Seyedamirhesam Shahvarani

Parallel In-memory Data
Processing using Modern
Hardware

Technische
Universitat
Muinchen

<D Technische Universitat Munchen

Fakultat fur Informatik

Parallel In-memory Data Processing

using Modern Hardware

Seyedamirhesam Shahvarani

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technische Universitat

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: apl. Prof. Dr. Georg Groh

Prifer der Dissertation:

1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. Tilmann Rabl

Die Dissertation wurde am 07.04.2021 bei der Technischen Universitat Miinchen eingereicht

und durch die Fakultat fiir Informatik am 17.09.2021 angenommen.

Abstract

Nowadays, information systems face an unprecedented challenge of handling astonishing
amounts of data at an ever-increasing pace. The performance of conventional disk-based
data management systems is no match for this challenge. Therefore, in-memory data
management and analytics become an interesting alternative for many applications. The
growing memory capacity of computing servers made it feasible for many applications to
use main memory as the main storage medium. By eliminating the expensive overhead
of disk I/O and utilizing the greater performance of main memory, in-memory data
management systems offer support for low latency services and real-time analytics.
However, data management systems are facing difficulties and challenges to exploit the
superior bandwidth of main memory. Simply replacing disk-based storage with main
memory does not address this issue. Because of the different characteristics of main-
memory, the conventional approaches used in disk-centric systems are not efficient for
in-memory settings. The emergence of new compute platforms further compounds this
challenge. To overcome the limitations of serial execution, chip manufactures have shifted
toward various forms of parallel computing, such as multi-core processors, multi-socket
servers and many-core accelerators. A single-threaded approach is no longer capable
of exploiting compute resources, and parallel execution is necessary for any modern
high-performance application. Therefore, dedicated and mindful solutions are desired
for optimal utilization of memory bandwidth and computational capabilities of modern

hardware.

This thesis explores new approaches for parallel in-memory data indexing for various
applications and computing platforms. Firstly, we propose a unique design for B*-Tree
based on a heterogeneous CPU-GPU computing model. Utilizing a hybrid memory layout,
HB"-Tree exploits the compute power of both CPU and GPU platforms simultaneously
in order to accelerate lookup-intensive operations. Secondly, we propose a novel data
structure, PIM-Tree, to address the challenges of indexing data streams. Combining two
complementary techniques, range partitioning and delta update, PIM-Tree enables high-
performance range queries over highly dynamic data. Lastly, we propose a distributed
solution for parallel kNN join for streaming data. Our solution is based on a multi-stage
kNN execution process that is capable of utilizing a multi-socket compute platform.
Combined with an adaptive data repartitioning technique, our approach offers a scalable

and real-time solution for the problem of knn join in streaming settings.

iii

Zusammenfassung

Heutzutage stehen Informationssysteme vor der nie dagewesenen Herausforderung,
erstaunliche Datenmengen in einem immer héheren Tempo zu verarbeiten. Die Leistung
herkémmlicher festplattenbasierter Datenverwaltungssysteme ist dieser Herausforderung
nicht gewachsen. Daher wird die In-Memory-Datenverwaltung und -Analyse fiir viele
Anwendungen zu einer interessanten Alternative. Die wachsende Hauptspeicherkapazitat
von Computerservern machte es fiir viele Anwendungen moglich, den Hauptspeicher
als Hauptspeichermedium zu nutzen. Durch die Eliminierung des teuren Overheads
von Platten-E/A und die Nutzung der hoheren Leistung des Hauptspeichers, bieten
In-Memory-Datenverwaltungssysteme Unterstiitzung fiir Dienste mit niedriger Latenz
und Echtzeit-Analyse. Die iiberlegene Bandbreite des Hauptspeichers zu nutzen, stellt
Datenverwaltungssysteme jedoch vor Schwierigkeiten und Herausforderungen. Das
einfache Ersetzen von festplattenbasiertem Speicher durch Hauptspeicher 16st dieses
Problem nicht. Aufgrund der unterschiedlichen Eigenschaften des Hauptspeichers sind
die konventionellen Ansétze, die in festplattenzentrierten Systemen verwendet werden,
fir In-Memory-Umgebungen nicht effizient. Diese Herausforderung wird durch das
Aufkommen neuer Rechnerplattformen noch verscharft. Um die Einschrankungen der
seriellen Ausfithrung zu iiberwinden, haben sich die Chiphersteller zu verschiedenen
Formen des parallelen Rechnens, wie Mehrkernprozessoren, Multisockel-Server und
Mehrkernbeschleuniger verlagert. Ein Single-Threaded-Ansatz ist nicht mehr in der Lage,
die Rechenressourcen auszunutzen, und die parallele Ausfithrung ist eine Notwendigkeit
fiir jede moderne Hochleistungsanwendung. Daher sind dedizierte und achtsame Losun-
gen fiir eine optimale Ausnutzung der Speicherbandbreite und der Rechenkapazitaten

moderner Hardware erwiinscht.

In dieser Arbeit werden neue Ansétze fir die parallele Indizierung von In-Memory-Daten
fiir verschiedene Anwendungen und Rechnerplattformen untersucht. Zunachst schlagen
wir ein einzigartiges Design fiir B*-Tree vor, das auf einem heterogenen CPU-GPU-
Rechenmodell basiert. Durch die Verwendung eines hybriden Speicher-Layouts nutzt
HB*-Tree die Rechenleistung von CPU- und GPU-Plattformen gleichzeitig aus, um lookup-
intensive Operationen zu beschleunigen. Zweitens schlagen wir eine neuartige Daten-
struktur vor, PIM-Tree, um die Herausforderungen der Indizierung von Datenstréomen zu
bewiltigen. Durch die Kombination von zwei komplementaren Techniken, der Bereichs-

partitionierung und Delta-Updates, ermoglicht PIM-Tree hochperformante Bereichsabfra-

gen iiber hochdynamische Daten. Schlie8lich schlagen wir eine verteilte Losung fiir einen
parallelen kANN-Join fiir Datenstrome vor. Unsere Losung basiert auf einem mehrstufigen
kNN-Ausfithrungsprozess, der in der Lage ist, eine Multi-Socket-Computerplattform zu
nutzen. Kombiniert mit einer adaptiven Daten-Repartitionierungstechnik bietet unser
Ansatz eine skalierbare Echtzeitlosung fiir das Problem des knn-joins in Streaming-

Einstellungen.

Vi

To the memory of my friend

Saamer Akhshabi
(1987-2014)

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Dr. Hans-Arno Jacobsen for
encouraging me to aim high in my academic career and for supporting my PhD studies
with sharing his invaluable experience and providing my scholarship. I also would like
to thank Prof. Dr. Tilmann Rabl as the external examiner and Prof. Dr. Georg Groh for

accepting to chair the examination committee.

To my colleagues at university, I would like to thank you all for your thoughtful comments,

technical discussions, and also for all the remarkable and joyful moments at the chair.

Last but not least, I would like to express special thanks to my parents, my brother
Amin, and to my friends. This journey wouldn’t be possible without your support and

encouragement.

ix

Contents

Abstract

Zusammenfassung

Acknowledgments

1 Introduction

2

1.1 Motivation L
1.2 Problem Statement oL
1.2.1 Limited Capacity of GPU Accelerators for Indexing Large Datasets
1.2.2 Concurrency Overhead of Indexing Highly Dynamic Data
1.2.3 Real-time Spatial Partitioning for kNN Over Data Streams
1.3 Approach
1.3.1 GPU-Accelerated B"-Tree Based on a Hybrid Memory Layout . .
1.3.2 Parallel Data Indexing Based on Range Partitioning
1.3.3 Adaptive Data Partitioning Based on Real-time Load Monitoring
1.4 Contributions L
1.5 Organization e
Methodology
2.1 Programming Models and Computing Architectures
2.1.1 Compute Unified Device Architecture (CUDA)
2.1.2 Message Passing Interface MPI)
2.1.3 Open Multiprocessing (OpenMP)
2.2 Memory Optimization.

x1

iii

ix

CONTENTS

23 ProfilingTools

3 Summary of Publications
3.1 A Hybrid B+-tree as Solution for In-Memory Indexing on CPU-GPU
Heterogeneous Computing Platforms
3.2 Parallel Index-based Stream Join on a Multicore CPU
3.3 Distributed Stream KNN Join

4 Discussion
5 Conclusions
Bibliography
Appendix A
Appendix B

Appendix C

25

26
27
28

29

33

35

41

59

75

xii

Introduction

In recent decades, in-memory data management systems have become increasingly
popular. DRAM prices have declined with advances in memory technology, and DRAM
has become viable for many applications to store their business data entirely in main
memory instead of in disk-based storage. By eliminating the expensive I/O operations,
in-memory data management systems offer significantly better performance than disk-
stored databases. However, effective resource utilization remains a challenge for in-
memory systems. Conventional data structures and data management algorithms, which
are optimized according to the characteristics of disk-based storage, are not capable of
harnessing the superior bandwidth of in-memory systems. This shortcoming initiated
an effort in the database management community to rethink the algorithms and data

structures to exploit modern hardware.

This thesis addresses some challenging problems in in-memory data processing using
modern hardware. Because of the unique complexity of every computing platform, a
single solution often cannot result in an optimal performance when using different under-
lying hardware. Therefore, a dedicated solution is needed to exploit the computational
power of each computing platform. In particular, this work studies the following three
subjects: accelerated B*-Tree utilizing a CPU-GPU heterogeneous platform, parallel join
operation over data streams utilizing a multicore processor, and distributed kNN join

operation on data streams.

1.1. MOTIVATION

1.1 Motivation

The landscape of data management systems has been rapidly evolving in the last decade.
Information systems gather astonishing amounts of data from various sources at an
ever-increasing pace, and new classes of applications and services have emerged with
advances in communication technologies and mobile devices [1, 2]. Currently, more
than 4.6 billion people are considered internet users globally, while more than 90% of
them have access to mobile devices [3, 4]. The volume of data generated worldwide
in the year 2020 is projected to be approximately 30 times higher than that in the year
2010 [5]. As a result of these shifts in technology and applications, data management
systems are facing unprecedented challenges. Conventional disk-centric approaches are
not effective in confronting these challenges, and in-memory data processing has become

the mainstream approach in many data management systems.

For decades, databases relied on hard drives as the main storage, and they utilized

main memory for data caching. This trend has come to an end with advances in memory

N

DRAM Cost (US $/Gbyte)
|_\
o

=
o
[

1

=
o
o

1990 1995 2000 2005 2010 2015 2020
Y ear

Figure 1.1.1: Cost of dynamic random-access memory (RAM) over time. Since 1990, DRAM prices have
decreased by approximately 40 percent a year on average [6].

1. INTRODUCTION

technology and the growth of the main memory capacity [8]. As illustrated in Figure 1.1.1,
the average price for a Gbyte of DRAM decreased to 0.01% in the year 2019 compared to
that in the year 1990. As a consequence, the main memory capacity of modern servers
increased to a level at which the business information of many enterprise applications
could entirely fit in main memory. This enables data management systems to employ
main memory as primary storage and rely on conventional disk-based technologies
for persistent storage and data backup. By eliminating the expensive I/O overhead, in-
memory databases offer significantly better performance than conventional databases and
provide capabilities for real-time data analytics and services. Consequently, in-memory
databases have become an attractive choice for many applications. However, in-memory
systems require different algorithms than those used in disk-centric databases. Algorithms
in conventional databases are optimized according to the particular characteristics of

disk storage, which are completely different from those of random access memory.

No. Cores —+— Frequency (MHz) —¢—

Sngle-Thread Performance (SoecINT x 103) —— Transistors(103) —&—

Figure 1.1.2: Evolution of the processor architecture over the years. Despite the increasing number of
transistors, the single-thread performance of processors has distinctly decelerated since the year 2003
because of the technical limitations in increasing the processor frequency [7].

1.2. PROBLEM STATEMENT

Concurrent with the shift toward in-memory data management systems, the processor
architecture has undergone a significant evolution in recent decades [9]. Figure 1.1.2
presents the trends in the processor architecture regarding the core number, single-core
performance, clock frequency and number of transistors. For a long time, single-core
processors were the mainstream architecture, and processor manufacturers relied on
instruction-level parallelism and increasing the clock rate to improve the processor
performance. However, this trend came to an end because of technological barriers such
as power consumption and heat dissipation issues. To confront this problem, processor
manufacturers shifted toward multicore processors such as multicore CPUs and many-
core GPUs. As a consequence of this change in processor architecture, single-threaded
applications are no longer capable of harnessing the computing power of modern servers,

and parallel computing has become essential for high-performance applications [10].

1.2 Problem Statement

This thesis addresses three challenging high-performance in-memory data processing
problems. First, we address the limited capacity of GPU accelerators for indexing large
datasets. Modern GPU accelerators offer a significant amount of computing power,
which can be utilized to speed up lookups in tree-based data structures, such as B*-
Tree. However, the amount of available memory in GPUs is more limited compared to
that in CPUs; this restricts the usage of GPU accelerators in applications using large
datasets. Second, we address the concurrency overhead of indexing highly dynamic data.
A parallel indexing solution is needed to unlock the computing power of a multicore
processor in computing intensive tasks, such as join operation, in data management
systems. Proposing a concurrency control mechanism that enables concurrent update
and search operations with minimal overhead is a challenging endeavor. This becomes
more prominent in streaming databases where highly dynamic data result in an excessive
concurrency overhead. Last, we address the problem of real-time spatial partitioning
for kNN queries over data streams. Data partitioning is essential for spatial queries in a
system with nonuniform memory accesses. A challenge for effective data partitioning
is the need to adapt to changes in data distribution. This challenge becomes more

complicated in real-time applications where data preprocessing is not applicable.

1. INTRODUCTION

1.2.1 Limited Capacity of GPU Accelerators for Indexing Large

Datasets

B*-Tree is a dynamic data structure commonly used in data management systems as
an indexing data structure [11, 12]. B*-Tree is based on B-Tree, a self-balancing data
structure optimized for sequential data access. In addition to the characteristics inherited
from B-Tree, such as balanced height and logarithmic cost of search and update, B*-Tree
performs faster range queries. Although B*-Tree was originally designed for disk-based
storage, it also performs well for in-memory systems if correct configurations are used.
Because of its importance in data management systems, multiple efforts have been made
to employ the computing power of modern hardware to accelerate data indexing using
B*-Tree [13, 14].

Rapid advances in circuit design and the processor architecture resulted in a remarkable
gap between the processor and main memory performances. This issue, which is
often referred to as the memory wall, becomes a limiting factor in many data-intensive
applications [15]. Modern multipurpose processors are highly dependent on data caching
to mitigate the memory wall problem. For applications with predictive data access,
data caching is a highly effective technique. However, for applications that involve
unproductive pointer chasing, such as tree traversal, data caching is not helpful. Therefore,
we observe a significant performance drop in CPU-optimized tree traversal for datasets
larger than the CPU last-level cache.

GPU platforms offer higher memory bandwidth than CPUs, and previous efforts in
realizing tree-based indexing using GPUs demonstrate great potential [16]. In contrast
to multipurpose processors, which rely on caching to mitigate the memory latency
issue, GPUs are based on massive parallelism and low overhead context switch [17].
These techniques are resilient to data size, and therefore, the tree traversal performance
using a GPU is not affected by the size of the tree. However, the amount of memory
available to GPUs is relatively small compared to the system main memory. This limits
the applicability of GPU-accelerated B*-Trees.

1.2. PROBLEM STATEMENT

1.2.2 Concurrency Overhead of Indexing Highly Dynamic Data

The source of information in many applications, such as algorithmic trading, fraud
detection and social networking, is a transient and real-time sequence of tuples, known
as data streams [18, 19, 20, 21]. Because of the limited capacity of main memory and
CPU computational power, it is not feasible to store and process an infinite sequence of
data. To address this issue, stream processing systems often require limiting the scope of
data streams using a sliding window, which is defined as a fixed number of tuples (count

based) or a duration of time (time based).

As in conventional databases, indexing is essential to improve the performance of
computationally intensive operators in streaming databases [22]. Window join is a
fundamental operator in real-time data analytics that correlates the information of two
separate sources. Combining the characteristics of the join operator and dynamicity of
streaming data, window join is a computationally demanding operator that can greatly
benefit from accelerated window lookups. However, the conventional indexing solutions

are not directly applicable in streaming settings, and dedicated approaches are needed.

In an index-accelerated window join, the content of each sliding window is indexed into
two separate indexes. Upon the arrival of a new tuple, the window join operator utilizes
the index of the opposite sliding window to find matching tuples. The content of a sliding
window is highly dynamic, and the associated index must be updated frequently. In
contrast to data management systems where search query is the most frequently used
operation, support for efficient index update is crucial in a streaming setting. In addition,
the particular arrival and departure pattern of tuples in a sliding window could be utilized
to propose a more effective indexing solution. Therefore, a dedicated approach is needed
to tackle the challenges of indexing highly dynamic workloads as in streaming data

management systems.

The challenge of handling frequent index updates becomes compounded by the enforce-
ment of a concurrency control mechanism, which is required to enable parallelism and
exploit the computational power of a multicore processor. In conventional databases, the
index update rate is relatively low compared to the index lookup, and the concurrency

control mechanism used in such systems is designed accordingly. For this reason, these

1. INTRODUCTION

mechanisms result in suboptimal performance for indexing highly dynamic data, such as

those in a sliding window.

1.2.3 Real-time Spatial Partitioning for kNN Over Data Streams

With advances in mobile devices and communication technologies, location-aware
applications and services have become increasingly popular in the past decades [23,
24, 25]. As the number of their users increases, location-aware applications, such as
social networking platforms, recommender systems and location-based games, gather and
process astonishing amounts of data at an ever increasing pace [26]. High-performance
stream processing solutions become essential for these applications in order to meet their

performance requirements.

k nearest neighbor (kNN) join is an important and commonly used operator in many
location-aware applications [27]. For two given datasets R and S, kNN join associates
each entry from dataset R with its k nearest entries from dataset S. In a streaming setting,
the datasets R and S are defined as two separate data streams. Stream kNN join is a useful
operator in many scenarios, such as locating the taxis nearest to the customer’s location,
correlating a tweet with the geospatially nearest tweets and finding the nearest photos
to a user in a photo-sharing platform. Combining the computational complexity of kNN
search and the join operator with the dynamicity of a data stream, stream kNN join is
a computationally intensive operator. Therefore, a single-threaded solution for stream
kNN join cannot meet the desired performance, and a scalable multithreaded approach
that is capable of exploiting the computational power of modern hardware is desirable

for this problem.

In terms of underlying hardware, stream processing systems can be divided into two
categories, single-node (scale-up optimized) or multinode (scale-out optimized) [28, 29].
Single-node stream processing systems are often based on a nonuniform memory access
(NUMA) architecture, and they are focused on algorithms that utilize the resources of
a single-node computer. In contrast, scale-out optimized systems are often based on
massive data parallelism and a producer-consumer task distribution pattern to exploit

the computational resources of a multinode workstation. Over the last decade, the perfor-

1.3. APPROACH

mance of NUMA computers has been highly improved regarding both the computation
capability and memory bandwidth. Therefore, single-node stream processing solutions
focused on scale-up optimization are sufficient for many applications, and they have

become an alternative to scale-out optimization approaches.

For a successful distributed kNN join, we require an effective spatial partitioning mech-
anism that must consider both the workload balance and scalability at the same time.
Simple data partitioning approaches such as round-robin may provide a uniform load
distribution among working operators, but they are not scalable solutions for kNN
join. When using round-robin partitioning, we must query every individual partition
and combine these local kNN results to find the global kNN result because tuples are
distributed among partitions independent of their values. For this reason, the cost of
kNN queries increases almost linearly with the number of partitions, which limits the
system scalability. Approaches based on hash partitioning are not effective for kNN
join either because hash functions do not preserve the spatial distances between tuples.
Utilizing a space partitioning function, we can restrict the scope of kNN queries to a
limited subset of partitions and maintain the scalability of our system. However, it is a
challenging endeavor to propose a space partitioning mechanism that results in a uniform

load distribution among partitions and adapts to data distribution changes in real time.

Although there are many data partitioning approaches for multithreaded kNN join
over prestored datasets, these partitioning approaches are either incompatible with or
inefficient for data stream processing. Data preprocessing is a commonly used technique
to partition prestored datasets. However, this approach of data partitioning is not
applicable to streaming settings. Furthermore, the content of the sliding window is highly
dynamic, and data partitioning must be continuously adjusted with data distribution

changes in real time.

1.3 Approach

In this section, we provide a description of our approaches that we proposed to address

the three problems introduced in the previous section. Each problem that this thesis

1. INTRODUCTION

addresses utilizes a unique computing device. Therefore, there are unique techniques

and design decisions to exploit the computing resources for each problem.

1.3.1 GPU-Accelerated B*-Tree Based on a Hybrid Memory Layout

High-performance data indexing using either a CPU or a GPU is subject to different
trade-offs. GPUs are equipped with higher bandwidth memory modules, and parallel
data indexing using a GPU outperform that using CPU platforms. However, the capacity
of the system main memory is often larger than the amount of memory available to
a GPU. Therefore, it is not feasible to employ a GPU for indexing a large dataset, and
high-performance data indexing using a CPU is the only viable option for these scenarios.
To address this issue, we propose a hybrid layout for B*-Tree (HB*-Tree) that is able
to leverage both CPU and GPU memories at the same time. HB"-Tree employs the
computing power of a GPU accelerator for searching on a dataset larger than the GPU
dedicated memory. Our main objective is to combine the higher capacity of the system
memory with the superior bandwidth of the GPU platform to achieve high-performance
data indexing over a large volume of data. To improve the effective memory bandwidth,
we scatter the nodes across CPU and GPU memories in a way that enables simultaneous
utilization of both memory modules. Furthermore, we propose a heterogeneous search

algorithm that minimizes the costs of communication between the CPU and GPU.

Figure1.3.1 illustrates the overall architecture of HB*-Tree and how it resides in memory.
HB"-Tree partitions inner nodes and leaf nodes into two separated segments, namely,
the I-segment and L-segment, respectively. A search query in HB*-Tree starts from the
root node in the I-segment; after passing all the inner nodes, the query continues in
the L-segment to locate the target key-value pair. The L-segment only resides in CPU
memory, and leaf nodes are optimized according to the CPU memory characteristics.
In contrast, the I-segment resides in both CPU and GPU memories, and inner nodes
are configured for optimal search performance using the GPU. To update HB*-Tree, all
changes are initially applied to the I-segment residing in CPU memory, and then, the
copy in GPU memory is updated accordingly. Our rationale for this hybrid design is to
exploit the computing power of the GPU for processing inner nodes, which correspond

to a large portion of the tree traversal overhead, and utilize the larger CPU capacity to

9

1.3. APPROACH

store leaf nodes.

To complement our hybrid memory layout, we propose a heterogeneous algorithm for
tree traversal utilizing both the CPU and GPU. To reduce the communication overhead
between the CPU and GPU, we group queries into batches. Our heterogeneous search
algorithm processes a query batch in four steps. First, the query batch is transferred
from CPU memory to GPU memory. Second, the GPU traverses all the inner nodes
for each query in the batch and generates intermediate results. Third, the intermediate
results are transferred to CPU memory. Finally, the CPU resumes the search operation
using the intermediate results for each query in the batch. We improve the resource
utilization of our heterogeneous algorithm by applying stage pipelining and double
buffering techniques. Double buffering enables our solution to execute two query batches
at a time, and stage pipelining improves the system performance by overlapping the

different stages of two active query batches.

I-segment

L-segment

et
........... \ \\\\k R‘\f ///

o

. Leaf Node

Inner Node
I-segment

Figure 1.3.1: Distribution of HB"-Tree nodes among CPU and GPU memories. The leaf nodes reside only
in CPU memory, while the leaf nodes are duplicated in both CPU and GPU memories.

10

1. INTRODUCTION

1.3.2 Parallel Data Indexing Based on Range Partitioning

We propose a novel indexing data structure, called the partitioned in-memory merge
tree (PIM-Tree), which is designed to address the challenges inherent to concurrent data
indexing in a highly dynamic setting. The main objective of PIM-Tree is to exploit the
computational resources of a multicore processor in the application of multithreaded
window join on the basis of uniform memory access. PIM-Tree is a two-stage data
structure based on two known techniques, data partitioning and delta updating. The
combination of these two techniques enables PIM-Tree to support frequent update queries
with a low concurrency overhead, which is highly advantageous for data indexing
in streaming environments. In contrast to prior approaches that rely on resolving
concurrency at the tree node level, parallelism in PIM-Tree is based on multipartition
design, which enables PIM-Tree to benefit from concurrent operations on disjoint ranges
of values and relies on the distribution of queries. Therefore, operations in PIM-Tree are
as efficient as those in single-threaded B*-Tree, and the only overhead is to acquire a

single mutex per operation to avoid race conditions.

Depth
0 []
1 [T ceceee T 1
. : : . T,
DI | | I e0c0ccccccccccccce I | |
N I “."I' I oéoo.oooouoooooooooouooooou%o I ‘I’o"l I
O@)E —>oo:o.o:o.o::o:o.o:o..::.:oo Tl

B, B, B

n-1 n

Figure 1.3.2: Overall architecture of PIM-Tree. T and Tj are the immutable and mutable components,
respectively. Ty is a chain of B*-Trees attached to Ts at insertion depth D;. Ts is an immutable B*-Tree
optimized for search queries.

11

1.3. APPROACH

PIM-Tree consists of two segments, (7;) and (Ts). Ts is an immutable B*-Tree optimized
for search queries and bulk updates, and T} is a set of n independent insert-efficient
B*-Trees (B;, 1 < i < n) that are attached to Ts at a specific depth D;. To create a single list
of all elements in Tj, the tail leaf node of each subindex (B;, 1 < i < n) is connected to the
head leaf node of its successor (B;,1). Each B; is assigned the same range of values as the
i-th inner node of Ts at depth D;. To query a PIM-Tree, both the T; and Ts components

need to be searched.

All new tuples are initially inserted into 7;. When the size of T; reaches a predefined
threshold, the entire T; is merged into Ts, and at the same time, the expired tuples in Ts are
eliminated. The update routine inserts a tuple in a two-step operation. First, it searches
Ts until depth Dy to identify the matching subindex assigned the range that includes the
given tuple, and second, the update routine inserts the tuple into the identified subindex

using the B*-Tree insert algorithm.

To coordinate concurrent operations in Tj, each subindex is assigned a mutex. All
operations, both insert and search, must acquire the associated mutex before performing
any operation for a subindex. Furthermore, the last leaf node of each subindex is flagged
such that the search routine identifies a move from the subindex to its successor. While
a thread is scanning leaf nodes, it may move from a subindex to its successor. In this
scenario, the scanning thread must first acquire the successor’s mutex and then release
the mutex for the current subindex. T is a read-only data structure; therefore, there is

no need for a concurrency control mechanism to avoid race conditions.

To complement our data structure PIM-Tree, we propose a parallel join algorithm based
on adaptive load distribution and a shared work queue. Our join algorithm consists of
four steps: task acquisition, result generation, index update, and result propagation. The
first step for each thread is to acquire a task, which is a set of input tuples. Then, the
thread generates join results by querying the window indexes and stores them in a local
buffer. In the third step, the thread updates the window indexes according to the new

tuples. Finally, it propagates the join results to the output stream.

12

1. INTRODUCTION

1.3.3 Adaptive Data Partitioning Based on Real-time Load Moni-

toring

We propose adaptive distributed stream kNN join (ADS-kNN), a scalable solution for
real-time kNN join in a streaming environment. In contrast to distributed kNN solutions
based on data preprocessing, load balancing in ADS-kNN is based on online data analysis
and repartitioning. Therefore, ADS-kNN does not require any prior knowledge about the

distribution of input data, which makes it suitable for real-time data processing.

Figure [fig:ads] illustrates the overall architecture of ADS-kNN, which consists of four
types of operators: dispatcher, mapper, join-core and load-balancer. The dispatcher
receives all input tuples and distributes them between mapper operators. The mapper
operators forward the tuples to their corresponding join-cores based on a partitioning
map. The join-cores store tuples in their local memory and produce the kNN results. Con-
current with the kNN operation, the load-balancer continuously monitors the workload

distribution among join-cores and generates a new partitioning map if required. Given n

Input streams (R, S)

N I=

Partitioning

:.I.:ﬂd i‘n- il.n i‘n- il.n I.:f_li: ..é Distributed

e Shdlng window

‘ Dispacher O Mapper O Join-core O Load balancer

Figure 1.3.3: Overall architecture of ADS-kNN and the communications between its operators.

13

1.3. APPROACH

join-cores, ADS-KNN requires a partitioning map that divides the domain space into n
nonoverlapping subspaces. The content of the sliding window is divided into n partitions
according to this partitioning map, and each partition is stored in a join-core. The kNN
query execution in ADS-kNN is a multistage operation that enables low-latency result

delivery and efficient utilization of available computational resources.

The data partitioning in ADS-kNN is based on two separate processes, workload monitor-
ing and data repartitioning. The join-cores periodically generate statistical information
about their workload and submit it to the load-balancer. If it detects that the current
data partitioning is not effective, then the load-balancer initiates the data repartitioning
process. To generate a new partitioning map, the join-cores submit the load approximation
of their local data to the load-balancer. Then, the load-balancer generates a new partition
map accordingly and sends it to all the mappers and join-cores. We propose two data
partitioning replacement methods, lazy and instant. Instant partitioning replacement is a
blocking operation in which join-cores instantly redistribute tuples according to the new
partitioning map. This approach always maintains the load distribution in an efficient
state. In contrast, lazy partitioning replacement is a nonblocking operation, but it takes a

longer time for the system performance to recover.

To further optimize the performance of ADS-KNN, we propose a unified operator, mapper-
joiner, which operates as both a mapper operator and a join-core. Setting a fixed number
of individual mappers and join-cores in the system cannot properly deal with dynamic
data distribution changes. To address this issue, we propose the unified mapper-joiner
operator, which relies on adjusting the execution time spent on each operation rather
than on adapting the number of operators. Using n mapper-joiners is logistically the same
as having n mappers and n join-cores in the system. In such a system, the mapper-joiner
automatically increases the time spent on the join operation when neighbor querying
increases, and likewise, it increases the mapping time if data partitioning becomes more

costly.

14

1. INTRODUCTION

1.4 Contributions

The main contributions of this work regarding each described problem are listed in the

following.

« Hybrid CPU-GPU B*-Tree

L

ii.

ii.

iv.

We propose a novel data structure, HB*-Tree, based on a hybrid memory

layout that enables concurrent utilization of both CPU and GPU memories.

We develop a load balancing scheme that enables optimal resource utilization

for various configurations of CPUs and GPUs.

We develop an analytical model to examine the influence of the techniques

and approaches that we used.

We propose a CPU-optimized B*-Tree as a baseline for our hybrid solution,

which outperforms the state-of-the-art tree-based indexing approach.

We conduct an extensive evaluation to study the effect of different opti-
mization techniques and the efficiency of our hybrid approach using various

workloads.

« Parallel Index-based Window Join

1.

11

1ii.

iv.

We propose PIM-Tree, a novel two-stage data structure designed to address
the challenges of indexing highly dynamic data, which outperforms state-of-
the-art indexing methods in the application of window join in both single-

and multithreaded settings.

We develop an analytical model to compare the costs of window join using
the indexing approaches studied in this paper to provide better insight into

our design decisions.

We propose a parallel index-based window join (IBW]J) algorithm that ad-
dresses the challenges arising from using a shared index in a concurrent

manner.

We conduct an extensive experimental study of IBW] employing PIM-Tree and

provide a detailed quantitative comparison with state-of-the-art approaches.

15

1.5. ORGANIZATION

 Distributed Stream kNN Join

i. We propose a scalable multistage kNN query execution to achieve high-

performance and low-latency distributed kNN join.

ii. We propose an adaptive data partitioning method that adjusts the load distri-

bution according to input data streams.

iii. We design and develop a lightweight stream processing framework to imple-

ment ideas presented in this paper.

iv. We develop an analytical comparison between our approach and the state-of-

the-art to provide better insight into our design decisions.

v. We conduct an extensive experimental study of ADS-kNN and provide a

detailed quantitative comparison with state-of-the-art approaches.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents the methodologies we
used to accomplish the ideas presented in this thesis. Chapter 3 summarizes the papers
comprising this thesis. Chapter 4 discusses our approaches in the context of their related

approaches. Chapter 5 concludes this thesis.

16

Methodology

In this chapter, we briefly describe the background information and design considerations
necessary to understand our solutions proposed in this thesis. In Section 2.1, we explain
the computing platforms and programming models that we used in this thesis. In Section
2.2, we describe the key elements of the memory architecture and the related design
considerations. Finally, in Section 2.3, we explain the performance profiling tools we use

to develop the ideas presented in this thesis.

2.1 Programming Models and Computing Architec-

tures

To implement the approaches presented in this thesis, we used three different computing
platforms. In this section, we provide a brief introduction to each computer architecture

and its programming model.

2.1.1 Compute Unified Device Architecture (CUDA)

CUDA is Nvidia’s framework for general purpose computing utilizing GPU accelera-

tors [17]. The CUDA programming model is based on massive parallelism using thousands

17

2.1. PROGRAMMING MODELS AND COMPUTING ARCHITECTURES

Grid Tl
Block (1,1) || Block (2,1) || Block (3,1) || Block (4,1)

3
E
=
h=|
S
=l
3

5
C)

“«
“«
~3
“
“~
“~
“~
“«

<«
“«~=
e
=
~E
=
“~ =
B
R
“«~z
&
=
“~E
=
“~
&
=
“«~ =
&

H
=
3
=
=
&
=
=
N
=
=
<l
=
=
E
=
S
=
=
©
&
h=}
S
S

,_
)
=)
=)
)
=
=]
)
&

H
@
&
=
@
)
=
@
&
=
w
&
=]
@
3
=]
@
&
=]
@
)
=]
=
S

Figure 2.1.1: Arrangement of threads within a grid. In this example, the grid consists of 12 blocks (4 x 3),
and each block is composed of 64 threads (8 x 8). Threads within each block are divided into two separate
warps, yellow and orange [17].

of threads. Threads are organized into two-level hierarchies consisting of grids and
blocks. A grid is at the top of the hierarchy and is a three-dimensional array of blocks,
and similarly, each block is a three-dimensional array of threads. Individual blocks and
threads are identified using special indexes Blockldx and Threadldx, respectively. All
threads in a grid run the same kernel code, which is a function to be executed on a GPU.

Figure 2.1.1 depicts the overall arrangement of threads and blocks in a grid.

Effective utilization of GPU resources requires a good understanding of the GPU archi-
tecture, including memory components and processing cores. The unit of scheduling
in CUDA is a set of 32 threads, which is referred to as a warp. All threads in a warp
have to execute the same instruction at a time. There is a situation referred to as thread
divergence in which threads of the same warp divert into separate code paths, which
typically occurs in if-then-else statements. In such scenarios, the entire warp has to
execute all individual code paths separately, which results in a significant performance
penalty. Thread divergence can be avoided by using a proper thread alignment such that

threads that follow the same code path fall in the same warp.

The computing resources in the CUDA platform are organized into a similar hierarchical
pattern as its programming model. A GPU consists of several multiprocessors, in

which each one is a complex unit composed of various components. These components

18

2. METHODOLOGY

Load/Store Load/Store
Load/Store Load/Store
Load/Store Load/Store
Load/Store Load/Store
Load/Store Load/Store

Load/Store Load/Store

Load/Store Load/Store

Load/Store Load/Store

Figure 2.1.2: Overall architecture of a multiprocessor in the CUDA architecture [17].

are illustrated in Figure 2.1.2. To process a grid, each block is assigned to a single
multiprocessor, and the threads are scheduled over processing cores. Since CUDA does
not support any form of message passing, the only available solution to share information
between threads is through read and write on a shared memory module. Therefore,
optimal utilization of shared memory resources is of great importance. The CUDA
memory architecture consists of six different types of memory modules, global, shared,
constant, texture, local and register. Global memory is the largest and slowest module,
and it is accessible by all threads. Shared memory is banked memory modules that
are accessible by all threads within a single block. Both texture memory and constant
memory are read-only modules that are optimized for particular patterns of data accesses.
Registers are local to each thread, and they are the fastest type of memory in the CUDA
architecture. Whenever there are not enough registers to execute a kernel, the extra
needed space is allocated as local memory. The local memory of each thread is only

accessible by the thread itself, and the performance is as slow as that of global memory.

2.1.2 Message Passing Interface (MPI)

Single-node computing platforms offer a limited amount of resources regarding both

computational power and memory capacity. Distributed computing platforms address

19

2.1. PROGRAMMING MODELS AND COMPUTING ARCHITECTURES

these limitations by utilizing multiple computing nodes connected by a communication
network. Processes running on these platforms do not have direct access to each others’
memory spaces. Therefore, they need to share data using other mechanisms, such as
message passing. The message passing interface (MPI) is a communication standard for
parallel programming based on interprocess communication [30]. The MPI program
creates multiple processes with individual memory spaces. These processes communicate
with each other through message passing, in which data are transferred from the address
space of a process to another. The MPI standard only specifies the syntax and semantics of
library routines such as names, calling sequence and function outcome, and it is intended

to be implemented for different communication networks.

The MPI communicator provides a scope for multiple processes to communicate and
synchronize. Among other features, a communicator includes process groups, which
specify the participating processes. A group is an ordered set of processes, each assigned
a unique rank, which is used as an identifier for communication within the communicator.
MPI supports various forms of communication between processes. Regarding the number
of participants, MPI operations are divided into two categories, point-to-point and
collective. Point-to-point operations, such as sending and receiving a message, occur
between exactly two processes, a sender and a receiver. Collective operations are
invoked by all processes in a communicator, such as group synchronization, gather
and scatter operations. MPI communications are often performed on a two-sided basis,
which requires matching send and receive requests from two processes. In contrast, a
process may access the memory space of another process using one-sided communication.
This communication mode enables better concurrency among processes by decoupling
data transmission from process synchronization, and it is better for applications with

unpredictable messaging patterns.

2.1.3 Open Multiprocessing (OpenMP)

Parallel computing on a single-node computer has become feasible with the rise of
multicore processors. In such systems, processes have access to a shared memory space,
which they use to communicate with each other through read and write operations.

Although parallel computing in shared memory systems can be performed by utilizing a

20

2. METHODOLOGY

generic multithreading library, such as Pthread, these libraries are often not optimized for
high-performance computing applications; therefore, there are programming overheads
to handle operations such as thread management and communication. In such scenarios,
it is more convenient to use a special propose multithreading library, such as OpenMP.
Open Multiprocessing (OpenMP) is an application program interface for parallel com-
puting on the basis of a shared-memory architecture [31]. It consists of programming
language extension, library routines, and environment variables that are designed to
describe parallel execution, thread communication and synchronization. Multithreading
in OpenMP is based on the fork-join model, and threads communicate with each other
through reads and writes on shared memory. The OpenMP program initiates as a single
process, which is referred to as the master thread. The master thread creates a parallel
region by forking into multiple threads and ends the region by using the join operation.

An OpenMP program might have several parallel regions.

OpenMP supports various forms of parallelism paradigms. Loop parallelism is the most
common and simplest type of a parallel region in OpenMP, in which threads collectively
process a loop statement. OpenMP offers different thread scheduling patterns, which are
specified by compiler directives or environmental variables. Task parallelism is another
type of parallel region in OpenMP, in which tasks are dynamically generated into a
task queue and executed by operating threads. This form of parallelism is useful for
scenarios with unpredictable data access pattern, such as graph processing. Furthermore,
it is possible to use OpenMP as a generic multithreading library. In this scenario, the
programmer has to explicitly coordinate most aspects of a parallel program, such as

thread communication, synchronization and load balancing.

2.2 Memory Optimization

Effective utilization of memory resources is crucial for a successful data-intensive appli-
cation. Memory hierarchy, including different components such as registers, cache and
main memory, is an important element of modern computer hardware, which specifies
the data access latency and bandwidth in a system. It is essential for a high-performance

application to employ algorithms and approaches that are aware of different aspects of

21

2.2. MEMORY OPTIMIZATION

memory hierarchy to achieve optimal resource utilization [32, 33].

Software pipelining is an optimization technique to improve the loop performance by
interleaving instructions of different iterations [34]. It scatters the dependencies between
the instructions of a single iteration among multiple loop iterations. As a result, the CPU
pipeline can be scheduled in a way that reduces CPU stalls caused by memory latency.
Software pipelining is an effective technique to improve the performance of tree data
structures. Search operation in tree-based data structures is among the use cases that
can be improved by employing software pipelining. Tree traversal involves multiple
iterations of node fetch and processing steps. Such scenarios result in frequent stalls
in a CPU while the next node in the traversal is loaded into the CPU cache. Software
pipelining mitigates this problem by interleaving the node fetch and processing steps of
multiple queries such that the CPU time is utilized to process other queries while the

next node in another query is loaded into the CPU cache.

Data caching is a widely used technique in modern processors to enhance the performance
of accesses to main memory [35]. The CPU cache is a small but high-performance memory
module that stores copies of frequently accessed data in main memory in order to provide
faster access. The caching mechanism in modern processors is often based on a three-
layer structure, L1, L2 and L3. L1 is the most performant with the smallest capacity, while
L3 is the layer with the largest capacity and the lowest performance. The unit of data
transfer between main memory and the CPU cache is a cache line, which is 64 bytes
of data. Optimal utilization of cache line data before they are evicted (called cache line
blocking) in essential to improve the effective memory bandwidth. In the context of
tree-based data structures, B*-Trees with nodes equal to a cache line result in a better
performance [36]. By exploiting all of the data in a cache line, this configuration results
in great cache utilization and reduces the total main memory accesses needed to retrieve
data from B*-Tree.

Paging is a technique used for realizing virtual memory, in which system memory is
divided into same-sized blocks called pages [32]. A page table is a data structure that
stores translation information between virtual memory pages and physical memory
blocks. A part of the page table, the translation lookaside buffer (TLB), is cached by a CPU

to improve the translation performance. If the demanded page does not exist in the TLB,

22

2. METHODOLOGY

then a page table search is needed to retrieve the translation information. This process
is called a page walk, which results in a large performance penalty. Considering the
limited capacity of the TLB, the use of a small page size leads to several TLB misses and
results in a severe performance penalty. To avoid this situation, there is an opportunity to
make use of larger pages called huge pages. However, the capacity of the TLB for storing
translation information of huge pages might be limited in a system [37]. Therefore,
an application-specific configuration for memory management might be necessary for

effective utilization of huge pages.

2.3 Profiling Tools

Program profiling is an analytical technique to gather detailed information about program
performance and efficiency, such as time complexity, memory footprint and communi-
cation overhead [38, 39]. This information provides better insights into performance
bottlenecks and helps developers further optimize their application. There are several
approaches for program profiling. Simple techniques such execution time tracking are
helpful for detecting the computationally demanding regions of a program. However,
these methods do not provide developers with sufficient insights for a better understand-
ing of resource utilization. Thus, utilizing advanced profiling techniques is essential
for developing a complex parallel algorithm and studying the impact of various design

decisions.

To develop the ideas presented in this thesis, we employed two profiling tools, Nvprof [40]
and PAPI [41]. Nvprof is a tool provided by Nvidia to collect and study the profiling data
of a GPU-accelerated program. Nvprof provides time analysis of CPU and GPU activities
that is beneficial for studying the communication costs between CPU and GPU memories.
Furthermore, it provides an analytical study of GPU-accelerated code, which indicates
the utilization efficiency of various resources. This information is valuable for detecting
performance limiters and optimization opportunities. PAPI (Performance Application
Programming Interface) is a portable interface to access low-level performance counters
in a CPU. Performance counters are special purpose registers in processors used to record

the occurrence of specific events without influencing the processor performance. Utilizing

23

2.3. PROFILING TOOLS

PAPI, we can track the occurrence of particular events of interest, such as cache misses

or TLB misses,

24

Summary of Publications

In this chapter, we provide a brief description of the individual papers comprising this
thesis. Overall, this thesis is based on three accepted peer-reviewed publications, provided
in Appendixes A, B and C. For each paper, we provide a brief overview of the approach,

the key achievements, and a summary of the author’s contributions.

25

3.1. A HYBRID B+-TREE AS SOLUTION FOR IN-MEMORY INDEXING ON CPU-GPU
HETEROGENEOUS COMPUTING PLATFORMS

3.1 A Hybrid B+-tree as Solution for In-Memory In-
dexing on CPU-GPU Heterogeneous Computing

Platforms

Reference: Amirhesam Shahvarani and Hans-Arno Jacobsen. A Hybrid B+-tree as
Solution for In-Memory Indexing on CPU-GPU Heterogeneous Computing Platforms. In
Proceedings of the 2016 International Conference on Management of Data (SIGMOD ’16).
pages 1523-1538. DOI : https://doi.org/10.1145/2882903.2882918

Full-text version enclosed: Appendix A
Summary:

An in-memory indexing tree is a critical component of many databases. Modern many-
core processors, such as GPUs, are offering tremendous amounts of computing power
making them an attractive choice for accelerating indexing. How- ever, the memory
available to the accelerating co-processor is rather limited and expensive in comparison
to the memory available to the CPU. This drawback is a barrier to exploit the computing

power of co-processors for arbitrarily large index trees.

In this paper, we propose a novel design for a B*-Tree based on the heterogeneous
computing platform and the hybrid memory architecture found in GPUs. We propose
a hybrid CPU-GPU B + -tree, - HB"-Tree, — which targets high search throughput use
cases. Unique to our design is the joint and simultaneous use of computing and memory
re- sources of CPU-GPU systems. Our experiments show that our HB + -tree can perform
up to 240 million index queries per second, which is 2.4X higher than our CPU-optimized

solution.

Author’s contributions: Conceived, developed, and implemented the approach. Devised

optimizations. Conducted analysis and experimental evaluation. Wrote the paper.

26

3. SUMMARY OF PUBLICATIONS

3.2 Parallel Index-based Stream Join on a Multicore
CPU

Reference: Amirhesam Shahvarani and Hans-Arno Jacobsen. Parallel Index-based
Stream Join on a Multicore CPU. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD °20). pages 2523-2537.

DOI : https://doi.org/10.1145/3318464.3380576

Full-text version enclosed: Appendix B
Summary:

Indexing sliding window content to enhance the performance of streaming queries
can be greatly improved by utilizing the computational capabilities of a multicore
processor. Conventional indexing data structures optimized for frequent search queries
on a prestored dataset do not meet the demands of indexing highly dynamic data as in
streaming environments. In this paper, we introduce an index data structure, called the
partitioned in-memory merge tree, to address the challenges that arise when indexing

highly dynamic data, which are common in streaming settings.

Utilizing the specific pattern of streaming data and the distribution of queries, we propose
alow-cost and effective concurrency control mechanism to meet the demands of high-rate
update queries. To complement the index, we design an algorithm to realize a parallel
index-based stream join that exploits the computational power of multicore processors.
Our experiments using an octa-core processor show that our parallel stream join achieves

up to 5.5 times higher throughput than a single-threaded approach.

Author’s contributions: Conceived, developed, and implemented the approach. Devised

optimizations. Conducted analysis and experimental evaluation. Wrote the paper.

27

3.3. DISTRIBUTED STREAM KNN JOIN

3.3 Distributed Stream KNN Join

Reference: Amirhesam Shahvarani and Hans-Arno Jacobsen. 2021. Distributed Stream
KNN Join. In Proceedings of the 2021 ACM SIGMOD International Conference on
Management of Data (SIGMOD °21). pages 1597-1609.

DOI : https://doi.org/10.1145/3448016.3457269

Full-text version enclosed: Appendix C
Summary:

kNN join over data streams is an important operation for location-aware systems, which
correlate events from different sources based on their occurrence locations. Combining
the complexity of kNN join and the dynamicity of data streams, kNN join in streaming
environments is a computationally intensive operator, and its performance can be greatly
improved by utilizing the computational capabilities of modern non-uniform memory
access (NUMA) computing platforms. However, the conventional approaches to kNN
join for prestored datasets do not work efficiently with the kind of highly dynamic data

found in streaming environments.

Therefore, in this paper, we introduce an adaptive scalable stream kNN join, named ADS-
kNN, to address the challenges that arise when performing the join operation on highly
dynamic data, which is common in streaming environments. We propose a multistage
kNN execution plan that enables high-performance kNN queries in distributed settings
by overlapping the computation and communication stages. Moreover, we propose an
adaptive data partitioning scheme that dynamically adjusts the workload among the
operators according to the changes in the input values. Combining these two techniques,
ADS-kNN provides a scalable and adaptive kNN join operator for data streams. Our
experiments using a 56-core computer show that our ADS-kNN achieves a maximum

throughput that is 21 times higher than that of a single-threaded approach.

Author’s contributions: Conceived, developed, and implemented the approach. Devised

optimizations. Conducted analysis and experimental evaluation. Wrote the paper.

28

Discussion

In this chapter, we discuss the approaches presented in this thesis in the context of other
parallel computing methods for in-memory applications. We briefly describe the related
work and highlight the differences and advantages of our solutions in comparison with

the existing approaches.

To the best of our knowledge, our hybrid layout for B*-Tree is among the first efforts to
jointly leverage the performance capacities of both CPU and GPU memories. In com-
parison with previous heterogeneous implementations of B*-Tree using an accelerated
processing unit (APU) [42], our hybrid layout has two main advantages. First, our design
is capable of utilizing two separate memory components simultaneously, system main
memory and GPU memory, to achieve a higher combined memory bandwidth instead of
relying on CPU memory. Second, our approach is capable of utilizing a discrete GPU,
which offers relatively high computing power compared to an integrated GPU, as found
in APUs. The performance of heterogeneous solutions utilizing an APU is bounded by
the capabilities of the system main memory, which is a critical concern for data-intensive
applications such as tree-based data indexing. Furthermore, the computing power of
these integrated accelerators is not on par with that of a high-end discrete GPU or a
FPGA.

Multiple approaches have been proposed to exploit the computing resources of a discrete

29

GPU for high-performance tree-based indexing [43, 44]. Awad et al. [16] proposed a
dynamic B*-Tree design optimized for a GPU-accelerated key-value store. FAST (Fast
Architecture Sensitive Tree) is a hierarchical static binary tree that can be configured
for various system configurations, such as a multicore CPU or GPU [45]. However, the
indexing data structures proposed by these studies entirely reside in GPU memory and
are therefore bounded by the limited capacity of GPU memory. In contrast, HB*-Tree is
capable of indexing datasets beyond the capacity of GPU memory by utilizing its hybrid
layout.

Because of its computational complexity and importance in many data analytics scenarios,
parallel window join has received considerable attention in recent years [46, 47, 48, 49, 50].
Handshake join is a distributed window join algorithm in which the tuple distribution is
inspired by how soccer players perform handshakes [48]. It arranges processing cores
in a chain layout and propagates the tuples of two given streams in the two opposing
directions along this chain. Whenever two tuples reach each other at a point in the chain,
the operating core performs an evaluation and decides whether the two tuples match
each other. Though handshake join is a scalable approach, it suffers from high result
latency. It may take a long time, depending on the window lengths, until two tuples
meet each other in this chain. Roy et al.[49] improved handshake join by introducing a
fast-forwarding mechanism that accelerates the transmission of each tuple toward its
associated operating core. SplitJoin is another distributed stream join approach based
on top-down tuple distribution [51]. It splits the join operation into two independent
process and store subtasks to reduce the dependency between processing units. All these
aforementioned approaches are based on context-insensitive partitioning in which tuples
are distributed based on their arrival order rather than on their values. Although they
are effective for nested loop join implementations, context-insensitive-based approaches

do not perform well for index-based window join because of redundant index operations.

There is a wide body of work studying the problem of parallel data indexing using
multicore CPUs [13, 52, 53, 54]. Though they are effective for a disk-resident data
structure, concurrency control mechanisms based on coupled latching are known to
suffer from high latching overhead and poor scalability for in-memory systems [55].
B-link tree is a modified B*-Tree with a relaxed node structure designed for concurrent

operations for in-memory systems [53]. Search operations in B-link tree are lock free,

30

4. DISCUSSION

and concurrency control is only needed for insert operations. Unlike approaches based
on coupled latching, an insert operation in B-link tree holds only a single node lock at
a time; it releases the parent node lock before acquiring its child node lock. Therefore,
B-link tree does not suffer from coupled latching. However, there is a disadvantage in
using the relaxed node structure of B-link tree, which may result in an inefficient state
and a lower search performance in applications with high insertion rates. Bw-Tree is a
latch-free variant of B*-Tree, designed for multithreaded systems [14, 56]. To avoid locks,
it uses a delta update mechanism and atomic pointer updates using compare and swap
operations. Different from these approaches that handle concurrency at the tree node
level, parallelism in PIM-Tree is based on the value distribution of concurrent operations
and course-grained locking. As an advantage of our approach, update operations in
PIM-Tree are as efficient as those in single-threaded B*-Tree. To perform concurrent
operations, the only overhead is to acquire a single mutex associated with each range of

values.

To the best of our knowledge, our ADS-kNN is the first approach for distributed kANN
join over data streams. Although there are several studies dedicated to distributed kNN
join over static datasets, this problem is not addressed in streaming environments [24,
57, 58, 59]. Hadoop-GIS is a map-reduce-based spatial data warehousing system that
extends Hive to support parallel spatial queries [57]. MD-HBase is an index layer for
range and kNN queries based on HBase [24]. It transforms multidimensional data points
into a one-dimensional space using a linearization technique and stores data points in a
range-partitioned key-value store. Similarly, SparkGIS is an extension of Apache Spark
for high-performance spatial queries such as range join and kNN join [60]. However,
all these approaches are designed for prestored datasets, and they do not apply well to
streaming environments. AQWA is an adaptive approach for spatial range and kNN join
operators based on a map-reduce paradigm [59]. It distributes data into disjoint partitions
using a kd-tree that adapts to changes in both data and query distributions. However, the
adaptive data partitioning mechanism in AQWA is based on batch processing, which does
not apply to streaming environments. Splitfire is a parallel algorithm for in-memory kNN
self-join that replicates the potential kNN candidates into the neighboring partitions to
improve the join performance [61]. Likewise, Splitfire is also based on data preprocessing,
and therefore, it is not applicable to streaming applications, which is the central focus of

our approach.

31

There is a group of works focused on kNN queries on streaming data [62, 63, 64, 65].
Koudas et al. [62] proposed an algorithm for approximate kNN query on a sliding window,
which locates the k nearest neighbors within a given error bound. Mouratidis et al. [63]
studied the problem of continuous nearest neighbor queries on data streams. They
proposed a solution based on reducing nearest neighbor monitoring to the skyline
maintenance problem and conceptual partitioning to reduce computational overheads.
Yang et al. [64] proposed a high-dimensional R-tree (HDR-tree) to tackle the problem of
the reverse kNN problem in streaming data. However, the scope of all these mentioned

approaches is limited to single-threaded solutions, and they do not consider parallel

computation.

32

Conclusions

In this thesis, we presented three solutions to three challenging problems in high-
performance in-memory data processing to facilitate the adoption of modern hardware

in data management systems.

First, we presented HB*-Tree, a unique design for B*-Tree, which is specifically tailored
for a heterogeneous computing platform with a hybrid memory architecture. In contrast
to previous approaches, which are intended to utilize an individual multicore CPU or a
many-core GPU, HB*-Tree is capable of jointly leveraging the hybrid memory architecture
and the computing resources of heterogeneous CPU/GPU architectures. For this purpose,
we proposed an indexing solution based on a hybrid memory layout and a heterogeneous
search algorithm. Our hybrid memory layout distributes the tree nodes between CPU and
GPU memories according to the frequency of access, and our heterogeneous algorithm
jointly utilizes both the CPU and GPU to perform search queries. These two techniques
enabled HB*-Tree to achieve high-throughput search performance over large volumes of
data.

To evaluate the advantage of our hybrid design for tree-based data indexing, we compared
it against our CPU-optimized indexing data structure, which is a novel in-memory B*-
Tree utilizing various optimization techniques such cache blocking and SIMD-enabled

parallelism. Our CPU-optimized B*-Tree attains a 1.3 times higher throughput compared

33

with FAST, the fastest reported indexing performance for a comparable indexing data
structure running on a single CPU. Exploiting the computing capabilities of a heteroge-
neous system, HB*-Tree outperforms the CPU-optimized solution by a factor of 2.4 on

average.

Second, we presented PIM-Tree, a novel data structure to tackle the challenges in parallel
indexing of highly dynamic data. Unlike previous parallel indexing data structures that
resolve concurrent operations at the tree node level, PIM-Tree divides indexed values into
disjoint ranges and relies on query distribution to exploit parallelism. The combination
of two techniques, range partitioning and delta update, enabled PIM-Tree to provide
frequent update queries with a low concurrency overhead, which is highly required for
data indexing in streaming applications. To complement our data structure, we introduced
a parallel stream join algorithm on the basis of shared indexes to exploit the computing

power of a multicore CPU.

The evaluation results using an octa-core processor indicated that our parallel window
join algorithm utilizing PIM-Tree achieves an up to 5.6 times higher throughput compared
with single-threaded window join. Furthermore, single-threaded window join using PIM-
Tree resulted in a 60% higher throughput than that using B*-Tree, which indicates the

effectiveness of PIM-Tree in streaming applications.

Last, we introduced ADS-kNN, a distributed solution for kNN join over data streams
based on adaptive space partitioning. The load distribution in ADS-kNN is based on an
online workload analysis and repartitioning that does not require any prior knowledge
about the input data distribution and better suits real-time applications. To this end,
we proposed an adaptive data partitioning mechanism that constantly monitors and
adjusts the load distribution among join-cores to maintain the system in an efficient
state. Furthermore, we presented a multistage kNN query execution plan for scalable

and low-latency kNN query execution.

Utilizing 52 join-cores, distributed stream kNN join using ADS-kNN resulted in a more
than 30 times higher throughput than the single-threaded implementation, which in-
dicates a parallelization efficiency of 57%. Furthermore, ADS-kNN achieved a 12 times
higher throughput than distributed window join based on round-robin partitioning

utilizing the same 52 join-cores.

34

Bibliography

N. Khan, 1. Yaqoob, I. A. T. Hashem, et al. “Big data: survey, technologies, opportunities, and
challenges.” In: The scientific world journal 2014 (2014).

M. Chen, S. Mao, and Y. Liu. “Big data: A survey.” In: Mobile networks and applications 19.2 (2014),
pp- 171-209.

Statista Inc. Number of smartphones sold to end users worldwide from 2007 to 2020. 2021. URL:

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/.

Statista Inc. Global digital population as of January 2021. 2021. URL: https://www.statista.com/
statistics/617136/digital-population-worldwide/.

Statista Inc. Volume of data/information created, captured, copied, and consumed worldwide from 2010
to 2024. 2021. URL: https://www.statista.com/statistics/871513/worldwide-data-created/.

John C. McCallum. Memory Prices 1957+. 2021. URL: https://jcmit.net/memoryprice.htm.

Karl Rupp. Microprocessor Trend Data. 2020. URL: Trend%20Data.https://www.github.com/karlrupp/
microprocessor-trend-data.

H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang. “In-Memory Big Data Management and
Processing: A Survey.” In: IEEE Transactions on Knowledge and Data Engineering 27.7 (2015), pp. 1920—
1948. por1: 10.1109/TKDE.2015.2427795.

G. Blake, R. G. Dreslinski, and T. Mudge. “A survey of multicore processors.” In: IEEE Signal Processing
Magazine 26.6 (2009), pp. 26-37.

H. Kasim, V. March, R. Zhang, and S. See. “Survey on parallel programming model.” In: IFIP
International Conference on Network and Parallel Computing. Springer. 2008, pp. 266—275.

A.]. Chris, L. Jan, and S. Noah. CouchDB: The definitive guide. 2010.
R.Elmasriand S. B. Navathe. Fundamentals of Database Systems. 7th. Pearson, 2015. 1SBN: 0133970779.

J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. “PALM: Parallel architecture-friendly latch-
free modifications to B+trees on many-core processors.” In: Proceedings of the VLDB Endowment
4.11 (2011), pp. 795-806.

35

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://jcmit.net/memoryprice.htm
Trend%20Data.https://www.github.com/karlrupp/microprocessor-trend-data
Trend%20Data.https://www.github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1109/TKDE.2015.2427795

BIBLIOGRAPHY

[25]

[26]

[27]

J.J. Levandoski, D. B. Lomet, and S. Sengupta. “The Bw-Tree: A B-tree for new hardware platforms.”
In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE. 2013, pp. 302-313.

S. A. McKee. “Reflections on the memory wall.” In: Proceedings of the 1st conference on Computing
frontiers. 2004, p. 162.

M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D. Owens. “Engineering a high-
performance GPU B-tree.” In: Proceedings of the 24th symposium on principles and practice of parallel
programming. 2019, pp. 145-157.

D. B. Kirk and W. H. Wen-Mei. Programming massively parallel processors: a hands-on approach.
Morgan kaufmann, 2016.

D. Dell’Aglio, E. Della Valle, F. van Harmelen, and A. Bernstein. “Stream reasoning: A survey and
outlook.” In: Data Science 1.1-2 (2017), pp. 59-83.

W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter. “Real-time stream processing for Big Data.” In:
it-Information Technology 58.4 (2016), pp. 186—194.

M. Stonebraker, U. Cetintemel, and S. Zdonik. “The 8 requirements of real-time stream processing.”
In: ACM Sigmod Record 34.4 (2005), pp. 42—47.

P. M. Grulich, B. Sebastian, S. Zeuch, et al. “Grizzly: Efficient Stream Processing Through Adaptive
Query Compilation.” In: Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’20. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 2487-2503.

L. Golab, S. Garg, and M. T. Ozsu. “On indexing sliding windows over online data streams.” In:

International Conference on Extending Database Technology. Springer. 2004, pp. 712-729.
M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. “Towards scalable location-aware

services: requirements and research issues.” In: Proceedings of the 11th ACM international symposium

on Advances in geographic information systems. 2003, pp. 110-117.
S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. “MD-Hbase: A scalable multi-dimensional data

infrastructure for location aware services.” In: 2011 IEEE 12th International Conference on Mobile
Data Management. Vol. 1. IEEE. 2011, pp. 7-16.

Z. Cheng and J. Shen. “Just-for-Me: an adaptive personalization system for location-aware social
music recommendation.” In: Proceedings of international conference on multimedia retrieval. 2014,
pPp- 185-192.

J.J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. “LARS: A location-aware recommender
system.” In: 2012 IEEE 28th international conference on data engineering. IEEE. 2012, pp. 450-461.

C. Xia, H. Lu, B. C. Ooi, and J. Hu. “Gorder: an efficient method for knn join processing.” In:
Proceedings of the Thirtieth international conference on Very large data bases-Volume 30. 2004, pp. 756—
767.

S. Zeuch, B. D. Monte, J. Karimov, et al. “Analyzing efficient stream processing on modern hardware.”
In: Proceedings of the VLDB Endowment 12.5 (2019), pp. 516—530.

36

BIBLIOGRAPHY

(39]

[40]

[42]

[43]

[44]

B. Del Monte, S. Zeuch, T. Rabl, and V. Markl. “Rhino: Efficient management of very large dis-
tributed state for stream processing engines.” In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2020, pp. 2471-2486.

Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Version 3.1. Tech. rep.
2015. URL: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

R. Chandra, L. Dagum, D. Kohr, et al. Parallel programming in OpenMP. Morgan kaufmann, 2001.
J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

L. Arge, G. S. Brodal, and R. Fagerberg. “Cache-Oblivious Data Structures.” In: Handbook of Data
Structures and Applications 27 (2004), pp. 7-1.

V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. “Software pipelining.” In: ACM Computing Surveys
(CSUR) 27.3 (1995), pp. 367-432.

E. D. Demaine. “Cache-oblivious algorithms and data structures.” In: Lecture Notes from the EEF
Summer School on Massive Data Sets 8.4 (2002), pp. 1-249.

J. Rao and K. A. Ross. “Making B+-trees cache conscious in main memory.” In: Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 2000, pp. 475-486.

T. Jain and T. Agrawal. “The haswell microarchitecture-4th generation processor.” In: International

Journal of Computer Science and Information Technologies 4.3 (2013), pp. 477-480.

R. Patel and A. Rajwat. “A survey of embedded software profiling methodologies.” In: arXiv preprint
arXiv:1312.2949 (2013).

R. A. Bridges, N. Imam, and T. M. Mintz. “Understanding GPU power: A survey of profiling, modeling,
and simulation methods.” In: ACM Computing Surveys (CSUR) 49.3 (2016), pp. 1-27.

NVIDIA. CUDA Toolkit Documentation Version 6.5: Profiler User’s Guide. 2015. URL: http://docs.

nvidia.com/cuda/profiler-users-guide.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. “A portable programming interface for
performance evaluation on modern processors.” In: The international journal of high performance

computing applications 14.3 (2000), pp. 189-204.

M. Daga and M. Nutter. “Exploiting coarse-grained parallelism in B+tree searches on an APU.” In:
2012 SC Companion: High Performance Computing, Networking Storage and Analysis. IEEE. 2012,
pp. 240-247.

K. Kaczmarski. “B+-tree optimized for GPGPU.” In: OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". Springer. 2012, pp. 843-854.

J. Fix, A. Wilkes, and K. Skadron. “Accelerating braided b+tree searches on a GPU with CUDA.” In:
2nd Workshop on Applications for Multi and Many Core Processors: Analysis, Implementation, and
Performance (A4MMC), in conjunction with ISCA. 2011.

37

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide

BIBLIOGRAPHY

[45]

[50]

[51]

C. Kim, J. Chhugani, N. Satish, et al. “FAST: fast architecture sensitive tree search on modern CPUs
and GPUs.” In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data. 2010, pp. 339-350.

B. Gedik, R. R. Bordawekar, and S. Y. Philip. “CellJoin: a parallel stream join operator for the cell
processor.” In: The VLDB journal 18.2 (2009), pp. 501-519.

J. Karimov, T. Rabl, and V. Markl. “AJoin: Ad-Hoc Stream Joins at Scale.” In: 13.4 (Dec. 2019),
pp. 435-448.

J. Teubner and R. Mueller. “How soccer players would do stream joins.” In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of data. 2011, pp. 625-636.

P. Roy, J. Teubner, and R. Gemulla. “Low-latency handshake join.” In: Proceedings of the VLDB
Endowment 7.9 (2014), pp. 709-720.

Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. “Scalable distributed stream join processing.” In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data. 2015, pp. 811-825.

M. Najafi, M. Sadoghi, and H.-A. Jacobsen. “SplitJoin: A scalable, low-latency stream join ar-
chitecture with adjustable ordering precision.” In: 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 16). 2016, pp. 493-505.

R. Bayer and M. Schkolnick. “Concurrency of operations on B-trees.” In: Acta informatica 9.1 (1977),
pp- 1-21.

P. L. Lehman and S. B. Yao. “Efficient locking for concurrent operations on B-trees.” In: ACM
Transactions on Database Systems (TODS) 6.4 (1981), pp. 650-670.

L Pandis, P. T6zlin, R. Johnson, and A. Ailamaki. “PLP: page latch-free shared-everything OLTP.” In:
Proceedings of the VLDB Endowment 4.10 (2011), pp. 610-621.

S. K. Cha, S. Hwang, K. Kim, and K. Kwon. “Cache-conscious concurrency control of main-memory

indexes on shared-memory multiprocessor systems.” In: VLDB. Vol. 1. 2001, pp. 181-190.

Z.Wang, A. Pavlo, H. Lim, et al. “Building a bw-tree takes more than just buzz words.” In: Proceedings
of the 2018 International Conference on Management of Data. 2018, pp. 473-488.

A. Aji, F. Wang, H. Vo, et al. “Hadoop-GIS: A high performance spatial data warehousing system
over MapReduce.” In: Proceedings of the VLDB Endowment International Conference on Very Large
Data Bases. Vol. 6. 11. NIH Public Access. 2013, pp. 1009-1020.

A. Eldawy and M. F. Mokbel. “Spatialhadoop: A mapreduce framework for spatial data.” In: 2015
IEEE 31st international conference on Data Engineering. IEEE. 2015, pp. 1352-1363.

A. M. Aly, A. R. Mahmood, M. S. Hassan, et al. “AQWA: adaptive query workload aware partitioning
of big spatial data.” In: Proceedings of the VLDB Endowment 8.13 (2015), pp. 2062-2073.

F. Baig, H. Vo, T. Kure, J. Saltz, and F. Wang. “SparkGIS: Resource aware efficient in-memory spatial
query processing.” In: Proceedings of the 25th ACM SIGSPATIAL international conference on advances
in geographic information systems. 2017, pp. 1-10.

38

BIBLIOGRAPHY

[61]

[62]

G. Chatzimilioudis, C. Costa, D. Zeinalipour-Yazti, W.-C. Lee, and E. Pitoura. “Distributed in-memory
processing of all k nearest neighbor queries.” In: IEEE transactions on knowledge and data engineering

28.4 (2015), pp. 925-938.

N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. “Approximate NN queries on streams with guaranteed
error/performance bounds.” In: Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. 2004, pp. 804-815.

K. Mouratidis and D. Papadias. “Continuous nearest neighbor queries over sliding windows.” In:

IEEE transactions on knowledge and data engineering 19.6 (2007), pp. 789-803.

C. Yang, X. Yu, and Y. Liu. “Continuous KNN join processing for real-time recommendation.” In:
2014 IEEE International Conference on Data Mining. IEEE. 2014, pp. 640-649.

K. Pripuzi¢, I. P. Zarko, and K. Aberer. “Distributed processing of continuous sliding-window k-NN
queries for data stream filtering.” In: World Wide Web 14.5-6 (2011), pp. 465-494.

39

Appendix A

41

A Hybrid B+-tree as Solution for In-Memory Indexing on
CPU-GPU Heterogeneous Computing Platforms

Amirhesam Shahvarani
Fakultat fir Informatik
Technische Universitat Minchen
shahvara@in.tum.de

ABSTRACT

An in-memory indexing tree is a critical component of many
databases. Modern many-core processors, such as GPUs, are
offering tremendous amounts of computing power making
them an attractive choice for accelerating indexing. How-
ever, the memory available to the accelerating co-processor
is rather limited and expensive in comparison to the memory
available to the CPU. This drawback is a barrier to exploit
the computing power of co-processors for arbitrarily large
index trees.

In this paper, we propose a novel design for a BT-tree
based on the heterogeneous computing platform and the
hybrid memory architecture found in GPUs. We propose
a hybrid CPU-GPU B*-tree, — HB™-tree, — which targets
high search throughput use cases. Unique to our design is
the joint and simultaneous use of computing and memory re-
sources of CPU-GPU systems. Our experiments show that
our HB"-tree can perform up to 240 million index queries
per second, which is 2.4X higher than our CPU-optimized
solution.

CCS Concepts

eInformation systems — Data management systems;
Data structures; eComputer systems organization —
Multicore architectures;

Keywords

Heterogeneous Computing; Indexing; In-memory Database;
Bt-tree

1. INTRODUCTION

The BT -tree is a well known dynamic data structure,
widely used as index in database management systems, data
warehouses, online analytical processing (OLAP), decision
support systems and data mining [10, 26, 4, 15]. Since
the memory capacity of modern servers is sufficiently large,
in many databases today, indexing information is kept in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2882903.2882918

1523

Hans-Arno Jacobsen
Fakultat fir Informatik
Technische Universitat Minchen

main memory in order to eliminate performance limitations
arising from expensive disk 1/O [35, 2]. Due to different
characteristics of main memory, implementing an efficient
in-memory B*-tree involves different constraints [42].

Approaches that leverage GPUs to accelerate processing
have become popular in many domains due to the superior
computing power to price ratio offered by many GPUs [39,
41]. Also, in databases, several approaches have emerged
to demonstrate the benefits of using GPUs to accelerate
processing, such as, GPUTeraSort for sorting billion-record
wide-key databases [17] and GPU-accelerated relational join
processing [23][6]. Also, tree-based indexing, as a critical
operation in databases, has been in the focus of recent ap-
proaches [27, 28, 13].

A GPU offers a higher memory bandwidth as compared
to a CPU, which makes the GPU an attractive choice for
database indexing. However, the efficient utilization of both
memory bandwidth and computation resources of a GPU is
a challenging endeavor because of distinct architecture of the
GPU, which forces programmers to use the same arrange-
ment of parallel threads for both computation and data
transfer [7]. In addition, leveraging the GPU as a process-
ing accelerator necessarily involves data transfer between
main memory and GPU memory, resulting in additional la-
tency [20].

In this paper, we present HB'-tree (Hybrid BT-tree),
a modified BT-tree, jointly leveraging CPU and GPU re-
sources of the same compute platform. Our design is geared
towards lookup intensive applications where tree updates
are performed through bulk update processing, applicable
to index updates in online analytical processing (OLAP),
decision support systems and data mining [47, 48, 18].

Realizing indexing operations based on either CPU or
GPU is subject to different trade-offs. CPU performance
is bounded by memory bandwidth as the index grows be-
yond the size of the last level cache (LLC), while GPU per-
formance is bounded by memory capacity. Although GPU’s
memory architecture is efficient enough enabling the GPU to
reach higher throughput, the memory available to the GPU
is more limited than CPU’s main memory. Intuitively speak-
ing, our design objective is to combine these characteristics
of CPU and GPU memory to achieve high throughput for in-
dex tree operations over high volumes of data. We explore a
hybrid design that scatters index data among CPU and GPU
memory according to the volume and the frequency of ac-
cesses. Complementing this design, we proposed a heteroge-
neous CPU-GPU algorithm for searching the HB™-tree. We
develop a task pipelining method between CPU and GPU to

overcome the communication cost between them. For better
computation resource utilization, the task pipeline is further
extended by double buffering, which is a concurrency design
pattern for avoiding delay in data transfer [19]. We also de-
sign a load balancing scheme to improve resource utilization
for systems with different GPU to CPU computation power
ratios.

Furthermore, we propose two versions of HBT-tree in this
paper. In addition to the regular HBT-tree, capable of effi-
ciently performing bulk updates, we propose an array repre-
sentation, referred to as implicit HBT-tree, which is more ef-
ficient for high-throughput search-only applications. More-
over, we develop a bulk update mechanism for the regular
HB*-tree, which deals with the challenges of utilizing a hy-
brid memory architecture. For both regular and implicit
HB™-tree, we develop and evaluate a 64-bit and a 32-bit
key versions of the tree. The data structure and algorithm
designs we describe are based on using 64-bit keys; the de-
sign differences for the 32-bit tree version are summarized
at the end of each section.

To the best of our knowledge, HB'-tree is among the first
indexing approaches to jointly leverage the heterogeneous
computing power of CPU and GPU as well as jointly uti-
lize their separate memories to achieve a higher aggregate
bandwidth than using either memory alone.

Our approach has two main advantages over previous het-
erogeneous implementations of Bt-tree employing, for ex-
ample, an APU (Accelerated Processing Unit) [13]. First,
our design benefits from the hybrid memory architecture to
improve memory bandwidth instead of relying on the CPU’s
main memory alone. Heterogeneous platforms increase the
potential computing power of a system, but applications
which are bandwidth bounded cannot leverage the extra
compute resources unless the memory bandwidth is also im-
proved [29]. Second, we accelerate the index search using a
discrete GPU which provides higher computing power than
an integrated GPU, as found in APUs. An APU is a sys-
tem processor equipped with additional processing resources
such as a FPGA (Field-Programmable Gate Array) or an in-
tegrated GPU to accelerate a specific kind of computation.
However, the computing power of these integrated compo-
nents are not comparable to high-end discrete FPGAs or
GPUs that are interconnected with the system via the PCle
bus.

We opted to develop our approach using CUDA, which is
the widely-used parallel computing platform and program-
ming model developed by Nvidia for general purpose com-
puting on GPUs [44]. However, there is no technical limi-
tation in our design that prevents porting our approach to
other GPU platforms, such as OpenCL [46].

To highlight the advantages of our hybrid solution, we fur-
ther develop a CPU-optimized, multi-threaded BT -tree, as
baseline for comparison with our HB¥-tree. For this design,
we also develop regular and implicit as well as 64-bit and
32-bit tree versions.

To ensure our CPU-optimized B -trees exhibits adequate
performance, we also implement FAST — the fastest reported
indexing performance of a comparable solution running on a
single CPU [29] — and compare our implementations against
it. Our CPU-optimized B*-tree attains 1.3X higher through-
put than FAST on average. Furthermore, for our CPU-
optimized tree, we propose a novel tree structure optimiza-
tion based on cache blocking and SIMD-enabled parallel

1524

search algorithm, and show how the use of huge pages help
to increase the throughput of index search operations using
a single CPU. Several components of the CPU-optimized
BT -tree are used in the implementation of our HB™-trees.

We evaluate our solutions for varying number of tuples
from 8M to 1B and show how each design decision affects
the indexing performance.

HB™-tree achieves up to 240 and 210 million queries per
second for implicit and regular tree versions, respectively,
which is 2.4X times higher than the results for our CPU-
optimized BT -tree.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related approaches. Section 3 provides back-
ground information on B -tree. Section 4 presents our CPU-
optimized design and implementation of B -tree. Section 5
introduces our HBT-tree, including implementation details.
Section 6 presents our experimental evaluation. Section 7
gives our conclusions and identifies future works.

2. RELATED WORK

A large body of work has been developed to optimize B-
tree-like indexing. In this section, we focus on analyzing
related work on in-memory indexing employing the power
of parallel computing platforms.

BT-tree is an indexing structure originally designed for
systems with small main memory and comparatively large
hard disks [8][15]. To optimize for costly disk 1/O, BT -tree
operations are performed for entire disk blocks yielding fewer
I/O transactions.

Flash-aware indexing trees such as BF-tree, FD-Tree, and
LA-Tree have been proposed to reap performance benefits
from the superior bandwidth and latency of solid state dri-
ves [5, 34, 1]. Furthermore, there exist many approaches for
in-memory indexing in order to exploit the superior band-
width and latency of system main memory. For example,
Zhang et al. [22] provide a comprehensive review of data
structures for in-memory data management such as for time-
/space efficient indexing and concurrency control.

T-tree was proposed for databases where both indexing
information and data records reside in main memory [31].
Lu et al. [36] showed that BT-tree outperforms T-tree when
concurrency control mechanisms are enforced. Rao et al. [42]
introduce a cache-conscious indexing data structure, called
Cache Sensitive Search Tree (CSS-tree), which is designed
for predominantly static data. Later, Rao et al. [43] ex-
tended CSS-tree to CSB™-tree to support incremental up-
dates.

The Bw-tree is designed to exploit the caches of mod-
ern multi-core chips and the superior bandwidth of flash
storage [33]. Zhou et al. [50] present an access buffering
technique for in-memory tree-structured indexes that avoids
cache thrashing. Mao et al. [37] introduced Masstree, a
shared concurrent data structure combining B*-tree and
tries tailored to multi-cores. Hankins et al. [21] studied
the effect of node size on cache misses, instruction count,
and TLB misses for the CSB™*-tree. Based on their exper-
iments, using nodes with sizes of 512 bytes and above, re-
sulted in fewer TLB misses and better performance, while
setting nodes size equal to the cache line width produced
fewer cache misses but higher TLB misses. Chen et al. [11]
explored how prefetching could improve operations in B*-
tree, also concluding that nodes wider than a single cache-
line resulted in better performance. ART (Adaptive Radix

Tree) and FAST (Fast Architecture Sensitive Tree) are the
latest data structures targeting high throughput in-memory
indexing [32] [29]. ART is an adaptive radix tree (trie) for
high speed in-memory indexing which exhibits better mem-
ory usage than previous radix trees. Alvarez et al. [3] com-
pared the lookup throughput and memory footprint of ART
to different data structures including B*-tree and hash in-
dexes. FAST is a static binary-tree developed for multi-core
systems, which is configurable according to system char-
acteristics such as cache-line size, memory page size and
SIMD width. Sewall et al. [45] introduced PALM, a parallel
latch-free modification of a BT-tree designed for multi-core
processors which is capable of concurrent search and update
processing.

All these approaches are developed to utilize either a sin-
gle-core or a multi-core CPU expect FAST which is capa-
ble to be configured for many-core GPU accelerators. But
it is only able to operate on GPU resident data and as-
sumes that the data fits into the GPU memory; it is there-
fore bounded by the GPU memory capacity. There are
other GPU-accelerated index structures, which suffer from
the same limitations. Fix et al. [16] presented an approach
for a GPU-accelerated B'-tree by proposing to modify the
memory layout of the BT-tree optimized for GPU mem-
ory. No GPU search throughput is reported, but a 9.4X to
19.2X speedup over a single-threaded CPU implementation
is shown. Kaczmarski [27] proposed a GPU-specific imple-
mentation of BT-tree which is capable of performing efficient
updates. Although this approach performs bulk insertions
faster than a CPU implementation, search throughput does
not surpass 25.6 Kilo Queries Per Second (including copying
keys from CPU to GPU and returning values back). Also
in [28], the authors proposed a p-ary search with the goal of
improving response time of query search using GPUs.

The limited capacity of GPU memory is addressed by
other approaches. Daga et al. [13] utilize an APU (Accel-
erated Processing Unit) to accelerate search in a B*-tree.
Since the integrated many-core processor is directly access-
ing system main memory, their approach does not suffer
from the penalty of having to move data between CPU and
GPU memory and the limited capacity of GPU memory does
not constitute a problem. However, it is still bounded by sys-
tem main memory bandwidth, which is a critical problem for
tree traversal as the tree grows [29]. Their implementation
achieved up to 18 MQPS for a 6-core CPU and 70 MQPS
for an APU (operating on system memory). Although, an
APU is a heterogeneous computing platform, our solution
based on a similar platforms has two main advantages. First,
we are jointly utilizing two memory components, which is
critical to improve the overall system memory bandwidth,
while the APU approach is still relaying only on system main
memory. Second, the computing power of high-end discrete
GPUs is significantly higher than the integrated accelerator
available in APUs.

3. B*-TREE BACKGROUND

BT -tree is a variation of B-tree which stores values only in
leaf nodes, while inner nodes only comprise keys [15]. Hence,
inner nodes and leaf nodes are represented by different data
structures. Beside the characteristics adapted from B-tree
such as height-balance and optimized memory access, BT-
tree offers faster range query support because of its sorted
linked leaf nodes. The branching factor of the inner nodes

1525

Level 0
.

Level 1 Level n-1

AR

olo[-[QQ

Inner Nodes Segment
(I-segment)

BEEEEEEEEEEEEEEEE

Leaf Nodes Segment (L-segment)

Figure 1: Arrangement of nodes in I-segment and
L-segment.

is called the order of the B™-tree. Inner nodes of order m,
store up to m — 1 keys and m child references.

Search in BT-tree is a step-wise process, traversing the
tree from the root node, each step consists of two parts:
first, the search detects the child node associated with an
interval which holds the targeted key, and, second, traversal
proceeds to the next node. The process continues until the
target key-value pair is found in a leaf node. To perform a
range query on a BT-tree, one can simply search for the first
key in the range and then traverse leaf nodes until the last
key is found.

Data structures in which the structural information is
implicitly preserved in the way data is stored rather than
explicitly through pointers, are called implicit data struc-
tures [38]. In implicit representation of B¥-tree, nodes are
arranged in a breadth-first fashion in a one dimensional ar-
ray. Since a node’s child locations are known, and there is
no need to store pointers, an implicit Bt-tree requires less
memory and provides higher search throughput as compared
to a regular Bt-tree. However, using an implicit represen-
tation leads to a linear time penalty for insert and delete
operations. To distinguish the implicit representation from
the one with pointers, we refer to the latter as the regular
BT-tree and the former the implicit Bt -tree in the rest of
this paper.

The notations we use in this paper is summarized below.

H : Height of root node (leaves are at height zero).

S : Size of a variable (a key or a value) in bytes.

S1 : Size of an inner node in bytes.

St @ Size of a leaf node in bytes.

Fr : Maximum fanout of an inner node.

Pr, : Maximum capacity of key-value pairs in a leaf node.

4. CPU-OPTIMIZED B*-TREE

In this section, we describe our parallel design of both,
the implicit and the regular Bt-tree, optimized to exploit
the features of a multi-core Intel CPU. Our CPU-optimized
solutions serve as baseline in the evaluation of our hybrid
solution, the HB™-tree, described in the next section. The
three main optimization we applied for the CPU-optimized
solutions are : (1) an SIMD-enabled search algorithm based
on the Intel AVX extension, (2) cache blocking to minimize
cache misses, (3) huge page utilization to reduce TLB misses.

4.1 Tree Layout

The node structures of the CPU-optimized BT -tree are
designed with regards to minimizing both cache and TLB
misses during search operations. We make use of huge pages
by developing our own memory allocator which allows deter-

' 1 Cache Line ' ' 1 Cache Line '

@ [K| n] - K]V ® & &] - | &] K]
. 64 Bytes . 512 Bytes . 512 Bytes .

© (1] [0]x | K] [x| G 6] = Gl
1 Cache Line Leaf Node Information —

& (K K0 e 6

Figure 2: Node structure for CPU-optimized Bt-
tree. (a) leaf node on implicit Bt-tree (b) inner
node of implicit BT-tree (c) inner node of regular
Bt-tree (d) leaf node of regular Bt-tree (X indicates
the element in fixed to maximum value).

mining whether a node resides on a huge page or not. Cou-
pled with our tree node segmentation, which separates inner
and leaf nodes into different segments, our approach mini-
mizes the cost of TLB misses. We also use cache-conscious
node structures for better cache data utilization.

The nodes are split into two segments: Inner node seg-
ment (I-segment) and leaf node segment (L-segment). The
I-segment is always allocated to huge pages, while the L-
segment could be allocated to either a huge page or a 4KB
page, depending on the total size of the BT-tree. For a given
set of N tuples, the space needed for the I-segment (Ispace)
and L-segment (Lspace) is given in Equation 1 (assuming the
tree is full). Since there are only four entries in the last level
TLB for 1GB pages and to assure that accessing inner nodes
cause no TLB misses, the I-segment must not be larger than
4GB.

N N
PL(Fr —1) P (1)

Query search starts from the I-segment, where the root
resides, and after passing all inner nodes, continues in the
L-segment to determine the target key-value pair in the leaf.

The total number of TLB misses depends on whether the
L-segment is placed in a 1GB or a 4KB page. In case of
using a 4KB page, since accessing the I-segment causes no
TLB miss and each leaf node resides within its individual
4KB page, there is at most a single TLB miss per lookup.
If the required memory to store both segments is not more
than 4GB, the best option is to also allocate the L-segment
on the huge page. Using such a configuration causes no TLB
miss for the entire search operation. If the size of the tree
exceeds 4GB and the L-segment is allocated to a huge page,
the total number of misses depends on the sequence of input
queries and the TLB replacement policy.

We design different inner node data structures for our im-
plicit and regular BT-tree, as detailed in Figure 2.

Implicit BT-tree: Since in this tree organization, nodes
are arranged in a breadth first fashion, the child node loca-
tions are implicitly known. If the node A is the i:, node of a
tree at level m in breadth first order, then the j¢p child of A
is at position Offset[m-+1]+ix Fr+j, where Offset[l] is point-
ing to the beginning of the l;5-level. As a result, it is possible
to achieve a higher fanout using the same amount of mem-
ory in comparison to the regular B*-tree. We dedicate one
cache line per each inner or leaf node (St = S, = 64). The
only content of leaf nodes are key-value pairs as it shown in
Figure 2(a). Since all nodes are fully occupied and they are

Ispace - X SI7 Lspace - X SL

1526

First comparison First comparison

A A
v A Al
Second comparison First comparison Second comparison
1
(@) (b)

Second comparison

(c)

Figure 3: Node search using AVX unit. (a) linear
64-bit (b) hierarchical 64-bit (c) hierarchical 32-bit.

placed in order, there is no need to explicitly maintain node
size as well as next and previous node pointers for the linked
list of leaves. Each inner node filled with eight keys as illus-
trated in Figure 2(b). The number of cache lines required
per search query is H + 1, where H = [logg (N/4+ 1)].

Regular Bt-tree: The minimum amount of space re-
quired for an inner node with m children is equal to (m —
1)S+mP bytes, where P is the reference size in bytes. Con-
sidering S = P = 8, the maximally achievable fanout using
a single cache line is limited to 4. Such a small fanout leads
to many random memory accesses during search operations.
For better lookup performance, we propose a structure for
inner nodes consisting of indexes, keys and child references.
As illustrated in Figure 2(c), each inner node consist of 17
cache lines (St = 1088), where the first one is dedicated
to indexes, while keys and references are arranged in the
following sixteen cache lines (F; = 64). Each index is as-
signed to the maximum value of the corresponding cache
line (I, = Kss). Utilizing indexes, only three cache lines
are retrieved to find the successor node. The search algo-
rithm first searches indexes and, based on the comparison
result, fetches the corresponding cache lines, which includes
the targeted child reference.

We apply inner node fragmentation in order to achieve
better memory and cache line data utilization. The data of
each inner node is broken up into two fragments. One frag-
ment contains key-value pairs and child references, and the
other one contains the node size, parent and sibling refer-
ences. Whenever an inner node is needed, our node memory
allocator dedicates one of each fragment from two separated
data structures in such a way that both fragments share the
same index which can be used to retrieve both fragments
later on. Also, we set all empty keys of each inner node to
the maximum value in our implementation (2" — 1 for an n-
bit integer), so that the lookup algorithm is able to perform
node search without knowing the inner node size.

The size of a leaf node in the regular BT-tree impacts
the range query performance. Moving to the successor leaf
node in the implicit B*-tree can be done very efficiently,
as leaf nodes are arranged sequentially. But the small leaf
node capacity of the regular BT-tree causes a series of cache
misses during range query execution and, thus, decreases

performance, while leaf nodes bigger than a cache line lead
to slower leaf node search. To address this problem, we de-
signed bigger leaf nodes and make use of a dedicated memory
pool manager for allocating leaf nodes and last level inner
nodes so that both point and range queries can be realized
efficiently. We pack 64 small leaf nodes into a bigger node,
which we extend with another cache line to store leaf node
information. Each last level inner node is only related to one
big leaf node. Similar to the node fragmentation technique
we used, here, our memory pool manager allocates leaf nodes
and last level inner nodes from two different memory pools
in such a way that both nodes share the same index. Conse-
quently, the tree lookup algorithm can directly retrieve the
cache line in the leaf node, where the targeted key is located,
by using the index of the last inner node and the inner node
search result. Moreover, we set all empty elements of a leaf
node to the maximum value, which enables the lookup algo-
rithm to search a leaf node without knowing the size of the
leaf node. In case the search key is the maximum value, the
lookup algorithm must read the node size to perform leaf
node search. Although the capacity of the bigger leaf node
is 256 key-value pairs, we consider Pr, = 4 in our analysis
since the addressable units from a last inner node are cache
lines with a capacity of 4. The structures of implicit and
regular BT-tree are illustrated in Figure 2(a) and (d), re-
spectively. The total number of cache lines needed for each
query is 3H + 1, where H (height of tree) is:

’710g32 (%+ 1ﬂ <H< Llogw (M)J +1 (2

2
Using 32-bit variables, 16 keys or values can fit into a
cache line. Consequently, an inner node’s fanout increases
to 17 and 256 for implicit and regular B'-tree, respectively.
The capacity of each cache line in leaf nodes increases to 8.

4.2 Utilizing SIMD Unit for Search

The Advanced Vector Extensions 2 (AVX2) is the latest
enhancement to Intel x86 processors for SIMD operations.
AVX2 is capable of operating on 256-bit registers, which is
equivalent to eight 32-bit or four 64-bit integers.

Since the size of AVX registers is half the size of a cache
line, it is not feasible to compare an entire cache line using a
single AVX comparison operation. We propose two different
approaches to employ the AVX unit: linear and hierarchical.

The linear approach divides the cache line into two equal
parts and separately searches each one. In contrast, the
hierarchical approach divides the array into three equal parts
and uses the boundary keys to locate the part where the
target is placed.

The hierarchical approach needs less data loaded into
AVX2 registers, while the linear approach is control depen-
dency free, which is safe for out-of-order execution. We also
implemented sequential search as a baseline to measure the
resulting speedup. Our AVX-enabled search algorithms are
illustrated in Figure 3.

Software Pipelining is a method to improve loop perfor-
mance by rearranging instructions such that the instructions
of the modified loop are chosen from different iterations of
the original loop [24]. Using this method, dependent instruc-
tions from a single iteration are scattered among multiple
loop iterations, so that the CPU pipeline can be scheduled
to reduce instruction stalls caused by memory latency. To

1527

this end, each CPU thread loads a batch of queries and
resolves them concurrently. Using this configuration, the
thread switches to resolving another query whenever the
current search operation is blocked by a data access. The
optimal size for batches depends on the system configura-
tion. Small batch sizes cannot provide reasonable overlap,
while large overlap leads to inefficient CPU register utiliza-
tion. In our experiments, a size of 16 resulted in the best
performance. The total number of concurrent queries is up
to 16 x CPU Threads.

5. HYBRID CPU-GPU B*-TREE

In this section, we introduce the design of our CPU-GPU
hybrid BT-tree. We describe the tree’s memory layout and
the heterogeneous CPU-GPU search algorithm. Finally, we
present a load balancing method, as technique for fine-tuning
our hybrid tree across systems with different GPU-to-CPU
computation power ratios.

5.1 Overview

Current multi-purpose processors are heavily relying on
cache units to mitigate the memory wall problem [49]. For
trees which would fit entirely into the last level cache (LLC),
caching is very effective and memory latency would almost
vanish. However, search throughput drops noticeably as
the tree size surpasses LLC capacity and becomes mem-
ory bound [29]. Although techniques such as prefetching
and software pipelining are applicable for tree-based index
search to alleviate the memory latency problem, the system
performance is still bounded by the memory bandwidth [11,
29].

The results from previous efforts of implementing a B+-
tree on GPUs demonstrate the realizable performance ben-
efits [29]. Instead of relying on caching, GPUs use high
degrees of multi-threading and fast context switching logic
with near zero overhead, to hide memory latency [12]. Since
this mechanism is not affected by the volume of data, the
throughput of tree indexing using GPUs is more resilient
against tree growth. As result, GPU-based approaches out-
perform CPU-based approaches for tree sizes larger than
the LLC [29]. However, GPUs cannot maintain their per-
formance advantage, because the amount of their memory
is limited in comparison to CPUs. It is not feasible to make
use of the computational capabilities of GPUs, when the
tree grows beyond the GPU memory capacity using previ-
ous methods [13].

To address this dilemma, we propose a new BT -tree, called
HB"-tree, leveraging the hybrid memory architecture and
heterogeneous computing model of today’s computing plat-
forms. Here, we employ the computing power of discrete
many-core accelerators for index searching on trees larger
than the accelerator’s dedicated memory. We design HB™-
tree based on a compute platform accelerated by GPUs.
To achieve higher total memory bandwidth, we scatter the
nodes across GPU and CPU memory in a way which enables
the index search algorithm to utilize both memories concur-
rently. As a result, the effective system memory bandwidth
is the aggregate of both memory units. Also, we design a
heterogeneous search algorithm to minimize the communi-
cation overhead between processors and wtilize both — GPU
and CPU — simultaneously.

Since our target use cases are lookup-intensive and batch
update processing dominated scenarios (e.g., data ware/-

I-segment

GPU Memory o\rr*.;.*%

Inner Node

o

I-segment . Leaf Node

Figure 4: HB%-tree node arrangement: The trian-
gular area is the I-segment which is duplicated on
both CPU and GPU memory and the rectangular
area is the L-segment which resides only in the CPU
memory.

houses), we envision that our indexes are integrated into ex-
isting systems based on passing query input and index out-
put via CPU main memory. Also, all our HBT-tree versions
exhibits the same interface as our CPU-optimized BT -tree;
both follow the conventional B+-tree interface.

5.2 Tree Layout

Similar to the CPU-optimized tree, HBT-tree also consist
of I-segments and L-segments. The L-segment is configured
based on the CPU search algorithm and only resides in CPU
memory, while the I-segment resides in both GPU and CPU
memory, i.e., it is mirrored across both memory units. The
rationale for this design is that leaf nodes require more space
than inner nodes for storage and are less frequently accessed;
thus, we place them in CPU memory, which has a higher
capacity but lower bandwidth.

Figure 4 illustrates the placement of inner and leaf nodes
in the HBT-tree. The leaf nodes of both, the regular and
implicit HBT-tree, are identical to the ones of the CPU-
optimized version of the tree.

Unlike main memory, the GPU memory architecture does
not have a fixed unit of transfer. As a warp executes an
instruction accessing GPU memory, the GPU translates the
access into one or more aligned data transfers of size 32, 64 or
128 bytes [40]. This limitation is a consequence of coalesced
memory access, which results in higher bandwidth as well
as higher latency.

We discovered that the best balance between thread sched-
uling efficiency and bandwidth utilization results from using
transfers of size 64 bytes. Since our CPU-optimized B*-tree
nodes are also based on 64 byte transfers, the inner node
structures of HB'-tree are similar to our CPU-optimized
BT-tree. For the regular version, the inner nodes are iden-
tical, but we reduce fan-out of inner nodes in implicit HBT-
tree to 8, so that we can utilize the same thread hierarchy for
both data access and node search and avoid warp divergence,
and we set the last key (K3s) to the maximum representable
value.

1528

For the 32-bit version, F7 is increased to 16 and 256 for
implicit and regular HBT-tree, respectively.

5.3 Parallel Node Search on GPU

In this section, we first describe our search algorithm for
an arbitrary sized array and then explain how it is used for
search in HBT-tree.

For a given key and a sorted array of s elements such that
key is not bigger than the last element (key < array[s]), the
parallel search algorithm finds the maximum index i such
that key < arrayli]. The possible values for ¢ are [1..s].
To find the target index ¢, the search algorithm initializes s
threads (¢; : 1 < 7 < s), where each thread is assigned to a
single result value. First, each thread (¢;) compares key to
the associated value (array[j]) to check whether key is less
than or equal to array[j] and stores the result (r; : 0,1) in a
shared array. Based on the thread’s local comparison result
(r¢) and the result from the prior thread (r;—1), each thread
determines if it is assigned the final answer. If so (i.e., 7, = 1
and r:—1 = 0), the thread sets the final answer to its own
index.

Because the last keys of all inner nodes of HB'-tree are
always set to the maximum (2" — 1 for an n bit number), it
is assured that all queries are less than or equal to the last
key, and our search algorithm always returns a valid result.

Searching an inner node in the regular HBT-tree is slightly
different and requires three memory accesses instead of one
and involves three steps. First, the parallel search algorithm
is applied on indexes to determine the interval of keys con-
taining the search query. Then, the corresponding interval
is fetched from GPU memory and searched using the par-
allel algorithm to identify the next node position. Finally,
the address of the next level node is retrieved using an extra
memory transfer.

The total number of concurrent queries at the GPU is
equal to GPU_Threads/T, where the optimal number of
GPU_Threads depends on the GPU specification and T is
the number of threads dedicated per each query (8 for a
64-bit implementation and 16 for a 32-bit implementation).

5.4 Search Query Execution

Since we considered that the input queries are given in
CPU memory, the first step is to transfer them into GPU
memory, before the GPU starts executing a search opera-
tion. After GPU finished its task, the intermediate results,
— references to nodes where the search operation must be
resumed, — are transfered into main memory after the GPU
completes the search operation. In the last step, the CPU
continues the search operation to reach the target tuple.
The execution of a search on the CPU is analogous to the
implementation for the CPU-optimized B*-tree.

The given queries are broken into buckets of size M which
are processed independently according to the following steps,
where T;,7 = 1..4 are times required for each step in our cost
model.

1. Transfer bucket to GPU memory.
Ty = Tinit + (M x S)/Bandwidt
GPU traversal of all inner nodes of tree per each query.
T> = Kinit + (M/SIMDg) x Pgpu
. Transfer of intermediate results to CPU memory.
T5 = Tinit + (M X R)/Bandwidt
. CPU continues search in leaf nodes.
Ty = (M/SIMDc) X Pcpu

2.

Bulk 1
Bulk 2
Bulk 3
Bulk 4

CPU wasted time

sl
GPU wasted time

‘:0 2:0 1:0 i Y
Time

D Transfering Queries

=t

. Searching Inner Nodes

D Searching Leaf Nodes . Transfering Intermediate Results

Figure 5: CPU-GPU pipelining.

GPU P . P —

(e 00—
: R N

(ST URN iiization stall [[I) o
- bl

P —

(Stream 1) : : !

H T)) o s
Time

. Searching Inner Nodes
D Searching Leaf Nodes

D Transferring Queries
. Transferring Intermediate Results

Figure 6: CPU-GPU pipelining with double buffer-
ing.

R : Size of an intermediate result in bytes.

Tinit : Data transfer initialization time between main
memory and GPU memory.

Kinit : GPU initialization time for search operation.

SIMDg : GPU SIMD width.

SIMDc : CPU SIMD width.

Papu : Average processing time for a query on GPU.

Pcpy : Average processing time for a query on CPU.

Bandwidth : Data transfer bandwidth between main memory
and GPU memory.

Assigning the proper value for M is important since both
performance parameters, throughput and latency, are con-
trolled by M. Small bucket sizes increase the influence of
overhead constants (Kinst and Tini:) against effective com-
putation time, leading to lower throughput; increasing M
increases the cost of each step (7;), resulting in higher la-
tency.

Apart from how each bucket is processed, bucket sched-
uling is also important for optimal utilization of resources.
The simplest approach is to load and resolve each query
bucket sequentially. The drawbacks of using this approach
are two-fold: (1) it is not feasible to utilize both processors
concurrently, and (2) there is no opportunity of overlapping
communication and computation to eliminate data transfer
overhead. Thus, the cost for resolving each bucket is the
aggregate of all steps (Ts = Zle T;). We propose CPU-
GPU pipelining and employ a double buffering technique to
eliminate these drawbacks.

CPU-GPU pipelining improves system performance by
overlapping the execution of buckets. As illustrated in Fig-
ure 5, the next bucket is loaded as soon as the intermediate
result of the current bucket is transferred into CPU mem-
ory. In this way, CPU and GPU can be utilized concur-
rently. The average time needed to resolve queries within a
bucket is reduced to Tp = T1 + max(T> + T5,T4) (ignoring
pipeline initialization stalls). Considering T> = T4, Tp is

1529

equal to Th + T» + T3, then CPU processing time has been
eliminated.

Furthermore, we extend pipelining with double buffering
to eliminate the data transfer time. The timeline for the en-
hanced pipelining approach is given in Figure 6. We initiate
two GPU threads which are working on separated buffers
but share the same processors, where each thread operates
as a CPU-GPU pipelined approach. The average cost of pro-
cessing each bucket is Tp = max(T>,T4), considering that
data transfer time is smaller than computation time.

Although double buffering improves overall system
throughput, it also increases processing latency because of
prefetching of buckets. The average latency of the pipelined
approach is Th +1T> +T5 + %, which increases to 2 x Tx + %
by applying double buffering.

5.5 Load Balancing Scheme

Our HB*-tree design is primarily targeting systems which
are accelerated using sufficiently powerful GPUs and the sys-
tem throughput is bounded by the CPU. Therefore, HBT-
tree devotes only a small share of the query load to the CPU,
which is only searching leaf nodes while all inner nodes are
processed by the GPU.

To offer a more generally applicable solution, we enhance
HB"-tree with a load balancing mechanism, which improves
resource utilization on systems with an arbitrary GPU-to-
CPU computation power ratio, refereed to as load balanced
HB™-tree.

With the load balancing scheme, the CPU starts travers-
ing inner nodes up to a specific depth (D) and transfers the
query and the intermediate inner node index to GPU mem-
ory. Then, the GPU resumes traversing up to the final inner
node level and returns the leaf node index to the CPU. Fi-
nally, the CPU searches the leaf node to determine the target
key-value pair. We prefer to dedicate the top inner nodes
to the CPU since the space required for them is comparably
lower than the inner nodes at the bottom of tree resulting
in better cache utilization and lookup performance.

Let Ig,; and Ic,; be the average cost of searching at depth
i for GPU and CPU, respectively, and let Lc be the average
cost of searching a leaf node, then the average cost of a single
search (C) is given according to Equation 3. Adjusting the
parameter D is required to minimize Cinner-

D H
C = max(Lc + ZCc,i, ZCG,i)

0 D+1

®3)

Moreover, to provide a finer granularity for work load distri-
bution, we divide each bucket into two parts. For the first
part, R X M queries (0 < R < 1) of a bucket, the CPU
searches only D levels of inner nodes, while for the rest of
the queries (M x (1 — R)), the CPU searches D + 1 levels.
Using the new parameter R, the search cost C is updated
to Equation 4.

D—1

H
C = max(Lc + ZCC,Z’ +RCep,(1-R)Cq,p+ ZCG,Z’)

0 D+1

(4)
We develop a discovery algorithm to determine the values
for D and R that minimize C. The algorithm starts from
D =0 and R = 1, where it dedicates the maximum possible
load to the GPU. First, it linearly searches for the optimal
value of D (coarser parameter). Then, it adjusts R (finer

parameter) using binary search. The discovery algorithm is
given in Algorithm 1.

Algorithm 1 Discovery algorithm

1: D« 0,R=1
2: (Time_GPU, Time_CPU) = getSample(D, R)'
3: while Time_GPU > Time_CPU do

4: D+ D+1

5: (Time_GPU, Time_CPU) = getSample(D, R)
6: R+ 0.5

7: for step <~ 2 to 5 do

8: (Time_GPU, Time_CPU) = getSample(D, R)
9: if Time_GPU > Time_CPU then

10: R+ R+1/(2°7)

11: else

12: R« R—1/(2°%P)

TgetSample runs the program for given D and R; it returns the
time GPU and CPU require to perform their work share.

We also change the bucket handling strategy which is ad-
vantageous only for GPU bounded systems. The GPU must
perform thread scheduling prior to starting effective kernel
execution as a new kernel program is submitted to the GPU.
Pre-submitting of a successor kernel before the current one
is finished, enables the GPU to perform scheduling of the
next kernel, concurrently to the previous kernel execution.
For this to work, we require at least three concurrently op-
erating buckets. Since this optimization technique is not
effective for CPU bounded systems, we restrict the number
of query buckets in the not-load-balanced version of HBT-
tree to two in order to reduce latency. However, we increase
the number of query buckets to three in the load balanced
implementation of the HB™-tree for better GPU utilization.

5.6 Batch Update

The implicit B*-tree is not capable of processing individ-
ual updates. Whenever an update is required, the entire tree
must be re-built. The algorithm first builds both I-segment
and L-segment in main memory based on the new dataset
and, subsequently transfers the I-segment to GPU memory.

Efficiently processing concurrent batch updates with the
regular HB"-tree faces two challenges: (1) I-segment syn-
chronization and (2) concurrency handling. The former is
specific to HB'-tree, while the latter is a general challenge
for tree indexing. We propose two different tree update
methods; their performances depends on the batch size.

We design an asynchronous parallel update method which
first performs updates in main memory in parallel and then
transfers the entire I-segment to GPU memory. The given
update queries are processed in groups of size 16K. Each
thread takes a query and searches the tree up to the last
level inner node. At this point, the thread checks if the query
execution causes any node merge or split. If not, it requests
the lock assigned to the inner node and performs the update.
Because of HB"-tree’s big leaf nodes (256 entries), more
than 99% of the update queries can be resolved this way,
on average. The remaining unresolved queries are processed
subsequently using a single thread. When all queries are
executed, the I-segment in GPU memory is updated. This
method is more efficient for bigger batch sizes which often
result in many inner node modifications. In these cases, it is

1530

more beneficial to transfer the entire I-segment once, instead
of performing many small transfers for each inner node.

For smaller batch sizes, we propose a synchronized update
method which is performed by two threads, a modifying and
a synchronizing one. The modifying thread executes update
queries and submits a request for each modified inner node to
a shared queue. Upon receiving a request, the synchronizing
thread updates the inner node in GPU memory according to
the node’s replica in main memory. Using this method, tree
update and node synchronization proceed concurrently. Al-
though, it is feasible to implement this method with multiple
modifying and synchronizing threads, we found the perfor-
mance of this method is bounded by the communication ini-
tialization latency between main memory and GPU memory
which was not reduced by parallelism.

6. EVALUATION

We now present the performance evaluation of both CPU-
optimized Bt-tree and HB'-tree. First, we describe the
experimental setup and workload. Then, we demonstrate
the impact of various optimizations on the individual ap-
proaches, and finally, we compare the search operation per-
formance of CPU-optimized B¥-tree and HB"-tree consid-
ering latency and throughput.

6.1 Experimental Setup

We used two system setups for evaluating our approaches.
The first machine (M) is equipped with Intel Xeon E5-2665
accelerated by the Nvidia Geforce 780 GTX. The second
machine (Ms) is an Intel Core-i7 4800MQ accelerated by
the Nvidia Geforce 770M GTX.

For all experiments except the experiment on skewed data,
we generated multiple sets of key-value with 8M (2%) to
1B (2%%) tuples, where keys and values are randomly gen-
erated according to a uniform distribution on [0 — MAX]
(MAX = 2" — 1, n is number of bits: 32 or 64). After con-
structing the B*-tree using this set, we randomly permuted
the pairs using the Knuth shuffle [30]. Finally, we use the
new sequence as the input for the search operation.

Our multi-threaded implementation is using OpenMP, an
API for parallel computing based on the shared memory
programming paradigm [14]. We also made use of PAPI to
better understand the performance of our implementation.
PAPI is an API for accessing available hardware counters
inside the CPU [9].

6.2 CPU-optimized B*-tree Evaluation

Memory Page Configuration. In this experiment, we
aim to determine the memory page configuration that max-
imizes the search operation throughput. We evaluated our
Bt-tree using three different configurations: (1) both I-
segment and L-segment on small pages, (2) I-segment on
huge pages and L-segment on small pages, (3) both I-segment
and L-segment on huge pages.

To examine our expectation about the average TLB misses
per query, we evaluated a single-threaded implementation of
all three configurations and counted the TLB misses during
search operations using PAPI. Since OpenMP library causes
extra TLB misses, we excluded multi-threading to obtain
more accurate measurement. We plot the average TLB miss
per each query in Figure 7(a). Without utilizing huge pages,
the misses increase as the tree grows. Also, it can be seen
that searching in the implicit tree causes more TLB misses

I-seg(Huge) - L-seg(Huge) B [-seg(Small) - L-seg(Small) £ZZ21
I-seg(Huge) - L-seg(Small)

Average data TLB miss per query

P 7 § e/ B % V M M
0 fii a4 4 VA4 KS . 44 4 4 K4
24 25 26 27 28 30 23 24 25 2
Implicit B*-Tree

27 2

¥

log(Tree Size) Regular B'-Tree
(a)

140 —r—Tr—Tr— T s e e L

120 |-fi
100 }

80 f
60
40
20

Million queries per second

SONNSNNNNNNNNNNN

23 24 25 26 27 28 29 30

Implicit B*-Tree

23 24 25 26
Regular B*-Tree

log(Tree Size)
(b)

Figure 7: Memory page configuration evaluation.
(a) TLB misses (b) Throughput.

than for the regular BT-tree. The reason is the fanout of
inner nodes in the implicit tree is inferior to the regular
tree, consequently, the tree depth is higher. Allocating only
inner nodes on huge pages, significantly reduces the number
of misses. In this case, misses are independent of tree depth
and they are bounded to one TLB miss per query. Allocating
the entire tree on huge pages eliminates misses for smaller
trees which do not need more than 4GB of space. As the
required space exceeds this amount, the average miss rate
increases and surpasses one miss per query. We conclude
from Figure 7(a) that in terms of TLB misses, the second
configuration is more robust against tree growth, while the
third one is best for trees less than 4GB in size.

To determine the effect of TLB misses on tree search per-
formance, we evaluated the multi-threaded tree search using
the same configurations. The results are in Figure 7(b). As
expected, the first configuration is the least performing. The
fastest configuration is the third one, although, it generates
more TLB misses than the second configuration for bigger
trees. According to our analysis, this behavior is the conse-
quence of the different costs of misses for 4K and 1G pages.
As a TLB miss occurs, a page walk is required to retrieve
the requested physical address. For 4K pages, five memory
accesses are required to translate logical to physical address,
while three accesses are sufficient for 1G pages [25]. Even if
the TLB miss rate is higher in the third configuration, the
penalty of a page walk is less significant, which results in
better performance. This experiment indicates the superi-
ority of using huge pages in this application.

SIMD Accelerated Node Search. We now examine
the node search algorithms to determine the fastest one and
measure the resulting improvements. A query search opera-

1531

Heirachical AVX + SWP EZZZZ1 Sequencial Search + SWP B2
Serial AVX + SWP Sequencial Search - SWP .

90 T T T T T T T T T T

60

30

Million queries per second
AN N N N N N N N N N NN NN
AANANAANAAARARARR RN
N N N N N N N N N NN N NN
R N N N N N N N NN NN NNy
e St B
AN N N N N NN NN NN |
AN RRRR
AN
Eaaiaaasy

24 25 26
Regular B*-Tree

24 25 26
Implicit B*-Tree

[o5]
w
[:S3

7 23

[SS]
~

log(Tree Size)

Figure 8: Software pipelining and node search com-
parison.

tion is evaluated using three different search algorithms: (1)
sequential, (2) linear SIMD, and (3) hierarchical SIMD; soft-
ware pipelining is applied in all of these configurations. To
indicate the effectiveness of software pipelining in this appli-
cation, we also evaluated sequential search without software
pipelining. Since AVX2 support is required for the evalu-
ation, we evaluated this experiment on Mz (M; does not
support AVX2). The result of the experiments are given in
Figure 8.

Enabling software pipelining is highly effective and im-
proves the system throughout between 108%-152%, while it
increased latency by 6X on average. Among the node search
algorithms, the hierarchical SIMD approach, achieved the
best result; it is slightly faster than linear search. Both
SIMD implementations lose their advantage to sequential
search as the tree size grows. This behavior confirms that
tree processing becomes memory latency bounded for bigger
trees, and memory optimization techniques are ever more
important in this case.

Comparison with FAST. We compare our CPU-opti-
mized implicit BT-tree to FAST [29], the fastest reported
indexing tree in the literature, — also an implicit structure,
— to assure our CPU-optimized BT -tree design is competi-
tive enough to be used as a performance baseline. As shown
in Figure 9, our Bt-tree achieved 1.3X higher throughput
on average than FAST. Our different SIMD-enabled node
search, which allows us to reach higher node fan-out and,
consequently, better cache line utilization, is the source for
this improvement. Even though our implementation achieves
better performance than what FAST reported, we do not
aim to challenge FAST in this work, since FAST is designed
to be a configurable data structure, able to adapt to differ-
ent hardware configurations, while our design is specifically
tuned for the Intel architecture.

6.3 HB"-tree Evaluation

Bucket Handling Strategies. In this experiment, we
study three different bucket handling techniques: (1)
sequential, (2) pipelining, and (3) pipelining with double
buffering. With sequential bucket handling, it is neither
feasible to employ CPU and GPU simultaneously, nor over-
lap communication and computation. This approach is the
simplest; we use it as baseline in our evaluation. Resolving
buckets using pipelining allows us to partially overlap CPU
and GPU computations. Double buffering helps to overlap

CPU-optimized B*-Tree ———

180
150
120
90
60
30

Million queries per second

23 24 25 26 27 28 29
64-bit

23 24 25 26 27 28 29
. 32-bit
log(Tree Size)

Figure 9: Comparison of FAST and implicit CPU-
optimized BT -tree.

Pipelined + DB &ZZZZ2 Pipelined Serial EXERR
250 —rTr T —r—rTT
- 0 % 7 9 7 0 0
= M
g 200 | R 1
: e
2150 f - ’ ,,,,,,,
g ‘RN
5,100 b
5 . T 1 e |
2 1
= 50 F ‘W 1
: z
27 28 29 30 23 24 25 26 27 28
N +
Implicit B"-Tree log(Tree Size) Regular B"-Tree
Figure 10: Bucket handling strategy evaluation.

data transfer and search, so that it improves resource utiliza-
tion. We show the results for search using these techniques
in Figure 10.

Sequential bucket handling is the least efficient. Pipelin-
ing is more effective for the implicit B*-tree. It increases
the throughput by 56% for implicit and by 20% for regular
BT -tree. The double buffering technique is effective for both
tree versions. Using bucket pipelining extended by double
buffering improves throughput by 110% over the baseline
technique. Gaining twice the throughput in comparison to
the sequential approach indicates that we successfully man-
aged to simultaneously exploit the computation capabilities
of both processors.

Bucket Size. The goal of this experiment is to deter-
mine the optimal bucket size considering both throughput
and latency. Increasing the bucket size, diminishes the in-
fluence of communication and GPU initialization overheads,
resulting in better system throughput, while at the same
time, increases the system latency. We evaluated the search
operation using M; for different bucket sizes: 8K, 16K, 32K,
and 64K. As shown in Figure 11, search throughput grows,
as bucket size increases for the implicit BT -tree, while for
the regular BT -tree, the throughput is nearly the same for
bucket sizes 16K, 32K, and 64K. Considering that the aver-
age latency also increases as the bucket size grows (2.7X for
64K and 1.7X for 32K), we use 16K as the optimal bucket
size for the rest of our experiments.

Impact of Skewed Data. We studied HB™-tree for sev-
eral input data distributions, including Uniform, Normal(
p=0.5 0%=0.125), Gamma(k = 3, 0 = 3) and Zipf(
« 2). The generated random values are in the range

1532

16K
300 —T—TTT T —TTT

[N)
B 2
[=IN -}
T

210

—_

o®©

=)
T

150 |

Ju—

o]

(=]
T

Million queries per second

NN AR AR RRRRRRWY

e

S SSSSESSSSSSSsSsSsy
el
SN

éi:i
73

24 25 26 27
Regular B*-Tree

A

26 27 28 29 30

Implicit B*-T:
mplicit ree log(Tree Size)
(a)

23 28

Latency (ms)

14

4K ’
29

44
30

23

LR VVER Y VER LUK TV
25 26 27 28 24 25 26 27 28

P) +
Implicit B"-Tree log(Tree Size) Regular B"-Tree
(W)

Figure 11: Experiment on varying size of buckets
(a) throughput (b) latency.

[0,1]. Before the values are given to search queries, they
are linearly mapped to [0, M AX]. We used the Uniform
distribution as the baseline and scaled the results of other
distributions accordingly. The normalized results are illus-
trated in Figure 12.

The performance on all distributions, except Zipf, is within
1.1X of the Uniform distribution, while the performance for
Zipf input data increases by up to 2.2X. When the data be-
comes more skewed, the same portion of the tree is accessed
more frequently, which results in a higher cache hit rate.
This behavior is even more pronounced for highly skewed
data, such as the Zipf distribution.

Update Performance. In this experiment, we evaluate
the performance of update query execution on HBT-tree as
compared to CPU-optimized B¥-tree for both regular and
implicit tree versions.

We first present evaluations of the different update query
execution methods for the regular HBT-tree including both
the single- and multi-threaded versions of the synchronous
and asynchronous approach. Figure 13(a) illustrates the
throughput of these methods for various tree sizes; the I-
segment transfer time is excluded for the asynchronous ap-
proaches. Parallel execution is more effective in the asyn-
chronous approach which results in 3X higher throughput
in comparison with the single-threaded approach. The syn-
chronous approach is only 30% faster than the multi-threaded
one, which is bounded by the data transfer latency between
CPU and GPU memory.

The I-segment synchronization times for different tree sizes
are illustrated in Figure 13(b). To examine the effect of I-
segment synchronization overhead, we measure the time re-
quired to perform batch updates with different batch sizes
in a tree of size 64M. The results are shown in Figure 14.

Zipf 2ZZ11 Gamma Normal B2 Uniform N

Normalized Throughout

-
i
/
/
/
/
1
/
/
/
/
1
1
/
/
/

25 26 27 28
Regular B*-Tree

25 26 27 28 29 30
Implicit B*-Tree

05 H [

i 7
24 23 24

log(Tree Size)

Figure 12: Experiment on different distributions.

Single Synch. ZZZZZ1 Single Asynch. EXEXER
Parallel Synch. HEEEEE Parallel Asynch.

3000

I-segment
update time

300

2500 f

[o]
wn
[=}

2000

53
(=3
(=}

1500

S
Time(ms)
—_
wn
(=}

1000

—_
(=3
(=}

500

W
(=)

Thousand queries per second
S SSSSSSS
~
RS SsSSSSSSS
A A A A AT AT

G5

0] k K
26 27 28

log(Tree Size)

232425262728
log(Tree Size)

Figure 13: Evaluation of Regular Bt-tree update.

Up to a batch size of 64K, the synchronous approach per-
forms better because of the slow I-segment transfer in the
asynchronous approach. But for batches larger than 128K,
the asynchronous is more effective, as the I-segment transfer
cost is amortized by the larger number of queries processed.
This experiment shows that the choice of update depends on
the batch size. A synchronous update is more efficient for
smaller batches while an asynchronous one performs better
for larger batches.

To update implicit CPU-optimized BT -tree, the entire

tree has to be rebuilt, including the I-segment and L-segment.

For implicit HB'-tree, it is additionally required to trans-
fer the I-segment to GPU memory. To compare the cost of
updating these two trees, we measure the cost of each phase
including L-segment rebuilding, I-segment rebuilding, and
I-segment transfer separately as shown in Figure 15. The
cost of transferring the I-segment is only 3 to 7 percent of
tree reconstruction.

6.4 HB"-tree vs. CPU-optimized B*-tree

We now compare the search performance of HB™-tree
against the CPU-optimized BT -tree in terms of throughput,
latency and selectivity using M;.

Throughput. Figures 16(a) and 16(b) show the search
performance of both trees (for 64-bit and 32-bit variable
sizes). The throughput of the implicit HB"-tree is almost
constant for different tree sizes, which indicates that the
amount of time the GPU requires for traversing inner nodes
is inferior to the time, the CPU requires for scheduling and
searching leaf nodes. Consequently, the search performance
is bounded by the computational power of the CPU. How-
ever, the regular HBT-tree does not show similar behavior;

1533

Parallel Asynchronous ZZZZ2 Parallel Synchronous
4096 T T T T T T

2048
1024
512 F
256 |
128 |
64 |

32 F

Time (ms)

64K 128K
Batch Size

256K 512K

Figure 14: Regular Bt-tree update for different
batch sizes.

L-segment build ZZZZZA
I-segment build E
10000 pPr—1+—-—"4-—-—"r-—-T-—"--—"7—"7—"7—"T""1"T"—"T—"T—"T"T

I-segment transfer

1000 |

Time (ms)
—_
- o
o 3
y——rrrey

—
-

A
/ i
1 i
H M I
H H !
H H N {
1 H 1 I
H H | I
1 H N "
1 H 1 !
Ea |] !
= H 1] !
H e 11 !
/ H | i
[1: M I

324 25

o
=

i Mo WY g: Mo: Bi: DeG
23 24 25 26 27 28 29 30
32-bit

o ME: We: Wi: BE:
26 27 28 29 30
64-bit .

log(Tree Size)

Figure 15: Implicit HB1-tree update.

similar to the CPU-optimized tree, its performance declines
as the tree grows. The GPU accelerated approach outper-
forms the CPU-optimized approach by 2.4X and 2.1X higher
throughput on average for 64-bit and 32-bit variables, re-
spectively.

Latency. Figure 16(c) illustrates the query search la-
tency for both HBT-tree and CPU-optimized B'-tree. The
hybrid approach exhibits comparably higher latency, 67X on
average, than the CPU-optimized one. The higher latency
is the consequence of a different number of queries required
for an effective utilization of each platform. The number of
concurrent queries for CPU and GPU are 2% and 2%, re-
spectively, where the ratio (64) is almost the same as the
latency ratio. The average latency of the hybrid approach
is less than 0.18ms for the implicit BT-tree and 0.25ms for
regular the BT -tree.

Range queries. In this experiment, we compare HB*-
tree against CPU-optimized B*-tree in performing range
queries for different numbers of matching keys per query
for a total of 128M keys. Figure 17 shows the performance
of range queries for the retrieval of 1 to 32 keys. Since range
queries require more leaf node traversal, the ratio of the
search time in inner nodes to the entire lookup time de-
creases for these queries. As a result, the lookup perfor-
mance of implicit and regular tree versions becomes similar;
also, HB'-tree looses its advantage as more keys per query
match. HB%-tree is more than 80% faster than the CPU-
optimized B'-tree up to 8 matching keys per query and the
performance advantage decreases to 22% for 32 matching
keys per query.

HB*-Tree CPU Opt. B*-Trec N

CPU Opt. B*-Trec Nmm—m— CPU Opt. B*-Trec mm—m—8

o

250 300 10
= =
2333333; 0 n 55grr' " - . . 5
z CONNOHNHAAHE AU % TN AdA0dnm wn _ 10 01 7 7
b HUUAUHUNAD HUHUnp 520 F0-U-0- 04000 777 z 1Y 1Y / 7
csotHUAAUANGA Ad4dRD & AOHAAUHAN UAWoonm | € ‘B ‘W ’ s
s lmanddrad Adanng leorMAGiAdddd AAARAR 120l 1 N ’ ’
5 AU N 7 7 HU UM . N 1 ’
oo AL N0 WY 12 AA A Aaallll Gl ddn |z ‘W i , ¢
& AR e s " V/'R'RRY ERNR? R 7 7 07 B7 R7 17 Bttt 1z A 'l i 7
AAARAA AR AR Ny | = AAAAAARY AR A = sl A A ’
g ARAAAARA AN AR M mlall | & AARAA AR A AN AARAAA Y w0t A A ¢ i
Ss50r A ARRRAARY 'L RE ARAAARAA AN AAAANRY 7 17 A 4 1
= AAARBAAARAAAR RBRARAAN S50 RARARARN AR AR RN A ¢ 14 4 ?
A ARAARBRARAAAR BRAN 7 B AAARA AR A AN ? A 7 Y
= AARAAAANA ANXAAAN | = AAANAAAA ANAAA A A i §
2 3 2 2 23 2 3 2 2 23 2 3

4 25 26 27 28 29

Implicit B+-Treel(»g(Tl‘ee Size) Regular B™-Tree
(a)

0

8

4 25 26 27 28 29
Implicit B*-Tree

log(Tree Size)
(b)

0

¢ 07 N7 N7 2 17 N7 ¢
4 25 26 27 28 29 24 25 26 27 28
ot +
Implicit B —Treelog(rl_ee Size) Regular B™-Tree
©

3 24 25 26 2
Regular B*-Tree

8

0 23

Figure 16: Evaluation of CPU-optimized BT-tree and HB'-tree. (a) Throughput (64-bit) (b) Throughput

(32-bit) (c) Latency (64-bit).

HB*-Tree EZZzzZZz22 CPU Opt. B*-Tree NE——

< 250 F- L

5]

2200 } ;

g

g150 } 7 1

£ ’ 17

St Ap -]

£ 1/ nw

oAl Al aan .
JARAAAAm AAAAAD

1 2 4 8 16 32 1 2 4 8 16 32

Implicit B*-Tree Regular B™-Tree

Match Rate

Figure 17: Throughput of Range queries.

HB'-Tree CPU Opt. B*-Tree EzEES
Load balanced HB*-Tree ZZZZ2

= 100 ———T ——T—
2 7
g » -
2 75 01 .
2 -
g s} 4 o
2 L
£t s
e il /

| [U W R 1:097:04 i

23 24 25 26 27 28 23 24 25 26 27 28
.. + +
Implicit B"-Tree log(Tree Size) Reguler B"-Tree

Figure 18: Evaluation of load balancing scheme.

6.5 Load Balancing Evaluation

We now examine the effectiveness of our load balancing
scheme on heterogeneous platforms where the computation
power is not bounded by the CPU. To this end, we used M»
which is, relatively speaking, equipped with a less powerful
GPU accelerator. Figure 18 shows the results. Without load
balancing, HBT-tree performs 25% slower than our CPU-
optimized tree, on average. This indicates that the commu-
nication overhead between both processors is far higher than
the acceleration provided by the GPU.

Applying load balancing scheme is highly effective and
improves HBT-tree throughput by 65% on average. In com-
parison to the CPU-optimized tree, the load balanced HB™-
tree performs up to 32% and 65% better for the implicit and
regular approach, respectively.

1534

7. CONCLUSIONS

In this paper, we presented an indexing structure, called
HB™-tree, specifically tailored to a heterogeneous comput-
ing platform with a hybrid memory architecture. Index
search is accelerated by utilizing the resources of the hybrid
GPU-CPU platform to aggregate the processing resources
and memory bandwidth of both processing units. These im-
provements empower our approach to perform search faster
for trees where the tree traversal performance approaches
the memory bandwidth limit. In such situations, HB*-
tree performs on average 2.4X faster search than the CPU-
optimized BT -tree, with individual measurements improving
performance by up to 2.9X.

The directions for our future work are two-fold: (1) Fur-
ther support for parallel update queries and (2) develop-
ment of a general leaf-stored tree processing framework us-
ing a CPU-GPU hybrid platform. In this paper, we pri-
marily focused on realizing efficient search. So far, updates
are performed sequentially by the CPU with asynchronous
data transfer to the GPU; this could be further improved by
employing GPU cycles in support of parallel update query
execution. The other direction is to develop a general frame-
work which enables the use of a CPU-GPU hybrid platform
for any arbitrary leaf-stored tree structure, such that using
the node structure and search/update function as input, the
framework would determine the parameters for an approach
that best utilizes the resources of both CPU and GPU.

8. REFERENCES

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and
S. Singh. Lazy-adaptive tree: An optimized index
structure for flash devices. Proc. VLDB Endow., 2009.
M.-C. Albutiu, A. Kemper, and T. Neumann.
Massively parallel sort-merge joins in main memory
multi-core database systems. VLDB, 2012.

V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A
comparison of adaptive radix trees and hash tables. In
ICDE, 2015.

J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB:
the definitive guide. ” O’Reilly Media, Inc.”, 2010.

M. Athanassoulis and A. Ailamaki. Bf-tree:
Approximate tree indexing. Proc. VLDB Endow.,
2014.

P. Bakkum and K. Skadron. Accelerating SQL
database operations on a GPU with CUDA. In
GPGPU, 2010.

M. Bauer, H. Cook, and B. Khailany. CudaDMA:
optimizing GPU memory bandwidth via warp
specialization. In SC; 2011.

2]

3]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

23]

24]

[25]

[26]

27]
(28]

[29]

R. Bayer and E. McCreight. Organization and
maintenance of large ordered indices. In SIGFIDET,
1970.

S. Browne, J. Dongarra, N. Garner, G. Ho, and

P. Mucci. A portable programming interface for
performance evaluation on modern processors.
IJHPCA, 2000.

S. Chaudhuri and U. Dayal. An overview of data
warehousing and olap technology. SIGMOD, 1997.

S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
index performance through prefetching. ACM, 2001.
S. Cook. CUDA programming: a developer’s guide to
parallel computing with GPUs. Newnes, 2013.

M. Daga and M. Nutter. Exploiting coarse-grained
parallelism in b+ tree searches on an APU. In SCC;
2012.

L. Dagum and R. Menon. OpenMP: an industry
standard API for shared-memory programming.
Computational Science & Engineering, IEEFE, 1998.
R. Elmasri. Fundamentals of database systems.
Pearson Education India, 2008.

J. Fix, A. Wilkes, and K. Skadron. Accelerating
braided b+ tree searches on a GPU with CUDA. In
A4MMC, 2011.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: high performance graphics co-processor
sorting for large database management. In SIGMOD,
2006.

G. Graefe. Modern b-tree techniques. Foundations and
Trends in Databases, 2011.

M. Grand. Patterns in Java: a catalog of reusable
design patterns illustrated with UML, volume 1. John
Wiley & Sons, 2003.

C. Gregg and K. Hazelwood. Where is the data? why
you cannot debate CPU vs. GPU performance
without the answer. In ISPASS, 2011.

R. A. Hankins and J. M. Patel. Effect of node size on
the performance of cache-conscious B+-trees. In ACM
SIGMETRICS Performance Evaluation Review, 2003.
B. C. O. K.-L. T. M. Z. Hao Zhang, Gang Chen.
In-memory big data management and processing: A
survey. Knowledge and Data Engineering, IEEE
Transactions on, 2015.

B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,

Q. Luo, and P. Sander. Relational joins on graphics
processors. In SIGMOD, 2008.

J. L. Hennessy and D. A. Patterson. Computer
architecture: a quantitative approach. Elsevier, 2012.
Intel Corporation. Intel® 64 and IA-32 Architectures
Software Developer’s Manual. Number 253669-052US.
September 2014.

M. Jarke, M. Lenzerini, Y. Vassiliou, and

P. Vassiliadis. Fundamentals of data warehouses.
Springer Science & Business Media, 2013.

K. Kaczmarski. B4+-tree optimized for GPGPU. In
OTM. 2012.

T. Kaldewey, J. Hagen, A. Di Blas, and E. Sedlar.
Parallel search on video cards. In HotPar, 2009.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and

1535

(30]

(31]

33]

34]

(35]

(36]

37]

(38]

P. Dubey. FAST: fast architecture sensitive tree search
on modern CPUs and GPUs. In SIGMOD, 2010.

D. E. Knuth. Art of Computer Programming, Volume
2: Seminumerical Algorithms, The. Addison-Wesley
Professional, 2014.

T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In VLDB, 1986.

V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In ICDE, 2013.

J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
bw-tree: A b-tree for new hardware platforms. In
ICDE, 2013.

Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi. Tree
indexing on solid state drives. Proc. VLDB Endow.,
2010.

J. Lindstréom, T. Niklander, P. Porkka, and

K. Raatikainen. A distributed real-time main-memory
database for telecommunication. In Databases in
Telecommunications. 2000.

H. Lu, Y. Y. Ng, and Z. Tian. T-tree or b-tree: Main
memory database index structure revisited. In ADC,
2000.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In EuroSys, 2012.
J. I. Munro and H. Suwanda. Implicit data structures
for fast search and update. Journal of Computer and
System Sciences, 1980.

J. Nickolls and W. J. Dally. The GPU computing era.
IEEFE micro, 2010.

C. Nvidia. NVIDIA CUDA programming guide
(version 6.5). NVIDIA Corporation, 2014.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU computing. 2008.

J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. VLDB, 1999.

J. Rao and K. A. Ross. Making B+-trees cache
conscious in main memory. In SIGMOD, 2000.

J. Sanders and E. Kandrot. CUDA by example: an
introduction to general-purpose GPU programming.
Addison-Wesley Professional, 2010.

J. Sewall, J. Chhugani, C. Kim, N. Satish, and

P. Dubey. PALM: Parallel architecture-friendly
latch-free modifications to B+ trees on many-core
processors. Proc. VLDB Endowment, 2011.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in science &
engineering, 2010.

A. Vaisman and E. Ziményi. Data warehouses: Next
challenges. In Business Intelligence. Springer, 2012.
P. Vassiliadis and A. Simitsis. Near real time ETL. In
New trends in data warehousing and data analysis.
Springer, 2009.

W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. ACM SIGARCH,
1995.

J. Zhou and K. A. Ross. Buffering accesses to
memory-resident index structures. In VLDB, 2003.

APPENDIX

Here, we provide more details on our implementations of the
SIMD-enabled node search using AVX unit, the GPU search
kernel, and more evaluations.

A. SIMD ENABLED SEARCH

In this section, we present our SIMD enabled search algo-
rithm in more detail. Considering Node[0..7] is an array of
keys in an inner node and query is the given search query,
Snippets 1 and 2 show the implementation of the linear and
hierarchical approaches for 64-bit keys, respectively.

Snippet 1 Linear AVX search (64-bit)$.

1: __m256ifVquery =_mm_setl_epi64x (query);

2: __m256i vec =_mm256_set_epi64x (node[0],

3: nodel[1], node[2], nodel[3]);

4: __m256i Vcmp =_mm256_cmpgt_epi64 (Vquery,
vec) ;

5. int cmp = _mm256_movemask_epi8(Vcmp);

6: cmp = cmp & x10101010;

7: cmp = __builtin_popcount?(cmp);

8 int k = cmp;

9: Vec = _mm256_set_epi64x(node[4], nodel[5],

10: node[6], nodel[7]);

11: Vcmp = _mm256_cmpgt_epi64 (Vquery, vec);

12: cmp = _mm256_movemask_epi8 (Vcmp);

13: cmp = cmp & x10101010;

14: cmp = __builtin_popcount (cmp);

15: k += cmp;

16: // k 4is the minimum % s.t. query <= node[i]

$Functions starting with _mm are SIMD instructions
1256-bit data type as four 64-bit integer values

fmethod by GNU’s Compiler Collection (GCC) determines the
number of ones in the binary representation of a number

Snippet 2 Hierarchical AVX search (64-bit).

1: __m128iTunery = _mm_setl_epi64x (query);

2: __m128i Vec =_mm_set_epi64x(node[2], node
[51);

3: __m128i Vcmp =_mm_cmpgt_epi64 (Vquery, Vec);

4: int cmp = _mm_movemask_epi8 (cmpRes) ;

5: cmp = cmp & 0x00001010;

6: cmp = __builtin_popcount (cmp);

7: int k = cmp * 3;

8 Vec = _mm_set_epi64x(nodel[k], nodelk + 1]);

9: Vcmp = _mm_cmpgt_epi64 (Vquery, Vec);

10: cmp = _mm_movemask_epi8(Vcmp);

11: cmp = cmp & 0x00001010;

12: cmp = __builtin_popcount (cmp);

13: k += cmp;

14: // k is the mintimum % s.t. query <= node[i]

1128 bit data type as two 64-bit integer values

The linear approach first loads the query into an AVX
vector in Line 1. In Lines 2-4, the first half of the key array
(Node[0..3]) is loaded into a vector and compared to key.
Then, the number of keys smaller or equal to the input are
stored in variable k (cf. Lines 5-8). This process repeats
for the second half of the key array adding the comparison
result to k in Lines 9-15. At the end, k is the index of the
child to resolve the query.

The hierarchical approach first compares the boundary
keys which are node[2] and node[5] to query in Lines 2-4

1536

and based on the comparison results, the search algorithm
calculates the index of keys for the second comparison and
stores it in k. Finally, it compares the query to the node [k]
and node [k+1] to find the right child index.

B. ADDITIONAL EVALUATIONS

In this section, we provide further experimental results for
our HBT-tree and our CPU-optimized BT -tree.

B.1 HB"-tree lookup using CPU

Figure 19 shows a comparison of the lookup performance
of CPU-optimized BT-tree and HB'-tree only using the
CPU. The performance of the regular tree versions are iden-
tical since they are based on the same node structures. The
CPU-optimized implicit BT-tree results in better perfor-
mance, due to better cache line data utilization. The fan-
out of inner nodes in HB*-tree is decremented by one for
the benefit of faster search with GPU.

CPU Opt. B*-Tree EZZZZZZA HB*-Trec N
150 —/—/—m——m———TF——"""—T"—T—T—7—T1

100 |-

50 -

Million queries per second

L N NN A AN NN A NN A AN
ESSSSSSSNSTSIIIN
S S
[SSSSSSSSRNSIT
ESSSSSSSSSNSTH
ESSSSSSSSSSSN

LSS SIS SRR US U

[N N AN AN A AN N
AANNNRRRRRNN
ESSSSSSSSSN
ESSSSSSSS

23 24 25 26 27 28 29 3
Implicit B*-Tree

(5]

0 23 24 25 26 27 28

+
log(Tree Size)Regular B"-Tree

Figure 19: Evaluation of lookup in HBT-tree using
CPU.

B.2 Software Pipelining

In this experiment, we study the effect of software pipelin-
ing on lookup performance, that is, on throughput and la-
tency. Software pipelining helps the processor to overlap ex-
ecution with data fetching by executing multiple queries si-
multaneously, but at the same time, increases processing la-
tency. Algorithm 2 shows how we apply software pipelining
with prefetching for CPU-optimized B*t-tree lookup. Here,
as a thread finishes searching a node, instead of waiting for
the child node to be loaded into the cache, it switches to
processing another query. Then, when the thread switches
back to the same query, the child node is already loaded into
cache.

Figure 20(a) illustrates the lookup throughput for various
numbers of simultaneously processed queries ranging from 1
to 32. Increasing the number of queries from 1 to 16 continu-
ously improves the throughput, which results in 2.5X better
performance than without software pipelining. But due to
the limited cache size, increasing the number of simultane-
ously processed queries from 16 to 32 is not effective and
performance remains almost the same. The lookup latency
for different software pipeline lengths is illustrated in Fig-
ure 20(b) which indicates the latency is quickly increasing
with number of queries per thread. On average, the lookup

32 ESSSSY 8 2 E—
B 4 1 C—
150 —TTrTrTrT T —TTT
=
=
B A25 e
Q
Q
iz
5 T00F B Myl g
L
o N 3
H H i h
@ N N W b H
o 2\ i BN i Y -l
2 5 N A
o N L BN N NI
3 AR 0
S 50 BRIV (Y- (i VR
= WA e N Y VR
S Al (EVN (Y (R v i
= 25 A [iy e i I
g AVt [V | (Y BV (Y
A (e (e (e i [
0 KERVAL | RV (RN | [v 1
25 26 27 28 24 25
Implicit B*-Tree log(Tree Size) Regular B*-Tree
og(lree dSi1ze
(a)
-2
107°F .
—_ T\ I I\ nof
2 A \ N N N \ \ \ \
g T 0 R &bt VI
- VA O O O ¢ W oM
> h B H H H H S\ H H b
PR
R AR VR VR R VR VR
= NV (Ve (Ve VA (VA (VA RV (Y e (e (Y
(EVR [EVAL VI VA VA R (Y NV, LV Y
(v R EVN | RV (e VAR | Y V] LV | 6
VA etV RV | RV | V(LY NV | ERVR | Y
l1§¢|'=§9 (V| VA VA v | V| VA | (Y
VA RV | ERVRN (VA (VA RV VR (Y VR | A | Y
BRI 124 87 et e/ e e D s sy
23 24 25 26 27 28 29 30 23 24 25
Implicit B*-Tree Regular B*-Tree
log(Tree Size)
(b)

Figure 20: Evaluation of various software pipelining
lengths: (a) throughput (b) latency.

latency using a software pipeline of length 16 is 6X higher
than without software pipelining.

Algorithm 2 Software pipelining-enabled tree search

Input: P : length of software pipeline
Input: keys[P] : search queries
Input: H : height of BT-tree

1: for i < 1 to P do

2: nodeli] < root

3: for step <+ 1to H—1do

4 for i + 1 to P do

5: nodeli] + getNextNode(I-seg, node[i], keys|[i])
6: prefetch(nodeli])

7: for i < 1 to P do

8 valueli] « getValue(L-seg, nodeli], key[i])

B.3 Concurrent Search and Update Queries

We now examine the performance of parallel search/up-
date query execution in HBT-tree utilizing only the CPU.
We evaluate both synchronous and asynchronous approaches,
where the I-segment transfer time is excluded for the asyn-
chronous approach.

The synchronous approach consists of one synchronizing
thread, which continuously updates the inner nodes in GPU
memory and multiple query processing threads, while the
asynchronous approach only consists of query processing
threads. The query processing threads are based on the
update algorithms given in Section 5.6, which are also ca-

pable of resolving search queries. The results are shown in
Figure 21. As the ratio of update queries increases, the

1537

throughput of the synchronous approach decreases faster
than the asynchronous one which is due to the high com-
munication initialization overhead between GPU and main
memory. The execution of buckets with 100% search queries
in this evaluation is not as fast as our previously evaluated
lookup methods which is due to the mutex locking and syn-
chronization overhead in the query processing threads.

Parallel Synchronous ZZZZZ1 Parallel Asynchronous N

_232
S 16 o 1
: D -
= 4t A ;
8 A
E 2 AT 1
: U AAA
E'TAARAARAAA A . '
= R /R AR R .]
: T ARARA R AR r
= s LAAAAAAARA A AV
’ 0 10 20 30 40 50 60 70 80 90 100

Update percent

Figure 21: Evaluation of concurrent search/update
queries.

C. CUDA PROGRAMMING MODEL

The CUDA programming model is based on hierarchical
threading including the notions of grid, block and thread.
At the top of the hierarchy is the grid which consists of
blocks and each block is a group of threads. Threads are
distinguished by two index values, BlockIdx and ThreadIdx,
which define the runtime behavior of each thread.

Implementing efficient programs for CUDA requires good
understanding of both the GPU memory architecture and
the thread scheduling model. The unit of scheduling in
CUDA is the warp, which is a set of 32 threads. Threads
within the same warp are able to execute only a single in-
struction at a time. The situation called warp divergence
results when threads of the same warp divert into different
code paths, typically occurring for if-then-else statements.
As a result, the warp has to be scheduled for both paths
separately, which increases the total execution time. Proper
index assignment, which directs threads of each warp into a
single code path avoids this situation.

Since there is no message passing mechanism supported by
CUDA, communication is only feasible via read /write opera-
tions on memory. Therefore, efficient bandwidth utilization
is of great significance. The CUDA memory architecture is
composed of different memory types, where the important
ones for our work are shared memory and device memory.

Device memory, or GPU memory, is the biggest and slow-
est memory; it can be accessed by an entire grid. All ac-
cesses to device memory have to be done through either
32-, 64-, or 128-byte memory transactions. As a warp is-
sues a device memory access, the GPU coalesces this ac-
cess into transactions of these sizes. In the worst case, each
access is translated into 32 separate memory transactions,
which divide the device memory performance by 32. Relo-
cating data, such that threads within a warp access adjacent
memory locations, leads to more efficient device memory
utilization. Shared memory is comparably faster than de-
vice memory but it is limited to a block. To provide higher

Snippet 3 GPU kernel code for searching inner nodes in
implicit tree (Fr = 8)%.

1: // teamQuery is the requested key

2: long teamQuery;

3: __shared__T char flag[9], result;

4: char selfFlag, i;

5: long selfKey, nodelIndex;

6: flagl[threadIdx.x] = 0;

7: nodelndex = 0; // root indezx

8: __syncthreads O)F;

9: for (i = 0; i < tree_depth; i++) {

10: // levelOffsets 4is an array stores the

11: // offsets of each level in tree

12: selfKey = tree[levelOffsets[i] + nodeIndex
+ threadIdx.x];

13: flaglthreadIdx.x+1] = 0;

14: selfFlag = 0;

15: if (teamQuery <= selfKey) {

16: flaglthreadIdx.y][threadIdx.x+1] = 1;

17: selfFlag = 1;

18:

19: __syncthreads ();

20: if (selfFlag == 1 &&

21: flaglthreadIdx.x] == 0) {

22: result = threadlIdx.x;

23: }

24: __syncthreads();

25: // threads traverse to the nezt node

26: nodeIndex = (nodelIndex + result)<<3;

27:)

28: // nodelIndex %is the index of target leaf

node

8This program is executed by eight threads concurrently with
threadIldx.x =0to 7
fShared variables are declared by __shared__

t__syncthreads is a barrier synchronization primitive

1538

bandwidth, shared memory is composed of multiple memory
banks which can be accessed simultaneously. The highest
bandwidth is achieved when accesses are equally separated
among the memory banks. For inter-block communication,
shared memory is the better option in comparison to the
device memory due to lower access latency.

The Nvidia Tesla platform is explicitly targeting high per-
formance computing and offers faster double precision float-
ing point operations which is a critical requirement for many
applications. However, we opted for the Nvidia Geforce
processor family in this work, since index tree search algo-
rithms only require integer operations, either 64-bit or 32-
bit, and the Geforece platform offers a better computation-
power-to-price ratio for these operations.

D. GPUSEARCH KERNEL

The Snippet 3 represents the GPU kernel function for
searching the I-segment of the implicit HBT-tree. The in-
put parameters are I-seg: the reference to the I-segment
in GPU memory, levelOffsets: offsets of each level in I-
segment, and teamQuery: the given search query. Shared
variables are declared by the keyword __shared__ and bar-
riers __syncthreads are used to avoid race conditions when
accessing shared variables.

Search starts from the root node (nodeIndex = 0) and
performs the parallel node search per each inner node. Each
thread loads a key from the current node and stores it into
local register (selfKey) in Line 12. After initializing flags,
threads compare their local register to teamQuery and store
the result in both local and shared flags. In Line 19, it is
required to synchronize threads before they check the shared
flag to avoid race conditions. In Lines 20-23, each thread
deduces if it is assigned to the next level node. If so, the
thread update the shared result variable. The operation is
repeated for each level of inner nodes. At the end, nodeIndex
is referring to the desired leaf node.

Appendix B

59

Research 28: Stream Processing

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Parallel Index-based Stream Join on a Multicore CPU

Amirhesam Shahvarani, Hans-Arno Jacobsen
Technische Universitidt Miinchen
Munich, Germany
ah.shahvarani@tum.de

ABSTRACT

Indexing sliding window content to enhance the perfor-
mance of streaming queries can be greatly improved by uti-
lizing the computational capabilities of a multicore proces-
sor. Conventional indexing data structures optimized for
frequent search queries on a prestored dataset do not meet
the demands of indexing highly dynamic data as in stream-
ing environments. In this paper, we introduce an index data
structure, called the partitioned in-memory merge tree, to ad-
dress the challenges that arise when indexing highly dynamic
data, which are common in streaming settings. Utilizing the
specific pattern of streaming data and the distribution of
queries, we propose a low-cost and effective concurrency
control mechanism to meet the demands of high-rate update
queries. To complement the index, we design an algorithm
to realize a parallel index-based stream join that exploits the
computational power of multicore processors. Our experi-
ments using an octa-core processor show that our parallel
stream join achieves up to 5.5 times higher throughput than
a single-threaded approach.

CCS CONCEPTS

« Information systems — Data structures; « Comput-
ing methodologies — Parallel algorithms.

ACM Reference Format:

Amirhesam Shahvarani, Hans-Arno Jacobsen. 2020. Parallel Index-
based Stream Join on a Multicore CPU. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3318464.3380576

1 INTRODUCTION

For a growing class of data management applications, such as
algorithmic trading [27], fraud detection [47], social network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3380576

2523

analysis [11], and real-time data analytics [40], an informa-
tion source is available as a transient, in-memory, real-time,
and continuous sequence of tuples (also known as a data
stream) rather than as a persistently disk-stored dataset [9].
In these applications, processing is mostly performed using
long-running queries known as continuous queries [2]. Al-
though its size is steadily increasing, the limited capacity
of system memory is a general obstacle to processing po-
tentially infinite data streams. To address this problem, the
scope of continuous queries is typically limited to a sliding
window that limits the number of tuples to process at any
one point in time. The window is either defined over a fixed
number of tuples (count based) or is a function of time (time
based).

Indexing the content of the sliding window is necessary to
eliminate memory-intensive scans during searches and to en-
hance the performance of window queries, as in conventional
databases [15]. In terms of indexing data structures, hash
tables are generally faster than tree-based data structures
for both update and search operations. However, hash-based
indexes are applicable only for operations that use equality
predicates since the logical order of indexed values is not
preserved by a hash table. Consequently, tree-based indexing
is essential for applications that analyze continuous variables
and employ nonequality predicates [46]. Thus, in this paper,
we focus on tree-based indexing approaches, which are also
applicable to operators that use nonequality predicates.

Due to the distinct characteristics of the data flow in
streaming settings, the indexing data structures designed
for conventional databases, such as B*-Tree, are not efficient
for indexing streaming data. Data in streaming settings are
highly dynamic, and the underlying indexes must be con-
tinuously updated. In contrast to indexing in conventional
databases, where search is among the most frequent and crit-
ical operations, support for an efficient index update is vital
in a streaming setting. Moreover, tuple movement in sliding
windows follows a specific pattern of arrival and departure
that could be utilized to improve indexing performance.

In addition to the index maintenance overhead arising
from data dynamics, proposing a concurrency control (CC)
scheme for multithreaded indexing that handles frequent
updates is also a challenging endeavor. In conventional data-
bases, the index update rate is lower than the index lookup
rate, and CC schemes are designed accordingly. Therefore,

Research 28: Stream Processing

these approaches are suboptimal for indexing highly dy-
namic data, such as sliding windows, for which they have
not been designed. Thus, dedicated solutions are desired to
coordinate dynamic workloads with highly concurrent index
updates. These issues are further exacerbated because the
continued leveraging of the computational power of multi-
core processors is becoming inevitable in high-performance
stream processing. The shift in processor design from the
single-core to the multicore paradigm has initiated wide-
spread efforts to leverage parallelism in all types of applica-
tions to enhance performance, and stream processing is no
exception [14, 36, 38, 39].

In terms of the underlying hardware, stream processing
systems (SPSs) are divided into two categories, single-node
and multinode. Single-node SPSs are designed to exploit the
computation power of a single high-performance machine
and are optimized for scale-up execution, such as Trill [8],
StreamBox [26] and Saber [18]. In contrast, multinode SPSs
are intended to exploit a multinode cluster. A group of multin-
ode SPSs, such as Storm [42], Spark [44] and Flink [6], are
optimized for scale-out execution and rely on massive paral-
lelism in the workload and the producer-consumer pattern
to distribute tasks among nodes. As a consequence, these
systems achieve suboptimal single-node performance in com-
parison with a single-node SPS or multinode SPSs optimized
for both scale-up and scale-out execution, such as IBM Sys-
tem S [12, 16]. With advances in modern single-node servers,
scale-up optimized solutions become an interesting alterna-
tive for high-throughput and low-latency stream processing
for many applications [45].

Thus, in this paper, we address the challenges of parallel
tree-based sliding window indexing, which is designed to ex-
ploit a multicore processor on the basis of uniform memory
access. The distinct characteristics of streaming data moti-
vated us to reconsider how to parallelize a stream index and
design a novel mechanism dedicated to a streaming setting.
We propose a two-stage data structure based on two known
techniques, data partitioning and delta updating, called the
partitioned in-memory merge tree (PIM-Tree), that consists
of a mutable component and an immutable component to
address the challenges inherent to concurrent indexing in
highly dynamic settings. The mutable component in PIM-
Tree is partitioned into multiple disjoint ranges that can
dynamically adapt to the range of the streaming tuple val-
ues. This multipartition design enables PIM-Tree to benefit
from the distribution of queries to reduce potential conflicts
among queries and to support parallel index lookup and up-
date through a simple and low-cost CC method. Moreover,
leveraging a coarse-grained tuple disposal scheme based on
this two-stage design, PIM-Tree significantly reduces the
amortized cost of sliding window updates relative to individ-
ual tuple updates in conventional indexes such as a B*-Tree.

2524

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

R-O0O0O4E :::m:::: .. U
g ¥ =New tuple

Expired tuple
Indexing data w
‘Y -

structure ~~ = o
......... 0,0,8

S-000
Figure 1: Index-based window join.

Search

= = = Sliding window

By combining these two techniques PIM-Tree outperforms
state-of-the-art indexing approaches in both single- and mul-
tithreaded settings.

To validate our indexing approach, we evaluate it in the
context of performing a window band join. Stream join is
a fundamental operation for performing real-time analytics
by correlating the tuples of two streams, and it is among the
most computationally intensive tasks in SPSs. Nonetheless,
our indexing approach is generic and applies equally well to
other streaming operations.

To complement our data structure, we develop a parallel
window band join algorithm based on dynamic load bal-
ancing and shared sliding window indexes. These features
enable our join algorithm to perform a parallel window join
using an arbitrary number of available threads. Thus, the
number of threads assigned for a join operation can be ad-
justed at run time based on the workload and the hardware
available. Moreover, our join algorithm preserves the order
of the result tuples such that if tuple #; arrives before t;,
the join result of tuple ¢; will be propagated into the output
stream before that for ¢,.

The evaluation results indicate that our multithreaded join
algorithm using PIM-Tree achieves up to 5.6 times higher
throughput than our single-threaded implementation using
an octa-core processor. Moreover, a single-threaded stream
band join using PIM-Tree is 60% faster on average than that
using B"-Tree, which demonstrates the efficiency of our data
structure for stream indexing applications. Compared with a
stream band join using the state-of-the-art parallel indexing
tree index Bw-Tree [23], using PIM-Tree improves the system
performance by a factor of 2.6 on average.

In summary, the contributions of this paper are fourfold:
(1) We propose PIM-Tree, a novel two-stage data structure de-
signed to address the challenges of indexing highly dynamic
data, which outperforms state-of-the-art indexing methods
in the application of window joins in both single- and mul-
tithreaded settings. (2) We develop an analytical model to
compare the costs of window joins using the indexing ap-
proaches studied in this paper to provide better insight into
our design decisions. (3) We propose a parallel index-based
window join (IBWJ) algorithm that addresses the challenges
arising from using a shared index in a concurrent manner. (4)
We conduct an extensive experimental study of IBW] employ-
ing PIM-Tree and provide a detailed quantitative comparison
with state-of-the-art approaches.

Research 28: Stream Processing

2 INDEX-BASED WINDOW JOIN

In this section, we define the stream join operator semantics
and study IBW] using three existing indexing approaches,
including B*-Tree, chain-index and round-robin partition-
ing, to highlight the challenges of sliding window indexing
and the shortcomings of existing methods. We also provide
an analytical comparison of processing a tuple using each
approach to provide better insight into each mechanism and
highlight their differences from our approach. The notation
that we use in this paper is as follows.

w : Size of sliding window.

7c : Time complexity of comparing two tuples.

o : Join selectivity (0 < o < 1).

os : Match rate (w X o).

fr : Inner node fan-out of a tree of type T

/1? : Time complexity of performing an operation (O: Insert,

Search, Delete) on a node of a tree of type T
Throughout the remainder of this paper, 4, /12 and /IZ
denote the time complexities of search, insert and delete op-
erations at each node of B*-Tree, respectively, and f}, denotes
the inner node fan-out of B*-Tree.

2.1 Window Join

The common types of sliding windows are tuple-based and
time-based sliding windows. The former defines the window
boundary based on the number of tuples, also referred to as
the count-based window semantic, and the latter uses time
to delimit the window. We present our approach based on
tuple-based sliding windows, although there is no technical
limitation for applying our approach to time-based sliding
windows. We denote a two-way window 6-join as Wy <9 Ws,
where Wi and Ws are the sliding windows of streams R and
S, respectively. The join result contains all pairs of the form
(r,s) such that r € Wy and s € Ws, where 0(r, s) evaluates to
true. A join operator processes a tuple r arriving at stream R
as follows. (1) Lookup r in Ws to determine matching tuples
and propagate the results into the output stream. (2) Delete
expired tuples from Wg. (3) Insert tuple r into Wg. The cost
of each step depends on the choice of the join algorithm and
index data structure used. To simplify the time complexity
analysis for different join implementations, we assume that
the lengths of the sliding windows of both streams, R and
S, are identical, denoted by w. Additionally, we ignore the
cost of the sliding window update in our analysis since it is
identical when using different join algorithms and indexing
approaches.

2.2 Index-Based Window Join

IBW]J accelerates window lookup by utilizing an index data
structure. Although maintaining an extra data structure
along the sliding window increases the update cost, the per-
formance gain achieved during lookup offsets this extra cost
and results in higher overall throughput. The general idea

2525

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

» u.dl—\ ¥~ Sliding window
H v O 2, +— Active sub-index
\ Sub-index L-1

Figure 2: Chained index.

of IBW] is illustrated in Figure 1. Tuples in Wg and Ws are
indexed into two separate index structures called Ig and Is,
respectively. Upon the arrival of a new tuple r into stream R,
IBW]J searches Is for matching tuples. In addition, Ir must be
updated based on the changes in the sliding window. Here,
we examine IBW]J using B*-Tree, chained index and context-
insensitive partitioning.

2.2.1 IBWJ using B*-Tree. We now derive the time complex-
ity of IBW]J based on B*-Tree. Let Hj, be the height of the
B*-Tree storing w records (Hp ~ log}“;). The join algorithm

Sub-index L Sub-index 1

processes a given tuple r from stream R as follows. (1) Search
Is to reach a leaf node (Hj, - Asb); then, linearly scan the leaf
node to determine all matching tuples (o - 7). (2) Delete the
expired tuple from Iz (Hp - /l‘bi). (3) Insert the new tuple, r,
into Ir (Hp -AZ).

2.2.2 IBW] using Chained Index. Lin et al. [24] and Ya-xin
et al. [43] proposed chained index to accelerate stream join
processing. The basic idea of chained index is to partition
the sliding window into discrete intervals and construct a
distinct index per each interval. Figure 2 depicts the basic
idea of chained index. As new tuples arrive into the sliding
window, they are inserted into the active subindex until
the size of the active subindex reaches its limit. When this
situation occurs, the active subindex is archived and pushed
into the subindex chain, and an empty subindex is initiated
as a new active subindex. Using this method, there is no
need to delete expired tuples incrementally; rather, the entire
subindex is released from the chain when it expires.

We now derive the time complexity of IBWJ when both
Ig and Is are set to a chain index of length L (L > 2) and
all subindexes are B*-Trees. Let H, be the height of each
subindex (H, ~ Hp — logJI;b; we also considered the height of
the active subindex being equal to that of archived subindexes
to simplify the equations). The join algorithm processes
a given tuple r from stream R as follows. (1) Search all
subindexes of Is to their leaf nodes (L - H. - A7) and lin-
early scan leaf nodes to find matching tuples and filter out
expired tuples during the scan. The number of expired tuples
that need to be removed from the result set is o5 /(2 - (L — 1))
on average. (2) Check whether the latest subindex of Iy is
expired and discard the entire subindex. The cost of this step
is negligible, and we consider it to be zero. (3) Insert the new
tuple, r, into the active subindex of I (HC.A;;).

Comparing the cost of the index operations using chained
index and B"-Tree indicates that using chained index to index
sliding windows is more efficient in terms of index update
costs than using a single B*-Tree, whereas range queries are

Research 28: Stream Processing

Stream R
— - e <

T
(T

Join core P

Jo

H Iy
d H

. L

e | Toer |

Stream S

Join core 2 Join core 1

Figure 3: Low-latency handshake join.

more costly using chained index because it needs to search
multiple individual subindexes.

2.2.3 IBWJ using Round-Robin Partitioning. A group of par-
allel stream join solutions, such as handshake join [34], Split-
Join [28] and BiStream [24], are based on context-insensitive
partitioning. In all these mentioned approaches, a sliding
window is divided into disjoint partitions using round-robin
partitioning which is based on the arrival order of tuples
rather than tuple values, and each join core is associated
with a single window partition. To accelerate the lookup
operation, each thread may maintain a local index for its as-
sociated partition. Because indexes are local to each thread,
there is no need for a CC mechanism to access indexes. In
fact, the parallelism in these approaches is achieved by divid-
ing a tuple execution task into a set of independent subtasks
rather than utilizing a shared index data structure and dis-
tributing tuples among threads. As a drawback of approaches
based on context-insensitive partitioning, it is required to
have all joining threads available to generate the join result
of a single tuple because each thread can only generate a
portion of the join result.

Here, we explain the cost of IBW] using the low-latency
variant of handshake join (LHS) employing P threads. Fig-
ure 3 illustrates the join-core arrangement and the flow of
streams in LHS. In LHS, join cores are linked as a linear chain
such that each thread only communicates with its two neigh-
bors, and data streams R and S propagate in two opposite
directions. In the original handshake join, tuples arrive and
leave each join core in sequential order, and tuples may have
to queue for a long period of time before moving to the next
join core. This results in significant latency in join result gen-
eration and in higher computational complexity because all
tuples are required to be inserted and deleted from each local
index. In LHS, however, tuples are fast forwarded toward
the end of the join core chain to meet all join cores faster.
Moreover, each tuple is only indexed by a single join core,
which is assigned in a round-robin manner. Consequently,
LHS results in higher throughput and lower latency than the
original handshake join.

We now derive the time complexity of the index opera-
tions required to process a single tuple using round-robin
partitioning with P join cores. Let all join cores use B*-Tree
as local indexes and H,, be the height of each local index
(H, = Hy - logf:b). The cost of processing a given tuple r
from stream R is as follows. (1) Tuple r is propagated among
all join cores, and all cores search their local Is until the
leaf nodes (P - Hy, - 4;) and linearly scan leaf nodes to find

2526

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

matching tuples (o5.7.). (2) The join core assigned to index
tuple r deletes the expired tuple from its Ir (H, - AZ). (3) The
same join core as in Step 2 inserts the new tuple, r, into its
Ir (Hp - Ay).

Comparing the cost of the index operations using round-
robin partitioning with the cost of IBW] using B*-Tree results
in the following: Using round-robin partitioning is more effi-
cient for inserting or deleting a tuple from a sliding window
than using a single B*-Tree because the heights of the local
indexes for each partition are less than a single B*-Tree index-
ing w tuples (H, < Hp). However, because it is necessary to
search multiple local indexes using round-robin partitioning
to find matching tuples, using a single B*-Tree is more effi-
cient in terms of range querying. Generally, as the number of
join cores increases, the total cost of searching local indexes
using round-robin partitioning also increases, which is a con-
sequence of context-insensitive window partitioning. This
redundant index search limits the efficiency of approaches
based on round-robin partitioning in the application of IBW]J.

3 CONCURRENT WINDOW INDEXING

In this section, we present the design of our indexing data
structures for join processing.

3.1 Overview

We propose a novel two-stage indexing mechanism to ac-
celerate parallel stream joins by combining two existing
techniques, delta merging and data partitioning, resulting in
a highly efficient indexing solution for both single- and mul-
tithreaded sliding window indexing. Our indexing solution
consists of a mutable component and an immutable compo-
nent. The mutable component is an insert-efficient indexing
data structure in which all the new tuples are initially in-
serted. The immutable component is a search-efficient data
structure where updates are applied using delta merging.
Utilizing the strength of each indexing component and a
coarse-grained tuple disposal method, our two-stage data
structure results in more efficient sliding window indexing
compared with a single-component indexing data structure.
Moreover, we extend our indexing solution by splitting the
mutable component into multiple mutable partitions, where
partitions are assigned to disjoint ranges. Consequently, op-
erations on different value ranges can be performed con-
currently. This technique enables our indexing solution to
leverage the distribution of queries to support efficient task
parallelism with a lightweight CC mechanism. In this section,
we first study the effect of delta merging in the application
of sliding window indexing, and then we extend the delta
merging method with index partitioning to support parallel
sliding window indexing.

In this work, we use two different B*-Tree designs that
have distinct performance characteristics. The first design is

Research 28: Stream Processing

the classic B"-Tree design, where each node explicitly stores
the references to its children. This design, which we simply
refer to as B*-Tree, supports efficient incremental updates.
In contrast, as an immutable data structure, B*-Tree nodes
can be arranged into an array in a breadth-first fashion. In
this representation, given a node position, it is possible to re-
trieve the location of its children implicitly without needing
to store actual references. By eliminating child references,
more space is available in inner nodes for keys, and it is
feasible to achieve a higher fan-out and decrease the tree
depth. Therefore, lookup operations in this design, which we
call immutable B*-Tree, are faster than in the classic design
based on node referencing. As a drawback, it is inefficient to
perform individual updates in an immutable B*-Tree since
the entire tree must be reconstructed; however, this type of
access is not required in our use of the index.

Throughout this paper, A}, denotes the time complexity
of search at each node of the immutable B*-Tree, and f;;,
denotes the inner node fan-out of immutable B*-Tree.

3.2 In-memory Merge-Tree

We now describe our in-memory merge tree (IM-Tree), which
is designed to accelerate sliding window indexing. IM-Tree
consists of two separate indexing components (77 and Ts). Ty
is a regular B*-Tree that is capable of performing individual
updates, and Ts is an immutable B*-Tree that is only efficient
for bulk updates. All new tuples are initially indexed by Tj.
When the size of Ty reaches a predefined threshold, the entire
Ty is merged into Ts, and simultaneously, all expired tuples in
Ts are discarded. The merging threshold is defined as m x w,
where m is a parameter between zero and one (0 < m < 1),
referred to as the merge ratio. To query a range of tuples, it is
necessary to search both components, T; and Ts, separately.
Additionally, it is necessary to filter out expired tuples of
Ts from the result set. When a tuple expires, it is flagged in
the sliding window as expired but not eliminated. To drop
expired tuples from the index search results, every result
tuple is checked in the sliding window to determine whether
it is flagged as expired. At the end, all expired tuples are
eliminated from both the sliding window and the index data
structure during the merge operation. Therefore, we must
store an additional w X r tuples in the sliding window to use
IM-Tree.

Both chained index and IM-Tree utilize a coarse-grained
tuple disposal technique to alleviate the overhead of tuple
removal, but the tuple disposal techniques differ between
these indexing approaches. Chained index disposes of an
entire subtree, whereas IM-Tree eliminates expired tuples
periodically during the merge operation. The periodic merge
enables IM-Tree to maintain all indexed tuples in only two
index components and to provide better search performance
than chained index.

2527

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Although both LSM-Tree [29] and IM-Tree are multicom-
ponent indexing solutions that use the delta updating mech-
anism to transfer data among their components, the two
data structures are designed differently to tackle distinct
problems. Components in LSM-Tree are configured to be
used in different storage media, and LSM-Tree applies delta
updating to alleviate the cost of write operations in low-
bandwidth storage media. In contrast, IM-Tree consists of
two in-memory components specialized for different opera-
tions, and IM-Tree applies periodic merges to enhance the
performance of range queries. Moreover, LSM-Tree is based
on incremental merging between its components, which is
not applicable to immutable data structures such as the im-
mutable B*-Tree used in our IM-Tree.

3.2.1 IBWJ using IM-Tree. Let H; and Hg be the heights of
Tr and Ts, respectively. The time complexity of processing
a tuple s arriving at stream S for IBW]J using IM-Tree is as
follows. (1) Search both Ty and Ts of the opposite stream to
the leaf nodes (H; - A; + Hs - A3,) and perform a linear scan
of the leaf node to determine matching tuples (o5 - 7.) and
filter out expired tuples (o - 7. - 5). (2) Tuples in IM-Tree
are deleted in a batch during a T; and Ts merge. Let M be
the time complexity of the merge; then, the average cost per
tuple is M/(m - w). (3) Insert the new tuple into the index of
stream S (Hj ')L;;).

The stepwise comparison between the window join using
B*-Tree and IM-Tree is controlled by the merge ratio m.
Assigning a proper value for m is subject to various trade-
offs. A late merge creates a larger T; on average and results
in a more expensive insert and search of T;. Additionally, it
increases the average number of expired tuples in Ts and
results in an inefficient lookup in Ts. Meanwhile, merge
operations are costly, and overdoing such operations results
in a significant performance loss. Generally, increasing the
value of m causes the costs of Steps 1 and 3 to increase and
the cost of Step 2 to decrease.

The memory space required for IM-Tree consists of three
parts, T7, Ts and the merge buffer. T7 is a B*-Tree that stores
at most r X w tuples. Ts is a immutable B*-Tree that stores w
tuples. Moreover, we must maintain a buffer of size w tuples
needed for merging T; and Ts in each merge phase.

3.3 Partitioned In-memory Merge-Tree

Partitioned in-memory merge tree (PIM-Tree) is an extended
variant of IM-Tree that is designed to address the challenges
of parallel sliding window indexing. Similar to IM-Tree, PIM-
Tree is also composed of two components in which recently
inserted tuples are periodically merged into a lookup-efficient
index. In fact, the key difference is in the design of the insert-
efficient component T;. Rather than using a single B*-Tree for
all incoming tuples, we opt to use a set of B"-Trees that are

Research 28: Stream Processing

associated with disjoint tuple value ranges. To provide a uni-
form workload among trees, these ranges periodically adapt
to the distribution of values in the sliding window. Each B*-
Tree is associated with a lock that allows only a single thread
to access the tree to handle parallel updates and lookups.
Unlike approaches that target resolving concurrency at the
tree node level, such as Bw-tree [23] or B-link [20], paral-
lelism in PIM-Tree is based on concurrent operations over
disjoint partitions and relies on the distribution of incoming
tuples. An advantage of our approach is that the routines for
performing operations are as efficient as those of the single-
threaded approach, and their only overhead is to obtain a
single lock per each tree traversal.

3.3.1 PIM-Tree Structure. Figure 4 provides an overview of
the PIM-Tree structure. PIM-Tree consists of two separate
components, Ts and T;. Ts is an immutable B*-Tree; it is
similar to our IM-Tree, which stores static data. T represents
a set of subindexes named By, .., B, attached to Ts at depth
Dy (insertion depth), where each B; is associated with the
same range of values as the i‘" node of Ts at the insertion
depth. Each B; is an independent B*-Tree, where the tail leaf
node of each B; (0 < i < n) is connected to the head leaf
node of the successor B*-Tree (B;.1) to create a single sorted
linked list of all elements in T;.

To insert a new record, the update routine first searches
Ts until the depth of D; to identify the matching B; that
is associated with the range that includes the given value.
Then, the routine inserts the record into B; using the B"-Tree
insert algorithm. Similar to IM-Tree, the two components of
PIM-Tree need to be periodically merged for maintenance.
This maintenance occurs when the total number of tuples in
T; equals m X w. Merging eliminates expired tuples in Ts and
arranges the remaining tuples to be combined with those
from T; into a sorted array that is taken as the last level of
the new Ts. Subsequently, Ts is built from the bottom up,
and every B; is initialized as an empty B*-Tree.

3.3.2 IBWJ Using PIM-Tree. Let H; be the average height of
B;,0 < i < n. The join algorithm processes a given tuple r
from stream R as follows. (1) Search the index of stream S
to identify matching tuples, which requires first searching
Ts (Hs - A5,) and the corresponding B; (Hj - 1) to the leaf
nodes and then performing a leaf node scan to determine
matching tuples and filter out expired tuples (o5 7. -(1+m/2)).
(2) Similar to IM-Tree, tuples are deleted in a batch during
the merge of T; and Tg; thus, the average cost per tuple is
M’ [(m - w), where M’ is the cost of merging Ty and Ts in
PIM-Tree. (3) Insert the new tuple, r, into T}, which requires
first traversing Ts to depth Dy (Dy - 4},) and then inserting
the tuple into the corresponding B; (Hj - /12).

In terms of memory footprint, PIM-Tree requires almost
the same amount of memory space as IM-Tree. The amounts

2528

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Depth

Figure 4: Structure of PIM-Tree (blue and red sections are Tg
and T; components, respectively).

of memory required for Ts and the merge buffer are identi-
cal between PIM-Tree and IM-Tree. Moreover, considering
that leaf nodes take up the most space in B*-Tree, the mem-
ory space difference between T; in IM-Tree and PIM-Tree is
negligible in comparison with the size of the entire tree.
Comparing the costs of IBW] using IM-Tree and PIM-Tree,
we obtain the following. Searching in PIM-Tree is faster
because the average height of a subindex in PIM-Tree is
less than T; in IM-Tree. The costs for merging T; and Ts in
both trees are almost identical (M = M’), and consequently,
the overall cost of tuple deletion is the same in both trees.
The insertion costs in PIM-Tree and IM-Tree are controlled
by the number of tuples in Tj. Let the number of tuples in
T; be represented by |T;|. For |T;| = 0 (after merge), the
constant overhead of traversing Ts to depth D in PIM-Tree
is dominant and results in slower insertion in PIM-Tree. As
|T7| increases, the cost of insertion in IM-Tree increases faster
and eventually surpasses the insertion cost in PIM-Tree.

3.3.3 Concurrency in PIM-Tree. To protect the PIM-Tree
structure during concurrent indexing, each subindex (B;) is
associated with a lock that coordinates the accesses of the
threads to the subindex. Moreover, a searching thread may
move from a B; to its successor (B;41) during the leaf node
scan to determine matching tuples. To address this issue, the
last leaf node of each B; is flagged such that the searching
thread recognizes the movement from one subindex to an-
other. In this case, the searching thread releases the lock and
acquires the one associated with the successor. Traversing Ts
is completely lock-free since its structure never changes, and
there is no need for a CC mechanism to avoid race conditions.

In the case of a fixed tuple value distribution, the insert
operations are spread uniformly across subindexes, even
though the tuple value distribution is skewed. The reason
is that B*-Tree nodes are naturally adapting to the indexed
values such that the subtrees of the two inner nodes at the
same depth have almost an equal number of indexed values.
Because T’s subindexes are adjusted according to Ts’s inner
nodes, the load is uniformly distributed among subindexes
regardless of the value distribution. However, when the dis-
tribution changes, the range assignment is no longer optimal
and causes skew among subindexes in the insert operation.

Research 28: Stream Processing

O Completed M XX ’_IL-IH’_L L
Active §§II§§§§§§. .
O Available Queue head Next available task

Figure 5: Shared task queue with task size of 2.

Because the workload distribution among subindexes is read-
justed in every merge phase, PIM-Tree will ultimately recover
to normal performance in the first merge phase after the data
distribution stops changing.

4 PARALLEL STREAM JOIN USING
SHARED INDEXES

In this section, we present our parallel window join algo-
rithm, which addresses the challenges of using shared in-
dexes in a multithreaded setting. During concurrent join,
tuples might be inserted into indexes in an order different
from their arrival order depending on the threads’ schedul-
ing in the system. We design a join algorithm that is aware of
the indexing status of tuples to avoid duplicated or missing
results. Moreover, our join algorithm is based on an asynchro-
nous parallel model, which enables threads to dynamically
join or leave the operator depending on system load.

4.1 Concurrent Stream Join Algorithm

Our parallel join algorithm processes incoming tuples in four
steps: (1) task acquisition, (2) result generation, (3) index
update, and (4) result propagation.

Task acquisition — A task represents a unit of work to
schedule, which is a set of incoming tuples. The task size is
the number of tuples assigned to a thread per each task acqui-
sition round, which determines the trade-off between max-
imizing throughput and minimizing response time. Large
tasks reduce scheduling and lock acquisition overhead but si-
multaneously increase system response time, whereas small
tasks result in the opposite. In our join algorithm, tasks are
distributed among threads based on dynamic scheduling;
thus, a thread is assigned with a task whenever the thread is
available. This method enables our join algorithm to utilize
an arbitrary number of threads and not stall because threads
are unavailable.

We arrange incoming tuples into a shared work queue
according to their arrival order, regardless of which stream
they belong to; we protect the access to this queue using a
shared mutex. Each tuple in the work queue is assigned a
status flag: available indicates that the tuple is ready to be
processed but not yet assigned to any thread, active indicates
that the tuple is assigned to a thread but the join results
are not ready, and completed indicates that processing of
the tuple is completed and the join results are ready but the
results are not propagated. When a tuple arrives in the queue,
its status is initialized to available, and a completed tuple
remains in the work queue until the results of previous tuples
are propagated into the output stream. Figure 5 illustrates

2529

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Index search « Linear search

. Indexed tuple = ==
D Not indexed _°*° 2

tupl - .
uple Edge-tuple—J

Next tuple

Sliding window — *

Figure 6: Sliding window during parallel stream join.

the status of the work queue during a window join with a
task size of 2.

During a concurrent stream join, sliding windows must
store all tuples that are required to process active tuples of
the opposite stream, which generally results in windows
larger than w. In the case of a time-based sliding window, it
is possible to filter out unrelated tuples using timestamps;
however, for count-based sliding windows, it is necessary to
record the boundaries of the opposite window at the point in
time when a tuple is assigned to a thread. We refer to these
boundaries as t; (latest tuple) and ¢, (earliest tuple). When a
thread acquires a task, it changes the status of the tuples to
active and saves t; and ¢, for each tuple.

Result generation - To avoid duplicate or missing re-
sults, we keep references to the earliest nonindexed tuple
of each sliding window, referred to as the edge tuple. This
tuple declares that all tuples before it are already indexed,
whereas the statuses of the subsequent tuples are undeter-
mined. When a thread starts to process a tuple, it stores the
position of the edge tuple in a local variable since the value
might be updated during processing. Using an old value of
the edge tuple might increase the computational cost slightly,
but it is safe in terms of result correctness. The lookup al-
gorithm determines matching tuples in two steps. First, it
queries the index for matching tuples and filters out those
after the edge tuple or before ¢;. Second, it linearly searches
the sliding window from the edge tuple to t, and adds any
results to the previously found results. Figure 6 illustrates
the sliding window during the join operation. When a thread
finishes processing a tuple, it stores the results in shared
memory and updates the task status to completed in the
shared queue but does not yet propagate the results into the
output stream at this step.

Index update — After a thread generates the join results
for a tuple, it inserts the tuple into the index and marks the
tuple in the sliding window as indexed. Subsequently, the
thread attempts to update the edge tuple accordingly. To
avoid a race condition, a shared mutex coordinates write
accesses to the edge tuple. Using a test-and-set operation,
the thread checks whether the mutex is held by another
thread. If so, it avoids the edge tuple update and continues to
the next step. Otherwise, it increments the edge tuple to the
next nonindexed tuple in the sliding window and releases
the mutex.

Result propagation — In the final step, a thread attempts
to propagate the results of completed tuples. Similar to the
edge tuple update routine, a shared mutex coordinates threads

Research 28: Stream Processing

Phase 1 Phase 2
r— —
R S | G . G | G o D G [7, Y

Thread 1

Thread2 ==== s Concurrent join

Thread 3 ===

Concurrent join

Thread 4 == without index update

Figure 7: Nonblocking merge.

during result propagation. The thread checks the status of
the mutex. In the case that the mutex is already held by an-
other thread, the thread skips this step and begins to process
another task. Otherwise, it verifies whether the results for
the tuple at the work queue head are completed. If so, it prop-
agates the results into the output stream and removes the
tuple from the work queue. If the tuple is not completed, the
thread does not propagate the results of any other completed
tuple in order to ensure that results are propagated into the
output stream according to the tuples’ arrival order. This
routine is repeated until the status of the tuple at the work
queue head is either active or available. Finally, the thread
releases the mutex and starts to process another task.

4.2 Nonblocking Merge and Indexing

Performing merging as a blocking operation negatively im-
pacts system availability and latency, which are both of-
ten critical concerns for stream processing applications. To
address this challenge, we propose a nonblocking merge
method. Our approach enables the stream join processing
threads to continue the join without significant interrup-
tion during merge processing. Figure 7 illustrates the overall
scheme of performing a nonblocking merge. The operation
consists of two phases: first, creating a new PIM-Tree, and
second, applying pending updates.

Whenever merging is needed, a thread called the merg-
ing thread is assigned to perform the merge operation. At
the beginning of each stage, the merging thread blocks the
assignment of new tasks until all active threads finish their
currently processing tasks. During the first phase, the merg-
ing thread creates a new PIM-Tree without modifying the
previous index tree. Concurrently, other threads resume per-
forming tasks without an index update. When the merging
thread finishes creating the updated PIM-Tree, it starts the
next phase. At the beginning of the second phase, the merg-
ing thread swaps the old index with the new one before it
unblocks the task assignment process. During the second
phase, the merging thread applies pending updates and other
threads begin to perform the join operation with index up-
date. When the pending updates are finished, the merging
thread leaves the merge operation and begins to perform the
join operation.

During the first phase of a nonblocking merge, the index
data are not updated; therefore, the position of the edge tuple
does not change during this phase. Consequently, the linear
search in the nonindexed portion of the sliding window
becomes more expensive.

2530

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

5 EVALUATION

In this section, we present a set of experiments to benchmark
the efficiency of the approaches introduced in this paper and
empirically determine the corresponding parameters, such
as merge ratio and insertion depth. Moreover, we study the
influence of join selectivity and skewed value distribution
on the performance of our parallel window join design. As
the query workload, we use the following micro-benchmark
where two streams, R and S, are joined via the following
band join.

SELECT * FROM R, S

WHERE ABS(R.x - S.x) <= diff

The join attributes (R.x and S.x) are assumed to be random
integers generated according to a uniform distribution and
the input rates of streams R and S are symmetric unless
otherwise stated. Each tuple consists of a 4-byte key and 12
bytes of payload. Because our indexing data structure only
stores keys and references to a sliding window, neither the
footprint nor the indexing performance of the data structures
evaluated in this paper are influenced by tuple size. However,
the tuple size might influence the parallel join algorithm by
increasing the cost of moving tuples from the work queue to
the sliding window. This cost is not specific to our parallel
join algorithm and it would equally influence any other join
algorithm.

Because we evaluate each experiment for different win-
dow lengths (w), considering a fixed value for diff results
in various join match rates (i.e., the match rate of band join
with w = 2% will be 2% times higher than that with w = 219),
which influences the overall join performance. For a more
comprehensive comparison, the value of diff is adjusted ac-
cording to the window length such that the match rate (o)
is always two except for the one that exclusively studies the
influence of join selectivity. We used two forms of band join:
two-way join and self-join. In the former, R and S are two
distinct streams, and in the latter, an identical stream is used
as both R and S. The experiments are generally based on
two-way join, except for those where we explicitly declare
that self-join is used. To cover a large range of window sizes,
we opted to use a logarithmic scale of base two in our exper-
iments. However, there is no technical limitation in using
our indexing mechanism for any arbitrary sizes.

We evaluate our approaches on an octa-core (16 CPU
threads, hyperthreading enabled) Intel Xeon E5-2665. For all
multithreaded experiments, we utilized all 16 threads unless
otherwise stated. We employ the STX-B*-Tree implementa-
tion, which is a set of C++ template classes for an in-memory
B*-Tree [5], and we used our own CSS-Tree implementation
as immutable B*-Tree [31]. !

'Due to space limitations, we provide an extended technical report with
additional experimental results in [37].

Research 28: Stream Processing SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Multi-threaded NLWJ using RRP Single-threaded IBWJ —>%— + - - - — —37 -

Multi-threaded IBWJ using RRP —©— Multi-threaded IBWJ —%— B'-Tree MMM B-Chain EZE® [B-chain 222 D=1 3 D=2z D;=3 mmm D,=4 E==
4 _ Single-threaded NLWJ —H— using Bw-Tree < 4

'E 2 T T T T T T T T T T T £ =] 0

8 51 S ?

o 121 2 4 7

2 11 (B T

8 o g 1 W (W 1], (]

s 5. WO\

2 = 3 /Elyml/ml ml -

: :

= g g ‘BBl B N e a7

g S il Rl wl Bl m N

E E E AR Ry N

sotbo - A = Ll 100 (VA 70 () (12|l
4 15 16 17 18 19 20 21 22 23 24 25 1 2345678 910111213141516 16 17 18 19 20 21 22 23 24 25

(a) Window length (2%) (b) Chain length (c) Window size (2%)

Figure 8: a) Performance evaluation of multithreaded window join using round-robin partitioning (RRP). b) Throughput com-
parison of IBW]J using chained index and B*-Tree. ¢c) Throughput vs. insertion depth for single-threaded IBWJ using PIM-Tree.

16

5 _ _,I8 _ 520 A o =22
D=1 D=2z D=3 mm D=4 mm 0=2 % 0=2% = =22 0=22 - 0=21 % 0=2% = =22 0=22 + 0=2°03 0=2" @2 0=2" B o= =
10 o 0=2" B 0=2" —©- p=2" 4 =27 v w=2" F 0=2" O 0=2" 4 @=2"
= m W mw
LR RN 2 235
Sstd ool : - i
z W W Y A g - g 3 %
U 1 W i 1 U
2o\ (H] (B {1 525 5 7
s | (W W06 i 22 225 7
= 1 W\ Ny s 5~ %
S\ e | L 3 2 £, ?
W W W 7:M77 2 2 2 T
E LR] s s g M — ’
= 2|{] b i; il W7) £15 ?
= h W 1 1 |W] i |] ERS
= o LA 17 10 1] (W (W [l = o 5 %
16 17 18 19 20 21 3 24 25 20 %t g7 b 0 A A A
(a) Window size (2) (b) Merge ratio (c) Merge ratio (d) Merge ratio

Figure 9: a) Throughput vs. insertion depth for parallel IBW]J using PIM-Tree. b) Throughput vs. merge ratio for IBWJ using
IM-Tree. ¢) Throughput vs. merge ratio for IBWJ using PIM-Tree. d) Throughput vs. merge ratio for parallel IBWJ.

5.1 Comparison of Existing Approaches using Bw-Tree results in 65% lower throughput than parallel
IBW] using round-robin partitioning, but for the largest win-
dow size (w = 2%) evaluated, parallel IBWJ using Bw-Tree
outperforms the round-robin-based method and results in

Round-robin window partitioning — The purpose of this
experiment is to study the efficiency of round-robin parti-
tioning-based approaches, such as low-latency handshake

join, SplitJoin and BiStream, in the application of index- 75% higher throughput.
accelerated stream join. We evaluate five implementations Chained index - Figure 8b shows the throughput of
of the window join: (1) single-threaded nested-loop window IBW] using chained index [24] for varying chain lengths
join (NLW]), (2) multithreaded NLW]J based on round-robin in comparison with B*-Tree (w = 22°). For this experiment,
partitioning, (3) single-threaded IBW] using B*-Tree, (4) mul- we set the insertion depth to one (D; = 1) and merge ra-
tithreaded IBW]J based on round-robin partitioning, and (5) tio (r) to 1/8. We propose and evaluate two different de-
multithreaded IBW]J using Bw-tree. Figure 8a presents the signs for chained index, referred to as B*-Tree chain (B-
results for varying window sizes. chain) and Immutable B*-Tree chain (IB-chain). In the for-
Comparing the join algorithms, we observe that NLW]J mer design, all subindexes are B*-Trees, including the active
is more vulnerable to the sliding window size because its subindex (the one where newly arriving tuples are inserted)
performance linearly decreases as the window size increases. and all archived subindexes. In the latter design, only the
In contrast, the performance of IBW]J is less sensitive to active subindex is a B*-Tree, and before archiving an active
the sliding window size. Multithreaded join using round- subindex, it is converted into an immutable B*-Tree; thus,
robin partitioning improves the performances of NLWJ and all archived subindexes are immutable B*-Trees.
IBW]J by factors of 8 and 2.5, respectively. This result implies We observe that the IB-chain results in 50% higher through-
that although approaches based on round-robin window put than the B-chain on average, which indicates that the
partitioning are effective for NLW]J, these approaches can- immutable B*-Tree vastly outperforms the regular B*-Tree
not efficiently exploit the computational power of multicore for search queries in this scenario. For both the B-chain and
processors for IBW]J. IB-chain, the shortest chain length, which is two, results in
Moreover, the performance result of parallel IBW] using the best throughput. However, the performance noticeably
Bw-Tree indicates that the efficiency of concurrent opera- decreases when the chain length increases. The main draw-
tions in Bw-Tree improves as the size of Bw-Tree increases. back of chained index is the higher search complexity, which
The larger the indexing tree, the lower is the probability of increases almost linearly with the chain length. Although
accessing the same node by different threads at the same the index chain reduces the overhead of tuple removal using
time; consequently, the multithreading efficiency increases. coarse-grained data discarding, the higher search overhead
For the smallest sliding window size (w = 214), parallel IBW] degrades its overall performance.

2531

Research 28: Stream Processing

IM-Tree PIM-Tree

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

PIM-Tree
IM-Tree

B*-Tree EEEEER
Multi-threaded PIM-Tree ———

B>
S

Insert [RXZXA Merge NS B*-Tree
Search B Delete SSSSY Scan C—— 6
1200 ——]]
N 9]
1000 & g
- S 4
gw N\ 3
L
g o £
= e g,
400 I]
g
= 1
=
0

10 11 12 13 14 15

(b)

ree IM-Tree B
Window size (2*)

()

7
Window size (2*)

161

NN N
S = W

Million tuples per second

NN N
Lo o~

PR 1 | P | EVA | [[l | Y| F [B
0 21 22 23 24 25 26 27 28 29 21
Match rate (o)

Figure 10: a) Cost comparison of the different steps of IBW]J for a single tuple using various indexing data structures. b) Perfor-
mance comparison of single-threaded IBW]J using different indexing data structures. c¢) Throughput vs. match rate for IBW]J.

5.2 IBW]J using PIM-Tree and IM-Tree

Insertion depth - In this experiment, we study the impact
of the insertion depth (Dy) on the performance of PIM-Tree.
Increasing Dj results in smaller subindexes (B;s), which ac-
celerates the operation on subindexes, and it simultaneously
increases the overhead of searching Ts to find the corre-
sponding B;. Figures 8c and 9a show the throughputs of
single-threaded and parallel IBWJ, respectively, using PIM-
Tree for different Dys ranging from one to four, considering
that the root node is at a depth of zero. For the window
sizes of 21¢ to 21°, there are only four levels of inner nodes
(including the root node); thus, the maximum feasible Dy
is three. The results for D; = 1 reveal that the number of
inner nodes at depth Dj highly influences the performance
of parallel IBWJ. If the number of subindexes in T; (which
is equal to the number of inner nodes at depth Dy) is not
sufficient, then the performance significantly decreases due
to the high partition locking congestion. From w = 216 to 2%,
the system throughput rapidly increases since the number
of inner nodes at D; = 1 also increases. At w = 22!, the
number of inner nodes at D; = 1 decreases since the tree
depth is incremented by one, which also causes a decrease
in the IBW]J throughput. For larger values of Dy (three and
four), the IBW]J throughput does not improve, which sug-
gests that the multithreading is no longer bounded by the
number of subindexes. For the case of single-threaded IBW]J,
the achieved throughput for different Dys is less dependent
on the window size. However, setting Dy to the highest fea-
sible value results in a higher overhead for searching Ts and
lowers the overall performance.

Merge ratio (m) — To determine the empirically optimal
merge ratio for IM-Tree and PIM-Tree, we conduct an exper-
iment for each data structure. Figures 9b and 9c illustrate the
throughputs of single-threaded IBW]J using IM-Tree and PIM-
Tree, respectively, with merge ratios ranging from 27° to 1.
The results for both data structures follow a similar pattern,
but the average throughput employing PIM-Tree is higher
than that using IM-Tree. Additionally, the system does not
perform efficiently for either very low or very high values of
the merge ratio. This underperformance is a consequence of

2532

the excessive overhead imposed by the frequent merge when
the merge ratio is set very low and by the inefficient insert
and search operations when the merge ratio is set very high.
The results suggest that the choice of the merge ratio is more
influential for smaller sliding windows, and the empirical
optimal ratio is not identical for all window sizes. Over the
largest evaluated sliding window (22%), setting the merge
ratio to 1/2* results in the highest throughput, whereas for
the smallest one (21°), 1/2° is the best merge ratio.

Figure 9d illustrates the throughput of the parallel IBW]
using PIM-Tree for varying merge ratios ranging from 27¢ to
1. In contrast to the single-threaded implementation, setting
the merge ratio to the highest value always results in the
best performance in the multithreaded setting, regardless
of the window size. This result indicates that the cost of
merge operations during a parallel window join is higher
than the cost in a single-threaded setup. Hence, minimizing
the number of merges results in the highest throughput.
We also observe that the choice of the merge ratio is more
influential for smaller window sizes. Henceforth, we set the
value of the merge ratio for the multithreaded setup to one.

B*-Tree vs. IM-Tree vs. PIM-Tree — In this experiment,
we compare the performances of IBW] using B*-Tree, IM-
Tree and PIM-Tree. For a more comprehensive comparison,
we divide the process of finding matching tuples into two
steps: traversing the index tree for the tuple with the lowest
value, referred to as searching, and linearly checking tuples in
leaf nodes, referred to as scanning. For each data structure, we
measure the costs of the different steps of performing IBW]J,
including insert, delete, search, scan, and merge. Figure 10a
shows the results for sliding window sizes of 27 and 2%3.

The merging overhead is almost identical for both IM-Tree
and PIM-Tree, and it constitutes 7% and 11% of the total pro-
cessing for 2!7 and 2% windows, respectively. Regarding the
tuple insertion performance, PIM-Tree and IM-Tree perform
nearly identically, and they are 1.5 and 2.6 times faster than
B*-Tree for 2!7 and 2% windows, respectively. For the smaller
window size (2!7), searching in B*-Tree is 75% faster than
searching in IM-Tree and PIM-Tree. However, for the larger
window size (223), the search performances corresponding

Research 28: Stream Processing

216 1 =2 @ =22 o =2 =

e

0=2""C3 =28 &z=@ ©=2%

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Inner nodes SSSSX
Leaf nodes ZZZZ2

Ty B

=2 E=m

Buffer XXX

(=1
=~

Latency (us)

Million tuples per second
e
e,
RSEERRIER———
SNNRRRRNRRRNR——

S N A O

=~

VE A 3!
0 1 2 3 4

- ey

2 3

=N
N

8

©

Task Size

(2)

Task Size

T, —

Data Size (MB

e

22

T,

7
0

o
©R

6 7
©

Window size (2%)

Figure 11: a) Throughput vs. task size for parallel IBWJ using PIM-Tree. b) Latency vs. task size for parallel IBW]J using PIM-
Tree. c) Memory footprint comparison of B*-Tree and PIM-Tree.

to PIM-Tree and B*-Tree are nearly identical, and both are
slightly faster than IM-Tree.

Figure 10b presents the throughput of single-threaded
IBW] using B"-Tree, IM-Tree, and PIM-Tree for varying win-
dow sizes. We observe that employing PIM-Tree and B*-Tree
results in the best and the worst performances, respectively.
Considering IBW]J using B"-Tree as the baseline, average
improvements in system performance of 50% and 63% in
magnitude are achieved by employing IM-Tree and PIM-Tree,
respectively.

Match rate (o5) — Figure 10c shows the throughputs of
four different implementations of IBWJ for the window size
of 220 and match rates varying from 27* to 21°. These imple-
mentations are three single-threaded IBW]J using B*-Tree,
IM-Tree and PIM-Tree and one multithreaded IBW]J using
PIM-Tree. The join performance varies negligibly for the
match rates between 27% and 2¢, which indicates that the
join performance in this range is bounded by index travers-
ing rather than the linear leaf node scans. As the match rate
increases beyond 2*%, the join performance noticeably de-
creases for all implementations. This result implies that for
higher match rates, i.e., 2° < o5 < 2%°, the join performance
is bounded by system memory bandwidth due to extensive
leaf node scans. Consequently, multithreading loses its ad-
vantage for IBW] with high selectivities, and its performance
becomes closer to that of the single-threaded implementa-
tions. Additionally, the result indicates that single-threaded
IBW]J using IM-Tree and PIM-Tree for joins with high se-
lectivity results in better performance than using B*-Tree,
which is because of the more efficient leaf node scan in im-
mutable B*-Tree (Ts) than in regular B*-Tree.

Task size — In this experiment, we study the influence of
the task size on our parallel window join algorithm. Increas-
ing the task size decreases the overhead of task acquisition
while simultaneously increasing the system latency (task pro-
cessing time). Figures 11a and 11b illustrate the performance
of IBW] using PIM-Tree over different task sizes ranging
from 1 to 10 in terms of throughput and latency, respectively.
Increasing the task size to four steadily improves the per-
formance, which suggests that very small task sizes lead to
significant task scheduling overhead. For task sizes from five

2533

to eight, a minor improvement is achieved, and for task sizes
larger than eight, the performance does not significantly
vary. The evaluation results shown in Figure 11b indicate
that the task size greatly influences the system latency: in-
creasing the task size leads to higher latencies. Additionally,
we observe that the latency of parallel IBW]J is higher for
larger sliding windows. As the window size increases, the
PIM-Tree merge becomes more costly because it leads to
longer linear window scans during nonblocking merge and
consequently causes higher latency. In the remainder of the
evaluation, we use tasks of size eight.

Memory consumption — In this experiment, we com-
pare the memory footprint of IBW]J using PIM-Tree and B*-
Tree. We assume that the merge ratio is one (r = 1) in this
experiment, such that T; and the sliding window for IBW] us-
ing PIM-Tree is of the largest possible size. The memory foot-
print of IBW]J consists of two components, the indexing data
structure and sliding window. Figure 11c compares the mem-
ory space required for different components of PIM-Tree and
B*-Tree storing varying numbers of elements. Each element
is a pair of 4 bytes for the key and 4 bytes for the sliding win-
dow reference. The storage required for PIM-Tree consists
of the search-efficient component (Ts), the insert-efficient
component (T7), and a buffer that is required during merge.
The results reveal that the space required for PIM-Tree is
almost double the space required for B*-Tree, regardless of
window size. Moreover, using PIM-Tree, we must maintain a
sliding window twice the size as is needed for using B*-Tree
(considering r = 1). Consequently, the total memory space
needed for IBW]J using PIM-Tree is nearly twice the amount
needed as for using B*-Tree.

Scalability — The objectives of this experiment are to first
study the overhead of the CC mechanisms and to then ex-
amine the scalability of our join algorithm using multiple
threads. Figure 12a compares the resulting throughputs cor-
responding to self-join and two-way join using PIM-Tree un-
der a varying number of threads against the single-threaded
implementation without CC. The results show that enforc-
ing CC causes performance degradation of nearly 40% and
26% for two-way join and self-join, respectively, mainly as a
result of the locking overhead. As we increase the number of

Research 28: Stream Processing

Two-way join w/o CC E==1 Two-way join w/ CC E2zZa
Self-join w/o CC Self-join w/ CC 2z

Single threaded IBWJ w/ B*-Trec MEMEM Multi-threaded IBWJ w/ PIM-Tree
Single threaded IBWJ w/ PIM-Tree C—1 Multi-threaded IBWJ w/ PIM-Tree X2

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Single threaded IBWJ w/ B'-Trec MEEM Multi-threaded IBWJ w/ Bw-Tree ZZ222
Single threaded IBWJ w/ PIM-Tree EZZ2 Multi-threaded IBWJ w/ PIM-Tree =

Multi-threaded IBWJ w/ Bw-Tree EZZ22 with blocking merge r
14
14 " -
9 =
212 . nlAn S S12 b
10 a N A Adldlalgi] & 20t
7 Nl 1 Y T W 5
g AREEEELIL T IR &
gt M EEL e 58]
2 an A 0t Wt e vl o v v 3 6 i =
) AWM mmmmmiml = i S 6lp
26 Hmmmmmm i m mw iin1 = i 3 0
: nelAma M| = : = b T B Al A Al Al Al oal Al A
£ 4 arl M s 4 il |1 ERRl R 1
=] MMM = 7 = M M B EU IR s el 0| U 1l M| o] A1 B Al 1
AWM = A = H BN BATRY | U B A | L 21 JH Hl Ul #
s a M il = 2 HIRRRH = 2 HY- L e i e e | L T el ot |
2 ARl ol ol o m s Hl s I I 1 R B B (| T 7801 o
MW i i il = H I A I HIIE H ; 14 (RY 1 B BH 0B A BB B B e | | |
o W1 o A 4 0 o o v (0 o o A D HITH B B it IH W TH B ; P e) B B oo
112345678910111213141516 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
(2) Threads (b) Window size (2%) () Window size (2%)

Figure 12: a) Comparison of parallel IBWJ using PIM-Tree utilizing varying number of threads against the single-threaded
implementation without concurrency control (CC) (w = 22%). b) Throughput comparison of single-threaded and multithreaded
two-way join. c) Performance comparison of single-threaded and multithreaded index-based self-join.

threads from one to eight, the performances of two-way join
and self-join increase to 4.6 and 4 times the single-threaded
implementation with CC, respectively. Moreover, the results
reveal that enabling hyperthreading (16 threads) increases
the throughput by 24%, and the mentioned improvements in-
crease to 5.7 and 5. As the number of concurrent tasks in the
system increases, there is a higher probability of congestion
between working threads to access shared resources, which
results in longer waiting times and prevents a perfectly linear
scale up.

Multithreading efficiency — In this experiment, we study
the efficiencies of our multithreading approach and nonblock-
ing merge, and we also compare PIM-Tree to the state-of-
the-art parallel indexing tree, Bw-tree. Figure 12b shows the
throughput performance of five different implementations
of the two-way IBWJ: (1) single-threaded IBW] using B*-
Tree, (2) single-threaded IBWJ using PIM-Tree, (3) parallel
IBW] using Bw-tree, (4) parallel IBW] using PIM-Tree, and
(5) parallel IBW]J using PIM-Tree with blocking merge.

The results of parallel IBW] using PIM-Tree show that
using blocking and nonblocking merge techniques results in
similar performances, while blocking merge is slightly faster
than nonblocking merge because of the less complicated
mechanism it uses to perform blocking merge operations.
Moreover, the results reveal that our parallel approach is
effective for window sizes larger than 2!*. For the smaller
evaluated window sizes (2! to 2!%), merge operations occur
very often, which leads to frequent linear window scans dur-
ing merge operations, and thus system performance declines.
For window sizes between 2'° and 2%°, our parallel IBW]
using PIM-Tree yields on average 7.5 and 3.7 times higher
throughput than the single-threaded IBWJ using B*-Tree
and PIM-Tree, respectively. The greatest improvement is
achieved for the largest evaluated window size (2%°), which
resulted in improvement increases of 12 and 5.3 times. The
evaluation results of IBW] using Bw-tree reveal that Bw-
tree is also not effective for the smaller evaluated window
sizes (219 to 2!%) because of the high conflict between threads
during index operations. For window sizes between 2!* and
2%, parallel IBW] using Bw-tree results in 1.8 times higher

throughput than our single-threaded IBW]J using PIM-Tree,
on average. For the same range of window sizes, our par-
allel IBWJ using PIM-Tree outperforms the Bw-tree-based
implementation by a factor of 2.2 on average. Although our
PIM-Tree achieves better performance than Bw-tree, we do
not seek to challenge Bw-Tree in this work since Bw-tree
is designed as a generic parallel indexing tree that is highly
efficient for OLTP systems where the majority of queries
are read accesses (more than 80% [19]), whereas our design
is specifically tuned for highly dynamic systems such as
data stream indexing with a significantly higher rate of data
modification.

Figure 12c presents the performance comparison of the
parallel and single-threaded IBW] implementations for self-
join. Similar to the experiment on two-way window joins,
parallel self-join using PIM-Tree is not effective for the smaller
evaluated window sizes (2!° to 2!%). For window sizes be-
tween 21¢ to 2%, parallel self-join using PIM-Tree achieves
7 and 4 times higher throughput than the single-threaded
self-join using B*-Tree and PIM-Tree, respectively.

Impact of skewed data — We now study the impact of
the tuple value distribution on the performance of parallel
IBW] using PIM-Tree in two experiments. First, we examine
IBW]J using three differently skewed distributions, including
a Gaussian distribution (¢ = 0.5, o = 0.125) and two differently
parameterized Gamma distributions (k =3, 0 =3 and k =
1, @ = 5), and we compare them with the result of using
a uniform distribution. For each evaluation, we adjust the
band join predicate to keep the average match rate equal
to two. Figure 13a presents the evaluation results (w = 2%0).
The uniform distribution of the join attributes always results
in the highest throughput, although the differences are not
significant. On average, the resulting throughput of IBW]J
using PIM-Tree for uniformly distributed join attributes is
between 2% and 4% higher than for Gaussian and Gamma
distributions, respectively.

In the second experiment, we examine the impact of a
dynamic tuple value distribution on the performance of
IBW]J using PIM-Tree. In contrast to the previous experi-
ment where the distribution of values was fixed, we now

2534

Research 28: Stream Processing

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

Million tuples per second

Gamma (k =3, 0 =3) zzA Uniform r=0.1 —8— r=03 r=06 —v— r=1.0
Gamma (k=1,6=5) I Gaussian 2223 " 61':0-0—"—1’:0-2—9—1‘20-4—'— r=0.8 —%—
3
SI2 2 K]
2 2 4 7 /
S dv mn Ak dh W = 2 2
210 IR 'R IR IR |/ 1 3 o5
2 ok AU AU Al A AH A il 5 s
2 [0 A0 A A A A A 2 2o
= A AU A AL-AD-AD Al Al A0 AR n =
sSMMAn AN AL A Al A p Al c 1006 10111017 1023
= Al AU A0 AH AU AU mY AN AU B0 AU AN Q
S A AN g Al mn mH Ay Ay mi Al Al Al = e
Z 6 AN AU AN AN AU AU A0 AW Al A0 AY AN S o
pt Al A1 AU A1 AU Ay A1 AU A A A1 Al 2 6
g A AU A Y A0 AH By AU Ad AH Ay Al = 2 o
S AU AN A A Ad AH A A1 Al Ay Al Al = @
= Al A0 A A0 AN A0 Al AL A0 AU A0 Al =
sl A A e
Y AU AN AU 1 Ry AH AU U Al AU
, LMY /W V] I (A O RO R 5 | "
] 5 | X
14 15 16 17 18 19 20 21 22 23 24 25 0 100 200 300 400 500 600 700 800 900 1000 1
(a) Window size (2%) (b) Sub-indexes

2 3 45 6 7 8 910111213 1415 16
Number of processed tuples (X 220)

(©

Figure 13: a) Evaluation of parallel IBW] using PIM-Tree for different tuple value distributions. b) Distribution of inserts among
subindexes during drifting Gaussian distributions. ¢) Evaluation of multithreaded index-based self-join using PIM-Tree for

shifting Gaussian distributions.

study PIM-Tree performance under a dynamic value dis-
tribution, which results in a skewed distribution of inserts
among subindexes. For this purpose, we create a tuple se-
quence in which tuple values are generated based on a shift-
ing Gaussian distribution, and we then evaluate the perfor-
mance of parallel index-based self-join using PIM-Tree with
this tuple sequence (w = 22°). The tuple sequence consists
of three phases. In the first phase, the tuples are generated
according to the fixed Gaussian distribution N(0.5,0.125)
(u = 0.5,6% = 0.125). During the middle phase, the distrib-
ution of tuple values is linearly shifting from N(0.5,0.125)
to N(r + 0.5,0.125), where the constant value r defines the
speed of the distribution change; thus, the larger r is, the
faster the mean value of the Gaussian distribution shifts.
In the last phase, the tuples are generated according to the
Gaussian distribution N (r + 0.5, 0.125). We set the lengths
of these three phases to 3M (3 x 2%°), 10M and 3M tuples,
respectively. Dy is set to 4, which results in 1024 subindexes
considering f;, = 32 and w = 2%. Figure 13b illustrates
the normalized distribution of insert operations among T7’s
subindexes during distribution shifts (second phase) for dif-
ferent values of r ranging from 0 to 1. It follows that inserts
are spread among subindexes equally when the tuple value
distribution is fixed (r = 0), and as r increases, the distribu-
tion of inserts becomes more skewed. For the highest value
of r (r = 1), the insert distribution is highly skewed such that
77% of all inserts are assigned to a single subindex, and there
are almost no inserts assigned to the other 70% of subindexes.
Figure 13c presents the evaluation results for multiple values
of r ranging from 0 to 1. The join performance during the
distribution change depends on how fast the distribution
shifts: slow, moderate or fast. During slow distribution shifts
(r = 0.1,0.2), there is almost no decrease in the stream join
performance, which indicates that PIM-Tree is able to grace-
fully tolerate slow changes in the tuple value distribution.
For moderate distribution shifts (r = 0.4, 0.6), the system
performance decreases to 35% on average, which is due to
high partition locking congestion. The lowest performance
results from fast distribution shifts (r = 0.8, 1.0), where the

2535

performance decreases to 16%. The join performances for
r = 0.8 and r = 1.0 are nearly identical, which indicates that
partition locking congestion is close to its peak. Additionally,
the results imply that regardless of how fast the distribution
shifts during the second phase, as the distribution becomes
stationary again in the third phase, partitions in PIM-Tree are
adjusted accordingly, and stream join performance recovers.

6 RELATED WORK

Work related to our approach can be classified as follows:
Tree indexing, parallel B*-Tree, sliding window indexing,
and parallel window join.

Tree indexing — Due to the advances in main memory
technology, many databases are currently able to store index-
ing information in main memory and eliminate the expensive
I/O overhead arising from storage to disks. Consequently,
a large body of work has explored tree-based in-memory
indexing. B*-Tree is a popular modification of B-Tree, which
provides better range query performance [3, 10]. T-Tree is
a balanced binary tree specifically designed to index data
for in-memory databases [21]. Although B-Tree was origi-
nally designed as a disk-stored indexing data structure, when
properly configured, B-Tree outperforms T-Tree while en-
forcing CC [25]. Rao et al. [32] extended CSS-Tree [31] to
the cache-sensitive B*-Tree (CSB*-Trees), which supports
update operations, although B*-Tree outperforms CSB*-Tree
in applications that require incremental updates. LSM-Tree
is a multilevel data structure that stores each component
on a different storage medium [29]. LSM-Tree improves sys-
tem performance in write-intensive applications using delta
merging; however, it does not provide a solution for multi-
threaded indexing. Adaptive radix tree (ART) is a high-speed
in-memory indexing data structure that exhibits a better
memory footprint than a conventional radix tree and better
point query performance than B*-Tree [22]. However, B*-
Tree outperforms ART in executing range queries [1]. We
use B*-Tree as the baseline to evaluate our PIM-Tree since it
supports incremental updates and range queries better than
other approaches.

Research 28: Stream Processing

Parallel B*-Tree - Bayer and Schkolnick [4] proposed
a CC method for supporting concurrent access in B-Trees
based on coupled latching, in which threads are required
to obtain the associated latch for each index node in every
tree traversal. B-link is a B"-Tree with a relaxed structure
that requires fewer latch acquisitions to handle concurrent
operations [20]. However, CC methods based on coupled
latching are known to suffer from high latching overhead
and poor scalability for in-memory systems [7].

PALM is a parallel latch-free B*-Tree based on bulk syn-
chronous processing [35]. Although this approach is scalable
and handles data distribution changes, it requires processing
queries in large groups (the authors suggest groups of 8,000
queries to achieve a reasonable scale up). Pandis et al. [30]
proposed physiological partitioning (PLP) of indexing data
structures on the basis of a multirooted B*-Tree. Using PLP,
the index structure is partitioned into disjoint intervals, and
each interval is assigned exclusively to a single thread.

Rastogi et al. [33] introduced a multiversion CC and recov-
ery method in which update transactions create a new ver-
sion of a node to avoid conflicting with lookup transactions
rather than using locks. Optimistic latch-free index traversal
is based on node versioning to ensure data consistency dur-
ing tree traversal, but it does not require the creation of a new
physical node to avoid conflicts [7]. However, this approach
does not provide an efficient node-merging algorithm, which
is critical for preserving an efficient tree structure when the
data distribution of tuples in the sliding window changes.
Bw-Tree is another optimistic latch-free parallel indexing
data structure that utilizes atomic compare and swap (CAS)
operations to avoid race conditions [23]. Bw-Tree is designed
to simultaneously exploit the computational power of multi-
core processors and the memory bandwidth of underlying
storage, such as flash memories. Among the aforementioned
approaches, Bw-Tree is the best choice for use cases with
frequent incremental updates, which is why we use it as the
baseline for our multithreaded indexing approach.

Sliding window indexing — Golab et al. [15] evaluated
different sliding window indexing approaches, such as hash-
based and tree-based indexing, for different types of stream
operators. Kang et al. [17] evaluated the performance of an
asymmetric sliding stream join using different algorithms,
such as nested-loop join, hash-based join, and index-based
join. Lin et al. [24] and Ya-xin et al. [43] proposed the chained
index to accelerate index-based stream joins utilizing coarse-
grained tuple disposal. However, all of these approaches
considered only single-threaded sliding window indexing,
thus avoiding concurrency issues resulting from parallel
update processing, which is central to the focus of our work.

Parallel window join - Window join processing has
received considerable attention in recent years due to its
computational complexity and importance in various data

2536

SIGMOD 20, June 14-19, 2020, Portland, OR, USA

management applications. Cell join is a parallel stream join
operator designed to exploit the computing power of the
cell processor [13]. Handshake join is a scalable stream join
that propagates stream tuples along a linear chain of cores in
opposing directions [41]. Roy et al. [34] enhanced the hand-
shake join by proposing a fast-forward tuple propagation to
attain lower latency. SplitJoin is based on a top-down data
flow model that splits the join operation into independent
store and process steps to reduce the dependency among
processing units [28]. Lin et al. [24] proposed a real-time and
scalable join model for a computing cluster by organizing
processing units into a bipartite graph to reduce memory
requirements and the dependency among processing units.

All these approaches are based on context-insensitive win-
dow partitioning. Although these methods are effective for
using nested loop join or for memory-bounded joins with
high selectivity, context-insensitive window partitioning
causes redundant index operations using IBWJ, which limits
the system efficiency.

7 CONCLUSIONS

In this paper, we presented a novel indexing structure called
PIM-Tree to address the challenges of concurrent sliding
window indexing. Stream join using PIM-Tree outperforms
the well-known indexing data structure B*-Tree by a margin
of 120%. Moreover, we introduced a concurrent stream join
approach based on PIM-Tree, which is, to the best of our
knowledge, one of the first parallel index-based stream join
algorithms. Our concurrent solution improved the perfor-
mance of IBW]J up to 5.5 times when using an octa-core (16
threads) processor.

The directions for our future work are twofold: (1) devel-
oping a distributed stream band join and (2) extending PIM-
Tree to support the indexing of multidimensional data. In this
paper, we focused on parallelism within a uniform shared
memory architecture. A further challenge, but an altogether
different problem, is to develop a parallel IBW] algorithm for
nonuniform memory access (NUMA) architectures, which re-
quires addressing two main concerns. First, a range partition-
ing technique that distributes a workload uniformly among
operating cores is needed. Second, a repartitioning scheme
that alleviates the overhead of data transfer between memory
nodes in a NUMA system is needed. Moreover, with respect
to supporting multidimensional data, PIM-Tree is designed
to index one-dimensional data. Multidimensional indexing is
a vital requirement for many applications, specifically those
that utilize spatiotemporal datasets. Thus, a further direction
is the design of a multidimensional PIM-Tree.

8 ACKNOWLEDGMENTS

This research has been supported by the Alexander von
Humboldt Foundation.

Research 28: Stream Processing SIGMOD 20, June 14-19, 2020, Portland, OR, USA

REFERENCES [24] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. 2015. Scalable
[1] V. Alvarez, S. Richter, Xiao Chen, and J. Dittrich. 2015. A comparison Distri.buted Stream Join Processing. In .SIGMOD . 811-825.
of adaptive radix trees and hash tables. In ICDE. 1227-1238. [25] Hongjun Lu, Yuet Yeung Ng, and Zengping Tian. 2000. T-tree or B-tree:

[2] Shivnath Babu and Jennifer Widom. 2001. Continuous queries over Main memory data?ase index structu're revisited. In ADC. 65 773'
data streams. ACM Sigmod Record (2001), 109-120. [26] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko,

[3] R. Bayer and E. McCreight. 1970. Organization and Maintenance of et al. 2017. StreamBox: Modern Stream Processing on a Multicore

Large Ordered Indices. In SIGFIDET. 107-141. Machine. In USENIX ATC 17. 617-629.
[4] R. Bayer and M. Schkolnick. 1977. Concurrency of operations on [27] Giovanni Montana, Kostas Triantafyllopoulos, and Theodoros Tsagaris.

B-trees. Acta Informatica (1977), 1-21. 2008. Data stream mining for market-neutral algorithmic trading. In
[5] Timo Bingmann. 2008. STX B+tree C++ template classes. URL Proceedings of the 2008 ACM symposium on Applied computing. 966—
http://panthema. net/2007/stx-btree (2008). 970.
[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, (28] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen.

2016. SplitJoin: A Scalable, Low-latency Stream Join Architecture with
Adjustable Ordering Precision. In USENIX Annual Technical Conference.
493-505.

et al. 2015. Apache flink : Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering (2015).

[7] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, et al. 2001. Cache- [29] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
conscious concurrency control of main-memory indexes on shared- 1996. The log-structured merge-tree (LSM-tree). Acta Informatica
memory multiprocessor systems. VLDB (2001), 181-190. (1996), 351-385.

[8] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, et al. 2014. [30] Ippokratis Pandis, Pinar Téziin, Ryan Johnson, and Anastasia Ailamaki.
Trill: A High-performance Incremental Query Processor for Diverse 2011. PLP: Page Latch-free Shared-everything OLTP. VLDB (2011),
Analytics. VLDB (2014), 401-412. 610-621.

[9] Daniele Dell’ Aglio, Emanuele Della Valle, Frank van Harmelen, and [31] Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for

Abraham Bernstein. 2017. Stream reasoning: A survey and outlook : Decision-Support in Main Memory. In VLDB' 78-89.)

A summary of ten years of research and a vision for the next decade. [32] JunRao and Kenneth A. Ross. 2000. Making B+-Trees Cache Conscious
Data Science (2017), 59-83. in Main Memory. In SIGMOD. 475-486.

[33] Rajeev Rastogi, S. Seshadri, Philip Bohannon, et al. 1997. Logical and

[10] Ramez Elmasri. 2008. Fundamentals of database systems. Pearson
Physical Versioning in Main Memory Databases. In VLDB. 86-95.

Education India.

[11] Xiaoming Gao, Emilio Ferrara, and Judy Qiu. 2015. Parallel clustering [34] Pratanu RO?” Jens Teubner, and Rainer Gemulla. 2014. Low-latency
of high-dimensional social media data streams. In CCGrid. 323-332. handshake join. ‘_[LDB (2014)’.7097720')

[12] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S Yu, and [35] Jason Sewall, Jatin Chhugani, Changkyu Kim, et al. 2011. PALM:
Myungcheol Doo. 2008. SPADE: the system s declarative stream pro- Parallel architecture-friendly latch-free modifications to B+ trees on
cessing engine. In SIGMOD. 1123-1134. many-core processors. VLDB (2011), 795-806.

[13] Bugra Gedik, Rajesh R Bordawekar, and S Yu Philip. 2009. CellJoin: a [36] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2016. A Hybrid B+-

parallel stream join operator for the cell processor. The VLDB journal Tree as Solution for In-Memory Indexing on CPU-GPU Heterogeneous
(2009), 501-519. Computing Platforms. In SIGMOD. 1523-1538.

[37] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2019.

[14] Pawel Gepner and Michal Filip Kowalik. 2006. Multi-core processors:
Parallel Index-based Stream Join on a Multicore CPU.

New way to achieve high system performance. In PARELEC. 9-13. ; :
[15] Lukasz Golab, Shaveen Garg, and M Tamer Ozsu. 2004. On indexing https://arxiv.org/pdf/1903.00452.pdf. (2019). arXiv:cs.DB/1903.00452

sliding windows over online data streams. In International Conference [38] Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-
on Extending Database Technology. 712-729. Efficient Hybrid Radix Sort on GPUs. In SIGMOD. 417-432.

[16] Martin Hirzel, Henrique Andrade, Bugra Gedik, Gabriela Jacques-Silva, [39] Elias Stt'ehle and P.Iar'ls-Arn()]acobsen. 2020. ParPaRaw: Massive};z Paral-
et al. 2013. IBM streams processing language: analyzing big data in lel Parsing of Delimiter-Separated Raw Data. VLDB (2020), 6164A$628.
motion. IBM Journal of Research and Development (2013), 7-1. [40] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. 2005. The 8

[17] Jaewoo Kang, Jeffery F Naughton, and Stratis D Viglas. 2003. Eval- requirements of real-time stream processing. SIGMOD (2005), 42—-47.

[41] Jens Teubner and Rene Mueller. 2011. How soccer players would do

uating window joins over unbounded streams. In Data Engineering,
stream joins. In Sigmod. 625-636.

International Conference on. 341-352.

[18] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, et al. [42] Ankit Toshniwal, Siddz?rth Taneja, Amit Shukla, Karthik Ramasamy,
2016. SABER: Window-Based Hybrid Stream Processing for Heteroge- etal. 2014. Storm@Twitter. In SIGMOD. 147-156.
neous Architectures. In SIGMOD. 555-569. [43] Yu Ya-xin, Yang Xing-hua, Yu Ge, and Wu Shan-shan. 2006. An indexed
[19] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David non-equijoin algorithm based on sliding windows over data streams.
Schwalb, Jatin Chhugani, et al. 2011. Fast Updates on Read-optimized (2006), 294-298.
Databases Using Multi-core CPUs. VLDB (2011), 61-72. [44] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, et al.
[20] Philip L Lehman et al. 1981. Efficient locking for concurrent operations 2016" APache Spark: A Unified Engine for Big Data Processing. Com-
on B-trees. ACM Transactions on Database Systems (1981), 650-670. munication of the ACM (2016), 56-65.)
[21] Tobin]J. Lehman and Michael J. Carey. 1986. A Study of Index Structures (45] Steffen.Zeuch, E.Sonaventura Del M(?nte, Jeyhun Karimov, et al. 2019.
for Main Memory Database Management Systems. In VLDB. 294-303. Analyzing Efficient Stream Processing on Modern Hardware. VLDB
[22] Viktor Leis, Alfons Kemper, and Tobias Neumann. 2013. The adaptive (2019), 516-530.) o
radix tree: ARTful indexing for main-memory databases. In ICDE. [46] Hao Zhang, Gang Chen, Beng Chin Ooj, Kian-Lee Tan, et al. 2015.
38-49. In-memory big data management and processing: A survey. IEEE
[23] Justin J Levandoski, David B Lomet, and Sabyasachi Sengupta. 2013. fransactions on Knowledge and Data Engine'ering _(2015)’ 1220‘1948~
The Bw-tree: A B-tree for new hardware platforms. In ICDE. 302-313. [47] Linfeng Zhang and Yong Guan. 2008. Detecting click fraud in pay-per-

click streams of online advertising networks. ICDCS, 77-84.

2537

Appendix C

75

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Distributed Stream KNN Join

Amirhesam Shahvarani
Technische Universitat Miinchen
Munich, Germany
ah.shahvarani@tum.de

ABSTRACT

kNN join over data streams is an important operation for location-
aware systems, which correlates events from different sources based
on their occurrence locations. Combining the complexity of kNN
join and the dynamicity of data streams, kNN join in streaming
environments is a computationally intensive operator, and its per-
formance can be greatly improved by utilizing the computational
capabilities of modern non-uniform memory access (NUMA) com-
puting platforms. However, the conventional approaches to kNN
join for prestored datasets do not work efficiently with the kind of
highly dynamic data found in streaming environments.

Therefore, in this paper, we introduce an adaptive scalable stream
kNN join, named ADS-kNN, to address the challenges of performing
the kNN join operation on highly dynamic data. We propose a
multistage kNN execution plan that enables high-performance k\NN
queries in distributed settings by overlapping the computation and
communication stages. Moreover, we propose an adaptive data
partitioning scheme that dynamically adjusts the load among the
operators according to the changes in the input values. Combining
these two techniques, ADS-KNN provides a scalable and adaptive
kNN join operator for data streams. Our experiments using a 56-
core system show that ADS-kNN achieves a maximum throughput
that is 21 times higher than that of a single-threaded approach.

CCS CONCEPTS

« Information systems — Data streams; Parallel and distributed
DBMSs.

KEYWORDS
Distributed computing; Data streams; Nearest neighbor join

ACM Reference Format:

Amirhesam Shahvarani and Hans-Arno Jacobsen. 2021. Distributed Stream
KNN Join. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457269

1 INTRODUCTION

With advances in wireless communication and mobile devices,
location-aware services have become increasingly popular in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457269

1597

Hans-Arno Jacobsen
University of Toronto
Toronto, Canada
jacobsen@eecg.toronto.edu

past decade [7, 26, 37, 40]. Many location-aware applications, such
as social networking platforms, recommender systems and location-
based games, gather excessive amounts of geospatially tagged
streaming data at an ever-increasing pace [18, 23, 38]. A high per-
formance data processing solution is a crucial requirement in these
applications to provide real-time service [13, 28, 29, 31, 32].

The k nearest neighbor (kNN) join is a computationally intensive
and frequently used operation that is supported by many location-
aware services [8, 33]. Given the two datasets R and S, kNN join
correlates each tuple from R to its k nearest tuples in S. Stream
kNN join is a special type of kNN join, in which the two datasets
R and S are given in the form of data streams. kNN join is a use-
ful operation in many streaming scenarios, such as locating the
taxis nearest the customer’s location, correlating a tweet with the
geospatially nearest tweets, and finding the nearest photos to a user
in a photo-sharing platform [14, 30]. Combining the complexities
of the join operation with kNN query processing and the dynam-
icity of streaming data, the stream kNN join is a computationally
intensive operator, and single-threaded approaches cannot meet
the desired performance in many scenarios. Therefore, a scalable
multithreaded solution that is capable of exploiting the computa-
tional power of multiple processors is desirable. Although there
are different approaches for distributed kNN join over static (i.e.,
pre-stored) datasets, they are not applicable in a streaming setting.
Data preprocessing is a common and effective technique for parti-
tioning a static dataset. However, preprocessing is not an option in
data streams. Data are more dynamic in a streaming environment
than in conventional databases, where data are updated through
ETL processes. Therefore, the join mechanism is required to con-
tinuously adapt to the changes in the data distribution in real time.

Depending on their underlying hardware, parallel stream pro-
cessing systems can be grouped into two categories: single-node
(scale-up optimized) or multinode (scale-out optimized). Scale-up
optimized systems, such as Trill [5] and StreamBox [22], are fo-
cused on effective algorithms to utilize the resources of a single-
node workstation, which are often based on a non-uniform memory
access (NUMA) architecture. Compared with multinode systems,
scale-up optimized stream processing systems employ more so-
phisticated task distribution and communication techniques to
exploit the communication network among processors. In con-
trast, scale-out optimized systems, such as Flink [4], Storm [36]
and Spark [41], are designed for stream processing on a multinode
computing server. These systems are often based on massive data
parallelism to exploit computational resources, and tasks are distrib-
uted among processors using a producer-consumer pattern. As a
consequence, these systems achieve suboptimal performance using
a single-node computing machine in comparison with scale-up op-
timized stream processing systems or multinode systems optimized
for both scale-up execution and scale-out execution, such as IBM

Research Data Management Track Paper

System S [11, 15]. With advances in modern NUMA computers in
terms of both memory storage and computational power, single-
node stream processing solutions based on scale-up optimization
are sufficiently powerful for many applications and have become
an interesting alternative for scale-out optimized systems [9, 42].

Thus, in this paper, we introduce adaptive distributed stream kNN
join (ADS-kNN) as a solution for scalable and real-time kNN join for
streaming data. Unlike existing approaches that are based on data
preprocessing, load balancing in ADS-kNN is based on online data
distribution analysis and repartitioning. Therefore, ADS-kNN can
be applied in any real-time streaming system, and it does not require
any prior knowledge about the input data distribution. Moreover,
we introduce a multistage query execution mechanism that enables
ADS-kNN to overlap data communication and query execution.

A scalable parallel operator requires an effective data partitioning
mechanism that simultaneously considers both workload balance
and scalability. Simple partitioning mechanisms, such as round-
robin, provide a uniform workload among operators, but these
mechanisms are not scalable approaches for the problem of distrib-
uted kNN join. When using round-robin partitioning, all partitions
must be queried to determine the kNN of a single tuple, as tuples are
assigned to partitions independently of their values. Therefore, the
cost of kNN join using round-robin increases almost linearly with
an increasing number of join operators in the system, which limits
its scalability. Hash partitioning is also not effective for kNN queries
because hash functions do not preserve the spatial distances of tu-
ples, and for this reason, we require all partitions to be queried for
every kNN query. Therefore, we opt to use a spatial data structure
as the partitioning function in our system. Using space partition-
ing, we can limit the scope of each kNN query to a subset of join
operators, and therefore, maintain the scalability of our system.
However, proposing a space partitioning method that provides a
balanced workload while adapting to the data distribution changes
is a challenging endeavor.

We propose an adaptive space partitioning mechanism that is
based on two separate processes: workload monitoring and par-
tition updating. ADS-KNN constantly evaluates the effectiveness
of the current data partitioning based on periodic load statistics
submitted by the join operators. If the system determines that the
current data partitioning is not effective, it generates a new data par-
titioning using an approximate data distribution gathered from the
join operators and initiates a data repartitioning process. Regarding
the partitioning update, we propose two partitioning update meth-
ods, lazy and instant, which are useful for different scenarios. The
instant partitioning update is a blocking operation, but it maintains
the kNN-join operation in an efficient state. The lazy partitioning
update is a nonblocking operation, but more time is needed for
the system performance to recover using this method than the
instant partitioning update. Furthermore, as a complement to our
data partitioning approach, we propose a concurrent kNN query
execution mechanism that enables low-latency result delivery and
efficient utilization of the available computational resources. This
multistage design enables our system to overlap the communication
and computation stages of kNN query to achieve better resource
utilization.

To validate the ideas developed in this paper, we design and de-
velop a lightweight stream processing framework based on MPI [21],

1598

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

a message passing interface designed for parallel computing. Al-
though we use it only for the distributed kNN join in this paper, our
stream processing framework is generic and capable of performing
other types of streaming operations. Distributed data processing
systems are mostly built based on two distinct stages: data distribu-
tion and query execution. It is important to dedicate an adequate
ratio of computational resources to each stage to maximize the sys-
tem utilization. The basic solution to this problem is to empirically
determine the optimal ratio using benchmarks for each query and
system configuration. However, this method has two shortcom-
ings. First, this method requires performing a benchmark before
each query execution; second, this technique is not effective for
scenarios where the optimal ratio is dynamic and changes during
query runtime. To address this issue, we propose a unified opera-
tor model that enables dynamic load balancing between different
stages of the join process. Utilizing 52 join operators, our distributed
stream kNN join using ADS-KNN results in approximately 30 times
higher throughput than the single-join-operator implementation.
This result indicates a parallelization efficiency of 57%. Moreover,
ADS-kNN outperforms a distributed stream kNN join using round-
robin partitioning, which is employed in multiple state-of-the-art
stream join approaches, by a factor of 12.

In summary, the contributions of this paper are listed as follows:
(1) We propose a scalable multistage kNN query execution method
to achieve a high-performance and low-latency distributed kNN
join. (2) We propose an adaptive data partitioning method that
adjusts the load distribution according to the input data streams. (3)
We design and develop a lightweight stream processing framework
to implement the ideas presented in this paper. (4) We develop an
analytical comparison between our approach and state-of-the-art
methods to provide better insight into our design decisions. (5) We
conduct an extensive experimental study of ADS-kNN and provide
a quantitative comparison with a state-of-the-art approach.

The remainder of this paper is organized as follows: In Section 2,
we review the related approaches. In Section 3, we define the prob-
lem of a distributed kNN join on data streams. In Section 4, we de-
scribe the ADS-KNN architecture and how to perform the kNN join.
Section 5 describes the implementation details of our distributed
stream join system. Section 6 provides the cost analysis of ADS-
kNN. We present our experimental results in Section 7. Section 8
concludes our work and defines our future research directions.

2 RELATED WORK

Work related to our approach can be classified into three categories:
distributed kNN processing, stream kNN processing, and the join
operation over streams.

Distributed kNN processing. Because of its computational
complexity and importance in many applications, distributed kANN
processing has received considerable attention in recent years.
Hadoop-GIS [1] is a spatial data warehousing system that is based
on the MapReduce model. Hadoop-GIS is integrated into Hive and
provides a spatial query language extension to enable parallel spa-
tial queries through MapReduce tasks. MD-HBase [26] proposes a
multidimensional index layer over HBase for efficient range and
kNN queries. Using a linearization technique, this method trans-
forms multidimensional data points into a single-dimensional space
and stores them in a range-partitioned key-value store. Likewise,

Research Data Management Track Paper

SpatialHadoop [10] extends Hadoop to enable native support for
spatial query execution, and SparkGIS [3] is an Apache Spark exten-
sion for spatial data processing. However, all previously mentioned
works focus on the analysis of prestored datasets, and their ap-
proaches do not apply to streaming environments.

Adaptive query workload aware (AQWA) [2] is a data partition-
ing mechanism for spatial data based on a kd-tree. AQWA performs
data partitioning at initialization and repartitions data for each
input batch. Although AQWA proposes an adaptive partitioning
solution, this solution is based on preprocessing data and does not
apply to real-time data processing streaming applications. Chatz-
imilioudis et al. [6] introduced Spitfire, a solution for kNN self-join
over a set of objects utilizing a shared-nothing distributed system.
Likewise, Spitfire is based on batch preprocessing, which means
that it is not applicable to streaming data, which is the central focus
of our work.

Stream kNN processing. There are a group of works that are
also focused on processing kNN queries on streaming data. Koudas
et al. [17] introduced an approximate kNN on a sliding window
based on adaptive indexing using space-filling carves, which finds
the k nearest neighbors within a given error bound. Mouratidis et
al. [24] proposed a solution for continuous nearest neighbor queries
on data streams based on conceptual partitioning and reducing
nearest neighbor monitoring to the skyline maintenance problem
to reduce the computation costs. Yang et al. [39] proposed a high-
dimensional R-tree (HDR-tree) to address the reverse kNN problem
on data streams. However, the scope of all these efforts is limited to
single-threaded solutions. Pripuzic et al. [24] proposed a distributed
kNN processing system for publish/subscribe systems based on a
content-addressable network overlay. Their solution is based on
static domain partitioning and does not apply to scenarios where
the data distribution changes.

Join operation over streams. Another category of work re-
lated to our approach is stream join. Golab et al. [12] evaluated
different sliding-window indexing approaches, such as hash-based
and tree-based indexing, for different types of stream join operators.
Kang et al. [16] evaluated the performance of an asymmetric sliding
stream join using different algorithms, such as the nested loop join,
hash-based join, and index-based join. Both approaches consider
only a single-threaded stream join.

Several approaches have explored parallel stream join opera-
tors. Handshake join is a scalable NUMA-aware stream join that
propagates stream tuples along a linear chain of cores in oppos-
ing directions [34]. Roy et al. [27] enhanced handshake join by
proposing a fast-forward tuple propagation to attain lower latency.
SplitJoin is based on a top-down data flow model that splits the join
operation into independent storing and processing steps to reduce
the dependency among processing units [25]. Lin et al. [19] pro-
posed a real-time and scalable join model for a computing cluster
by organizing processing units into a bipartite graph to reduce the
memory requirements and dependency among processing units. All
these approaches considered only a range join over data streams,
while the focus of our work is kNN queries. Moreover, unlike our
method, which is based on space partitioning to distribute data
among operators, data partitioning in all the previously mentioned
approaches is performed based on a round-robin order. In our evalu-
ation, we present the performance of distributed kNN queries using

1599

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

round-robin partitioning and compare it to our space partitioning-
based solution.

3 PROBLEM DEFINITION

This section provides an introduction to the stream kNN join and
space partitioning. The notation we use throughout this paper is
given here.

D : A d-dimensional space

at : Arrival time of tuple a

a.p : Location of tuple a in space

|p,q| : Distance between two points p and gq

W4 (t) : Sliding window of stream A at time ¢
The two streams R and S are input into the system, and each tuple
t from either stream is associated with a point t.p that represents
the position of the tuple ¢ in the d-dimensional space D.

3.1 Stream kNN Join

kNN search. Given the tuple ¢ and the tuple set S, the kNN of ¢
over S is denoted as kNN(t, S) and defined as follows: kNN(t, S)
is a subset of S with a maximum size of k, where the distance of
all other elements of S to the tuple t is greater than or equal to the
distance of each element of kNN (¢, S) to the tuple t.

KNN(t,S) c S [kNN (£, S)| = min(k, |S])
Vsi € kNN(d, S),s; € S — kNN(d, S) — |t.p,si.p| < |t.p,57.p]

kNN window join. Given two streams R and S, the kNN of R
over S is denoted as R <y S. For every incoming tuple r from R,
RN S generates a tuple of the form (r, kNN (r, Ws(r.t))), where
Ws(r.t) is the sliding window of S at the arrival time of r.

3.2 Space Partitioning

Given a cluster with n processing units and a sliding window W,
we define window partitioning as follows:

Space partitioning. The window partitioning P is denoted as
P:W — {W;,1 < i< n}; it groups the elements of ‘W into n
window partitions “W; such that

()Vijii#j=WinW =0 (2)it_'31vvi=w.

In this work, we query a space partitioning in two different ways:
a point query and a range query. In the former, we find the partition
that contains a given point, and in the latter, we find all partitions
that overlap in a given range of values, which we refer to as the
bounding partitions.

Bounding partitions. Given the space partitioning P : D —
{D;,1 < i < n}andthesubspace G(G € D), the bounding partitions
of Gin P (P(G)) are the set of all partitions in P that overlap with G.

P(G) ={D;|D; NG # 0}

4 ADAPTIVE STREAM KNN

Adaptive distributed stream kNN (ADS-kNN) is a distributed stream
processing solution designed for processing kNN queries over data
streams. ADS-kNN performs query execution and data partitioning
in two separate and concurrent processes. Utilizing this design,
these processes are synchronized only at critical points, which en-
ables the system to achieve better system availability and response
time.

Research Data Management Track Paper

Inpul EEEm <
streams
Partitioning
maps
090 1:%‘?
00O

-+ Distributed
+sliding window

.....................................

. Dispacher O Mapper O Join-core O Load balancer
Figure 1: Overall architecture of ADS-kNN.

In this section, first, we introduce the ADS-KNN components
and their responsibilities. Second, we describe the different stages
of kNN query execution using ADS-kNN. Last, we present our
adaptive space partitioning based on the proposed architecture.

4.1 ADS-KkNN Structure

ADS-kNN consists of four different types of operators: a dispatcher,
mapper, join-core and load-balancer. The dispatcher receives input
tuples from both streams R and S and distributes them among the
mappers. The mapper operators forward the tuples toward their
corresponding join-cores according to a partitioning map, and the
join-cores store the tuples in their local memory and generate the
kNN results. Concurrently with tuple processing, the load-balancer
continuously monitors the load distribution among the join-cores
and proposes a new partitioning map if required. Figure 1 depicts
the overall architecture of ADS-kNN.

Given n join-cores (C;, 1 < i < n), we require the partitioning
map (P), which decomposes the domain space into n subspaces
(P:D — {Dj,1 <i < n}). For the given time ¢, the sliding window
W (t) is divided into n partitions {W;(t) : 1 < i < n,Vt; € Wi(t) —
tj.p € D;}, and each partition Wj(t) is stored in the join-core C;.

4.2 kNN Query Process

Tuple processing in ADS-kNN consists of six stages: distribution,
mapping, storing, local search & neighbor querying, neighbor response,
and aggregation. The first two stages, distribution and mapping, are
routing stages, in which tuples are forwarded to their corresponding
join-cores. The remaining four stages are execution stages, in which
the kNN results are generated. Depending on the partitioning map
and tuple value, a join-core might need to query other join-cores
to find the k nearest neighbors. Otherwise, the last two execution
stages are omitted, and kNN query execution terminates after the
local search & store stage. In our current design, there is no guarantee
regarding the order of the output tuples. To generate a result output
in the same order as the input arrival order, we must add an extra
operator to buffer output tuples and propagate them in the correct
order. Figure 2 illustrates the different stages of kNN processing.
Distribution. Tuple processing starts at the dispatcher, which
receives all tuples and distributes them among the mappers. To
reduce the communication overhead, the dispatcher groups the
tuples into sets, which we refer to as tasks, and distributes the tasks

1600

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

4.2. Neighbour query

T 1Neighb0ur core

3. Storing

4.1. Local search 6. Aggregation

Figure 2: Stages of processing a tuple in ADS-KNN.

among the mapper operators instead of one single tuple at a time.
The dispatcher arranges the tuples into tasks according to their
arrival order, independently of which stream they belong to. As
a result, each task may contain a mixture of tuples from streams
Rand S. To provide a uniform workload among the mappers, the
dispatcher distributes the tasks in a round-robin order.

Mapping. For each tuple in a task message, the mapper oper-
ators forward it to its home-core, which is the join-core where
the tuple must be stored. The mappers identify the home-cores
by querying the partitioning map. Given task T and n join-cores,
a mapper operator divides T into n subtasks (7,1 < i < n). The
subtask T, includes all tuples of task T for which C; is their home-
core. At the end, the mapper forwards all subtasks to their assigned
join-cores, even when a subtask is empty. Each subtask message
contains information about the state of the sliding window at the
moment when the task is created, such as the latest timestamps of
each stream. We refer to this information as the window status. This
information is needed by the join-cores to correctly maintain their
local indexes. Therefore, we send all join-cores a subtask for each
task created by the dispatcher, even when the subtask is empty.

Storing,. At this stage, the join-cores update their local index and
start performing kNN query execution. Each join-core maintains
two individual indexes for its local partitions of streams R and
S. Although indexing the content of stream R is not required for
kNN query execution, the distribution of the tuples from stream
R is needed to propose a balanced space partitioning. Thus, each
join-core stores the tuples of stream R for the same criteria, time-
based or count-based, as for the sliding window of stream S. The
processing of tuples from stream S ends at this point.

Local search & neighbor query. For tuples from stream R, the
join-cores obtain their local kNN results by querying their local
index. Next, the join-cores determine whether their local results are
sufficient to create the join result by querying the partitioning map.
If there are no other partitions within the distance of the farthest
local kNN from the local join-core partition in the partitioning map,
the join-core knows that its local kNN is sufficient, and there is no
need to query other join-cores. In this case, a join-core creates a
result tuple using its local kNN results, and kNN query process-
ing ends at this point. Otherwise, the join-core creates a neighbor
request for join-cores that may have tuples closer than the local
results. For each subtask and neighbor core, we create a single
neighbor query message. Unlike the mapping stage, in which we
may create an empty subtask message, neighbor request messages
are generated only for neighbors whose responses are needed.

Neighbor response. For each tuple in a request message, a join-
core queries its local index of stream S, collects all query results,

Research Data Management Track Paper

[Join—core] [Join—core] (1 1] [Join—core] [Join—core]

Load balancer

Load approximation

Partitioning
map

Partitioning map

- []
Dispatcher e
o

Partitioning map

| Mapper I

[Join—core] [Join—core] (L1} [Join-core] [Join-core]

Data redistribution w
=

¥ Y N

[Join—core] [Join—corc] (1 1] [Join—corc] [Join—corc]

Figure 3: Stages of data repartitioning in ADS-kNN.

packs them into a single response message, and sends it to the
requesting join-core.

Aggregation. In the last stage, the join-core that sent the neigh-
bor queries collects all neighbor responses and generates the global
kNN results.

4.3 Adaptive Space Partitioning

To maintain a balanced workload among the join-cores, it is neces-
sary to update the partitioning map according to the tuples’ distri-
bution changes. We propose an adaptive space partitioning mech-
anism that consists of two operations, workload monitoring and
partitioning update. The load-balancer continuously monitors the
distribution of the workload among the join-cores, and if the distri-
bution is unbalanced, the load-balancer initiates the partitioning
update process.

Workload monitoring. The load-balancer constantly monitors
the distribution of the workload among the join-cores to evaluate
the efficiency of the current partitioning map. The workload moni-
toring is performed on an interval-by-interval basis, and the length
of the intervals is defined as the number of task messages received
by the join-cores. At the end of each interval, all join-cores submit
their loads during the interval to the partition manager. For each
interval, the load-balancer calculates the variance of the workloads
among the join-cores. If the load distribution variance surpasses a
defined threshold, the partition manager triggers the partitioning
update process.

Partitioning update. ADS-kNN performs the partitioning up-
date in two phases, map generation and map replacement. The load-
balancer initiates the map generation phase by sending a load ap-
proximation request to the dispatcher. The dispatcher forwards
this message to the next mapper in a round-robin order, and the
mapper broadcasts this request to all join-cores. Upon receiving the
load request, the join-cores create an approximation of their local
workload and forward it to the load-balancer. The load-balancer
collects all workload approximations and creates a new partitioning
map accordingly, and then the first phase is complete.

The load-balancer starts the map replacement phase by sending
the new partitioning map to the dispatcher. Before distributing the
new partitioning map, the dispatcher submits a sync request to
all mappers and join-cores. Synchronization is needed to ensure
that all ongoing tasks, which are distributed based on the previous
partitioning map, are completed before replacing the map with a
new map and that we generate consistent results. The mappers

1601

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

and join-cores complete all unfinished tasks as they receive sync
requests and send acknowledgments to the dispatcher. Next, the
dispatcher broadcasts the new partitioning map to all mappers and
join-cores. The mapper operations simply discard the old partition-
ing map, and any upcoming tuples are mapped based on the new
partitioning map. The join-cores can perform data repartitioning in
two modes: instant and lazy. In the former, the join-cores instantly
repartition the tuples after receiving the new partitioning map. The
join-cores query the new partitioning map to find the new home-
cores of their locally stored tuples and send the tuples to their new
home-cores. At the end, they discard the old partitioning map and
resume task processing as normal. In the latter mode, the join-cores
do not redistribute the tuples, and instead, resume the join oper-
ation until the old partitioning map expires. In this scenario, the
join-cores maintain multiple versions of the partitioning map. All
newly arriving tuples are partitioned according to the latest version.
However, whenever a join-core checks for overlapping partitions
with its local kNN results, it checks all available partitioning maps
and sends requests to all overlapping join-cores in all versions.
A partitioning map expires when the last tuple partitioned using
this partitioning map is eliminated from the system. At this point,
the partitioning map can be eliminated by the join-cores. Figure 3
illustrates the different stages of data repartitioning in ADS-kNN.

5 ADS-KNN IMPLEMENTATION

In this section, we present the implementation details of our ap-
proach, including our stream processing framework, indexing ap-
proaches, and unified mapper-joiner operator, which we propose
for better resource utilization. Moreover, we discuss task synchro-
nization and result correctness in ADS-kNN.

5.1 MPI-based Stream Processing

We design a lightweight stream processing framework that provides
the flexibility and performance that we require in implementing
ADS-kNN. Using our own stream processing system allows us to
study the effect of different design decisions, which provides us
with new insights about challenges and limitations to overcome.
Despite the availability of several stream processing frameworks,
such as Flink, Storm and Spark Streaming, we opted to design our
own stream processing system. We conducted a detailed study of ex-
isting stream processing frameworks to implement our approaches
in the early stages of our research, but we perceived substantial per-
formance limitations as also observed by other researchers [20, 42].
The reason is that none of the available frameworks are optimized
for the type of workload that we require in this work. The men-
tioned frameworks are based on the massive parallelism of inde-
pendent tasks, and their target platforms are multinode clusters.
Consequently, these platforms result in suboptimal performance
for ADS-kNN, which relies on frequent low-latency queries and
operator coordination.

To maximize performance, each operator in our stream pro-
cessing system is a process with a dedicated central processing
unit (CPU) core. Therefore, the maximum number of operators
is bounded by the number of available CPU cores. Operators use
MPI to communicate with each other. All messages in our system
are transmitted using nonblocking communication, which enables
better resource utilization by overlapping communication with

Research Data Management Track Paper

Local index 1 Local index 2 Local index 1 Local index 2
= = 0
Quad-tree % t% kd-tree U L] U
e 20
Partitioning
Map - |
I — =ty
— i @a e T

Local index 3 Local index 4 Local index 3 Local index 4

Figure 4: Space partitioning: quadtree and kd-tree.

computation. The message types are encoded as MPI message tags
to ensure that messages of the same type are always received in the
same order as they are transmitted, which is crucial for our system
to generate the correct results.

5.2 Indexing and Workload Approximation

To accelerate kNN queries, the join-cores index their local window
partitions with an R*-tree. We opt to use an R*-tree because it is
capable of incremental updates and adapts to changes in the data
distribution. In addition to accelerating queries, the join-cores use
their local indexes to generate workload approximations, which is
required for creating a partitioning map.

An R*-tree is a tree-based data structure designed for indexing
multidimensional data, which stores the data elements in leaf nodes.
It groups nearby objects at each level into a minimum bounding
box and uses these boxes as objects for the next higher level. The
minimum bounding boxes at each depth of the R*-tree represent
an approximation of the indexed tuple distribution. Therefore, join-
cores do not require extra computation to calculate the distribution
approximation. The greater is the depth, the finer are the bounding
boxes, and therefore, the more accurate is the approximation. The
decision of which precision level of the distribution approxima-
tion should be used for creating the domain partitioning trades off
the partitioning efficiency and processing overhead. The finer the
distribution approximation that we use is, the more accurate our
partitioning is, but the more costly it is to transmit the data and
create a partitioning map.

The load distribution in ADS-kNN is dependent on the distribu-
tions of both data streams. The tuples from stream R are the kNN
queries, and the tuples from S are the data points in the domain.
To generate effective domain partitioning, we must consider the
distribution of both the queries and the data points. Therefore, we
maintain two sliding windows in ADS-kNN, one for each stream,
even though the sliding window of stream S is not needed in the
kNN join process. We opt to accept the extra cost of maintaining
a sliding window to obtain the benefit of more efficient domain
partitioning. For this reason, the join-cores index their local sub-
windows for both the R stream and the S stream into two separate
R*-trees.

5.3 Space Partitioning Data Structure

We use three space partitioning data structures in this work: a
kd-tree, quadtree and grid file. Although both the kd-tree and the
quadtree are data structures for indexing multidimensional data
points, there are important differences between these two data
structures. A kd-tree partitions data points, but a quadtree partitions

1602

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the space. Therefore, the boundary of partitions is set according
to data points using a kd-tree, but the quadtree sets boundaries
according to the space. Moreover, a kd-tree is a balanced tree, and
we can control the number of leaf nodes, while a quadtree is not
balanced, and we cannot control the number of leaf nodes. For
this reason, to use a quadtree as a space partitioning method, we
must create more leaf nodes than join-cores and use a space-filling
curve. In contrast to adaptive space partitioning using tree-based
data structures, the grid file divides space into equally sized cells
using a flat data structure. Thus, we opt to implement all these data
structures as partitioning maps for ADS-kNN, and we study the
performance of each approach in the application of a distributed
stream join. Figure 4 illustrates the tree-based partitioning schemes
and the local indexing approach used in ADS-kNN.

kd-tree: Given the load approximation and N join-cores, our
objective is to create a kd-tree with N leaf nodes with a uniform
workload among them. We start at the root node with the entire
space D and N join-cores. At each inner node, we calculate the
standard deviation (o) of the load distributions along each axis and
divide the space perpendicular to the axis with the highest o, such
that the loads at each child node are [N /2] and | N/2]. We continue
the process for each child node until we reach the leaf nodes. Each
leaf node is assigned to a single join-core.

quadtree: To create a partitioning map using a quadtree, we start
at the root node, which includes the entire domain and workloads.
We expand the inner nodes of the quadtree until the load at each leaf
node is less than a predefined threshold, which is the granularity
of partitioning. The finer this threshold is, the more uniform the
load balancing is and the more expensive the partitioning query is.
Therefore, choosing the right partitioning granularity is important
for the performance of our system. We linearize the divided space
using a Hilbert space-filling curve, and then we split the Hilbert
curve into N parts such that the load assigned to each part is the
same. At the end, each portion of the Hilbert curve is assigned to a
single join-core.

Grid file: Creating space partitioning using the grid file is easier
than that using kd-tree and quadtree. We divide the domain space
into a uniform grid and calculate the load on each grid cell. To
distribute grid cells among join-cores, we linearize the grid using
the Hilbert space-filling curve and then divide the Hilbert curve
into N sections, similar to quadtree.

5.4 Unified Mapper/Joiner Architecture

A simple approach to implementing ADS-kNN in our stream pro-
cessing framework is to fix the number of mappers and join-cores
in the system and statically assign a dedicated process to each of
them. However, there are two drawbacks to this approach. First,
there is no fixed optimal value for the number of mappers and
join-cores, and we must empirically search for the optimal configu-
ration for each individual streaming application and system setup.
Second, a static system configuration cannot properly work with
dynamic data distribution changes. For example, if the input data
distribution changes in a way that results in more neighbor queries,
we will require more computing power for the join-cores to resolve
all queries.

To address these concerns, we propose a new operator, the
mapper-joiner, which functions as both a mapper and a join-core.

Research Data Management Track Paper

Using n mapper-joiners is logically the same as having n mappers
and n joiners. Using the mapper-joiner operator, we rely on adapt-
ing the execution time that we spend on each operation rather
than adapting the number of processes. In these settings, when the
neighbor querying rate increases, the mapper-joiners automatically
dedicate more time for the join operation, and likewise, when the
data partitioning is more costly, the mapper-joiners spend more
time on mapping operations. Therefore, we can allocate all avail-
able computing resources to the mapper-joiners independently of
the application and system configuration, and the mapper-joiner
operators dynamically utilize computing resources as the data dis-
tribution changes.

5.5 Task Synchronization

We must ensure that two conditions hold true for a join-core to
provide a correct response to kNN requests. First, a join-core must
have received all subtasks prior to the task to which a given kNN
request belongs. Second, a join-core should not eliminate a tuple
unless it does not match any future kNN requests from any other
join-core. To ensure that these conditions hold true in ADS-kNN,
we propose two mechanisms: buffered kNN requests and relaxed
window synchronization.

Task execution is not a synchronized process in ADS-KNN, and
join-cores may process tuples that belong to different tasks at a
point in time. Therefore, a join-core might receive a kNN request
from a task that is not received by the join-core. In this scenario,
the join-core cannot provide a correct response unless it receives its
corresponding subtask. To address this issue, we propose a buffered
kNN request mechanism. Thus, each join-core maintains a buffer
for kNN requests that cannot be resolved instantly. When a join-
core receives a new kNN request, it verifies whether it can instantly
provide a correct response; if it can it processes the request as
normal, and no further actions are required. Otherwise, the join
operator stores the kNN request in its request buffer and resumes
the join operation. To resolve buffered requests, the join-cores probe
their local buffers upon receiving every new subtask and verify if
any request can be resolved.

Over time, tuples expire in the sliding window, which means
that these tuples will not match any other tuple due to the window
constraints. It is important to eliminate expired tuples to maintain
the indexing data structures in an efficient state. However, the early
elimination of tuples may result in incorrect kNN results. Therefore,
a join-core must be aware of other join-cores’ task execution states
to correctly eliminate tuples. To address this issue, we propose an
implicit task synchronization mechanism that does not require any
extra messaging among join-cores. Implicit task synchronization is
based on limiting the number of active tasks in the system. A task
is considered to be active when the corresponding mapper operator
divides it into subtasks until all subtasks are processed and the join
results are generated. By limiting the number of active tasks, a join-
core can implicitly deduce the correct sliding window boundaries,
such that it can eliminate tuples without causing incorrect results.

We limit the number of active tasks to 2n, where n is the number
of join-cores. As mentioned in Section 4, each subtask includes
the window status information. The join-cores maintain a list of
window statuses with a length of 2n. When a new subtask arrives,
a join-core inserts the new window status into the list and removes

1603

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

the least recent window status. Next, the join-core deletes all expired
tuples based on the assumption that the task corresponding to the
removed window status is finished, and it can eliminate tuples from
its local index. To ensure that there are no more than 2n active tasks
in the system, we propose a solution based on the unified mapper-
joiner operator. Consider a system consisting of n mapper-joiner
operators; we therefore have n mappers (M;,1 < i < n) and n join-
cores (J;,1 < i < n). Additionally, each task T; (the j — th task in
the system) is divided into n subtasks T]' « (1 £ k < n). The mapper
M; does not distribute the subtasks of task T; unless the join-core
Ji has finished processing all its subtasks prior to task Tj,. If this
condition holds true, and considering that the join-cores receive
subtasks in order, a join-core can deduce that when it receives the
subtask T]’ > all join-cores have finished processing the subtasks
of task Tj_zp. Therefore, there will be no requests from tasks prior
to Tj_2p, and the join-core can eliminate tuples without causing
incorrect kNN results.

6 COST ANALYSIS

Here, we provide an analytic comparison between the ADS-kNN
join and distributed stream kNN join based on round-robin parti-
tioning with respect to computational complexity, communication
cost and memory consumption.

6.1 Round-robin Partitioning

As a baseline of our approach, we implement a distributed R <y S
based on round-robin partitioning, which we refer to as RR-kNN.
In this approach, tuples are distributed among the join-cores in
a round-robin order rather than using a space partitioning-based
approach. To find the kNN of a tuple, each join-core in the system
finds its local kNN results and sends them to the tuple’s home-core.
The home-core gathers all local kNN results and generates the
global kNN. To accelerate the process of finding a local kNN, each
join-core indexes its local window partition in the R*-tree, similar
to ADS-kNN.

6.2 Computational Complexity

To compare the computational complexity of ADS-kNN and RR-
kNN, we estimate the average cost of processing a single tuple from
each stream R and S using either solution.

ADS-kNN: Tuples from streams R and S are processed differ-
ently in ADS-kNN. A tuple from stream S is processed in the follow-
ing three steps: (1) query the partitioning map to find its home-core,
(2) insert the tuple into the home-core’s local index, and (3) delete
the tuple from the index when it is expired. For a uniform tuple
distribution among the join-cores, Equation 1 represents the cost
of processing a single tuple from stream S, where §; and d; are the
cost of the insertion operation and cost of the deletion operation,
respectively, in each local index, and Cp, is the cost of querying the
partitioning map.

Cs=Cp +5i+5d (1)

Processing a tuple from stream R requires four more steps to
find its kKNN: (1) find the local kNN in its home-core, (2) query the
partitioning map to find the overlapping join-cores, (3) find the
kNN in the neighboring join-cores, and (4) merge the local kANN
results and find the global kNN. Let « be the average number of

Research Data Management Track Paper

neighbor queries per tuple, and let C;;, be the cost of merging the
local kNN results. Equation 2 represents the cost of processing a
single tuple from stream R, where Js is the cost of the kNN query
in each local index.
Cr=2:Cp+6i+6q+(1+a): 8 +Cn (2)
RR-KNN: To process the tuples from stream S using RR-kNN,
we require two operations: (1) insert the tuple into the local index
of its home-core, and (2) delete it from the index when it expires.
The tuples from stream R are processed as follows: (1) find the local
kNN in each join-core, and (2) merge all local results to find the
global kNN. Equations 3 and 4 represent the cost of a single tuple
of stream S and stream R, respectively, using RR-kNN, where C;,, is
the cost of merging the local kNN results in RR-kNN.
C; =0;+ 4 (3)
Cl=n-6s+C}, (4)
The cost of processing a tuple from stream S is almost the same in
both solutions, considering that the cost of querying the partition-
ing map is logarithmic in the number of join-cores. Thus, this cost
is negligible in comparison with the cost of the update operations in
the R*-tree. The main drawback of using round-robin partitioning
is that the complexity of kNN queries increases linearly with an in-
creasing number of join-cores. Therefore, utilizing more join-cores
is not effective in improving the system performance. ADS-kNN
limits the neighbor queries by utilizing a space partitioning. Thus,
the cost of kNN computation does not increase by increasing the
number of join-cores.

6.3 Communication

To compare the communication overheads of ADS-kNN and RR-
kNN, we measure the average amount of data transfer among the
operators needed to process a single tuple using either approach.
We estimate the data transfer size in terms of the average tuple size
(v+)- The communication cost of processing a tuple has two parts:
(1) forwarding the tuple to its home-core and (2) processing kANN
queries. We measure the communication cost of each approach as
follows:

ADS-KNN: We must transmit a tuple twice to take it to its home-
core, from the dispatcher to the mapper and from the mapper to
the join-core. To find the kNN of a tuple, a join-core sends queries
to a join-cores, and they return k tuples in response. Therefore, the
communication cost of finding the kNN is & - (1+k) - y;. The average
communication cost of each tuple from stream R and stream S is
represented in Equations 5 and 6, respectively.

Vi=2-n
Vs=2-yr+a-(1+k) -y

(©)
(6)
RR-KNN: Each tuple is directly transferred to join-cores in
round-robin order, so we must transmit a tuple only once to reach
its home-core. To find the kNN of a tuple, we send n queries to all
join-cores, and each join-core returns k tuples in response. The total
communication cost for processing the kNN is n - (1 + k) - y;. The
average communication cost of processing a tuple from each stream
R and stream S is represented in Equations 7 and 8, respectively.

(7)
®)

Vi=n
VS'=)/t+n-(1+k)~)/t

1604

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Comparing the communication costs of ADS-kNN and RR-kNN,
we observe that forwarding tuples toward their home-cores in
ADS-kNN is twice as costly as in RR-kNN, but the difference is
not significant. However, the cost of finding the kNN using RR-
kNN is remarkably higher than that of ADS-kNN. In the case of
ADS-KNN, the local kNN result in the home-core is equivalent
to the global kNN result if we use an effective partitioning map.
In these scenarios, there is no need to transfer any data among
operators. However, the communication cost of finding a tuple’s
kNN using RR-kNN increases linearly with an increasing number
of join-cores, similar to the computational complexity. Therefore,
RR-kNN requires transferring n/a times more data than ADS-kNN.

6.4 Memory Footprint

To compare the memory footprints of ADS-kNN and RR-kNN, we
consider only the memory space required for tuple indexing. Al-
though there are other memory buffers required in both approaches,
the memory overheads of these buffers are negligible in compar-
ison with the size of the R*-trees that we use for indexing tuples.
Likewise, the partitioning map is a comparably smaller data struc-
ture than the R*-tree, considering that the memory footprint of the
partitioning map is linear in the number of join-cores, while the
R*-tree’s size is on the order of the number of tuples.

The relative amount of memory space needed for indexing tuples
in RR-kNN and ADS-kNN depends on the input ratio between
stream R and stream S. ADS-KNN requires indexing the sliding
windows of both streams R and S, while RR-kNN indexes only the
tuples of stream S. ADS-kNN indexes the tuples of stream R for
the same period as stream S, which is needed for balancing the
workloads. In the case of an equal input rate for both streams, ADS-
kNN requires simply twice the memory space of RR-kKNN—two
equally sized R*-trees in ADS-KNN, in comparison with a single
R*-tree in RR-kNN. Let p, and p; be the input rates of stream R and
stream S, respectively. ADS-KNN requires 1 + g—: times more space
for indexing tuples than RR-kNN. Because the space complexity of
R*-tree is linear with regard to the number of elements, the index
of stream R is ‘Z—: times larger than that of stream S. Therefore, the
P

total indexing memory footprint of ADS-kNN is 1 + p: times the

index size of stream S.

7 EVALUATION

In this section, we present a set of experiments to benchmark the
efficiency of the approaches presented in this paper. For our evalu-
ations, we use a four-socket NUMA workstation equipped with 14-
core Intel Xeon E7-4850v3 processors and 128 GB of DDR3 memory
on each socket. We ran each experiment three times and reported
the average over three runs.

To maximize performance, we deploy up to 56 operators in our
stream processing framework using our hardware (one operator
per CPU core). In every evaluation, we dedicate two CPU cores
for the emitter and measurement operators. The former buffers
the input tuples into the main memory and sends them to the dis-
patcher operator, and the latter gathers statistics about the system
performance. Therefore, 54 operators are available for performing
kNN queries.

Research Data Management Track Paper

Throughput —8— Latency —e— Jc=10

20 §Y

30 ==

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

JC=10 ZzZA 20 SN 30 EER 40 WM 50 3

40 w—m 50—

500 50
30 |
< 400 | 40 ~
E S
X X i
< 300 | 302: Tl @
8 2 8
2 & 2 :
Z 200 f 20 = z
2 E} 2 ‘W
o < z 20 |
= 100 } 10 = |
=] =]|
& ‘W
0 0 15 LAE i Il
110 20 30 40 50 60 70 80 90 100 110 120 1 2 3
(a) Batch size (b)

Latency (ms)

7

6
Batch size factor

5
Batch size factor

6 7

(©)

Figure 5: a) Throughput and latency of ADS-kNN for various batch sizes. b) Throughput of RR-kNN for various batch size
factors and join-cores. c¢) Latency of RR-KNN for various batch size factors and join-cores.

We study two different forms of kNN join, namely, two-way join
and self-join. In the former, R and S are two distinct streams, and
in the latter, R and S are identical streams. Our experiments are
conducted on both real-world datasets and synthetic datasets. Our
real-world datasets are TWEETS and NY-TAXI [35]. TWEETS is a
set of geospatially tagged tweets from North America gathered
from January 2018 to March 2018; it is utilized to benchmark the
self-join operator. NY-TAXT is a set of taxi rides in New York City
in 2017. We use the rides’ pick-up location and drop-off location
as the tuples of stream R and stream S, respectively, to perform a
two-way stream join. To provide more controlled studies of our data
repartitioning methods, we generate a synthetic dataset, in which
the tuple distribution shifts with a controlled parameter. Using
our synthetic dataset, we can study how our data repartitioning
methods perform during data distribution changes.

7.1 Batch Size

In the first experiment, we empirically determine the optimal batch
size for both ADS-kNN and RR-kNN. We evaluate each approach
for various numbers of batch sizes and measure their performance
in terms of both throughput and latency. For this experiment, we
employ the two-way join operator using the NY-TAXI dataset and
set the window size and k to 5 x 10° and 25, respectively.

Figure 5(a) illustrates the throughput and latency of ADS-KNN
using various batch sizes ranging from 1 to 128 and 52 mapper-
joiner operators. As we increase the batch size, we observe that the
ADS-KNN throughput increases rapidly at the beginning. The gains
gradually decrease, and eventually, the increasing batch size does
not improve the system throughput, and the performance curve
becomes flat. The results show that the system latency follows a
different pattern than throughput. The system latency increases
almost linearly with an increase in batch size. Selecting an optimal
batch size is a trade-off between throughput and latency. Depending
on the application, we may prefer better result latency at the cost
of lower throughput, or vice versa. In the remainder of this work,
we use a batch size of 100 for all our experiments using ADS-kNN.
Nevertheless, it is viable to use smaller batch sizes in latency-critical
applications. For instance, using a batch size of 20 instead of 100
reduces the system latency to almost one-fourth, while it reduces
the system throughput by only 20%.

In the case of RR-kNN, we set the batch sizes as an integer
multiple of the join-cores, which we refer to as the batch size factor.
We use this configuration to provide a uniform workload among
the join-cores using RR-kNN. Figures 5(b) and (c) illustrate the

1605

throughput and latency of RR-kNN using various batch size factors
and mapper-joiner operators. The results show that the batch size
does not make a significant change in RR-kNN throughput. As we
increase the batch size factor from 1 to 3, the system throughput
increases by 20% on average. However, the system performance
does not improve any further by using a batch size factor higher
than 3. In terms of the system latency, increasing the batch size
factor has a major drawback. The system latency increases almost
linearly with an increase in batch size. Because the performance
gain of using a batch size factor of 3 is not significant in comparison
with a batch size factor of 2, we opt to use a batch size factor of 2
for the remaining experiments to attain lower latency.

7.2 Space Partitioning

We now study the efficiency of our space partitioning based on
data distribution approximation using three data structures that
we implement in this work, kd-tree, quadtree and grid file. To
evaluate the efficiency of our approach, we implement a space
partitioning method based on data preprocessing, which we refer
to as the baseline. The baseline method preprocesses the input
data and creates a space partition using quadtree. We conduct two
experiments: first, we study how each space partitioning scales with
different numbers of join-cores; second, we study the workload
distribution among the join-cores using each space partitioning
method. For this experiment, we use the self-join operator and the
TWEETS dataset and set the window size and k to 5 x 10° and 100,
respectively.

Figure 6(a) shows the throughput of ADS-kNN for various num-
bers of join-cores ranging from 2 to 52 using four different space
partitioning methods, including the baseline method and three
approximate-based methods, grid file, quadtree and kd-tree. In
general, all approaches yield similar performance for join-cores be-
tween 2 and 22, while the performance becomes more divergent for
join-cores exceeding 24. This finding indicates that the partitioning
map becomes more influential when we utilize more join-cores in
our system. In this experiment, quadtree outperforms the other
two data structures, kd-tree and the grid file, by 5% on average.
Overall, our real-time space partitioning approach demonstrates
an adequate performance, which results in only 5% less throughout
than the preprocessing-based solution on average.

In the second experiment, we perform distributed stream kNN
join based on ADS-kNN and measure the load distribution among
join-cores. We measure the load of a join-core as the total number of
insert and search queries that each join-core performs over a fixed

Research Data Management Track Paper

Quadtree TZZZA kd-tree N Grid B8 Baseline

~ 160 |

i)

— 140 }

Z 120 |

9

g 100 |

Q

2 80|

o)

[a% 60 B

2]

L 40 F G

I -

~ [o IR N N NE
o L A AN AV AR VN OV AN i

4 8 12 16 20 24 28 32 36 40 44 48 52

() Join-cores

Normalized load

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Baseline —— kd-tree —=— Quadtree —— Grid —

=o
b —
T
1

—=o
L —_
‘ {
H]

i

—=o

hin
T
1

] i ’
e . 2N A

e A N AR Y et
os L N X s 1

1 4 7

(b)

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Join-core index

Figure 6: a) ADS-KNN throughput using kd-tree, quadtree and grid file for various numbers of join-cores. b) Normalized work-
load distribution over join-cores in ADS-kNN using kd-tree, quadtree and grid file, where load equal to 1 is the average load.

(a) quadtree

(b) kd-tree

Figure 7: Partitioning the TWEETS dataset.

period of time. Figure 6(b) presents the normalized load distribution
among 52 join-cores using quadtree, kd-tree, grid file and our base-
line. The baseline results in the most uniform load distribution. The
workload distribution among join-cores using the two tree-based
partitioning maps, kd-tree and quadtree, is reasonably uniform, and
the majority of workloads are between 80% and 120% of the average.
The worst-performing data structure in terms of load distribution
is the grid file, which cannot properly handle densely populated
areas. For the remainder of the evaluations, we use quadtree as a
space partitioning map because of its higher average throughput.
Figures 7(a) and (b) illustrate the quadtree partitioning map and the
kd-tree partitioning maps, respectively, for the same experiment.
These results provide better insight into the workload distribution
and how each approach partitions the space.

7.3 Scalability

The objective of this experiment is to study the scalability of the
approaches presented in this paper with respect to the number of
join-cores. For this reason, we evaluate the stream kNN join using
both ADS-kNN and RR-KNN for various numbers of join-cores and
measure the throughput and latency. In this experiment, we employ
the two-way join operator using the NY-TAXT dataset and set the
window size and k to 5 X 10° and 25, respectively.

Figure 8 (a) compares the throughputs of ADS-KNN and RR-kNN
using different numbers of join-cores, ranging from 1 to 52. Using
a single join-core, RR-kNN outperforms ADS-kNN by 30% because

1606

of the mapping overhead of the tuple distribution in ADS-kNN.
However, as we increase the number of join-cores, the RR-kNN
throughput scarcely improves, and RR-kNN using 52 join-cores is
only 40% faster than the single join-core configuration. In contrast,
the distributed kNN stream join using ADS-KNN scales reasonably
well as we increase the number of join-cores; using 52 join-cores,
and ADS-kNN vyields a throughput that is more than 30 times higher.

Figure 8 (b) illustrates the system latency for the same experi-
ment. The results indicate that ADS-kNN scales well in terms of
latency. The ADS-kNN latency does not change significantly for
different configurations and remains level. In contrast, the latency
results for RR-kNN increase greatly with an increasing number of
join-cores, such that using the highest evaluated number of join-
cores, 52, produces almost 240 times greater latency than using a
single join-core. The RR-kNN latency increases with an increasing
number of join-cores for two reasons. First, each join-core requires
the collection of local kNN results from additional join-cores, and
second, the cost of merging the local kNN results increases with an
increasing number of join-cores.

These experiments show that ADS-kNN is a scalable approach in
terms of both throughput and latency. Using the highest evaluated
number of join-cores, 52, ADS-KNN results in approximately 30
times higher throughput than the single join-core configuration,
and the system latency decreases by approximately 5%. In contrast,
the results indicate that round-robin partitioning is not a scalable
data distribution approach for the application of distributed kNN

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

RR-AkNN —=— ADS-kNN —— RR-kNN —=— ADS-kNN —— k=10 k=30 k=50 k=70 k=90
400 ————————————— 250 k=20 == k=40 - k=60 —— k=80 k=100 —~
350 1100 [3
S 200 ~ 1000 r
% 300 B 900 ¢
< 2 % 800 |
g 250 E 150 S 700 b
2 200 oy g 600 | 1
z =] 3 |]
3 3100 2 500
2,150 5 5 400 |]
$ 100 - 2 300]
3 L g 3
s 50 T 200 M
01 £ 100}]
1 4 7 10131619 222528 31 34 37 40 43 46 49 52 1 4 7 101316 19222528 31 34 37 40 43 46 49 52 1 2 3 4 5 6 7 8 9 10
(a) Join-cores (b) Join-cores () Window length (x 10°%)

Figure 8: a) Throughput comparison between ADS-KNN and RR-kNN using different numbers of join-cores. b) Latency com-
parison between ADS-kNN and RR-kNN using different numbers of join-cores. ¢c) ADS-kNN throughput for various window

sizes and values of k.

k=10 k=30

k=50 k=70 k=90 k=10 k=30 k=50 k=70 k=90 k=10 k=30 k=50 k=70 k=90
k=20 —=— k=40 = k=60 —— k=80 k=100 -~ k=20 -~ k=40 = k=60 —— k=80 k=100 —— k=20 —— k=40 = k=60 —— k=80 k=100 —~—
D —— : W]
80 |
I <o 1000 |- 1
125 s 0l
X
= 1 Ze60 2 800 | 1
B 100 2 z
5 75 1 8 5 600 | 1
S : 40 g /’/r-—b/“'_—k"——q
Eso/ 5| §4007W_5,
ko)
25 r//_._./'—'——"/‘ | = 20 m 200 |]
E10 et
0 0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Window length (x 10%) (b) Window length (x 10%) (c) Window length (x 10°)

Figure 9: a) ADS-KNN latency for various window sizes and values of k. b) RR-KNN throughput for various window sizes and
values of k. ¢) RR-kNN latency for various window sizes and values of k.

join. The additional computational complexity of kNN queries and
the communication overhead resulting from using a larger number
of join-cores restrict the scalability of round-robin partitioning in
this application.

7.4 Window Size and k

In this experiment, we investigate the effect of two parameters, the
window size and k, on the performance of ADS-KNN and RR-kNN.
We evaluate the distributed kNN join for various values of k and
window sizes using both ADS-KNN and RR-kNN, and we compare
the system performance in terms of throughput and latency. In this
experiment, we use the two-way join operator using the NY-TAXT
dataset.

Figures 8 (c) and 9 (a) show the throughput of ADS-kNN and
RR-kNN, respectively, for different values of k and window sizes.
We observe a similar pattern in the changes in performance for both
ADS-kNN and RR-kNN; however, the magnitude of the changes
differs between these two approaches. As we increase the value
of k, the performance of both approaches decreases sharply and
then decreases gradually. ADS-kNN’s throughput declines to 25%
on average as we increase the value of k from 10 to 100. In the
same comparison, RR-kNN’s throughput decreases to one-fifth.
Increasing the window size also decreases the performance of both
approaches, although the performance losses are more linear with
the size of the sliding window, and we do not observe sharp drops in
the performance of either approach. On average, the throughput of
ADS-kNN is 11 times higher than that of RR-kNN over the evaluated
configurations.

1607

Figures 9 (b) and (c) illustrate the result latency of ADS-kNN and
RR-kNN, respectively, for the same experiment. The result latency
follows a similar pattern as the throughput. Both ADS-kNN and
RR-kNN result in higher latency as we increase the value of k or
the window size. However, the value of k affects the performance
of RR-kNN more strongly than that of ADS-kNN. When increasing
the value of k from 10 to 100, the latency of ADS-kNN increases 5
times on average. In the same comparison, RR-kNN’s throughput
increases 7 times on average. The results indicate that the result
latency of RR-kNN is 10 times higher than that of ADS-kNN on
average over the evaluated configurations.

7.5 Dynamic Distribution

In this experiment, we study the space repartitioning methods
presented in this paper, lazy and instant repartitioning. To gain
better control over the data distribution changes, we generate a
synthetic workload for this experiment, which is based on shifting
the two-dimensional Gaussian distribution. We evaluate ADS-kNN
using multiple shifting distributions with different shifting paces,
and we analyze the efficiency of each repartitioning method. This
experiment is based on a self-join operator; we set the window size
and k to 5 x 10® and 25, respectively.

The shifting distribution consists of three phases. In the first
phase, the tuples are generated according to the fixed Gaussian
distribution NV((0.5,0.5), (0.125,0.125)) (1 = (0.5,0.5), 0% = (0.125,
0.125)). During the middle phase, the distribution of the tuple val-
ues linearly shifts from N ((0.5,0.5), (0.125,0.125)) to N ((0.5,r +

Research Data Management Track Paper

r=06 #% r=08 & r=10 —

Tuples per second

10
10 15 20 25 30 35 40 45 50 55
Time (s)

r=02 - r=04

Tuples per second

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

r=06 # r=0.8 & r=10 -

10°

0 10 20 30 40 50 60 70 80 90 100

(b) Time (s)

Figure 10: System performance during data repartitioning in ADS-kNN: (a) instant, (b) lazy.

0.5), (0.125, 0.125)), where the constant value r defines the speed
of the distribution change; thus, the larger r is, the faster the
mean value of the Gaussian distribution shifts. In the last phase,
the tuples are generated according to the Gaussian distribution
N((0.5,r +0.5), (0.125,0.125)). We evaluate ADS-kNN using 5 dif-
ferent shifting paces, from 0.2 to 1, and we measure the system
throughput every 0.1 s.

Figure 10 (a) illustrates the throughput of ADS-kNN using instant
repartitioning over the shifting distribution with various shifting
paces. When the distribution shift begins (after approximately 5
s), the system throughput starts to decline. Eventually, the load
balancer detects an imbalanced workload distribution and triggers
the data repartitioning operation, and the join operation resumes.
In general, the faster the data distribution changes, the lower the
performance during the distribution changes and the later the sys-
tem recovers. For the two slowest evaluated shifting paces, ADS-
kNN performs two repartitioning operations, while other scenarios
require three repartitioning operations. Each data repartitioning
operation blocks the join operation for approximately 1 s, which is
correlated with the sliding window size and the number of tuples
to be redistributed. At the end, the system performance recovers to
the normal level when the data distribution stops shifting.

Figure 10 (b) illustrates the results of the experiment using lazy
repartitioning. In general, we observe that it takes more time to
recover to a balanced workload using lazy data repartitioning than
the instant variant. Instead of blocking the join operation to per-
form data redistribution, the join-cores continue the operation with
multiple partitioning maps. Therefore, we observe only a few short
performance drops during lazy repartitioning instead of join opera-
tion interruptions. However, the performance of lazy repartitioning
is lower for a shifting data distribution compared with instant
repartitioning. When an older partitioning map expires, the system
performance increases. If the load balancer finds an unbalanced
workload distribution, it triggers another data repartitioning op-
eration. This process continues until the data distribution stops
shifting and ADS-kNN finds a balanced workload.

8 CONCLUSIONS

In this paper, we presented ADS-KNN, a solution for high-perfor-
mance distributed kNN join for data streams. We proposed a multi-
stage query execution plan that enables scalable and low-latency

1608

kNN processing. This processing is achieved by enabling join-cores
to perform frequent low-latency queries with each other and by
overlapping the communication and computation stages. Further-
more, we proposed an adaptive data partitioning mechanism that
dynamically distributes the workload among join-cores to maintain
the system in an efficient state. To evaluate the efficiency of our
approach, we conducted an extensive evaluation and compared
our data partitioning approach to the mainstream method, round-
robin partitioning. The results indicate that ADS-kNN is a scalable
approach for the application of distributed stream kNN join. Utiliz-
ing 52 join-cores, ADS-kNN had a throughput more than 30 times
higher than that using a single join-core. Moreover, ADS-kNN
significantly outperformed the round-robin partitioning-based ap-
proach in terms of both throughput and latency. ADS-kNN achieved
12 times higher throughput than the round-robin-based approach
using the highest evaluated number of join-cores.

The directions for our future work are twofold: (1) to design and
develop a more advanced data partitioning approach and (2) to ex-
tend our stream processing framework. In this work, we presented
a space partitioning solution that considers only the distribution of
tuples among the join-cores in distributing tuples among the join-
cores. This approach can be improved further by considering the
queries among join-cores. Therefore, the partitioning map set par-
titions boundaries in a way that results in fewer communications.
Moreover, our data repartitioning method can be further improved
to reduce the number of tuples transferred during repartitioning by
maximizing the overlap between the previous space partitioning
and the new space partitioning. Another direction for our future
work is to extend our stream processing framework to support a
wider range of stream processing applications. The current commu-
nication patterns are designed according to the operators needed
in this paper. Providing more extensive communication patterns
among operators enables our stream processing framework to sup-
port other types of operations. Furthermore, we can extend our
stream processing framework by providing better fault detection
and recovery mechanisms to support multinode computing clusters.

9 ACKNOWLEDGMENTS

This research has been supported in part by the Alexander von
Humboldt Foundation.

Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China

REFERENCES [20] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what {COST}? In
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop GIS: A high 15th Workshop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

performance spatial data warehousing system over Mapreduce. VLDB, pages
1009-1020, 2013.

A.M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy,
and T. Qadah. AQWA: Adaptive query workload aware partitioning of big spatial
data. VLDB, pages 2062-2073, 2015.

F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang. SparkGIS: Resource aware efficient
in-memory spatial query processing. In SIGSPATIAL, pages 28:1-28:10, 2017.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
Flink: Stream and batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, page 28-38, 2015.
B. Chandramouli, J. Goldstein, M. Barnett, et al. Trill: A high-performance
incremental query processor for diverse analytics. VLDB, pages 401-412, 2014.
G. Chatzimilioudis, C. Costa, D. Zeinalipour-Yazti, W. Lee, and E. Pitoura. Distrib-
uted in-memory processing of all k nearest neighbor queries. IEEE Transactions
on Knowledge and Data Engineering, pages 925-938, 2016.

Z.Cheng and J. Shen. Just-for-Me: an adaptive personalization system for location-
aware social music recommendation. In Proceedings of international conference
on multimedia retrieval, pages 185-192, 2014.

Danzhou Liu, Ee-Peng Lim, and Wee-Keong Ng. Efficient k nearest neighbor
queries on remote spatial databases using range estimation. In Proceedings 14th
International Conference on Scientific and Statistical Database Management, pages
121-130, 2002.

B. Del Monte, S. Zeuch, T. Rabl, and V. Markl. Rhino: Efficient management of
very large distributed state for stream processing engines. In SIGMOD, page
2471-2486, 2020.

A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial
data. In ICDE, pages 1352-1363, 2015.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: the system s
declarative stream processing engine. In SIGMOD, pages 1123-1134, 2008.

L. Golab, S. Garg, and M. T. Ozsu. On indexing sliding windows over online data
streams. In International Conference on Extending Database Technology, pages
712-729, 2004.

L. Guo, D. Zhang, G. Li, K.-L. Tan, and Z. Bao. Location-aware pub/sub system:
When continuous moving queries meet dynamic event streams. In ACM SIGMOD,
page 843-857, 2015.

D. He, S. Wang, X. Zhou, and R. Cheng. GLAD: A grid and labeling framework
with scheduling for conflict-aware knn queries. IEEE Transactions on Knowledge
and Data Engineering, pages 1-1, 2019.

M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, et al. IBM streams processing
language: analyzing big data in motion. IBM Journal of Research and Development,
pages 7-1, 2013.

[16] J.Kang,].F. Naughton, and S. D. Viglas. Evaluating window joins over unbounded

streams. In Data Engineering, International Conference on, pages 341-352, 2003.
N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. Approximate NN queries on
streams with guaranteed error/performance bounds. page 804-815. VLDB, 2004.

[18] J.J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. LARS: A location-aware

recommender system. In International Conference on Data Engineering, pages
450-461, 2012.

Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream join processing.
In SIGMOD, pages 811-825, 2015.

IS
=

™
LSk

Message Passing Interface Forum. MPI: A message-passing interface standard,
version 3.1. Technical report, 2015.

H. Miao, H. Park, M. Jeon, G. Pekhimenko, et al. StreamBox: Modern stream
processing on a multicore machine. In USENIX ATC 17, pages 617-629, 2017.
M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query
processing of spatio-temporal data streams in place. Geolnformatica, pages
343-365, 2005.

K. Mouratidis and D. Papadias. Continuous nearest neighbor queries over sliding
windows. IEEE Transactions on Knowledge and Data Engineering, pages 789-803,
2007.

M. Najafi, M. Sadoghi, and H.-A. Jacobsen. SplitJoin: A scalable, low-latency
stream join architecture with adjustable ordering precision. In USENIX Annual
Technical Conference, pages 493-505, 2016.

S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi. MD-HBase: A scalable multi-
dimensional data infrastructure for location aware services. In MDM, volume 1,
pages 7-16, 2011.

P. Roy, J. Teubner, and R. Gemulla. Low-latency handshake join. VLDB, pages
709-720, 2014.

A. Shahvarani and H.-A. Jacobsen. A hybrid B+-Tree as solution for in-memory
indexing on CPU-GPU heterogeneous computing platforms. In SIGMOD, page
1523-1538, 2016.

A. Shahvarani and H.-A. Jacobsen. Parallel index-based stream join on a multicore

CPU. In SIGMOD, page 2523-2537, 2020.
B. Shen, Y. Zhao, G. Li, W. Zheng, Y. Qin, B. Yuan, and Y. Rao. V-Tree: Efficient

kNN search on moving objects with road-network constraints. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 609-620, 2017.

E. Stehle and H.-A. Jacobsen. A memory bandwidth-efficient hybrid radix sort
on GPUs. In SIGMOD, page 417-432, 2017.

E. Stehle and H.-A. Jacobsen. ParPaRaw: Massively parallel parsing of delimiter-
separated raw data. VLDB, page 616—628, 2020.

D. Taniar and W. Rahayu. A taxonomy for nearest neighbour queries in spatial
databases. Journal of Computer and System Sciences, pages 1017 - 1039, 2013.

J. Teubner and R. Mueller. How soccer players would do stream joins. In Sigmod,
pages 625-636, 2011.

The New York City Taxi and Limousine Commission. TLC trip record data,
"https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page”, 2021.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, et al. Storm@Twitter. In
SIGMOD, pages 147-156, 2014.

Z.Xu and H.-A. Jacobsen. Adaptive Location Constraint Processing. In SIGMOD,
pages 581-592, 2007.

Z.Xu and H.-A. Jacobsen. Processing Proximity Relations in Road Networks. In
SIGMOD, pages 243-254, 2010.

C. Yang, X. Yu, and Y. Liu. Continuous knn join processing for real-time recom-
mendation. In 2014 IEEE International Conference on Data Mining, pages 640649,
2014.

H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. LCARS: A location-content-aware
recommender system. In ACM SIGKDD, page 221-229, 2013.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, et al. Apache Spark: A unified engine
for big data processing. Communication of the ACM, pages 56-65, 2016.

S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz, J. Traub, S. Bref3, T. Rabl, and
V. Markl. Analyzing efficient stream processing on modern hardware. VLDB,
page 516-530, 2019.

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Limited Capacity of GPU Accelerators for Indexing Large Datasets
	Concurrency Overhead of Indexing Highly Dynamic Data
	Real-time Spatial Partitioning for kNN Over Data Streams

	Approach
	GPU-Accelerated B+-Tree Based on a Hybrid Memory Layout
	Parallel Data Indexing Based on Range Partitioning
	Adaptive Data Partitioning Based on Real-time Load Monitoring

	Contributions
	Organization

	Methodology
	Programming Models and Computing Architectures
	Compute Unified Device Architecture (CUDA)
	Message Passing Interface (MPI)
	Open Multiprocessing (OpenMP)

	Memory Optimization
	Profiling Tools

	Summary of Publications
	A Hybrid B+-tree as Solution for In-Memory Indexing on CPU-GPU Heterogeneous Computing Platforms
	Parallel Index-based Stream Join on a Multicore CPU
	Distributed Stream KNN Join

	Discussion
	Conclusions
	Bibliography
	Appendix A
	Appendix B
	Appendix C

