box-constrained SDPs.
We implemented the solution formulas provided by Proposition 1.3.1 in Julia [35] (version 1.4.2)
without preallocated memory for the intermediate calculations, such as matrix multiplications,
and call the implementation EigSDP. The box-constrained SDPs were modeled in Julia using
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Figure 1.1: Median of solution times (in seconds), relative errors objective function values, allocations,
and memory usage (in bytes) computed over ten independently generated box-constrained SDPs. The
legend applies to all subfigures.

JuMP [102]. JuMP allows us to efficiently model and solve a sequence of the box-constrained SDPs
without parsing each problem again when the solution command is called. For each of the ten
independent realizations, we used the JuMP-macro @objective to modify the objective function
of the JuMP models. We used the SDP solvers SCS [251, 252], SDPNALplus [307, 353, 360],
CSDP [47, 48], and ProxSDP.jl [302]. For the first three codes, we utilized the Julia wrappers
SCS.jl, SDPNAL.jl, and CSDP.jl. The interface SDPNAL.jl was used in combination with
MATLAB (version R2020a) and MATLAB.jl.
The tolerances for the primal and dual feasibility, and the relative duality gap were set to 10−3

as in [251, sect. 6.1]. For the remaining settings, we used the solvers’ defaults (versions as of
May 23, 2020). We measured the elapsed time and the total bytes allocated with the Julia

macro @timed, and computed the allocations with @timed and gc alloc count, which is part
of Julia’s Base-module.
The comparison was made on a computer with an Intel Core i5-4590T processor with 2 GHz,
and 16 GB of RAM. Figure 1.1 depicts the median of the elapsed solution time in seconds, of
the allocations, of the memory usage in bytes, and of the relative error of the objective function
values. To compute the relative errors, we used the optimal values returned by EigSDP as a
reference. The solution time and the number of allocations of EigSDP is significantly lower than
those of the SDP solvers. We observe that SCS solves the SDPs more accurately than required
by our termination tolerance.

https://github.com/jump-dev/JuMP.jl
https://github.com/cvxgrp/scs
https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://github.com/coin-or/csdp
https://github.com/mariohsouto/ProxSDP.jl
https://github.com/jump-dev/SCS.jl
https://github.com/jump-dev/SDPNAL.jl
https://github.com/jump-dev/CSDP.jl
https://github.com/JuliaInterop/MATLAB.jl


2 Approximation Scheme for Distributionally
Robust PDE-Constrained Optimization

We extend the sampling-free approximation scheme and the algorithmic approach developed in
Chapter 1 to distributionally robust optimization problems (DROPs) with parameterized par-
tial differential equations (PDEs). We prove the existence of optimal solutions for the DROP,
and of the approximated and smoothed DROPs, and show that a worst-case distribution ex-
ists. Moreover, we analyze the approximation error resulting from the second-order Taylor’s
expansion. The smoothing method provided in Algorithm 1 is extended to allow the numerical
treatment of DROPs posed in Hilbert spaces using gradient-based optimization methods. The
adjoint approach is used to compute derivatives of the smoothing functions. We present nu-
merical results for the distributionally robust optimization of the steady and of the unsteady
Burgers’ equations.
The chapter is mainly based on the manuscript

[235] J. Milz and M. Ulbrich, An approximation scheme for distributionally robust
PDE-constrained optimization, Preprint No. IGDK-2020-09. Technische Universität
München, München, Jun. 2020, in review, http://www.igdk.eu/foswiki/pub/IGDK1754/
Preprints/MilzUlbrich-PDEDRO.pdf.

Section 2.3 provides further specifics on the existence of optimal solutions than [235, sect. 3],
and section 2.7 contains more details on the analysis of the control problems than that in [235,
sect. 7]. We present a derivation of the derivatives required by our approximation scheme using
the adjoint approach in section 2.9.3.

2.1 Introduction

We consider the distributionally robust nonlinear, PDE-constrained optimal control problem

min
u∈Uad

{
sup
P∈P

EP [J(S(u, ξ), u, ξ)]
}
, (2.1.1)

where EP [J(S(u, ξ), u, ξ)] =
∫
Rp J(S(u, ξ), u, ξ)dP (ξ), Uad ⊂ U is the set of admissible controls,

and U is a Hilbert space. Moreover, J : Y ×U ×Rp → R is the parametrized objective function,
and S : U × Rp → Y is the solution operator of the parameterized PDE e(S(u, ξ), u, ξ) = 0 for
ξ ∈ Rp, where e : Y × U × Rp → Z, and Y , Z are Banach spaces. Throughout the chapter, the
ambiguity set P is defined by

P = {P ∈M : ‖Σ̄−1/2(EP [ξ]− µ̄)‖2 ≤ ∆, σ0Σ̄ 4 CovP [ξ] 4 σ1Σ̄,

lnEP [exp (dT (ξ − EP [ξ]))] ≤ (σ1/2)dT Σ̄d for all d ∈ Rp },
(2.1.2)

where ∆ > 0, µ̄ ∈ Rp, Σ̄ ∈ Sp++, and σ0, σ1 ∈ R+ fulfill σ0 < σ1. The ambiguity set P is
an instance of that given in (1.1.2). Its definition is motivated by the results established in
section 1.8.2.

39

http://www.igdk.eu/foswiki/pub/IGDK1754/Preprints/MilzUlbrich-PDEDRO.pdf
http://www.igdk.eu/foswiki/pub/IGDK1754/Preprints/MilzUlbrich-PDEDRO.pdf
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We define the reduced parametrized objective function Ĵ : U × Rp → R associated with (2.1.1)
by

Ĵ(u, ξ) = J(S(u, ξ), u, ξ). (2.1.3)

For each u ∈ Uad, we require that Ĵ(u, ·) is twice continuously differentiable in a neighborhood
of µ̄. We approximate Ĵ(u, ·) via the second-order Taylor’s expansion

Q(u, ξ; µ̄) = Ĵ(u, µ̄) +∇ξĴ(u, µ̄)T (ξ − µ̄) + (1/2)(ξ − µ̄)T∇ξξĴ(u, µ̄)(ξ − µ̄), (2.1.4)

where Q(·, ·; µ̄) : U × Rp → R. Since Q(u, ·; µ̄) is quadratic, the expected value EP [Q(u, ξ; µ̄)]
can be computed explicitly for u ∈ U ; see section 1.1.
As in section 1.1, we approximate the DROP (2.1.1) with

min
u∈Uad

{
sup
P∈P

EP [Q(u, ξ; µ̄)]
}
. (2.1.5)

We refer to the control problem (2.1.5) as approximated DROP. From section 1.1, we obtain
that the objective function F : Uad → R of (2.1.5) can be written as

F (u) = Ĵ(u, µ̄) + ϕ(u) + ψ(u), (2.1.6)

where ϕ : U → R is the optimal value function of the SDP

ϕ(u) = max
Σ∈Sp

{
(1/2)∇ξξĴ(u; µ̄) • Σ : σ0Σ̄ 4 Σ 4 σ1Σ̄

}
(2.1.7)

and ψ : U → R is the optimal value function of nonconvex TRP

ψ(u) = max
d∈Rp

{
∇ξĴ(u; µ̄)Td+ (1/2)dT∇ξξĴ(u; µ̄)d : ‖Σ̄−1/2d‖2 ≤ ∆

}
. (2.1.8)

Under suitable assumption, we show that the approximation error of the objective function of
(2.1.1) and that of (2.1.5) is small. The cost function F of (2.1.5) can efficiently be evaluated
(being the sum of a TRP and an SDP) without further approximations, such as sampling;
however it is nonsmooth; see section 1.1. For the numerical solution of (2.1.5), we construct a
smoothing function for F which we use to define smoothed DROPs similar to those in section 1.2.
We extend the smoothing method developed in section 1.2 to allow the numerical treatment
of infinite-dimensional problems. All required derivatives of the smoothing function for F are
computed using UFL [7, 5] and FEniCS [6, 220]. Furthermore, we prove the existence of optimal
solutions for the DROP (2.1.1), of the approximated DROP (2.1.5) and smoothed DROPs
defined in (2.2.1). In addition, we establish the existence of a worst-case distribution of (2.1.1).
Moreover, we present a convergence result of the smoothing method.

Related Work

A popular solution approach (see, e.g., [94, 344, 75]) for moment-based DROPs exploits the
fact that a Lagrangian dual of the maximization problem in (2.1.1) is a robust optimization
problem [94, sect. 2.1]. Under suitable assumptions, strong duality holds and the dual can
be concatenated with the upper-level problem to obtain a single-level problem [94, 344]. The
tractability of the dual depends on the structure of Ĵ(u, ·) [94, 344, 23]. For example, if Ĵ(u, ·)
is the pointwise maximum of affine functions for all u ∈ U , the dual is tractable [94, sect.
4.1]. However, this approach does not result in explicit single-level programs when Ĵ(u, ·) is

https://pypi.org/project/UFL/
https://pypi.org/project/UFL/
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implicitly defined or non-quadratic. Moreover, a “robustified” constraint appears in the single-
level problem [94, p. 597] and, hence, available solvers for PDE-constrained problems cannot be
applied to it.
The DROP (2.1.1) becomes a risk-neutral problem when the ambiguity set P is a singleton. We
refer the reader to [294] for an overview of stochastic programming. Risk-neutral optimization
with PDEs has been considered, for example, in [123, 189].
The objective function f̂ : U → R ∪ {∞} of (2.1.1),

f̂(u) = sup
P∈P

EP [Ĵ(u, ξ)], (2.1.9)

is convex if Ĵ(·, ξ) is convex for all ξ ∈ Rp and if EP [Ĵ(u, ξ)] is well-defined for all P ∈ P.
Similarly, the well-defined composition of a convex, monotonic risk measure with u 7→ Ĵ(u, ·) is
convex if Ĵ(·, ξ) is convex for all ξ ∈ Rp [294, Prop. 6.11].
Risk-averse optimization problems with coherent risk measures can equivalently be reformulated
as min-max problems similar to those in (2.1.1) where the ambiguity set is the domain of the
convex conjugate of the risk measure [280, 294]. In the literature on optimization with PDEs,
popular risk measures are: the superquantile/conditional value-at-risk [190, 191], the entropic
risk measure [192], and the mean-plus-variance risk measure [2, 71, 325, 29, 230]. Risk-neutral
and risk-averse shape optimization are investigated in [84, 85, 285]. Existence results for solutions
and optimality conditions for risk-averse control problems with PDEs are provided in [190, 191].
Optimality conditions are derived in [130] for risk-neutral convex optimization problems posed
in Banach spaces with almost sure state constraints. The entropic risk measure, also called log-
exponential risk measure [269], was introduced by Whittle [342], [343, sect. 19] in the context
of stochastic control.
DRO with PDEs is considered by Kouri [186] with ambiguity sets including the support con-
straint P (ξ ∈ Ξ) = 1, where Ξ ⊂ Rp is a convex, compact Lipschitz domain. An inner ap-
proximation of the ambiguity set is constructed via a measure discretization, error bounds are
derived and Kouri [186] has shown that the objective function of the min-max problem is Clarke-
subdifferentiable. Even though the cost function is subdifferentiable, only a limited number of
algorithms for nonsmooth control problems in infinite dimensional spaces are available; we refer
the reader to [147] and the references therein. Our approach allows us to apply gradient-based
solvers for PDE-constrained optimization problems. The ambiguity set (2.1.2) does not have
a support constraint and, hence, it violates the assumptions made in [186]. For the approach
developed in [186], the number of solutions of the parameterized state equation depends on
the measure discretization. Our scheme is sampling-free and the evaluation of the smoothing
function for (2.1.6) requires only one solution of the state equation.
Taylor’s expansions have also been used to approximate mean-plus-variance minimization prob-
lems with PDEs [2, 71] and robust nonlinear optimization problems with PDEs [4, 90, 181, 209].
The authors of [2] and of [71] develop an approximation scheme for mean-plus-variance mini-
mization problems with PDEs depending on a random field. The parameterized cost function is
approximated using first- and second-order Taylor’s expansions, allowing the authors to explic-
itly compute the expectation and variance of the surrogate objective function. The objective
function of a mean-plus-variance minimization problem may be nonconvex even if Ĵ(·, ξ) is
convex for each ξ ∈ Rp [296, p. 114].
If the ambiguity set P is given by all probability distributions supported on a (compact) set
Ξ, that is, if P = {P ∈ M : P (Ξ) = 1 }, then the DROP (2.1.1) is equivalent to a robust
optimization problem [295, p. 535]. Robust optimization with PDEs is considered, for example,
in [4, 90, 181, 209, 148, 298]. For numerical computations, the authors of [4, 181, 209] use
second-order Taylor’s expansions and obtain (2.1.5) without the optimal value function defined
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Algorithm 2 Smoothing method

Choose (τ1, ν1, η1) > 0 and u0 ∈ Uad.
For k = 1, 2, . . .

1. Compute a stationary point uk of (2.2.1) using uk−1 as initial point.
2. Choose 0 < (τk+1, νk+1, ηk+1) < (τk, νk, ηk).

by the SDP (2.1.7), and they either reformulate the constraints given by the TRP (2.1.8) using
its necessary and sufficient optimality conditions, or use smooth optimization methods. The first
approach results in a mathematical problem with complementarity problems and linear matrix
inequalities [209, sect. 3.2.2]. Depending on the size of the trust-region radius in (2.1.8), several
optimal solutions of (2.1.8) may exist [238, p. 556] and, hence, the optimal value function (2.1.8)
may be nondifferentiable. Optimization methods for smooth problems may therefore not be a
suitable class of algorithms. Our algorithmic scheme provides an alternative to those used in
[4, 181, 209].
Smoothing schemes provide a popular algorithmic approach for nonsmooth PDE-constrained
optimization problems. For example, Mannel (né Kruse) and Ulbrich [198] develop an interior-
point approach for optimal control with state constraints using a smoothed constraint func-
tion, Kouri and Surowiec [191, 193] propose smoothing schemes for risk-averse PDE-constrained
optimization, and an interior-point approach for risk-averse PDE-constrained optimization is
developed in [122].
For an overview of recent contributions to and challenges of the field of PDE-constrained opti-
mization, we refer the reader to [322, 80].

2.2 Smoothing Functions and Smoothing Method

We describe our algorithmic approach, which is based on that developed in section 1.2, to com-
pute a stationary point of the approximated DROP (2.1.5). We construct smoothing functions
ψ̃ : U × R2

++ → R of ψ : U → R (see (2.1.8)) and ϕ̃ : U × R+ → R of ϕ : U → R (see (2.1.7)),
and compute approximate stationary points of a sequence of smoothed control problems

min
u∈Uad

{
F̃ (u; τk, νk, ηk) = Ĵ(u, µ̄) + ϕ̃(u; τk) + ψ̃(u; νk, ηk)

}
(2.2.1)

with decreasing smoothing parameters (τk, νk, ηk) ∈ R3
++ indexed by the outer iteration counter

k, where F̃ : U × R3
++ → R. We summarize this algorithmic framework in Algorithm 2. In

section 2.4, we prove the convergence of weak limit points of optimal solutions, generated by
Algorithm 2, to minimizers of (2.1.5). We can apply the same gradient-based optimization
methods to (2.2.1) that are suitable for the nominal control problem

min
u∈Uad

Ĵ(u, µ̄). (2.2.2)

We extend the notion of smoothing functions provided in Definition 1.2.1 to functions defined
on (infinite-dimensional) Banach spaces. Definition 2.2.1 is also based on that in [73, Def. 3.1].

Definition 2.2.1. Let X be a Banach space and let φ : X → R be continuous. A function
φ̃ : X × Rm++ → R is a smoothing function for φ if φ̃(·; t) is continuously differentiable for all
t ∈ Rm++, and there exists γ : Rm+ → R+ with γ(t) → 0 as Rm++ 3 t→ 0, such that, for each

x ∈ X and t > 0, we have |φ(x)− φ̃(x; t)| ≤ γ(t).
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2.2.1 Smoothing Approach for the SDP

Based on the construction made in section 1.3, we state a smoothing function for the optimal
value function ϕ defined in (2.1.7) and show that is satisfies the conditions of Definition 2.2.1.
Throughout the section, let ∇ξξĴ(·, µ̄) be continuously differentiable. Using Proposition 1.3.1,
we have

ϕ(u) = (σ0/2)G(u) • I + ((σ1 − σ0)/2)

p∑

i=1

(λi (G(u)))+, (2.2.3)

where the “preconditioned” Hessian mapping G : U → Sp is defined by

G(u) = Σ̄1/2∇ξξĴ(u, µ̄)Σ̄1/2. (2.2.4)

Using (2.2.3), and the continuity of λ [157, Cor. 6.3.8] and of ∇ξξĴ(·, µ̄), we find that ϕj is
continuous. We define ϕ̃ : U × R++ → R by

ϕ̃(u; τ) = (σ0/2)G(u) • I + ((σ1 − σ0)/2)w̃(λ(G(u)); τ), (2.2.5)

where w̃ : U × R++ → R is defined in (1.3.3). We show that ϕ̃ is a smoothing function for ϕ.
We fix τ > 0. Using (1.3.5), we find that

ϕ(u) ≤ ϕ̃(u; τ) ≤ ϕ(u) + (1/2)τp ln 2 for all u ∈ U. (2.2.6)

The mapping Sp 3 A 7→ w̃(λ(A); τ) is twice continuously differentiable [217, Thm. 4.2]. Com-
bined with (2.2.6), we conclude that ϕ̃ is a smoothing function for ϕ. Moreover, if ∇ξξĴ(·, µ̄) is
twice continuously differentiable, then ϕ̃(·; τ) is twice continuously differentiable.

2.2.2 Smoothing Approach for the TRP

Based on the construction made in section 1.4, we state a smoothing function of the optimal
value function ϕ defined in (2.1.8) and show that it satisfies the conditions of Definition 2.2.1.
Throughout the section, let ∇ξĴ(·, µ̄) and ∇ξξĴ(·, µ̄) be continuously differentiable. We define

ψ̃ : U × R2
++ → R by

ψ̃(u; ν, η) = max
s̃∈Rp+2

{
g̃ν(u)T s̃+ (1/2)s̃T H̃η(u)s̃ : (1/2)‖s̃‖22 ≤ (1/2)∆2

}
, (2.2.7)

where H̃η : U → Sp+2 and g̃ν : U → Rp+2 are given by

H̃η(u) =



G(u)

0
E(G(u); η)


 and g̃ν(u) =



g(u)√

2ν√
2ν


 . (2.2.8)

Moreover, ν, η > 0, and the “preconditioned” gradient mapping g : U → Rp is given by

g(u) = Σ̄1/2∇ξĴ(u, µ̄). (2.2.9)

Here, E : Sp ×R++ → R is the entropy function defined in (1.4.10), which is twice continuously
differentiable [217, Thm. 4.2], and G is defined in (2.2.4).
Using (2.1.8) and [154, Thm. 7], we find that ϕ is continuous. Let ν, η > 0 be arbitrary. From
(1.4.31), we obtain

ψ(u) ≤ ψ̃(u; ν, η) ≤ ψ(u) + 2
√

2ν∆ + (1/2)∆2η ln p for all u ∈ U. (2.2.10)



44 Chapter 2. Distributionally Robust PDE-Constrained Optimization

We establish the continuous differentiability of ψ̃(·; ν, η) without relying on Lagrangian duality
as in the proof of Theorem 1.4.9.
We show that an optimal solution to (2.2.7) is unique. Fix u ∈ U and let (s̃, λ̃) be a KKT-tuple
of (2.2.7). Using Theorem 1.4.1, we obtain λ̃ ≥ 0, (H̃η(u) − λ̃I)s̃ = g̃ν(u), H̃η(u) − λ̃I 4 0,

λ̃(‖s̃‖22 −∆2) = 0 and, moreover, if λmax(H̃η(u)) < λ̃, then s̃ is the unique solution to (2.2.7).

Using (2.2.8), we have λ̃ > (E(G(u); η))+; otherwise the linear system (H̃η(u) − λ̃I)s̃ = g̃ν(u)
would not have a solution. It remains to compute λmax(G(u)). According to (1.4.11), we have
λmax(G(u)) ≤ E(G(u); η). Combined with (2.2.8), we obtain λmax(H̃η(u)) = (E(G(u); η))+.
Putting together the pieces, we find that, for each u ∈ U , the TRP (2.2.7) has a unique solution.
Danskin’s theorem [46, Thm. 4.13 and Rem. 4.14] implies that ψ̃(·; ν, η) is differentiable. More-
over, the optimal solution to (2.2.7) as a function of the control is continuous [154, Cor. 8.2].
Hence ψ̃(·; ν, η) is continuously differentiable. Putting together the statements, we conclude that
ψ̃ is a smoothing function for ϕ
If ∇ξĴ(·, µ̄) and ∇ξξĴ(·, µ̄) are twice continuously differentiable, then the implicit function the-
orem, applied to the above first-order optimality conditions of (2.2.7), implies that the optimal
solution to (2.2.7) as a function of the control is continuously differentiable. The chain rule
implies that ψ̃(·; ν, η) is twice continuously differentiable.

2.3 Existence of Optimal Solutions

We prove the existence of optimal solutions of the DROP (2.1.1) and of the maximization
problem in (2.1.1). We refer to an optimal solution of the maximization problem in (2.1.1) as
a worst-case distribution. Moreover, we prove that there exist minimizers of the approximated
DROP (2.1.5) and of the smoothed DROPs (2.2.1).

2.3.1 Existence of Optimal Solutions of the DROP

We state conditions implying that (2.1.1) has optimal solutions which are built on those used
by Kouri and Shapiro [190, Chap. 3] and by Kouri and Surowiec [192, sect. 3.2].

Assumption 2.3.1 ([235, Assumption 3.1]). For each (u, ξ) ∈ Uad ×Rp, let S(u, ξ) ∈ Y be the
unique solution to: Find y ∈ Y : e(y, u, ξ) = 0, where S : Uad×Rp → Y and e : Y ×U×Rp → Z.
(a) For every ξ ∈ Rp, S(·, ξ) : Uad → Y is weakly-weakly continuous.
(b) For all u ∈ Uad, S(u, ·) : Rp → Y is continuous.

Assumption 2.3.1 implies that the reduced parameterized objective function Ĵ defined in (2.1.3)
is well-defined. Assumption 2.3.1 (a) may be verified using Proposition 2.9.3. If ey(S(u, ξ), u, ξ) ∈
L (Y,Z) is boundedly invertible for each (u, ξ) ∈ Uad × Rp, then the implicit function theorem
implies Assumption 2.3.1 (b).

Assumption 2.3.2 ([235, Assumption 3.2]). The function J : Y ×Uad×Rp → R is continuous.
(a) There exists γ ∈ R such that J(y, u, ξ) ≥ γ for all (y, u, ξ) ∈ Y × Uad × Rp.
(b) For each ξ ∈ Rp, J(·, ·, ξ) : Y × Uad → R is weakly lower semicontinuous.

We show in Lemma 2.3.5 that Assumption 2.3.2 is satisfied for tracking-type functionals. As-
sumption 2.3.2 (b) holds if J(·, ·, ξ) is convex for all ξ ∈ Rp and J is continuous [151, Thm. 1.18],
[46, pp. 26–27]. Assumptions 2.3.1 and 2.3.2 imply that Ĵ(u, ·) = J(S(u, ·), u, ·) is continuous
for each fixed u ∈ Uad. Hence Ĵ(u, ·) is measurable for all u ∈ Uad [169, Lem. 1.5].
We introduce the notion of uniform integrability. A measurable function θ : Rp → R is uniformly
integrable (w.r.t. P) if supP∈P EP [|θ(ξ)|1|θ(ξ)|≥t] → 0 as t → ∞ [45, sect. 2.7(i)]. Throughout,
uniform integrability is meant w.r.t. the probability measures contained in the ambiguity set P
defined in (2.1.2).



2.3. Existence of Optimal Solutions 45

Assumption 2.3.3 ([235, Assumption 3.3]). For each u ∈ Uad, the function Ĵ(u, ·) defined in
(2.1.3) is uniformly integrable.

Assumption 2.3.3 can be verified for many control problems using Lemmas 2.3.4 and 2.3.5.

Lemma 2.3.4 ([235, Lem. 3.4]). The following conditions ensure the uniform integrability of
the measurable function h : Rp → R: (a) supP∈P EP [|h(ξ)|r] < ∞ for some r > 1; (b) there
exists a uniformly integrable function h1 : Rp → R+ such that |h| ≤ h1; (c) h1, h2 : Rp → R are
uniformly integrable and h = h1 + h2.

Proof. Let t > 0 and P ∈ P be arbitrary. The first assertion follows from EP [|h(ξ)|1|h(ξ)|>t] ≤
t−r+1EP [|h(ξ)|r] (see, e.g., [169, p. 67]), and the second statement follows from the fact that h1

dominates |h|. The estimate EP [|h(ξ)|1|h(ξ)|≥2t] ≤ 2EP [|h1(ξ)|1|h1(ξ)|≥t] + 2EP [|h2(ξ)|1|h2(ξ)|≥t]
(see, e.g., [39, p. 230]) implies the third claim.

Lemma 2.3.5 is built on [235, Ex. 3.5].

Lemma 2.3.5. Let H be a Hilbert space, and let Y ↪−→ H be a continuous embedding. Let
yd ∈ H and α ≥ 0. We define the tracking-type function J : Y × U × Rp → R by J(y, u, ξ) =
(1/2)‖y − yd‖2H + (α/2)‖u‖2U . If Assumption 2.3.1 holds, then Assumption 2.3.2 is satisfied. If,
in addition, u ∈ U and ‖S(u, ·)‖2H is uniformly integrable, then the function Ĵ(u, ·) defined in
(2.1.3) is uniformly integrable.

Proof. To verify Assumption 2.3.2, we first observe that J is independent of ξ and J ≥ 0. Since
J(·, ·, ξ) is convex and continuous for each ξ ∈ Rp, Assumption 2.3.2 (b) holds [151, Thm. 1.18].
It must yet be shown that the uniform integrability of ‖S(u, ·)‖2H implies that of Ĵ(u, ·). Using
Young’s inequality, we have, for each ξ ∈ Rp,

Ĵ(u, ξ) = 1
2‖S(u, ξ)− yd‖2H + α

2 ‖u‖2U ≤ ‖S(u, ξ)‖2H + ‖yd‖2H + α
2 ‖u‖2U .

Now, Lemma 2.3.4 implies that Ĵ(u, ·) is uniformly integrable.

We verify the uniform integrability of ‖S(u, ·)‖2H for two parameterized Burgers’ equations in
section 2.7. Next, we show that the DROP (2.1.1) has an optimal solution.

Theorem 2.3.6 ([235, Thm. 3.6]). Let Assumptions 2.3.1–2.3.3 hold. Suppose that {u ∈ Uad :
f̂(u) ≤ γ } is nonempty and bounded for some γ ∈ R, and Uad ⊂ U is closed and convex, where
f̂ is defined in (2.1.9). Then the DROP (2.1.1) has an optimal solution.

We apply Lemma 2.3.7 to establish Theorem 2.3.6.

Lemma 2.3.7 ([235, Lem. 3.8]). If Assumptions 2.3.1–2.3.3 hold, then f̂ : Uad → R defined in
(2.1.9) is weakly lower semicontinuous.

Proof. First, we prove that f̂ is finite-valued. We have {N (µ,Σ) : ‖Σ̄−1/2(µ− µ̄)‖2 ≤ ∆, σ0Σ̄ 4
Σ 4 σ1Σ̄ } ⊂ P [57, pp. 185–186] (see also [235, Lem. 3.7]) and, hence, P 6= ∅. Fix u ∈ Uad and
δ > 0. Since P 6= ∅ and Assumption 2.3.3 holds, we obtain, for some t > 0 and all P ∈ P, the
estimate EP [|Ĵ(u, ξ)|] ≤ t + EP [|Ĵ(u, ξ)|1|Ĵ(u,ξ)|≥t] ≤ t + δ. Hence f̂(u) ∈ R. Since u ∈ Uad is

arbitrary, f̂ is finite-valued.
Now, fix P ∈ P and (uk) ⊂ Uad with uk ⇀ u ∈ Uad as k →∞. We show that

lim inf
k→∞

EP [Ĵ(uk, ξ)] ≥ EP [Ĵ(u, ξ)]. (2.3.1)
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Assumptions 2.3.1 and 2.3.2 imply that Ĵ(·, ξ) is weakly lower semicontinuous for all ξ ∈ Rp
and Ĵ(u, ·) is continuous for all u ∈ Uad. Hence Ĵ(u, ·) is measurable for all u ∈ Uad [169,
Lem. 1.5]. Using [169, Lem. 1.9], we find that lim infk→∞ Ĵ(uk, ·) is measurable. We deduce
EP [lim infk→∞ Ĵ(uk, ξ)] ≥ EP [Ĵ(u, ξ)]. Since Ĵ(u, ξ) ≥ γ for all (u, ξ) ∈ U × Rp, Fatou’s lemma
(see, e.g., [57, p. 232]) yields (2.3.1).
It must yet be shown that f̂ (see (2.1.9)) is weakly lower semicontinuous. Fix ε > 0. Since
f̂(u) <∞, there exists Pε ∈ P with f̂(u) ≤ EPε [Ĵ(u, ξ)] + ε. Now, (2.3.1) ensures

f̂(u) ≤ EPε [Ĵ(u, ξ)] + ε ≤ lim inf
k→∞

EPε [Ĵ(uk, ξ)] + ε ≤ lim inf
k→∞

f̂(uk) + ε.

Since ε > 0, (uk) ⊂ Uad and u ∈ Uad are arbitrary, f̂ is weakly lower semicontinuous.

Proof of Theorem 2.3.6. Owing to Lemma 2.3.7, we can apply the direct method of the calculus
of variations to prove that (2.1.1) has an optimal solution u∗ ∈ Uad (see also [46, Cor. 2.29]).

We can establish the existence of optimal solution to the DROP (2.1.1) under slightly different
hypotheses than those imposed by Assumptions 2.3.1–2.3.3.

Remark 2.3.8. Let Assumptions 2.3.1–2.3.3 hold, but instead of requiring the continuity of
S(u, ·) : Rp → Y for all u ∈ Uad, we require its strong measurability, and instead of imposing
continuity of J , we impose the measurability of J(·, u, ·) for each u ∈ Uad. In this case, the
following argumentation implies that, for each u ∈ Uad, the function Ĵ(u, ·) defined in (2.1.3)
is measurable. Since S(u, ·) is strongly measurable, Pettis’ measurability theorem [150, Thm.
3.5.3] implies that Rp 3 ξ 7→ (S(u, ξ), ξ) ∈ Y × Rp is strongly measurable. Combined with
the measurability of J(·, u, ·) and the composition rule [159, Cor. 1.1.11], we conclude that
Ĵ(u, ·) = J(·, u, ·) ◦ (S(u, ·), ·) is measurable.
Under these hypotheses, the proof of Lemma 2.3.7 may be modified to establish the weak lower
semicontinuity of the function f̂ : Uad → R defined in (2.1.9). If Y is separable, then Assumptions
2.3.1–2.3.3 imply these modified conditions. Indeed, in this case, S(u, ·) : Rp → Y is strongly
measurable for all u ∈ Uad (see [169, Lem. 1.5] and [150, Cor. 2 on p. 73]).

2.3.2 Existence of Worst-Case Distributions

We show that a worst-case distribution of the maximization problem in (2.1.1) exists. A worst-
case distribution of (2.1.5) is the normal distribution, where the mean is a maximizer of (2.1.8)
and the covariance matrix is one of (2.1.7).

Theorem 2.3.9 ([235, Thm. 3.9]). If Assumptions 2.3.1–2.3.3 hold and u ∈ Uad, then there
exists a worst-case distribution of (2.1.1).

We use Lemmas 2.3.10 and 2.3.11 to prove Theorem 2.3.9. Lemmas 2.3.10 and 2.3.11 assert
the weak-star sequential compactness of the ambiguity set P defined in (2.1.2). We say that
the sequence (Pk) ⊂ M converges weakly to P ∈ M as k → ∞, abbreviated with Pk ⇒ P as
k → ∞, if, for each bounded, continuous function f : Rp → R, we have EPk [f ] → EP [f ] as
k →∞ [169, p. 65], [45, Def. 1.4.1].

Lemma 2.3.10 ([235, Lem. 3.10]). If (Pk) ⊂ P fulfills Pk ⇒ P ∈M as k →∞, then P ∈ P.

Proof. Fix i, j ∈ {1, . . . , p} and d ∈ Rp. We define the continuous functions θ1, θ2, θ3 : Rp → R
by θ1(ξ) = ξi, θ2(ξ) = ξiξj , and θ3(ξ) = exp(dT ξ). We show that these functions are uniformly
integrable. We have |θ1(ξ)| ≤ ‖ξ‖2 and |θ2(ξ)| ≤ ‖ξ‖22 for all ξ ∈ Rp. Lemma 2.9.1 and (2.1.2)
imply supP∈P EP [‖ξ‖r2] <∞ for r = 1, 2, 4. For all P ∈ P, we have

EP [|θ3(ξ)|2] = e2dTEP [ξ]EP [e2dT (ξ−EP [ξ])] ≤ e2dTEP [ξ]+2σ1dT Σ̄d. (2.3.2)
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Hence, Lemma 2.3.4 implies that θ1, θ2 and θ3 are uniformly integrable. Combined with
[45, Thm. 2.7.1], we find that EPk [ξi] = EPk [θ1(ξ)] → EP [θ1(ξ)] = EP [ξi], and EPk [ξiξj ] =
EPk [θ2(ξ)]→ EP [θ2(ξ)] = EP [ξiξj ] as k →∞. Since i, j ∈ {1, . . . , p} are arbitrary, we obtain

EPk [ξ]→ EP [ξ] and EPk [ξξT ]→ EP [ξξT ] as k →∞.

Combined with [45, Thm. 2.7.1], we get

CovPk [ξ] = EPk [ξξT ]− EPk [ξ]EPk [ξ]T → CovP [ξ],

EPk [exp(dT (ξ − EPk [ξ]))] = exp(−dTEPk [ξ])EPk [θ3(ξ)] → EP [exp(dT (ξ − EP [ξ]))].

For each k ∈ N0 and d ∈ Rp, we have ‖Σ̄−1/2(EPk [ξ] − µ̄)‖2 ≤ ∆, σ0Σ̄ 4 CovPk [ξ] 4 σ1Σ̄, and
EPk [exp(dT (ξ−EPk [ξ]))] ≤ exp((σ1/2)dT Σ̄d). Putting together the pieces, we obtain P ∈ P.

Lemma 2.3.11 ([235, Lem. 3.11]). If (Pk) ⊂ P, then (Pk) has a weakly convergent subsequence
(Pk)K such that Pk ⇒ P ∈M as K 3 k →∞.

Proof. We show that (Pk) is tight, that is, supk∈N0
Pk(‖ξ‖2 ≥ r) → 0 as r → ∞ [169, p.

85], [45, Def. 1.4.10]. Lemma 2.9.1 ensures supk∈N0
EPk [‖ξ‖22] < ∞. Markov’s inequality gives

supk∈N0
Pk(‖ξ‖2 >

√
t) ≤ (supk∈N0

EPk [‖ξ‖22])/t→ 0 as t→∞. Hence (Pk) is tight. Combined
with [169, Lem. 5.20 and Prop. 5.21], we conclude that (Pk) has a subsequence (Pk)K with
Pk ⇒ P ∈M as K 3 k →∞.

Proof of Theorem 2.3.9. Lemma 2.3.7 yields supP∈P EP [Ĵ(u, ξ)] ∈ R. Let (Pk) ⊂ P sat-
isfy limk→∞ EPk [Ĵ(u, ξ)] = supP∈P EP [Ĵ(u, ξ)]. Lemma 2.3.11 implies that there exists a
subsequence (Pk)K of (Pk) with Pk ⇒ P ∗ ∈ M as K 3 k → ∞. Lemma 2.3.10 ensures
P ∗ ∈ P. Assumptions 2.3.1–2.3.3 imply that Ĵ(u, ·) is continuous and uniformly integrable.
Hence, the mapping theorem [45, Thm. 2.7.1] yields EP ∗ [Ĵ(u, ξ)] = limK3k→∞ EPk [Ĵ(u, ξ)] =
supP∈P EP [Ĵ(u, ξ)].

2.3.3 Existence of Optimal Solutions of the Approximated and Smoothed DROPs

We show that the approximated DROP (2.1.5) and the smoothed DROP (2.2.1) have optimal
solutions under suitable assumptions.

Assumption 2.3.12 ([235, Assumption 3.12]). For some ε > 0 and each (u, ξ) ∈ Uad ×Bε(µ̄),
S(u, ξ) ∈ Y is the unique solution to: Find y ∈ Y : e(y, u, ξ) = 0, where S : Uad × Bε(µ̄) → Y
and e : Y × U ×Bε(µ̄)→ Z.
(a) For all u ∈ Uad, J(·, u, ·) is twice continuously differentiable, where J : Y ×Uad×Bε(µ̄)→ R.
(b) The mapping e : Y ×U ×Bε(µ̄)→ Z is twice continuously differentiable. For each (u, ξ) ∈

Uad ×Bε(µ̄), the operator ey(S(u, ξ), u, ξ) ∈ L (Y, Z) is boundedly invertible.

(c) The function Ĵ(·, µ̄) : Uad → R is weakly lower semicontinuous, and ∇ξĴ(·, µ̄) : Uad → Rp

and ∇ξξĴ(·, µ̄) : Uad → Sp are weakly(-strongly) continuous.

Assumptions 2.3.12 (a) and 2.3.12 (b) imply that the objective functions of the approximated
DROP (2.1.5) and the smoothed DROP (2.2.1) are well-defined. Assumption 2.3.12 (c) may be
verified using Lemma 2.3.15 or Lemma 2.3.16. Assumption 2.3.12 implies that the approximated
DROP (2.1.5) and the smoothed DROP (2.2.1) have optimal solutions.

Theorem 2.3.13 ([235, Thm. 3.13]). Let Assumption 2.3.12 hold, and let Uad ⊂ U be nonempty,
closed and convex. Suppose that Uad is bounded or the function F defined in (2.1.6) is coercive.
Then the approximated DROP (2.1.5) has an optimal solution and, for each (τk, νk, ηk) ∈ R3

++,
the smoothed DROP (2.2.1) has an optimal solution.
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We prove Theorem 2.3.13 using Lemma 2.3.14.

Lemma 2.3.14 ([235, Lem. 3.14]). Let Assumption 2.3.12 hold and fix tk = (τk, νk, ηk) ∈ R3
++.

Then F : Uad → R and F̃ (·; tk) : Uad → R are weakly lower semicontinuous.

Proof. The mapping λ is (Lipschitz) continuous [157, Cor. 6.3.8]. Combined with Assump-
tion 2.3.12 (c) and the definition of G (see (2.2.4)) and E(·; ηk) (see (1.4.10)), we find that
λ ◦ G : Uad → R and E(·; η) ◦ G : Uad → R are weakly continuous. From (2.2.3) and (2.2.5),
we obtain that ϕ : Uad → R and ϕ̃(·; τk) : Uad → R are weakly continuous. Owing to Assump-
tion 2.3.12, [148, Thm. 2.5] implies that ψ : Uad → R (see (2.1.8)) and ψ̃(·; νk, ηk) : Uad → R (see
(2.2.7)) are weakly lower semicontinuous. The weak lower semicontinuity of Ĵ(·, µ̄) : Uad → R
implies that of F : Uad → R and of F̃ (·; tk) : Uad → R.

Proof of Theorem 2.3.13. Lemma 2.3.14 yields the lower semicontinuity of F and F̃ (·; tk). If F
is coercive, then (2.2.6) and (2.2.10) imply that F̃ (·; tk) is coercive. Now, the direct method of
the calculus of variations yields the existence of an optimal solution of (2.1.5) and of (2.2.1).

Assumption 2.3.12 (c) may be verified using compact embeddings.

Lemma 2.3.15 ([235, Rem. 3.15]). Let Ũ be a Banach space and let U ↪−→ Ũ be a compact
embedding, and let J2 : U → R be weakly lower semicontinuous. Consider J1 : Y × Bε(µ̄) → R
and the solution operator S : Ũ ×Bε(µ̄)→ Y , where ε > 0. Let J1 and S be twice continuously
differentiable. Suppose that J(y, u, ξ) = J1(y, ξ) + J2(u) for all (y, u, ξ) ∈ Y × U ×Bε(µ̄). Then
Assumptions 2.3.12 (a) and 2.3.12 (c) hold.

Proof. By assumption, the function Ĵ(·, µ̄) : Uad → R defined in (2.1.3) is weakly lower semicon-
tinuous. Moreover, Ũ × Bε(µ̄) 3 (u, ξ) 7→ J1(S(u, ξ), ξ) is twice continuously differentiable, and
we have DξĴ = Dξ(J(S(·, ·), ·)) and DξξĴ = Dξξ(J(S(·, ·), ·)). We deduce the weak continuity of

∇ξĴ(·, µ̄) : Uad → Rp and ∇ξξĴ(·, µ̄) : Uad → Sp.

We verify Assumption 2.3.12 (c) for the DRO the unsteady Burgers’ equation using Lemma 2.3.16
in section 2.7.2.

Lemma 2.3.16. Let Assumptions 2.3.12 (a) and 2.3.12 (b) hold. Consider the setting of
Lemma 2.3.5 and let Y ↪−→ H be a compact embedding. Suppose that Assumption 2.3.1 (a)
holds, and Sξ(·, µ̄)sξ : Uad → Y and Sξξ(·, µ̄)[sξ, sξ] : Uad → Y are weakly-weakly continuous for
all sξ ∈ Rp. Then Assumption 2.3.12 (c) holds.

Proof. The tracking-type function J is convex and continuous and, hence, it is weakly lower
semicontinuous [151, Thm. 1.18]. Combined with Assumption 2.3.1 (a), we find that Ĵ : Uad → R
is weakly lower semicontinuous.
We have, for all y, sy ∈ Y and u ∈ U ,

〈Jy(y, u, µ̄), sy〉Y ∗,Y = (y − yd, sy)H , and 〈Jyy(y, u, µ̄)sy, sy〉Y ∗,Y = (sy, sy)H . (2.3.3)

Using Jξ, Jξξ, Jξy = 0, we get, for all u ∈ U and sξ ∈ Rp,

〈Ĵξ(u, µ̄), sξ〉(Rp)∗,Rp = 〈Jy(S(u, µ̄), u, µ̄), Sξ(u, µ̄)sξ〉Y ∗,Y ,
〈Ĵξξ(u, µ̄)sξ, sξ〉(Rp)∗,Rp = 〈Jyy(S(u, µ̄), u, µ̄)Sξ(u, µ̄)sξ, Sξ(u, µ̄)sξ〉Y ∗,Y

+ 〈Jy(S(u, µ̄), u, µ̄), Sξξ(u, µ̄)[sξ, sξ]〉Y ∗,Y .
(2.3.4)

Now, fix sξ ∈ Rp, and fix (uk) ⊂ Uad with uk ⇀ u ∈ Uad as k →∞.
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The compact embedding Y ↪−→ H, the boundedness of (‖S(uk, µ̄)‖Y ) [46, Thm. 2.23], the
weak-weak continuity of S(·, µ̄) and of Sξ(·, µ̄)sξ, and the Cauchy–Schwarz inequality yield
|(S(uk, µ̄), Sξ(uk, µ̄)sξ − Sξ(u, µ̄)sξ)H | ≤ ‖S(uk, µ̄)‖H‖Sξ(uk, µ̄)sξ − Sξ(u, µ̄)sξ‖H → 0 as k →∞
[151, Lem. 1.6]. Combined with (2.3.3) and (2.3.4), we deduce

〈Ĵξ(uk, µ̄), sξ〉(Rp)∗,Rp = (S(uk, µ̄)− yd, Sξ(u, µ̄)sξ)H + (S(uk, µ̄)− yd, Sξ(uk, µ̄)sξ − Sξ(u, µ̄)sξ)H

→ 〈Ĵξ(u, µ̄), sξ〉(Rp)∗,Rp .

Hence ∇ξĴ(·, µ̄) : Uad → Rp is weakly(-strongly) continuous.

It must yet be shown that ∇ξξĴ(·, µ̄) : Uad → Sp is weakly(-strongly) continuous. Since Y ↪−→ H
is compact and Sξ(·, µ̄)sξ : Uad → Y is weakly-weakly continuous, we have ‖Sξ(uk, µ̄)sξ‖2H →
‖Sξ(u, µ̄)sξ‖2H as k → ∞. Using a similar reasoning as above and the weak-weak continuity of
Sξξ(·, µ̄)[sξ, sξ], we find that

〈Jy(S(uk, µ̄), u, µ̄), Sξξ(uk, µ̄)[sξ, sξ]〉Y ∗,Y = (S(uk, µ̄)− yd, Sξξ(uk, µ̄)[sξ, sξ])H

→ 〈Jy(S(u, µ̄), u, µ̄), Sξξ(u, µ̄)[sξ, sξ]〉Y ∗,Y .

Putting together the pieces, we conclude that, for all sξ ∈ Rp, 〈Ĵξξ(uk, µ̄)sξ, sξ〉(Rp)∗,Rp →
〈Ĵξξ(u, µ̄)sξ, sξ〉(Rp)∗,Rp as k → ∞. Combined with (∇ξξĴ(uk, µ̄)) ⊂ Sp and ∇ξξĴ(u, µ̄) ∈ Sp,
we find that, for each i, j ∈ {1, . . . , p},

2eTi ∇ξξĴ(uk, µ̄)ej = 〈Ĵξξ(uk, µ̄)[ei + ej ], ei + ej〉(Rp)∗,Rp

− 〈Ĵξξ(uk, µ̄)ej , ej〉(Rp)∗,Rp − 〈Ĵξξ(uk, µ̄)ei, ei〉(Rp)∗,Rp → 2eTi ∇ξξĴ(u, µ̄)ej .

Here, ei is the ith canonical unit vector of Rp. We deduce the weak continuity of ∇ξξĴ(·, µ̄).

2.4 Convergence of the Smoothing Method

We present a convergence result for a sequence of optimal solutions of the smoothed DROPs
(2.2.1) as the smoothing parameters converge to zero. Theorem 2.4.1 implies the global con-
vergence of a sequence of minimizers generated by Algorithm 2 to an optimal solution of the
approximated DROP (2.1.5).

Theorem 2.4.1 ([235, Thm. 4.1]). Let the conditions of Theorem 2.3.13 hold, and let tk =
(τk, νk, ηk) ∈ R3

++ fulfill tk → 0 as k → ∞. Suppose that, for each k ∈ N0, uk is an optimal
solution of (2.2.1). Then (uk) is bounded, and each weak limit point of (uk) is an optimal
solution of (2.1.5).

Proof. We fix u ∈ Uad and k ∈ N0. Using (2.2.6), (2.2.10), and F̃ (uk; t
k) ≤ F̃ (u; tk), we obtain

F (uk) ≤ F̃ (uk; t
k) ≤ F̃ (u; tk) ≤ F (u) + 1

2τkp ln 2 + 2
√

2νk∆ + 1
2∆2ηk ln p, (2.4.1)

where F is defined in (2.1.6) and F̃ in (2.2.1). Since either Uad is bounded or F is coercive and
(2.4.1) holds, the sequence (uk) ⊂ Uad is bounded.
Let u∗ be a weak accumulation point of (uk). Then there exists (uk)K ⊂ (uk) such that uk ⇀ u∗

as K 3 k →∞. Since Uad is closed and convex, we have u∗ ∈ Uad [46, Thm. 2.23]. Lemma 2.3.14
yields F (u∗) ≤ lim infK3k→∞ F (uk). Combined with (2.4.1) and tk → 0 as k → ∞, we obtain
F (u∗) ≤ F (u). Consequently, u∗ is an optimal solution of (2.1.5).
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2.5 Error of Quadratic Approximation

We show that the worst-case expected error between the objective function of (2.1.1) and that
of (2.1.5) converges to zero for “shrinking” ambiguity sets.

Lemma 2.5.1 ([235, Lem. 5.1]). Let Assumptions 2.3.12 (a) and 2.3.12 (b) hold, and let
u ∈ Uad. Suppose that L(u, ·) : Rp → R+ is measurable such that supP∈P EP [L(u, ξ)2] <∞, and

|Ĵ(u, ξ)−Q(u, ξ; µ̄)| ≤ (L(u, ξ)/6)‖ξ − µ̄‖32, for all ξ ∈ Rp, (2.5.1)

where Ĵ is defined in (2.1.3) and Q in (2.1.4). Then

sup
P∈P

EP [|Ĵ(u, ξ)−Q(u, ξ; µ̄)|]→ 0 as (∆, σ1)→ 0+. (2.5.2)

Proof. Fix P ∈ P. Using Hölder’s inequality and (2.5.1), we find that

EP [|Ĵ(u, ξ)−Q(u, ξ; µ̄)|] ≤ (1/6)(EP [|L(u, ξ)|2])1/2(EP [‖ξ − µ̄‖62])1/2. (2.5.3)

The triangle inequality, and the monotonicity and convexity of R+ 3 z 7→ z6 imply

EP [‖ξ − µ̄‖62] ≤ 25EP
[
‖ξ − EP [ξ]‖62

]
+ 25‖EP [ξ]− µ̄‖62.

Lemma 2.9.1 yields EP [‖ξ−EP [ξ]‖62] ≤ 2(6/e)6(I•σ1Σ̄)6. Using (2.1.2), we obtain ‖Σ̄−1/2(EP [ξ]−
µ̄)‖2 ≤ ∆ and, hence, ‖EP [ξ]− µ̄‖62 ≤ ‖Σ̄1/2‖62∆6. We deduce

EP [‖ξ − µ̄‖62] ≤ 64(6/e)6(I • σ1Σ̄)6 + 32‖Σ̄1/2‖62∆6.

Hence supP∈P EP [‖ξ− µ̄‖62]→ 0 as (∆, σ1)→ 0+. Combined with (2.5.3), we obtain (2.5.2).

2.6 Evaluation of Smoothing Functions and their Derivatives

We derive formulas for the derivative of the smoothing functions ϕ̃ (see (2.2.5)) and ψ̃ (see
(2.2.7)). Throughout the section, let Assumptions 2.3.12 (a) and 2.3.12 (b) be satisfied, and
fix ū ∈ U . Moreover, let J(y, ·, ξ) be continuously differentiable in a neighborhood of ū for all
(y, ξ) ∈ Y × Rp, and fix (τ, ν, η) ∈ R3

++.

2.6.1 Smoothing Function of the SDP

In order to evaluate ϕ̃, we propose to compute the Hessian matrix ∇ξξJ(ū, µ̄) when the number
of parameters p is moderate. We use the identity G(ū) • I = ∇ξξJ(ū, µ̄) • Σ̄ to evaluate the first
addend in (2.2.5) and compute an eigendecomposition of G(ū) via the (generalized) eigenvalue
problem ∇ξξJ(u, µ̄)q = λΣ̄−1q with q 6= 0, where G is defined in (2.2.4). For each s ∈ U and
P ∈ Sp, we have

〈DG(ū)∗P, s〉U∗,U = P • (DG(ū)s) = 〈D(G(ū) • P ), s〉U∗,U . (2.6.1)

From section 2.2.1, [217, Lem. 3.1], (2.2.5) and (2.6.1), we obtain that

Duϕ̃(ū; τ) = (σ0/2)DG(ū)∗I + ((σ1 − σ0)/2)DG(ū)∗[Q(ū)M(ū)Q(ū)T ], (2.6.2)

where w̃ is defined in (1.3.3) and G in (2.2.4), Q(ū) ∈ Rp×p fulfills Q(ū)TQ(ū) = I, and

G(ū) = Q(ū)Diag(λ(G(ū)))Q(ū)T and M(ū) = Diag(∇xw̃(λ(G(ū)); τ)). (2.6.3)

Using (2.6.1), the matrix DG(ū)∗[Q(ū)M(ū)Q(ū)T ] in (2.6.2) becomes

DG(ū)∗[Q(ū)M(ū)Q(ū)T ] =

p∑

i=1

mii(ū)Du(qi(ū)TG(u)qi(ū))
∣∣
u=ū

, (2.6.4)

where mii(ū) is the ith diagonal entry of M(ū), and qi(ū) the ith column of Q(ū).
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2.6.2 Smoothing Function of the TRP

In order to evaluate ψ̃, we compute E(G(ū); η) (see (1.4.10)) using the eigenvalues of G(ū) that
are used to evaluate ϕ̃; see section 2.6.1. From section 2.2.2 and [46, Rem. 4.14], we obtain that

Duψ̃(ū; ν, η) = Du(g(ū)T s∗) + 1
2Du((s∗)TG(ū)s∗) + 1

2 s̃
2
p+2DuE(G(ū); η), (2.6.5)

where s̃ = (s∗, s̃p+1, s̃p+2) ∈ Rp+2 is the optimal solution of (2.2.7) for u = ū. We have

∇AE(A; η) = R(A)Diag(θ(A))R(A)T and θi(A; η) =
exp(λi(A)/η)∑p
i=1 exp(λi(A)/η)

, (2.6.6)

where R(A) ∈ Rp×p, R(A)TR(A) = I, and A = R(A)Diag(λ(A))R(A)T ∈ Sp [247, eq. (18)] (see
also section 1.4.3). Combined with the chain rule and (2.6.1), we find that

DuE(G(ū); η) =

p∑

i=1

θi(ū)Du(qi(ū)TG(u)qi(ū))
∣∣
u=ū

, (2.6.7)

where θi(ū) = θi(G(ū); η) and qi(ū) is the ith column of the matrix Q(ū) defined in (2.6.3).

2.7 Applications and Numerical Results

We formulate and analyze two DROPs with nonlinear PDEs, and present numerical results.

2.7.1 DRO of Steady Burgers’ Equation

We formulate an optimal control problem of a parameterized steady Burgers’ equation that was
studied in [191, 188, 185] for risk-averse objective functions other than (2.1.9). We consider

min
u∈U

sup
P∈P

EP [(1/2)‖S(u, ξ)− yd‖2L2(D)] + (α/2)‖u‖2L2(D), (2.7.1)

where D = (0, 1), U = L2(D), α = 10−3, yd = 1, and S(u, ξ) ∈ Y = H1(D) solves the weak form
of the steady Burgers’ equation

−κ(ξ)yxx(x) + y(x)yx(x) = ξ2/100 + u(x), x ∈ D,
y(0) = 1 + ξ3/1000, y(1) = ξ4/1000,

(2.7.2)

where p = 4, ξ ∈ Rp, u ∈ U and κ : Rp → R++, κ(ξ) = 10ξ1−2. We refer the reader to [328, 329]
for the analysis of deterministic control problems subject to the steady Burgers’ equation.
We define V = H1

0 (D) and e = (e1, e2) : H1(D)× V ∗ × Rp → V ∗ × R2 by1

〈e1(y, u, ξ), v〉V ∗,V =

∫

D
[κ(ξ)yx(x)vx(x) + (y(x)yx(x)− ξ2

100)v(x)]dx− 〈u, v〉V ∗,V (2.7.3)

for all v ∈ V and e2(y, u, ξ) = (y(0)− 1− ξ3/1000, y(1)− ξ4/1000); cf. [328, pp. 71 and 79].
Our computational results presented below show that our approximation scheme produces con-
trols with similar behavior as those obtained in [191, sect. 6.2] via the minimization of the su-
perquantile/conditional value-at-risk using the sample average approximation, while our scheme
requires fewer PDE solutions.
We show that the differentiability requirements in Assumption 2.3.12 are fulfilled.

1By definition, we have H1
0 (D)∗ = H−1(D) [151, p. 23]. We identify L2(D) with its dual. The embedding

U = L2(D) ↪−→ V ∗ = H−1(D) is compact (see, e.g., [1, Thm. 6.2] and [196, Thm. 8.2-5]) and is given by
〈v, w〉V ∗,V = (v, w)L2(D) for all v ∈ U and w ∈ V [151, pp. 39–40].
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Lemma 2.7.1. The operator e defined in (2.7.3) is twice continuously differentiable.

Proof. For each fixed ξ ∈ Rp, the derivations in [328, p. 81] imply that e(·, ·, ξ) is twice continu-
ously differentiable. In light of the calculus rules [97, Thms. 8.9.1 and 8.12.6], it suffices to show
that e1(y, u, ·) and e2(y, u, ·) are twice continuously differentiable for each (y, u) ∈ Y × V ∗. We
fix (y, u) ∈ Y × V ∗. The mapping e2(y, u, ·) : R2 → R2 is affine and, hence, it is infinitely many
times continuously differentiable. Next, we show that, for each ξ ∈ Rp,

〈Dξe1(y, u, ξ)h, v〉V ∗,V =

∫

D
[ln(10)10ξ1−2h1y

′v′ − (h2/100)v]dx for all v ∈ V, h ∈ Rp.

For each v ∈ V = H1
0 (D) with ‖v‖V ≤ 1 and all h ∈ Rp, the Cauchy–Schwarz inequality and

‖w′‖L2(D) ≤ ‖w‖V , valid for all w ∈ V , ensure

|〈e1(y, u, ξ + h)− e1(y, u, ξ)−Dξe1(y, u, ξ)h, v〉V ∗,V | ≤ |κ(ξ + h)− κ(ξ)−Dκ(ξ)h|‖y‖Y .

Hence e1(y, u, ·) is Fréchet differentiable. A similar derivation, when combined with

〈Dξξe1(y, u, ξ)[h, s], v〉V ∗,V =

∫

D
[ln(10)210ξ1−2h1s1y

′v′]dx for all v ∈ V, h, s ∈ Rp,

implies that e1(y, u, ·) is twice Fréchet differentiable. The above formula also reveals the conti-
nuity of Dξξe1(y, u, ·) ∈ L (Rp,L (Rp, V ∗)).

The function J : Y × U × Rp → R+ defined by J(y, u, ξ) = (1/2)‖y − yd‖2L2(D) + (α/2)‖u‖2L2(D)
is convex and infinitely many times continuously differentiable. Hence Assumption 2.3.2 holds.
Combined with Lemma 2.7.1, we find that the differentiability requirements in Assumption 2.3.12
are met.
We show that the parameterized steady Burgers’ equation (2.7.2) has a solution based on the
argumentation used in [188, sect. 5.2.1] and in [328, Chap. 4]. We fix ξ ∈ Rp and define
ε : Rp → R by ε(ξ) = κ(ξ)/2.2 From [328, Lem. 2.2 (p. 71)], we deduce the existence of
y0(ξ) ∈ H1(D) with e2(y0(ξ), u, ξ) = 0 for all u ∈ V ∗, and ‖y0(ξ)‖L2(D) ≤ ε(ξ). The derivations
in [328, p. 76] imply that there exists a solution S(u, ξ) ∈ Y of the weak form of (2.7.2) for each
u ∈ V ∗. If κ(ξ) is sufficiently large, then this solution is unique [328, Thm. 2.13 (p. 76)].
We prove that, for fixed u ∈ V ∗, the set-valued solution mapping S(u, ·) : Rp ⇒ Y defined
by S(u, ξ) = { y ∈ Y : e(y, u, ξ) = 0 } is measurable and there exists a measurable selection
S(u, ·) of S(u, ·) with e(S(u, ξ), u, ξ) = 0 for all ξ ∈ Rp. In order to establish the assertions, we
verify the hypotheses of the theorem on the measurablity of implicit multifunctions [66, Thm.
III.38]. We recall that the separable Banach spaces Y , Rp and V ∗ × R2 are equipped with
their Borel-σ-field.3 The continuity of e (see Lemma 2.7.1) implies that e(·, u, ·) is B(Y × Rp)-
B(V ∗ × R2)-measurable [169, Lem. 1.5]. Moreover, we have B(Y × Rp) = B(Y ) ⊗ B(Rp) [169,
Lem. 1.2], and the parameterized steady Burgers’ equation (2.7.2) has a solution. Hence S(u, ξ)
is nonempty for all ξ ∈ Rp. Combining these statements with [66, Thm. III.38] yields the
assertions (see also [66, pp. 80 and 86]).

Lemma 2.7.2. If u ∈ V ∗ and S(u, ·) : Rp → Y is a measurable selection of S(u, ·), then
‖S(u, ·)‖2L2(D) is uniformly integrable.

2We choose n = n(ξ) = ((1 + 10−3ξ3)2 + 10−6ξ2
4)/(4ε(ξ)) + 1 ≥ 1 in the proof of [328, Lem. 2.2 (p. 71)].

3The Hilbert space V = H1
0 (D) is separable and, hence, its dual V ∗ = H−1(D) is separable [196, pp. 242–243]

(see also [1, Thm. 1.14]).



2.7. Applications and Numerical Results 53

Proof. Since Y = H1(D) ⊂ L2(D), and H1(D) and L2(D) are separable, the measurability of
S(u, ·) implies that of ‖S(u, ·)‖L2(D) and of ‖S(u, ·)‖Y [150, Thm. 3.5.2].
Owing to Lemma 2.3.4 and ‖S(u, ·)‖L2(D) ≤ ‖S(u, ·)‖Y , it suffices to show that ‖S(u, ·)‖2Y is
uniformly integrable. To establish the uniform integrability of ‖S(u, ·)‖2Y , we use a stability
estimate for the solution to the Burgers’ equation derived by Volkwein [328]. We fix ξ ∈ Rp and
define f̃ = f̃(ξ) ∈ H−1(D) by

〈f̃ , ϕ〉H1
0 (D)

∗
,H1

0 (D) = 〈u, ϕ〉H1
0 (D)

∗
,H1

0 (D) −
∫

D
[κ(ξ)y0(ξ)′ϕ′ + y0(ξ)y0(ξ)′ϕ]dx for all ϕ ∈ H1

0 (D),

cf. [328, p. 71]. We derive an upper bound on ‖f̃‖H−1(D). Using the definition of the operator
norm ‖ · ‖H−1(D) and the Hölder inequality, we find that, for all ϕ ∈ H1

0 (D),

|〈f̃ , ϕ〉H1
0 (D)

∗
,H1

0 (D)| ≤ ‖u‖H−1(D)‖ϕ‖H1
0 (D) + κ(ξ)‖y0(ξ)′‖L2(D)‖ϕ′‖L2(D)

+ ‖y0(ξ)′‖L2(D)‖y0(ξ)‖L2(D)‖ϕ‖L∞(D).

Combined with the definition of the H−1(D)-norm and that of the H1(D)-norm, and using
‖ϕ‖L∞(D) ≤ ‖ϕ‖H1

0 (D), valid for all ϕ ∈ H1
0 (D) (see, e.g., [328, Lem. 3.4 (p. 9)]), we obtain

‖f̃‖H−1(D) ≤ ‖u‖H−1(D) + κ(ξ)‖y0(ξ)‖Y + ‖y0(ξ)‖Y ‖y0(ξ)‖L2(D) (2.7.4)

Using [328, Lem. 2.3 (p. 72)], we get, with ε(ξ) = κ(ξ)/2 and κ(ξ) = 10ξ1−2,

‖S(u, ξ)‖Y ≤ (
√

8/κ(ξ))‖f̃‖H−1(D) + ‖y0(ξ)‖Y .

Combined with (2.7.4) and
√

8 ≤ 3, we find

‖S(u, ξ)‖Y ≤ 4‖y0(ξ)‖Y + (3/κ(ξ))‖u‖H−1(D) + (3/κ(ξ))‖y0(ξ)‖Y ‖y0(ξ)‖L2(D). (2.7.5)

Using the derivations in [328, p. 71] with n = n(ξ) = ((1 + 10−3ξ3)2 + 10−6ξ2
4)/(4ε(ξ)) + 1 ≥ 1,

we find that ‖y0(ξ)‖L2(D) ≤ ε(ξ) and

‖y0(ξ)‖2Y ≤ [ε(ξ)2((1 + 10−3ξ3)2 + 10−6ξ2
4) + ε(ξ)4]2 + ε(ξ)2. (2.7.6)

In light of Lemma 2.3.4, it suffices to show that each addend in (2.7.5) is uniformly integrable.
Lemmas 2.3.4 and 2.9.2 ensure the uniform integrability of (3/κ(·))‖u‖H−1(D). Moreover, (2.7.6)
and Lemma 2.9.2 reveal the uniform integrability of ‖y0(·)‖2Y and of ‖y0(·)‖2L2(D). Lemma 2.3.4

further implies that the first addend, 4‖y0(·)‖Y , in (2.7.5) is uniformly integrable.
It must yet be shown that the third addend, (3/κ(·))‖y0(·)‖Y ‖y0(·)‖L2(D), in (2.7.5) is uni-
formly integrable. Young’s inequality implies that (3/κ(·))2‖y0(·)‖2L2(D) + ‖y0(ξ)‖2Y dominates

(3/κ(·))‖y0(·)‖Y ‖y0(·)‖L2(D). We have (3/κ(·))2‖y0(·)‖2L2(D) ≤ (3/κ(·))2κ(·)2/4 = 9/4. Putting

together the statements and using Lemma 2.3.4 once more, we conclude that ‖S(u, ·)‖2Y is uni-
formly integrable.

If the solution of the steady Burgers’ equation (2.7.2) is unique, then Lemmas 2.3.5 and 2.7.2
ensure the uniform integrability of Ĵ(u, ·) for u ∈ Uad. In this case, Assumption 2.3.3 holds.
For (y, u, ξ) ∈ Y × U × Rp with e(y, u, ξ) = 0, the operator ey(y, u, ξ) ∈ L (Y, V ∗ × R2) is
surjective [328, Thm. 3.3 (p. 81)]. We show that this operator is also injective (a fact that has
also been stated in [188, p. A1866]). Combined with the bounded mapping theorem and the
implicit function theorem, we conclude that the solution of the PDE (2.7.2) is locally unique.
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Lemma 2.7.3. If (y, u, ξ) ∈ Y × U ×Rp fulfills e(y, u, ξ) = 0, then ey(y, u, ξ) ∈ L (Y, V ∗ ×R2)
is bijective, where e : Y × U × Rp → V ∗ × R2 is defined in (2.7.3).

Proof. The surjectivity of e(y,u)(y, u, ξ) [328, Thm. 3.3 (p. 81)] (see also [329, Prop. 3.3]) implies
that of ey(y, u, ξ).
Our proof of injectivity of ey(y, u, ξ) is built on the proof of [328, Thm. 3.3 (p. 81)]. Using [328,
eqns. (4.23) and (4.25)], we have, for each ϕ ∈ V and w ∈ Y ,

〈Dye1(y, u, ξ)w,ϕ〉V ∗,V =

∫

D
κ(ξ)w′ϕ′ + (yw)′ϕdx and Dye2(y, u, ξ)w = (w(0), w(1)).

To prove the injectivity, we show that whenever w ∈ Y = H1(D) fulfills

〈Dye1(y, u, ξ)w,ϕ〉V ∗,V = 0 for all ϕ ∈ V and (w(0), w(1)) = 0, (2.7.7)

it holds that w = 0 using the Fredholm-type alternative [196, Thm. 8.6-1]. Let w ∈ Y satisfy
(2.7.7). Then w ∈ V = H1

0 (D). We define K : V → V ∗ and A : V → V ∗ by

〈Kw,ϕ〉V ∗,V =

∫

D
(yw)′ϕdx and 〈Aw,ϕ〉V ∗,V =

∫

D
κ(ξ)w′ϕ′dx for all ϕ ∈ V.

The operators A and K are linear and bounded, and A is boundedly invertible and K is compact
[328, p. 82]. We define the compact operator T : V → V by Tw = −A−1Kw, and G : V → V ∗ by
G = A+K. The equations in (2.7.7) are equivalent to Gw = 0, and we have Gw = −A(T −I)w.
In particular (T − I)w = 0. If f ∈ V ∗ and T ∗f = f , then f = 0 [328, p. 82]. Hence, the theorem
on the solvability of operator equations involving compact linear operators [196, Thm. 8.5-1],
implies that, for each y ∈ V , the equation (T − I)x = y has a solution x ∈ V . Combining
(T − I)w = 0 and the Fredholm-type alternative [196, Thm. 8.6-1], we find that w = 0. We
conclude that ey(y, u, ξ) is injective.

Discretization and Numerical Results

We transformed the steady Burgers’ equation (2.7.2) to one with homogeneous boundary con-
ditions, and discretized it using continuous piecewise linear finite elements on a uniform mesh
of the domain D with 2000 elements as in [188, sect. 5.2.2].
We approximated the DROP (2.7.1) with the DROP (2.1.5) and used Algorithm 2 to compute a
stationary point of (2.1.5). We implemented Algorithm 2 in Python using UFL [7, 5] to evaluate
the derivatives of J and e, and FEniCS [6, 220] to compute the solutions to the PDEs (see
section 2.9.3).
We chose the initial point u0 = 0, and (τ1, ν1, η1) = 10−2(1, 10−2, 1) in Algorithm 2 and used the
rule (τk+1, νk+1, ηk+1) = 10−1(τk, 10−1νk, ηk) to update the smoothing parameters. Owing to
the term (2νk)

1/2 in (2.2.10), the parameter νk was decreased faster than τk and ηk. Algorithm 2
used moola [286] with its default settings except of using the termination tolerance 10−4 for each
inner iteration of Algorithm 2, Wolfe line search, and L-BFGS. The TRPs (2.2.7) were solved
using the Moré–Sorensen algorithm [238].
Figure 2.1 depicts the controls u∗N and u∗DR and their corresponding states for three different
ambiguity sets, where u∗N is a stationary point of the nominal control problem (2.2.2) and u∗DR is
the final iterate of Algorithm 2. The robust controls depicted in Figure 2.1 have a similar struc-
ture as those obtained in [191, sect. 6.2] via the minimization of the superquantile/conditional
value-at-risk using the sample average approximation. For the approach in [191], each evaluation
of the cost function and its gradient requires as many solutions of the Burgers’ equation (2.7.2)
as samples used, ranging from 19,000 to 23,000 in [191, sect. 6.2]. Our approach requires 37

https://github.com/funsim/moola
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Table 2.1: Iteration history of Algorithm 2 applied to the approximated DROP of steady Burgers’
equation (2.7.2), with ∆ = σ1 = 0.1, σ0 = 0, µ̄ = 0, Σ̄ = I and tk = (τk, νk, ηk).

k F̃ (uk; tk) ‖∇uF̃ (uk; tk)‖U #iter ‖uk−uk−1‖U
1+‖uk−1‖U

#F̃ (uk; tk) #∇uF̃ (uk; tk)

1 7.97059e-03 6.13993e-05 18 8.24726e-01 21 21
2 4.71019e-03 9.30584e-05 9 7.27281e-02 11 11
3 4.54354e-03 8.85734e-05 3 3.23832e-03 5 5

Table 2.2: Statistics (see (2.7.8)) for nominal control u∗N and distributionally robust control u∗DR(∆),
associated with steady Burgers’ equation (2.7.2), with ∆ = σ1 = 0.1, σ0 = 0, µ̄ = 0, and Σ̄ = I.

u Em(u) u1SDm(u) StDm(u) u2SDm(u) Qm.50(u) Qm.80(u) Qm.95(u)

u∗N 5.27694e-03 3.83522e-02 3.36866e-03 2.81567e-03 3.90261e-03 8.68155e-03 1.12073e-02
u∗DR 5.01929e-03 3.43171e-02 2.70053e-03 2.26590e-03 3.87501e-03 7.68191e-03 9.81026e-03

solutions of (2.7.2) and 629 solutions of linear PDEs in total for the setup displayed in Table 2.1.
We note that the cost function used here and in [191, sect. 6.2] are different and, hence, corre-
sponding optimal controls cannot be compared directly. Our point is, however, that our scheme
produced meaningful controls with moderate computational costs.
We present detailed numerical results for the data ∆ = σ1 = 0.1, σ0 = 0, Σ̄ = I and µ̄ = 0.
Table 2.1 provides an iteration history of Algorithm 2. It displays the objective function value
of (2.2.1) and the U -norm of its gradient at the computed stationary point uk of (2.2.1) for each
outer iteration k of Algorithm 2. Moreover, it shows the number of inner iterations performed,
a relative distance of subsequent stationary points, and the number of objective and gradient
evaluations. The number of outer iterations of Algorithm 2 and the error of subsequent iterates
of Algorithm 2 decrease monotonically.
For the stationary points u∗N and u∗DR, Table 2.2 displays the statistics

Em(u) = max
1≤i≤m

EPi [Ĵ(u, ξ)], StDm(u) = max
1≤i≤m

StDPi [Ĵ(u, ξ)],

urSDm(u) = max
1≤i≤m

EPi
[(
Ĵ(u, ξ)− EPi [Ĵ(u, ξ)]

)r
+

]
, r ∈ {1, 2},

Qmβ (u) = max
1≤i≤m

VaRPi,β(Ĵ(u, ξ)),

(2.7.8)

where Pi = N (µ̂i, σ̂
2
i Σ̄) ∈ P, m ∈ N, StDPi is the standard deviation, urSDPi is the upper-

r-semideviation and VaRPi,β, β ∈ (0, 1), is the value-at-risk. Here, µ̂i are uniformly and in-
dependently distributed over {µ ∈ Rp : ‖µ‖2 ≤ ∆ } and σ̂i on [σ0, σ1] for i = 1, . . . ,m. We
chose m = 10 and approximated the quantities in (2.7.8) with 1000 independent samples. The
statistics reported in Table 2.2 verify empirically that the distributionally robust control is more
robust than the nominal control. We obtained similar results as in Table 2.2 for different choices
of the parameters ∆, σ0 and σ1. The numerical results indicate that the objective function F
defined in (2.1.6) may be nonsmooth at u∗DR(∆) for several different values of ∆.

2.7.2 DRO of Unsteady Burgers’ Equation

We consider

min
u∈Uad

sup
P∈P

{
EP [(1/2)‖S(u, ξ)− yd‖2H ] + (α/2)‖u1‖2L2(I) + (α/2)‖u2‖2L2(I)

}
, (2.7.9)

where Uad ⊂ U = L2(I)×L2(I), I = (0, 1), D = (0, 1), α = 0.01, yd = 0.075, H = L2(I, L2(D)),
Y = W (I;L2(D), H1(D)),4 and S(u, ξ) solves the weak form of the parameterized unsteady

4Here W (I;L2(D), H1(D)) = { v ∈ L2(I, H1(D)) : vt ∈ L2(I, H1(D)∗) } is equipped with the norm ‖ · ‖Y =
(‖ · ‖2L2(I;H1(D)) + ‖ ·t ‖2L2(I;H1(D)∗))

1/2 [151, pp. 39–40].
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Figure 2.1: (Left) Stationary control u∗N of (2.2.2) and u∗DR(∆) of (2.1.5) for ∆ = σ1 = 0.05, ∆ =
σ1 = 0.1 and ∆ = σ1 = 0.15, associated with the approximated DROP of the steady Burgers’ equation
(2.7.2). The remaining data that defines the ambiguity set P (see (2.1.2)) is σ0 = 0, µ̄ = 0, Σ̄ =
I. (Right) Corresponding states evaluated at (u∗N , µ̄) and (u∗DR(∆), µ̄). Each graph is approximately
constant between the breaks.

Burgers’ equation

yt(x, t) = κ(ξ)yxx(x, t)− y(x, t)yx(x, t) + (ξ4/100)t, x ∈ D,
y(x, 0) = φ(x, ξ), x ∈ D, yx(0, t) = u1(t), yx(1, t) = u2(t), t ∈ I, (2.7.10)

where (u1, u2) ∈ U , p = 4, κ : Rp → R++ is given by κ(ξ) = 10ξ1−1, and φ : D×Rp → R is defined
by φ(x, ξ) = (1−10ξ2)x2(1+10ξ3−x)(1−x). The parameterized model (2.7.10) is based on that
used in [62, sect. 7]. We equip U = L2(I)×L2(I) with the norm ‖·‖U = (‖·‖2L2(I) +‖·‖2L2(I))

1/2.

Deterministic optimal control problems subject to (2.7.10) are considered in, for example, [328,
332, 330]. The sensitivity analysis performed in [62, sect. 7] of the optimal state and controls
of a deterministic optimal control problem subject to (2.7.10) revealed the sensitivity of the
computed control w.r.t. infinitesimal perturbations of ξ about its nominal value µ̄ = 0.
We show that Assumptions 2.3.1, 2.3.2 and 2.3.12 hold. We define V = L2(I;H1(D)), and
identify with L2(I;H1(D)∗) the dual of V as in [328, p. 145]. Moreover, we define e = (e1, e2) :
Y × U × Rp → V ∗ × L2(D) by e2(y, u, ξ) = y(·, 0)− φ(·, ξ) and by

〈e1(y, u, ξ), v〉V ∗,V = 〈yt, v〉V ∗,V +

∫

I
[u1(t)v(0, t)− u2(t)v(1, t)]dt (2.7.11)

+

∫

I

∫

D
[κ(ξ)yx(x, t)vx(x, t) + (y(x, t)yx(x, t)− 10−2ξ4t)v(x, t)]dxdt,

for all v ∈ V ; cf. [328, p. 145].

Lemma 2.7.4. The operator e defined in (2.7.11) is twice continuously differentiable.

Proof. For fixed ξ ∈ Rp, the derivations in [328, p. 146] imply that e(·, ·, ξ) is twice continuously
differentiable. We fix (y, u, ξ) ∈ Y × U × Rp. Since φ is a polynomial and D is bounded, the
operator e2(y, u, ·) : Rp → L2(D) is twice continuously differentiable. For each v ∈ V and s,
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h ∈ Rp, we have

〈Dξe1(y, u, ξ)h, v〉V ∗,V =

∫

I

∫

D
[ln(10)10ξ1−1h1yxvx − 10−2h4tv]dxdt,

〈Dξξe1(y, u, ξ)[h, s], v〉V ∗,V =

∫

I

∫

D
[ln(10)210ξ1−1h1s1yxvx]dxdt.

(2.7.12)

We only verify the first formula. The latter identity reveals the continuity of the second derivative
of Dξξe1. Using the Cauchy–Schwarz inequality and the continuous embedding V ↪−→ H, we find
that, for all v ∈ V with ‖v‖V ≤ 1,

|〈e1(y, u, ξ + h)− e1(y, u, ξ)−Dξe1(y, u, ξ)h, v〉V ∗,V | ≤ |κ(ξ + h)− κ(ξ)−Dκ(ξ)h|‖y‖Y .

Combining the pieces with the calculus rules [97, Thms. 8.9.1 and 8.12.6] yields the claims.

The tracking-type cost function J : Y ×U ×Rp → R+ defined by J(y, u, ξ) = (1/2)‖y − yd‖2H +
(α/2)‖u1‖2L2(I) + (α/2)‖u2‖2L2(I) is convex and infinitely many times continuously differentiable,

and e is twice continuously differentiable (see Lemma 2.7.4). Hence Assumption 2.3.2 and
Assumption 2.3.12 (a) hold.
For each fixed (u, ξ) ∈ U×Rp, the state equation e(y, u, ξ) = 0 has a unique solution S(u, ξ) [331,
Thm. 2.3], and ey(S(u, ξ), u, ξ) ∈ L (Y,Z) is bijective [331, Prop. 2.5]. The bounded mapping
theorem implies that ey(S(u, ξ), u, ξ) is boundedly invertible. Hence Assumption 2.3.12 (b)
holds. The continuity of S(u, ·) follows from the implicit function theorem. Combined with
Lemma 2.7.5, we conclude that the conditions of Assumption 2.3.1 are fulfilled.

Lemma 2.7.5. For all ξ ∈ Rp, the parameterized solution operator S(·, ξ) : U → Y for the
unsteady Burgers’ equation (2.7.10) is weakly-weakly continuous.

Proof. We verify the hypotheses of Proposition 2.9.3. Fix ξ ∈ Rp. The proof of [331, Thm. 2.4]
implies that { (y, u) ∈ Y × U : e(y, u, ξ) = 0 } is weakly sequentially closed. From [331, Thm.
2.3] and its proof, we deduce the existence of a constant C(ξ) ∈ R++ such that

‖S(u, ξ)‖Y ≤ C(ξ)(1 + ‖u1‖L2(I) + ‖u2‖L2(I)) for all u = (u1, u2) ∈ U (2.7.13)

(see also [328, pp. 141–142]). For each (u, ξ) ∈ U ×Rp, the unsteady Burgers’ equation (2.7.11)
has a unique solution. The norms ‖ · ‖U = (‖ · ‖2L2(I) + ‖ · ‖2L2(I))

1/2 and ‖ · ‖L2(I) + ‖ · ‖L2(I) are

equivalent. Moreover, Y = W (I;L2(D), H1(D)) is a Hilbert space [151, Thm. 1.32] and, hence,
it is reflexive. Thus Proposition 2.9.3 implies that S(·, ξ) is weakly-weakly continuous.

We show that Assumption 2.3.3 is fulfilled by verifying the hypotheses of Lemma 2.3.5.

Lemma 2.7.6. For u ∈ U , the function ‖S(u, ·)‖2H is uniformly integrable.

Proof. Since V = L2(I;H1(D)) is separable [159, Prop. 1.2.29], S(u, ·) : Rp → Y is continuous,
and Y ↪−→ V ↪−→ H are continuous, the mappings ‖S(u, ·)‖H and ‖S(u, ·)‖V are measurable.
Owing to Lemma 2.3.4 and ‖S(u, ·)‖2H ≤ ‖S(u, ·)‖2V , it suffices to prove that ‖S(u, ·)‖2V is
uniformly integrable. The proof of [328, Thm. 4.2 (p. 141)] and of [331, Prop. A.6] imply the
stability estimate

‖S(u, ξ)‖2V ≤
3|ξ4|
κ(ξ)2

+
‖φ(·, ξ)‖2L2(D)

κ(ξ)
+ 6‖u1‖2L2(I) + 6‖u2‖2L2(I) +

c1c2(ξ)2

κ(ξ)4
+ 2c2(ξ), (2.7.14)

where c1 > 0 and c2 : Rp → R+ is defined by c2(ξ) = 4(1 + ‖φ(·, ξ)‖2L2(D))
2. We have

‖φ(·, ξ)‖L2(D) = 630−1(1− 10ξ2)2(600ξ2
3 + 45ξ3 + 1). Lemmas 2.3.4, 2.9.1 and 2.9.2, imply that

each addend in (2.7.14) is uniformly integrable. Hence ‖S(u, ·)‖2V is uniformly integrable.

https://tinyurl.com/wao2yy8
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Lemmas 2.3.5 and 2.7.6 imply that Assumption 2.3.3 holds. To establish Assumption 2.3.12 (c),
we apply Lemma 2.7.7. The embedding Y ↪−→ H = L2(I;L2(D)) is compact [312, Thm. 2.1 (p.
271)], and Y is a Hilbert space [151, Thm. 1.32] and, hence, it is reflexive. Combined with the
assertions of Lemmas 2.3.16 and 2.7.7, we conclude that Assumption 2.3.12 (c) holds.

Lemma 2.7.7. For all sξ ∈ Rp, Sξ(·, µ̄)sξ : U → Y and Sξξ(·, µ̄)[sξ, sξ] : U → Y are weakly-
weakly continuous. Here, S : U × Rp → Y is the solution operator for (2.7.10).

Lemma 2.7.7 is established using Lemmas 2.7.8 and 2.7.9.

Lemma 2.7.8. There exists a constant c > 0 such that, for all v, w ∈ Y and ϕ ∈ V ,

∣∣∣∣
∫

I

∫

D
vxwϕdxdt

∣∣∣∣ ≤ c‖v‖L2(I;H1(D))‖w‖C(Ī;L2(D))‖ϕ‖V . (2.7.15)

Moreover, if (vk), (wk) ⊂ Y satisfy vk ⇀ v ∈ Y and wk ⇀ w ∈ Y , then
∫
I
∫
D(vkwk)xϕdxdt →∫

I
∫
D(vw)xϕdxdt as k →∞ for all ϕ ∈ V .

Proof. The embeddings H1(D) ↪−→ C(D̄) and Y ↪−→ C(Ī;L2(D)) are continuous [151, Thms. 1.14
and 1.32]. Combined with Hölder’s inequality, we find that, for some c > 0 and all v, w ∈ Y
and ϕ ∈ V ,

∣∣∣∣
∫

I

∫

D
vxwϕdxdt

∣∣∣∣ ≤
∫

I
‖ϕ(t)‖C(D̄)‖v(t)‖H1(D)‖w(t)‖L2(D)dt (2.7.16)

≤ c‖v‖L2(I;H1(D))‖w‖C(Ī;L2(D))‖ϕ‖V . (2.7.17)

The compact embedding Y ↪−→ C(Ī;L2(D)) [312, Thm. 2.1 (p. 271)], the stability estimate
(2.7.15), and the identity

∫
I
∫
D(vw)xϕdxdt =

∫
I
∫
D[vxwϕ + vwxϕ]dxdt, valid for all v, w ∈ Y

and ϕ ∈ V , imply the second assertion.

Lemma 2.7.9. For e defined in (2.7.11), there exists a function ρ : R3+p → R such that

‖ey(S(u, ξ), u, ξ)−1(g, h)‖Y ≤ ρ(‖S(u, ξ)‖Y , ‖g‖V ∗ , ‖h‖L2(D), ξ)

for all (u, g, h, ξ) ∈ U×V ∗×L2(D)×Rp and, for each ξ ∈ Rp, ρ(·, ξ) is monotonically increasing.

Proof. The proof is inspired by that of [331, Prop. 2.5] (see also [321, Prop. 10.4]). Fix
(u, g, h, ξ) ∈ U×V ∗×L2(D)×Rp. Since ey(S(u, ξ), u, ξ) is boundedly invertible [331, Prop. 5.2],
there exists a unique w ∈ Y with ey(S(u, ξ), u, ξ)w = (g, h), which is equivalent to w(0) = h and

〈wt(t), ϕ〉H1(D)∗,H1(D) +

∫

D
[κ(ξ)wx(t)ϕ′ + (S(u, ξ)w)x(t)ϕ]dx = 〈g(t), ϕ〉H1(D)∗,H1(D) (2.7.18)

for all ϕ ∈ H1(D) and for almost every t ∈ I; see [331, p. 254]. We fix t ∈ I and choose ϕ = w(t)
in (2.7.18). Using 〈wt(t), w(t)〉H1(D)∗,H1(D) = (1/2)d/dt‖w(t)‖2L2(D) [297, Prop. 1.2 (p. 106)] (see

also [312, Lem. 1.2 (pp. 260–161)]) and Hölder’s inequality, we find that

1

2

d

dt
‖w(t)‖2L2(D) + κ(ξ)‖w(t)‖2H1(D) ≤ ‖g(t)‖H1(D)∗‖w(t)‖H1(D) + κ(ξ)‖w(t)‖L2(D)

+ ‖S(u, ξ)(t)‖H1(D)‖w(t)‖L2(D)‖w(t)‖C(D̄)

+ ‖S(u, ξ)(t)‖L2(D)‖w(t)‖H1(D)‖w(t)‖L∞(D).



2.7. Applications and Numerical Results 59

Agmond’s inequality ensures ‖w(t)‖L∞(D) ≤ C‖w(t)‖1/2
L2(D)

‖w(t)‖1/2
H1(D)

for some absolute con-

stant C ∈ R++ [313, eq. (2.21)]. Combined with Young’s inequality and the continuous embed-
ding H1(D) ↪−→ C(D̄) [151, Thm. 1.14], we deduce the existence of c1, c2 ∈ R++ such that

1
2

d
dt‖w(t)‖2L2(D) + κ(ξ)

2 ‖w(t)‖2H1(D) ≤ c1
κ(ξ)‖g(t)‖2H1(D)∗

+ c2

(
κ(ξ) + 1

κ(ξ)‖S(u, ξ)(t)‖2H1(D) + 1
κ(ξ)‖S(u, ξ)(t)‖4L2(D)

)
‖w(t)‖2L2(D).

Integrating over (0, T ) for fixed T ∈ (0, 1), and using w(0) = h and the fact that the dual of
V = L2(I;H1(D)) is identified with L2(I;H1(D)∗), we find that

‖w(T )‖2L2(D) + κ(ξ)

∫ T

0
‖w(t)‖2H1(D)dt ≤ 2c1

κ(ξ)‖g‖2V ∗ + ‖h‖2L2(D)

+ 2c2

∫ T

0

(
κ(ξ) + 1

κ(ξ)‖S(u, ξ)(t)‖2H1(D) + 1
κ(ξ)‖S(u, ξ)(t)‖4L2(D)

)
‖w(t)‖2L2(D)dt.

(2.7.19)

Combined with the continuous embedding Y ↪−→ C(Ī;L2(D)) [297, Prop. 1.2 (p. 106)], Gronwall’s
inequality (see, e.g., [338, p. 317]) ensures, for all t ∈ Ī,

‖w(t)‖2L2(D) ≤
(

2c1
κ(ξ)‖g‖2V ∗ + ‖h‖2L2(D)

)
exp

(
2c2κ(ξ) + 2c2

κ(ξ)‖S(u, ξ)‖2V + 2c2
κ(ξ)‖S(u, ξ)‖4L4(I;L2(D))

)

(see also [331, eqns. (2.7) and (2.8)]). Using (2.7.19), and the continuity of Y ↪−→ L4(I;L2(D))
and of Y ↪−→ V , we deduce the existence of a function ρ1 : R3 × Rp → R++ such that ‖w‖V ≤
ρ1(‖S(u, ξ)‖Y , ‖g‖V ∗ , ‖h‖L2(D), ξ), and ρ1(·, ξ) is increasing for all ξ ∈ Rp.5
Next, we derive an upper bound on ‖wt‖L2(D;H1(D)∗). From (2.7.18) and Hölder’s inequality, we
obtain, for all ϕ ∈ H1(D),

|〈wt(t), ϕ〉H1(D)∗,H1(D)| ≤ ‖g(t)‖H1(D)∗‖ϕ‖H1(D) + κ(ξ)‖w(t)‖H1(D)‖ϕ‖H1(D)

+ ‖S(u, ξ)(t)‖H1(D)‖w(t)‖L2(D)‖ϕ‖C(D̄)

+ ‖S(u, ξ)(t)‖L2(D)‖w(t)‖H1(D)‖ϕ‖C(D̄).

Combined with Jensen’s inequality and the continuous embedding H1(D) ↪−→ C(D̄), we deduce
the existence of a constant c3 ∈ R++ such that

‖wt‖2L2(D;H1(D)∗) ≤ c3‖g‖2V ∗ + c3κ(ξ)‖w‖2L2(I;L2(D))

+ c3‖w‖2C(Ī;L2(D))‖S(u, ξ)‖2V + c3‖S(u, ξ)‖2C(Ī;L2(D))‖w‖2V .

Putting together the pieces, we deduce the existence of ρ : R3 × Rp → R++ such that ‖w‖Y ≤
ρ(‖S(u, ξ)‖Y , ‖g‖V ∗ , ‖h‖L2(D), ξ) and, for each ξ ∈ Rp, ρ(·, ξ) is monotonically increasing.

Proof of Lemma 2.7.7. Throughout the proof, we use the fact that the notions of weak and
weak-star convergence in the dual space of a reflexive Banach space coincide.
We fix (ξ, sξ) ∈ Rp × Rp, and show that Sξ(·; ξ)sξ is weakly-weakly continuous using Propo-
sition 2.9.3. We define h : U → L2(D) and g : U → V ∗ by h = φξ(·, ξ)sξ ∈ L2(D) and
g = −eξ(S(u, ξ), u, ξ)sξ ∈ V ∗, respectively. We fix u ∈ U . The operator w = Sξ(u, ξ)sξ is
the unique solution to ey(S(u, ξ), u, ξ)w = (g(u), h(u)). Using (2.7.12), we find that ‖g‖V ∗ ≤
ln(10)ξ1−1|(sξ)1|‖S(u, ξ)‖Y + 10−2|(sξ)4|. Combined with the stability estimate (2.7.13) and
Lemma 2.7.9, we conclude that there exists a monotonically increasing function ρ(·; ξ) : R→ R

5Since Y ↪−→ C(Ī;L2(D)) is continuous [297, Prop. 1.2 (p. 106)], we have, for some C ∈ R++ and all v ∈ Y ,
(
∫
I ‖v(t)‖4L2(D)dt)

1/4 ≤ |I|‖v‖C(Ī;L2(D)) = ‖v‖C(Ī;L2(D)) ≤ C‖v‖Y .
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such that ‖Sξ(u, ξ)sξ‖Y ≤ ρ(‖u‖U ; ξ) for all u ∈ U . Next, we prove that A = { (w, u) ∈
Y ×U : ey(S(u, ξ), u, ξ)w = (g(u), h(u)) } is weakly sequentially closed. Let (wk, uk)N0 ⊂ A fulfill
(wk, uk) ⇀ (w, u) ∈ Y ×U as k →∞. According to Lemma 2.7.5, S(·, ξ) is weakly-weakly contin-
uous. Hence S(uk, ξ) ⇀ S(u, ξ) ∈ Y as k → ∞. Using (2.7.12) and (yx)k ⇀ yx ∈ L2(I;L2(D))
as k →∞ [312, p. 272], we obtain that Dξe1(S(uk, ξ), uk, ξ)sξ ⇀ Dξe1(S(u, ξ), u, ξ)sξ as k →∞.
Since Dξe2(S(u, ξ), u, ξ) = −Dξφ(·, ξ), we get Dξe2(S(uk, ξ), uk, ξ)sξ ⇀ Dξe2(S(u, ξ), u, ξ)sξ as
k →∞. It must yet be shown that Dye(S(uk, ξ), uk, ξ)wk ⇀ Dye(S(u, ξ), u, ξ)w as k →∞. We
have Dye2(y, u, ξ)w = w(0) and

〈Dye1(y, u, ξ)w,ϕ〉V ∗,V = 〈wt, ϕ〉V ∗,V +

∫

I

∫

D
[κ(ξ)wxϕx + (S(u, ξ)w)xϕ]dxdt

for all (y, u, ξ, w, ϕ) ∈ Y × U × Rp × Y × V [328, p. 146]. Since Y ↪−→ C(Ī;L2(D)) is compact,
we have wk(0) → w(0) ∈ L2(D) as k → ∞. Moreover, wk ⇀ w ∈ Y as k → ∞ implies
wk ⇀ w ∈ V and w′k ⇀ w′ ∈ V ∗ as k → ∞ [312, p. 272]. Combined with Lemma 2.7.8, we
obtain Dye(S(uk, ξ), uk, ξ)wk ⇀ Dye(S(u, ξ), u, ξ)w as k → ∞. Putting together the pieces,
we find that the set A is weakly sequentially closed. Proposition 2.9.3 implies the weak-weak
continuity of Sξ(·, ξ)sξ.
We show that Sξξ(·, ξ)[sξ, sξ] is weakly-weakly continuous using Proposition 2.9.3. Fix u ∈ U .
We define h : U → R by h(u) = φξξ[sξ, sξ] and g : U → V ∗ by

g(u) = −Dξξe1(S(u, ξ), u, ξ)[sξ, sξ]−Dyye1(S(u, ξ), u, ξ)[Sξ(u, ξ)sξ, Sξ(u, ξ)sξ]

− 2Dyξe1(S(u, ξ), u, ξ)[Sξ(u, ξ)sξ, sξ].

The operator s = Sξξ(u, ξ)[sξ, sξ] is the unique solution to ey(S(u, ξ), u, ξ)s = (g(u), h(u)). Using
(2.7.12) and the derivations in [328, p. 146], we find that, for all (y, v, w, d, ϕ) ∈ Y 3 × Rp × V ,

〈Dyye1(y, u, ξ)[v, w], ϕ〉V ∗,V =

∫

I

∫

D
(vw)xϕdxdt,

〈Dyξe1(y, u, ξ)[v, d], ϕ〉V ∗,V =

∫

I

∫

D
ln(10)10ξ1−1d1vxϕxdxdt.

Combined with (2.7.15), Lemma 2.7.9 and the above estimates, we deduce the existence of an
increasing function ζ(·; ξ) : R→ R such that ‖Sξξ(u, ξ)[sξ, sξ]‖Y ≤ ζ(‖u‖U ; ξ) for all u ∈ U .
Next, we prove that B = { (s, u) ∈ Y × U : ey(S(u, ξ), u, ξ)s = (g(u), h(u)) } is weakly sequen-
tially closed. Let (sk, uk)N0 ⊂ B such that (sk, uk) ⇀ (s, u) ∈ Y × U as k → ∞. Lemma 2.7.8,
(sk, uk) ⇀ (s, u) ∈ Y × U as k → ∞, and the weak-weak continuity of S(·, ξ) and Sξ(·, ξ)sξ
imply that g(uk) ⇀ g(u) as k → ∞. Lemma 2.7.8 further yields ey(S(uk, ξ), uk, ξ)sk ⇀
ey(S(u, ξ), u, ξ)s as k → ∞. Hence B is weakly sequentially closed. Proposition 2.9.3 implies
the weak-weak continuity of Sξξ(·, ξ)[sξ, sξ].

Discretization and Numerical Results

We discretized the unsteady Burgers’ equation (2.7.10) in time, using the implicit Euler scheme
on a uniform mesh of the time interval I = (0, 1) with 100 time steps as in [328, p. 155]. For
the spatial discretization, we used piecewise linear finite elements on a uniform mesh of the
computational domain D = (0, 1) with 100 elements. We used Uad = U , approximated the
DROP (2.7.9) by the DROP (2.1.5) and applied Algorithm 2 to (2.1.5). We chose u0 = u∗N ,
the stationary control of (2.2.2), and the same initial smoothing parameters and update rule as
in section 2.7.1. In Algorithm 2, we used SciPy [327] with L-BFGS with termination tolerance
< 10−2 for each inner iteration, and terminated Algorithm 2 when ηk < 10−4.

https://docs.scipy.org/
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Table 2.3: Iteration history of Algorithm 2 applied to the approximated DROP of the unsteady Burgers’
equation (2.7.10), with for ∆ = 0.1, σ0 = 0, σ1 = 0.01, Σ̄ = I and tk = (τk, νk, ηk).

k F̃ (uk; tk) ‖∇uF̃ (uk; tk)‖U #iter ‖uk−uk−1‖U
1+‖uk−1‖U

#F̃ (uk; tk) #∇uF̃ (uk; tk)

1 9.71222e-03 7.95245e-04 22 2.71162e-03 26 26
2 8.30158e-03 7.45890e-03 16 3.05599e-04 20 20
3 8.17309e-03 3.15171e-03 3 3.16757e-05 7 7

Table 2.4: Statistics (see (2.7.8)) for nominal control u∗N and distributionally robust control u∗DR(∆),
associated with the unsteady Burgers’ equation (2.7.10), with ∆ = 0.1, σ0 = 0, σ1 = 0.01, µ̄ = 0, and
Σ̄ = I.

u Em(u) u1SDm(u) StDm(u) u2SDm(u) Qm.50(u) Qm.80(u) Qm.95(u)

u∗N 7.06471e-03 6.08569e-02 1.25907e-02 1.17093e-02 2.70676e-03 9.09762e-03 3.38810e-02
u∗DR 6.56620e-03 5.78466e-02 1.14197e-02 1.06290e-02 3.05037e-03 8.45055e-03 3.06941e-02

Figure 2.2 depicts the stationary controls u∗N of the nominal problem (2.2.2), and the distri-
butionally robust controls u∗DR of the approximated DROP of the unsteady Burgers’ equation
(2.7.10) for three ambiguity sets. Whereas the nominal control has a symmetric pattern, the
robust controls are asymmetric, a result of the non-symmetry of the parameterized initial condi-
tion φ (see (2.7.10)). The robust controls differ significantly from the nominal one. The statistics
(see (2.7.8)) reported in Table 2.4 verify empirically that the distributionally robust control is
more robust than the nominal one. We obtained similar numerical values for different choices
of the data defining the ambiguity set. Table 2.3 provides an iteration history of Algorithm 2
applied to the approximated DROP of the unsteady Burgers’ equation (2.7.10). The difference
of successive iterates of the homotopy method converge to zero. The number of objective and
gradient evaluations is quite low, and Algorithm 2 required only 53 solutions of the unsteady
Burgers’ equation (2.7.10) in total. Our numerical results indicate that the objective function
F (see (2.1.6)) may be nonsmooth at u∗DR(∆) for multiple values of ∆.
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Figure 2.2: Stationary control (u∗1,N , u
∗
2,N ) of (2.2.2) and (u∗1,DR(∆), u∗2,DR(∆)) of (2.1.5) for ∆ =

0.05 = 10σ1, ∆ = 0.1 = 10σ1, and ∆ = 0.5 = 10σ1, associated with the approximated DROP of the
unsteady Burgers’ equation (2.7.10). The remaining data that defines the ambiguity set P (see (2.1.2))
is σ0 = 0, µ̄ = 0, Σ̄ = I.



62 Chapter 2. Distributionally Robust PDE-Constrained Optimization

2.8 Conclusion and Discussion

We developed a sampling-free approximation scheme for moment-based distributionally robust
PDE-constrained optimization problems. The definition of the moment-based ambiguity set
provided in (2.1.2) is built on those used in [94, 300, 75]. Our approach incorporates second-
order information from the reduced parameterized objective function (see (2.1.3)) about the
nominal parameters into the problem formulation (2.1.5), and only requires one solution of the
state equation per evaluation of the surrogate objective function.
In section 2.3, we provided conditions on the PDE solution and on the parameterized objective
function that ensure the existence of optimal solutions of the DROP (2.1.1), and of the approxi-
mated and smoothed DROPs. To establish the existence of worst-case distributions, we used the
concept of uniform integrability and we proved that the ambiguity set is weak-star sequentially
compact.
In section 2.7, we applied our scheme to two nonlinear, nonconvex PDE-constrained problems:
the optimal control of the steady and of the unsteady Burgers’ equation. The optimal control
of the unsteady Burgers’ equation has applications in the field of PDE-constrained optimization
as it allows the modeling of convection-diffusion phenomena [328, p. 69], [92, p. 203].
Future work includes the analysis of local convergence properties of the smoothing method,
which may be built on the arguments used in section 1.5 combined with those in [193], and the
application of our scheme to further control problems with a larger number of parameters.
A further task is the development of a scheme for data-driven DRO with PDEs using the
Wasserstein distance. Such a scheme may be built on the use of second-order Taylor expansions
or on utilizing Lagrangian relaxation as proposed by Sinha, Namkoong, and Duchi [299].

2.9 Supplementary Materials

2.9.1 Bounds on Moments of Sub-Gaussian Random Vectors

We prove upper bounds on the strong moments of sub-Gaussian random vectors.

Lemma 2.9.1 ([235, Lem. A.1]). For all P ∈ P, where the ambiguity set P is defined in (2.1.2),
and each γ ≥ 2, we have EP [ξ] ∈ Rp, and

EP [‖ξ − EP [ξ]‖γ2 ] ≤ 2(γ/e)γ/2(I • σ1Σ̄)γ/2, (2.9.1)

EP [‖ξ‖γ2 ] ≤ 2γ(γ/e)γ/2(I • σ1Σ̄)γ/2 + 2γ−1(‖Σ̄1/2‖2∆ + ‖µ̄‖2)γ . (2.9.2)

Proof. Fix P ∈ P. The definition of P provided in (2.1.2) ensures ‖Σ̄−1/2(EP [ξ] − µ̄)‖2 ≤ ∆.
We have EP [ξ] ∈ Rp since

‖EP [ξ]‖2 ≤ ‖Σ̄−1/2‖2‖Σ̄−1/2(EP [ξ]− µ̄)‖2 + ‖µ̄‖2 ≤ ‖Σ̄−1/2‖2∆ + ‖µ̄‖2 <∞. (2.9.3)

Combined with Lemma 1.8.2, we obtain the estimate (2.9.1).
The monotonicity and convexity of R+ 3 z 7→ zγ yield, for each ξ ∈ Rp,

‖ξ‖γ2 ≤ (‖ξ − EP [ξ]‖2 + ‖EP [ξ]‖2)γ ≤ 2γ−1(‖ξ − EP [ξ]‖γ2 + ‖EP [ξ]‖γ2).

Combined with (2.9.1) and (2.9.3), we obtain (2.9.2).

Lemma 2.9.2 is used to verify Assumption 2.3.3 in section 2.7.

Lemma 2.9.2 ([235, Lem. A.3]). Define a : Rp → R by a(ξ) =
∑p

i=1 αiξ
ri
i , and b : Rp → R by

b(ξ) = exp (
∑p

i=1 βiξi), where αi, βi ∈ R and ri ≥ 1 are fixed. Then |a|r, |b|s, and |atbs|r are
uniformly integrable for all r, t > 0 and s ∈ R.
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Proof. Fix ξ ∈ Rp, r, t > 0, and s ∈ R. We define r̄ = max{1, r} ≥ 1. The function R+ 3 z 7→ zr̄

is convex and, hence, Jensen’s and Young’s inequality yield

|a(ξ)|r(2r̄/r) = |a(ξ)|2r̄ ≤ p2r̄−1
p∑

i=1

|αi|2r̄|ξi|2r̄ri ≤ p2r̄−1
p∑

i=1

|αi|2r̄‖ξ‖2r̄ri2 ,

|a(ξ)tb(ξ)s|2r̄ ≤ |a(ξ)|2tr̄|b(ξ)|2sr̄ ≤ (1/2)|a(ξ)|4tr̄ + (1/2)|b(ξ)|4sr̄.
(2.9.4)

Combined with Lemmas 2.3.4 and 2.9.1, we find that |a|r is uniformly integrable for all r > 0. We
have |b(ξ)|2s = exp(

∑p
i=1 2sαiξi). We define d ∈ Rp by di = 2sαi for i = 1, . . . , p. Hence (2.3.2),

Lemma 2.9.1, and (2.9.2) yield the uniform integrability of |b|s for all s ∈ R. Moreover, the first
two assertions, when combined with Lemma 2.3.4 and (2.9.4), imply the uniform integrability
of |atbs|r for each r, t > 0 and s ∈ R.

2.9.2 Weak-Weak Continuity of Solution Operators

We provide conditions that ensure the weak-weak continuity of the solution operator of a PDE.
A similar result appears in the proof of [202, Thm. 12] by Kunisch and Walter [202].

Proposition 2.9.3 ([235, Lem. B.1]). Let Y , U and Z be Banach spaces, let Y be reflexive,
and let Uad ⊂ U . For each u ∈ Uad, let S(u) ∈ Y be the unique solution to: Find y ∈ Y with
e(y, u) = 0, where S : Uad → Y and e : Y × U → Z. Suppose that ρ : R → R is monotonically
increasing with ‖S(u)‖Y ≤ ρ(‖u‖U ) for all u ∈ Uad, and X = { (y, u) ∈ Y × Uad : e(y, u) = 0 }
is weakly sequentially closed. Then S is weakly-weakly continuous.

We apply the following known result to prove Proposition 2.9.3; cf. [196, p. 257], [277, pp.
236–238].

Lemma 2.9.4 ([235, Lem. B.2]). Let X be a Banach space, and let x ∈ X. If each subsequence
of (xk) ⊂ X has a further subsequence that converges weakly to x, then xk ⇀ x as k →∞.

Proof. For each fixed f ∈ X∗, each subsequence of (〈f, xk〉X∗,X) ⊂ R has a further subsequence
that converges to 〈f, x〉X∗,X ∈ R. Hence 〈f, xk〉X∗,X → 〈f, x〉X∗,X as k →∞.

Proof of Proposition 2.9.3. Fix u ∈ Uad and (uk) ⊂ Uad with uk ⇀ u as k → ∞. Since ρ is
increasing, the boundedness of (uk) [46, Thm. 2.23] implies that of (S(uk)). Let (S(uk))K be a
subsequence of (S(uk)). Because (S(uk)) is bounded and Y is reflexive, there exist y ∈ Y and
a further subsequence (S(uk))K′ of (S(uk))K such that S(uk) ⇀ y as K ′ 3 k → ∞ [46, Thm.
2.28]. Since (S(uk), uk)N0 ⊂ X and X is weakly sequentially closed, we deduce (y, u) ∈ X. Hence
y = S(u). Consequently, every subsequence of (S(uk)) has a further subsequence converging to
S(u) weakly. Lemma 2.9.4 yields S(uk) ⇀ S(u) as k →∞.

2.9.3 Computation of Derivatives and Computational Complexity

Using the adjoint approach, we derive the derivatives required by our approximation scheme.

Adjoint Approach

We recap the adjoint approach (see, e.g., [151, sect. 1.6.4]), which we use to compute (first)
derivatives of “reduced” functions.
Let Y, U and Z be Banach spaces, and let F : Y × U → R and E : Y × U → Z be continuously
differentiable. We compute the derivative of F̂ : U→ R defined by

F̂(u) = F(S(u), u).
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For each u ∈ U, we assume that there exists a unique y = S(u) ∈ Y such that

E(y, u) = 0,

and require that Ey(S(u), u) is boundedly invertible. The implicit function theorem implies that
S : U→ Y is continuously differentiable [97, Thm. 10.2.1].
We define L : Y × U× Z∗ → R by

L(y, u, z) = F(y, u) + 〈z,E(y, u)〉Z∗,Z. (2.9.5)

Using E(S(u), u) = 0, we have

F̂(u) = F(y(u), u) = L(y(u), u, z) for all z ∈ Z.

We obtain

F̂u(u) = Lu(S(u), u, z(u)) = Fu(S(u), u) + Eu(S(u), u)∗z(u), (2.9.6)

where z(u) ∈ Z∗ is the unique solution of the adjoint equation

Ly(y(u), u, z) = 0 ⇐⇒ Ey(y(u), u)∗z = −Fy(y(u), u), (2.9.7)

see, e.g, [151, sects. 1.6.2 and 1.6.4].
In the subsequent sections, we exploit the symmetry of second-order partial derivatives of twice
Fréchet differentiable mappings; see, e.g., [97, Thm. 8.12.2].

Computation of the Quadratic Model

We derive formulas for the first and second derivative of the function Ĵ(u, ·) defined in (2.1.3)
for fixed u ∈ U . These formulates can also be found in [151, sects. 1.6.2 and 1.6.5]. However, we
use a different approach to compute the second derivative than that utilized in [151, sect. 1.6.5].
Throughout the current and next section, we require that the following conditions hold:
• The spaces U , Y , Z, and Ξ are Banach spaces.
• The mappings J : U×Y ×Ξ→ R and e : Y ×U×Ξ→ Z are twice continuously differentiable.
• For each (u, ξ) ∈ U ×Ξ, S(u, ξ) ∈ Y is the unique solution to: Find y ∈ Y with e(y, u, ξ) = 0,

where S : U × Ξ→ Y .
• For each (u, ξ) ∈ U × Ξ, the operator ey(S(u, ξ), u, ξ) is boundedly invertible.
(It would be sufficient to assume that U , Y , Z, and Ξ are open subsets of Banach spaces.)
We compute the first derivative of Ĵ(u, ·). In order to be able to apply the adjoint approach
described in section 2.9.3, we define L : Y × U × Ξ× Z∗ → R by

L(y, u, ξ, z) = J(y, u, ξ) + 〈z, e(y, u, ξ)〉Z∗,Z . (2.9.8)

We identify y = y, u = ξ, F = J(·, u, ·), Y = Y , U = Ξ, and keep u ∈ U fixed. Applying the
adjoint approach, and using (2.9.6) and (2.9.7), we obtain that Ĵξ(u, ξ) ∈ Ξ∗ is given by

Ĵξ(u, ξ) = Jξ(S(u, ξ), u, ξ) + eξ(S(u, ξ), u, ξ)∗zfoa(u, ξ), (2.9.9)

where zfoa(u, ξ) ∈ Z∗ is the solution of the first-order adjoint equation

ey(S(u, ξ), u, ξ)∗zfoa(u, ξ) = −Jy(S(u, ξ), u, ξ). (2.9.10)

Hence, we can compute Ĵξ(u, ·) via the solution of the first-order adjoint equation (2.9.10).
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Now, we compute the derivative of Ĵξ(u, ·)sξ for a fixed sξ ∈ Ξ. Let yfos(u, ξ; sξ) ∈ Y be the
solution to the first-order sensitivity equation

ey(S(u, ξ), u, ξ)yfos = −eξ(S(u, ξ), u, ξ)sξ. (2.9.11)

In order to apply the adjoint approach described in section 2.9.3, we define y = (y, yfos), u = ξ,
z = (z1, z2), F(y, u) = Jy(y, u, ξ)yfos + Jξ(y, u, ξ)sξ,

E(y, u) =

[
e(y, u, ξ)

ey(y, u, ξ)yfos + eξ(y, u, ξ)sξ

]
,

Y = Y × Y , U = Ξ, Z = Z × Z, and fix (sξ, u) ∈ Ξ× U . Here y(u) = (y(u, ξ), yfos(u, ξ; sξ)).
We define L : Y × U× Z∗ → R by

L(y, u, z) = Jy(y, u, ξ)yfos + Jξ(y, u, ξ)sξ + 〈z1, e(y, u, ξ)〉Z∗,Z
+ 〈z2, ey(y, u, ξ)yfos + eξ(y, u, ξ)sξ〉Z∗,Z .

(2.9.12)

Combined with (2.9.11), we find that

Ĵξ(u, ξ)sξ = Jy(S(u, ξ), u, ξ)yfos(u, ξ; sξ) + Jξ(S(u, ξ), u, ξ)sξ = L(y(u), u, z), (2.9.13)

for all z = (z1, z2) ∈ Z. Using the adjoint approach, and (2.9.6) and (2.9.7), we obtain

Ĵξξ(u, ξ)sξ = Lu(y(u), u, z(u)), (2.9.14)

where z(u) ∈ Z∗ is the solution to

Ly(y(u), u, z) = 0. (2.9.15)

We compute the derivatives in (2.9.14) and (2.9.15). From (2.9.8), we obtain

L(y, u, z) = Ly(y, u, ξ, z2)yfos + Lξ(y, u, ξ, z2)sξ + 〈z1, e(y, u, ξ)〉Z∗,Z . (2.9.16)

Recalling that u = ξ and y = (y, yfos), and using (2.9.8), we obtain

Lu(y(u), u, z(u)) = Lyξ(S(u, ξ), u, ξ, zfoa(u, ξ))yfos(u, ξ; sξ)

+ Lξξ(S(u, ξ), u, ξ, zfoa(u, ξ))sξ + eξ(S(u, ξ), u, ξ)∗z1,

Ly1(y(u), u, z(u)) = Lyy(S(u, ξ), u, ξ, zfoa(u, ξ))yfos(u, ξ; sξ)

+ Lξy(S(u, ξ), u, ξ, zfoa(u, ξ))sξ + ey(S(u, ξ), u, ξ)∗z1,

Ly2(y(u), u, z(u)) = Jy(S(u, ξ), u, ξ) + ey(S(u, ξ), u, ξ)∗z2.

(2.9.17)

We define zsoa(u, ξ; sξ) ∈ Z∗ as the solution to the second-order adjoint equation

ey(S(u, ξ), u, ξ)∗zsoa = −Lyy(S(u, ξ), u, ξ, zfoa(u, ξ))yfos(u, ξ; sξ)

− Lξy(S(u, ξ), u, ξ, zfoa(u, ξ))sξ.
(2.9.18)

The equality (2.9.15) holds if y(u) = (S(u, ξ), yfos(u, ξ; sξ)) and z(u) = (zsoa(u, ξ), zfoa(u, ξ)).
Consequently z2 = zfoa(u, ξ). Our formulas agree with those obtained in [151, sect. 1.6.5].
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Computation of the Derivative of the Quadratic Model

We derive formulas for the derivatives of Ĵ(·, ξ), Ĵξ(·, ξ)sξ and of Ĵξξ(·, ξ)[sξ, sξ] for fixed (ξ, sξ) ∈
Ξ × Ξ. These formulates can also be found in [180, sect. 4.3] and [181, sect. 4.2]; however, our
derivation differs.
We compute the derivative of Ĵ(·, ξ). The adjoint approach implies

Ĵu(u, ξ) = Ju(S(u, ξ), u, ξ) + eu(S(u, ξ), u, ξ)∗zfoa(u, ξ), (2.9.19)

where zfoa(u, ξ) is the solution to (2.9.10).
We compute the derivative of Ĵξ(·, ξ)sξ. To apply the adjoint approach, we use the formula for

Ĵξ(·, ξ)sξ provided in (2.9.13). Here, however, we identify u = u and fix (ξ, sξ) ∈ Ξ×Ξ. Applying
the adjoint approach, and using (2.9.6) and (2.9.7), we find that

Ĵξu(u, ξ)sξ = Lu(y(u), u, z(u)), (2.9.20)

where z(u) ∈ Z∗ is the solution to

Ly(y(u), u, z) = 0.

A formula for Ly(y(u), u, z) is provided in (2.9.17). Using (2.9.16) and (2.9.20), we have

Ĵξu(u, ξ)sξ = Lyu(S(u, ξ), u, ξ, zfoa(u, ξ))yfos(u, ξ; sξ)

+ Lξu(S(u, ξ), u, ξ, zfoa(u, ξ))sξ

+ eu(y, u, ξ)∗zsoa(u, ξ; sξ).

We compute the derivative of Ĵξξ(·, ξ)[sξ, sξ]. Let ysos(u, ξ; sξ) ∈ Y be the solution to the second-
order sensitivity equation

ey(S(u, ξ), u, ξ)ysos = −eyy(S(u, ξ), u, ξ)[yfos(u, ξ; sξ), yfos(u, ξ; sξ)]

− 2eξy(S(u, ξ), u, ξ)[sξ, yfos(u, ξ; sξ)]

− eξξ(S(u, ξ), u, ξ)[sξ, sξ].

(2.9.21)

We identify y = (y, yfos, ysos), y(u) = (S(u, ξ), yfos(u, ξ; sξ), ysos(u, ξ; sξ)), u = u, z = (z1, z2, z3) ∈
Z∗ = Z∗ × Z∗ × Z∗, F(y, u) = Jy(y, u, ξ)ysos,

E(y, u) =




e(y, u, ξ)
ey(y, u, ξ)yfos + eξ(y, u, ξ)sξ

ey(y, u, ξ)ysos + eyy(y, u, ξ)[yfos, yfos] + 2eξy(y, u, ξ)[sξ, yfos] + eξξ(y, u, ξ)[sξ, sξ]


 ,

and fix (ξ, sξ) ∈ Ξ× Ξ. We define M : Y × U× Z∗ → R by

M(y, u, z) = Jy(y, u, ξ)ysos

+ Jyy(y, u, ξ)[yfos, yfos] + 2Jyξ(y, u, ξ)[yfos, sξ] + Jξξ(y, u, ξ)[sξ, sξ]

+ 〈z1, e(y, u, ξ)〉Z∗,Z
+ 〈z2, ey(y, u, ξ)yfos + eξ(y, u, ξ)sξ〉Z∗,Z
+ 〈z3, ey(y, u, ξ)ysos + eyy(y, u, ξ)[yfos, yfos]〉Z∗,Z
+ 〈z3, 2eξy(y, u, ξ)[sξ, yfos] + eξξ(y, u, ξ)[sξ, sξ]〉Z∗,Z .

(2.9.22)

Combining (2.9.11), (2.9.21), and (2.9.22), we find that

Ĵξξ(u, ξ)[sξ, sξ] = Jy(S(u, ξ), u, ξ)ysos(u, ξ; sξ) + Jyy(S(u, ξ), u, ξ)[yfos(u, ξ; sξ), yfos(u, ξ; sξ)]

+ 2Jyξ(S(u, ξ), u, ξ)[yfos(u, ξ; sξ)sξ, sξ] + Jξξ(S(u, ξ), u, ξ)[sξ, sξ]

= M(y(u), u, z),



2.9. Supplementary Materials 67

for all z ∈ Z. Applying the adjoint approach, and using (2.9.6) and (2.9.7), we obtain

Ĵξξu(u, ξ)[sξ, sξ] = Mu(y(u), u, z(u)), (2.9.23)

where z(u) ∈ Z∗ is the solution to

My(y(u), u, z) = 0. (2.9.24)

Using (2.9.8) and (2.9.21), we have

M(y, u, z) = Ly(y, u, ξ, z3)ysos + Lyy(y, u, ξ, z3)[yfos, yfos]

+ 2Lyξ(y, u, ξ, z3)[yfos, sξ] + Lξξ(y, u, ξ, z3)[sξ, sξ]

+ 〈z1, e(y, u, ξ)〉Z∗,Z + 〈z2, ey(y, u, ξ)yfos + eξ(y, u, ξ)sξ〉Z∗,Z .
(2.9.25)

From (2.9.22) and the chain rule, we deduce

My1(y, u, z) = Lyy(y, u, ξ, z3)ysos + Lyyy(y, u, ξ, z3)[yfos, yfos, ·]
+ 2Lyξy(y, u, ξ, z3)[yfos, sξ, ·] + Lξξy(y, u, ξ, z3)[sξ, sξ, ·]
+ ey(y, u, ξ)

∗z1

+ [eyy(y, u, ξ)yfos]
∗z2 + [eξy(y, u, ξ)sξ]

∗z2,

My2(y, u, z) = 2Lyy(y, u, ξ)yfos + 2Lyξ(y, u, ξ)sξ + ey(y, u, ξ)
∗z2,

My3(y, u, z) = Ly(y, u, ξ, z3).

Using (2.9.10), we get z3(u, ξ) = zfoa(u, ξ), and (2.9.18) yields z2 = zsoa(u, ξ; sξ).
Now, we define ztoa(u, ξ; sξ) ∈ Z∗ as the solution of the third-order adjoint equation

ey(S(u, ξ), u, ξ)∗ztoa = −Lyy(S(u, ξ), u, ξ, zfoa(u, ξ))ysos(u, ξ; sξ)

− Lyyy(S(u, ξ), u, ξ, zfoa(u, ξ))[yfos(u, ξ; sξ), yfos(u, ξ; sξ)]

− 2Lyξy(S(u, ξ), u, ξ, zfoa(u, ξ))[yfos(u, ξ; sξ), sξ, ·]
− Lξξy(S(u, ξ), u, ξ, zfoa(u, ξ))[sξ, sξ, ·]
− [eyy(S(u, ξ), u, ξ)yfos(u, ξ; sξ)]

∗zsoa(u, ξ; sξ)

− [eξy(S(u, ξ), u, ξ)sξ]
∗zsoa(u, ξ; sξ).

(2.9.26)

Using (2.9.22) and (2.9.23), we find that

Ĵξξu(u, ξ)[sξ, sξ] = Lyu(S(u, ξ), u, ξ, zfoa(u, ξ))ysos(u, ξ; sξ)

+ Lyyu(S(u, ξ), u, ξ, zfoa(u, ξ))[yfos(u, ξ; sξ), yfos(u, ξ; sξ), ·]
+ 2Lyξu(S(u, ξ), u, ξ, zfoa(u, ξ))[ysos(u, ξ; sξ), sξ, ·]
+ Lξξu(S(u, ξ), u, ξ, zfoa(u, ξ))[sξ, sξ, ·]
+ eu(S(u, ξ), u, ξ)∗ztoa(u, ξ)

+ [eyu(S(u, ξ), u, ξ)yfos(u, ξ; sξ)]
∗zsoa(u, ξ; sξ)

+ [eξu(S(u, ξ), u, ξ)sξ]
∗zsoa(u, ξ; sξ).

(2.9.27)

Computation of Derivatives and Computational Complexity

We derive the number of solutions of linear and of nonlinear PDEs required to evaluate the
smoothing function F̃ defined in (2.2.1) and its derivative. We fix t = (τ, ν, η) ∈ R3

++.

To compute F̃ (ū; t), we evaluate Ĵ(ū, µ̄), ∇ξĴ(ū, µ̄) and ∇ξξĴ(ū, µ̄). We compute Ĵ(ū, µ̄) using

the solution of the state equation. The gradient ∇ξĴ(ū, µ̄) can be computed via the adjoint
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approach which requires the solution of the first-order adjoint equation (2.9.10). We compute
the Hessian ∇ξξĴ(ū, µ̄) via the adjoint approach which requires the solution of p first-order
sensitivity equations (see (2.9.11)) and of p second-order adjoint equations (see (2.9.18)).
To evaluate the derivative of F̃ (·; t) at ū, we use (2.6.4), (2.6.5) and (2.6.7), and compute
DuĴ(ū, µ̄), Du(∇ξĴ(ū, µ̄)T sξ), Du(sTξ ∇ξξĴ(ū, µ̄)sξ), and Du(qi(ū)T∇ξξĴ(ū, µ̄)qi(ū)) for a certain

sξ ∈ Rp and i = 1, . . . , p. Using (2.9.19), we can evaluate DuĴ(ū, µ̄) without further costs.

For i = 1, . . . , p, we compute Du(qi(ū)T∇ξξĴ(ū, µ̄)qi(ū)) using (2.9.27), requiring the solution of
the second-order sensitivity equation (2.9.21), the second-order adjoint equation and the third-
order adjoint equation (2.9.26). These PDE solutions allow us to compute Du(∇Ĵ(ū, µ̄)T sξ)

using (2.9.23), and Du(sTξ ∇ξξĴ(ū, µ̄)sξ) without additional costs.
To summarize, the evaluation of F (ū; t) involves the solution of the state equation, and 2p + 1
solutions of linear equations, and that of DuF (ū; t) requires, in addition, 2p solutions of linear
equations. In order to compute the Riesz representation of DuF (ū; t), we need to solve one more
linear PDE.



3 Sample Average Approximation for
Stochastic Convex Optimal Control
Problems: Non-Asymptotic Sample Size
Estimates

We apply the sample average approximation (SAA) approach to stochastic, convex optimal
control problems posed in Hilbert spaces. For strongly convex problems, we establish non-
asymptotic, exponential bounds on the tail probabilities of the optimal controls. Non-asymptotic
confidence intervals for the optimal value of the SAA problem are established without strong con-
vexity assumptions. We demonstrate that our assumptions hold true for many PDE-constrained
optimization problems under uncertainty with affine-linear elliptic and parabolic PDEs from the
literature. A further focus is on the comparison of our bounds with those obtained from (robust)
stochastic approximation. Furthermore, we apply the finite element discretization to a strongly
convex optimal control problem with a random elliptic PDE, and derive confidence regions for
the optimal control.

3.1 Introduction

The sample average approximation (SAA) method is an approach for approximating stochas-
tic programs [287, 156, 347, 177, 179, 190]. The approach uses samples of the random vector
to approximate the stochastic program’s objective function using the sample average, thereby
defining the sample average function [291, p. 355]. This function is the objective function of the
SAA problem. The SAA problem’s optimal value and its optimal solutions provide approxima-
tions to those of the stochastic program. We analyze the accuracy of these approximations for
a class of risk-neutral control problems posed in Hilbert spaces.
We consider the risk-neutral control problem

min
u∈Uad

{ f(u) = E[Ĵ(u, ξ)] + Ψ(u) }, (3.1.1)

where Uad is a convex, closed and nonempty subset of the separable Hilbert space U , and
Ĵ : U × Ξ → R is a convex Carathéodory function. Moreover, ξ is a random vector and its
probability distribution is supported on some set Ξ. The penalty function Ψ : Uad → R ∪ {∞}
is convex and lower-semicontinuous.
The SAA problem corresponding to (3.1.1) is

min
u∈Uad

{
fN (u) = EN [Ĵ(u, ξ)] + Ψ(u)

}
, (3.1.2)

where EN [Ĵ(u, ξ)] = (1/N)
∑N

i=1 Ĵ(u, ξi), and ξ1, ξ2, . . . are independent samples and each ξi

has the same probability distribution as ξ. For the analysis of the SAA approach in section 3.2,
we view ξi as random vectors defined on a common probability space.
A central question related to the SAA approach is: how many samples must be used in order for
an (approximate) optimal solution of the SAA problem to be an accurate solution to the true
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counterpart? To address this question, we first need to choose a suitable measure to quantify ac-
curacy. When approximating PDE-constrained optimization problems using finite elements—an
approach, which also results in perturbed optimization problems—the main focus is on deriving
bounds for the error between the optimal control of the finite element approximation and that
of the unperturbed control problem [326, sect. 3], [315, sect. 2], [151, sect. 3.2.6], [65, sect. 1].
It will turn out that estimating the tail probabilities

Prob(‖u∗N − u∗‖U ≥ ε) for ε > 0, (3.1.3)

is the canonical extension for analyzing the accuracy of optimal solutions to the SAA problem.
Here, u∗ is a optimal control of (3.1.1) and u∗N is a minimizer of the corresponding SAA problem
(3.1.2).
When a bound on the tail probabilities (3.1.3) is available as a function of N , we can determine
the number of samples N such that Prob(‖u∗N − u∗‖U ≥ ε) ≤ δ. Here, 1 − δ ∈ (0, 1) is the
reliability, and ε > 0 the accuracy. One approach to obtaining bounds on (3.1.3) exploits
Tschebyshev’s inequality. For example, suppose that E[‖u∗N − u∗‖2U ] ≤ C/N for some C > 0;
then Tschebyshev’s inequality yields Prob(‖u∗N − u∗‖U ≥ ε) ≤ C/(Nε2). If N ≥ C/(ε2δ), we
obtain Prob(‖u∗N − u∗‖U ≥ ε) ≤ δ. However, for 0 < δ � 1, the non-asymptotic sample size
estimate N ≥ C/(ε2δ) would yield an infeasibly large number of samples.
Our main contribution is the derivation of an exponential bound on Prob(‖u∗N −u∗‖U ≥ ε), that
is, Prob(‖u∗N − u∗‖U ≥ ε) ≤ exp(−Nε2/c) for all ε > 0, and some problem-dependent constant
c > 0. When N ≥ (c/ε2) ln(1/δ), the tail bound ensures Prob(‖u∗N −u∗‖U ≥ ε) ≤ δ. In contrast
to the above sample size estimate obtained via the direct application of Tschebyshev’s inequality,
the non-asymptotic sample size estimate N ≥ ln(1/δ)(c/ε2) depends only logarithmically on 1/δ.
We obtain the exponential bound on the tail probabilities (3.1.3) using a standard assumption
from the literature on stochastic programming. We assume that Ĵ(·, ξ) for all ξ ∈ Ξ and E[Ĵ(·, ξ)]
are Gâteaux differentiable, and that there exists τ > 0 with

E[exp(τ−2‖∇uĴ(u∗, ξ)−∇uE[Ĵ(u∗, ξ)]‖2U )] ≤ e. (3.1.4)

This condition and its variants are used in [207, eq. (4.1.15)], [99, p. 679], [243, eq. (2.50)], [138,
pp. 1035–1036], and [294, eq. (5.347)], for example. We could impose an upper bound c > 1 on
the left-hand side in (3.1.4) other than c = e, but it would only modify the constant τ > 0.
In addition to (3.1.4), we suppose that Ĵ(·, ξ) is α-strongly convex for all ξ ∈ Ξ with α > 0.
Under these assumptions, we establish the exponential tail bound

Prob(‖u∗ − u∗N‖U ≥ ε) ≤ 2 exp(−τ−2Nε2α2/3) for all ε > 0. (3.1.5)

The “light-tail” condition (3.1.4) expresses sub-Gaussianity of ∇uĴ(u∗, ξ) − ∇uE[Ĵ(u∗, ξ)]. It
is fulfilled if ‖∇uĴ(u∗, ξ) −∇uE[Ĵ(u∗, ξ)]‖U is essentially bounded, for example. This property
is satisfied for the control problems considered in [230, sect. 3.1.2], [227, sect. 2], [184, sect.
3.4.1], [139, sect. 2.2], [131, sect. 4], [125, sect. 2.2], and [308, sect. 2.2]. These control problems
also satisfy the requirement of Ĵ(·, ξ) being α-strongly convex for all ξ ∈ Ξ. A discussion on
the strong convexity assumption for stochastic, linear-quadratic control problems is provided
in section 3.2.5. We also demonstrate that the tail bound (3.1.5) is optimal up to problem-
independent, moderate constants, under the stated assumptions.
Besides deriving an exponential bound on the tail probabilities (3.1.3), we quantify the errors
between the optimal value of the SAA problem (3.1.2) and that of the true counterpart (3.1.1)
without the strong convexity assumption. More precisely, we derive exponential tail bounds
on fN (u∗N ) − f(u∗). For a linear-quadratic control problem with a nonsmooth regularizer, we
discretize the SAA problem using finite elements and derive reliable error bounds on the optimal
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controls. Furthermore, we analyze the expected value of the SAA optimal value of a risk-averse
optimization problem using the conditional value-at-risk/superquantile.
The derivation of the exponential bound (3.1.5) is rather simple and consists of three steps.
First, we establish an exponential tail bound for the sample mean in Hilbert spaces. To derive
this estimate, we combine the Chernoff-type approach with the (exponential) moment inequality
established by Pinelis and Sakhanenko [259, Thm. 3]. Second, we derive an almost sure bound
on ‖u∗N − u∗‖U . Finally, the exponential tail bound is applied to the right-hand side of this
bound.
Our approach for establishing exponential bounds on fN (u∗N ) − f(u∗) is built on the analysis
developed by Guigues, Juditsky, and Nemirovski [138, Prop. 1].

Related Work

Non-Asymptotic Analysis of the SAA Scheme for Finite-Dimensional Problems. The
complexity of finite-dimensional optimization problems has been analyzed by Shapiro [291, 292]
and Shapiro and Nemirovski [296]. To outline one of their results, let us consider the stochastic
problem and its SAA problem

min
x∈Xad

E[F (x, ξ)] and min
x∈Xad

EN [F (x, ξ)], (3.1.6)

where F : Xad × Ξ → R, EN [F (x, ξ)] = (1/N)
∑N

i=1 F (x, ξi), and ξi are independent (i =
1, . . . , N) and each ξi has the same probability distribution as ξ ∈ Ξ with Ξ ⊂ Rm. We briefly
outline the main assumptions made in [292, pp. 186 and 189] and [296, pp. 116–121]:
• The set Xad ⊂ Rn is nonempty and closed, and has finite diameter Rad = supx1, x2∈Xad

‖x1 −
x2‖ <∞. The function E[F (·, ξ)] is well-defined and finite-valued on Xad.
• For all x, y ∈ Xad, F (x, ξ) − F (y, ξ) − E[F (x, ξ) − F (y, ξ)] is sub-Gaussian with parameter
σ > 0. (Sub-Gaussian random variables are defined on p. ix.)
• There exists a random variable L : Ξ → R+ such that E[exp(tL(ξ))] < ∞ for all t in a

neighborhood of 0, and for each ξ ∈ Ξ, F (·, ξ) is Lipschitz continuous w.r.t. the ‖ · ‖-norm
with Lipschitz constant L(ξ).

If these conditions are fulfilled, 0 ≤ ρ < ε, δ ∈ (0, 1), L̃ > E[L(ξ)], and

N ≥ max

{
8σ2

(ε− ρ)2

[
n ln

(c1E[L(ξ)]Rad

ε− ρ
)

+ ln
(1

δ

)]
,

1

c2(L̃)
ln
(2

δ

)}
, (3.1.7)

then a ρ-optimal solution of the SAA problem in (3.1.6) is an ε-optimal solution of the stochastic
problem in (3.1.6) with a probability of at least 1− δ [291, sect. 3.2], [296, Thm. 1], [292, Thm.
1]. Here, c1 > 0 is a problem-independent constant and c2(L̃) > 0 depends on L̃ [292, eq. (3.6)].
The estimate (3.1.7) depends explicitly on the problem’s dimension, and therefore cannot be
applied to infinite-dimensional stochastic programs. Shapiro [292, Ex. 1], and Guigues, Juditsky,
and Nemirovski [138, Prop. 2] provide examples of convex stochastic problems, which highlight
the fact that the estimate (3.1.7) optimally depends on the problem’s dimension n.
Even though the sample size estimate (3.1.7) depends on the problem’s dimension, the proof
technique developed in [291, 296] may be extended to stochastic programs with totally bounded
feasible sets posed in infinite-dimensional spaces. The proof technique exploits the fact that the
feasible set Xad is a subset of a compact subset of Rn for which the ν-covering number w.r.t.
the ‖ · ‖-norm is proportional to (Rad/ν)n [296, p. 119].
Some function classes have finite covering numbers, including certain classes of the functions of
bounded variation w.r.t. the L1-norm [17, sect. 2], and certain collections of Rn-valued upper-
semicontinuous functions w.r.t. the Attouch–Wets distance [278, sect. 4]. Many subsets in
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infinite-dimensional, complete spaces are noncompact and, hence, not totally bounded [196,
p. 412], such as closed unit balls [196, Thm. 2.5-5]. Even further, the box-constrained set
{u ∈ L2((0, 1)) : −1 ≤ u ≤ 1 }—a common type of a feasible set considered in the literature
on optimal control with PDEs [151, p. 71], [303, p. 160]—is noncompact, as it contains the
non-convergent sequence (sin(kπ·)).
Birman and Solomjak [40, Thm. 5.2], [41, Thms. 1.7 and 2.24] analyze the covering numbers of
compact embeddings, from Sobolev spaces to Lebesgue spaces and to the space of continuous
functions. As a special case, the ν-covering number of the closed unit ball of H1([−1, 1]d)
w.r.t. the L2([−1, 1]d)-norm is proportional to (1/ν)d. We outline in section 3.5 how this deep
statement may be used to analyze the complexity of certain PDE-constrained optimization
problems under uncertainty posed in the Lebesgue space L2(D), where D ⊂ Rd is a bounded
domain. For this discussion, we use the fact that the optimal controls of many (deterministic)
PDE-constrained optimization problems posed in L2(D) are actually contained in H1(D), under
suitable assumptions about the problem’s data [335, p. 870], [65, Lem. 1.1], [316, Thms. 2.37
and 2.38].

Further Performances Guarantees for SAA Estimators. In statistics, the consistency
of an estimator refers to its asymptotic, almost sure convergence to its true counterpart. For
finite-dimensional problems, we refer the reader to Shapiro [291, sect. 2.1] for the consistency
analysis of the SAA problem’s optimal value and its solution (set); see also [294, sect. 5.1.1].
See Shapiro [289] for the asymptotic analysis of the SAA problem’s optimal value.
The consistency for the SAA approach, applied to stochastic programs posed in complete, sep-
arable, metric spaces, is proven by Artstein and Wets [10, Thm. 2.3] using the notion of epicon-
vergence. Dong and Wets [98, Thm. 5.3] establish the consistency of the SAA method in Hilbert
spaces using Mosco-epiconvergence, a stronger notion than epiconvergence. Phelps, Royset, and
Gong [254] apply the SAA scheme to the optimal control of ordinary differential equations with
random inputs, and analyze the consistency of the SAA optimal value using [10, Thm. 2.3].
Non-asymptotic error bounds using the (large deviations) rate function are provided in [170,
Thm. 4.6] for stochastic problems posed in Banach spaces, but the assumptions of this result
may be difficult to verify for PDE-constrained control problems under uncertainty.
Hoffhues, Römisch, and Surowiec [153] provide qualitative and quantitative stability results
for the optimal value and for the optimal solutions of stochastic, linear-quadratic optimization
problems posed in Hilbert spaces w.r.t. the Fortet–Mourier and Wasserstein distances.

Optimization Methods for Stochastic Programs. The SAA approach yields an approxi-
mated optimization problem, which can be interpreted as a stochastic program [294, pp. 163–
164], and requires a numerical scheme for its solution. Different approaches for solving risk-
neutral and risk-averse optimization problems have been proposed in the literature, such as
stochastic approximation [128, 246, 243, 208], progressive hedging [270, 275], primal-dual sub-
gradient methods [168, 248], and primal-dual multiplier-type algorithms [194, 282]. We high-
light the work by Nemirovski and Yudin [246, Chap. 5] on stochastic approximation in infinite-
dimensional spaces whose duals are so-called regular Banach spaces. Hilbert spaces are the
simplest examples of such spaces [246, sect. 3.2]. Lan [207, Chap. 6] investigates stochastic
approximation schemes applied to finite-dimensional, nonconvex, stochastic programs. Geiers-
bach and Scarinci [129] have developed stochastic gradient methods for nonconvex optimization
problems posed in Hilbert spaces. See [127] for stochastic approximation applied to shape opti-
mization under uncertainty.

Optimization Methods for PDE-Constrained Optimization under Uncertainty. In the
literature on PDE-constrained optimization, several schemes have been developed to approxi-
mate, discretize and solve control problems with random inputs. We refer the reader to Kouri



3.2. Risk-Neutral Minimization 73

and Shapiro [190, sect. 5] for a recent survey on methods for expectation-based optimization
with a focus on control problems in Hilbert spaces.
Garreis and Ulbrich [123] view the parameterized state variable as a tensor space element and
discretize it using finite elements and polynomials, and approximate the discretized state using
low-rank tensor formats. Garreis [121] has developed error estimates, which quantify approx-
imations in the objective function and gradient computations, and has created a trust-region
algorithm to adaptively solve risk-neutral control problems. Tensor-based methods have also
been developed in [29, 124].
Stochastic collocation and sparse grids provide a different discretization approach than the SAA
method [51, 314, 184, 189, 188, 185]. Adaptive trust-region methods using inexact objective
and gradient evaluations have been developed in [184, 189, 188, 185]. Kouri [184] has proven
control error estimates for different risk-measures, such as the expectation [184, Thm. 3.4.1 and
Cor. 3.4.2], the superquantile/conditional value-at-risk [184, Thm. 3.4.5], and the mean-plus-
semideviations [184, Thm. 3.4.4]. A globally convergent optimization method using adaptive
model reduction and sparse grids can be found in Zahr, Carlberg, and Kouri [357]. Kouri [187]
has proposed using quadrature to approximate risk measures and has provided asymptotic con-
sistency results. A quasi-Monte Carlo method for a risk-neutral, elliptic control problem has
been developed in [140]. The authors have provided an error analysis and convergence rates
w.r.t. truncation, finite element, and quadrature errors.
Stochastic gradient methods for PDE-constrained optimization under uncertainty can be found
in [131, 128, 227, 228, 229]. Geiersbach and Wollner [131] have designed a stochastic gradient
method with adaptive mesh refinement. Martin [228] and Martin, Krumscheid, and Nobile [227]
provide error estimates in a mean-square sense for various inaccuracies, such as stochastic errors
[227, Thm. 10] and finite element errors [227, Thm. 7]. A multilevel stochastic gradient method
is developed in [229]. In the context of parameter estimation and inversion with PDEs, stochastic
approximation and SAA are compared in [141, 219].

Large Deviations, Moment Inequalities, and Exponential Tail Bounds. We prove
a large deviation result using the exponential moment inequality established by Pinelis and
Sakhanenko [259, Thm. 3]. A large deviation result for a certain class of Banach spaces has been
announced by Nemirovski [241, Chap. 3] and proven for (finite-dimensional) Banach spaces by
Juditsky and Nemirovski [166] using an “optimization-based” proof. Large deviations results
for certain Banach spaces are provided by Pinelis [256, 257]. A statement for general Banach
spaces can be found in [309, Thm. 4]. However, it depends on unspecified constants. Further
tail bounds and moment inequalities can be found in the book by Yurinsky [356].

3.2 Risk-Neutral Minimization

We consider the risk-neutral optimal control problem

min
u∈Uad

{ f(u) = E[Ĵ(u, ξ)] + Ψ(u) }, (3.2.1)

where Uad is a convex, closed and nonempty subset of the separable Hilbert space U , Ψ :
Uad → R ∪ {∞} is convex and lower-semicontinuous, and Ĵ : U × Ξ → R is the parameterized
cost function. Moreover, (Ω,F , P ) is a probability space, (Ξ,FΞ) is a measurable space, and
ξ : Ω→ Ξ is measurable. We also use ξ ∈ Ξ for representing a deterministic element (see p. ix).
Let ξ1, ξ2, . . . be independent realizations of ξ such that each ξi has the same probability distri-
bution as that of ξ : Ω→ Ξ. We view the random vectors ξi : Ω? → Ξ as mappings defined on a
common probability space, which we denote by (Ω?,F?, P ?); see, e.g., [44, pp. 148–149] for the
standard construction of such a space.
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The SAA corresponding to (3.2.1) is

min
u∈Uad

{
fN (u, ω) = EN [Ĵ(u, ξ(ω))] + Ψ(u)

}
, (3.2.2)

where EN [Ĵ(u, ξ(ω))] = (1/N)
∑N

i=1 Ĵ(u, ξi(ω)) for ω ∈ Ω?. We define F : U → R ∪ {∞} and
the sample average function FN : U × Ω? → R by

F (u) = E[Ĵ(u, ξ)] and FN (u, ω) = EN [Ĵ(u, ξ(ω))]. (3.2.3)

The second argument of fN and of FN is often dropped. Throughout the section, we assume
that u∗ is an optimal solution of (3.2.1) and that u∗N (ω) is a minimizer of (3.2.2) for each ω ∈ Ω?.
We refer the reader to [281, Prop. 6.2], [190, Thm. 1], and [192, Prop. 3.12] for theorems on the
existence of optimal solutions to stochastic programs.
Let V be a Banach space and let (Ω,F) be a measurable space. A function f : V ×Ω→ R∪{∞}
is a random lower-semicontinuous function (or a normal integrand) if, for each ω ∈ Ω, f(·, ω)
is lower-semicontinuous, and f is B(V ) ⊗ F-measurable [66, p. 195], [267, pp. 221–222], [294, p.
420]. For example, Carathéodory functions are random lower-semicontinuous [268, p. 175], [66,
Lem. III.14]. We recall that f : V1 × Ω → V2 is a Carathéodory mapping if f(·, ω) is continuous
for every ω ∈ Ω and f(x, ·) is F-B(V2)-measurable for all x ∈ V1 [11, p. 311]. Here, V1 and V2

are separable Banach spaces. A Carathéodory function f : V1×Ω→ R is a convex Carathéodory
function if f(·, ω) is convex for all ω ∈ Ω.

Assumption 3.2.1. (a) The set Uad is nonempty, closed, and convex subset of the separable
Hilbert space U .

(b) The function F : U → R ∪ {∞} defined in (3.2.3) is Gâteaux differentiable at u∗.
(c) The penalty function Ψ : U → R∪{∞} is convex and lower-semicontinuous with Ψ(u) <∞

for some u ∈ Uad.
(d) The function Ĵ : U × Ξ→ R is a convex Carathéodory function.

Conditions on Ĵ that ensure the Fréchet differentiability of the function F defined in (3.2.3)
are provided, for example, in [126, sect. 4.7], [131, p. A2752], and [128, p. 2079]. Let Assump-
tions 3.2.1 (a) and 3.2.1 (d) hold. If ∂F (u∗) is a singleton and F is continuous at u∗, then F
is Hadamard differentiable at u∗ [46, Prop. 2.126] and, hence, Gâteaux differentiable at u∗ [46,
pp. 34–35].
Assumption 3.2.1 ensures the measurability of the SAA problem’s optimal value (see (3.2.2)).

Lemma 3.2.2. If Assumptions 3.2.1 (a), 3.2.1 (c), and 3.2.1 (d) hold, then infu∈Uad
fN (u, ·) :

Ω? → R̄ is measurable, where fN is defined in (3.2.2). If, in addition, arg minu∈Uad
fN (u, ω) is

nonempty for all ω ∈ Ω?, then arg minu∈Uad
fN (u, ·) : Ω? → U has a measurable selection.

The proof of Lemma 3.2.2 is provided in section 3.6.1.

3.2.1 Sample Size Estimates for the Optimal Control

Under suitable assumptions, we establish exponential bounds on the tail probabilities of ‖u∗ −
u∗N‖U , where u∗ and u∗N (ω) are optimal solutions of (3.2.1) and of (3.2.2), respectively.

Assumption 3.2.3. (a) The function Ĵ(·, ξ) is Gâteaux differentiable on a convex neighbor-
hood of Uad for all ξ ∈ Ξ, and ∇uĴ(u∗, ·) : Ξ→ U is measurable.

(b) There exists α > 0 such that Ĵ(·, ξ) is α-strongly convex for each ξ ∈ Ξ.
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We use the following characterization of α-strong convexity: if H is a Hilbert space, f : H →
R∪{∞} is proper, and α ≥ 0, then f is α-strongly convex if and only if f− (α/2)‖ · ‖2H is convex
[18, p. 178].
In section 3.2.5, we demonstrate that Assumption 3.2.3 (b) is fulfilled for certain linear-quadratic
optimal control problems.

Lemma 3.2.4. Let Assumptions 3.2.1 (a), 3.2.1 (c), 3.2.1 (d), and 3.2.3 (b) hold. For each
ω ∈ Ω?, let u∗N (ω) be an optimal solution of (3.2.2). Then, for each ω ∈ Ω?, u∗N (ω) is the unique
optimal solution of (3.2.2), and u∗N : Ω? → U is measurable.

Proof. The conditions ensure that the objective function fN (·, ω) of the SAA problem (3.2.2) is
strongly convex for each ω ∈ Ω? and that the SAA problem’s feasible set Uad is convex. Hence,
u∗N (ω) is the unique minimizer of (3.2.2) for each fixed ω ∈ Ω?; see, e.g., [246, p. 48], [46, Lem.
2.33]. Combined with Lemma 3.2.2, we obtain the measurability of u∗N .

We impose conditions on the integrability of ∇uĴ(u∗, ξ)−∇F (u∗).

Assumption 3.2.5. (a) For some σ > 0, we have E[‖∇uĴ(u∗, ξ)−∇F (u∗)‖2U ] ≤ σ2.

(b) For some τ > 0, it holds that E[exp(τ−2‖∇uĴ(u∗, ξ)−∇F (u∗)‖2U )] ≤ e.

Assumption 3.2.5 (b), when combined with Jensen’s inequality, implies Assumption 3.2.5 (a)
with σ2 = τ2; see also [243, p. 1584]. Assumption 3.2.5 (b) and its variants are standard
conditions in the literature on stochastic programming [207, eq. (4.1.15)], [99, p. 679], [243, eq.
(2.50)], [138, pp. 1035–1036], [294, eq. (5.347)]. For example, if ‖∇uĴ(u∗, ξ) − ∇F (u∗)‖U ≤ ρ
for all ξ ∈ Ξ and some ρ > 0, then Assumption 3.2.5 (b) is satisfied with τ = ρ. In other
words, if the U -norm of ∇uĴ(u∗, ξ)−∇F (u∗) is essentially bounded or that of ∇uĴ(u∗, ξ), then
Assumption 3.2.5 (b) is fulfilled. In section 3.3, we discuss in detail a control problem that
satisfies Assumption 3.2.5 (b). Further details on this condition are provided in section 4.2.1.

Exponential Tail Bound

We state our main result, a bound on the tail probabilities of ‖u∗ − u∗N‖U .

Theorem 3.2.6. Let u∗ be an optimal solution of (3.2.1) and for each ω ∈ Ω?, let u∗N (ω) be a
minimizer of (3.2.2). If Assumptions 3.2.1, 3.2.3 and 3.2.5 (b) hold, then for all ε > 0,

Prob(‖u∗ − u∗N‖U ≥ ε) ≤ 2 exp(−τ−2Nε2α2/3). (3.2.4)

If, in addition, ‖∇uĴ(u∗, ξ)−∇F (u∗)‖U ≤ τ w.p. 1 (with probability one), then the right-hand
side in (3.2.4) improves to 2 exp(−τ−2Nε2α2/2).

The proof of Theorem 3.2.6 is presented in section 3.2.2. Theorem 3.2.6 yields a finite sample
size estimate.

Remark 3.2.7. Let δ ∈ (0, 1) and ε > 0 be arbitrary. We suppose that the hypotheses of
Theorem 3.2.6 hold. To obtain Prob(‖u∗ − u∗N‖U ≥ ε) ≤ δ, we bound the right-hand side in
(3.2.4) by δ. Choosing N ∈ N with N ≥ ln(2/δ)(3τ2)/(ε2α2) yields Prob(‖u∗ − u∗N‖U ≥ ε) ≤ δ.

Proposition 3.2.8. Let u∗ be a minimizer of (3.2.1) and for each ω ∈ Ω?, let u∗N (ω) be a
minimizer of (3.2.2). If Assumptions 3.2.1, 3.2.3 and 3.2.5 (a) hold, then E[‖u∗ − u∗N‖2U ] ≤
σ2/(α2N).

The proof of Proposition 3.2.8 is also presented in section 3.2.2. Proposition 3.2.8 and Tscheby-
shev’s inequality imply tail bounds on ‖u∗ − u∗N‖U .
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Corollary 3.2.9. If the hypotheses of Proposition 3.2.8 hold, then, for all ε > 0,

Prob(‖u∗ − u∗N‖U ≥ ε) ≤ σ2/(ε2α2N). (3.2.5)

Corollary 3.2.9 is proven in section 3.2.2.
We compare the tail bound (3.2.4) and (3.2.5). Let δ ∈ (0, 1) and let ε > 0 be arbitrary, and
let the conditions of Corollary 3.2.9 hold. The sample size estimate N ≥ σ2/(ε2α2δ) implies
Prob(‖u∗ − u∗N‖U ≥ ε) ≤ δ. This estimate depends linearly on 1/δ in contrast to that provided
by Remark 3.2.7.
We demonstrate that the dependence of the tail bound (3.2.4) on the problem’s data τ , α is
essentially optimal for the problem class modeled by Assumptions 3.2.1, 3.2.3 and 3.2.5 (b). We
verify the optimality by constructing an explicit model problem that satisfies Assumptions 3.2.1,
3.2.3 and 3.2.5 (b). For this model problem, the tail bound (3.2.5) turns out to be conservative
as a function of the accuracy ε > 0.

Example 3.2.10. The following example is inspired by that in Shapiro [292, Ex. 1]; see also
[294, Ex. 5.21]. We consider

min
u∈H1

0 (D)
(α/2)‖u‖2H1

0 (D) − E[(b(ξ), u)L2(D)], (3.2.6)

where α > 0, D = (0, 1), and b : R2 → L2(D) is defined by b(ξ)(x) = π2ξ1ϕ1(x) + 4π2ξ2ϕ2(x).
Here, ξ1, ξ2 : Ω→ R are independent, mean-zero Gaussian random variables with unit variance,
and ϕ1, ϕ2 : D → R are given by

ϕ1(x) = (
√

2/π) sin(πx) and ϕ2(x) = (
√

2/(2π)) sin(2πx). (3.2.7)

The space H1
0 (D) is equipped with the norm ‖ · ‖H1

0 (D) = ‖D · ‖L2(D) (see p. viii).

Since E[b(ξ)] = 0, the optimal solution u∗ to (3.2.6) is u∗ = 0. The SAA problem of (3.2.6) is

min
u∈H1

0 (D)
(α/2)‖u‖2H1

0 (D) − (EN [b(ξ(ω))], u)L2(D). (3.2.8)

Its optimal solution u∗N (ω) for ω ∈ Ω? is characterized by the canonical optimality condition of
(3.2.8). This condition is the elliptic PDE (u∗N (ω)′, v′)L2(D) = (1/α)(EN [b(ξ(ω))], v)L2(D) for all

v ∈ H1
0 (D) [54, pp. 58 and 67]. We have u∗N = (1/α)EN [ξ1]ϕ1 + (1/α)EN [ξ2]ϕ2.

Below, we show that Assumption 3.2.5 (b) is satisfied with τ2 = 4/(1− exp(−2)), and that

Prob(‖u∗N − u∗‖H1
0 (D) ≥ ε) = exp(−Nα2ε2/2) for all ε > 0. (3.2.9)

This tail bound reveals that the exponential order of the tail bound in (3.2.4) is optimal up to
the constant 3τ2/2 ≈ 6.9.
Let us establish (3.2.9). Using (3.2.7), we obtain (ϕ1, ϕ2)H1

0 (D) = 0, ‖ϕ1‖H1
0 (D) = 1, and

‖ϕ2‖H1
0 (D) = 1. We conclude that ‖a1ϕ1 + a2ϕ2‖2H1

0 (D)
= a2

1 + a2
2 for all a1, a2 ∈ R. In

particular, ‖u∗N‖2H1
0 (D)

= (1/α)2EN [ξ1]2 + (1/α)2EN [ξ2]2. Since EN [ξ1] ∼ N (0, N−1α−2) and

EN [ξ2] ∼ N (0, N−1α−2) are independent, the distribution of Nα2‖u∗N‖2H1
0 (D)

is the chi-squared

distribution χ2
2 with two degrees of freedom [86, p. 13]. Hence

Prob(‖u∗N‖H1
0 (D) ≥ ε) = Prob(Nα2‖u∗N‖2H1

0 (D) ≥ Nα2ε2) = Prob(χ2
2 ≥ Nα2ε2) = e−Nα

2ε2/2

for all ε ≥ 0 [86, p. 13]. Combined with ‖u∗N − u∗‖H1
0 (D) = ‖u∗N‖H1

0 (D), we obtain (3.2.9).

https://tinyurl.com/yyd2dyzo
https://tinyurl.com/y3auguye
https://tinyurl.com/y2y5u5ys
https://tinyurl.com/yxhx9xqk
https://tinyurl.com/y5aefzgq
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We verify Assumptions 3.2.1 and 3.2.3. We fix ξ ∈ R2. For this example, we have

Ψ = 0, Ĵ(u, ξ) = (α/2)‖u‖2H1
0 (D) + (b(ξ), u)L2(D) and F (u) = (α/2)‖u‖2H1

0 (D).

Let us define B : R2 → H1
0 (D)∗ by 〈B(ξ), v〉H1

0 (D)
∗
,H1

0 (D) = (b(ξ), u)L2(D). The operator B(ξ) is

linear and bounded [151, p. 30], Ĵ(·, ξ) is α-strongly convex, and

‖DuĴ(u∗, ξ)−DF (u∗)‖H1
0 (D)∗ = ‖B(ξ)‖H1

0 (D)∗ . (3.2.10)

Putting together the pieces, we conclude that Assumptions 3.2.1 and 3.2.3 are satisfied.
To verify Assumption 3.2.5 (b), we compute ‖B(ξ)‖H1

0 (D)∗ . Let us define y : R2 → H1
0 (D) by

y(ξ) = ξ1ϕ1 + ξ2ϕ2, and fix ξ ∈ R2. Since ϕ1 and ϕ2 are orthonormal in H1
0 (D), we have

‖y(ξ)′‖2L2(D) = ‖y(ξ)‖2
H1

0 (D)
= ξ2

1 + ξ2
2 . It holds that −y(ξ)′′ = b(ξ). Hence, y(ξ) is the Riesz

representation of B(ξ) in (H1
0 (D), ‖ · ‖H1

0 (D)) (see, e.g., [151, p. 28 and Thm. 1.4]) which implies

‖B(ξ)‖H1
0 (D)∗ = ‖y(ξ)‖H1

0 (D) = (ξ2
1 + ξ2

2)1/2. (3.2.11)

We show that E[exp(τ−2‖B(ξ)‖2
H1

0 (D)∗
)] ≤ e for τ2 = 4/(1 − exp(−2)). In light of (3.2.10),

this estimate implies Assumption 3.2.5 (b), when identifying H1
0 (D)∗ with H1

0 (D). We have
E[exp(sξ2

i /2)] = e for i = 1, 2, and s = 1 − exp(−2) ∈ (0, 1) [57, p. 9]. Combined with the
independence of ξ1 and ξ2, Jensen’s inequality, and (3.2.11), we obtain

E[exp(τ−2‖B(ξ)‖2H1
0 (D)∗)] = E[eξ

2
1/τ

2
]E[eξ

2
2/τ

2
] = E[esξ

2
1/4]E[esξ

2
2/4] ≤ e1/2e1/2 = e.

For later reference, we compute additional characteristics of (3.2.6) and of (3.2.8). We have
fN (u∗N ) = (α/2)‖u∗N‖2U−α‖u∗N‖2U . Moreover, it holds that u∗ = 0, ‖u∗N‖2H1

0 (D)
= (1/α)2EN [ξ1]2+

(1/α)2EN [ξ2]2 and E[b(ξ)] = 0. Combined with ξ1, ξ2 ∈ N (0, 1), we conclude that

E[‖u∗N − u∗‖2H1
0 (D)] = 2

αN , E[f(u∗)] = 0, E[f(u∗N )] = 1
αN , E[fN (u∗N )] = − 1

αN .

If α = 0, then the set of optimal solutions of (3.2.6) is H1
0 (D) because E[b(ξ)] = 0. In this case,

the corresponding SAA problem (3.2.8) has no optimal solution w.p. 1 because its objective
function is linear and EN [b(ξ)] 6= 0 w.p. 1. Indeed, using (3.2.11), the H1

0 (D)-orthogonality of
ϕ1, ϕ2, and ξ1, ξ2 ∼ N (0, 1), we find that ‖EN [B(ξ)]‖2

H1
0 (D)∗

= EN [ξ1]2 + EN [ξ2]2 6= 0 w.p. 1.

It may be possible to derive similar tail bounds than that in (3.2.9) when b is a non-truncated,
Hilbert space-valued, Gaussian random variable. However, the derivation of exact bounds or of
tight lower bounds is more involved; see Yurinsky [356, Thm. 2.3.1, and sects. 2.3.3 and 2.3.4].

3.2.2 Proof of Sample Size Estimates for the Optimal Control

We prove Theorem 3.2.6, Proposition 3.2.8, and Corollary 3.2.9 using Lemmas 3.2.11–3.2.15
and Theorem 3.2.16.
Bochner integrable subgradients of a convex random lower-semicontinuous function are unbiased
estimators of the expectation function’s Gâteaux derivative; see, e.g., [138, p. 1050]. We use
this fact to deduce that ∇uĴ(u∗, ξ) is an unbiased estimator for the gradient of the function
F = E[Ĵ(·, ξ)] defined in (3.2.3) at the optimal solution u∗ of (3.2.1).

Lemma 3.2.11. Let (Ω,F,P) be a probability space, and let V be Banach space. Let f : V ×Ω→
R ∪ {∞} be random lower-semicontinuous and f(·, ω) be convex for all ω ∈ Ω. Suppose that
F : V → R ∪ {∞} defined by F(x) =

∫
Ω f(x, ω)dP(ω) is well-defined and Gâteaux differentiable

at x ∈ dom F, the domain of F. Let g : Ω→ V ∗ be Bochner integrable with g(ω) ∈ ∂xf(x, ω) for
almost every ω ∈ Ω. Then DF(x) =

∫
Ω g(ω)dP(ω).

https://tinyurl.com/yyd2dyzo
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Proof. Fix h ∈ V . We show that F(x+ th) ∈ R for all sufficiently small t > 0. We have F(x) ∈ R
and DF(x)[h] ∈ R. Let us define φ : (0,∞)→ R ∪ {∞} by φ(t) = t−1(F(x+ th)− F(x)). Using
R 3 F′(x;h) = inft>0 φ(t) [46, p. 49], we obtain that, for all ε > 0, there exists t > 0 with
φ(t) ≤ F′(x;h) + ε. Because φ is increasing [46, p. 49], we have F(x+ th) ∈ R for all sufficiently
small t > 0.
We establish DF(x)[h] =

∫
Ω g(ω)[h]dP(ω). Fix t > 0 with F(x+th) ∈ R. For almost every ω ∈ Ω,

we have f(x + th, ω) − f(x, ω) ≥ tg(ω)[h]. Since g is Bochner integrable and F(x + th) ∈ R, we
obtain F(x+ th)−F(x) ≥ t

∫
Ω g(ω)[h]dP(ω). Therefore, DF(x)[h] ≥

∫
Ω g(ω)[h]dP(ω) and, hence,

DF(x)[w] =
∫

Ω g(ω)[w]dP(ω) for all w ∈ V . Combined with the Bochner integrability of g, we
obtain DF(x) =

∫
Ω g(ω)dP(ω) [36, p. 78].

Lemma 3.2.12. Let (Ω,F,P) be a probability space, H be a real, separable Hilbert space and let
R : H → H∗ be the Riesz mapping defined by 〈R[x], z〉H∗,H = (x, z)H for all z ∈ H. Then, the
measurability (integrability) of g : Ω→ H∗ implies that of R−1g : Ω→ H, and the measurability
(integrability) of h : Ω→ H implies that of Rh : Ω→ H∗.

Proof. The Riesz representation theorem [151, Thm. 1.4] ensures that R is bijective, isometric
and linear. Hence, the measurability (integrability) of g and h implies that of R−1g and Rh,
respectively; see, e.g., [169, Lem. 1.5].

Lemma 3.2.13. Let Assumptions 3.2.1 and 3.2.3 (a) hold. Suppose that Ĵ(·, ξ) is α-strongly
convex for all ξ ∈ Ξ and some α ≥ 0. Then, the function FN defined in (3.2.3) is Gâteaux
differentiable on a convex neighborhood of Uad, E[∇uĴ(u∗, ξ)] = ∇F (u∗), and w.p. 1,

(∇FN (u2)−∇FN (u1), u2 − u1)U ≥ α‖u2 − u1‖2U for all u1, u2 ∈ Uad. (3.2.12)

Proof. Assumption 3.2.1 (d), the sum rule, and the definition of FN (see (3.2.3)) imply its
Gâteaux differentiability on a convex neighborhood V of Uad. Since, for each ξ ∈ Ξ, Ĵ(·, ξ) is
α-strongly convex, and FN is Gâteaux differentiable on V , we obtain (3.2.12) [246, p. 48]. As-
sumption 3.2.3 (a), when combined with Jensen’s inequality, implies that∇uĴ(u∗, ξ) is (Bochner)
integrable since

(E[‖∇uĴ(u∗, ξ)‖U ])2 ≤ 2E[‖∇uĴ(u∗, ξ)−∇F (u∗)‖2U ] + 2‖∇F (u∗)‖2U <∞. (3.2.13)

Combined with Lemmas 3.2.11 and 3.2.12 and the fact that U is a real, separable Hilbert space
(see p. viii and Assumption 3.2.1 (a)), we conclude that E[∇uĴ(u∗, ξ)] = ∇F (u∗).

We establish necessary optimality conditions for (3.2.1) and its SAA problem (3.2.2).

Lemma 3.2.14. Let Assumptions 3.2.1 and 3.2.3 (a) hold, and let ω ∈ Ω? be arbitrary. Suppose
that u∗ ∈ Uad is an optimal solution of (3.2.1) and that u∗N = u∗N (ω) ∈ Uad is a minimizer of
(3.2.2). Then, for all u ∈ Uad,

(∇F (u∗), u− u∗)U + Ψ(u)−Ψ(u∗) ≥ 0,

(∇FN (u∗N ), u− u∗N )U + Ψ(u)−Ψ(u∗N ) ≥ 0,
(3.2.14)

and (∇FN (u∗N )−∇F (u∗), u∗ − u∗N )U ≥ 0, where F and FN are defined in (3.2.3).

Proof. Lemma 3.2.13 implies that the sample average function FN : U → R is Gâteaux differ-
entiable at u∗N and convex (see Assumptions 3.2.3 (a) and 3.2.1 (d)). Moreover, F is Gâteaux
differentiable at u∗ and convex by Assumptions 3.2.1 (c) and 3.2.1 (d). The set Uad is con-
vex (see Assumption 3.2.1 (a)), and Ψ is proper, convex and lower-semicontinuous (see As-
sumption 3.2.1 (c)). Now, the proof of (3.2.14) follows from that of [163, Thm. 3.1] by Ito



3.2. Risk-Neutral Minimization 79

and Kunisch [163]. We have Ψ(u∗), Ψ(u∗N ) ∈ R. Choosing u = u∗N in the first inequality
in (3.2.14) and u = u∗ in the second estimate, and adding the resulting inequalities yields
(∇FN (u∗N )−∇F (u∗), u∗ − u∗N )U ≥ 0.

We combine Lemma 3.2.13 with the optimality conditions stated in Lemma 3.2.14 to obtain an
error estimate for the SAA problem’s optimal control.

Lemma 3.2.15. If the hypotheses of Theorem 3.2.6 hold, then w.p. 1,

α‖u∗ − u∗N‖U ≤ ‖∇FN (u∗)−∇F (u∗)‖U , (3.2.15)

where F and FN are defined in (3.2.3).

Proof. Choosing u2 = u∗ and u1 = u∗N in (3.2.12), we find that

(∇FN (u∗)−∇FN (u∗N ), u∗ − u∗N )U ≥ α‖u∗ − u∗N‖2U . (3.2.16)

Lemma 3.2.14 gives (∇FN (u∗N ) − ∇F (u∗), u∗ − u∗N )U ≥ 0. Combined with (3.2.16) and the
Cauchy–Schwarz inequality, we conclude that

α‖u∗ − u∗N‖2U ≤ (∇FN (u∗)−∇FN (u∗N ), u∗ − u∗N )U + (∇FN (u∗N )−∇F (u∗), u∗ − u∗N )U

= (∇FN (u∗)−∇F (u∗), u∗ − u∗N )U

≤ ‖∇FN (u∗)−∇F (u∗)‖U‖u∗ − u∗N‖U .

The estimate (3.2.15) implies that an accurate estimation of ∇FN (u∗) yields an accurate ap-
proximation u∗N of the optimal solution u∗ to (3.2.1), provided that α > 0.
We state large deviations results for sums of independent Hilbert space-valued random variables.
The large deviation results and the estimate (3.2.15) are used to establish the exponential tail
bound provided in Theorem 3.2.6.

Theorem 3.2.16. Let (Ω,F,P) be a probability space and let H be a separable Hilbert space.
Suppose that Zi : Ω→ H for i = 1, 2, . . . are independent, mean-zero random variables such that
E[exp(τ−2‖Zi‖2H)] ≤ e for some τ > 0. Then, for each N ∈ N and every ε ≥ 0,

Prob(‖SN/N‖H ≥ ε) ≤ 2 exp(−τ−2ε2N/3),

where SN = Z1+· · ·+ZN . If, in addition, ‖Zi‖H ≤ τ w.p. 1 for i = 1, 2, . . ., then Prob(‖SN/N‖H ≥
ε) ≤ 2 exp(−τ−2ε2N/2).

Proof. The proof is presented in section 3.6.2.

Proof of Theorem 3.2.6. Lemma 3.2.4 ensures the measurability of u∗N : Ω? → U , where for each
ω ∈ Ω?, u∗N (ω) is an optimal solution of the SAA problem (3.2.2). For each ε > 0, Lemma 3.2.15
gives

Prob(‖u∗ − u∗N‖U ≥ ε) ≤ Prob(‖∇FN (u∗)−∇F (u∗)‖U ≥ εα).

Using (3.2.3), Assumption 3.2.1 (b), and Lemma 3.2.13, we get

∇FN (u∗)−∇F (u∗) = (1/N)

N∑

i=1

(∇uĴ(u∗, ξi)−∇F (u∗)). (3.2.17)

Lemma 3.2.13 and the fact that ξi have the same distribution as ξ imply E[∇uĴ(u∗, ξi)] =
∇F (u∗) for i = 1, . . . , N . Moreover, the independence of ξi and the measurability of ∇uĴ(u∗, ·)
(see Assumption 3.2.3 (a)) imply that ∇uĴ(u∗, ξi) are independent [44, p. 399]. Hence, the U -
valued random variables ∇uĴ(u∗, ξi)−∇F (u∗) have zero mean and are independent. Combined
with the separability of U (see Assumption 3.2.1 (a)) and Theorem 3.2.16, we obtain (3.2.4).
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Proof of Proposition 3.2.8. Lemma 3.2.4 implies that u∗N : Ω? → U is measurable. Lemma 3.2.13

yields E[∇uĴ(u∗, ξ)] = ∇F (u∗). Combined with Lemma 3.2.15, the fact that U is a Hilbert space
(see Assumption 3.2.1 (a)), the independence of ξi and (3.2.17), we conclude that

E[‖u∗ − u∗N‖2U ] ≤ 1
α2E[‖∇FN (u∗)−∇F (u∗)‖2U ] = 1

Nα2E[‖∇uĴ(u∗, ξ)−∇F (u∗)‖2U ].

Proof of Corollary 3.2.9. Proposition 3.2.8 gives E[‖u∗ − u∗N‖2U ] ≤ σ2/(α2N). Hence, Tscheby-
shev’s inequality yields Prob(‖u∗ − u∗N‖U ≥ ε) ≤ σ2/(α2ε2N) for each ε > 0.

3.2.3 Discussion

We compare the bounds provided by Theorem 3.2.6 and Proposition 3.2.8 with similar estimates
from the literature.
Our approach for deriving the tail bound (3.2.4) can be interpreted as an adaption of that
by Shapiro [287, 288] for nonlinear, finite-dimensional stochastic optimization problems to the
problem class modeled by Assumptions 3.2.1, 3.2.3 and 3.2.5 (b).
Kouri and Shapiro [190] establish

α‖u∗ − u∗N‖U ≤ ‖∇FN (u∗N )−∇F (u∗N )‖U , (3.2.18)

[190, eq. (42)], assuming Ĵ(·, ξ) : U → R is continuously differentiable for each ξ ∈ Ξ, Ψ = 0, and
the function F defined in (3.2.3) is α-strongly convex with α > 0. Here, u∗N (ω) is an optimal
solution of (3.2.2) for ω ∈ Ω?, and u∗ is a minimizer of (3.2.1). In contrast to the estimate
(3.2.15), the right-hand side in (3.2.18) depends on the random control u∗N . This dependence
stops us from applying the tail bound provided by Theorem 3.2.16. However, the convexity
assumption on F is weaker than that imposed by Assumption 3.2.3 (b), which requires the
integrand Ĵ(·, ξ) to be α-strongly convex for all ξ ∈ Ξ.
For stochastic approximation, Geiersbach and Pflug [128] establish a bound on E[‖uk − u∗‖2U ]
that decreases like 1/k as the iteration counter k increases, and depends on 1/α2 in a similar way
as the bound provided by Proposition 3.2.8. For the derivation of their bound, Geiersbach and
Pflug [128] require that the expectation function F defined in (3.2.1) is α-strongly convex and
that E[‖G(u, ξ)‖2U ] ≤ M1 < ∞ for all u ∈ Uad [128, pp. 2083 and 2087]. Here, uk (k = 1, 2, . . .)
are the iterates of the projected stochastic gradient method [128, Alg. 2.1], and G : U × Ξ→ U
is the stochastic gradient, such as G = ∇uĴ . Similar bounds on E[‖uk − u∗‖2U ] are provided
in [243, eq. (2.9)] and [131, Thm. 3.2], where uk are the iterates of stochastic approximation
methods.
The estimate (3.2.15) is similar to that established by Vexler [326, Prop. 3.5] for the variational
discretization of a linear-quadratic control problem. Whereas the estimate in [326, Prop. 3.5]
is deterministic, both the finite element approximation and the SAA approach yield perturbed
optimization problems. It is therefore not surprising that similar techniques can be used for
some parts of the perturbation analysis. However, the perturbation analysis of the sampling
error (3.2.15) differs from the error analysis of the variational discretization.

3.2.4 Confidence Bounds for the Optimal Value

We provide non-asymptotic bounds on the optimal value of the SAA problem (3.2.1), that is,
bounds on fN (u∗N )− f(u∗) as a function of N , where f(u∗) is the optimal value of (3.1.1), and
fN (u∗N ) is that of its SAA (3.1.2). Moreover, u∗ is an optimal solution of (3.1.1) and, for each
ω ∈ Ω?, u∗N (ω) is a minimizer of (3.1.2). Our derivation is built on that performed by Guigues,
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Juditsky, and Nemirovski [138] for optimization problems posed in (Rn, ‖ · ‖) “equipped” with
a distance-generating function.
We consider convex optimization problems with essentially bounded objective functions and
gradient mappings.

Assumption 3.2.17. (a) For some τ1 > 0, we have |Ĵ(u∗, ξ)− F (u∗)| ≤ τ1 for all ξ ∈ Ξ.
(b) For some τ2 > 0, it holds that ‖∇uĴ(u∗, ξ)−∇F (u∗)‖U ≤ τ2 for all ξ ∈ Ξ.

We derive tail bounds on fN (u∗N )− f(u∗), the difference of the optimal values of (3.2.2) and of
its SAA problem (3.2.1).

Proposition 3.2.18. Let u∗ be a minimizer of (3.2.1) and for each ω ∈ Ω?, let u∗N (ω) be a
minimizer of (3.2.2). Let Assumptions 3.2.1, 3.2.3 (a) and 3.2.17 hold. Then, for all ε > 0,

Prob(fN (u∗N ) > f(u∗) + ε) ≤ exp(−ε2τ−2
1 N/2). (3.2.19)

If, in addition, Rad = supu∈Uad
‖u− u∗‖U <∞, then, for all ε1, ε2 > 0,

Prob(fN (u∗N ) + ε1 + ε2 < f(u∗)) ≤ exp(−ε2
1τ
−2
1 N/2) + 2 exp(−ε2

2τ
−2
2 R−2

ad N/2), (3.2.20)

where f is defined in (3.2.1) and fN in (3.2.2).

The bound (3.2.19) is a consequence of Hoeffding’s bound. If Zi : Ω? → [ai, bi] are independent
and ai, bi ∈ R (i = 1, . . . , N), then Hoeffding’s bound [152, Thm. 2] gives, for all ε > 0,

Prob

(
1

N

N∑

i=1

(Zi − E[Zi]) ≥ ε
)
≤ e
− 2N2ε2∑N

i=1(bi−ai)2
.

Proof of Proposition 3.2.18. The proof is inspired by that of [138, Prop. 1]. Lemma 3.2.2 implies
that fN (u∗N ) is measurable. Consequently, the events in (3.2.19) and (3.2.20) are well-defined.
We prove (3.2.19). Using the definition of fN (see (3.2.2)), and that of FN and of F (see (3.2.3)),
we obtain

fN (u∗N ) ≤ fN (u∗) = FN (u∗) + Ψ(u∗) = FN (u∗)− F (u∗) + f(u∗). (3.2.21)

We define the mean-zero random variables Zi = Ĵ(u∗, ξi)−E[Ĵ(u∗, ξi)]. Using (3.2.3), we obtain
FN (u∗)− F (u∗) = (1/N)

∑N
i=1 Zi. Owing to Assumption 3.2.17 and the independence of ξi, we

can apply Hoeffding’s bound to FN (u∗)−F (u∗) = (1/N)
∑N

i=1(Zi−E[Zi]) which yields (3.2.19).
We establish (3.2.20). Since FN is Gâteaux differentiable at u∗ (see Lemma 3.2.13) and convex
(see Assumption 3.2.1 (d)), we have (see, e.g., [46, Prop. 2.125])

FN (u∗N )− FN (u∗) ≥ (∇FN (u∗), u∗N − u∗)U . (3.2.22)

The optimality condition (3.2.14) yields (∇F (u∗), u∗N − u∗)U + Ψ(u∗N )−Ψ(u∗) ≥ 0. Combined
with (3.2.22), the Cauchy–Schwarz inequality, and ‖u∗N − u∗‖U ≤ Rad, we find that

fN (u∗N ) = FN (u∗N ) + Ψ(u∗N ) ≥ FN (u∗) + Ψ(u∗N ) + (∇FN (u∗), u∗N − u∗)U
≥ FN (u∗) + Ψ(u∗) + (∇FN (u∗)−∇F (u∗), u∗N − u∗)U (3.2.23)

≥ f(u∗) + FN (u∗)− F (u∗)− ‖∇FN (u∗)−∇F (u∗)‖URad.

Assumption 3.2.17 allows us to apply Hoeffding’s bound to F (u∗)− FN (u∗) which yields

Prob(F (u∗)− FN (u∗) > ε1) ≤ exp(−Nτ−2
1 ε2

1/2). (3.2.24)
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Lemma 3.2.13 gives E[∇uĴ(u∗, ξ)] = ∇F (u∗). Thus, Assumption 3.2.17 and (3.2.17) also allow
us to apply Theorem 3.2.16 to Rad‖∇FN (u∗)−∇F (u∗)‖U . We obtain

Prob(Rad‖∇FN (u∗)−∇F (u∗)‖U > ε2) ≤ 2 exp(−ε2
2τ
−2
2 R−2

ad N/2).

Combined with (3.2.24) and the union bound/Boole’s inequality, we obtain (3.2.20).

Proposition 3.2.19. Let Assumptions 3.2.1, 3.2.3 (a) and 3.2.5 (a) hold. If, in addition,
Rad = supu∈Uad

‖u− u∗‖U <∞, then

E[fN (u∗N )] ≤ f(u∗) ≤ E[fN (u∗N )] + (Rad/
√
N)σ, (3.2.25)

where F is defined in (3.2.3), f in (3.2.1), and fN in (3.2.2).

Proof. Taking expectations of (3.2.21), we get E[fN (u∗N )] ≤ f(u∗). Since E[‖∇uĴ(u∗, ξ) −
∇F (u∗)‖2U ] ≤ σ2 and U is a Hilbert space, we obtain E[‖∇FN (u∗) − ∇F (u∗)‖2U ] ≤ σ2/N .
Jensen’s inequality ensures E[‖∇FN (u∗) − ∇F (u∗)‖U ] ≤ σ/

√
N . Combined with (3.2.23), we

obtain f(u∗) ≤ E[fN (u∗N )] + (Rad/
√
N)σ.

Proposition 3.2.20. If Assumptions 3.2.1, 3.2.3 (a) and 3.2.5 (a) hold, then

E[fN (u∗N )] ≤ f(u∗) ≤ E[fN (u∗N )] + σ2/(2αN).

Proof. The lower bound follows from (3.2.21). To establish the upper bound, we use the fact
that Ĵ(·, ξ) is α-strongly convex for all ξ ∈ Ξ. As opposed to (3.2.23), we obtain

fN (u∗N ) ≥ FN (u∗) + Ψ(u∗N ) + (∇FN (u∗), u∗N − u∗)U + (α/2)‖u∗N − u∗‖2U
≥ FN (u∗) + Ψ(u∗) + (∇FN (u∗)−∇F (u∗), u∗N − u∗)U + (α/2)‖u∗N − u∗‖2U
≥ f(u∗) + FN (u∗)− F (u∗)− (1/(2α))‖∇FN (u∗)−∇F (u∗)‖2U ,

where we have used the Cauchy–Schwarz inequality and Young’s inequality to get 2|(∇FN (u∗)−
∇F (u∗), u∗N − u∗)U | ≤ (1/α)‖∇FN (u∗) − ∇F (u∗)‖2U + α‖u∗N − u∗‖2U . Taking expectations, we
obtain the upper bound.

Discussion

Proposition 3.2.18 yields confidence bounds on f(u∗); cf. [138, pp. 1036–1037]. Let ε > 0
and δ ∈ (0, 1) be arbitrary, and let the hypotheses of Proposition 3.2.18 be fulfilled. If N ≥
2 ln(4/δ)(τ1 +Radτ2)2/ε2, then Proposition 3.2.18 ensures with c = τ1/(τ2Rad),

Prob(f(u∗) ∈ [fN (u∗N )− εc/(c+ 1), fN (u∗N ) + ε]) ≥ 1− δ. (3.2.26)

To verify this bound, we define ε1 = cε2 and ε2 = ε/(c+1). We have ε = ε1 +ε2, ε1 = εc/(c+1)
and ε2

1τ
−2
1 = c2ε2

2τ
−2
1 = ε2

2τ
−2
2 R−2

ad . Combined with Proposition 3.2.18 and the union bound, we
find that

Prob(f(u∗) + ε1 < fN (u∗N ) < f(u∗)− ε1 − ε2) ≤ 2e−ε
2
1τ
−2
1 N/2 + 2e−ε

2
2τ
−2
2 R−2

ad N/2 = 4e−ε
2
1τ
−2
1 N/2.

It must yet be shown that the above condition on N is the same as N ≥ 2 ln(4/δ)τ2
1 /ε

2
1, which

ensures 4 exp(−ε2
1τ
−2
1 N/2) ≤ δ. Using ε1 = cε2, ε2 = ε/(c+ 1) and c = τ1/(τ2Rad), we find that

τ2
1 /ε

2
1 = τ2

1 /(c
2ε2

2) = τ2
1 (c+ 1)2/(c2ε2) = τ2

2R
2
ad(c+ 1)2/ε2 = (τ1 +Radτ2)2/ε2.
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Therefore, the above condition on N is the same as N ≥ 2 ln(4/δ)τ2
1 /ε

2
1. Putting together the

pieces, we obtain (3.2.26).
In addition to the lower bound on the optimal value f(u∗) provided by Proposition 3.2.19, we
have E[infu∈Uad

fN (u)] ≤ E[infu∈Uad
fN+1(u)] ≤ infu∈Uad

f(u) [294, Prop. 5.6], valid without

convexity assumptions about Ĵ(·, ξ) for ξ ∈ Ξ. In our setting, we have f(u∗) = infu∈Uad
f(u)

and E[infu∈Uad
fN (u)] = E[fN (u∗N )] because we assume the existence of optimal solutions for

both (3.2.1) and its SAA (3.2.2). These inequalities assert that the SAA problem’s optimal
value is a downward biased estimator of the “true” optimal objective function value, and the
bias decreases monotonically as the sample size increases; see also [294, p. 171]. The tail bound
(3.2.19) asserts that fN (u∗N ) is to some extent concentrated below f(u∗). The bound (3.2.19)
is also valid without convexity assumptions because it solely relies on the estimate (3.2.21),
provided that Ĵ(u∗, ·) is essentially bounded or more generally sub-Gaussian.
Example 3.2.10 shows that the bound provided by Proposition 3.2.20 is optimal.
As opposed to Proposition 3.2.19, stochastic approximation yields the estimate E[f(ūK1 )] ≤
f(u∗) + (DadM/

√
K), when used with iterate averaging, constant step size, and a fixed number

of iterations K. Here, Dad = supu∈Uad
‖u − u1‖U , E[‖G(u, ξ)‖2U ] ≤ M2 < ∞ for all u ∈ Uad,

and G : U × Ξ → U is the stochastic gradient, such as G = ∇uĴ . Moreover, u1 ∈ Uad is the
(deterministic) initial value, and ūK1 ∈ Uad is a weighted average of the iterates. See [243, eqns.
(2.5), (2.17), and (2.21)], [131, Thm. 3.3], [128, pp. 2088], and [246, p. 192].
For stochastic approximation, Nemirovski, Juditsky, Lan, and Shapiro [243, Prop. 2.2] establish
exponential tail bounds on f(ūK1 ) > f(u∗), when (U, ‖ · ‖U ) = (Rn, ‖ · ‖) is “equipped” with
a distance-generating function. We conjecture that similar bounds can be established when
U is an infinite-dimensional (separable) Hilbert space. In this case, tail bounds for ‖ūK1 −
u∗‖U can be established under suitable assumptions: if f is α-strongly convex with α > 0 and
subdifferentiable at u∗, ūK1 ∈ Uad, and u∗ is an optimal solution of (3.2.1), then (α/2)‖ūK1 −
u∗‖2U ≤ f(ūK1 ) − f(u∗). We conclude that Prob(‖ūK1 − u∗‖U > (2ε/α)1/2) ≤ Prob(f(ūK1 ) >
f(u∗) + ε) for ε ≥ 0.
If the hypotheses of Proposition 3.2.8 hold, Ψ = 0, u∗ is an unconstrained minimizer of (3.2.1),
and ∇F is Lipschitz continuous with Lipschitz constant L > 0, then we have

E[f(u∗N )] ≤ f(u∗) + (L/2)E[‖u∗N − u∗‖2U ] ≤ f(u∗) + σ2L/(2α2N),

cf. [243, eqns. (2.12) and (2.13)], [131, eq. (3.11)]. These conditions are fulfilled for Exam-
ple 3.2.10 with L = α, and Example 3.2.10 shows that these estimates are essentially optimal.

3.2.5 Application to Linear-Quadratic Optimal Control under Uncertainty

We consider the linear-quadratic optimal control problem with convex regularization

min
u∈Uad

{ (1/2)E[‖Q(ξ)S(u, ξ)− yd‖2H ] + (α/2)‖u‖2U + Ψ(u) }, (3.2.27)

where α ≥ 0, S : U ×Ξ→ Y is the parameterized solution operator of the affine-linear operator
equation (3.2.29), and Q : Ξ → L (Y,H). Moreover, yd ∈ H and H is a Hilbert space. In this
section, U and Uad, and Ψ : U → R∪{∞} fulfill Assumptions 3.2.1 (a) and 3.2.1 (c), respectively.
We refer the reader to [151, sect. 1.5.1] for the formulation of a general deterministic linear-
quadratic control problem with control constraints. We can model parameterized affine-linear
elliptic and parabolic PDEs with (3.2.29), such as the heat equation with random inputs consid-
ered in [230, sect. 3.1.2]. Moreover, the optimization problems with affine-linear elliptic PDEs
considered in [122, sect. 7], [228, Chap. 3], [227, sect. 2], [191, sect. 6.1], [184, sect. 3.4], [190,
sect. 6], [139], and [308] can be formulated as instances of (3.2.27).
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If D ⊂ Rd is a bounded domain and U = L2(D), we can choose Ψ = γ‖ · ‖L1(D) for γ ≥ 0. This
nonsmooth regularization has been considered, for example, in [303], [335], [91, sect. 6.1], and
[321, sect. 9.3] for deterministic optimal control problems, and in [129, sect. 4] for a risk-neutral
control problem with a semilinear elliptic PDE. Further nonsmooth regularizers are considered
in [163, sect. 5].
We define J : Y × U × Ξ→ R and the reduced parameterized cost function Ĵ : U × Ξ→ R by

J(y, u, ξ) = (1/2)‖Q(ξ)y − yd‖2H + (α/2)‖u‖2U and Ĵ(u, ξ) = J(S(u, ξ), u, ξ). (3.2.28)

Following [159, Def. 1.1.27] and [36, Def. 2.23], we refer to an operator G : Ξ → L (V1, V2) as
strongly measurable (w.r.t. the strong operator topology) if G(·)x : Ξ→ V2 is strongly measurable
for each x ∈ V2. Here, V1 and V2 are Banach spaces.

Assumption 3.2.21. (a) The spaces Y and Z are separable Banach spaces, and U and H are
separable Hilbert spaces.

(b) The operators A : Ξ→ L (Y, Z), B : Ξ→ L (U,Z) and Q : Ξ→ L (Y,H), and g : Ξ→ Z
are strongly measurable, and yd ∈ H.

(c) For each ξ ∈ Ξ, A(ξ) has a bounded inverse.

We consider deterministic desired states yd ∈ H, but it is also possible to consider random ones
[121, p. 27], [124, p. 4]. Instead of assuming the strong measurability of the mappings A, B, Q
and g, it would be sufficient to impose their strong P-measurability, where P is the probability
distribution of ξ : Ω→ Ξ.
Let Assumption 3.2.21 hold. Let us define the parameterized solution operator S : U × Ξ→ Y :
for each (u, ξ) ∈ U × Ξ, S(u, ξ) is the solution to

Find y ∈ Y : A(ξ)y +B(ξ)u = g(ξ). (3.2.29)

Owing to Assumption 3.2.21, we have for each (u, ξ) ∈ U × Ξ,

S(u, ξ) = A(ξ)−1[g(ξ)−B(ξ)u]. (3.2.30)

As in [151, sect. 1.6.3], we identify U∗ and H∗ with U and H, respectively. We define z : U×Ξ→
Z∗ as the solution corresponding to the parameterized adjoint equation

Find z ∈ Y : A(ξ)∗z = −Q(ξ)∗[Q(ξ)S(u, ξ)− yd], (3.2.31)

where S is defined in (3.2.30) and ξ ∈ Ξ. Assumption 3.2.21 ensures that the parameterized
adjoint equation (3.2.31) has a unique solution for each ξ ∈ Ξ [196, pp. 49 and 236]. Combined
with the computations in [151, sects. 1.6.2 and 1.6.3], we find that the gradient of the function
Ĵ(·, ξ) defined in (3.2.28) is

∇uĴ(u, ξ) = B(ξ)∗z(u, ξ) + αu. (3.2.32)

Lemma 3.2.22. If Assumption 3.2.21 holds, then the following mappings are Carathéodory:
(a) S : U × Ξ → Y defined in (3.2.30), (b) Ĵ : U × Ξ → R defined in (3.2.28), and (c)
∇uĴ : U × Ξ→ U defined in (3.2.32).

Proof. (a) We show that S (see (3.2.30)) is a Carathéodory mapping. Fix ξ ∈ Ξ. The mapping
S(·, ξ) is affine-linear, and A(ξ)−1 and B(ξ) are bounded. Hence, S(·, ξ) is continuous.
Now, fix u ∈ U . The strong measurability of A : Ξ → L (Y,Z) implies that of A−1 : Ξ →
L (Z, Y ) [36, Thms. 2.15 and 2.16]. Hence, [159, Prop. 1.1.28] implies that A−1(·)g(·) is strongly
measurable, and [159, Cor. 1.1.29] yields the strong measurability of A−1(·)B(·)u. Consequently,
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S(u, ·) is strongly measurable, as it is the sum of strongly measurable mappings [150, Thm. 3.5.4].
Putting together the pieces, we conclude that S is a Carathéodory mapping.
(b) We establish that Ĵ (see (3.2.28)) is a Carathéodory function. Fix ξ ∈ Ξ. By (3.2.28), we
have Ĵ(·, ξ) = J(S(·, ξ), ·, ξ). The continuity of J(·, ·, ξ) and of S(·, ξ) imply that of Ĵ(·, ξ).
It must yet be shown that Ĵ(u, ·) is FΞ-measurable for each u ∈ U . Fix u ∈ U . We define
G : Ξ → Y × U by G(ξ) = (S(u, ξ), u). Using part (a) and [66, Lem. III.14], we obtain that
S(u, ·) is FΞ-B(Y )-measurable. Combined with [169, Lems. 1.5 and 1.8], we find that G is
FΞ-B(Y ) ⊗ B(U)-measurable. Since Ĵ(u, ξ) = J(·, ·, ξ) ◦ G(ξ) for each ξ ∈ Ξ and the function
J : (Y × U)× Ξ→ R defined in (3.2.28) is a Carathéodory function, [11, Lem. 8.2.3] and [169,
Lem. 1.2] ensure that Ĵ(u, ·) is FΞ-measurable.
(c) We show that ∇uĴ(u, ξ) (see (3.2.32)) is a Carathéodory mapping. Owing to (3.2.31), we
have z(u, ξ) = −A(ξ)−∗Q(ξ)∗(Q(ξ)S(u, ξ) − yd). Using this formula and part (a), we obtain
that B(ξ)∗z(·, ξ) is continuous for each ξ ∈ Ξ. According to [36, Thm. 2.16], A−∗, B∗ and
Q∗ are strongly measurable. Now, we can establish the measurability of z(u, ·) using the same
arguments as in part (a).

Lemma 3.2.23. Let Assumption 3.2.21 hold. We define F1 : U → R by

F1(u) = (1/2)E[‖Q(ξ)S(u, ξ)− yd‖2H ],

and K : Ξ → L (U,H) by K(ξ) = −Q(ξ)A(ξ)−1B(ξ). If, in addition, E[‖B(ξ)∗z(u, ξ)‖U ] < ∞
and E[‖K(ξ)∗K(ξ)u‖U ] <∞ for all u ∈ U , then F1 is infinitely times continuously differentiable
with ∇F1(u) = E[B(ξ)∗z(u, ξ)] and ∇2F1(u)[v] = E[K(ξ)∗K(ξ)v] for all u, v ∈ U . Here, S is
defined in (3.2.30) and z in (3.2.31).

Proof. Fix u, v, w ∈ U and ξ ∈ Ξ. We define Ĵ1 : U ×Ξ→ R by Ĵ1(u, ξ) = Ĵ(u, ξ)− (α/2)‖u‖2U ,

where Ĵ is defined in (3.2.28). Using (3.2.32) and the definition of z provided in (3.2.31), we
have ∇uĴ1(u, ξ) = B(ξ)∗z(u, ξ). Combined with E[‖B(ξ)∗z(u, ξ)‖U ] <∞, we find that

E[(∇uĴ1(u, ξ), v)U ] = E[(B(ξ)∗z(u, ξ), v)U ] = (E[B(ξ)∗z(u, ξ)], v)U

and that v 7→ (E[B(ξ)∗z(u, ξ)], v)U is a bounded linear operator. Formally, we obtain ∇F1(u) =
E[B(ξ)∗z(u, ξ)]. Since S(·, ξ) is affine linear (see (3.2.30)), we have S(u + v, ξ) − S(u, ξ) =
Su(u, ξ)[v] and Suu(u, ξ) = 0. Combined with the formulas for second derivatives provided in
[151, sect. 1.6.5] and the definition of K, we obtain

(∇uuĴ1(u, ξ)w, v)U = 〈Q(ξ)∗Q(ξ)Su(u, ξ)w, Su(u, ξ)v〉Y ∗,Y = (Q(ξ)Su(u, ξ)w,Q(ξ)Su(u, ξ)v)H

= (K(ξ)w,K(ξ)v)H = (w,K(ξ)∗K(ξ)v)U .

Since E[‖K(ξ)∗K(ξ)v‖U ] < ∞ for all v ∈ U , the operator v 7→ E[K(ξ)∗K(ξ)v] is linear and
bounded [150, Thm. 3.8.2]. Formally, we obtain ∇2F1(u)[v] = E[K(ξ)∗K(ξ)v]. Putting together
the pieces and using the fact that Ĵ1(·, ξ) is quadratic for all ξ ∈ Ξ, we conclude that F1 is twice
Gâteaux differentiable and, hence, infinitely many times continuously differentiable.

Examples

Many instances of the linear-quadratic control problem (3.2.27) frequently encountered in the
literature are defined by the following data: α > 0, Ψ = 0, H = U , Q ∈ L (Y,H) is the
(deterministic) embedding operator of the embedding Y ↪−→ U , and B ∈ L (U,Z) and g ∈ Z are
deterministic.1 Moreover, Ψ = 0, Uad is nonempty, closed and convex, and A : Ξ→ L (Y,Z) is

1Parameterized affine-linear elliptic state equations of the type (3.2.29) where g : Ξ→ Z is random can be found,
for example, in [125, sect. 2.2], [190, sect. 6], and [192, sect. 4].
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strongly measurable and there exist constants 0 < κ∗min ≤ κ∗max with κ∗min‖y‖Y ≤ ‖A(ξ)y‖Z ≤
κ∗max‖y‖Y for all (y, ξ) ∈ Y × Ξ. See [131, p. A2758], [227, sect. 2], [122, p. 20], [121, p. 31],
for example. Since κ∗min‖y‖Y ≤ ‖A(ξ)y‖Z ≤ κ∗max‖y‖Y for all (y, ξ) ∈ Y × Ξ, the operator A(ξ)
has a bounded inverse for each ξ ∈ Ξ with ‖A(ξ)−1z‖Y ≤ (1/κ∗min)‖z‖Z for all (z, ξ) ∈ Z × Ξ
[196, p. 101]. We conclude that Assumption 3.2.21 holds true. Lemmas 3.2.22 and 3.2.23, when
combined with that fact that the mappings Ĵ(u, ·) and ∇uĴ(u, ·) (see (3.2.32)) are essentially
bounded, imply that Assumptions 3.2.1, 3.2.3, 3.2.5 and 3.2.17 are satisfied, provided that
(3.2.27) has an optimal solution.
We verify the strong measurability of a random elliptic operator A using Lemma 3.2.24.

Lemma 3.2.24. If D ⊂ Rd is a bounded domain, then φ : L∞(D)→ L (H1
0 (D), H1

0 (D)∗) defined
by 〈φ(κ)y, v〉H1

0 (D)
∗
,H1

0 (D) = (κ∇y,∇v)L2(D)d is Lipschitz continuous with Lipschitz constant one.

Proof. The mapping φ is well-defined [151, pp. 29–30]. Since ‖ · ‖H1
0 (D) = | · |H1(D) (see p. viii),

Hölder’s inequality ensures |〈φ(κ2)−φ(κ1)y, v〉Y ∗,Y | = |((κ2−κ1)∇y,∇v)L2(D)d | ≤ ‖κ2−κ1‖L∞(D)

for all y, v ∈ H1
0 (D) with norm one. Hence, φ is Lipschitz continuous with constant one.

We define A : Ξ → L (H1
0 (D), H1

0 (D)∗) by 〈A(ξ)y, v〉H1
0 (D)

∗
,H1

0 (D) = (κ(ξ)∇y,∇v)L2(D)d with

κ : Ξ → L∞(D) being strongly measurable—a common example for A in the literature on
PDE-constrained optimization under uncertainty; see, e.g., [131, sect. 4], [226, sect. 2.1] and
[230, sects. 3.1.1 and 4.1]. Here, D ⊂ Rd is a bounded domain. For each ξ ∈ Ξ, we indeed
have A(ξ) ∈ L (H1

0 (D), H1
0 (D)∗) [151, pp. 29–30]. We show that A is strongly measurable w.r.t.

the uniform operator topology which implies that A is strongly measurable (w.r.t. the strong
operator topology) [159, p. 12]. Since the function φ defined in Lemma 3.2.24 is continuous, it is
measurable [169, Lem. 1.5]. Combined with A = φ◦κ and the fact that κ is strongly measurable,
we find that A is strongly measurable w.r.t. the uniform operator topology [159, Cor. 1.1.11].
For κ ∈ L∞(D × Ξ), the operator A : Ξ → L (H1

0 (D), H1
0 (D)∗) can also be defined by

〈A(ξ)y, v〉H1
0 (D)

∗
,H1

0 (D) = (κ(·, ξ)∇y,∇v)L2(D)d ; see, e.g., [122, sect. 7], [124, sect. 2.1], [227,

sect. 2]. Here, D ⊂ Rd is a bounded domain and L∞(D × Ξ) is the Bochner space of essen-
tially bounded, real-valued functions w.r.t. the product of the Lebesgue measure on D and of
the probability distribution P of ξ. The operator A is strongly P-measurable w.r.t. the uniform
operator topology [124, sect. 2.1].
Choosing κ as a log-normal random diffusion coefficients, that is, ln(κ) is a Banach space-valued
Gaussian random variable, has been popular in the literature [12, 3, 69]. In this case, Assump-
tion 3.2.5 (b) is generally violated. We construct an explicit example using Lemma 3.2.25, which
is inspired by [303, Lem. 3.1] established by Stadler [303].

Lemma 3.2.25. Consider the linear-quadratic control problem (3.2.27) with U = L2(D), α ≥ 0,
and Ψ = γ‖ · ‖L1(D), where D ⊂ Rd is a bounded domain and γ ≥ 0. Suppose that the hypotheses
of Lemma 3.2.23 hold and that Uad is convex with 0 ∈ Uad. If ‖E[B(ξ)∗z(0, ξ)]‖L∞(D) ≤ γ <∞,
then the zero function is a minimizer of (3.2.27), where B is defined in Assumption 3.2.21, and
z in (3.2.31). If α > 0 in (3.2.27), then the zero function is the minimizer of (3.2.27).

Proof. We show that 0 ∈ ∂[F (0)+Ψ(0)], where F +Ψ is the convex cost function of (3.2.27) (see
(3.2.3)). Lemma 3.2.23, the identification of U∗ with U , and the (Lipschitz) continuity of Ψ [1,
Thm. 2.8] ensure ∂[F (0) + Ψ(0)] = ∇F (0) +∂Ψ(0) [46, Prop. 2.125 and Thm. 2.168]. Combined
with ∇F (0) = E[B(ξ)∗z(0, ξ)] (see Lemma 3.2.23) and ∂Ψ(0) = {λ ∈ L2(D) : |λ| ≤ γ } [303,
eq. (2.3)], we obtain 0 ∈ ∂[F (0) + Ψ(0)]. (The inequality |λ| ≤ γ is understood in a pointwise
almost everywhere sense for λ ∈ L2(D).) If α > 0, then the objective function of (3.2.27) is
α-strongly convex. Hence, its minimum over the convex set Uad is unique [246, p. 48].
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We construct an elliptic control problem with a log-normal random diffusion coefficient for which
Assumption 3.2.5 (b) is violated. We choose

Y = H1
0 (D), Z = Y ∗, U = L2(D) = Uad = H, Ξ = R, D = (0, 1),

Q(ξ)y = y, yd = 2, Ψ = γ‖ · ‖L1(D), γ ≥ 0, α > 0,

B(ξ)u = −u, g = 0, 〈A(ξ)y, v〉Y ∗,Y = (exp(−ξ)y′, v′)L2(D).

Moreover, ξ : Ω→ R is a standard Gaussian random variable. Since E[exp(ξ2/4)] <∞ [57, p. 9],
we deduce that the hypotheses of Lemma 3.2.23 are satisfied. Using (3.2.30), we get S(0, ξ) = 0
for all ξ ∈ R. Combined with (3.2.31), we find that z(0, ξ)(x) = exp(ξ)x(1− x) for all x ∈ [0, 1].
Thus, ‖E[z(0, ξ)]‖L∞(D) is finite. We choose γ = ‖E[z(0, ξ)]‖L∞(D). For this data, the minimizer
of (3.2.27) is the zero function according to Lemma 3.2.25. We have ‖ · (1 − ·)‖2L2(D) = 1/30.

Using (3.2.32) and Lemma 3.2.23 yields

‖∇uĴ(0, ξ)−∇F (0)‖U = ‖z(0, ξ)− E[z(0, ξ)]‖U = (1/30)(exp(ξ)− E[exp(ξ)]),

where Ĵ is defined in (3.2.28) and F in (3.2.3). Combined with the fact that E[exp(ξ2/2)] =∞
[57, p. 9], we obtain that, for all τ ∈ R++, E[exp(τ−2‖∇uĴ(0, ξ) − ∇F (0)‖2U )] = ∞. Thus,
Assumption 3.2.5 (b) is violated.

Discussion

The objective function of (3.2.27) has some “hidden” composite structure. Let the hypotheses
of Lemma 3.2.23 be fulfilled. Using [159, eq. (1.2)], we obtain, for all u ∈ U ,

E[(E[Q(ξ)S(u, ξ)]− yd, Q(ξ)S(u, ξ)− E[Q(ξ)S(u, ξ)])H ] = 0.

Consequently, we have, for all u ∈ U ,

E[‖Q(ξ)S(u, ξ)− yd‖2H ] = ‖E[Q(ξ)S(u, ξ)]− yd‖2H + E[‖Q(ξ)S(u, ξ)− E[Q(ξ)S(u, ξ)]‖2H ];

see also [325, pp. 176–177]. The first term is the squared of the average distance of Q(ξ)S(u, ξ)
to yd, and the latter is the strong centered second moment of Q(ξ)S(u, ξ).
The control problem (3.2.27) can be simplified under a mild condition on the data. We define
the modified solution operator S̃ : U ×Ξ→ Y and the modified adjoint state z̃ : U ×Ξ→ Z∗ by

S̃(u, ξ) = A−1(ξ)[E[g(ξ)]−B(ξ)u] and z̃(u, ξ) = −A−∗(ξ)Q∗(ξ)[Q(ξ)S̃(u, ξ)− yd],

cf. (3.2.30) and (3.2.31). Let Assumption 3.2.21 hold. If g and the modified adjoint state z̃(u, ·)
are independent (w.r.t. the probability distribution of ξ) and Bochner integrable for all u ∈ U ,
then the linear-quadratic problem (3.2.27) is equivalent to

min
u∈Uad

{ (1/2)E[‖Q(ξ)S̃(u, ξ)− yd‖2H ] + (α/2)‖u‖2U + Ψ(u) }. (3.2.33)

To verify the equivalence, let us fix (u, ξ) ∈ U×Ξ. Using (3.2.30), we have S̃(u, ξ) = S(u, ξ)−w(ξ)
for w(ξ) = A−1(ξ)g(ξ)−A−1(ξ)E[g(ξ)]. We recall that U∗ and H∗ are identified with U and H,
respectively. Consequently, we have

(Q(ξ)w(ξ), Q(ξ)S̃(u, ξ)− yd)H = 〈Q∗(ξ)[Q(ξ)S̃(u, ξ)− yd], w(ξ)〉Y ∗,Y
= 〈z̃(u, ξ), g(ξ)− E[g(ξ)]〉Z∗,Z .

https://tinyurl.com/y25ouo9q
https://tinyurl.com/y5jxewzx
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Combined with independence assumption on g and z̃(u, ·), and [160, Prop. 6.1.3], we obtain the
identity E[(Q(ξ)w(ξ), Q(ξ)S̃(u, ξ)− yd)H ] = 0. Putting together the pieces, we conclude that

E[‖Q(ξ)S(u, ξ)− yd‖2H ] = E[‖Q(ξ)[S̃(u, ξ)− w(ξ)]− yd‖2H ]

= E[‖Q(ξ)S̃(u, ξ)− yd‖2H ] + E[‖Q(ξ)w(ξ)‖2H ].

Because E[‖Q(ξ)w(ξ)‖2H ] is independent of the control u ∈ U , we obtain that (3.2.27) and
(3.2.33) are equivalent.
We show that the function F1 : U → R defined by F1(u) = (1/2)E[‖Q(ξ)S(u, ξ) − yd‖2H ] is not
strongly convex under the following conditions:
• The hypotheses of Lemma 3.2.23 hold, the embedding Y ↪−→ H is compact, and dim(H) =∞.
• Let ι ∈ L (H,Y ) be the embedding operator of the compact embedding Y ↪−→ H. We choose
H = U , and define Q(ξ) = ι and K : Ξ→ L (U,U) by K(ξ) = −ιA(ξ)−1B(ξ).
• We suppose that K is strongly measurable w.r.t. the uniform operator topology and that
E[‖K(ξ)‖2L (U,U)] <∞.

Below, we show that these hypotheses imply that ∇2F1 is not coercive which is equivalent to the
fact that F1 is not strongly convex. This may suggest that the strong convexity of the objective
function of (3.2.27) solely comes from the control regularizer (α/2)‖ · ‖2U .
We have E[‖K(ξ)‖2L (U,U)] = E[‖K(ξ)∗K(ξ)‖L (U,U)] [196, Thm. 3.9-4]. Here, K(ξ)∗ is the Hilbert

space-adjoint of K(ξ) for ξ ∈ Ξ. We define T : Ξ → L (U,U) by T (ξ) = K(ξ)∗K(ξ). The
strong measurability of K w.r.t. the uniform operator topology implies that of K∗ [36, Thm.
2.16]. We deduce that T is strongly measurable w.r.t. the uniform operator topology [159, Cor.
1.1.29]. By assumption, K(ξ) = −ιA(ξ)−1B(ξ) is compact [196, p. 411] and, therefore, T (ξ) is
compact [196, p. 411]. Now, we show that E[T (ξ)] is the uniform limit of compact operators.
We consider the sample mean EN [T (ξ)](ω) = (1/N)

∑N
i=1 T (ξi(ω)), where ξi : Ω? → Ξ are

independent with the same distribution as ξ : Ω → Ξ. (The probability space (Ω?,F?, P ?) is
as in section 3.2.) Since L (U,U) is a Banach space [196, Thm. 2.10-2], T (ξi) : Ω? → L (U,U)
are independent [44, p. 399] and E[‖T (ξ)‖L (U,U)] = E[‖K(ξ)‖2L (U,U)] < ∞, the strong law of

large numbers [159, Thm. 3.3.10] implies EN [T (ξ)] → E[T (ξ)] as N → ∞ w.p. 1. Therefore,
there exists ω ∈ Ω? such that EN [T (ξ)](ω) → E[T (ξ)] as N → ∞. Since T (ξ) is compact for
all ξ ∈ Ξ and EN [T (ξ)](ω) is the finite sum of compact operators, EN [T (ξ)](ω) is compact [196,
p. 407]. Putting together the pieces, we find that E[T (ξ)] is the uniform limit of the compact
operators and, hence, it is compact [196, Thm. 8.1-5]. Furthermore, E[T (ξ)] is self-adjoint [150,
Thm. 3.8.1]. Combined with dim(U) = ∞, we conclude that E[T (ξ)] cannot have a bounded
inverse [196, p. 428] implying that E[T (ξ)] is not coercive [196, p. 101], [46, Lem. 4.123]. Since
(v,∇2F1(u)v)U = (v,E[T (ξ)v])U = (v,E[T (ξ)]v)U for all u, v ∈ U (see Lemma 3.2.23 and [150,
p. 85]), we conclude that F1 is not strongly convex.

3.3 Finite Element Discretization and SAA

We discretize an instance of the SAA problem (3.2.2) using finite elements, and derive reliable
bounds on the error between its (random) optimal control and the minimizer of the stochastic,
linear-quadratic control problem (3.2.27).
We consider the discretized SAA problem

min
u∈Uad,h

Fh,N (u, ω) + γ‖u‖L1(D), (3.3.1)

where γ ≥ 0, and Uh and Yh are nonempty, closed finite-dimensional subspaces of U = L2(D)
and Y = H1

0 (D), respectively. The definition of Uh and Yh is provided in section 3.3.1, and that
of Uad,h ⊂ Uh in (3.3.8). Throughout the section, D ⊂ Rd is a bounded domain.
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We define the discretized sample average function Fh,N : U × Ω? → R by

Fh,N (u, ω) = (1/2)EN [‖Sh(u, ξ(ω))− yd‖2L2(D)] + (α/2)‖u‖2L2(D), (3.3.2)

where EN [‖Sh(u, ξ(ω))− yd‖2L2(D)] = (1/N)
∑N

i=1 ‖Sh(u, ξi(ω))− yd‖2L2(D) and ξi : Ω? → Ξ (i =

1, . . . , N) are independent with the same probability distribution as that of ξ. The probability
space (Ω?,F?, P ?) is as in section 3.2. We often drop the second argument of Fh,N .
The discretized parameterized solution operator Sh : U × Ξ → Yh is defined as follows: for
(u, ξ) ∈ U × Ξ, Sh(u, ξ) ∈ Yh is the solution to

Find yh ∈ Yh : (κ(ξ)∇yh,∇vh)L2(D)d = (u, vh)L2(D) for all vh ∈ Yh. (3.3.3)

For simplicity, we assume that (κ(ξ)∇yh,∇vh)L2(D)d can be evaluated exactly. We consider

Uad = {u ∈ L2(D) : l ≤ u ≤ u }, l, u ∈ R, l < 0 < u, (3.3.4)

which is as in [335, sect. 4.1]. Throughout the section, the inequalities l ≤ u ≤ u are meant in a
pointwise almost everywhere sense for u ∈ L2(D).
The remaining data for the linear-quadratic control problem (3.2.27) is defined by

Y = H1
0 (D), Z = Y ∗, U = L2(D) = H,

Q(ξ)y = y, yd ∈ H, Ψ = γ‖ · ‖L1(D), γ ≥ 0, α > 0,

B(ξ)u = −u, g = 0, 〈A(ξ)y, v〉Y ∗,Y = (κ(ξ)∇y,∇v)L2(D)d .

(3.3.5)

In this case, the discretized SAA problem (3.3.1) can be solved using a semismooth Newton
method [303, sect. 4], [321, sect. 9.3]. The random coefficient κ satisfies Assumption 3.3.1 (b).

Assumption 3.3.1. (a) The domain D ⊂ Rd is bounded, has a Lipschitz boundary, and is
convex and polyhedral. Furthermore, we have d ∈ {1, 2, 3}.

(b) It holds that κ ∈ L∞(Ξ, C1(D̄)), and there exists κ∗min, κ∗max ∈ R with 0 < κ∗min ≤ κ(ξ) ≤
κ∗max for all ξ ∈ Ξ.

Assumption 3.3.1 (a) is as in [3, p. 471]. As shown below in Lemma 3.3.10, Assumption 3.3.1
ensures that the solution S(·, ξ) of (3.2.29) defined by the data in (3.3.5) is an element of H2(D)
for all ξ ∈ Ξ.
We define Friedrichs’ constant CD > 0 of the domain D ⊂ Rd by

CD = sup
v∈H1

0 (D)\{0}
‖v‖L2(D)/|v|H1 . (3.3.6)

If Assumption 3.3.1 (a) is satisfied, then CD <∞ [151, Thm. 1.13].

Lemma 3.3.2. Consider the linear-quadratic control problem (3.2.27) with the data given by
(3.3.4) and (3.3.5). Let Assumption 3.3.1 hold. Then, the following statements hold true:
(a) The mapping A defined in (3.3.5) is strongly measurable, and Assumption 3.2.21 holds.
(b) For each ξ ∈ Ξ, A(ξ) is self-adjoint.
(c) For all (u, ξ) ∈ L2(D)× Ξ,

‖S(u, ξ)‖H1
0 (D) ≤ (CD/κ∗min)‖u‖L2(D) and ‖S(u, ξ)‖L2(D) ≤ (C2

D/κ
∗
min)‖u‖L2(D),

where S is defined in (3.2.30) and CD > 0 in (3.3.6).
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(d) For all (u, ξ) ∈ L2(D)× Ξ, we have z(u, ξ) = S(S(u, ξ)− yd, ξ) and

‖z(u, ξ)‖H1
0 (D) ≤ (CD/κ∗min)((C2

D/κ
∗
min)‖u‖L2(D) + ‖yd‖L2(D)),

where the parameterized adjoint state z is given by (3.2.31).
(e) The function F defined in (3.2.3) is infinitely many times continuously differentiable.
(f) For all (u, ξ) ∈ L2(D)×Ξ, we have 0 ≤ Ĵ(u, ξ) ≤ ((C2

D/κ
∗
min)2 +α/2)‖u‖2L2(D) + ‖yd‖2L2(D),

where Ĵ is defined in (3.2.28).
(g) The risk-neutral problem (3.2.27) has a unique optimal solution, and Assumptions 3.2.1,

3.2.3, 3.2.5 and 3.2.17 hold true.

Proof. (a) Fix ξ ∈ Ξ. Since ‖ · ‖H1
0 (D) = | · |H1(D) (see p. viii), Assumption 3.3.1 implies

〈A(ξ)y, y〉Y ∗,Y ≥ κ∗min‖y‖2H1
0 (D)

for all y ∈ H1
0 (D). Moreover, A(ξ) is linear and bounded. Hence,

A(ξ) has a bounded inverse [196, p. 101]. The spaces Y = H1
0 (D) and U = H = L2(D) are

separable Hilbert spaces [1, Thms. 2.15 and 3.5], and Z = H1
0 (D)∗ is separable [1, Thm. 1.14].

The strong measurability of A follows from Lemma 3.2.24 and [159, Cors. 1.1.11 and 1.1.24].
(b) The computations in [151, p. 62] imply that A(ξ) is self-adjoint.
(c) The first bound follows from [69, eq. (2.1)], and the second estimate from the first one and
(3.3.6).
(d) Using part (b), (3.2.31) and (3.2.29), we obtain z(u, ξ) = S(S(u, ξ)− yd, ξ). Combined with
part (c), we obtain the stability estimate.
(e) Using Lemma 3.2.23, and parts (b) and (c), we deduce the assertions.
(f) Using the definition of Ĵ (see (3.2.28)) and Young’s inequality, we find that 0 ≤ Ĵ(u, ξ) ≤
‖S(u, ξ)‖2L2(D) + ‖yd‖2L2(D) + (α/2)‖u‖2L2(D). Combined with part (c), we obtain the estimate.

(g) The feasible set Uad defined in (3.3.4) is nonempty, convex, and closed [316, pp. 116–117].
Since D is bounded (see Assumption 3.3.1 (a)), Hölder’s inequality ensures the (Lipschitz)
continuity of Ψ : U → R (see (3.3.5)) [1, Thm. 2.8]. Part (e) ensures the continuity of the
objective function F + Ψ of (3.2.27). Moreover, it is α-strongly convex with α > 0 (see (3.3.5)).
Combining the pieces, we obtain the existence of a unique minimizer to (3.2.27) [46, Lem. 2.33].
Using Lemma 3.2.22, parts (d) and (e), and the fact that Ĵ(u, ·) and ∇uĴ(u, ·) are essentially
bounded for all u ∈ U , we conclude that Assumptions 3.2.1, 3.2.3, 3.2.5 and 3.2.17 are satisfied.

3.3.1 State and Control Discretization

We introduce the discretization for the state space Y = H1
0 (D) and for the control space U =

L2(D) defined in (3.3.5). We recall that the domain D ⊂ Rd is bounded.

Assumption 3.3.3. There exists a sequence (Yh)h>0 of nested, closed and finite-dimensional
subspaces of H1

0 (D), and a constant CY > 0, independent of h > 0, such that

inf
vh∈Yh

|v − vh|H1(D) ≤ CY h‖v‖H2(D) for all v ∈ H1
0 (D) ∩H2(D) and h > 0. (3.3.7)

Assumption 3.3.3 is satisfied if Assumption 3.3.1 (a) holds true and Yh is the space of piecewise
linear finite elements on the domain D [54, sect. 4.4], [3, Lem. 4.3]. The following assumption is
based on [335, Assumption 4.1] and [93, Assumption 3.3].

Assumption 3.3.4. For each h > 0, there exists nh ∈ N and φjh ∈ L∞(D) with φjh ≥ 0 and

‖φjh‖L∞(D) = 1 for j = 1, . . . , nh, and
∑nh

j=1 φ
j
h(x) = 1 for almost every x ∈ D. For h > 0, we

define Uh = span{φjh : j = 1, . . . , nh }. The sequence (Uh)h>0 is nested.
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When Assumption 3.3.1 (a) is fulfilled, and either piecewise constant or piecewise linear finite
elements are chosen, then Assumption 3.3.4 is fulfilled [93, Rem. 3.1]. Let Assumption 3.3.4 be
satisfied and h > 0. We define

Uad,h =
{ nh∑

j=1

ujφ
j
h ∈ Uh : uj ∈ R, l ≤ uj ≤ u, j = 1, . . . , nh

}
. (3.3.8)

Following [64, Def. 2.2], [93, eqns. (10) and (11)] and [335, p. 868], let us define the quasi-
interpolation operator Ih : L1(D)→ Uh by

Ihu =

nh∑

j=1

πjh[u]φjh, πjh : L1(D)→ R, πjh[u] = (φjh, u)L2(D)/(φ
j
h, 1)L2(D). (3.3.9)

Assumption 3.3.4 and Hölder’s inequality [151, Lem. 1.3] imply that Ih is well-defined.

Assumption 3.3.5. There exists a constant CU > 0 independent of h > 0 such that, for all
h > 0 and every u ∈ H1(D),

‖u− Ihu‖L2(D) ≤ CUh|u|H1(D) and ‖u− Ihu‖H1(D)∗ ≤ CUh2‖u‖H1(D), (3.3.10)

where Ih is defined in (3.3.9).

According to [93, Lems. 4.3 and 4.4], Assumption 3.3.5 is fulfilled if [93, Assumptions 2.2 and
3.3] hold. We summarize properties of the discretized feasible set Uad,h (see (3.3.8)) and of the
interpolation operator Ih (see (3.3.9)).

Lemma 3.3.6. If Assumption 3.3.5 holds, D ⊂ Rd is a bounded domain, and h > 0, then the
following statement hold true:
(a) For each u ∈ L1(D), we have ‖Ihu‖L1(D) ≤ ‖u‖L1(D), where Ih is defined in (3.3.9).
(b) It holds that Uh ⊂ L2(D), where Uh is given by Assumption 3.3.5.
(c) We have Uad,h ⊂ Uad, where Uad is defined in (3.3.4) and Uad,h in (3.3.8).
(d) For all u ∈ Uad, we have Ihu ∈ Uad,h.

Proof. (a) The statement is shown in [335, p. 870]. Nevertheless, we provide a proof. For all
v ∈ L1(D), (3.3.9) ensures

(v − πjh[v], φih)L2(D) = (v, φjh)L2(D) − πjh[v](φjh, 1)L2(D) = 0 for j = 1, . . . , nh, (3.3.11)

see also [335, eq. (4.3)], [93, p. 261]. Fix u ∈ L1(D). Define u+ = max{0, u} and u− = min{0, u}.
We have u+, u− ∈ L1(D). Using φjh ≥ 0 and

∑nh
j=1 φ

j
h = 1 (see Assumption 3.3.4), (3.3.9) and

(3.3.11), we obtain Ihu+ ≥ 0 and

‖Ihu+‖L1(D) = (Ihu+, 1)L2(D) =

nh∑

i=1

(u+, φ
j
h)L2(D) = ‖u+‖L1(D).

Similary, we can show that ‖Ihu−‖L1(D) = ‖u−‖L1(D). Combined with the linearity of Ih, the
triangle inequality, and the definition of the L1(D)-norm, we conclude that

‖Ihu‖L1(D) ≤ ‖Ihu+‖L1(D) + ‖Ihu−‖L1(D) = ‖u+‖L1(D) + ‖u−‖L1(D) = ‖u‖L1(D).

(b) Fix v ∈ Uh. Assumption 3.3.4 ensures the existence of w ∈ Rnh with v =
∑nh

i=1wjφ
j
h, and

φjh ≥ 0 and
∑nh

j=1 φ
j
h = 1. Hence ‖v‖L∞(D) ≤ max1≤j≤nh |wj | and v ∈ L2(D) [1, Thm. 2.8].
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(c) Let v ∈ Uad,h be arbitrary. Using (3.3.8), we deduce the existence of wj ∈ R with v =∑nh
j=1wjφ

j
h and l ≤ wj ≤ u. Since φjh ≥ 0 (see Assumption 3.3.4), we obtain φjhl ≤ φjhuj ≤ φjhu

for j = 1, . . . , nh. Combined with
∑nh

j=1 φ
j
h = 1, we deduce l ≤ v ≤ u. Hence, v ∈ Uad.

(d) Fix u ∈ Uad and j ∈ {1, . . . , nh}. Since Assumption 3.3.4 holds, we have φjh ≥ 0. Combined

with (3.3.4) and (3.3.9), we find that l ≤ πjh[u] ≤ u. Now, the definition of Uad,h provided in
(3.3.8) and u ∈ L1(D) [1, Thm. 2.8] ensure Ihu ∈ Uad,h.

Lemma 3.3.7. Consider the discretized SAA problem (3.3.1) with the data given by (3.3.4)
and (3.3.5). Suppose that Assumptions 3.3.1 and 3.3.3–3.3.5 are fulfilled. Then, the following
statements hold true:
(a) For each ω ∈ Ω?, the function Fh,N (·, ω) defined in (3.3.2) is infinitely many times contin-

uously differentiable.
(b) For each ω ∈ Ω?, the discretized SAA problem (3.3.1) has a unique optimal solution u∗h,N (ω),

and u∗h,N : Ω? → Uh is measurable.

Proof. (a) The spaces Yh and Uh are Banach spaces according to Assumptions 3.3.3 and 3.3.4
and Lemma 3.3.6. Combined with Lemmas 3.2.23 and 3.3.2, we deduce the assertion.
(b) Fix ω ∈ Ω?. Part (a) ensures the continuity of Fh,N (·, ω). Moreover, it is α-strongly convex
with α > 0 (see (3.3.5)). Furthermore, the feasible set Uad defined in (3.3.4) is nonempty, closed,
convex (and bounded) (see Lemma 3.3.2). Putting together the pieces, we find that (3.3.1) has
a unique optimal solution u∗h,N (ω) [46, Lem. 2.33]. Since Uh is a Banach space, Lemma 3.2.4
ensures the measurability of u∗h,N : Ω? → Uh.

3.3.2 Reliable Error Estimates

We derive reliable bounds on the L2(D)-distance between the optimal solution of the discretized
SAA problem (3.3.1) and the minimizer of the risk-neutral problem (3.2.27).
Throughout the section, the linear-quadratic control problem (3.2.27) is considered with the
data given by (3.3.4) and (3.3.5).

Proposition 3.3.8. Suppose that Assumptions 3.3.1 and 3.3.3–3.3.5 are fulfilled. Let u∗ be the
minimizer of the risk-neutral problem (3.2.27) and for each ω ∈ Ω?, let u∗h,N (ω) be the optimal
solution of the discretized SAA problem (3.3.1). Let ε > 0, δ ∈ (0, 1), and h ∈ (0, 1) be arbitrary.
If N ≥ ln(2/δ)/ε2, then with a probability of at least 1− δ,

‖u∗h,N − u∗‖L2(D) ≤ c
(
h+ε
α

)(
‖u∗‖L2(D) + ‖yd‖L2(D)

)
+ ch

(
1 + 1

α

)
‖u∗‖H1(D). (3.3.12)

Here, c > 0 is a deterministic constant that is independent of h > 0, α > 0, ε > 0 and δ ∈ (0, 1),
but depends on CD > 0 (see (3.3.6)), κ∗min, κ∗max, ‖κ‖L∞(Ξ;C1(D̄)) (see Assumption 3.3.1), CH2 >
0 (see Lemma 3.3.10), CY > 0 (see Assumption 3.3.3), and CU > 0 (see Assumption 3.3.5).

Proposition 3.3.8 implies that random control u∗h,N is contained in an L2(D)-ball about the
minimizer u∗ of the true problem (3.2.27) with high probability.
A bound on ‖u∗‖H1(D) is provided in Lemma 3.3.9. We obtain ‖u∗‖L2(D) ≤ (|l| + u)‖1‖L2(D)

using the definition of Uad (see (3.3.4)). The constant c > 0 in Proposition 3.3.8 may be difficult
to estimate as it depends, for example, on those provided by Assumptions 3.3.3 and 3.3.5. The
term (1/α)‖u∗‖H1(D) in (3.3.12) might not be optimal; cf. [335, Prop. 4.5].
We prove Proposition 3.3.8 using Lemmas 3.3.7 and 3.3.9–3.3.11.

Lemma 3.3.9. If Assumption 3.3.1 holds, Uad is given by (3.3.4), then E[z(u∗, ξ)] ∈ H1
0 (D),

u∗ ∈ H1(D) and ∇F (u∗) ∈ H1(D), where F is defined in (3.2.3) and z in (3.2.31). Moreover,
‖u∗‖H1(D) ≤ (1/α)‖E[z(u∗, ξ)]‖H1(D) + (|l|+ u)‖1‖L2(D).
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Proof. Lemma 3.2.22 reveals the (strong) measurability of the parameterized adjoint state
z(u∗, ·) : Ξ → H1

0 (D) defined in (3.2.31), and Lemma 3.3.2 ensures E[‖z(u∗, ξ)‖H1
0 (D)] < ∞.

Consequently, z(u∗, ξ) is Bochner integrable. We obtain E[z(u∗, ξ)] ∈ H1
0 (D) [159, p. 14].

Since Ψ = γ‖ · ‖L1(D) (see (3.3.5)) is convex and continuous, the necessary and sufficient
optimality conditions for (3.2.1) can be expressed as the deterministic variational inequality
(p + αu∗ + λ∗, u− u∗)L2(D) ≥ 0 for all u ∈ Uad, where p = E[z(u∗, ξ)] and λ∗ is the Riesz repre-
sentation of an element of ∂Ψ(u∗) [163, sect. 3], [46, Chap. 2]. Since Uad is given by (3.3.4) and
U = L2(D) (see (3.3.5)), this variational inequality allows for a pointwise characterization [303,
sect. 2 and eq. (4.4)], [334, eq. (2)], [265, pp. 94–95]. Combining this pointwise characterization
with [178, Cor. A.5 on p. 54], we obtain u∗ ∈ H1(D). Now, Lemma 3.2.23 and (3.2.32) ensure
∇F (u∗) ∈ H1(D). The bound on ‖u∗‖H1(D) follows from that in [335, p. 870], when combined
with the fact that the above variational inequality is deterministic and that Dl = Du = 0.

We recall that relations between random variables hold w.p. 1 if not stated otherwise (see p.
viii).

Lemma 3.3.10. Let Assumptions 3.3.1 and 3.3.3–3.3.5 hold, and let h > 0. Then, the following
statements hold true:
(a) There exists CH2 > 0 such that ‖S(u, ξ)‖H2(D) ≤ CH2C1‖u‖U and S(u, ξ) ∈ H2(D) for all

(u, ξ) ∈ U × Ξ, where S is defined in (3.2.30), and C1 = (κ∗max/(κ
∗
min)4)‖κ‖2

L∞(Ξ;C1(D̄))
.

(b) |S(u, ξ)− Sh(u, ξ)|H1(D) ≤ CY CH2C2h‖u‖U for all (u, ξ) ∈ U ×Ξ. Here, CY > 0 is defined

by Assumption 3.3.3 and Sh : L2(D)× Ξ→ Yh in (3.3.3), and C2 = C1(κ∗max/κ
∗
min)1/2.

(c) ‖S(u, ξ)− Sh(u, ξ)‖L2(D) ≤ κ∗maxC
2
Y C

2
H2C2h

2‖u‖L2(D) for all (u, ξ) ∈ U × Ξ.

(d) For CD > 0 defined in (3.3.6), Fh,N in (3.3.2) and Ih in (3.3.9), we have

|(∇Fh,N (Ihu∗)−∇Fh,N (u∗), Ihu∗ − u∗h,N )U | ≤
(
α+

C4
D

(κ∗min)2

)
‖Ihu∗ − u∗h,N‖U‖Ihu∗ − u∗‖U .

(e) ‖∇Fh,N (u∗) − ∇FN (u∗)‖U ≤ C3h
2(‖u∗‖U + ‖yd‖U ), where the constant C3 > 0 is defined

by C3 = 2 max{(C2
D/κ

∗
min), 1}κ∗maxC

2
Y C

2
H2C2.

(f) |(∇F (u∗), Ihu∗ − u∗)L2(D)| ≤ CUh2‖∇F (u∗)‖H1(D)‖u∗‖H1(D), where CU > 0 is provided by
Assumption 3.3.5, and F is defined in (3.2.3).

Proof. (a) See [3, Thm. 3.1].
(b) The assertion follows essentially from the proof of [70, Thm. 3.9]. Using Assumption 3.3.1
and Céa’s lemma [70, Lem. 3.8], we find that

|S(u, ξ)− Sh(u, ξ)|H1(D) ≤ (κ∗max/κ
∗
min)1/2 inf

vh∈Yh
|S(u, ξ)− vh|H1(D).

Combined with Assumption 3.3.3 and part (a), we obtain

|S(u, ξ)−Sh(u, ξ)|H1(D) ≤ (κ∗max/κ
∗
min)1/2CY h‖S(u, ξ)‖H2(D) ≤ (κ∗max/κ

∗
min)1/2CY CH2C1h‖u‖U ,

where C1 > 0 is defined in part (a).
(c) The assertion follows from the proof of [3, Thm. 4.4]. Tracing the constants in the proof of
[3, Thm. 4.4], we obtain the estimate.
(d) Lemmas 3.2.23 and 3.3.7 and the fact that Fh,N is quadratic (see (3.3.2)) yield

(∇Fh,N (Ihu∗)−∇Fh,N (u∗), Ihu∗ − u∗h,N )U = EN [(Sh(Ihu∗ − u∗, ξ), Sh(Ihu∗ − u∗h,N , ξ))U ]

+ α(Ihu∗ − u∗, Ihu∗ − u∗h,N )U .

Using similar arguments as in Lemma 3.3.2, we obtain ‖Sh(u, ξ)‖L2(D) ≤ (C2
D/κ

∗
min)‖u‖L2(D) for

all u ∈ U . Combined with the Cauchy–Schwarz inequality, we obtain the assertion.
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(e) Using Lemmas 3.2.23 and 3.3.2, we find that

∇Fh,N (u∗)−∇FN (u∗) = EN [Sh(Sh(u∗, ξ)− yd, ξ)]− EN [S(S(u∗, ξ)− yd, ξ)],
where EN is the sample mean (see p. viii). We separately estimate Sh(S(u∗, ξ) − yd, ξ) −
S(S(u∗, ξ) − yd, ξ) and Sh(Sh(u∗, ξ) − yd, ξ) − Sh(S(u∗, ξ) − yd, ξ) for ξ ∈ Ξ. Using part (c)
and Lemma 3.3.2, we find that

‖Sh(Sh(u∗, ξ)− yd, ξ)− Sh(S(u∗, ξ)− yd, ξ)‖L2(D) ≤ (C2
D/κ

∗
min)‖Sh(u∗, ξ)− S(u∗, ξ)‖L2(D)

≤ (C2
D/κ

∗
min)κ∗maxC

2
Y C

2
H2C2h

2‖u∗‖L2(D).

Using part (c) and Lemma 3.3.2, we further find that

‖Sh(S(u∗, ξ)− yd, ξ)− S(S(u∗, ξ)− yd, ξ)‖L2(D) ≤ κ∗maxC
2
Y C

2
H2C2h

2‖S(u∗, ξ)− yd‖L2(D).

The triangle inequality and Lemma 3.3.2 also yield ‖S(u∗, ξ)−yd‖L2(D) ≤ (C2
D/κ

∗
min)‖u∗‖L2(D) +

‖yd‖L2(D). Putting together the pieces, we obtain the assertion.
(f) Since H1(D) ↪−→ L2(D) ↪−→ H1(D)∗ is a Gelfand triple [316, p. 147], the embedding L2(D) ↪−→
H1(D)∗ is given by 〈v, w〉H1(D)∗,H1(D) = (v, w)L2(D) for all v ∈ L2(D) and w ∈ H1(D) [151, Rem.

1.17]. Combined with u∗ ∈ H1(D), ∇F (u∗) ∈ H1(D) (see Lemma 3.3.9), and Ihu∗ ∈ L2(D)
(see Lemma 3.3.6), we have |(∇F (u∗), Ihu∗ − u∗)L2(D)| ≤ ‖∇F (u∗)‖H1(D)‖Ihu∗ − u∗‖H1(D)∗ .
Together with Assumption 3.3.5, we obtain the assertion.

Lemma 3.3.11. If Assumptions 3.3.1 and 3.3.3–3.3.5 hold, and h > 0, then w.p. 1,

α‖Ihu∗ − u∗h,N‖2U ≤(∇Fh,N (Ihu∗)−∇Fh,N (u∗), Ihu∗ − u∗h,N )U

+ (∇Fh,N (u∗)−∇FN (u∗), Ihu∗ − u∗h,N )U

+ (∇FN (u∗)−∇F (u∗), Ihu∗ − u∗h,N )U

+ (∇F (u∗), Ihu∗ − u∗)U ,

(3.3.13)

where Ih is defined in (3.3.9), Fh,N in (3.3.2), and F and FN in (3.2.3). Here, for each ω ∈ Ω?,
u∗h,N (ω) is the optimal solution of (3.3.1) and u∗ is that of (3.2.1).

Proof. The proof is inspired by the arguments used by Meidner and Vexler [231, Thm. 5.2].
Lemma 3.3.6 and Ψ = γ‖ · ‖L1(D) with γ ≥ 0 (see (3.3.5)) ensure u∗h,N ∈ Uad, Ihu∗ ∈ Uad,h, and
Ψ(Ihu∗) ≤ Ψ(u∗). Lemmas 3.3.2 and 3.3.7 imply that F and Fh,N are continuously differentiable
and convex. Using u∗h,N ∈ Uad and Lemma 3.2.14, we find that (∇F (u∗), u∗h,N−u∗)U+Ψ(u∗h,N )−
Ψ(u∗) ≥ 0. Using the same arguments as in the proof of Lemma 3.2.14 and Ihu∗ ∈ Uad,h, we
obtain (∇Fh,N (u∗h,N ), Ihu∗ − u∗h,N )U + Ψ(Ihu∗) − Ψ(u∗h,N ) ≥ 0. Adding these two inequalities
and using Ψ(Ihu∗) ≤ Ψ(u∗) yields

0 ≤(∇F (u∗), u∗h,N − u∗)U + (∇Fh,N (u∗h,N ), Ihu∗ − u∗h,N )U . (3.3.14)

Since Fh,N is α-strongly convex (see (3.3.2)) and Gâteaux differentiable, we have

α‖Ihu∗ − u∗h,N‖2U ≤(∇Fh,N (Ihu∗)−∇Fh,N (u∗h,N ), Ihu∗ − u∗h,N )U .

Adding this inequality and the estimate (3.3.14), we conclude that

α‖Ihu∗ − u∗h,N‖2U ≤ (∇Fh,N (Ihu∗), Ihu∗ − u∗h,N )U + (∇F (u∗), u∗h,N − u∗)U
= (∇Fh,N (Ihu∗), Ihu∗ − u∗h,N )U + (∇F (u∗), Ihu∗ − u∗)U

+ (∇F (u∗), u∗h,N − Ihu∗)U .
Manipulating the term on the right-hand side and using the measurability of u∗h,N : Ω? → Uh
(see Lemma 3.3.7), we obtain (3.3.13).
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Proof of Proposition 3.3.8. The triangle inequality and Assumption 3.3.5 yield

‖u∗h,N − u∗‖U ≤ CUh|u∗|H1(D) + ‖u∗h,N − Ihu∗‖U , (3.3.15)

where Ih is defined in (3.3.9) and CU > 0 is given by Assumption 3.3.5. Lemma 3.3.7 ensures
the measurability of u∗h,N : Ω? → Uh.
In the following steps, we derive a bound on ‖u∗h,N−Ihu∗‖U using Lemmas 3.3.2, 3.3.10 and 3.3.11
and Theorem 3.2.16.
Using the Cauchy–Schwarz inequality, (2ρ1ρ2)1/2 ≤ ρ1 + ρ2, valid for all ρ1, ρ2 ∈ R+ and
Lemma 3.3.10, we find that

|2(∇Fh,N (Ihu∗)−∇Fh,N (u∗), Ihu∗ − u∗h,N )U |1/2 ≤ (4/α1/2)(α+ C4
D/(κ

∗
min)2)‖Ihu∗ − u∗‖L2(D)

+ (α1/2/4)‖Ihu∗ − u∗h,N‖L2(D),

|2(∇Fh,N (u∗)−∇FN (u∗), Ihu∗ − u∗h,N )U |1/2 ≤ (4/α1/2)‖∇Fh,N (u∗)−∇FN (u∗)‖U
+ (α1/2/4)‖Ihu∗ − u∗h,N‖U ,

|2(∇FN (u∗)−∇F (u∗), Ihu∗ − u∗h,N )U |1/2 ≤ (1/α1/2)‖∇FN (u∗)−∇F (u∗)‖U
+ (α1/2/4)‖Ihu∗ − u∗h,N‖U ,

where CD > 0 is defined in (3.3.6). Combined with (3.3.13) and (ρ1 + ρ2)1/2 ≤ ρ1/2
1 + ρ

1/2
2 valid

for all ρ1, ρ2 ∈ R+, we conclude that

(1/8)‖u∗h,N − Ihu∗‖L2(D) ≤ (1/α)(α+ C4
D/(κ

∗
min)2)‖Ihu∗ − u∗‖L2(D)

+ (1/α)‖∇Fh,N (u∗)−∇FN (u∗)‖L2(D)

+ (1/α)‖∇FN (u∗)−∇F (u∗)‖L2(D)

+ (1/α1/2)|(∇F (u∗), Ihu∗ − u∗)L2(D)|1/2.
Combined with Lemma 3.3.10 and Assumption 3.3.5, we further find that

(1/8)‖u∗h,N − Ihu∗‖L2(D) ≤ (1/α)(α+ C4
D/(κ

∗
min)2)CUh|u∗|H1(D)

+ (1/α)C3h
2(‖u∗‖L2(D) + ‖yd‖U )

+ (1/α)‖∇FN (u∗)−∇F (u∗)‖L2(D)

+ (1/α1/2)h(CU‖∇F (u∗)‖H1(D)‖u∗‖H1(D))
1/2,

(3.3.16)

where C3 > 0 is defined in Lemma 3.3.10.
We must yet derive bounds on the third and fourth term in the right-hand side of (3.3.16). The
triangle inequality, Jensen’s inequality, and Lemmas 3.2.23, 3.3.2 and 3.3.9 imply

‖∇F (u∗)‖H1(D) ≤ α‖u∗‖H1(D) + ‖E[z(u∗, ξ)]‖H1(D)

≤ α‖u∗‖H1(D) + (CD/κ∗min)((C2
D/κ

∗
min)‖u∗‖L2(D) + ‖yd‖L2(D)).

Combined with Young’s inequality, we obtain

1
α1/2 ‖∇F (u∗)‖1/2

H1(D)
‖u∗‖1/2

H1(D)
≤ 2‖u∗‖H1(D) + CD

ακ∗min

( C2
D

κ∗min
‖u∗‖L2(D) + ‖yd‖L2(D)

)
. (3.3.17)

Since N ≥ ln(2/δ)/ε2, Theorem 3.2.16 ensures2, with a probability of at least 1− δ,

‖∇FN (u∗)−∇F (u∗)‖U ≤ 21/2ε‖∇uĴ(u∗, ξ)−∇F (u∗)‖L∞(Ξ;L2(D)). (3.3.18)

2We define τ = ‖∇uĴ(u∗, ξ)−∇F (u∗)‖L∞(Ξ;L2(D)) ∈ R++. Theorem 3.2.16 gives Prob(‖∇FN (u∗)−∇F (u∗)‖U ≥
r) ≤ 2 exp(−τ−2r2N/2) for all r > 0, which is equivalent to Prob(‖∇FN (u∗) − ∇F (u∗)‖U ≥

√
2τr) ≤

2 exp(−r2N) for all r > 0.
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It remains to derive a bound on ‖∇uĴ(u∗, ξ)−∇F (u∗)‖L∞(Ξ;L2(D)). Using the definition of the
adjoint state z (see (3.2.31)), (3.2.32), and Lemmas 3.2.23 and 3.3.2, we have

‖∇uĴ(u∗, ξ)−∇F (u∗)‖L∞(Ξ;L2(D)) = ‖z(u∗, ξ)− E[z(u∗, ξ)]‖L∞(Ξ;L2(D))

≤ 2‖z(u∗, ξ)‖L∞(Ξ;L2(D))

≤ 2CD
κ∗min

( C2
D

κ∗min
‖u∗‖L2(D) + ‖yd‖L2(D)

)
.

(3.3.19)

Combining h ∈ (0, 1), | · |H1(D) ≤ ‖ · ‖H1(D) (see p. viii) with (3.3.15), (3.3.16), (3.3.17), (3.3.18),
and (3.3.19), we obtain (3.3.12).

3.4 Risk-Averse Optimization using the Superquantile

We consider risk-averse convex optimization using the superquantile/conditional value-at-risk,
and analyze the expected value of the corresponding SAA problem’s optimal value. Risk-averse
PDE-constrained optimization using the superquantile is considered, for example, in [122, 190,
191, 192, 187, 195, 193, 194].
For β ∈ (0, 1), we consider the risk-averse optimization problem

min
u∈Uad

{Qβ(J (u)) + Ψ(u) }, (3.4.1)

where Uad and Ψ satisfy Assumption 3.2.1 (a) and Assumption 3.2.1 (c), respectively. For
β ∈ [0, 1), the β-superquantile Qβ : L1(Ω)→ R is defined by

Qβ(Z) = inf
t∈R

{
t+ 1

1−βE[(Z − t)+]
}
, (3.4.2)

see [272, 273]. Here, (·)+ = max{·, 0}.
Moreover, we define J : V → L1(Ω) by J (u)(ω) = Ĵ(u, ξ(ω)). Here, V ⊂ U is a convex
neighborhood of Uad. If Ω 3 ω 7→ Ĵ(u, ξ(ω)) is integrable for all u ∈ V , and Assumptions 3.2.1 (a)
and 3.2.1 (d) are satisfied, then J is well-defined and convex [161, pp. 9–10]. The function Qβ◦J
is called a composite risk function in the literature [279, sect. 3.2].
Other names for the superquantile frequently used in the literature are conditional value-at-risk
[273] and average value-at-risk [294, sect. 6.2.4]. We prefer the “application-independent” term
superquantile suggested by Rockafellar and Royset [271, p. 503].
We report some properties of the β-superquantile. The β-superquantile is a coherent risk mea-
sure, that is, Qβ is convex, nondecreasing, translation equivariant and positive homogeneous
[269, Thm. 2], [294, pp. 279 and 291]. Furthermore, the β-superquantile is risk-averse, that is,
Qβ(Z) > E[Z] for all nondegenerate Z ∈ L1(Ω) and β ∈ (0, 1) [27, Thm. 4]. For Z ∈ L∞(Ω), it
holds that Qβ(Z)→ ‖Z‖L∞(Ω) as β → 1 [294, Rem. 24]. For β = 0, we have Qβ(Z) = E[Z] for
all Z ∈ L1(Ω) [294, Rem. 24]. Moreover, the function [0, 1) 3 β 7→ Qβ(Z) is continuous for each
fixed Z ∈ L1(Ω) [294, Rem. 24].
By [273, Thm. 14], problem (3.4.1) is equivalent to

min
(u,t)∈Uad×R

{
f(u, t) = t+ 1

1−βE[(Ĵ(u, ξ)− t)+] + Ψ(u)
}
. (3.4.3)

Let Assumption 3.2.1 (d) hold. We define F : U × R→ R ∪ {∞} and FN : U × R× Ω? → R by

F (u, t) = t+ 1
1−βE[(Ĵ(u, ξ)− t)+] and FN (u, t, ω) = t+ 1

1−βEN [(Ĵ(u, ξ(ω))− t)+], (3.4.4)

where EN [(Ĵ(u, ξ(ω))− t)+] =
∑N

i=1(Ĵ(u, ξi(ω))−t)+, and ξi : Ω? → Ξ are independent with the
same distribution as that of ξ : Ω → Ξ. The probability space (Ω?,F?, P ?) is as in section 3.2.
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If u ∈ U , Ĵ(u, ξ) ∈ L1(Ω) and β ∈ (0, 1), then (s)+ ≥ s and (s)+ ≥ 0, valid for all s ∈ R, ensure
that F (u, ·) is coercive.
We consider the SAA problem corresponding to (3.4.4)

min
(u,t)∈Uad×Tad

{
fN (u, t, ω) = FN (u, t, ω) + Ψ(u)

}
, (3.4.5)

where Tad ⊂ R is a nonempty, compact interval. We often drop the third argument of fN and
of FN . If (u∗, t∗) is an optimal solution of (3.4.3), we require that t∗ ∈ Tad. Below, we discuss
how Tad can be constructed.
When augmenting Tad as feasible set for the variable t in (3.4.3), and Uad is bounded, robust
stochastic approximation can be applied to it; see Lan, Nemirovski, and Shapiro [208, sect. 4.2].
For analyzing stochastic programs with superquantile constraints, Wang and Ahmed [339] also
have made use of the fact that set arg mint∈R F (u∗, t) can often be bounded effectively, where
u∗ is an optimal solution to (3.4.1).
We discuss the construction of the feasible set Tad (see (3.4.5)) for a particular example. We
follow the approach outlined in [208, p. 441]. Let Ĵ be the tracking-type functional defined
by (3.2.28) with the data given by (3.3.4) and (3.3.5). Moreover, let β ∈ (0, 1). We show
that Tad = [0, (1/2)‖yd‖2H ] is a possible choice, where yd ∈ H (see (3.3.5)). Let (u∗, t∗) be an

optimal solution of (3.4.3). By (3.2.28), we have Ĵ ≥ 0. Hence, (3.4.2) ensures t∗ ≥ 0 (see also
Lemma 3.4.5).3 Using (3.4.2), (·)+ ≥ 0, 0 ∈ Uad (see (3.3.4)), Ψ ≥ 0 = Ψ(0) (see (3.3.5)), and
the fact that the optimal value of (3.4.1) equals that of (3.4.3) [273, Thm. 14], we find that

t∗ ≤ Qβ(Ĵ(u∗, ξ)) = Qβ(Ĵ(u∗, ξ)) + Ψ(u∗)−Ψ(u∗) ≤ Qβ(Ĵ(0, ξ))−Ψ(u∗) ≤ Qβ(Ĵ(0, ξ)),

where the superquantile Qβ is defined in (3.4.2). Moreover, (3.3.5) and (3.2.28) yield Ĵ(0, ξ) =
(1/2)‖0− yd‖2H , which is a constant. Since Qβ(z) = z for all constants z ∈ R (the superquantile

is a coherent measure of risk [294, pp. 279 and 291]), we have Qβ(Ĵ(0, ξ)) = (1/2)‖yd‖2H . We
have shown that t∗ ∈ Tad = [0, (1/2)‖yd‖2H ], which is also independent of β ∈ (0, 1).

3.4.1 Expected Value of the SAA Optimal Value

We derive bounds on the expected value of the SAA problem’s optimal value (3.4.5).

Proposition 3.4.1. Let β ∈ (0, 1) and let Assumptions 3.2.1 (a), 3.2.1 (c), 3.2.1 (d), 3.2.3 (a),
and 3.2.5 (a) hold. Suppose that Ĵ(u, ξ) is integrable for all u in a convex neighborhood of
Uad. Let (u∗, t∗) be an optimal solution of (3.4.3) with t∗ ∈ Tad, and for each ω ∈ Ω?, let
(u∗N (ω), t∗N (ω)) be a minimizer of (3.4.5). Suppose that Prob(Ĵ(u∗, ξ) = t∗) = 0, and that
R(Uad) = supu∈Uad

‖u − u∗‖U and R(Tad) = supt∈Tad |t − t∗| are finite. Then E[fN (u∗N , t
∗
N )] ≤

f(u∗, t∗) and

f(u∗, t∗) ≤ E[fN (u∗N , t
∗
N )] + 1√

N
( β

1−β
)1/2

R(Tad)

+ R(Uad)√
N

min
{

1
1−βE[‖∇uĴ(u∗, ξ)‖2U ]1/2, 1

(1−β)1/2 ‖∇uĴ(u∗, ξ)‖L∞(Ξ;U)

}
,

(3.4.6)

where f is defined in (3.4.3) and fN in (3.4.5).

We establish Proposition 3.4.1 using Lemmas 3.4.2–3.4.6. We identify (U × R)∗ with U∗ × R.

Lemma 3.4.2. Let ξ ∈ Ξ be arbitrary, and let Ĵ(·, ξ) : U → R be convex, continuous, and
Gâteaux differentiable at (ū, t̄) ∈ U × R. We define F(·, ·; ξ) : U × R → R by F(u, t; ξ) =
t+ (1− β)−1(Ĵ(u, ξ)− t))+. Then ∂(u,t)F(ū, t̄; ξ) is given by (3.4.7).

3Indeed, for t < 0, β ∈ (0, 1) and Z ∈ L1(Ω) with Z ≥ 0, we have t + (1/(1 − β))E[(Z − t)+] = t + (1/(1 −
β))E[Z − t] = t(1− 1/(1− β)) + (1/(1− β))E[Z] > (1/(1− β))E[Z] = 0 + (1/(1− β))E[(Z − 0)+] ≥ Qβ(Z).
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Proof. We define f1 : U × R → R by f1(u, t) = t, ϕ : R → R by ϕ(z) = (1 − β)−1(z)+, and f2 :
U×R→ R by f2(u, t) = Ĵ(u, ξ)−t. We have F(u, t; ξ) = f1(u, t)+ϕ(f2(u, t)) for all (u, t) ∈ U×R.
The function ϕ is convex and monotone, and f1 and f2 are convex and Gâteaux differentiable
at (ū, t̄). Hence, ∂(u,t)f1(ū, t̄) = { (0, 1) } and ∂(u,t)f2(ū, t̄) = { (DuĴ(ū, ξ),−1) } [46, Prop. 2.125].

Combined with [161, Thm. 2 on p. 46], we get ∂(u,t)[ϕ(f2(ū, t̄))] = (DuĴ(ū, ξ),−1)∗∂ϕ(f2(ū, t̄)).
Now, the Moreau–Rockafellar theorem [46, Thm. 2.168] yields

∂(u,t)F(ū, t̄; ξ) = ∂(u,t)f1(ū, t̄) + ∂(u,t)[ϕ(f2(ū, t̄))] =

[
1

1−β∂(Ĵ(ū, ξ)− t̄)+DuĴ(ū, ξ)

1− 1
1−β∂(Ĵ(ū, ξ)− t̄)+

]
. (3.4.7)

Lemma 3.4.3. If the hypotheses of Proposition 3.4.1 hold, then the function F defined in (3.4.4)
is Hadamard differentiable at (u∗, t∗).

Proof. We define f : (U × R) × Ξ → R by f(u, t, ξ) = t + (1 − β)−1(Ĵ(u, ξ) − t)+. Because Ĵ
is a convex Carathéodory function (see Assumption 3.2.1 (d)), f is one as well. Since Ĵ(u, ξ) is
integrable for all u ∈ V for some convex neighborhood V of Uad, f(u, t, ξ) is integrable for each
(u, t) ∈ V × R. Moreover, U × R is separable by Assumption 3.2.1 (a). Hence, F is continuous
at (u∗, t∗) [161, Thm. 1 and Rem. 1 on p. 10] and ∂F (u∗, t∗) = E[∂(u,t)f(u

∗, t∗, ξ)] [161, Thm. 1
on p. 10].
Using the notation of Lemma 3.4.2, we have f(u, t, ξ) = F(u, t; ξ) for all (u, t, ξ) ∈ U × R × Ξ.
We have ∂(z)+ = {0} if z < 0, ∂(z)+ = [0, 1] if z = 0, and ∂(z)+ = {1} otherwise. Since
Prob(Ĵ(u∗, ξ) = t∗) = 0, (3.4.7) ensures that ∂(u,t)f(u, t, ξ) is a singleton w.p. 1. Assump-

tion 3.2.5 (a) and (3.2.13) yield E[‖∇uĴ(u∗, ξ)‖U ] < ∞. Combined with (3.4.7), we find that
every measurable selection of ∂(u,t)f(u, t, ξ) is Bochner integrable. Putting together the pieces,
we find that ∂F (u∗, t∗) is a singleton. Combined with the continuity of F at (u∗, t∗) and Assump-
tion 3.2.1 (a), we conclude that F is Hadamard differentiable at (u∗, t∗) [46, Prop. 2.126].

Lemma 3.4.4. If the hypotheses of Proposition 3.4.1 hold, then ∇tF (u∗, t∗) = 0 and

(∇uF (u∗, t∗), u∗N − u∗)U + Ψ(u)−Ψ(u∗) ≥ 0 for all u ∈ Uad. (3.4.8)

Proof. Lemma 3.4.3 ensures that the function F defined in (3.4.4) is Gâteaux differentiable
at (u∗, t∗). Thus, F (·, t∗) and F (u∗, ·) are Gâteaux differentiable at u∗ and t∗, respectively.
Assumption 3.2.1 (d) ensures the convexity of F , and Uad is convex by Assumption 3.2.1 (a).
Applying the arguments in the proof of [163, Thm. 3.1], and using Assumption 3.2.1 (c) and the
fact that (u∗, t∗) is an optimal solution of (3.4.3), we obtain, for all (u, t) ∈ Uad × R,

(∇uF (u∗, t∗), u− u∗)U +∇tF (u∗, t∗)(t− t∗) + Ψ(u)−Ψ(u∗) ≥ 0.

Choosing u = u∗ yields ∇tF (u∗, t∗)(t − t∗) ≥ 0 for all t ∈ R. Consequently, ∇tF (u∗, t∗) = 0.
Putting together the pieces, we obtain the assertions.

Lemma 3.4.5 ([273, Thm. 10], [294, pp. 3, 92, and 276]). We define G : L1(Ω) × R → R by
G(Z, t) = t+ (1− β)−1E[(Z − t)+]. For β ∈ (0, 1) and Z ∈ L1(Ω), we have

arg min
t∈R

G(Z, t) = { t ∈ R : Prob(Z < t) ≤ β ≤ Prob(Z ≤ t) }

=
[

inf
τ∈R
{ τ : Prob(Z ≤ τ) ≥ β }, sup

τ∈R
{ τ : Prob(Z ≤ τ) ≤ β }

]
.

(3.4.9)
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Lemma 3.4.6. Let the hypotheses of Proposition 3.4.1 hold. We define Z : Ω→ R by Z(ω) =
∂(Ĵ(u∗, ξ(ω))− t∗)+. Then, 1− (1−β)−1Z has zero mean and E[(1− (1−β)−1Z)2] = β/(1−β).
Furthermore,

E[‖Z∇uĴ(u∗, ξ)− E[Z∇uĴ(u∗, ξ)]‖2U ] ≤ min{(1− β)‖∇uĴ(u∗, ξ)‖2L∞(Ξ;U), E[‖∇uĴ(u∗, ξ)‖2U ]}.

Proof. Since Prob(Ĵ(u∗, ξ) = t∗) = 0, the random variable Z is single-valued w.p. 1 and,
hence, well-defined. Lemmas 3.2.11 and 3.4.4, and (3.4.7) imply that 0 = ∇tF (u∗, t∗) =
E[1−(1−β)−1Z]. Using Lemma 3.4.5, we obtain Prob(Ĵ(u∗, ξ) < t∗) ≤ β ≤ Prob(Ĵ(u∗, ξ) ≤ t∗).
Combined with Prob(Ĵ(u∗, ξ) = t∗) = 0, we find that Prob(Z = 0) = Prob(Ĵ(u∗, ξ) ≤ t∗) = β.
Consequently,

E[(1− 1
1−βZ)2] =

∫

Z=0
1dP (ω) +

∫

Z=1
(1− 1

1−β )2dP (ω) = β + (1− β)(1− 1
1−β )2 = β

1−β .

Now, we derive the bounds on the expectation of ‖Z∇uĴ(u∗, ξ)−E[Z∇uĴ(u∗, ξ)]‖2U . Since U is
a Hilbert space, we obtain

E[‖Z∇uĴ(u∗, ξ)− E[Z∇uĴ(u∗, ξ)]‖2U ] ≤ E[‖Z∇uĴ(u∗, ξ)‖2U ].

Hölder’s ensures E[‖Z∇uĴ(u∗, ξ)‖2U ] ≤ ‖∇uĴ(u∗, ξ)‖2L∞(Ξ;U)E[Z2] and Z ∈ {0, 1} w.p. 1 yields

E[‖Z∇uĴ(u∗, ξ)‖2U ] ≤ E[‖∇uĴ(u∗, ξ)‖2U ]. Since 1 − (1 − β)−1Z has zero mean and Z ∈ {0, 1},
we obtain E[Z2] = E[Z] = 1− β. Putting together the pieces, we obtain the bounds.

Proof of Proposition 3.4.1. The estimate E[fN (u∗N , t
∗
N )] ≤ f(u∗, t∗) follows from [294, Prop. 5.6].

We adapt the proof of Proposition 3.2.18 to establish the upper bound. Lemma 3.6.1 ensures
that fN (u∗N , t

∗
N , ·) : Ω? → R (see (3.4.5)) is measurable. Lemma 3.4.3 implies that F defined in

(3.4.4) is Hadamard differentiable at the optimal solution (u∗, t∗) of (3.4.3). Hence, F (·, t∗) and
F (u∗, ·) are Gâteaux differentiable at u∗ and t∗, respectively.
Let us identify the dual of the Hilbert space U × R with U × R. Let (gi, ri) : Ω? → U × R
be a measurable selection of ∂(u,t)[t + 1

1−β (Ĵ(u, ξi) − t)+] at (u∗, t∗) for i = 1, . . . , N , which

exists; see, e.g., [161, Thm. 3 on p. 11]. We define (gN , rN ) = (1/N)
∑N

i=1(gi, ri). We have
(gN , rN ) ∈ ∂(u,t)FN (u∗, t∗) w.p. 1 (see (3.4.4)). Using the definition of f and of fN (see (3.4.5)
and (3.4.3)), and that of F and of FN (see (3.4.4)), the variational inequality (3.4.8), and the
definition of (gN , rN ), we obtain

fN (u∗N , t
∗
N ) = FN (u∗N , t

∗
N ) + Ψ(u∗N )

≥ FN (u∗, t∗) + Ψ(u∗N ) + (gN , u
∗
N − u∗)U + rN (t∗N − t∗)

≥ FN (u∗, t∗) + Ψ(u∗) + (gN −∇uF (u∗, t∗), u∗N − u∗)U + rN (t∗N − t∗).
Combined with the Cauchy–Schwarz inequality, ‖u∗N − u∗‖U ≤ R(Uad), t∗N ∈ Tad (see (3.4.5)),
and |t∗N − t∗| ≤ R(Tad), we find that

fN (u∗N , t
∗
N ) ≥ f(u∗, t∗) + FN (u∗, t∗)− F (u∗, t∗)

− ‖∇uFN (u∗, t∗)−∇uF (u∗, t∗)‖UR(Uad)− |rN |R(Tad).

Rearranging and taking expectations yields

f(u∗, t∗) ≤ E[fN (u∗N , t
∗
N )] + E[‖gN −∇uF (u∗, t∗)‖U ]R(Uad) + E[|rN |]R(Tad). (3.4.10)

Since E[‖∇uĴ(u∗, ξ)‖U ] < ∞ by Assumption 3.2.5 (a), Lemmas 3.2.11, 3.4.3 and 3.4.4, and
(3.4.7) ensure E[gi] = ∇uF (u∗, t∗) and E[ri] = ∇tF (u∗, t∗) = 0 for i = 1, . . . , N . Combined with
the fact that U is a Hilbert space, we deduce from (3.4.10) and the Cauchy–Schwarz inequality,

f(u∗, t∗) ≤ +(1/
√
N)E[‖g1 −∇uF (u∗, t∗)‖2U ]1/2R(Uad) + (1/

√
N)E[|r1|2]1/2R(Tad).

Together with Lemmas 3.4.2 and 3.4.6, and (3.4.7), we obtain the assertions.

https://tinyurl.com/yyjkrvtp
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3.4.2 Discussion

We discuss the hypotheses, the implications, and the limitations of Proposition 3.4.1.
While ‖∇uĴ(u∗, ξ)‖L∞(Ξ;U) <∞ implies E[‖∇uĴ(u∗, ξ)‖2U ] <∞, (1− β)1/2‖∇uĴ(u∗, ξ)‖L∞(Ξ;U)

in (3.4.6) may be smaller than (1/(1 − β))E[‖∇uĴ(u∗, ξ)‖2U ]1/2 for β ≈ 1. Since Qβ(Z) →
‖Z‖L∞(Ω) as β → 1 for Z ∈ L∞(Ω) [294, Rem. 24], a dependence of f(u∗, t∗) − E[fN (u∗N , t

∗
N )]

on 1 − β seems unavoidable. For β = 0, we have Qβ(Z) = E[Z] for all Z ∈ L1(Ω) [294, Rem.
24]. When choosing β = 0 in (3.4.6), and u∗ is an unconstrained minimizer of the risk-neutral
problem (3.2.1), we find that the estimate (3.2.25) formally recovers that in (3.4.6). However,
the bound (3.4.6) is generally more conservative than (3.2.25) for β = 0.
The condition Prob(Ĵ(u∗, ξ) = t∗) = 0 in Proposition 3.4.1 implies that the function F defined
in (3.4.4) is Hadamard differentiable at (u∗, t∗) as we have shown in Lemma 3.4.3. Here, (u∗, t∗)
is an optimal solution of (3.4.3). When Prob(Ĵ(u∗, ξ) = t∗) > 0, then F is generally nonsmooth
(see (3.4.7)). In this case, it might still be possible to establish similar bounds as those in (3.4.6),
but our approach exploits the condition Prob(Ĵ(u∗, ξ) = t∗) = 0. An alternative approach for
studying risk-averse optimization problems using the superquantile is smoothing [191, sect.
4.1.1], [184, sect. 3.4.3]. Even though the risk-averse problem (3.4.3) is “Hadamard-smooth”
under the hypotheses of Proposition 3.4.1, its SAA problem (3.4.5) is generally nonsmooth.
We relate the condition Prob(Ĵ(u∗, ξ) = t∗) = 0 in Proposition 3.4.1 to the Hadamard differ-
entiability of the β-superquantile Qβ at J (u∗), where J (u)(ω) = Ĵ(u, ξ(ω)) and β ∈ (0, 1).

The hypothesis Prob(Ĵ(u∗, ξ) = t∗) = 0 implies that Qβ is Hadamard differentiable at J (u∗)
[294, Ex. 6.19]. For β ∈ (0, 1) and Z ∈ L1(Ω), the β-quantile functional of Z is defined by
qβ(Z) = inft∈R { t : Prob(Z ≤ t) ≥ β }; see, e.g, [337, Ex. 4.2]. Let u∗ be an optimal solution of
(3.4.1). Then, (u∗, t∗) with t∗ = qβ(J (u∗)) is an optimal solution of (3.4.5) [273, Thm. 10], [294,

p. 292]. If, furthermore, Qβ is Hadamard differentiable at J (u∗), then Prob(Ĵ(u∗, ξ) = t∗) = 0
[294, Ex. 6.19]. To discuss the Hadamard differentiability of the composite risk function Qβ ◦J
at u∗, the continuity of J : U → L1(Ω) may be required [279, Cor. 3.3].
To analyze the expected value of the SAA problem’s optimal value of the superquantile mini-
mization problem (3.4.1), we reformulated it as the stochastic problem (3.4.3). For this problem,
the derivation of effective exponential tail bounds on the optimal control is more complicated
or may be impossible because the cost function is not strongly convex as a mapping of (u, t),
which are the optimization variables of (3.4.3); see also [184, pp. 62–63].

3.5 Conclusion and Discussion

We analyzed the SAA approach applied to stochastic convex optimal control problems posed in
Hilbert spaces. For strongly convex problems, we derived exponential tail bounds for the optimal
control of the SAA problem in section 3.2.1. For convex problems, we provided confidence
intervals for the optimal value of the stochastic program in section 3.2.4. In section 3.2.5, we
applied our findings to linear-quadratic control problems with convex regularization.
In section 3.3, we established reliable error bounds on the random optimal control of the dis-
cretized SAA problem, the SAA problem approximated by finite elements. For our analysis, we
assumed the random diffusion coefficient κ is an element of L∞(Ξ, C1(D̄)); see Assumption 3.3.1.
Our result may be generalized assuming only κ ∈ L∞(Ξ, Ct(D̄)) for some 0 < t ≤ 1. This condi-
tion has been used, for example, in [131, p. A2758] for stochastic approximation with adaptive
mesh refinement.
The exponential tail bounds for the optimal controls relied on the assumption that exact minimiz-
ers of the SAA problem are computed. However, it is also possible to derive bounds for inexact
minimizers using, for example, the notion of ε-optimal solutions or that used by Wachsmuth
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and Rösch [333, eq. (2.1)] for deterministic control problems.
We analyzed the performance of the SAA approach for convex optimization problems. A starting
point for the analysis of the scheme applied to nonlinear, nonconvex stochastic control problems
posed in Hilbert spaces is the perturbation analysis by Bonnans and Shapiro [46, sect. 4.4.1].
For PDE-constrained optimization problems under uncertainty, an open task is the comparison of
the SAA approach with, for example, stochastic approximation [246, 131, 128, 243], and schemes
using stochastic collocation [189, 125, 314] and those utilizing low-rank tensors [123, 124, 29].
While we have not derived non-asymptotic sample size estimates for infinite-dimensional op-
timization problems which ensure that (approximate) optimal solutions of the SAA problem
provide reliable ε-optimal solutions of the true counterpart, we conjecture that the approach
by Shapiro [291] and Shapiro and Nemirovski [296] can be adapted for analyzing certain PDE-
constrained optimization problems. The main idea is to construct a totally bounded subset of
the feasible set Uad that contains the minimizers of the stochastic problem and of its SAA.
We outline the construction of a totally bounded subset of Uad for the stochastic linear-quadratic
control problem discussed in section 3.3. Let us consider D = (−1, 1)d, γ = 0 (see (3.3.5)), and

Vad = {u ∈ H1(D) : u ∈ Uad, ‖u‖H1(D) ≤ 1
α sup
u∈Uad

‖z(u, ξ)‖L∞(Ξ;H1(D)) + (|l|+ u)‖1‖L2(D) },

where α > 0, Uad = {u ∈ L2(D) : l ≤ u ≤ u } with −∞ < l < 0 < u <∞ (see (3.3.4)), and z is
defined in (3.2.31). Since γ = 0, (3.3.5) implies Ψ = 0. Lemma 3.3.2 and Friedrichs’ inequality
ensure that Vad is bounded and closed. The set Vad also has finite diameter R(Vad) ∈ (0,∞)
w.r.t. the H1(D)-norm. Lemma 3.3.9 gives u∗ ∈ Vad, where u∗ is the optimal control of (3.2.27).
Combined with Vad ⊂ Uad, we find that u∗ is an optimal solution to minu∈Vad

F (u). Here, F is
the expectation function defined in (3.2.3). Adapting the arguments in the proof of Lemma 3.3.9,
we can show that each optimal solution of the SAA problem (3.2.2) corresponding to (3.2.27)
is contained in Vad. Hence, the minimizer of (3.2.2) defined by the data from section 3.3 is
an optimal solution to the “reduced” SAA problem minu∈Vad

FN (u). Here, FN is the sample
average function defined in (3.2.3).
Birman and Solomjak [40, Thm. 5.2], [41, Thm. 1.7] demonstrate that the ν-covering number
of the closed H1(D)-unit ball w.r.t. the L2(D)-norm is proportional to (1/ν)d. Hence, the
ν-covering number of Vad w.r.t. the L2(D)-norm is bounded by an absolute constant times
(R(Vad)/ν)d. To summarize, the set Vad ⊂ Uad has an explicit bound on its covering numbers
w.r.t. the L2(D)-norm, and it contains the optimal solutions of the linear-quadratic problem
(3.2.27) and of its SAA problem.
Two further “building-blocks” are required by the theory of Shapiro [291] and Shapiro and
Nemirovski [296] (see also section 3.1): (a) For all u1, u2 ∈ Uad, the mean-zero random variable
Ĵ(u2, ξ)−Ĵ(u1, ξ)−E[Ĵ(u2, ξ)−Ĵ(u1, ξ)] is sub-Gaussian with parameter σ > 0; and (b) Ĵ(·, ξ) is
Lipschitz continuous with a constant L(ξ) ≥ 0 that satisfies E[exp(tL(ξ))] <∞ for all sufficiently
small t > 0. Here, Ĵ is the parameterized objective function defined in (3.2.28).
Concerning (a), Lemma 3.3.2 ensures that supu∈Uad

‖Ĵ(u, ξ)‖L∞(Ξ;R) is finite. Hence, Ĵ(u2, ξ)−
Ĵ(u1, ξ) − E[Ĵ(u2, ξ) − Ĵ(u1, ξ)] is sub-Gaussian with parameter 4 supu∈Uad

‖Ĵ(u, ξ)‖L∞(Ξ;R)

for all u1, u2 ∈ Uad [57, p. 9]. To establish (b), we apply Lemma 3.3.2 to obtain L =
supu∈Uad

‖∇uĴ(u, ξ)‖L∞(Ξ;U) < ∞. Hence, the continuously differentiable function Ĵ(·, ξ) is
Lipschitz continuous on Uad with deterministic Lipschitz constant L for all ξ ∈ Ξ [151, p. 9].
These observations may allow us to establish non-asymptotic sample size estimates for the “re-
duced” control problem minu∈Vad

F (u), and finally for the linear-quadratic optimization problem
minu∈Uad

F (u) (see (3.2.27)). However, we leave the details for future work.
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3.6 Supplementary Material

3.6.1 Measurability of Optimal Values and Optimal Solutions

We summarize statements on the measurability of optimal values of stochastic programs and of
the set of optimal solutions, and prove Lemma 3.2.2. In this section, (Ω,F,P) is a probability
space.

Lemma 3.6.1. Let V be a separable Banach space. If f : V × Ω → R ∪ {∞} is a random
lower-semicontinuous, then v∗ : Ω → R̄ defined by v∗(ω) = infx∈V f(x, ω) is F-measurable, and
R∗ : Ω→ V defined by R∗(ω) = {x ∈ V : f(x, ω) ≤ v∗(ω) } is closed-valued. If, in addition, the
image of R∗ is nonempty, then R∗ has a measurable selection.

Proof. For each ω ∈ Ω, f(·, ω) is lower semicontinuous and, hence, R∗(ω) is closed. The mea-
surability of v∗ follows from [66, Cor. VII-2] (see also [66, Lem. III.38 and p. 80], [213, Prop.
6.1], and [267, p. 225]), and that of R∗ from [66, Thm. III.38 and p. 80]. The existence of a
measurable selection is a result of the theorem on measurable selections; see, e.g., [66, Thms.
III.22 and III.38] and [11, Thm. 8.1.3].

Lower-semicontinuous functions define random lower-semicontinuous functions [276, Ex. 14.30].

Lemma 3.6.2. If V is a Banach space and g : V → R ∪ {∞} is lower-semicontinuous, then
f : V × Ω→ R ∪ {∞} defined by f(x, ω) = g(x) is random lower-semicontinuous.

Proof. For each t ∈ R, g−1((−∞, t]) is closed and, hence, g−1((−∞, t]) ∈ B(V ). Consequently,
{ (x, ω) ∈ V × Ω : f(x, ω) ≤ t } = {x ∈ V : g(x) ≤ t } × Ω ∈ B(V )⊗ F.

Sums of random lower-semicontinuous are random lower-semicontinuous [268, Prop. 2M], [276,
Prop. 14.44], [98, Lem. 6.2], [170, p. 197].

Lemma 3.6.3. If V is a Banach space and f1, f2 : V × Ω → R ∪ {∞} are random lower-
semicontinuous, then f1 + f2 is random lower-semicontinuous.

Proof. For each ω ∈ Ω, f1(·, ω) + f2(·, ω) is lower-semicontinuous. The measurability of f1 + f2
follows from [284, Lem. 8.10] and the fact that (V × Ω,B(V )⊗F) is a measurable space.

Proof of Lemma 3.2.2. We apply Lemma 3.6.1 to minu∈U FN (u, ω) + Ψ(u) + IUad
(u), which has

the same optimal value and the same set of optimal solutions as (3.2.2). Here, IUad
: U →

R ∪ {∞} is the indicator function of Uad. According to Assumption 3.2.1 (a) and [46, Ex.
2.67], IUad

is proper, convex and lower-semicontinuous. Since ξi(Ω?) ⊂ Ξ for i = 1, . . . , N ,
Assumption 3.2.1 (d) implies that FN (·, ω) (see (3.2.3)) is continuous for each ω ∈ Ω?, and
FN (u, ·) : Ω? → R is measurable for each u ∈ U [169, Lems. 1.7 and 1.12]. Hence, FN is a
Carathéodory function. Combined with Assumption 3.2.1 (c) and Lemmas 3.6.2 and 3.6.3, we
find that U × Ω? 3 (u, ω) 7→ FN (u, ω) + Ψ(u) + IUad

(u) is random lower-semicontinuous. Thus,
Lemma 3.6.1 implies the assertions.

3.6.2 Exponential Tail Bounds for Hilbert Space-Valued Random Variables

We restate and prove Theorem 3.2.16. Throughout the section, (Ω,F,P) is a probability space.

Theorem 3.2.16. Let (Ω,F,P) be a probability space and let H be a separable Hilbert space.
Suppose that Zi : Ω→ H for i = 1, 2, . . . are independent, mean-zero random variables such that
E[exp(τ−2‖Zi‖2H)] ≤ e for some τ > 0. Then, for each N ∈ N and every ε ≥ 0,

Prob(‖SN/N‖H ≥ ε) ≤ 2 exp(−τ−2ε2N/3), (3.6.1)
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where SN = Z1+· · ·+ZN . If, in addition, ‖Zi‖H ≤ τ w.p. 1 for i = 1, 2, . . ., then Prob(‖SN/N‖H ≥
ε) ≤ 2 exp(−τ−2ε2N/2).

We apply the following statements to prove Theorem 3.2.16.

Theorem 3.6.4 ([259, Thm. 3], [356, Thm. 3.3.4]). Let N ∈ N and let H be a separable Hilbert
space. Suppose that Zi : Ω → H for j = 1, . . . , N are independent, mean-zero, and measurable.
Then, for all λ ≥ 0, E[cosh(λ‖Z1 + · · ·+ ZN‖H)] ≤∏N

i=1 E[exp(λ‖Zi‖H)− λ‖Zi‖H].

Lemma 3.6.5. If (V, ‖ · ‖V) is a Banach space, and Z : Ω→ V is strongly measurable such that
E[exp(σ−2‖Z‖2V)] ≤ e for some σ > 0, then

E[exp(λ‖Z‖V)− λ‖Z‖V] ≤ exp(3λ2σ2/4) for all λ ∈ R+. (3.6.2)

Proof. The proof is inspired by that of [294, Prop. 7.72]. To establish (3.6.2), we distinguish
whether λ ∈ [0, 4/(3σ)] or λ ∈ (4/(3σ),∞).
We consider the case λ ∈ [0, 4/(3σ)]. We have 9λ2σ2/16 ≤ 1. Hence R≥0 3 s 7→ s9λ2σ2/16 is
concave. For all s ∈ R, we have exp(s) ≤ s + exp(9s2/16); see, e.g., [294, p. 449]. Combined
with Jensen’s inequality and E[exp(‖Z‖2V/σ2)] ≤ e, we obtain

E[eλ‖Z‖V − λ‖Z‖V] ≤ E[e9λ2‖Z‖2V/16] ≤ E[e‖Z‖
2
V/σ

2
]9λ

2σ2/16 ≤ e9λ2σ2/16 ≤ e3λ2σ2/4. (3.6.3)

Now, we consider the case λ ≥ 4/(3σ). We have 2/3 ≤ σλ/2. Consequently, 4/9 ≤ σ2λ2/4 and
2/3 ≤ 3σ2λ2/8. For all s ∈ R, Young’s inequality yields

λs = [(3/4)1/2λ][(4/3)1/2s] ≤ 3λ2σ2/8 + 2s2/(3σ2).

Combined with Jensen’s inequality, E[exp(‖Z‖2V/σ2)] ≤ e, and 2/3 ≤ 3σ2λ2/8, we get

E[eλ‖Z‖V − λ‖Z‖V] ≤ E[eλ‖Z‖V ] ≤ e3λ2σ2/8E[e2‖Z‖2V/(3σ2)] ≤ e3λ2σ2/8+2/3 ≤ e3λ2σ2/4.

Together with (3.6.3), we obtain (3.6.2).

Lemma 3.6.6. If a, b > 0, then minλ>0 −aλ+ bλ2 = −a2/(4b).

Proof. The minimizer is λ∗ = a/(2b). Hence, −aλ∗+ bλ2
∗ = −a2/(2b) + a2/(4b) = −a2/(4b).

Proof of Theorem 3.2.16. We use a Chernoff-type approach to establish (3.6.1); see Chernoff [76,
p. 496]. The second claim follows from an application of [256, Thm. 3.5]. Fix λ > 0, ε, r ≥ 0,
and N ∈ N. Using Lemma 3.6.5 and E[exp(τ−2‖Zi‖2H)] ≤ e, we find that

N∏

i=1

E[exp(λ‖Zi‖H)− λ‖Zi‖H] ≤
N∏

i=1

exp(3λ2τ2/4) = exp(3λ2τ2N/4).

Combined with Markov’s inequality, Theorem 3.6.4, and exp(s) ≤ 2 cosh(s) valid for all s ∈ R,
we obtain

Prob(‖SN‖H ≥ r) ≤ exp(−λr)E[exp(λ‖SN‖H)] ≤ 2 exp(−λr)E[cosh(λ‖SN‖H)]

≤ 2 exp(−λr + 3λ2τ2N/4).

Minimizing the right-hand side over λ > 0 yields Prob(‖SN‖H ≥ r) ≤ 2 exp(−τ−2r2/(3N)) (see
Lemma 3.6.6). Choosing r = εN implies (3.6.1).
If, in addition, ‖Zi‖H ≤ τ , then [256, Thm. 3.5] yields Prob(‖SN/N‖H ≥ ε) ≤ 2 exp(−τ−2ε2N/2).





4 Exponential Tail Bounds for Multilevel
Monte Carlo Mean Estimators in a Class of
Smooth Banach Spaces

The Multilevel Monte Carlo (MLMC) mean estimator utilizes low and high fidelity models to
estimate the expectation of a Banach space-valued random variable. We derive non-asymptotic,
exponential bounds on the tail probabilities of the MLMC mean estimator for multilevel cor-
rections that have sub-Gaussian behavior and take values in certain Banach spaces. The tail
probability is the probability that the distance between the MLMC mean estimator and the
true mean exceeds a prescribed accuracy. The tail bounds imply that the number of samples
required to reliably estimate the mean via the MLMC estimator depend only moderately on the
user-specified reliability. We develop our analysis for a class of smooth Banach spaces which
includes, for example, all Hilbert spaces and all Sobolev space consisting of at least square-
integrable functions. The approach also allows the mean of essentially bounded and continuous
functions to be reliably estimated, even though the corresponding function spaces are nons-
mooth. We demonstrate that our results apply to a class of linear elliptic partial differential
equations with random inputs.

4.1 Introduction

Multilevel Monte Carlo (MLMC) methods can be used to estimate the mean of a Banach space-
valued random variable, such as the mean of the solutions to partial differential equations (PDEs)
with random inputs. MLMC methods utilize several low and high fidelity models, and are
designed to perform many simulations with the low fidelity models, but relatively few with
accurate approximations. The overall goal of the MLMC scheme is to save computational costs
compared to the standard Monte Carlo (MC) estimator, while achieving the same performance
guarantees. Typically, the accuracy of the MLMC mean estimator is measured using the mean-
squared error [37, 134, 146].
We augment the existing error analysis of the MLMC mean estimator in that we derive non-
asymptotic, exponential bounds on the tail probabilities of the MLMC mean estimator for
certain Banach space-valued random variables. (An example of an exponential tail bound for
the MLMC mean estimator is provided in (4.1.4).) The exponential bounds imply that the
number of samples required to obtain a reliable mean estimate depend only moderately on the
user-specified reliability. Our analysis is mainly inspired by and built on that developed by
Juditsky and Nemirovski [166]. We establish the exponential tail bounds for the MLMC mean
estimator by applying the exponential moment inequalities and the tail bounds established by
Pinelis [256, 257, 258] and Pinelis and Sakhanenko [259]. For certain Sobolev space-valued
random variables, we derive refined moment inequalities and exponential tail bounds.
We introduce the MLMC mean estimator and describe our contributions in detail. We choose
L ∈ N, a Banach space (V, ‖ · ‖V ) and nested subspaces (V`) of V , and a probability space
(Ω,F , P ). Moreover, let X : Ω→ V and let X` : Ω→ V` be Bochner integrable for ` = 1, . . . , L.
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The MLMC mean estimator EML[XL] of E[X] is defined by

EML[XL] =

L∑

`=1

EN` [Y`], Y` = X` −X`−1, X0 = 0, (4.1.1)

where EN` [Y`] = (1/N`)
∑N`

i=1 Y`,i is the MC mean estimator. For each fixed `, Y`,i has the same
probability distribution as Y` for i = 1, 2, . . ., and Y`,i for `, i = 1, 2, . . . are independent [37, sect.
3], [134, sect. 1.3]. The functions Y` are called multilevel corrections [134, p. 8]. Here, the larger
the index `, the higher the fidelity of the model X`. We view Y`,i as V -valued random variables
defined on a common probability space; see [44, pp. 148–149] for the standard construction of
such a space.
For fixed ε > 0 and 0 < δ � 1, we are interested in determining the number of samples N`

(` = 1, . . . , L) such that

Prob(‖EML[XL]− E[X]‖V ≥ ε) ≤ δ. (4.1.2)

We refer to ε ≥ 0 as accuracy and to 1−δ ∈ (0, 1) as reliability. When the multilevel corrections
Y` (` = 1, . . . , L) have sub-Gaussian tail behavior, we show that N`, for ` = 1, . . . , L, depends
only logarithmically on 1/δ. In this case, values of δ, say δ = 10−8 or δ = 10−12, result in
moderate values of N`. The tail bound (4.1.2) expresses the fact that, with a probability of at
least 1− δ, the realizations of the MLMC estimator are in an ε-ball about the true mean.
Before discussing our contributions in detail, we illustrate how to derive non-asymptotic, expo-
nential bounds on Prob(‖EML[XL]− E[X]‖V ≥ ε) for V = R and fixed ε > 0. We assume that
|E[XL]− E[X]| ≤ ε/2 for some L ∈ N, and that the centered multilevel correction Y` − E[Y`] is
sub-Gaussian with parameter τ` > 0 for ` = 1, . . . , L. Here, a random variable ξ : Ω → R is
sub-Gaussian with parameter τ if τ ≥ 0 and E[exp(λξ)] ≤ exp(λ2τ2/2) for all λ ∈ R [57, p. 2].
In this case, [57, Lems. 1.3 and 1.7 (sect. 1.1)] and the definition of the MLMC mean estimator
yield, for all r ≥ 0,

Prob(|EML[XL]− E[XL]| ≥ r) ≤ 2 exp

(
r2

2
∑L

`=1 τ
2
` /N`

)
. (4.1.3)

Combined with the triangle inequality, and the monotonicity of Prob(·), we find that

Prob(|EML[XL]− E[X]| ≥ r + |E[XL]− E[X]|) ≤ 2 exp

(
r2

2
∑L

`=1 τ
2
` /N`

)
for all r > 0.

When choosing r = ε/2 and using |E[XL]− E[X]| ≤ ε/2, we obtain

Prob(|EML[XL]− E[X]| ≥ ε) ≤ 2 exp

(
ε2

8
∑L

`=1 τ
2
` /N`

)
. (4.1.4)

In order for (4.1.2) to hold, we bound the right-hand side in (4.1.4) by δ, resulting in the
requirement that N` (` = 1, . . . , L) must satisfy

L∑

`=1

τ2
`

N`
≤ ε2

8 ln(2/δ)
. (4.1.5)

We compare (4.1.3) with a tail bound obtained via the direct application of Tschebyshev’s
inequality. Tschebyshev’s inequality yields, for all r > 0,

Prob(|EML[XL]− E[XL]| ≥ r) ≤ r−2
L∑

`=1

σ2
` /N`,
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where σ2
` = E[(Y` − E[Y`])

2]. In order to obtain (4.1.2) via this tail bound, we would need to
choose N` (` = 1, . . . , L) according to

L∑

`=1

σ2
`

N`
≤ ε2δ

4
. (4.1.6)

Both σ` and τ` are problem-dependent constants, and σ2
` ≤ τ2

` [57, Lem. 1.2, p. 3]. Moreover,
if the centered multilevel corrections are Gaussian, we have σ2

` = τ2
` [57, p. 2]. The estimate

(4.1.5) depends on 1/ ln(2/δ), whereas the bound (4.1.6) depends linearly on δ. Consequently,
the former bound yields a less restrictive condition on N` (` = 1, . . . , L) than the latter one does
for small δ ∈ (0, 1) and σ2

` ≈ τ2
` . Furthermore, the exponential rate of the tail bound (4.1.3) is

optimal under the stated assumptions [57, p. 19].
The MLMC method becomes meaningful if the computational cost C` > 0 for sampling Y` and
the sub-Gaussian parameters τ` decrease as ` increases, and bounds on the bias term |E[XL]−
E[X]| are available. We use a simple model that allows for a complexity analysis of the MLMC
scheme. The model by Giles [133, p. 609] is adapted in section 4.3. The simple model is more
restrictive than that in [133, p. 609], but allows for explicit computations. We assume the
existence of α, β, γ > 0 such that for ` ≥ 2, we have C` > 0 and

|E[X`]− E[X]| ≤ (1/2)α|E[X`−1]− E[X]|, τ2
` ≤ (1/2)βτ2

`−1, and C`−1 ≤ (1/2)γC`. (4.1.7)

If L ∈ N and L ≥ 1+(1/α) log2((2/ε)|E[X1]−E[X]|), then (4.1.7) ensures |E[XL]−E[X]| ≤ ε/2.
The remaining goal is to choose N` (` = 1, . . . , N) such that the cost of the MLMC mean
estimator

∑L
`=1N`C` is minimized subject to the tail bound (4.1.2). Since (4.1.5) when combined

with |E[XL]−E[X]| ≤ ε/2 ensures (4.1.2), we can obtain N` (` = 1, . . . , N) as an (approximate)
solution to

min
N`∈N
`=1,...,L

L∑

`=1

N`C` s.t.
L∑

`=1

τ2
`

N`
≤ ε2

8 ln(2/δ)
. (4.1.8)

When approximating the constraints N` ∈ N with N` ∈ (0,∞), the optimal solution of the
relaxation is

N` = c(τ2
` /C`)

1/2(8 ln(2/δ)/ε2) for ` = 1, . . . , L with c =
L∑

`=1

(τ2
` C`)

1/2;

cf. [134, p. 262]. Combined with the conditions in (4.1.7), we obtain N` ≤ (1/2)(β+γ)/2N`−1

for ` = 2, . . . , L. Hence, the sample sizes depend only logarithmically on 1/δ, whereas the
bound (4.1.6) would yield a linear dependence on 1/δ. Moreover, the sample size estimates
decrease q-linearly with rate (1/2)(β+γ)/2. The corresponding cost of the MLMC mean esti-
mator is (8 ln(2/δ)/ε2)(

∑L
`=1(τ2

` C`)
1/2)2; in contrast the cost of the MLMC mean estimator

is (4/(δε2))(
∑L

`=1(σ2
`C`)

1/2)2 when using the bound (4.1.6) instead of (4.1.5), and assuming
σ2
` ≤ (1/2)βσ2

`−1 in (4.1.7) instead of τ2
` ≤ (1/2)βτ2

`−1.
Our primary goals are to extend the validity of the exponential tail bound (4.1.3) to spaces V
other than V = R, and to analyze the computational complexity of the resulting MLMC scheme.
We require that either the space V or the spaces V` (` = 1, . . . , L) are 2-uniformly smooth,
or that they are 2-uniformly smooth after an equivalent renorming. For example, all Hilbert
spaces and each Sobolev spaces consisting of at least square integrable functions are 2-uniformly
smooth. Our results also apply to mean estimation when V is “nonsmooth.” For instance,
if V is the space of either the essentially bounded or continuous functions, the corresponding
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function spaces are nonreflexive, and hence they cannot be equipped with a 2-uniformly smooth
norm [233, Cor. 1.1]. In this case, we exploit the fact that the spaces V` (` = 1, . . . , L) are often
finite-dimensional spaces in the context of uncertainty quantification with PDEs. We show that
certain finite element spaces can be equipped with an equivalent 2-uniformly smooth norm and,
moreover, we establish that the 2-uniform smoothness constant depends only logarithmically on
the dimension of these finite-dimensional spaces.
We express sub-Gaussianity of the multilevel correction Y` through the condition

E[exp(‖Y` − E[Y`]‖2V /τ2
` )] ≤ e for some τ` > 0. (4.1.9)

The condition (4.1.9) and its variants are primarily used in the literature on stochastic pro-
gramming [99, p. 679], [243, eq. (2.50)], [138, pp. 1035–1036], [294, eq. (5.347)]. The assumption
(4.1.9) is fulfilled for V -valued random variables that are, for example, real-valued sub-Gaussian
[57, Lem. 1.9, p. 9], Gaussian (due to the Landau–Shepp–Fernique theorem), certain Besov
“priors” [87, Thm. 5], γ-sub-Gaussian [118, Thm. 3.4], sub-Gaussian random series [56, Thm.
1.10.3], or essentially bounded. We show that multilevel corrections corresponding to the solu-
tions of linear elliptic PDEs with uniformly bounded random diffusion coefficient fulfill (4.1.9),
such as those considered in [16, sect. 3]. We also demonstrate that solutions to elliptic PDEs
with log-normal random diffusion coefficients may violate (4.1.9).

Related Work

The accuracy of MLMC mean estimators is typically quantified using the mean-squared er-
ror [134, 16, 37, 38, 182, 183]. A small mean-squared error yields upper bounds on tail probabil-
ities via Tschebyshev’s inequality. These bounds are polynomials as functions of the variance of
the estimator’s variance and the inverse of the accuracy. However, in order to obtain (4.1.2) with
high confidence 1− δ, these bounds would typically require a large number of samples, render-
ing the task of reliably estimating the mean intractable. MLMC estimators using quasi-Monte
Carlo techniques to approximate the expectations of the multilevel corrections are presented in
[203, 204].
The complexity of achieving certain mean-squared errors for the MLMC mean estimators is
analyzed, for example, in [134, 16, 37, 182, 311]. The authors of [82] and of [143] provide
asymptotic confidence intervals of MLMC mean estimators for real-valued quantities of interests,
using the central limit theorem. Approximate confidence intervals of MLMC mean estimators for
real-valued random variables are also developed [104]. However, asymptotic and approximate
confidence intervals, constructed with the central limit theorem, tend to be optimistic and
unreliable when the sample size is small. Our confidence regions are valid for real-valued random
variables as well, are non-asymptotic, and are optimal up to problem-independent, moderate
constants.
Kebaier and Lelong [176] have developed a MLMC method using importance sampling and prove
a strong law of large numbers and a central limit theorem for this MLMC method. Jourdain
and Kebaier [165] have established non-asymptotic confidence bounds for the MLMC Euler
method for Lipschitz continuous real-valued functions of solutions to a certain class of stochastic
differential equations. Our approach for deriving exponential tail bounds is similar. However,
our results are not restricted to the MLMC Euler estimator, and are valid for random variables
other than real-valued ones.
Most contributions, such as [16, 182, 311], focus on MLMC methods for real-valued and Hilbert
space-valued random variables. Heinrich [146, sect. 4] provides an error and cost analysis for the
mean-squared error of MLMC methods in separable Banach spaces of (Rademacher-)type p for
1 ≤ p ≤ 2. Banach spaces that are 2-uniformly smooth are of type 2 [212, Lem. 2.2]. Examples
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of type 2 spaces that are not 2-uniformly smooth are provided in [262, Chap. 12]. Daun and
Heinrich [88, 89] study the complexity of multilevel algorithms for type p Banach space-valued
random variables using classical error measures.
To derive non-asymptotic exponential tail bounds for the MLMC mean estimators, we apply the
exponential moment inequalities and the tail bounds established in [256, 259, 258]. Exponential
tail bounds are derived in [255, Thm. 1] and in [256] for bounded martingales that take values
in 2-uniformly smooth spaces, and in [259, Thm. 3] and [356, Thm. 3.3.4] for martingales and
independent random variables with values in Hilbert spaces, respectively. Exponential moment
inequalities and tail bounds for general Banach spaces can be found in [261, Lem. 2.7], [309,
Thms. 3 and 4]. However, these inequalities depend on an unspecified constant.
Confidence regions for (mean) estimators can also be established via Berry–Esséen-type inequal-
ities, an approach which is used in [221, Chap. 4] to derive confidence intervals for sample means
of real-valued random variables. Berry–Esséen inequalities provide non-asymptotic rates for the
convergence asserted by the central limit theorem, under suitable assumptions. Lord, Powell,
and Shardlow [221] also outline how the Berry–Esséen inequality for Hilbert space-valued ran-
dom variables can be used to derive confidence regions for MC mean estimators [221, p. 424].
Ben Alaya and Kebaier [19] have established a central limit theorem and a Berry–Esséen-type
bound for the MLMC Euler method. For Hilbert space-valued random variables, Berry–Esséen
inequalities are derived, for example, in [355, 201]. However, these inequalities depend on an
unspecified constant.

Outline

In section 4.2, we introduce some notation and Orlicz spaces, which allow for a metric char-
acterization of the condition (4.1.9). We define two notions of smoothness of Banach spaces—
2-uniform smoothness of 2-quasi-smoothness—in section 4.2.2, and provide several examples
of such spaces. Bounds on the second moment of martingale-differences and sums of random
averages are presented in section 4.2.3. We conclude section 4.2 with stating exponential tail
bounds. The proofs of the statements from sections 4.2.3 and 4.2.4 are presented in section 4.7.
In section 4.3, we use the above results to derive exponential tail bounds for the MLMC mean es-
timator, and demonstrate that the MLMC mean estimator is computationally cheaper than the
sample mean, under suitable assumptions. Whereas the space of essentially bounded functions
and that of continuous functions fail to be 2-uniformly smooth, we show that certain finite ele-
ment spaces are 2-quasi-smooth subspaces in section 4.4. Our theory is applied in section 4.5 to
linear elliptic PDEs with random inputs. We summarize our contributions and outline possible
further research directions in section 4.6.

4.2 Notation and Preliminaries

Following [37, p. 587], we define Cost(·) : L0(Ω;V ) → [0,∞) as an abstract, measurable eval-
uation cost. For W ∈ L0(Ω;V ), Cost(W ) is measurable [159, Cor. 1.1.24]. For two random
variables a, b : Ω → R+, a(ω) . b(ω) means a(ω) ≤ Cb(ω) for some constant C > 0 that is
independent of ω ∈ Ω and b(ω), and a(ω) ' b(ω) abbreviates a(ω) . b(ω) and −a(ω) . −b(ω),
as in [70, p. 324]. For x ∈ R, dxeN ∈ N is the smallest number such that x ≤ dxeN. For
each martingale or martingale-difference (Zi)i∈N0 ⊂ L1(Ω;V ) that is adapted to some filtration
(Fi)i∈N0 ⊂ F , we set Z0 = 0 and F0 = {∅,Ω}. Throughout, we use the following facts: (i)
If (V, ‖ · ‖V ) is a (reflexive) separable Banach space and ||| · |||V is an equivalent norm on V ,
then (V, ||| · |||V ) is a (reflexive) separable Banach space. (ii) If X ∈ L0(Ω;V ), then ‖X‖V is
a real-valued random variable [159, Cor. 1.1.24]. (iii) Partial sums of independent, mean-zero,



110 Chapter 4. Tail Bounds for Multilevel Monte Carlo Estimators

Bochner integrable, V -valued random variables define a (stopped) martingale adapted to the
natural filtration [159, Ex. 3.1.4].

4.2.1 Orlicz Spaces

We define (Fenchel–)Orlicz spaces and equip them with the Luxemburg norm. The Orlicz spaces
are used to characterize certain “light-tailed” V -valued random variables, and we make use of
the triangle inequality to analyze MLMC mean estimators.
We define the Young function ψ : R → R+ on R by ψ(x) = (ex

2 − 1)/(e − 1) [320, Def. 1.1].
The Orlicz space Lψ(Ω;V ) = Lψ(‖·‖V )(Ω,F , P ;V ) is the set of functions Z ∈ L0(Ω;V ) such that
there exists τ > 0 with E[ψ(‖Z‖V /τ)] <∞ [320, Def. 1.2]. Here, L0(Ω;V ) is the set of strongly
measurable functions from Ω to V (see p. viii).
We define the Luxemburg norm ‖ · ‖Lψ(Ω;V ) on Lψ(Ω;V ) by

‖Z‖Lψ(Ω;V ) = inf
τ>0
{ τ : E[ψ(‖Z‖V /τ)] ≤ 1 } = inf

τ>0

{
τ : E[exp(‖Z‖2V /τ2)] ≤ e

}
. (4.2.1)

The Orlicz space (Lψ(Ω;V ), ‖ · ‖Lψ(Ω;V )) is a Banach space [320, Cor. 2.23].
If Z ∈ Lψ(Ω;V ) \ {0}, then the infimum in (4.2.1) is attained [320, Lem. 2.17]. The definition
of the Luxemburg norm ensures ‖Z‖Lψ(Ω;V ) ≤ ‖Z‖L∞(Ω;V ) if Z ∈ L∞(Ω;V ) and, moreover,
‖Z1‖Lψ(Ω;V ) ≤ ‖Z2‖Lψ(Ω;V ) if, w.p. 1, ‖Z1‖V ≤ ‖Z2‖V and Z1, Z2 ∈ Lψ(Ω;V ).

The term “light-tailed” is motivated by the following fact: if Z ∈ L0(Ω;V ), then Z ∈ Lψ(Ω;V )
if and only if Prob(‖Z‖V ≥ ε) ≤ c1 exp(−ε2/c2

2) for all ε > 0 and some c1, c2 > 0; see, e.g., [57,
pp. 55–56].

Lemma 4.2.1. If Z ∈ Lψ(Ω;V ) and Z̃ ∈ V , then E[‖Z − Z̃‖2V ] ≤ ‖Z − Z̃‖2Lψ(Ω;V ) and ‖Z −
E[Z]‖Lψ(Ω;V ) ≤ 2‖Z − Z̃‖Lψ(Ω;V ).

Proof. The first estimate follows from an application of Jensen’s inequality; see also [243, p.
1584]. If Z = Z̃, then E[Z] = Z̃ = Z. Now, let Z 6= Z̃. The triangle inequality and Jensen’s
inequality yield ‖Z−E[Z]‖2V ≤ 2‖Z− Z̃‖2V + 2E[‖Z− Z̃‖2V ]. Combined with Jensen’s inequality
and the first estimate, we conclude that

E
[
exp

( ‖Z−E[Z]‖2V
22‖Z−Z̃‖2

Lψ(Ω;V )

)]
≤ E

[
exp

( ‖Z−Z̃‖2V
2‖Z−Z̃‖2

Lψ(Ω;V )

)]
exp

(
E[‖Z−Z̃‖2V ]

2‖Z−Z̃‖2
Lψ(Ω;V )

)
≤ e1/2e1/2 = e.

We refer to Z ∈ Lψ(Ω;V ) as a V -valued random variable having sub-Gaussian tail behavior.
Different notions of sub-Gaussianity are available in the literature, such as sub-Gaussianity w.r.t.
an operator [9, Def. 1.1] or an orthonormal system [9, Def. 2.1], weak sub-Gaussianity [324, Def.
4.1], and γ-sub-Gaussianity [118]. Their relationships and properties are discussed, for example,
in [118, 205]. Some of these notions imply sub-Gaussian tail behavior [118, Thms. 3.4 and 4.3].
We state common examples of V -valued random variables with sub-Gaussian tail behavior from
the literature. Real-valued sub-Gaussian random variables, which are defined on p. ix, have
sub-Gaussian tails.

Lemma 4.2.2. If ξ : Ω → R is sub-Gaussian with parameter τ , then ‖ξ‖2Lψ(Ω;R) ≤ 2τ2/(1 −
exp(−2)).

Proof. If τ = 0, then ξ = 0 [57, p. 5]. Now, let τ > 0. We have E[exp(sξ2/(2τ2))] ≤ 1/(1− s)1/2

for all s ∈ [0, 1) [57, Lem. 1.6 (p. 9)]. Choosing s = 1− exp(−2) ∈ (0, 1) yields the claim.
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Lemma 4.2.3. If H is a separable Hilbert space, and Z : Ω → H is centered Gaussian, then
‖Z‖2Lψ(Ω;H) ≤ 2E[‖Z‖2H ]/(1− exp(−2)).

Proof. If E[‖Z‖2H ] = 0, then ‖Z‖2Lψ(Ω;H) = 0. Now, let σ2 = E[‖Z‖2H ] > 0. Let ξ : Ω → R
be a standard normal random variable. We define f : R → R by f(x) = exp(sx/(2σ2)), where
s = 1− exp(−2). Since f is convex, [259, Rem. 4] ensures E[f(‖Z‖2H)] ≤ E[f(σ2ξ2)]. Combined
with E[f(σ2ξ2)] = E[exp(sξ2/2)] = 1/(1− s)1/2 [57, p. 9], we obtain the claim.

The following are further examples of V -valued random variables with sub-Gaussian tail be-
haviors: Rademacher series [345, p. 5], Gaussian random variables (due to the Landau–Shepp–
Fernique theorem [345, p. 7], [356, Thm. 2.1.2]), certain Besov “priors” [87, Thm. 5], γ-sub-
Gaussian random variables [118, Thm. 3.4], Lp(D)-valued sub-Gaussian vectors [118, Thm. 4.3],
and sub-Gaussian random series [56, Thm. 1.10.3]. We provide examples of solutions to PDEs
with random inputs that have sub-Gaussian tail behavior in section 4.5.1.

4.2.2 Uniformly Smooth and Quasi-Smooth Banach Spaces

We introduce a class of Banach spaces based on the notions used in [256, sect. 2], [166, Def. 2.1],
[13, p. 468], and [345, Def. 3.1.2 and Prop. 3.1.2].

Definition 4.2.4. Let (V, ‖ · ‖V ) be a Banach space.
(a) The function ‖ · ‖2V is (2, κ)-smooth if κ ≥ 1 and

‖x+ y‖2V + ‖x− y‖2V ≤ 2‖x‖2V + 2κ‖y‖2V for all x, y ∈ V. (4.2.2)

The space (V, ‖ · ‖V ) is (2, κ)-smooth if ‖ · ‖2V is (2, κ)-smooth. We refer to (V, ‖ · ‖V ) as
2-uniformly smooth if it is (2, κ)-smooth for some κ ≥ 1.

(b) The space (V, ‖ · ‖V ) is called (2, κ)-quasi-smooth if κ ≥ 1 and there exists κ̄ ∈ [1, κ] and a
norm ||| · |||V on V such that (V, ||| · |||V ) is (2, κ̄)-smooth and

‖x‖2V ≤ |||x|||2V ≤ (κ/κ̄)‖x‖2V for all x ∈ V. (4.2.3)

We refer to (V, ‖ · ‖V ) as 2-quasi-smooth if it is (2, κ)-quasi-smooth for some κ ≥ 1.

In Definition 4.2.4, we restrict the smoothness constant κ to [1,∞) because whenever (V, ‖ · ‖V )
is a Banach space with V 6= {0} and (4.2.2) holds, then κ ≥ 1. Our definition of a (2, κ)-smooth
Banach space is equivalent to that in [166, 242] (see Lemma 4.7.6), and is compatible with that
in [256, 257, 13]. (The constant D in [256, p. 1680] and [257, p. 55], and K in [13, p. 468] equal√
κ.) The notion of a 2-uniformly smooth Banach space used here is equivalent to that used in

the literature on the geometry in Banach spaces [345, Prop. 3.1.2], [262, Prop. 10.31].
The squared norm of a 2-uniformly smooth Banach space V is uniformly Fréchet differentiable
[50, Prop. 4.2.14], that is, for g = ‖ · ‖2V we have (g(x + th) − g(x))/t → Dg(x)[h] as t → 0+

uniformly for h ∈ V with ‖h‖V = 1 and x ∈ V . Every 2-quasi-smooth Banach space is reflexive
[233, Cor. 1.1] and has (Rademacher-)type 2 [212, Lem. 2.2].
The notion of (2, κ)-quasi-smoothness is introduced in [166, 242] as κ-regularity ; see also [246,
pp. 89–92]. The space (Rn, ‖ · ‖∞) is 2-quasi-smooth but not 2-uniformly smooth [166, Ex. 3.2].
Each finite-dimensional Banach space V is (2,dim(V ))-quasi-smooth [166, Ex. 3.1].
Every Hilbert space is (2, 1)-smooth by the parallelogram identity. Moreover, if (V, ‖ · ‖V ) is
(2, 1)-smooth, then (V, ‖ · ‖V ) is a Hilbert space. To verify this assertion, it suffices to show
that (4.2.2) implies the parallelogram identity [211, p. 53]. Substituting x by (x̄ + ȳ)/2 and y
by (x̄ − ȳ)/2 in (4.2.2), we find that ‖x̄‖2V + ‖ȳ‖2V ≤ (1/2)‖x̄ + ȳ‖2V + (1/2)‖x̄ − ȳ‖2V for all x̄,
ȳ ∈ V . Combined with (4.2.2), we conclude that the parallelogram identity holds.
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The notion of 2-quasi-smoothness provides flexibility over that of 2-uniform smoothness: (i) Some
spaces are 2-quasi-smooth but fail to be 2-uniformly smooth, such as (Rn, ‖ · ‖∞). (ii) We ap-
ply MLMC mean estimators to approximate expected values of parameterized PDEs, which
we discretize using finite elements. Multilevel corrections (see section 4.3) are then differences
of random variables with values in the corresponding finite element spaces. For example, we
show that the standard finite element spaces, defined by piecewise linear, continuous basis func-
tions, are 2-quasi-smooth with the smoothness constant depending only logarithmically on the
dimension of the finite element space (see section 4.4).
We provide further examples of 2-uniformly smooth and 2-quasi-smooth Banach spaces.

Lemma 4.2.5 ([166, Ex. 3.2], [242, Ex. 2.1]). For 2 ≤ p ≤ ∞, (Rn, ‖ · ‖p) is (2, κ)-quasi-smooth
with κ = inf2≤ρ≤p, ρ<∞ { (ρ− 1)n2/ρ−2/p }. If n ≥ 3, then κ ≤ (2 ln(n)− 1)e.

The bound on κ in Lemma 4.2.5 follows from [101, Thm. 2.2].

Theorem 4.2.6 ([256, Prop. 2.1], [101, Cor. 2.8], [262, Thm. 10.32], [348, Cor. 2], [200, Thm.
4.1], [13, Prop. 5]). If (O,A, ν) is a σ-finite measurable space and p ∈ [2,∞), then Lp(O,A, ν;R)
is (2, p− 1)-smooth.

Proposition 4.2.7. If s ∈ N0, 2 ≤ p <∞, and D ⊂ Rd is a bounded domain, then (W s,p(D), ‖ ·
‖W s,p(D)) is (2, p− 1)-smooth.

We prove Proposition 4.2.7 in section 4.7.1. The fact that the above Sobolev spaces are 2-
uniformly smooth is known; see, e.g., [77, p. 54]. Proposition 4.2.7 provides the optimal 2-
uniformly smoothness constant, p − 1, for these Sobolev spaces. The optimality follows from
the fact that the constant is optimal for W 0,p(D) = Lp(D) (2 ≤ p < ∞) [13, Prop. 3]. Further
examples of 2-uniformly smooth and 2-quasi-smooth Banach spaces can be found in section 4.4
and in [242, 166, 13].
We present facts on 2-uniformly smooth and 2-quasi-smooth Banach spaces.

Lemma 4.2.8. If (V, ‖ · ‖V ) is (2, κ)-smooth and F ⊂ V is a closed subspace, then (W, ‖ · ‖V )
is (2, κ)-smooth. If (V, ‖ · ‖V ) is (2, κ)-quasi-smooth and W ⊂ V is a closed subspace, then
(W, ‖ · ‖V ) is (2, κ)-quasi-smooth.

Lemma 4.2.9. If (W, ‖ · ‖W ) is a Banach space that is isometrically isomorphic to a (2, κ)-
quasi-smooth Banach space, then (W, ‖ · ‖W ) is (2, κ)-quasi-smooth.

Proof. Let (W, ‖ · ‖W ) be isometrically isomorphic to the (2, κ)-quasi-smooth space (V, ‖ · ‖V ).
Then, there exists a linear, bijective mapping T : W → V such that ‖Tx‖V = ‖x‖W for all
x ∈W . Moreover, there exists κ̄ ∈ [1, κ] and a norm ||| · |||V on V such that (V, ||| · |||V ) is (2, κ̄)-
smooth and (4.2.3) holds. We define the norm ||| · |||W = |||T · |||V on W . The (2, κ̄)-smoothness
of (V, ||| · |||V ) implies that of (W, ||| · |||W ). Combined with (4.2.3), we conclude that (W, ‖ · ‖W )
is (2, κ)-quasi-smooth.

Lemma 4.2.10. If Z ∈ L2(Ω;V ) and Z̃ ∈ V , then E[‖Z − E[Z]‖2V ] ≤ 4E[‖Z − Z̃‖2V ]. If, in

addition, (V, ‖ · ‖V ) is (2, κ)-smooth, then E[‖Z − E[Z]‖2V ] ≤ κE[‖Z − Z̃‖2V ]− ‖E[Z − Z̃]‖2V .

Proof. We define W = Z − Z̃. The bound E[‖W − E[W ]‖2V ] ≤ 4E[‖W‖2V ] follows from the
triangle inequality and Jensen’s inequality; see also [101, p. 148]. If (V, ‖ · ‖V ) is (2, κ)-smooth,
then Lemma 4.7.6 gives

E[‖W − E[W ]‖2V ] ≤ ‖E[W ]‖2V − E[Dg(E[W ])[W ]] + κE[‖W‖2V ],

where g = ‖ · ‖2V . Combined with Dg(E[W ])[E[W ]] = 2‖E[W ]‖2V (see, e.g., [14, Ex. 2.32]) and
E[Dg(E[W ])[W ]] = Dg(E[W ])[E[W ]] (see, e.g., [159, eq. (1.2)]), we deduce the claim.
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4.2.3 Bounds on the Second Moment

We state bounds on the second moment for random sums taking values in 2-uniformly smooth
and 2-quasi-smooth Banach spaces. Theorem 4.2.11 and Corollary 4.2.12 are essentially known
from which we derive bounds on the second moment of random average. We use these bounds
to analyze MLMC mean estimators. Proofs are presented in section 4.7.3.

Theorem 4.2.11. Let N ∈ N, and let (V, ‖ · ‖V ) be a (2, κ)-smooth Banach space. Suppose that
(ξi)i∈N0 ⊂ L2(Ω;V ) is a martingale-difference, and x ∈ V . Then

E
[∥∥∥∥

N∑

i=1

ξi + x

∥∥∥∥
2

V

]
≤ ‖x‖2V + κ

N∑

i=1

E[‖ξi‖2V ]. (4.2.4)

In a slightly different form, Theorem 4.2.11 appears in [262, Thm. 10.22]. However, the bound
(4.2.4) only depends on κ, rather than on an unspecified constant. For x = 0, versions of
Theorem 4.2.11 are proven, for example, in [113, Thm. 2], [256, Prop. 2.5], [212, p. 155], [260,
Prop. 2.4], and [166, p. 4]. The estimate (4.2.4) holds with equality and κ = 1 for independent,
mean-zero Hilbert space-valued random variables [37, eq. (3.3)].
In order for the bound (4.2.4) to be valid for all N ∈ N and x ∈ V , and all independent, mean-
zero V -valued random variables ξ1, . . . , ξN , 2-uniform smoothness of (V, ‖ · ‖V ) is a necessary
and sufficient condition [345, p. 54].
Theorem 4.2.11 implies similar bounds for martingale-differences with values in 2-quasi-smooth
Banach spaces.

Corollary 4.2.12. Let N ∈ N, and let (V, ‖·‖V ) be a (2, κ)-quasi-smooth Banach space. Suppose
that (ξi)i∈N0 ⊂ L2(Ω;V ) is a martingale-difference. Then

E
[∥∥∥∥

N∑

i=1

ξi

∥∥∥∥
2

V

]
≤ κ

N∑

i=1

E[‖ξi‖2V ]. (4.2.5)

The inequality (4.2.5) is due to Juditsky and Nemirovski [166, p. 4] and Nemirovski [242, Prop.
3.1]. For (Rn, ‖ · ‖r) with 2 ≤ r ≤ ∞, Corollary 4.2.12 was first published by Nemirovski [240,
Lem. 5.2.2]. The inequality (4.2.5) is known as Nemirovski’s inequality [52, sect. 11.2], [101],
[55, sect. 14.10.1].
Several approaches for deriving moment bounds for independent V -valued random variables
are reviewed in [101]. For sums of independent mean-zero random variables with values in
(Rn, ‖ · ‖∞), Nemirovski’s inequality (4.2.4) yields tighter bounds than type-2-inequalities [101,
pp. 147–149]. The fact that (Rn, ‖ · ‖∞) has type 2 has been used in [146, sect. 4], [197, pp.
1260–1261], and [135, eq. (2.8)] in the context of multilevel methods.
We refer the reader to [262, Chap. 12] for examples of interpolation spaces that are type 2 and
nonreflexive [262, Rem. 12.1 and Cor. 12.19] and, hence, are not 2-quasi-smooth.
In order for the bound (4.2.5) to be valid for all N ∈ N and V -valued martingale-differences,
2-quasi-smoothness of (V, ‖ · ‖V ) is a necessary and sufficient condition [262, Thm. 10.22 and
Cor. 10.23].

Corollary 4.2.13. Suppose that ξ`,i ∈ L2(Ω;V ) for i = 1, . . . , N` and ` = 1, . . . , L are indepen-
dent and mean-zero. If (V, ‖ · ‖V ) is (2, κ)-quasi-smooth, then

E
[∥∥∥∥

L∑

`=1

1

N`

N∑̀

i=1

ξ`,i

∥∥∥∥
2

V

]
≤ κ

L∑

`=1

1

N2
`

N∑̀

i=1

E[‖ξ`,i‖2V ]. (4.2.6)
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If (V, ‖ · ‖V ) is (2, κ)-smooth, then for each x ∈ V ,

E
[∥∥∥∥

L∑

`=1

1

N`

N∑̀

i=1

ξ`,i + x

∥∥∥∥
2

V

]
≤ ‖x‖2V + κ

L∑

`=1

1

N2
`

N∑̀

i=1

E[‖ξ`,i‖2V ]. (4.2.7)

If the random variables in Corollary 4.2.13 take values in a (separable) Hilbert space, then
equality holds in (4.2.7) with κ = 1 [37, Thm. 3.1].
We establish improvements over Corollary 4.2.12 for certainW s,p(D)-valued random sums, where
D ⊂ Rd is a bounded domain. Let p ≥ 2, s ∈ N0, K ∈ N, and φk ∈ W s,p(D) for k = 1, . . . ,K.
Further, suppose that ξk : Ω → R are sub-Gaussian random variables with parameter τk for
k = 1, . . . ,K. In this case, we define

TK =
( ∑

|α|≤s
‖

K∑

k=1

τ2
k (Dαφk)

2‖p/2
Lp/2(D)

)1/p
. (4.2.8)

Proposition 4.2.14. Let p ≥ 2, s ∈ N0 and K ∈ N. Suppose that D ∈ Rd is bounded and
φk ∈ W s,p(D) for k = 1, . . . ,K. Let ξk : Ω→ R be independent sub-Gaussian random variables
with parameter τk > 0 for k = 1, . . . ,K. We define Z =

∑K
k=1 ξkφk. Then E[‖Z‖pW s,p(D)] ≤

2(p/e)p/2T pK , where TK is defined in (4.2.8). If, moreover, ξk are Gaussian with variance τ2
k for

k = 1, . . . ,K, then E[‖Z‖2W s,p(D)] = E[|ξ1/τ1|p]T pK .

Under the hypotheses of Proposition 4.2.14, the moment inequality given by Proposition 4.2.14
may be sharper than that of Corollary 4.2.12. Indeed, using the triangle inequality (applied

to the norm (
∑
|α|≤s ‖ ·α ‖

p/2

Lp/2(D)
)2/p on the product space

∏
|α|≤s L

p/2(D) [1, Thm. 1.22]), the

definition of the ‖ · ‖W s,p-norm (see p. viii), and (4.2.8), we obtain

T 2
K =

[ ∑

|α|≤s
‖

K∑

k=1

τ2
k (Dαφk)

2‖p/2
Lp/2(D)

]2/p

≤
K∑

k=1

[ ∑

|α|≤s
‖τ2
k (Dαφk)

2‖p/2
Lp/2(D)

]2/p

=
K∑

k=1

τ2
k‖φk‖2W s,p .

which is a loose bound in general. Moreover, we have 22/pp/e < p − 1 for p ≥ 3. On the
other hand, the assumptions made in Proposition 4.2.14 are more restrictive than those of
Corollary 4.2.12.

4.2.4 Exponential Tail Bounds

We state exponential bounds for the tail probabilities of certain sums of random averages, which
are used for analyzing the tail behavior of the MLMC mean estimator in section 4.3. Proofs are
presented in section 4.7.4.

Theorem 4.2.15. Let (V, ‖·‖V ) be a separable, (2, κ)-smooth Banach space, and ξ`,i ∈ L1(Ω;V )
be independent and mean-zero such that E[exp(τ−2

` ‖ξ`,i‖2V )] ≤ e with τ` > 0 for i, ` = 1, 2, . . ..
Then, for all r ≥ 0, L ∈ N, and every N` ∈ N, ` = 1, . . . , L,

Prob

(∥∥∥∥
L∑

`=1

1

N`

N∑̀

i=1

ξ`,i

∥∥∥∥
V

≥ (
√
κ + r)

( L∑

`=1

τ2
`

N`

)1/2)
≤ exp(−r2/3). (4.2.9)

If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ` for i, ` = 1, 2, . . ., then the right-hand side in (4.2.9) improves
to exp(−r2/2).

The tail bounds in Theorem 4.2.15 can be improved when κ is small.

https://tinyurl.com/yd3dd8lp
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Theorem 4.2.16. Let (V, ‖·‖V ) be a separable, (2, κ)-smooth Banach space, and ξ`,i ∈ L1(Ω;V )
be independent and mean-zero such that E[exp(τ−2

` ‖ξ`,i‖2V )] ≤ e with τ` > 0 for i, ` = 1, 2, . . ..
Then, for all r ≥ 0, L ∈ N, and every N` ∈ N, ` = 1, . . . , L,

Prob

(∥∥∥∥
L∑

`=1

1

N`

N∑̀

i=1

ξ`,i

∥∥∥∥
V

≥
√
κr

( L∑

`=1

τ2
`

N`

)1/2)
≤ 2 exp(−r2/3). (4.2.10)

If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ` for i, ` = 1, 2, . . ., then the right-hand side in (4.2.10) improves
to 2 exp(−r2/2).

Theorem 4.2.15 and the “renorming” lemma, Lemma 4.7.1, imply the following tail bounds.

Corollary 4.2.17. Let (V, ‖ · ‖V ) be a separable, (2, κ)-quasi-smooth Banach space, and ξ`,i ∈
L1(Ω;V ) be independent and mean-zero such that E[exp(τ−2

` ‖ξ`,i‖2V )] ≤ e with τ` > 0 for i,
` = 1, 2, . . .. Then, for all r ≥ 0, L ∈ N, and every N` ∈ N, ` = 1, . . . , L,

Prob

(∥∥∥∥
L∑

`=1

1

N`

N∑̀

i=1

ξ`,i

∥∥∥∥
V

≥ (
√

2κ +
√

2r)

( L∑

`=1

τ2
`

N`

)1/2)
≤ exp(−r2/3). (4.2.11)

If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ` for i, ` = 1, 2, . . ., then the right-hand side in (4.2.11) improves
to exp(−r2/2).

Tail bounds similar to those in (4.2.9) and (4.2.11) are established for martingale-differences
with values in (finite-dimensional) smooth spaces by Juditsky and Nemirovski [166, Thm. 4.1].
For W s,p(D)-valued random sums, the tail bounds provided by Theorem 4.2.15 can be improved.

Theorem 4.2.18. Let p ≥ 2, s ∈ N0, and K ∈ N. Suppose D ⊂ Rd is a bounded domain and
φk ∈ W s,p(D) for k = 1, . . . ,K. Let ξk be independent mean-zero Gaussian random variables
with variance τ2

k > 0. Define Z =
∑K

k=1 ξkφk and γp = (E[|ξ1/τ1|p])1/p. Then γpp ≤ 2(p/e)p/2,
and for each λ ≥ 0, E[cosh(λ‖Z‖W s,p(D))] ≤ γpp exp(λ2T 2

K/2), where TK is defined in (4.2.8). In
particular, for each r > 0,

Prob(‖Z‖W s,p(D) ≥ r) ≤ 2γpp exp(−r2/(2T 2
K)).

4.3 Multilevel Monte Carlo Mean Estimator

We introduce the MLMC mean estimator following [37, sect. 3] and [16, sect. 4.4].

(V) The space (V, ‖ · ‖V ) is a Banach space, V1 ⊂ V2 ⊂ · · · ⊂ V are closed subspaces of V , and
(V`, ‖ · ‖V ) is separable and (2, κ`)-quasi-smooth for ` = 1, 2, . . .. .

The choice V1 = V is possible in (V). However, in the literature on uncertainty quantification, the
spaces (V`) are often finite element spaces [16, 15], which are finite-dimensional. The condition
(V) allows us to estimate the expectation of continuous functions (see section 4.4).
Let L ∈ N, and let the condition (V) hold. Let X` ∈ L2(Ω;V`) for ` = 1, . . . , L. The MLMC
mean estimator EML[XL] is defined by

EML[XL] =
L∑

`=1

EN` [Y`], Y` = X` −X`−1, X0 = 0, (4.3.1)

where the MC mean estimator EN` [Y`] is defined by EN` [Y`] = (1/N`)
∑N

i=1 Y`,i. The functions
Y` defined in (4.3.1) are called multilevel corrections [134, p. 6]. Here, Y`,i are independent for
`, i = 1, 2, . . ., and for each `, Y`,i has the same probability distribution as Y` for i = 1, 2, . . ..
For our analysis, we view Y`,i as random vectors defined on a common probability space; see,
e.g., [44, pp. 148–149] for the standard construction of such a space.
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4.3.1 Exponential Tail Bounds

The next theorem provides a cost analysis of the MLMC mean estimator using the exponen-
tial tail bounds established in Theorem 4.3.2. The cost of the MLMC method is defined by
E[Cost(EML[XL])] =

∑L
`=1N`E[Cost(EN` [Y`])]. The complexity model (4.3.2) is adapted from

that developed by Giles [133, p. 609].
We recall that Y` are the multilevel corrections defined in (4.3.1), ‖ · ‖Lψ(Ω;V ) is the Luxemburg
norm defined in (4.2.1), dxeN ∈ N is the smallest number such that x ≤ dxeN for x ∈ R, and
0 6∈ N; see p. vii and section 4.2.

Theorem 4.3.1. Let Assumption (V) hold, and (h`) ⊂ R++ satisfy h` = (1/s)h`−1 for s ∈
N \ {1}. Suppose there exist α, β, γ > 0 and cα, cβ, cγ > 0 such that

‖E[X`]− E[X]‖V ≤ cαhα` , ‖Y` − E[Y`]‖2Lψ(Ω;V ) ≤ cβh
β
` , and E[Cost(Y`)] ≤ cγh−γ` . (4.3.2)

Then, for each ε > 0 and δ ∈ (0, 1) with L = d(1/α) logs(2cαh
α
1 /ε) + 1eN, there exist N` ∈ N

(` = 1, . . . , L) such that Prob(‖EML[XL]− E[X]‖V ≥ ε) ≤ δ, and

E[Cost(EML[XL])] . ε−γ/α + (
√
κL +

√
ln(1/δ))2





ε−2 if β > γ,

ε−2(ln(ε−1) + 1)2 if β = γ,

ε−2−(γ−β)/α if β < γ.

(4.3.3)

We prove Theorem 4.3.1 using Theorem 4.3.2 and Lemma 4.3.3.

Theorem 4.3.2. Let Assumption (V) hold. Suppose that L ∈ N and X ∈ L2(Ω;V ). For
` = 1, . . . , L, let X` ∈ L2(Ω;V`), and let τ` > 0 fulfill ‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ τ`. Then, for all
r > 0,

Prob
(
‖EML[XL]− E[X]‖V ≥ (

√
2κL +

√
2r)
( L∑

`=1

τ2
`
N`

)1/2
+ ‖E[X]− E[XL]‖V

)
≤ e−

r2

3 , (4.3.4)

where EML[XL] and Y` are defined in (4.3.1).

Proof. The definition of the MLMC mean estimator provided in (4.3.1) ensures that (Y`,i)`,i
are independent. In particular, ‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ τ` yields ‖Y`,i − E[Y`,i]‖Lψ(Ω;V ) ≤ τ` for
i = 1, . . . , N` and ` = 1, . . . , L. Lemma 4.2.8 implies that V` (` = 1, . . . , L−1) are (2, κL)-smooth.
Moreover, we have

EML[XL]− E[XL] =

L∑

`=1

EN` [Y`]− E[Y`] =
L∑

`=1

N∑̀

i=1

Y`,i − E[Y`]

N`
. (4.3.5)

Using ‖EML[XL]−E[X]‖V ≤ ‖EML[XL]−E[XL]‖V + ‖E[XL]−E[X]‖V , we obtain for all ε ≥ 0,

Prob
(
‖EML[XL]− E[X]‖V ≥ ε+ ‖E[XL]− E[X]‖V

)
≤ Prob

(
‖EML[XL]− E[XL]‖V ≥ ε

)
.

Combined with (4.3.5), E[Y`,i] = E[Y`], and Corollary 4.2.17, we obtain (4.3.4).

The following lemma essentially follows from the proofs of [81, Thm. 1] and [37, Thm. 3.2] with
the constants in (4.3.6) made explicit.
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Lemma 4.3.3. Let (h`) ⊂ R++ satisfy h` = (1/s)h`−1 for s ∈ N \ {1}. Suppose there exist

α, β, γ cα, cβ > 0 and (m`), (τ`) ⊂ R+ such that m` ≤ cαh
α
` and τ2

` ≤ cβh
β
` for ` = 1, 2, . . ..

Then, for each ε > 0, η > 0 with L = dα−1 logs(cαε
−1hα1 ) + 1eN, there exists N` = N`(ε, η) ∈ N

(` = 1, . . . , L) such that

N` ≤ (1/s)(β+γ)/2N`−1 + 1, N` ≤ (1/s)(β+γ)(`−1)/2N1 + 1, mL ≤ ε,
L∑

`=1

τ2
` /N` ≤ ε2η.

Moreover, L = 1 if and only if cαh
α
1 ≤ ε. If L = 1, then N1h

−γ
1 ≤ dε−2η−1cβh

β
1eNh−γ1 , and

otherwise

L∑

`=1

N`h
−γ
` ≤

sγc
γ/α
α

1− s−γ h
−γ
1 · ε−γ/α

+ η−1





ε−2 · cβhβ−γ1 (1− s−(β−γ)/2)−2 if β > γ,

ε−2 · cβ(α−1 logs(cαε
−1hα1 ) + 2)2 if β = γ,

ε−2−(γ−β)/α · cβ(1− s−(γ−β)/2)−2sγ−βc(γ−β)/α
α if β < γ.

(4.3.6)

Proof. The proof is presented in section 4.7.5.

Proof of Theorem 4.3.1. We apply Theorem 4.3.2 and Lemma 4.3.3 to prove the claim. We
define τ` = ‖Y`−E[Y`]‖Lψ(Ω;V ) for ` = 1, . . . , L. To achieve Prob(‖EML[XL]−E[X]‖V ≥ ε) ≤ δ,
we use the tail bound (4.3.4) established in Theorem 4.3.2. We require ‖E[X]−E[X`]‖V ≤ ε/2,
exp(−r2/3) = δ, and (

√
2κL +

√
2r)(

∑L
`=1 τ

2
` /N`)

1/2 ≤ ε/2. Since r2 = 3 ln(1/δ), the latter
requirement is fulfilled if

L∑

`=1

τ2
`

N`
≤ ε2

4

1

(
√

2κL +
√

6 ln(1/δ))2
. (4.3.7)

In order to apply Lemma 4.3.3, we use (4.3.2) and identify m` = ‖E[X]−E[X`]‖V , ε = ε/2 and
η = 1/(

√
2κL +

√
6 ln(1/δ))2. Now, the claim follows from Lemma 4.3.3.

The proof of Theorem 4.3.1 also provides estimates for the number of levels L and the sample
sizes N` (` = 1, . . . , L), and the rate N` ≤ (1/s)(β+γ)(`−1)/2N1 + 1 through Lemma 4.3.3. The
sample sizes only depend logarithmically on 1/δ since η−1 = (

√
2κL +

√
6 ln(1/δ))2 (see the

proof of Theorem 4.3.1).
The tail bound (4.3.4) can be improved, for example, when V is a Hilbert space using Theo-
rem 4.2.16 instead of Corollary 4.2.17.
Theorem 4.3.2 implies exponential tail bounds for the MC estimator.

Corollary 4.3.4. Let (V, ‖ · ‖V ) be a Banach space, VL ⊂ V , and (VL, ‖ · ‖V ) be a separable,
(2, κL)-quasi-smooth Banach space, and X ∈ L2(Ω;V ), XL ∈ L2(Ω;VL). Suppose σL > 0
satisfies ‖XL − E[XL]‖Lψ(Ω;V ) ≤ σL. Then, for all r ≥ 0 and each N ∈ N,

Prob
(
‖EN [XL]− E[X]‖V ≥ (

√
2κL+

√
2r)σL√

N
+ ‖E[XL]− E[X]‖V

)
≤ exp(−r2/3), (4.3.8)

where EN is the MC mean estimator.

Proof. Theorem 4.3.2 applied with L = 1 and τL = σL implies the claim.

The following lemma provides bounds on the Luxemburg norm of Y` − E[Y`].
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Lemma 4.3.5. If ` ∈ N and X, X`, X`−1 ∈ Lψ(Ω;V ), then ‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ 2‖X`−1 −
X‖Lψ(Ω;V ) + 2‖X` −X‖Lψ(Ω;V ).

Proof. Using the definition of Y` provided in (4.3.1) and the triangle inequality, we obtain

‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ ‖X`−1 −X − E[X`−1 −X]‖Lψ(Ω;V ) + ‖X` −X − E[X` −X]‖Lψ(Ω;V ).

Combining the estimate with Lemma 4.2.1 yields the assertion.

The next lemma is used to verify the first two conditions in (4.3.2) for a class of linear elliptic
PDEs in section 4.5.

Lemma 4.3.6. Let (h`) ⊂ R++ satisfy h` = (1/s)h`−1 for some s ∈ N \ {1}. If ‖X −
X`‖Lψ(Ω;V ) ≤ cht` for ` = 1, 2, . . ., with c > 0 and t > 0, then the first two conditions in

(4.3.2) hold with α = t, cα = c, and β = 2t, cβ = 4(1 + st)2c2.

Proof. Jensen’s inequality and Lemma 4.2.1 yield ‖E[X`] − E[X]‖2V ≤ E[‖X` −X‖2V ] ≤ ‖X` −
E[X`]‖2Lψ(Ω;V ). Hence, ‖E[X`] − E[X]‖V ≤ cht`, cα = c, and α = t. Lemma 4.3.5 gives ‖Y` −
E[Y`]‖Lψ(Ω;V ) ≤ 2‖X` −X‖Lψ(Ω;V ) + 2‖X`+1 −X‖Lψ(Ω;V ). Combined with h` = (1/s)h`−1, we

obtain ‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ 2(1 + st)cht`. Thus, β = 2t and cβ = 4(1 + st)2c2.

4.3.2 Sample Size Estimation and Cost Comparison

Sample size estimates are obtained via approximately minimizing the MLMC estimator’s cost
over a fixed variance by Giles [134, sect. 1.3]. We adapt this approach to our setting. For
fixed ε > 0 and δ ∈ (0, 1), we compute N` (` = 1, . . . , L) via approximately minimizing the
estimator’s cost

∑L
`=1N`E[Cost(Y`)] subject to (4.3.7). Replacing the variance of the MLMC

mean estimator in [134, sect. 1.3] with τ2
` = ‖Y` − E[Y`]‖2Lψ(Ω;V ) yields the estimate N` =

c(τ2
` /E[Cost(Y`)])

1/2 for ` = 1, . . . , L, provided that E[Cost(Y`)] > 0 and τ` > 0. Here c =

4ε−2(
√

2κL +
√

6 ln(1/δ))2
∑L

`=1(τ2
` E[Cost(Y`)])

1/2.
We estimate the Luxemburg norm of Y` − E[Y`] for linear elliptic PDEs using stability and
finite element error estimates in section 4.5. It may be difficult to obtain an accurate numerical
estimate of the Luxemburg norm of Y` − E[Y`] via, for example, the MC approximation of
the constraint in (4.2.1), as, for instance, exp(‖Y` − E[Y`]‖2V /τ2) is generally heavy-tailed for
τ > 0; see also the discussions in [138, pp. 1036 and 1039]. We refer the reader to Wang and
Ahmed [339] for an error analysis of stochastic programs with an expected value constraint.
We compare the costs of the MC estimator with that of the MLMC estimator for fixed accuracy
ε > 0 and reliability 1 − δ ∈ (0, 1). Since an upper bound on the cost of the MLMC estimator
is provided by (4.3.3), it remains to compute the expected cost for the MC mean estimator.
For some (σ`), (h`) ⊂ R++ and α, γ > 0, we assume that

‖E[X`]− E[X]‖V . hα` , ‖X` − E[X`]‖Lψ(Ω;V ) ≤ σ`, and E[Cost(X`)] . h
−γ
` .

Under these conditions, E[Cost(XL)] . (ε/2)−γ/α and hαL ' ε yields ‖E[XL] − E[X]‖V ≤ ε/2.
Moreover, N ≥ 4σ2

L(
√

2κL +
√

6 ln(1/δ))2/ε2 and Corollary 4.3.4 ensure Prob(‖EN [XL] −
E[X]‖V ≥ ε) ≤ δ. Putting together the pieces, we conclude that

E[Cost(EN [XL])] = NE[Cost(XL)] . σ2
L(
√
κL +

√
ln(1/δ))2ε−2−γ/α. (4.3.9)

In order to show that the cost of the MLMC estimator is smaller than that of the sample
mean, we require that the hypotheses of Theorem 4.3.1 hold, and E[Cost(Y`)] ' E[Cost(X`)].
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Furthermore, we assume that ‖XL−E[XL]‖Lψ(Ω;V ) ' ‖X−E[X]‖Lψ(Ω;V ) and that the left-hand
side in (4.3.9) is proportional to the right-hand side. When combined with (4.3.3), we obtain

E[Cost(EML[XL])]

E[Cost(EN [XL])]
. (
√
κL +

√
ln(1/δ))−2ε2 +





εγ/α if β > γ,

εγ/α(ln(ε−1) + 1)2 if β = γ,

εβ/α if β < γ.

Hence, for each δ ∈ (0, 1), the cost of the MLMC estimator is smaller than that of the sample
mean as ε→ 0.
The cost savings are similar to those obtained by Bierig and Chernov [37, pp. 587–588] for κL = 1,
where the accuracy is measured using the mean-squared error. We note that the conditions
E[Cost(X`)] ' E[Cost(Y`)], ‖XL−E[XL]‖Lψ(Ω;V ) ' ‖X−E[X]‖Lψ(Ω;V ) and E[Cost(Y`)] ≤ cγh−γ`
are crucial for the cost comparison to be valid.1

4.4 Quasi-Smooth Approximations of Nonsmooth Banach Spaces

We show that certain finite-dimensional approximations of (L∞(D), ‖ · ‖L∞(D)) and of (C(D̄), ‖ ·
‖C(D̄)) are (2, κ)-quasi-smooth with κ depending only logarithmically on the dimension of the
subspaces. A canonical choice of such finite-dimensional subspaces are finite element spaces.

4.4.1 Space of Essentially Bounded Functions

The Banach space (L∞(D), ‖ · ‖L∞(D)) is nonreflexive [1, Thm. 2.35] and, hence, is not 2-quasi-
smooth. We construct finite-dimensional, 2-quasi-smooth approximations of L∞(D).
The following assumption is based on that used in [93, Assumption 3.3]. We choose n` ∈ N.

(A) ϕk ∈ L∞(D), xk ∈ D, ϕk(xj) = δkj , (k, j = 1, . . . , n`), ‖
∑n`

k=1 |ϕk|‖L∞(D) = 1.

Here, δkj is the Kronecker delta. Assumption (A) implicitly requires that the evaluations ϕk(xj)
are well-defined. Under Assumption (A), we have ‖ϕk‖L∞(D) = 1 (k = 1, . . . , n`). The last
condition in (A) implies that the supports of the functions ϕk are “almost” disjoint.
We define V` = span{ϕk : k = 1, . . . , n` }. Assumption (A) ensures dim(V`) = n`. Indeed, if
α ∈ Rn` fulfills

∑n`
k=1 αkϕk = 0, then ϕk(xj) = δkj implies α = 0.

Example 4.4.1. We consider D = (0, 1)d, discretize D̄ using a uniform grid with mesh width
h` > 0, and choose n` = 1/hd` . For each cell, we define ϕk as the function that is equal to one on
that cell and zero otherwise, and let xk be the midpoint of the cell. Assumption (A) is fulfilled.

Assumption (A) also holds for continuous piecewise linear finite elements if D ⊂ Rd is an interval
for d = 1, a polygon for d = 2, or a polyhedron for d = 3 [54, Ex. 3.1.3], [93, Rem. 3.1].

Proposition 4.4.2. Let Assumption (A) hold. Then (V`, ‖·‖L∞(D)) is (2, κ`)-quasi-smooth with

κ` = inf2≤r<∞ { (r − 1)n
2/r
` }, where n` = dim(V`). If n` ≥ 3, then κ` ≤ (2 ln(n`)− 1)e.

We apply Lemma 4.4.3 to prove Proposition 4.4.2.

1If these assumptions are violated, the MLMC mean estimator may have a larger variance than the sam-
ple mean. For example, consider X = ξ and X` = ξ + |ξ|h` with ξ : Ω → R being standard Gaus-
sian. Then |E[X] − E[X`]| = (2/π)1/2h`, and Y` − E[Y`] = (|ξ| − E[|ξ|])(1 + s)h` ∈ Lψ(Ω;R). It is
meaningful to choose E[Cost(X`)] = 1. Since Y` = |ξ|(1 + s)h`, we have E[Cost(Y`)] = 1. Moreover,
Var(EML[XL]) = (h1/N1)Var(|ξ|) + (1 + s)

∑L
`=2(h`/N`)Var(|ξ|) > (hL/N)Var(|ξ|) = Var(EN [XL]) for all

N ≥ min` N` and L ∈ N. However E[Cost(EML[XL])] ≤ E[Cost(EN [XL])] if and only if N ≥
∑L
`=1 N`.
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Lemma 4.4.3. If Assumption (A) holds, then (V`, ‖ · ‖L∞(D)) is isometrically isomorphic to
(Rn` , ‖ · ‖∞), where n` = dim(V`).

Proof. We define T : V` → Rn` by Tz = α with z =
∑n`

k=1 αkϕk. The mapping T is linear
and bijective. Fix z ∈ V`. We deduce the existence of α ∈ Rn` with z =

∑n`
k=1 αkϕk. Using

‖∑n`
k=1 |ϕk|‖L∞(D) = 1, we have ‖z‖L∞(D) ≤ ‖α‖∞‖

∑n`
k=1 |ϕk|‖L∞(D) = ‖α‖∞. Now, fix k ∈

arg maxk=1,...,n` |αk|. Since ϕk(xj) = δkj , we obtain ‖z‖L∞(D) ≥ |αkϕk(xk)| = ‖α‖∞. Hence
‖Tz‖∞ = ‖z‖L∞(D).

Proof of Proposition 4.4.2. The space (V`, ‖ · ‖L∞(D)) is a closed, finite-dimensional subset of
L∞(D) and, hence, is separable Banach space. Now, the claim follows from Lemmas 4.2.5, 4.2.9
and 4.4.3.

4.4.2 Space of Continuous Functions

We present a consequence of Proposition 4.4.2.

Corollary 4.4.4. Let Assumption (A) hold and ϕk ∈ C(D̄) for k = 1, . . . , n`. Then (V`, ‖·‖C(D̄))

is (2, κ`)-quasi-smooth with κ` = inf2≤r<∞ { (r − 1)n
2/r
` }, where n` = dim(V`).

Proof. The assumptions ensure that (V`, ‖ · ‖C(D̄)) is a closed, finite-dimensional subset of

(C(D̄), ‖·‖C(D̄)) and, hence, it is a Banach space. Since ‖·‖C(D̄) = ‖·‖L∞(D) on V`, Lemma 4.4.3
and Proposition 4.4.2 yield the claim.

4.5 Application to Linear Elliptic PDEs with Random Inputs

We consider a class of linear elliptic PDEs with random inputs and provide conditions that allow
the application of Theorem 4.3.1 on the complexity of the MLMC mean estimator. It turns out
that the solution of a linear elliptic PDE has sub-Gaussian tail behavior if the random diffusion
coefficient is uniformly bounded, and the right-hand side has sub-Gaussian tail behavior. We
provide an example of a elliptic PDE with a log-normal diffusion coefficient such that its solution
is “heavy-tailed.”
Our error analysis is restricted to discretization errors, resulting from a finite element approxi-
mation; see, e.g., [16, 70]. A complete discussion may further include the analysis of truncation
errors of data defined by random series (see, e.g., [69, sect. 4], [311, sect. 4.1]), and of quadrature
errors (see, e.g., [70, sect. 3.3]).
We consider the linear elliptic PDE with random inputs: Find y : Ω→ H1

0 (D) such that, w.p. 1,

(κ(ω)∇y(ω),∇v)L2(D)d = (b(ω), v)L2(D) for all v ∈ H1
0 (D), (4.5.1)

where κ : Ω→ L∞(D) is the random diffusion coefficient and b : Ω→ L2(D). We define

κmin(ω) = ess inf
x∈D

κ(ω)(x), and κmax(ω) = ess sup
x∈D

κ(ω)(x). (4.5.2)

The following conditions on (4.5.1) are based on those used in [70, sect. 2.2], [311, sect. 2.1].

(D1) The bounded domain D ⊂ Rd has a C0,2-boundary.2

(D2) κ ∈ Lp(Ω;C1(D̄)) for all p ∈ [1,∞).
(D3) κmin > 0, and 1/κmin ∈ Lp(D) for all p ∈ [1,∞).
(D4) b ∈ Lp∗(Ω;L2(D)) for some p∗ ∈ [2,∞).

2We refer the reader to [151, Def. 1.13] for the definition of a C0,2-boundary.
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Assumptions (D2) and (D3) ensure the measurability of the functions κmin and κmax.

Lemma 4.5.1. If Assumptions (D1)–(D4) hold, then the PDE (4.5.1) has a unique solution
y : Ω → H1

0 (D), w.p. 1, |y(ω)|H1(D) ≤ (CD/κmin(ω))‖b(ω)‖L2(D), and y ∈ Lp(Ω;H1
0 (D)) for all

1 ≤ p < p∗, where CD = supv∈H1
0 (D)\{0} { ‖v‖L2(D)/|v|H1(D) } is Friedrichs’ constant of D.

Proof. Owing to (D1)–(D4), [12, Lem. 2.1] yields the claim (see also [70, Thm. 2.2]).

Throughout the section, let y ∈ Lp(Ω;H1
0 (D)) be the solution to (4.5.1). We define the multilevel

corrections through solutions of finite element approximations of the PDE (4.5.1). In order to
avoid introducing triangulations and finite element spaces, we impose the following condition.

(D5) There exists a sequence of nested subspaces (Yh) ⊂ H1
0 (D) such that dim(Yh) . (1/h)d

and infvh∈Yh |v − vh|H1(D) . |v|H2(D)h for all h > 0 and v ∈ H2(D) ∩H1
0 (D).

According to [70, Lem. 3.7] and Friedrichs’ inequality (see, e.g., [151, Thm. 1.13]), Assump-
tion (D5) holds if, for each h > 0, Yh is the space of continuous, piecewise linear functions
defined on a polygonal approximation of D, and D satisfies (D1) and [70, Assumption A4].
For h > 0, we consider the approximation of the PDE (4.5.1): Find yh : Ω → Yh such that,
w.p. 1,

(κ(ω)∇yh(ω),∇vh)L2(D)d = (b(ω), vh)L2(D) for all v ∈ Yh. (4.5.3)

We define the random variables C1, C2 : Ω→ R++ by3

C1(ω) =
κmax(ω)‖κ(ω)‖C1(D̄)

κmin(ω)3
, and C2(ω) =

(
κmax(ω)

κmin(ω)

)1/2

. (4.5.4)

Lemma 4.5.2. If Assumptions (D1)–(D5) hold, then for each h > 0, the discretized PDE (4.5.3)
has a unique solution yh : Ω→ Yh, yh ∈ Lp(Ω;H1

0 (D)) for all 1 ≤ p < p∗, and w.p. 1,

|y(ω)− yh(ω)|H1(D) . C1(ω)C2(ω)‖b(ω)‖L2(D)h for all h > 0. (4.5.5)

Proof. The existence and uniqueness of yh : Ω→ Yh and yh ∈ Lp(Ω;H1
0 (D)) can be established

using similar arguments as in the proof of [70, Thm. 2.2]. The error estimate (4.5.5) essentially
follows from the proof of [70, Thm. 3.9]. We have ‖y(ω)‖H2(D) . C1(ω)‖b(ω)‖L2(D) [70, Prop.
3.1]. Owing to (D3)–(D5), Céa’s lemma yields |y(ω) − yh(ω)|H1(D) ≤ C2(ω) infvh∈Yh |y(ω) −
vh|H1(D) [54, Rem. 2.8.5]. Combined with (D5), we obtain (4.5.5).

Throughout the section, let yh ∈ Lp(Ω;H1
0 (D)) be the solution to (4.5.3) for h > 0. The finite

element error estimate (4.5.5) remains valid for domains other than those given by (D1), such
as polygonal/polyhedral ones [311, p. 574], when replacing the random variable C1(ω) defined
in (4.5.4) with a different one [311, Lem. 5.2].

4.5.1 Light-Tailed Solutions

In order to show that the solution to (4.5.1) has sub-Gaussian tail behavior, we use the stability
estimate from Lemma 4.5.1.

Lemma 4.5.3. Let Assumptions (D1)–(D5) hold, and define κ∗min = ess infω∈Ω κmin(ω). Sup-
pose that b ∈ Lψ(Ω;L2(D)) and κ∗min > 0. Then ‖y‖Lψ(Ω;H1

0 (D)) ≤ (CD/κ∗min)‖b‖Lψ(Ω;L2(D)).

3The space C1(D̄) is equipped with the norm ‖ · ‖C1(D̄) defined by ‖v‖C1(D̄) =
∑
|α|≤1 supx∈D̄ |Dαv(x)|.
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Proof. Lemma 4.5.1 yields |y(ω)|H1(D) ≤ (CD/κ∗min)‖b(ω)‖L2(D). Combined with the definition
of the Luxemburg norm (see (4.2.1)), we obtain the claim.

Lemma 4.5.4. Under the conditions of Lemma 4.5.3 and κ ∈ L∞(Ω;C1(D̄)), we have C3
∗ =

ess supω∈Ω {C1(ω)C2(ω) } <∞, and ‖y − yh‖Lψ(Ω;H1
0 (D)) . C

∗
3‖b‖Lψ(Ω;L2(D))h.

Proof. The claims follow from an application of Lemma 4.5.2.

Under the hypotheses of Lemma 4.5.4, Lemmas 4.3.6 and 4.5.4 imply that the first two condi-
tions in (4.3.2) are satisfied. The assumption on the random diffusion coefficient imposed by
Lemma 4.5.4 are similar to those used by Barth, Schwab, and Zollinger [16, Prop. 3.6], with the
difference being the requirement κ ∈ L∞(Ω;C1(D̄)) instead of κ ∈ L∞(Ω;W 1,∞(D)).
We adapt an observation by Bharucha-Reid [36, p. 126] on the expectations of solutions to
random linear operator equations to our setting. If κ and b are independent, then we can
compute the expectation of y : Ω → H1

0 (D) by that of the solution to the PDE (4.5.1) with
b replaced by its mean E[b].4 In particular, the right-hand side b is not required to have sub-
Gaussian tails in order to apply our framework. Babuška, Nobile, and Tempone [12, Rem. 1]
provide a motivation for why it may be reasonable to model κ and b as independent.

Lemma 4.5.5. If Assumptions (D1)–(D4) hold, κ and b are independent, and ȳ : Ω → H1
0 (D)

solves (κ(ω)∇ȳ(ω),∇v)L2(D)d = (E[b], v)L2(D) for all v ∈ H1
0 (D), then E[y] = E[ȳ].

Proof. We define A : Ω→ L (H1
0 (D), H1

0 (D)∗) and B : Ω→ H1
0 (D)∗ by

〈A(ω)y, v〉H1
0 (D)

∗
,H1

0 (D) = (κ(ω)∇y,∇v)L2(D)d and 〈B(ω), v〉H1
0 (D)

∗
,H1

0 (D) = (b(ω), v)L2(D).

Both functions are well-defined by the Lax–Milgram lemma [151, Lem. 1.8], B is Bochner in-
tegrable by (D1) and (D4), and 〈E[B], v〉H1

0 (D)
∗
,H1

0 (D) = (E[b], v)L2(D) for all v ∈ H1
0 (D) [36, p.

78]. Hence, the PDE (4.5.1) can be equivalently written as A(ω)y(ω) = B(ω), and the above
PDE with deterministic right-hand side as A(ω)ȳ(ω) = E[B]. Below, we establish the identities
E[y] = E[A−1B] = E[A−1]E[B] = E[A−1E[B]] = E[ȳ].
We show that A and A−1 are strongly measurable w.r.t. the uniform operator topology. Ow-
ing to (D2), κ is strongly measurable. Lemma 3.2.24 ensures that the mapping φ : C1(D̄) →
L (H1

0 (D), H1
0 (D)∗) defined by 〈φ(κ)y, v〉H1

0 (D)
∗
,H1

0 (D) = (κ∇y,∇v)L2(D)d is (Lipschitz) continu-

ous. Hence, A = φ ◦ κ is strongly measurable [159, Cor. 1.1.11]. Since A−1 is the composition
of a continuous function with A, it is also strongly measurable [159, Cor. 1.1.11].
Using (D3) and [151, Lem. 1.8], we obtain ‖A−1‖L (H1

0 (D)∗,H1
0 (D)) ≤ 1/κmin ∈ L1(D) implying

that A−1 is Bochner integrable. The independence of κ and b ensure that of A and B [44,
pp. 398–399]. Hence, A−1 and B are independent [44, pp. 398–399]. Since B is Bochner
integrable, we have E[B] ∈ H1

0 (D)∗ [159, p. 13]. Putting together the pieces, we find that
E[y] = E[A−1B] = E[A−1]E[B] [160, Prop. 6.1.3]. The Bochner integrability of A−1 also ensures
E[A−1]E[B] = E[A−1E[B]] [36, p. 78]. Hence, E[y] = E[ȳ].

4.5.2 Heavy-Tailed Solutions

The solutions to linear elliptic PDEs with a log-normal diffusion coefficient may be “heavy-
tailed,” which we show on a model problem.

4If E[b] is not available in closed form, we may replace it by its sample mean. The approximation error can be
studied with [221, Thm. 9.31].



4.5. Application to Linear Elliptic PDEs with Random Inputs 123

Example 4.5.6. We define D = (0, 1), b = 2 and κ(ω) = exp(−ξ(ω)), where ξ : Ω → R is a
Gaussian random variable with zero mean and unit variance. This simple problem defines an
elliptic PDE with a log-normal diffusion coefficient [311, sect. 2], [12, sect. 1], [69, sect. 2].
The unique solution y to (4.5.1) is y(ω)(x) = exp(ξ(ω))x(1−x). We have |y|H1(D) = exp(ξ)/

√
3.

Since E[exp(sξ2/2)] = 1/(1 − s)1/2 if s ∈ [0, 1) and E[exp(sξ2/2)] = ∞ if s ≥ 1 [57, p. 9], we
have ‖y‖Lψ(Ω;H1

0 (D)) =∞.

The distribution of exp(ξ) is referred to as (moderately) heavy-tailed in the literature [105, pp. 9
and 138], [114, p. 39]. Since |y|H1(D) = exp(ξ)/

√
3, the tail probabilities of the random variable

|y|H1(D) are determined by those of exp(ξ). For all r > 0, we have

exp(−r2/2)
√
π(
√

2 + r2/2 + r/
√

2)
≤ Prob(ξ ≥ r) ≤ exp(−r2/2)

√
π(
√

1 + r2/2 + r/
√

2)
, (4.5.6)

[57, eq. (3.6), p. 227]. Hence, the tails of exp(ξ) decrease at a much slower rate than those of ξ.

Let g ∈ L0(Ω;C(D̄)) be a mean-zero, nondegenerate Gaussian random variable, and define the
log-normal diffusion coefficient κ by κ = exp(g). Using (4.5.2), we have, w.p. 1, 1/κmin(ω) ≤
exp(‖g(ω)‖C(D̄)). This estimate is typically used in combination with a stability estimate to
deduce the existence of all higher-order moments of the solution to (4.5.1); see, e.g., [69, p. 218–
219], [70, p. 325–326]. This estimate may not be used to deduce sub-Gaussian tail behavior of the
solution to (4.5.1) since ‖ exp(‖g‖C(D̄))‖Lψ(Ω;R) = ∞. Indeed, we have E[exp(τ‖g‖2

C(D̄)
)] = ∞

for all τ > 1/(2σ2), where σ2 = supf∈C(D̄)∗ E[〈f, g〉2
C(D̄)

∗
,C(D̄)

] > 0 [356, Rem. 2.1.3].

4.5.3 Numerical Simulations

We perform simulations for the Hilbert space (V, ‖ · ‖V ) = (H1
0 (D), | · |H1(D)), X = y, and

X` = yh` , and an adaption of the model problem considered by Barth, Schwab, and Zollinger [16,
sect. 6.2].

Implementation Details

We present implementation details for a practical version of the MLMC mean estimator which
tries to ensure that the estimate is close to the true mean with high probability. The pseudo-code
of the MLMC method, Algorithm 3, is as in [134, Alg. 1] with the differences that the squared
Luxemburg norm of the multilevel corrections is estimated rather than their variance, and the
number of samples is determined using a formula that depends both on the accuracy and the
reliability. Our implementation is based on that of pymlmc [108] and the approaches developed
by Giles [134, sect. 3]. We focus on discussing the main differences to the approaches used in
[134, sect. 3].
We adapt the approach implemented in pymlmc [108] to adaptively estimate the sample sizes N`.
Let ε > 0 be the accuracy, and let 1− δ ∈ (0, 1) be the reliability. Motivated by the derivations
in section 4.3.1 (cf. [134, eq. (3.1)]), we choose

N` =
⌈
(4/3)ε−2 ln(1/δ)(τ2

` /C`)
1/2

L∑

`=1

(τ2
` C`)

1/2
⌉
N
, (4.5.7)

where C` is an estimate of E[Cost(Y`)], and τ` is an approximation of ‖Y` − E[Y`]‖Lψ(Ω;V ). The
cost C` is either the average simulation time of Y`,i (i = 1, . . . , N`) or the user-defined cost as
in pymlmc [108]. Here, Y` are the multilevel corrections defined in (4.3.1) and ‖ · ‖Lψ(Ω;V ) is the
Luxemburg norm defined in (4.2.1).

https://tinyurl.com/y7hdncae
https://bitbucket.org/pefarrell/pymlmc/
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Algorithm 3 Multilevel Monte Carlo Method (ProbMLMC)

Choose accuracy ε > 0, reliability 1− δ ∈ (0, 1), and initial sample size N` for ` = 1, 2.
For L = 3, 4, . . .

1. Evaluate (remaining) samples on the levels 1, . . . , L.
2. Estimate Luxemburg norm of Y` − Ỹ` and estimate cost E[Cost(Y`)] (` = 1, . . . , L).
3. Compute sample size N` using (4.5.7) (` = 1, . . . , L).
4. Test for convergence.
5. Initialize sample size NL+1.

We estimate the Luxemburg norm of Y` − E[Y`] by that of Y` − Ỹ`, where Ỹ` = X̃` − X̃`−1 and
X̃` is the finite element solution on V` of the PDE with diffusion coefficient E[κ] and right-hand
side E[b]. Lemma 4.2.1 ensures ‖Y` − E[Y`]‖Lψ(Ω;V ) ≤ 2‖Y` − Ỹ`‖Lψ(Ω;V ). This choice does not

require us to save the samples Y`,i (i = 1, . . . , N`, ` = 1, . . . , L), and ensures ‖Y`− Ỹ`‖Lψ(Ω;V ) = 0
if Y` is deterministic. If Y` is real-valued, it may be feasible to save the samples Y`,i, which then
allow for the computation of |Y`,i−EN` [Y`]|. In contrast to computing of the Luxemburg norm,
the sample variance of Z : Ω → R can be evaluated without using EN` [Z] with the one-pass
method [68, eq. (1.3)].
For the random variable Z = ‖Y` − Ỹ`‖V with samples Z1, . . . , ZN` , we estimate ‖Z‖Lψ(Ω;R)

via the solution to: Find τ > 0 with EN` [exp(|Z|2/τ2)] − e = 0. When Zi 6= 0 for some
i ∈ {1, . . . , N`}, the root exists and is the Luxemburg norm of the sample Z1, . . . , ZN` ; see
section 4.2.1. We apply the implementation of Brent’s method provided by SciPy [327] with
initial values EN [|Z|2]1/2 and maxi∈{1,...,N`} |Zi|, which ensure that the root function has opposite
signs; see section 4.2.1. As discussed in section 4.3.2, this estimate may provide an inaccurate
approximation to ‖Z‖Lψ(Ω;R). However, it allows us to adaptively estimate the constants in
(4.3.2) by adapting the approaches developed by Giles [134, sect. 3].
We terminate Algorithm 3 if max`∈{L−2, L−1, L}∩N { ‖EN` [Y`]‖V /sα(L−`) } ≤ (sα − 1)ε/2 as in
[134, pp. 279 and 284]. We provide a short motivation for this rule. We assume E[X`] → E[X]
as `→∞ and ‖E[Y`]‖V ≤ (1/s)α‖E[Y`−1]‖V for some α > 0, s ∈ N \ {1}, and ` ≥ 2. Combined
with the telescoping sum and the Cauchy–Schwarz inequality, we find that ‖E[X`]− E[X]‖V ≤∑∞

k=` ‖E[Yk+1]‖V ≤ ‖E[Y`+1]‖V
∑∞

k=0(1/sα)k ≤ ‖E[Y`]‖V /(sα − 1) for ` ≥ 2; cf. [134, p. 279].
Hence, (sα−1)‖E[X`]−E[X]‖V ≤ ‖E[Y`]‖V ≤ (1/s)α‖E[Y`−1]‖V ≤ (1/s)2α‖E[Y`−2]‖V for ` ≥ 3.
The above termination rule replaces the expectations of Y`, Y`−1 and Y`−2 with their sample
means.
The differences Y` = X` − X`−1 and the sum defining the MLMC estimator (see (4.3.1)) are
computed using the coarse-to-fine operator [54, p. 159]. Algorithm 3 was implemented in Python

and PDEs were solved using FEniCS [6, 220].

Model Problem

The following problem is an adaption of that considered by Barth, Schwab, and Zollinger [16,
sect. 6.2]. We define D = (0, 1) and

κ(ω)(x) = 5 + x+ (2
√

2/π)ξ1(ω) sin(π(x+ 1)/4), b(ω)(x) = 50 + 50ξ2. (4.5.8)

where ξ1, ξ2 : Ω→ R are uniformly distributed over [−1, 1] and dependent. For x ∈ D̄, we have

E[y](x) =
∞∑

k=0

(2
√

2)2k

π2k(2k + 1)

∫ x

0

c− 50z

5 + z

(sin(π(z + 1)/4)

5 + z

)2k
dz, (4.5.9)
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where c > 0 is the solution to E[y](1) = 0; cf. [16, p. 153].5 Following [16, p. 153], we truncated
the sum in (4.5.9) after five addends, and obtained c ≈ 24.25 and E[y](1) ≈ 4.0 · 10−16 using
Mathematica.
We verify the conditions of Lemmas 4.5.3 and 4.5.4. Fix ω ∈ Ω and x ∈ D̄. We have κmin(ω)(x) ≥
5−2
√

2/π ≈ 4.10 and κmax(ω)(x) ≤ 6+2
√

2/π ≈ 6.90. Since κ(ω)′(x) = 1+cos(π(x+1)/4)/
√

2,
we find that ‖κ(ω)′‖C(D̄) ≤ 1 + 1/

√
2 and ‖κ(ω)‖C1(D̄) ≤ 7 + 2

√
2/π + 1/

√
2 ≈ 7.61. Hence

κ ∈ L∞(Ω;C1(D̄)). We also have b ∈ Lψ(Ω;L2(D)).
We define V` = Yh` , following [54, sect. 0.4] and [16, sect. 6.2]. For ` ∈ N, we choose h` = 2−(`+1)

and divide D̄ into the intervals [(k− 1)h`, kh`] for k = 1, . . . , 1/h`. We define Yh` as the space of
continuous functions on D̄ that are zero at 0 and 1, and are affine polynomials on [(k−1)2−`, k2−`]
for k = 1, . . . , 1/h`.
From [54, Thm. 0.4.5] (with ‖ · ‖V = | · |H1(D) [54, p. 5]) and its proof, we deduce infvh∈Yh` |v −
vh|H1(D) ≤ (1/

√
2)h`‖v′′‖L2(D) for all v ∈ H2(D) ∩H1

0 (D). Hence, Assumption (D5) is fulfilled,
and the first two conditions in (4.3.2) hold with α = 1 and β = 2.
The (theoretical) cost to generate a sample of X` = yh` is proportional to 1/h` − 2 since the
solution of the discretized PDE (4.5.3) requires solving a tridiagonal linear system; see, e.g., [16,
Rem. 4.6]. Consequently, the third condition in (4.3.2) holds with γ = 1.
Figure 4.1 depicts several statistics for the problem (4.5.8). These statistics are adapted from
those used by Giles [134, sect. 7]. To generate the results shown in Figure 4.1, we approxi-
mated expected values using N = 500 samples. Figure 4.1a depicts ‖EN [Y`]‖V and ‖EN [X`]‖V ,
Figure 4.1b shows the estimates of the squared Luxemburg norms of Y` − Ỹ` and X` − X̃`,
and Figure 4.1c depicts the average of the computation time per sample and level. Using
least squares, we obtained the rates α ≈ 0.99, β ≈ 2.0 and γ ≈ 0.51, which empirically verify
the conditions in (4.3.2), and Lemmas 4.5.2 and 4.5.4. The consistency error, visualized in
Figure 4.1d, is the ratio of (N1/2/3)‖EN [Y`] − EN [X`] + EN [X`−1]‖V and the square root of
EN [‖Y` − Ỹ`‖2V ] + EN [‖X` − X̃`‖2V ] + EN [‖X`−1 − X̃`−1‖2V ]; cf. [134, p. 22].
We compare ProbMLMC with the MC mean estimator described in section 4.3.2 using the same
accuracy and reliability as those used for ProbMLMC. We refer to this MC estimator as ProbMC.
Their computational cost is defined in sections 4.3.1 and 4.3.2. Here, L is the level computed
by ProbMLMC. Figure 4.2 depicts the sample sizes and computational costs for several accuracies
and reliabilities. Figure 4.2a shows that the cost of ProbMC increases significantly faster than
that of ProbMLMC as ε decreases for the fixed reliability 0.95. For fixed accuracy, the normalized
computational costs of ProbMC are a multiple of those of ProbMLMC; see Figure 4.2b. For both
cases, ProbMLMC is computationally cheaper than ProbMC, and the results empirically verify the
cost savings derived in section 4.3.2.
We empirically verify that ProbMLMC produces reliable mean estimates. We compare ProbMLMC

with StdMLMC, the standard MLMC mean estimator analyzed by Bierig and Chernov [37, sect.
3], and with VarMLMC. VarMLMC is the same as ProbMLMC with the only difference that it uses
estimates of the second moment of Y` − E[Y`] instead of the Luxemburg norm. The second
moment of Y`−E[Y`] is estimated by that of Y`− Ỹ`. Lemma 4.2.10 ensures E[‖Y`−E[Y`]‖2V ] ≤
E[‖Y` − Ỹ ‖2V ]. Figure 4.3 depicts the relative frequency of ‖EML[X]−E[X]‖V > r as a function
of r ≥ 0 computed with 1000 independent simulations. It shows that ProbMLMC and VarMLMC

yield a reliable mean estimate, while StdMLMC does not.
The number of samples used by Algorithm 3 is quite large, and the computational complexity
of Algorithm 3 is unknown before executing the method. For simulations with (complex) PDEs,
it may be more realistic that a fixed computational budget C > 0 is provided, and that we are
interested in determining the number of levels L and samples, and the smallest constant r > 0

5The solution formula can be derived using the series expansion 1/(5 + x + z) =
∑∞
k=1(−z)k−1/(x + 5)k for

z = (2
√

2/π)ξ1(ω) sin(π(x+ 1)/4).

https://www.wolfram.com/mathematica
https://tinyurl.com/y6kqxtbk
https://tinyurl.com/y4ae6oz4
https://tinyurl.com/y5tkmzg2
https://tinyurl.com/yxbhmutr
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Figure 4.1: Estimates of means, squared Luxemburg norm, computational costs and consistency error
for (4.5.8).

such that Prob(‖EML[XL] − E[X]‖V ≥ r) ≤ δ, while ensuring that the overall simulation time
does not exceed C. The tail bound (4.3.4) suggests obtaining the level L and the sample sizes
N` as an optimal solution of

min
L∈N

L≤Lmax

‖E[XL]− E[X]‖V + min
N`∈N
`=1,...,L

{
(1 +

√
3 ln(1/δ))

( L∑

`=1

τ2
`
N`

)1/2
:

L∑

`=1

N`C` ≤ C
}
.

(4.5.10)

The second-stage program has an optimal solution if C ≥ C1. Let r∗ > 0 be the optimal value
and L∗ be the optimal of (4.5.10). Since V = H1

0 (D) is a Hilbert space, Theorem 4.2.15 ensures
Prob(‖EML[XL∗ ] − E[X]‖V ≥ r∗) ≤ δ. We approximated the second-stage program in (4.5.10)
by relaxing each integer constraint to (0,∞). For fixed L ∈ N, the optimal solution of the
relaxation is N` = c(τ2

` /C`)
1/2 with c = C/(

∑L
`=1(τ2

` C`)
1/2) if τ`, C` > 0; cf. [134, p. 262]. The
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Figure 4.2: Number of samples and computational costs (4.5.8).

constants τ2
` , C`, and ‖E[X`] − E[X]‖V were estimated using the data depicted in Figure 4.1.

We estimated ‖E[X1]−E[X]‖V using extrapolation. After rounding N`, the first-stage program
in (4.5.10) can be solved approximately.
For our numerical experiments, we chose the computational budget C as a multiple of C̄ =
(1/Lmax)

∑Lmax
`=1 C`. Figure 4.4 depicts the sample sizes, and relative frequency of the deviation

from the MLMC estimator to the true mean for 500 independent simulations. These results
highlight the decrease of the sample sizes as the number of levels increases, and show that
reliable mean estimates were obtained.

4.6 Conclusion and Discussion

We derived non-asymptotic, exponential bounds on the tail probabilities of the MLMC estimator
applied to the mean estimation of certain Banach space-valued random variables in section 4.3.
We required that the Banach spaces are either 2-uniformly smooth or that they are 2-uniformly
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Figure 4.3: Relative frequency of the deviation of the estimators to the true mean. The horizontal
line is at 0.98, the desired reliability. The vertical line is at 0.1, the desired accuracy.
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Figure 4.4: Sample sizes computed using (4.5.10), and relative frequency of the MLMC estimator’s
deviations to the true mean for (4.5.8). The horizontal line is at 0.95 which is the desired reliability,
and each vertical line is the (approximate) optimal value of (4.5.10) for the cost C which correspond
to the desired accuracies. The legend applies to both subfigures.

smooth after an equivalent renorming. For example, all Hilbert spaces and all Sobolev spaces
consisting of at least square-integrable function are 2-uniformly smooth as demonstrated in
section 4.2.2. Our analysis reveals that the number of samples on each level depend only log-
arithmically on the user-specified reliability if the multilevel corrections have sub-Gaussian tail
behavior. The tail bounds established in section 4.2.4 depend on the geometry of the underlying
Banach space through the smoothness constant κ. If κ is large, the tail bounds are informative to
some extent. We established improved moment inequalities and tail bounds for certain Sobolev
space-valued random sums in Proposition 4.2.14 and Theorem 4.2.18, respectively.
In section 4.5, we verified the assumptions used for our theory on linear elliptic PDEs with
uniformly bounded diffusion coefficients and sub-Gaussian right-hand sides. Our framework is
general enough to allow the application to stochastic obstacle problems under suitable assump-
tions on the random data. The sub-Gaussian tail behavior of the solutions to obstacle problems
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and of the finite element approximation error can be established using the analysis developed
by Bierig and Chernov [37] (see [37, eqns. (6.4) and (6.10)]).
It is possible to derive exponential tail bounds related to those in section 4.2.4 if the multi-
level correction Y` satisfies, for some τ` > 0, E[exp(‖Y` − E[Y`]‖V /τ`)] ≤ e, which models sub-
exponentiality and is weaker than the condition in (4.1.9). The corresponding Young’s function
is ψ1 : R→ R+, ψ1(x) = (e|x| − 1)/(e− 1). The derivation of such tail bounds can be based on
that by Juditsky and Nemirovski [166]. Giles [134, sect. 7.1] considers an elliptic PDE with a
sub-exponential right-hand side.
We showed that the class of elliptic PDEs with log-normal random diffusion coefficients contains
heavy-tailed solutions in section 4.5.2. We conjecture that most members of this class are heavy-
tailed. Non-asymptotic tail bounds, weaker than exponential ones, may be established for these
random variables using Nagaev–Fuk-type inequalities [356, Thm. 3.5.1], [117]. For Banach space-
valued random variables, the Nagaev–Fuk inequality depends on unspecified constants which
may be estimated for solutions to PDEs with log-normal random diffusion coefficients. In the
case that the random variables X` can be approximated with light-tailed surrogates X̂` such that
‖E[X̂`]−E[X]‖V ≈ ‖E[X`]−E[X]‖V , it would be possible to apply the framework developed in
section 4.3.1. The Gaussian random variables entering the log-normal diffusion coefficient may be
approximated using truncation; see, e.g., [323, sect. A661] and [245, p. 982] for approximations
of log-normal random variables. An open problem is whether these approximations result in
‖E[X̂`]− E[X]‖V ≈ ‖E[X`]− E[X]‖V .
The mean-squared analysis for MLMC mean estimators, applied to solutions of linear elliptic
PDEs with log-normal diffusion coefficients, exploits the fact that centered second moments
of the multilevel corrections decrease sufficiently fast to zero [69, 70, 311]. However, under
mild assumptions, higher-order moments also decrease with increasing levels [70, Thm. 3.9],
[311, Thm. 2.2]—a property that may be exploited for the development of robust MLMC mean
estimators.
MLMC mean estimators with sub-Gaussian behavior for heavy-tailed random variables can
be built on computing the geometric median of a moderate number of independent MLMC
mean estimators. Minsker [236] shows that the geometric median of independent estimators
has significantly greater reliability than each individual estimator (see also Nemirovski and
Yudin [246, p. 244]). Another approach could be to replace the sample means on each level with
a robust mean estimator, that is, by a mean estimator with (nearly) sub-Gaussian performance.
The development of such estimators is an active research field for univariate and multivariate
random variables; see, e.g., [67, 222, 236].

4.7 Proofs and Supplementary Materials

4.7.1 Uniform Smoothness of Sobolev Spaces

We prove the fact that W s,p(D) is (2, p − 1)-smooth if s ∈ N0, 2 ≤ p < ∞ and D ⊂ Rd is a
bounded domain. The proof uses Hanner’s inequality [145, Thm. 1], [13, Thm. 2]. For each
fixed 2 ≤ p <∞, Hanner’s inequality ensures, for every f , g ∈ Lp(D),

‖f + g‖pLp(D) + ‖f − g‖pLp(D) ≤ (‖f‖Lp(D) + ‖g‖Lp(D))
p + (‖f‖Lp(D) − ‖g‖Lp(D))

p. (4.7.1)

Proof of Proposition 4.2.7. We verify (4.2.2). Fix s ∈ N0, 2 ≤ p < ∞, and x, y ∈ W s,p(D).
We define (vα)|α|≤s and (wα)|α|≤s by vα = ‖Dαx‖Lp(D) and wα = ‖Dαy‖Lp(D) for |α| ≤ s,

respectively. Here, Dα is the weak derivative of order α, and α ∈ Nd0 is a multiindex (see pp. vii–
viii). Using the definition of the Sobolev norm ‖ · ‖W s,p (see p. viii), we have ‖v‖p = ‖x‖W s,p(D)
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and ‖w‖p = ‖y‖W s,p(D). For each α ∈ Nd0 with |α| ≤ s, we have Dαx, Dαy ∈ Lp(D) and, hence,
Hanner’s inequality (4.7.1), applied with f = Dαx and g = Dαy, ensures

‖x+ y‖pW s,p(D) + ‖x− y‖pW s,p(D) =
∑

|α|≤s
‖Dα[x+ y]‖pLp(D) + ‖Dα[x− y]‖pLp(D)

≤
∑

|α|≤s
(vα + wα)p + |vα − wα|p

= ‖v + w‖pp + ‖v − w‖pp.

Using [13, Thm. 1] (see also [262, eq. (10.37)]), we obtain (‖v + w‖pp/2 + ‖v − w‖pp/2)2/p ≤
‖v‖2p + (p− 1)‖w‖2p. Putting together the pieces, we find that

(‖x+ y‖pW s,p(D)/2 + ‖x− y‖pW s,p(D)/2)2/p ≤ (‖v + w‖pp/2 + ‖v − w‖pp/2)2/p

≤ ‖v‖2p + (p− 1)‖w‖2p
= ‖x‖2W s,p(D) + (p− 1)‖y‖2W s,p(D).

Using 2 ≤ p < ∞ and (a2/2 + b2/2)1/2 = 2−1/2‖(a, b)‖2 ≤ 2−1/221/2−1/p‖(a, b)‖p = (ap/2 +
bp/2)1/p for a = ‖x+ y‖W s,p(D) and b = ‖x− y‖W s,p(D), we conclude that W s,p(D) is (2, p− 1)-
smooth.

4.7.2 Renorming

We show that the renoming lemma by Juditsky and Nemirovski [166, Lem. 3] remains valid for
infinite-dimensional Banach spaces. A standard reference on renorming is the monograph [95].

Lemma 4.7.1. If (V, ‖·‖V ) is (2, κ)-quasi-smooth Banach space, then there exists a norm ||| · |||V
on V such that ||| · |||2V is (2, κ)-smooth and

‖x‖2V ≤ |||x|||2V ≤ 2‖x‖2V for all x ∈ V. (4.7.2)

Our proof of Lemma 4.7.1, which is inspired by that of [166, Lem. 3], requires some facts from
functional analysis. Throughout the following sections, ‖ · ‖V ∗ is the dual norm to ‖ · ‖V , where
(V, ‖ · ‖V ) is a Banach space.

Lemma 4.7.2 ([155, Thm. on p. 155]). If (V, ‖ · ‖V ) is a Banach space, then each norm on V ∗

that is equivalent to ‖ · ‖V ∗ is a dual norm if and only if V is reflexive.

Lemma 4.7.3 ([155, p. 154]). Let V be a Banach space, and let ‖ · ‖V and ||| · |||V be norms on
V such that, for some α, β > 0, we have α‖x‖V ≤ |||x|||V ≤ β‖x‖V for all x ∈ V . Then

(1/β)‖f‖V ∗ ≤ |||f |||V ∗ ≤ (1/α)‖f‖V ∗ for all f ∈ V ∗.

Lemma 4.7.4. If (V, ‖ · ‖V ) is a Banach space and κ ≥ 1, then ‖ · ‖2V is (2, κ)-smooth if and
only if

‖f + g‖2V ∗ + ‖f − g‖2V ∗ ≥ 2‖f‖2V ∗ + 2(1/κ)‖g‖2V ∗ for all f, g ∈ V ∗.

Proof. The assertions follow from an application of [13, Lem. 5].

Proof of Lemma 4.7.1. The proof is inspired by that of [166, Lem. 3]. The main idea is to
construct a dual norm on V ∗ that fulfills the inequality in Lemma 4.7.4. Since (V, ‖ · ‖V ) is
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(2, κ)-quasi-smooth, there exists a norm | · |V on V , and κ̄ ∈ [1, κ] such that | · |2V is (2, κ̄)-smooth
and

‖x‖2V ≤ |x|2V ≤ µ‖x‖2V for all x ∈ V with µ = κ/κ̄. (4.7.3)

If µ ∈ [1, 2], we choose ||| · |||2V = | · |2V , which is (2, κ)-smooth since κ̄ ≤ κ. For the remainder of
the proof, let µ > 2 be arbitrary. Lemma 4.7.3 yields

(1/µ)‖g‖2V ∗ ≤ |g|2V ∗ ≤ ‖g‖2V ∗ for all g ∈ V ∗. (4.7.4)

We define the norm ||| · |||V ∗ on V ∗ by ||| · |||2V ∗ = γ| · |2V ∗ + (1− γ)‖ · ‖2V ∗ , where γ = µ/(2(µ− 1))
with 1/2 ≤ γ < 1. Indeed, g : [2,∞) → R defined by g(z) = 1

2(1−1/z) is differentiable on (2,∞)

with g′(z) = − 1
2(z−1)2 < 0 for all z ∈ (2,∞). Since γ = g(µ), µ > 2, g(2) = 1 and g(z)→ 1/2 as

z →∞, we have 1/2 ≤ γ < 1.
Using (4.7.4) and γ/µ+ 1− γ = 1/2, we obtain for all g ∈ V ∗,

(1/2)‖g‖2V ∗ = (γ/µ+ 1− γ)‖g‖2V ∗ ≤ |||g|||2V ∗ = γ|g|2V ∗ + (1− γ)‖g‖2V ∗ ≤ ‖g‖2V ∗ . (4.7.5)

Since V is reflexive [50, Thm. 5.1.20], Lemma 4.7.2 implies that ||| · |||V ∗ is a dual norm, that is,
||| · |||V ∗ is the dual norm of some norm ||| · |||V on V . Reflexivity of V also implies that the dual
norms of ||| · |||V ∗ and of ‖ · ‖V ∗ are norms on V . Hence, Lemma 4.7.3 and (4.7.5) yield (4.7.2).
It must yet be shown that ||| · |||2V is (2, κ)-smooth. Fix f , g ∈ V ∗. The convexity and continuity
of ‖ · ‖2V ∗ and the fact that V ∗ is a Banach space [155, p. 120] ensure ‖f + h‖2V ∗ ≥ ‖f‖2V ∗ +
〈y, h〉(V ∗)∗,V ∗ for some subgradient y ∈ (V ∗)∗ of ‖ · ‖2V ∗ at f , and every h ∈ V ∗; see, e.g., [46,

Prop. 2.126 (v)]. Hence, ‖f + g‖2V ∗ +‖f − g‖2V ∗ ≥ 2‖f‖2V ∗ . Combined with Lemma 4.7.4 applied
to | · |V ∗ and the definition of ||| · |||V ∗ , we find that

|||f + g|||2V ∗ + |||f − g|||2V ∗ = γ
(
|f + g|2V ∗ + |f − g|2V ∗

)
+ (1− γ)

(
‖f + g‖2V ∗ + ‖f − g‖2V ∗

)

≥ 2γ|f |2V ∗ + 2(γ/κ̄)|g|2V ∗ + 2(1− γ)‖f‖2V ∗
= 2|||f |||2V ∗ + 2(γ/κ̄)|g|2V ∗ . (4.7.6)

Using (4.7.4), we obtain

|||g|||2V ∗ = γ|g|2V ∗ + (1− γ)‖g‖2V ∗ ≤
(
γ + (1− γ)µ

)
|g|2V ∗ . (4.7.7)

Since γ = µ/(2(µ− 1)) and µ > 2, we have µγ/(γ + (1− γ)µ) = µ/(µ− 1) ≥ 1. Combined with
(4.7.6), (4.7.7), and κ̄ = κ/µ (see (4.7.3)), we conclude that

|||f + g|||2V ∗ + |||f − g|||2V ∗ ≥ 2|||f |||2V ∗ + 2µγ
κ |g|2V ∗ .

= 2|||f |||2V ∗ + 2
κ

µγ
γ+(1−γ)µ |||g|||

2
V ∗

≥ 2|||f |||2V ∗ + 2
κ |||g|||

2
V ∗ .

Hence, Lemma 4.7.4 implies that ||| · |||2V is (2, κ)-smooth.

4.7.3 Proofs of Bounds on the Second Moment

We prove Theorem 4.2.11 using Lemmas 4.7.5 and 4.7.6.

Lemma 4.7.5. If (V, ‖ · ‖V ) is (2, κ)-smooth, then g = ‖ · ‖2V is uniformly Fréchet differentiable,
and |Dg(y)[v]| ≤ 2‖y‖V ‖v‖V for all y, v ∈ V .

https://tinyurl.com/y4x4t9oz
https://tinyurl.com/yylx977r
https://tinyurl.com/y2lsqszd
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Proof. Owing to (4.2.2) and the convexity of g = ‖ · ‖2V , the function g is uniformly Fréchet
differentiable [50, Prop. 4.2.14]. From [14, Ex. 2.32], we deduce |Dg(y)[v]| ≤ ‖Dg(y)‖V ∗‖v‖V ≤
2‖y‖V ‖v‖V for all y, v ∈ V .

We state an essentially known characterization of (2, κ)-smoothness.

Lemma 4.7.6. Let (V, ‖ · ‖V ) be a Banach space and κ ≥ 1. Then ‖ · ‖2V is (2, κ)-smooth if and
only if g = ‖ · ‖2V is Fréchet differentiable, and

g(x+ y) ≤ g(x) + Dg(x)[y] + κg(y) for all x, y ∈ V. (4.7.8)

Proof. If ‖ ·‖2V is (2, κ)-smooth, then [50, Prop. 4.2.14] ensures the (uniform) Fréchet differentia-
bility of ‖ · ‖2V , and the proof of [164, Lem. 2.2] implies (4.7.8). To establish the converse, we fix
x, y ∈ V . We choose once x, y in (4.7.8) and once x, −y in (4.7.8), and add the two inequalities.
Combined with the linearity of Dg(x), we obtain (4.2.2). Hence, (V, ‖ · ‖V ) is (2, κ)-smooth.

Proof of Theorem 4.2.11. The proof is inspired by that of [256, Prop. 2.5], and the statements
presented in [212, Rem. 2.3] and [166, p. 4].
Let (ξj)j∈N0 be adapted to the filtration (Fj)j∈N0 ⊂ F . We define S0 = 0, Sj = ξ1 + · · · + ξj
for each j ∈ N, and g = ‖ · ‖2V . The martingale (Sj)j∈N0 is adapted to (Fj)j∈N0 [159, Ex. 3.1.7].
Owing to Lemma 4.7.6, we have for each j = 1, 2, . . ., w.p. 1,

‖Sj + x‖2V ≤ ‖Sj−1 + x‖2V + Dg(Sj−1 + x)[ξj ] + κ‖ξj‖2V . (4.7.9)

Fix j ∈ N. Using E[ξj | Fj−1] = 0, ξj ∈ L2(Ω;V ), |Dg(Sj−1 + x)[ξj ]| ≤ 2‖Sj−1 + x‖V ‖ξj‖V (see
Lemma 4.7.5), the tower property [159, Prop. 2.6.33], and [159, Prop. 2.6.31], we obtain

E[Dg(Sj−1 + x)[ξj ]] = E[E[Dg(Sj−1 + x)[ξj ] | Fj−1]] = E[Dg(Sj−1 + x)E[ξj | Fj−1]] = 0.

Taking expectations in (4.7.9), we find that

E[‖Sj + x‖2V ]− E[‖Sj−1 + x‖2V ] ≤ κE[‖ξj‖2V ] for j = 1, 2, . . . .

Combined with the telescoping sum and E[‖S0 + x‖2V ] = ‖x‖2V , we obtain (4.2.4).

Proof of Corollary 4.2.12. By assumption, there exists a norm ||| · |||V on V such that ||| · |||2V
is (2, κ̄)-smooth with κ̄ ∈ [1, κ] and ‖ · ‖2V ≤ ||| · |||2V ≤ (κ/κ̄)‖ · ‖2V . Theorem 4.2.11 yields

E[|||ξ1 + · · ·+ ξN |||2V ] ≤ κ̄
∑N

i=1 E[|||ξi|||2V ]. Putting together the pieces, we obtain (4.2.5).

Proof of Corollary 4.2.13. We define (Sj)j∈N0 with S0 = 0 and such that Sj is the sum of the

first j addends of
∑L

`=1

∑N`
i=1 ξ`,i/N`, and Sn+1 = SN for all n ≥ N , where N =

∑L
`=1N`. The

independence of ξ`,i ∈ L2(Ω;V ) (i = 1, . . . , N`, ` = 1, . . . , L) implies that (Sj)j∈N0 is a (stopped)
martingale adapted to the natural filtration [159, Ex. 3.1.4]. Hence, (dj)j∈N0 with d0 = 0 and
dj = Sj − Sj−1 for j ∈ N is a martingale-difference. Applying Theorem 4.2.11 to (dj)j∈N0 yields
the bound (4.2.7). An application of Corollary 4.2.12 gives (4.2.6).

We make use of Lemma 4.7.7 to prove Proposition 4.2.14.

Lemma 4.7.7. If ξk : Ω → R are independent and sub-Gaussian with parameter τk > 0, and
ak ∈ R for k = 1, . . . ,K, then for each r > 0, E[|∑K

k=1 akξk|r] ≤ 2(r/e)r/2(
∑K

k=1 a
2
kτ

2
k )r/2.

If, in addition, ξk are Gaussian with variance τ2
k , then for each r > 0, E[|∑K

k=1 akξk|r] =

E[|ξ1/τ1|r](
∑K

k=1 a
2
kτ

2)r/2.
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Proof. The first claim follows from applications of [57, Thm. 1.2, Lems. 1.4 and 1.7 (sect.
1.1)]. We prove the second assertion. Define Z =

∑K
k=1 akξk. Since ξk are independent,

mean-zero Gaussian random variables with variance τ2
k , we have E[Z2] =

∑K
k=1 a

2
kτ

2
k . Hence,

Z/E[Z2]1/2 is a mean-zero Gaussian random variable with unit variance. Consequently, E[|Z|r] =

E[|Z/E[Z2]1/2|r]E[Z2]r/2 = E[|ξ1/τ1|r](
∑K

k=1 a
2
kτ

2
k )r/2.

Proof of Proposition 4.2.14. We define Z =
∑K

k=1 ξkφk. Using the definition of ‖·‖W s,p(D) (see p.
viii), we have E[‖Z‖pW s,p(D)] = E[

∑
|α|≤s ‖DαZ‖pLp(D)]. Since s ∈ N0 and t 7→ |t|p is nonnegative,

Fubini’s theorem ensures E[‖Z‖pW s,p(D)] =
∑
|α|≤s

∫
D E[|DαZ(x)|p]dx.

Since φk ∈ W s,p(D) for k = 1, . . . ,K, there exists a set D̂ ⊂ D of full measure such that
Dαφk(x) ∈ R for k = 1, . . . ,K, |α| ≤ s, and for all x ∈ D̂. Now, we fix x ∈ D̂ and s ∈ N0. Using
Lemma 4.7.7 and the linearity of Dα [1, p. 21], we find that

E
[∣∣∣Dα

( K∑

k=1

ξkφk(x)
)∣∣∣
p
]

= E
[∣∣∣

K∑

k=1

ξkD
αφk(x)

∣∣∣
p
]
≤ 2(p/e)p/2

( K∑

k=1

τ2
k (Dαφk(x))2

)p/2
.

Putting together the pieces and using the definition of TK provided in (4.2.8), we conclude that

E[‖Z‖pW s,p(D)] ≤ 2(p/e)p/2
∑

|α|≤s

∫

D

[ K∑

k=1

τ2
k (Dαφk(x))2

]p/2
dx = 2(p/e)p/2T pK .

If, in addition, ξk are Gaussian, then the above computations combined with Lemma 4.7.7 yield
E[‖Z‖pW s,p(D)] = E[|ξ1/τ1|p]T pK .

4.7.4 Proofs of Exponential Tail Bounds

We prove Theorems 4.2.15, 4.2.16 and 4.2.18 and Corollary 4.2.17. Theorems 4.7.8 and 4.7.9
are used to establish Theorem 4.2.15.

Theorem 4.7.8 ([259, Thm. 2], [356, Thm. 3.3.3]). If (V, ‖ · ‖V ) is a separable Banach space,
ξj ∈ L1(Ω;V ) for j = 1, . . . , N ∈ N are mean-zero and independent, and SN = ξ1 + · · · + ξN ,

then for all λ ≥ 0, E[exp(λ‖SN‖V )] ≤ exp(λE[‖SN‖V ])
∏N
j=1 E[exp(λ‖ξj‖V )− λ‖ξj‖V ].

Theorem 4.7.9 ([258, Thm. 1.2]). If the hypotheses of Theorem 4.7.8 hold and ‖ξj‖L∞(Ω;V ) ≤ τj
for j = 1, . . . , N ∈ N, then for all r > 0, Prob(‖SN‖V ≥ E[‖SN‖V ] + r) ≤ exp(−r2/(2T 2

N )),

where TN = (
∑N

j=1 τ
2
j )1/2.

We restate Lemmas 3.6.5 and 3.6.6.

Lemma 3.6.5. If ξ ∈ L0(Ω;V ) and E[exp(σ−2‖ξ‖2V )] ≤ e for some σ > 0, then

E[exp(λ‖ξ‖V )− λ‖ξ‖V ] ≤ exp(3λ2σ2/4) for all λ ≥ 0. (4.7.10)

Lemma 3.6.6. If a, b > 0, then minλ>0 −aλ+ bλ2 = −a2/(4b).

Proof of Theorem 4.2.15. Fix ε, λ > 0, L ∈ N, i ∈ N, N` ∈ N, for ` = 1, . . . , L, and ` ∈
{1, . . . , L}. We define (Sj)j∈N0 as in the proof of Corollary 4.2.13, that is, Sj = 0 and Sj is the

sum of the first j addends of
∑L

`=1

∑N`
i=1 ξ`,i/N`, and N =

∑L
`=1N`. We establish the assertions

through applying Theorems 4.7.8 and 4.7.9 to SN combined with a Chernoff-type approach.
Jensen’s inequality, Corollary 4.2.13 and Lemma 4.2.1 imply

(E[‖SN‖V ])2 ≤ E[‖SN‖2V ] ≤ κ

L∑

`=1

N∑̀

i=1

E[‖ξ`,i‖2V ]

N2
`

≤ κ

L∑

`=1

τ2
`

N`
. (4.7.11)
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Since E[exp(τ−2
` ‖ξ`,i‖2V )] ≤ e, Lemma 3.6.5 ensures E[eλ‖ξ`,i/N`‖V − λ‖ξ`,i/N`‖V ] ≤ e3λ2τ2

` /(4N
2
` ).

Combined with (4.7.11), Markov’s inequality and Theorem 4.7.8, we find that

Prob
(
‖SN‖V ≥

(
κ

L∑

`=1

τ2
`
N`

)1/2
+ ε
)
≤ Prob(‖SN‖V ≥ E[‖SN‖V ] + ε)

≤ e−λεE[eλ‖SN‖V −λE[‖SN‖V ]]

≤ e−λε
N∏

j=1

E[eλ‖Sj−Sj−1‖V − λ‖Sj − Sj−1‖V ]

= e−λε
L∏

`=1

N∏̀

i=1

E[eλ‖ξ`,i/N`‖V − λ‖ξ`,i/N`‖V ]

≤ e−λε+
∑L
`=1

∑N`
i=1 3λ2τ2

` /(4N
2
` )

= e−λε+
∑L
`=1 3λ2τ2

` /(4N`).

Minimizing this bound over λ > 0, applying Lemma 3.6.6, and choosing ε2 = r2
∑L

`=1(τ2
` /N`)

yields (4.2.9).
If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ` for i, ` = 1, 2, . . ., then

N∑

j=1

‖Sj − Sj−1‖2L∞(Ω;V ) =

L∑

`=1

N∑̀

i=1

‖ξ`,i/N`‖2L∞(Ω;V ) ≤
L∑

`=1

N∑̀

i=1

τ2
` /N

2
` =

L∑

`=1

τ2
` /N`. (4.7.12)

Combined with the above computations and an application of Theorem 4.7.9 instead of Theo-
rem 4.7.8, we deduce the second assertion.

Proof of Corollary 4.2.17. The proof is based on that of [166, Thm. 2.1]. Lemma 4.7.1 implies
the existence of a norm ||| · |||V on V such that ||| · |||2V is (2, κ)-smooth and ‖·‖2V ≤ ||| · |||2V ≤ 2‖·‖2V
(see (4.7.2)). Combined with E[exp(τ−2

` ‖ξ`,i‖2V )] ≤ e, we get E[exp((
√

2τ`)
−2|||ξ`,i|||2V )] ≤ e. Now,

Theorem 4.2.15 yields Prob(‖∑L
`=1

1
N`

∑N`
i=1 ξ`,i‖V ≥ (

√
κ + r)(

∑L
`=1 2τ2

` /N`)
1/2) ≤ exp(−r2/3)

(see (4.2.9)). Since ‖ ·‖V ≤ ||| · |||V , we have Prob(‖SN‖V ≥ ε) ≤ Prob(|||SN |||V ≥ ε) for all ε ≥ 0.
Combining the statements yields (4.2.11). If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ`, then the above
argumentation together with Theorem 4.2.15 yield the second assertion.

Theorems 4.7.10 and 4.7.11 are used to prove Theorem 4.2.16.

Theorem 4.7.10 ([256, Thm. 3.1], [257, Thm. 1]). Let (V, ‖ · ‖V ) be a (2, κ)-smooth, separable
Banach space, (Zj)j∈N0 be a martingale adapted to the filtration (Fj)j∈N0 ⊂ F with Z0 = 0,
Zj ∈ L1(Ω;V ) and F0 = {∅,Ω}. Define d0 = 0 and dj = Zj − Zj−1 for all j ∈ N. Then, for all
r ≥ 0 and every λ ≥ 0, we have

Prob
(

sup
j∈N
‖Zj‖V ≥ r

)
≤ 2e−λr

∥∥∥∥
∞∏

j=1

(
1 + κE[eλ‖dj‖V − 1− λ‖dj‖V | Fj−1]

)∥∥∥∥
L∞(Ω,F ,P ;R)

.

We note that the constant D in [256, p. 1680] and [257, p. 55] equals
√
κ.

Theorem 4.7.11 ([256, Thm. 3.5]). If the hypotheses of Theorem 4.7.10 hold and for some τ >
0,
∑∞

j=1 ‖dj‖2L∞(Ω;V ) ≤ τ2, then for all r ≥ 0, Prob(supj∈N ‖Zj‖V ≥ r) ≤ 2 exp(−r2/(2κτ2)).

Lemma 4.7.12. For all x ≥ 0 and κ ≥ 1, we have κ exp(x) + 1− κ ≤ exp(κx).
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Proof. Since x ≥ 0 and κ ≥ 1, we have κ exp(x) + 1 − κ = 1 + κx + κ
∑∞

k=2 x
k/k! ≤ 1 + κx +∑∞

k=2(κx)k/k! = exp(κx).

Proof of Theorem 4.2.16. We define N =
∑L

`=1N`, the stopped martingale (Sj)j∈N0 as in the
proof of Corollary 4.2.13, and the martingale-difference (dj)j∈N0 by d0 = 0 and dj = Sj − Sj−1,
j ∈ N. Both martingales are defined by sums of independent V -valued random variables. We
omit the conditioning on their natural filtration. Now, fix ε, λ ≥ 0, L ∈ N, N` ∈ N for
` = 1, . . . , L, and fix ` ∈ {1, . . . , L}. Using Lemmas 3.6.5 and 4.7.12, we find that

1 + κE
[
e
λ‖ξ`,i‖V

N` − 1− λ‖ξ`,i‖V
N`

]
= 1− κ + κE

[
e
λ‖ξ`,i‖V

N` − λ‖ξ`,i‖V
N`

]

≤ 1− κ + κe

3λ2τ2
`

4N2
` ≤ e

3κλ2τ2
`

4N2
` .

Consequently, we obtain

N∏̀

i=1

(
1 + κE

[
e
λ‖ξ`,i‖V

N` − 1− λ‖ξ`,i‖V
N`

])
≤

N∏̀

i=1

e

3κλ2τ2
`

4N2
` = e

3κλ2

4

τ2
`
N` .

Hence, using dj = 0 for j ≥ N + 1, we get

∞∏

j=1

(
1 + κE[eλ‖dj‖V − 1− λ‖dj‖V ]

)
=

L∏

`=1

N∏̀

i=1

(
1 + κE

[
e
‖λξ`,i‖V

N` − 1− λ‖ξ`,i‖V
N`

])

≤
L∏

`=1

e
3κλ2

4

τ2
`
N` = e

3κλ2

4

∑L
`=1

τ2
`
N` .

Applying Theorem 4.7.10 gives

Prob(‖SN‖V ≥ ε) ≤ Prob
(

sup
j∈N
‖Sj‖V ≥ ε

)
≤ 2e

−λε+ 3κλ2

4

∑L
`=1

τ2
`
N` .

Minimizing this bound over λ > 0, applying Lemma 3.6.6, and setting ε =
√
κr(
∑L

`=1 τ
2
` /N`)

1/2

yields (4.2.10).
If, in addition, ‖ξ`,i‖L∞(Ω;V ) ≤ τ` for i, ` = 1, 2, . . ., then (4.7.12) and Theorem 4.7.11 yield

Prob(‖SN‖V ≥ ε) ≤ Prob
(

sup
j∈N
‖Sj‖V ≥ ε

)
≤ 2 exp

(
− ε2

2κ
∑L
`=1 τ

2
` /N`

)
= 2 exp(−r2/2),

which implies the second assertion.

In order to prove Theorem 4.2.18, we use the following variant of the Kahane–Khintchine in-
equality due to Lata la and Oleszkiewicz [210].

Theorem 4.7.13 ([210, Cor. 3]). If (V, ‖·‖V ) is a separable Banach space, (xk) ⊂ V , gk : Ω→ R
are independent standard normal random variables,

∑K
k=1 gkxk converges to Z w.p. 1, then for

all 0 < p ≤ q <∞, E[‖Z‖qV ]1/q ≤ (γq/γp)(E[‖Z‖pV ])1/p, where γr = E[|g1|r]1/r.

Proof of Theorem 4.2.18. We fix λ ∈ R and set V = W s,p(D). We estimate each addend in
the series expansion E[cosh(λ‖Z‖V )] =

∑∞
k=0 λ

2kE[‖Z‖2kV ]/(2k!). Let g : Ω → R be a standard

normal random variable. For k ∈ N \ {1}, we define γk = E[|g|k]1/k. We have γk ≥ 1, and
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Lemma 4.7.7 implies γkk ≤ 2(k/e)k/2. Furthermore γ2k
2k = (2k)!/(2kk!) for each k ∈ N (see, e.g.,

[57, p. 227]).
Fix k ∈ N with 2k ≥ p. Theorem 4.7.13 (applied with gk = ξk/τk and xk = τkφk for τk > 0
and 1 ≤ k ≤ K, and xk = 0 for k ≥ K + 1) implies E[‖Z‖2kV ] ≤ (γ2k/γp)

2k(E[‖Z‖pV ])2k/p.
Proposition 4.2.14 yields E[‖Z‖pV ] = γppT

p
K , where TK is defined in (4.2.8). Combining both

inequalities with γ2k
2k = (2k)!/(2kk!) ensures E[‖Z‖2kV ] ≤ (γ2k/γp)

2kγ2k
p T

2k
K = (2k)!/(2kk!)T 2k

K .

Fix k ∈ N with 2k < p. Jensen’s inequality implies E[‖Z‖2kV ] ≤ E[‖Z‖pV ]2k/p. Combined with
E[‖Z‖pV ] = γppT

p
K and γ2k

p ≤ γpp , we find that E[‖Z‖2kV ] ≤ γ2k
p T

2k
K ≤ γ

p
pT 2k

K .

Putting together the pieces, and using (2k)! ≥ 2kk! valid for k ∈ N, we find that

E[cosh(λ‖Z‖V )] ≤ 1 + γpp

dp/2e−1∑

k=1

λ2kT 2k
K

(2k)!
+

∞∑

k=dp/2e

λ2kT 2k
K

2kk!
≤ γpp exp(λ2T 2

K/2).

It must yet be shown that Prob(‖Z‖V ≥ r) ≤ 2γpp exp(−r2/(2T 2
K)) for r > 0. Using exp(x) ≤

2 cosh(x), valid for all x ∈ Rn, and Markov’s inequality, we obtain for each λ > 0,

Prob(‖Z‖V ≥ r) ≤ 2e−λrE[cosh(λ‖Z‖V )] ≤ 2γppeλ
2T 2
K/2−λr.

Minimizing the right-hand side over λ > 0 yields the tail bound.

4.7.5 Proof of a Technical Lemma

We recall that dxeN ∈ N is the smallest number such that x ≤ dxeN for x ∈ R, and that 0 6∈ N;
see p. vii and section 4.2.

Proof of Lemma 4.3.3. The proof is based on that of [81, Thm. 1]. Since mL ≤ cαs−(L−1)αhα1 , we
have mL ≤ ε. Because L = dα−1 logs(cαε

−1hα1 ) + 1eN, we have L = 1 if and only if cαε
−1hα1 ≤ 1.

If L = 1, then we choose N1 = dε−2η−1cβh
β
1eN, which ensures τ2

1 /N1 ≤ ε2η. For the remainder
of the proof, let L ≥ 2. We obtain

L∑

`=1

sγ(`−1) =

L−1∑

`=0

sγ` <
sγ(L−1)

1− s−γ ≤
sγc

γ/α
α

1− s−γ ε
−γ/α. (4.7.13)

Similar to the choices made in the proof of [81, Thm. 1], we define

N` =





dε−2η−1cβ(1− s−(β−γ)/2)−1s−(β+γ)(`−1)/2hβ1eN if β > γ,

dε−2η−1Lcβs
−β(`−1)hβ1eN if β = γ,

dε−2η−1cβs
(γ−β)(L−1)/2(1− s−(γ−β)/2)−1s−(β+γ)(`−1)/2hβ1eN if β < γ.

(4.7.14)

Owing to (4.7.14) and the definition of d·eN (see section 4.2), we have N` ≤ (1/s)(β+γ)/2N`−1 +1
and N` ≤ (1/s)(β+γ)(`−1)/2N1 + 1.

If β = γ, then we obtain, with hβ` ≤ s−β(`−1)hβ1 and (4.7.14),

L∑

`=1

τ2
`

N`
≤

L∑

`=1

cβh
β
`

N`
=
∑

N`=1

cβh
β
` +

∑

N`>1

cβh
β
`

N`
≤ ε2η

L∑

`=1

cβs
−(`−1)βhβ1

cβs−(`−1)βhβ1L
= ε2η.

Combining h−γ` ≤ sγ(`−1)h−γ1 and (4.7.14), we obtain

L∑

`=1

N`h
−γ
` =

∑

N`=1

h−γ` +
∑

N`>1

h−γ` ≤ ε−2η−1L2cβ +
L∑

`=1

h−γ` = ε−2η−1L2cβ +
L∑

`=1

sγ(`−1)h−γ1 .
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We have L2 ≤ (α−1 logs(cαε
−1hα1 )+2)2. Combined with (4.7.13), we obtain the bound in (4.3.6)

for β = γ.
If β > γ, then (4.7.14) yields

L∑

`=1

τ2
`

N`
≤ ε2η(1− s−(β−γ)/2)

L∑

`=1

s−β(`−1)

s−(β+γ)(`−1)/2
≤ ε2η(1− s−(β−γ)/2)

∞∑

`=0

s−(β−γ)`/2 ≤ ε2η.

Moreover, using (4.7.14), we find that

L∑

`=1

N`h
−γ
` ≤ ε−2η−1cβ(1− s−(β−γ)/2)−1

L∑

`=1

s−(β−γ)(`−1)/2hβ−γ1 +
L∑

`=1

sγ(`−1)h−γ1 .

Combined with (4.7.13), we obtain the bound in (4.3.6) for β > γ.
If β < γ, then

L∑

`=1

τ2
`

N`
≤ ε2η(1− s−(γ−β)/2)s−(γ−β)(L−1)/2

∞∑

`=0

s−(γ−β)`/2 ≤ ε2η.

Furthermore,

L∑

`=1

N`h
−γ
` ≤ ε−2η−1cβs

(γ−β)(L−1)(1− s−(γ−β)/2)−2hβ−γ1 +
L∑

`=1

sγ(`−1)h−γ1 .

Since L ≥ 2, we have L− 1 ≤ α−1 logs(cαε
−1hα1 ) + 1. Hence,

s(γ−β)(L−1)hβ−γ1 = sγ−βc(γ−β)/α
α ε−(γ−β)/αhγ−β1 hβ−γ1 = sγ−βc(γ−β)/α

α ε−(γ−β)/α.

Combined with (4.7.13), we obtain the bound in (4.3.6) for β < γ.
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[101] L. Dümbgen, S. A. van de Geer, M. C. Veraar, and J. A. Wellner, Nemirovski’s
Inequalities Revisited, Amer. Math. Monthly, 117 (2010), pp. 138–160, https://doi.org/
10.4169/000298910X476059. (Cited on pp. 112 and 113.)

[102] I. Dunning, J. Huchette, and M. Lubin, JuMP: A Modeling Language for Mathe-
matical Optimization, SIAM Rev., 59 (2017), pp. 295–320, https://doi.org/10.1137/
15M1020575. (Cited on p. 38.)

[103] J. Dutta, K. Deb, R. Tulshyan, and R. Arora, Approximate KKT points and a
proximity measure for termination, J. Global Optim., 56 (2013), pp. 1463–1499, https:
//doi.org/10.1007/s10898-012-9920-5. (Cited on p. 12.)

[104] M. Eigel, C. Merdon, and J. Neumann, An adaptive multilevel Monte Carlo method
with stochastic bounds for quantities of interest with uncertain data, SIAM/ASA J. Uncer-
tainty Quantification, 4 (2016), pp. 1219–1245, https://doi.org/10.1137/15M1016448.
(Cited on p. 108.)

https://doi.org/10.1007/s10092-004-0092-7
https://doi.org/10.1007/s10092-004-0092-7
http://control.ibspan.waw.pl:3000/contents/export?filename=2008-2-01_reyes_et_al.pdf
http://control.ibspan.waw.pl:3000/contents/export?filename=2008-2-01_reyes_et_al.pdf
https://doi.org/10.1287/opre.1090.0741
https://doi.org/10.1287/opre.1090.0741
https://doi.org/10.1007/s10107-005-0685-1
https://doi.org/10.1007/s10107-005-0685-1
https://doi.org/10.1080/10485250008832822
https://doi.org/10.1080/10485250008832822
https://doi.org/10.1137/110831659
https://doi.org/10.1137/110831659
https://doi.org/10.4169/000298910X476059
https://doi.org/10.4169/000298910X476059
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1007/s10898-012-9920-5
https://doi.org/10.1007/s10898-012-9920-5
https://doi.org/10.1137/15M1016448


Bibliography 149
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and M. Maŕın Beltrán, eds., Springer, Cham, 2018, pp. 193–210, https://doi.org/10.
1007/978-3-319-97613-6_10. (Cited on pp. 4 and 86.)

[227] M. Martin, S. Krumscheid, and F. Nobile, Analysis of stochastic gradient methods
for PDE-constrained optimal control problems with uncertain parameters, tech. report,
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sanne, Lausanne, 2019, https://doi.org/10.5075/epfl-thesis-7233. (Cited on pp. 73
and 83.)

[229] M. C. Martin, F. Nobile, and P. Tsilifis, A multilevel stochastic gradient method for
PDE-constrained optimal control problems with uncertain parameters, tech. report, École
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Boston, MA, 1992, pp. 128–134, https://doi.org/10.1007/978-1-4612-0367-4_9.
(Cited on p. 109.)

[256] I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, Ann.
Probab., 22 (1994), pp. 1679–1706, https://doi.org/10.1214/aop/1176988477. (Cited
on pp. 73, 103, 105, 109, 111, 112, 113, 132, and 134.)

[257] I. Pinelis, Sharp Exponential Inequalities for the Martingales in the 2-smooth Banach
spaces and Applications to “Scalarizing” Decoupling, in Probability in Banach Spaces, 9,
J. Hoffmann-Jørgensen, J. Kuelbs, and M. B. Marcus, eds., Progr. Probab. 35, Birkhäuser,
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