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Abstract— Hand pose estimation with objects is challenging
due to object occlusion and the lack of large annotated datasets.
To tackle these issues, we propose an Augmented Autoencoder
based deep learning method using augmented clean hand data.
Our method takes 3D point cloud of a hand with an augmented
object as input and encodes the input to latent representation of
the hand. From the latent representation, our method decodes
3D hand pose and we propose to use an auxiliary point cloud
decoder to assist the formation of the latent space. Through
quantitative and qualitative evaluation on both synthetic dataset
and real captured data containing objects, we demonstrate
state-of-the-art performance for hand pose estimation with
objects, even using only a small number of annotated hand-
object samples.

I. INTRODUCTION

Hand pose estimation plays an important role in
many human-robot interaction tasks, such as teleopera-
tion, virtual/augmented reality and robot imitation learn-
ing [1][2][3][4][5]. These applications require real-time
and accurate hand pose estimation in 3D space. Re-
cently, deep learning based methods have made significant
progress in this area, which can be categorized to depth-
based approaches [6][7][8][9][10][11][12][13] and RGB-
based approaches[17][18][19]. Despite the success of these
methods, they rarely concern the hand-object interaction
cases. These methods typically fail in manipulation tasks
because of the occlusions caused by the grasped object.

Recently, several works start to take object occlusion prob-
lems for hand pose estimation task into consideration. The
majority are tracking based approaches [20][21][22]. The
robust performance of these methods relies on tracking algo-
rithms to exploit the temporal constraints between consecu-
tive frames in input sequence. However, a good initialization
is required for the first frame, and sometimes tracking drift
happens. Other conventional methods [22][23][24] resort to
multi-camera setups to reduce the influence of object occlu-
sions from multiple viewpoints. However, it is expensive and
complex to set up a synchronous and calibrated system with
multiple sensors.

Currently, hand pose estimation for hand-object interac-
tion cases is limited by existing available datasets. Public
large-scale datasets with reliable 3D ground-truth anno-
tations are lacking due to the complexity of annotating
3D hand pose. Although some large-scale datasets, like
Hands2017Challenge [26], have accurate 3D pose annota-
tions, they are entirely composed from clean hand samples.
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Fig. 1. The raw data are captured from a RGB-D camera. We use only
the depth image to acquire the input cloud. The RGB image is used for
visualization. For the output, besides the predicted pose, a clean hand is
simultaneously reconstructed. (Brightness in point cloud indicates depth,
i.e. darker denotes further.)

Therefore, it is worth considering how to utilize existing
clean hand datasets for hand-object cases.

In this work, we propose a novel deep learning framework
using Augmented Autoencoder to tackle hand-object inter-
action problem in hand pose estimation tasks. Our method
takes 3D occluded hand point cloud as input, which is
obtained by a random data augmentation process from clean
hand samples. The encoder extracts point-wise features and
fuses them to a latent vector. Addressing the problem of
object occlusion in hand-object interaction cases, we use
an auxiliary decoder to reconstruct the clean hand point
cloud from the latent vector, and another decoder estimates
simultaneously the 3D hand pose from the same latent vector.
To the best of our knowledge, this is the first work that uses
3D point cloud data to tackle object occlusion problem in
hand-object interaction tasks (Fig. 1).

Our contribution can be summarized as follows:

« We present an augmentation strategy to simulate hand-
object interaction cases utilizing existing large clean
hand datasets. Since unlimited types of objects could
be augmented, the trained model is more generalizable
on unknown objects.

e We propose an auxiliary clean hand reconstruction
decoder to improve the quality of the latent space, which
in turn improves the hand pose accuracy.

« We demonstrate the advantages of the proposed aug-
mentation and reconstruction approaches both qualita-
tively and quantitatively through multiple experiments.



II. RELATED WORK

In the following, we first review some hand pose estima-
tion works on both clean hand and hand-object interaction
cases. Then we briefly introduce the backbone of our frame-
work, Augmented Autoencoder and the utilized point cloud
reconstruction method, FoldingNet.

A. Clean Hand Pose Estimation

In the past few years, a lot of 2D deep learning based
methods for clean hand pose estimation has been proposed
[12][13][11][14][15][16]. In particular, 2D depth image
based methods demonstrate robust performance. Oberweger
et al. [13] use 2D CNN to estimate the hand pose from the
image features, where they introduce a bottleneck layer to
force the predicted pose obey certain prior distribution. Wan
et al. [12] estimate hand pose with a proposed pose param-
eterization strategy, which decomposes the pose parameters
into a set of per-pixel estimations, i.e. 2D/3D heat maps and
unit 3D directional vector fields, to leverage the 2D and 3D
properties of the input depth map.

Recently, 3D deep learning methods gain more at-
tention due to the abundant information in input data
[71[81[29]1[9][10]. Ge et al. [8] present a PointNet [29] based
approach that directly takes point cloud as input to regress
3D hand joint locations. In order to handle variations of hand
global orientations, they introduce the oriented bounding box
(OBB) to normalize the hand point clouds. Li et al. [7]
propose a point-to-pose voting based residual permutation
equivariant network for hand pose estimation task. Without
the need of complex preprocessing steps, their method takes
unordered 3D point cloud as input to compute point-wise
features and through weighted fusion to obtain final hand
pose estimates. Despite their good performance on hand pose
estimation, they commonly ignore the crucial hand-object
interaction cases.

B. Hand Pose Estimation with Object Interaction

There are some previous works that have taken the prob-
lem of object occlusion in hand pose estimation task into
account [30][31][32][33]. The work by Tekin et al. [33] has
impressive success of 3D hand pose estimation jointly with
other parallel tasks. Their method takes a sequence of frames
as input and outputs per-frame 3D hand and object pose
predictions along with the estimates of object and action
categories for the entire sequence, whereas it relies too much
on a frame sequence rather than a single image. Gao et al.
[31] propose an object-aware method to estimate 3D hand
pose from a single RGB image, where they rely on a deep
structure to infer the category of the grasped object shape
under the assumption that objects of a similar category are
grasped in a similar way. Boukhayma et al. [17] propose to
use extracted hand parameters to control a mesh deformation
hand model MANO [34] and project it into image domain
to train the network. A similar hand model based work by
Hasson et al. [25] uses a contact loss to describe the spatial
state of hand and object when a hand manipulates object,
i.e. using a repulsion loss to penalize interpenetration and

an attraction loss to encourage the hand to be in contact
with the object. These methods require complex annotation
process and could not fully utilize existing annotated clean
hand datasets for hand-object interaction cases.

C. Augmented Autoencoder and 3D Shape Reconstruction

Augmented Autoencoder is the backbone of our method,
which is firstly proposed by Sundermeyer et al. [28] in their
real-time RGB-based pipeline for object detection and 6D
pose estimation. In order to remove the effects of object
occlusions and background clutters, they use an augmen-
tation process to generate input data, which superimposes
artificial occlusions and clutters to the clean data. Their work
demonstrates that this training procedure is able to enforce
the invariance of the encoded latent variable against a variety
of different input augmentations. Encouraged by the idea of
augmentation invariance, we apply a random augmentation
process on clean hand samples of existing datasets to gener-
ate our input, and recover corresponding clean hand samples
with an auxiliary 3D shape reconstruction decoder.

3D Shape Reconstruction using deep learning has made
a lot of advancement in recent years [35][36][37][38]. Yang
et al. [37] propose a folding-based network, FoldingNet,
which deforms a canonical 2D grid onto the underlying 3D
target surface of a point cloud with two consecutive folding
operations. For network complexity, FoldingNet consumes
only about 7% parameters of a fully-connected layer based
neural network to reconstruct a 3D target. Their method
achieves low reconstruction errors even for targets with
delicate structures. Therefore, we use FoldingNet for the
clean hand reconstruction decoder.

A critical challenge in 3D shape reconstruction is to
evaluate the predicted point cloud. The loss function should
be not only computationally efficient but also differentiable
with respect to point coordinates. The Chamfer Distance
(CD) and the Earth Mover’s Distance (EMD) [39] are two
outstanding candidates to compare the reconstructed clean
hand point cloud with ground-truth in our work.

IIT. METHOD

The overview of our method is illustrated in Fig. 2 (left).
The framework is based on the structure of Variational Au-
toencoder (VAE) [27]. Our method takes 3D occluded hand
point cloud as input, which is obtained by an augmentation
process from clean hand and random objects. The encoder
extracts point-wise features and fuses them to a latent vector,
which is the latent representation of the input hand. Then,
the acquired latent vector is used to reconstruct clean hand
point cloud by the auxiliary Decoder 1 and predict 3D hand
pose by Decoder 2.

A. Data Augmentation

The motivation behind our Augmented Autoencoder based
hand pose estimation framework is to control what the latent
vector encodes and which properties are ignored. To take ad-
vantages of current large-scale clean hand dataset, we apply
a random augmentation process by superimposing random
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Fig. 2.

Overview of our method (left) and the structure of the encoder (right). The input of our network is occluded hand point cloud, which is obtained

by a random augmentation process from clean hand point cloud. The encoder encodes the input hand to a latent vector. The obtained latent vector is then
used to reconstruct clean hand point cloud by the auxiliary Decoder 1 and predict 3D hand pose by Decoder 2. There are three losses in our VAE based
framework, which are the KL loss, reconstruction loss and pose loss. (Brightness in point cloud indicates depth, i.e. darker denotes further.)

objects from ShapeNet [40] on clean hands to simulate hand-
object interaction scenarios in reality. Simultaneously, the
clean hand point cloud also serves as the ground-truth for
reconstructed points by the auxiliary Decoder 1. Through
this approach, we make the latent representation invariant
against object occlusions when a hand is in contact with an
object.

The random augmentation process is shown in Fig. 3.
In step 1, a randomly selected object from ShapeNet is
superimposed on a clean hand point cloud sample after
random rotation, scaling and translation. Step 2 renders the
combined point cloud to depth image, where we only keep
the point which is the closest to the camera among those
projected to the same 2D image grid. Finally, step 3 converts
the depth image to occluded hand point cloud.

B. Residual Permutation Equivariant Layer based Encoder

We use Residual Permutation Equivariant Layer (PEL)
[7] as backbone to encode the input point cloud (Fig. 2
(right). The input occluded hand point cloud P® € RV*3
represented by IV unoredered 3D points passes firstly through
a residual PEL module, which consists of 3 residual PEL
blocks. Then point-wise feature F; € RY*1024 j5 computed
for each individual input point, where each row of F;
represents the local feature for one point. The obtained
F; is imported to two separate point-wise fully-connected
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Occluded hand

Object Combination Depth image
Fig. 3. Data augmentation process. Step 1: combine hand point cloud
and object; Step 2: project combined point cloud to depth image; Step 3:
convert depth image to occluded hand point cloud. (Brightness in point
cloud indicates depth, i.e. darker denotes further.)

modules respectively, resulting in two separate terms, an
importance term G € RN*25 and a new feature term
F, € RV*256 where the local feature dimension for each
point is shrunk to 256. Each element of G indicates the
weight for corresponding feature value in Fg and provides
vital information of the importance of current feature value.
Then, by a weight fusion module, we merge the information
of both terms to F5 € R256:

f, =
ZnNzl Gm’

; (D

where f; is the ¢-th feature value in F3.

In order to extract complex features, we use a 5-layer
perceptron to encode F'g to the final K-dimensional latent
vector, which consists of a latent mean vector p € RE and
a latent standard deviation vector o € R¥,

During training stage, a reparameterization process to
sample from the distribution of the latent vector [27] is
needed: z = p + o © €, where € € RX, € ~ N (0,1)
and © denotes element-wise multiplication. The final latent
vector z € R¥ is Gaussian distributed and z ~ N (u, o).

C. Decoder and Training Loss

The obtained latent vector z from encoder is fed into
decoders. The clean hand reconstruction Decoder 1 is based
on FoldingNet [37]. The pose prediction Decoder 2 consists
of multiple fully-connected layers.

Decoder 1 is a FoldingNet [37] that transforms (’folds™)
2d grid points of a square into 3D point cloud with two
folding operations. In the folding operation, each grid point’s
coordinate is concatenated with the latent vector z and fed
into a 4-layer perceptron to construct a more complex shape
compared to the input. The final reconstructed points P are
evaluated by Chamfer Distance (CD) and Earth Mover’s
Distance (EMD) [39] with respect to the ground-truth clean
hand point cloud P € RV*3, Note that the number of points
in P is required to be the same as P.



The Chamfer Distance is defined as:
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where the CD algorithm finds for each point the nearest
neighbor in the other point cloud and sums up the Euclidean
distances.

The Earth Mover’s Distance requires that P and P have
the same size, i.e. , and it is defined as:

min_ Z lp—o®I. @

Levp (P,P) = ‘P|
where ¢ denotes one-to-one leCCtIVC correspondences from
the ground-truth P to the predicted point set P. The Eu-
clidean distances of all matched point pairs are then summed.

Both loss functions have their own intrinsic characteris-
tics. For example, while EMD roughly captures the shape
corresponding to the mean value of the hidden variable of
the hand point cloud, CD tends to give a splashy shape that
blurs the shape’s geometric structure [38]. To make the re-
construction by Decoder 1 more expressive, we combine both
loss functions during training time. Therefore, implicitly, our
method requires the reconstructed clean hand points have the
same size N as the ground-truth.

For 3D hand pose prediction, Decoder 2, which consists
of 5 fully-connected layers, takes the reparameterized latent
vector as input and outputs the vectorized 3D hand pose
y € R7, where J = 3 x #joints. The training loss between
predicted hand pose ¥ and ground-truth pose y9¢ € R’ is
the L2 loss:

J
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As the proposed framework is based on VAE, a KL (Kull-
back-Leibler divergence) loss is essential to force the com-
puted latent vector z given observed occluded data to be close
to the centered isotropic multivariate Gaussian N (z;0,1)
(Fig. 2 left) . The KL loss is defined as:

K
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where K denotes the number of dimensions of the latent
vector z, pj is the k-th dimension of the latent mean p
and o denotes the k-th dimension of the latent standard
deviation o.

The resulting total loss for our method is the summation
of L&p, LEMD, Lpose and weighted L g, terms:

Liotal = Lop + LMD + Lpose + LKL, (6)

where « is the weight factor.

IV. EXPERIMENT AND RESULT

Our method is implemented using the TensorFlow frame-
work with the ADAM optimizer. The learning rate is tapered
down from 0.01 to 0.00001 during the course of training. For

1
1P = pll+357 2 min|p —pll,
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all experiments, we use an input and reconstruction point
size of N = 625 for training, and N = 900 for testing. For
the latent vector z € R¥, we set the number of dimension
K = 64 and the KL Loss is weighted using a factor of
o = 0.001. Before our object augmentation process, we
perform for each hand sample random translation in all three
dimensions within [—15,15] mm, random scaling within
[0.75,1.25] and random rotation around z-axis within [—, 7]
radian. The trained model can be employed for real-time
applications, since the network backbones, the ResPEL [7]
and FoldingNet [37], are both real-time capable.

A. Datasets

For training and evaluating the proposed network, we
use the Hands2017Challenge dataset [26], the SynthHands
dataset [41] and also the EgoDexter dataset [41]. The
Hands2017Challenge is collected from parts of the Big-
Hand2.2M [42] and the First-Person Hand Action (FHAD)
[43]. The training set contains 957032 depth images, and
the test set contains 295510 depth images. All samples in
Hands2017Challenge are clean hands, where the hands are
not in contact with objects. The egocentric dataset Synth-
Hands is a synthetic dataset created by posing a photore-
alistic hand model with real hand motion data. It captures
multiple variations in natural hand motion, such as pose,
skin color, shape, texture, background clutter as well as
camera viewpoint. This dataset contains accurate annotated
92536 RGB-D images of clean hands and 91600 RGB-D
images of hands interacting with objects, of which we use
69402 clean samples and 68700 interacting hand samples for
training. Except the training samples, the rest 23134 clean
samples serve as our clean test set and 22900 interacting
samples as our interacting test set. The benchmark dataset
EgoDexter consists of four real sequences with hand-object
interactions (Rotunda, Desk, Kitchen, Fruits), which contain
in total 1485 frames with 3D finger tip annotations. We
compare the accuracy to the state-of-the-art method in [41]
using this dataset. We exclude the Kitchen sequence due to
its many annotation errors, and use the other three sequences
for evaluation.

For the random augmentation process for clean hand
samples, we use objects from ShapeNetCore, which is a
subset of the object repository ShapeNet [40] and covers 55
object categories with about 51300 unique 3D models. As
preprocessing, we sample these 3D models to point clouds.

B. Evaluation Metrics

We evaluate the performance of our method only
qualitatively on real data for the trained model on
Hands2017Challenge, because it contains no annotated sam-
ples for hand-object interaction cases. For the SynthHands
dataset, two standard metrics are used for evaluation. The
first one is the mean joint error (mm), which measures the
average Euclidean distance error for all joints across the
whole test set. The second metric is correct frame proportion,
which indicates the percentage of frames that have all joint
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Fig. 4. Left: Comparison to state-of-the-art method on EgoDexter benchmark. Middle: Comparison to baselines on SynthhandsTest - Proportion of correct
frames with respect to different error thresholds. Right: Comparison to baseline on SynthhandsTest - Mean errors of different joints.

errors within a certain threshold compared to the ground-
truth. The correct frame proportion metric is challenging,
since a single joint violation will cause an incorrect frame.
For the EgoDexter dataset with only finger tip annotations,
we use finger tip error for evaluation, which is the mean joint
error for 3D finger tip positions.

C. Comparison to state-of-the-art Method

Since the EgoDexter dataset is only annotated on 3D
finger tip positions, we use the finger tip error to compare
the performance of our method with the kinematic pose
tracking method proposed by Mueller et al. [41]. We follow
the same training dataset in their work, where all samples
in SynthHands are used. As shown in Fig. 4 (left), our
method outperforms the state-of-the-art method on the test
sequences, achieving the average error of 28.70 mm. Note
that the objects in EgoDexter are different from the objects in
SynthHands training data. It shows the generalization ability
of our method to unknown objects.

D. Ablation Study

In the first ablation experiment, we mix different propor-
tions of interacting hand samples to training set to compare
the performance of different trained models. Then we use
the optimal mixing proportion for the next experiments. ¢

Using the training samples from SynthHands, we set 4
different training datasets with varying percentages of hand-
object interaction samples:

o Dataset A: 100% clean hand samples.

o Dataset B: 75% clean + 25% interacting hand samples.
« Dataset C: 50% clean + 50% interacting hand samples.
o Dataset D: 25% clean + 75% interacting hand samples.

Note that the interacting hand samples are not augmented
during training time. Also, note that the performance of
interacting hand is usually much worse than the clean hand
samples due to occlusion.

The detailed comparison of mean joint errors on our both
test sets can be found in Table I. We can already obtain
a reasonably good result on 100% clean hand Dataset A.
Even if using only augmented hand samples from clean hand
without any interacting hand samples, the error on interacting

TABLE I
COMPARISON OF DIFFERENT TRAINING METHODS ON SYNTHHANDS.

Error on Test Dataset (mm)

Training Dataset

clean hand  interacting hand
A 9.67 19.13
B 9.63 14.16
C 10.69 14.35
D 12.52 15.99

test set is 19.13 mm, which indicates the effectiveness of the
augmentation strategy.

Furthermore, the best performance is achieved with train-
ing Dataset B, which contains 25% interacting hand samples.
Compared to Dataset A, the mean joint error is decreased
for 5 mm on interacting hand test set by mixing only a
small proportion of real interacting hand samples in the
training dataset. However, with the increasing proportion
of interacting hand for training, the results become slightly
worse, even on the interacting test set. The possible reason
for this is that the decrease of clean hand proportion leads to
less data augmentation, which means less random objects are
seen for the training process, resulting in less generalizability
on the unseen objects in the test set. Moreover, for the
interacting training samples, hand reconstruction part were
not trained since there is no available clean hand ground-truth
to guide reconstruction, this leads to insufficient training of
the reconstruction decoder and in turn influences the quality
of the latent space. This experiment shows that, in practice,
we can utilize large clean hand dataset and mix a small
proportion of interacting hand samples, which are expensive
to annotate, to achieve robust performance.

In the second experiment, for ablation study, we set
the following baselines to show the effects of the data
augmentation and points reconstruction approaches:

o Baseline 1. Ours without object augmentation.
o Baseline 2. Ours without clean hand reconstruction.

Both baselines are trained using Dataset B. As seen in
Fig. 4 (middle and right), our method outperforms the two
baselines on both clean hand test set and interacting hand test
set. Table II shows that the results of baselines are worse even
on clean hand test set. The possible reason for this is that
the latent representation in baselines is implicitly correlated
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TABLE I
COMPARISON WITH BASELINES ON SYNTHHANDS.

Error on Test Dataset (mm)

Model

clean hand  interacting hand
Our method 9.63 14.16
Baseline 1 15.44 20.78
Baseline 2 19.60 23.46

to the mixture of clean hands and interacting hands rather
than clean hands alone in our Augmented Autoencoder based
framework. By this result, we demonstrate the significant ef-
fects of the augmentation component and the reconstruction
component in our method.

E. Qualitative Results

For the SynthHands dataset, the qualitative comparison of
our method with two baselines is shown in Fig. 5 on the
interacting test set.

For the Hands2017Challenge dataset, as the training set
and test set contain only clean hands, we train our model
without mixing any interacting hands. Furthermore, we just
give a qualitative result on the trained model with this dataset
for evaluation. Fig. 6 shows qualitative results on real data,
where the hand interacts with different objects, such as ball,
bucket, phone, paper box, which are not seen during training.
Although the model is trained only with clean hand data
on the Hands2017Challenge dataset, the results shows good
performance.

Note that high quality point cloud reconstruction is not
strictly required in our method. Fig. 6 shows that occluded
objects are roughly removed after reconstruction, indicating
the importance of Decoder 1 for the formation of the latent
space of the clean hand.

V. CONCLUSION

In this paper, we propose a novel deep learning framework
using Augmented Autoencoder to handle hand pose esti-

Baseline 2

Our method w/o reconstruction

w/0 augmentation

Qualitative results compared with baselines on SynthHands. (Brightness in point cloud indicates depth, i.e. darker denotes further.)

¢
¥
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Depth image Input point cloud Recanstructed points Predicted pose

Fig. 6. Qualitative results on real data. (Brightness in point cloud indicates
depth, i.e. darker denotes further.)

mation tasks for hand-object interaction cases. Our method
consumes 3D hand point cloud and predicts accurate 3D
hand pose. The proposed augmentation process and auxiliary
clean hand reconstruction decoder implicitly force the latent
representation of the pose only to be correlated to clean hand
and the reconstructed clean hand despite the object occlusion
in hand-object interaction cases. Furthermore, the proposed
hand pose estimation training strategy is able to utilize
existing clean hand datasets to tackle hand-object interaction
cases. Quantitative and qualitative evaluation results show
that our framework is capable of achieving low joint errors
on both clean hand input (~ 9 mm) and interacting hand
input (~ 14 mm). In the future work, more aspects of joint
hand-object case will be investigated such as object pose
estimation [44] and physical constraints. Another interesting
aspect will be evaluating the grasp quality of reconstrcuted
hand pose.
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