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Abstract—This work proposes a probabilistic low level au-
tomotive sensor fusion approach using LiDAR, RADAR and
camera data. The method is stateless and directly operates
on associated data from all sensor modalities. Tracking is not
used, in order to reduce the object detection latency and create
existence hypotheses per frame. The probabilistic fusion uses
input from 3D and 2D space. An association method using a
combination of overlap and distance metrics, avoiding the need
for sensor synchronization is proposed. A Bayesian network
executes the sensor fusion. The proposed approach is compared
with a state of the art fusion system, which is using multiple
sensors of the same modality and relies on tracking for object
detection. Evaluation was done using low level sensor data
recorded in an urban environment. The test results show that
the low level sensor fusion reduces the object detection latency.

Index Terms—sensor fusion, object detection, Bayesian net-
works

I. INTRODUCTION

Every year more than 1.25 million people die in traffic
accidents and roughly 20 million are seriously injured. The
main cause of traffic accidents is human failure, with a rate of
more than 90% [7]. Over the last decade, politics and industry
have invested a significant effort to reduce the number of
accidents. One outcome is advanced driver assistance systems
(ADAS), which help decrease the number and the severity of
accidents by alerting and supporting the driver [11]. These
figures are only considering traffic but they are representative
for the significant impact automation offers for society.

One of the main challenges for any automated or au-
tonomous vehicle is to perceive the environment with low
latency. A key enabler for this task is the detection of objects
proximate to the vehicle. Fusing data from different sensors
and different sensor modalities allows to achieve a reliable
and low latency object detection.

There are various approaches towards sensor fusion. One
popular method is to fuse the output of smart sensors. Such
sensors have major computational capabilities and signal
processing included, in order to detect objects. This is state
of the art in currently available and upcoming ADAS systems
[11]. Nevertheless, it is essential to process all available in-
formation to increase the detection confidence while reducing
the latency. The time delay until an object is perceived by
any AD system is of great interest. The use of smart sensors
cannot guarantee that all captured information is used for
the decision making process because each sensor filters data

without taking information from other sensors into account.
Some smart sensors rely on object tracking for object de-
tection which negatively impacts their detection latency. At
the same time it offers benefits like the improved handling
of partial or entire object occlusions. Directly coupling the
sensors to a centralized fusion system without performing
object detection on sensor level has the potential to reduce
detection latency and avoids losing valuable information
before the fusion step, increasing object detection confidence.
This concept is generally referred to as a low level sensor
fusion concept and helps overcome specific weaknesses of
individual sensor technologies.

The main contribution of this work is a a low level sensor
fusion for object detection in a road vehicle environment with
reduced detection delay in comparison to smart sensors. The
results are compared to a commercial state-of-the-art light
detection and ranging (LiDAR)-based sensor fusion solution.
The test data was captured in urban environments at different
times of day guaranteeing a variety of different weather
and lighting conditions. The proposed fusion approach uses
LiDAR, radio detection and ranging (RADAR) and camera
data at a low level, which enables the object detection to be
based on all available information while decreasing detection
delay.

A combined temporal and spatial association is proposed
and evaluated because the sensor setup of the test vehicle is
not synchronized in time. In addition, a probabilistic fusion
network processing the associated data is described and used
for evaluation.

II. RELATED WORK

A. Object detection

Object detection has experienced significant improvements
over the past years using two-stage and single stage-detectors.
Single-stage detectors like YOLO [6] or SSD [5] do not
have a separation of object detection and classification.
The achievable results of these architectures are trailing in
accuracy when compared to two-stage architectures. The two-
stage networks are more complex and use a object detection
or object proposal and a classification step. The two stage
detectors were introduced with R-CNN [1] and experienced
improvements in various ways. Some of theses well known
improved networks are Fast R-CNN [2], Faster R-CNN [3] or
Mask R-CNN [4] to name some of the many developments.
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B. Low level sensor fusion

Sensor fusion is a well understood problem and has been
an active field of research for decades. The fusion of data
from multiple sources, generally consists of three main
steps: The spatio-temporal registration, the alignment and
the association of data to corresponding targets, followed by
the state estimation and prediction step [15]. Sensor fusion
can happen on different levels, depending on the available
information. The levels range from a low level of information,
like unprocessed sensor data, to a high level information,
like objects. Examples of low level sensors fusion have
been a field of research for automated robotic applications
for decades [21] and use a variety of different approaches,
ranging from basic mathematical concepts as in [15] to fuzzy
logic [37]. Fusion is an enabler for latency reduction, pattern
preservation and information gain and offers the possibility
to reduce bandwidth issues in embedded platforms.

III. PROPOSED APPROACH

A. Sensor Specific Pre-Processing

The sensor data is processed, associated and fused. These
steps are sensor specific and the following describes how the
data is pre-processed before it is associated and fused.

1) Camera Processing: A global shutter grayscale camera
is used as a basis throughout this work. There is a large vari-
ety of different image processing techniques and applications,
this present work only uses HOG features from the camera, in
order to demonstrate the advantages of the proposed low level
sensor fusion concept on LiDAR and RADAR. The camera
data is pre-processed and serves the purpose of demonstrating
the possibility to associate camera data with other sensor
modalities.
A detailed description of HOG features can be found in [33].
The focus of this work is to detect vulnerable road users and
vehicles. The implementation is based on the results found
in [10]. This parameterization is not optimized because the
output of the camera is only used to demonstrate the general
possibility to fuse camera data with other sensor modalities.
However, a main difference to the regular use of HOG
features is that they are not directly used for object de-
tection. Instead, the eroded difference of HOG features of
two consecutive image frames is used. These differences are
clustered and a bounding box for each cluster is calculated.
This approach is referred to as HOG frame to frame differ-
ence(F2FD) throughout this work. Static objects cannot be
detected whenever the car is not in motion, which is a clear
limitation of this method. Nevertheless, the object detection
latency requirements are less crucial whenever the vehicle is
not in motion. The object detection for this type of scenario
is based on LiDAR and RADAR only. As an improvement
to this method, the camera could switch to a neural network
based object detector.

2) LiDAR Processing: The LiDAR data measurements
are clustered for further processing using the density based
clustering algorithm DBSCAN [12]. This choice is based on
the possibility to parallelize the algorithm for large amounts
of data while being deterministic. In addition, DBSCAN is

(a) Image (b) HOG feature differences

(c) Differences after Erosion (d) Clustered eroded differences

Fig. 1. HOG F2FD Implementation: In (a) the raw camera image is shown.
(b) depicts the HOG feature differences without any further processing. In
(c) the HOG F2FD after erosion is depicted. Figure (d) depicts the bounding
boxes, which are based on clusters resulting from the DBSCAN used on the
data depicted in (c).

robust against noise and outliers while handling an unknown
number of clusters. Following the proposed parameterization
from [12], a minimum number of points MinPts = 4 is
chosen. This reduces the loss of object detection-relevant
information before the association step.
The computed clusters are represented by 3D bounding
boxes, which are created for each cluster to enable an efficient
association process.

3) RADAR Processing: The RADAR sensor provides a list
of targets, which is the result of the peak detection algorithm
applied to the 2D Fourier transformed signal [36]. Each target
is associated with a SNR value, a radial velocity vector, a
distance and angle measurement. In a first step, RADAR
targets are clustered to identify targets originating from the
same physical object. However, RADAR targets are substan-
tially different from LiDAR point clouds. Consequently, the
parameterization needs to be adapted. For the present use case
the parameters were set to MinPts = 1 and epsilon = 2.75.
Clusters with a single target are referred to as single targets
in the following. The clusters containing two or more targets
are associated with the mean SNR value of all measurements
of the respective cluster.
In many cases, it is not possible to group RADAR targets, as
there may only be one target per object. Furthermore, there
are targets captured by the sensor, which do not correspond
to any real world object. Those targets are often referred to
as ghost targets. All targets and clusters are provided to the
association.

B. Proposed Association Method

The focus is a real time fusion before tracking which
is a contrast to many state-of-the-art association methods.
The proposed approach associates data from multiple sensor
modalities running asynchronously from 2D and 3D repre-
sentations.
Temporal offsets result in spatial offsets, whenever an object
moves or the ego vehicle is in motion. The proposed approach
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combines spatial and temporal alignment for association. The
input are measurements from individual sensors, which are
already associated with a bounding box.

Each bounding box has an area of An. For the 3D case, the
same simplification is valid for the given use case because all
objects move on the ground. Therefore, following the concept
of an occupancy grid based fusion approach, 3D bounding
boxes are reduced to 2D bounding boxes for the purpose of
association. No relevant information for the association pro-
cess is lost while the efficiency is increased simultaneously.
The overlapping ratio overlapk of two bounding boxes is
referred to as M A. The overlap ratio for bounding boxes is
computed as follows:

overlap =
M A

min (A1, A2)
(1)

Additionally, the distance distancek between the geomet-
ric centers Cn of bounding boxes is computed, relative to the
size of the bounding boxes. The diagonal diagn expansion of
a bounding box is determined based on its width and length.

A weighted distancek between two centers is computed
according the following equation:

distancek =
d (C1, C2)

max (diag1, diag2)
(2)

In addition to the geometric relationship, it is necessary to
take the age of the data into account during association. The
fastest sensor, running at fmax and introducing a maximum
time difference between measurement frames of tfast, is used
as a reference for associating the data. Any other sensor
measurements are available at a frequency of fSensorn and
have a time difference between frames of tdelay. The older
the data is, that has to be associated with the newest incoming
data, the smaller the threshold for association gets. This
results in a more tolerant association for increasing time dis-
crepancy between available sensor measurements, accounitng
for motion of dynamic objects and the ego vehicle. The
computed overlapk and distancek are used to compute
association thresholds according to the following:

toverlapk
= α · tfast

tdelay

M Ak

min (A1, A2)
(3)

tdistk = β · tdelay
tfast

d (C1, C2)

max (diag1, diag2)
(4)

Data is associated, if the center distance of two bounding
boxes is smaller than the threshold tdistk or if the overlap
ratio is larger than the threshold toverlapk

. In this case α
and β are tuning parameters to adjust the threshold for the
desired application. When using this approach, the associa-
tion process is timed on the fastest sensor. Whenever a new
set of measurements from the fastest sensor is available,
the system has to check, whether any other sensor has
provided data in the meantime. Assuming that the individual
sensor frequencies and latencies are known and assuming
that all objects have a limited range of velocity, it is at
all times possible to determine the worst case association

(a) Detected Objects in 2D Plane

(b) Orthographical View

Fig. 2. Association of 2D and 3D Data: In (a) a bounding box is shown. The
corresponding bounded 3D LiDAR data is visualized in (b) and shows the
resulting association using the projected camera rays in the orthographical
perspective. The camera rays associated to the left and right edge of the
bounding box are depicted in black, the ray corresponding to the middle of
the bounding box is shown in red. Only data originating from the pedestrian
is associated.

error, which determines the location uncertainty of an object.
As a consequence of this proposed association method, the
estimated object size will vary depending on the age of
data, but the influence of data age on wrongly assigning
measurements is minimized.

The prerequisite for the association process is the access
to data in one reference coordinate system. Representing
many measurements with a bounding box allows to efficiently
associate data, originating from the same source. Depending
on the sensor modality, the bounding box is either 3D or
2D. In order to associate data from 2D and 3D space, a
perspective projection, according to the camera pin hole
model, has to be used. This allows to associate camera data
with 3D data.

This proposed low level sensor fusion approach projects
image data to the 3D space, using the same model as a 3D
to 2D projection would use.

Two conditions have to be met, so that the computation
of the projection from 2D to 3D data space is executed. The
existence of an event in 3D space is one criteria and the other
is that the event is in the FOV of the camera. The algorithm
computes the azimuth angle of the start and end position of
the bounding box. When looking at the 3D data from an
orthographical perspective, the azimuth angles are used to
associate camera data with the closest captured object in 3D
space. Any other objects, being within the azimuth angles,
are not associated.
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C. Proposed Fusion Network

Statistical inference is defined as the process used to
create hypotheses about underlying distributions and their
parameters, by analyzing data. There are different approaches
towards inference and even various different schools, such
as the ones mentioned in [17]. In order to represent prob-
abilistic knowledge, it is a common approach to use nu-
merical representations. A graphical representation is more
intuitive and human readable. A graph structure, in which the
nodes represent propositional variables and edges represent
dependencies, is a common model of a joint probability
distribution. Depending on the choice of graph, dependen-
cies and independencies can be visualized using undirected
or directed graphs. For the use case of object detection,
Bayesian and Markov networks were analyzed, as those
are well understood and popular methods for uncertainty
management. Factor graphs can be seen as a further de-
velopment and combination of those approaches [25]. The
fact that the Bayesian approach allows to capture conditional
independencies is advantageous. A more detailed comparison
of Bayesian and Markov networks can be found in [17]
and [27]. These analysis suggest that the Bayesian network
is the best choice for the desired fusion network. Exact
inference is chosen as a tool for evaluation purposes, as it is
a deterministic and simple inference method.

The proposed low level sensor fusion approach targets
embedded hardware and the fusion network is required to run
in real-time. Bayesian network allow for efficient inference
implementations, where exact and approximate implementa-
tions are available.

The implemented Bayesian network uses a tree struc-
ture and leaf nodes chosen based on expert knowledge.
The existence probability of an object detection increases
when associated data from multiple sources is available. The
Bayesian network has three sensor modalities contributing to
the existence probability hypothesis. Those sensor technolo-
gies are in the present use-case LiDAR, camera and RADAR.
The network is designed in such a way that more sensors of
different modalities can be added. The possibility to expand
2nd layer nodes by additional parameters and sensors is
given. In addition, the network allows to combine low level
sensor data and object level data, in case smart sensors are
part of a sensor set.

In the case of LiDAR, the leaf nodes are chosen as LiDAR
clusters (LC) and noise is assumed to be removed by the
DBSCAN.

The RADAR nodes are chosen as single RADAR target
(RT), RADAR target cluster (RC) and RADAR SNR (SNR).
The SNR is used to determine the quality of the RADAR
data. The SNR is normalized based on the maximum ex-
pected SNR value, depending on the used RADAR.

For the camera two leaf nodes are used. The camera SNR
value depends on the magnitude of a F2FD cluster and the
noise in the corresponding F2FD data frame. The HOG node
depends on the size of the detection (SIZE) and the SNR of
the detection.

Fig. 3. Implemented Bayesian Network: The three sensor modalities
contribute to the decision of the existence probability. The leaf nodes show
the information provided to the network.

Computing the existence probability of the root node is
implemented according to the following steps:

1) Initialize all leaf nodes
2) Compute next higher level node distributions depend-

ing on leaf nodes
3) Compute next higher level node distributions depend-

ing on previous layer nodes
4) Check if root node is reached, if not go to step 3
5) Output root node hypothesis

The proposed low level sensor fusion approach initializes
the leaf nodes based on the output of the association step. It is
possible that only data from one sensor modality is associated
to an object, whereas it is likely that data from all sensor
modalities is available for an object. Based on this input, the
higher level layers of the tree structure are computed. This
leads to a probability distribution for each individual sensor
modality in the higher-level layer, which is used to compute
the existence probability of the root node. Missing values
for leaf nodes, caused by missing sensor measurements, are
treated as zero-values.

IV. EXPERIMENTS

A. Sensor Setup

The data recording was performed by a car equipped with
LiDAR, camera and RADAR sensors in an urban environ-
ment. The mounting positions of all devices are known and
the sensor setup has been calibrated in advance. The extrinsic
and intrinsic calibration matrices are known. The recording
vehicle uses the following setup for data capturing purposes:

• 360°Ibeo Lux LiDAR sensors: In total, six Ibeo Lux
LiDAR sensors are mounted around the car, resulting
in a 360° coverage of the vehicle environment. Each
LiDAR has four laser beams, a horizontal field of view
(FOV) of 110° and runs at 12.5Hz.

• Front RADAR: This is a short range RADAR operating
at a frequency of 24GHz with a FOV of 100°. The
sensor returns targets at a frequency of 30Hz.

6783

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:04:16 UTC from IEEE Xplore.  Restrictions apply. 



• Front camera: The used camera is a global shutter
grayscale camera with a resolution of 752x480 at 25Hz.
The FOV is 67°.

• High precision LiDAR sensor: A Velodyne HDL-64
using 64 beams is mounted, but it is not used in this
present work, as it is non automotive grade. It serves as
a reference to determine ground truth.

The presented algorithms were implemented based on data
from all LiDAR sensors, data from the RADAR and data
from the front facing camera. The proposed low level sensor
fusion approach is evaluated in the area, where all three
sensor modalities overlap. This is the case for the FOV of
the front facing camera. The area in front of the car is the
most critical and has to be reliably monitored at all time.
This includes varying environmental conditions, for example,
darkness, rain or fog. However, the recorded data set does not
cover any situations with snow, rain or fog.

1) Association implementation: The sensors are not syn-
chronized and run at different frequencies, which results
in temporal offsets between the sensor measurements. The
camera sensor runs at a frequency of fC = 25Hz, the
RADAR at fR = 30Hz and the LiDAR at fL = 12.5Hz.
The available data sets only provide data from one camera
and one RADAR. The only sensor covering 360° of the
environment is the LiDAR. Following the proposed associ-
ation scheme, the temporal parameters for the association
process are chosen as constants. The worst case delay that
can occur is caused by the LiDAR and is tdelay = 80ms. It is
reasonable to allow a more sensitive threshold or respectively
smaller overlaps for associating data, as this results in the
assumption, that the object is larger than it is in reality. The
maximum sensor frequency resulting in tfast = 33.3ms is
used. The worst case delay assumption is made throughout
the entire association process. The parameters α and β are
chosen accordingly.

The first step is the association of 3D bounding boxes. This
happens under the assumption that all relevant objects have
two degrees of freedom. This is feasible, because any road
user is connected to the ground. By performing an orthogonal
projection to the ground plane, the bounding box overlap is
computed. The camera data is associated with LiDAR and
RADAR bounding boxes, projected to the ground plane.

B. Recorded Scenarios

The available data set includes a variety of different use
cases, ranging from city highways to busy urban street
crossings. Due to limitiation given by the prototypical instal-
lation of the sensor set, no data from harsh environmental
conditions is available. The algorithms have to handle data
originating from various kinds of objects in the environment.
In this present work, urban use cases are in the focus. For
this purpose, vehicles and pedestrians are the two object
classes being evaluated. Consequently, the three following
scenarios were chosen for evaluating the proposed sensor
fusion approach. The maximum distances listed in the tables
results from the limited camera resolution which did not
allow for ground truth determination at greater distances.

The busy urban crossing scenario (I) includes a large
variety of different vehicles and pedestrians, as well as
bicycles. This scene was chosen due to the large amount of
road users and the presence of partly occluded objects. The
test vehicle is approaching an intersection and stopping at a
red light while vehicles are passing by at velocities of around
50km/h and pedestrians are crossing the street. Different
viewing angles and occluded road users can be observed in
this scene. The duration of the scenario is 42 seconds.

The red light scenario (II) includes only vehicles passing
by, while the test vehicle is approaching a red light and
waiting at the stop line. This scenario was chosen because
different vehicle types are present. A very small car can be
investigated in this scene, as well as a bus. The presence
of a bridge pillar occluding vehicles until they enter the
intersection allows for a suitable evaluation of the object
detection delay. The duration of the scenario is 34 seconds.

The night scenario (III) was recorded at twilight with
challenging lighting conditions. All vehicles have their lights
turned on and pedestrians are present on sidewalks. The test
vehicle approaching vehicles are using two lanes and occlude
each other. Additionally, pedestrians are present, who are not
actively lit by a light source. The duration of the scenario is
40 seconds.

TABLE I
SCENARIOS

Category Number Max distance (m) Min distance (m)
(I) Urban Crossing

Pedestrian 7 45 5
Vehicle 27 50 15
Bicycle 2 45 34

(II) Red Light
Pedestrians - - -

Vehicles 10 50 8
Bicycles - - -

(III) Night
Pedestrians 8 25 3

Vehicles 19 50 2
Bicycles - - -

C. Comparison of Fusion Approaches

The proposed low level sensor fusion (LLSF) approach
is compared with a state-of-the-art LiDAR-based sensor
fusion system, which is referred to as fusion box (FB).
Identical unprocessed sensor data is played back to both
systems and the results are simultaneously recorded. For a
fair comparison, the LLSF only returns object detections if
LiDAR data is available. The FB is based on the fusion of
six LiDAR sensors. The evaluation is based on the above
described scenarios, which have independent ground truth
information for each sensor modality available. The data
from all sensors is manually annotated to create the ground
truth data. Pedestrian and vehicle detections are analyzed
separately to allow a detection performance evaluation for
these classes.
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The proposed LLSF system operates on single frames and
does not apply any tracking. A positive object detection
occurs when the output of the Bayesian network is above
a threshold of 0.5. In contrast, the FB uses an object tracker
as well as object trajectory prediction. This is an advantage
for the FB when comparing the metrics in case of partly or
fully occluded objects. Nevertheless, a tracking algorithm can
be easily added to the output of the LLSF system.

The three chosen scenarios represent typical urban use
cases during night and day. That includes road users at
various distances, captured in different angles and difficult
lighting conditions. Table II shows the result for the analyzed
scenarios.

TABLE II
OVERALL NUMBER OF OBJECT DETECTIONS

TP FN FP F1-Score
Vehicles

LLSF 5763 48 24 0.9938
FB 5584 227 32 0.9768

Pedestrians
LLSF 865 33 5 0.9786

FB 852 46 64 0.9394

The average percentage of road users being detected by
more than a single sensor modality, in this case LiDAR,
is 94.38% for vehicles and 85.63% for pedestrians. These
objects are detected with a higher confidence in comparison
to objects detected by LiDAR only. For the present evaluation
The sensor FB introduces an average detection delay of
Tdelay = 176.5ms for vehicles and Tdelay = 268.28ms
for pedestrians, whereas the LLSF introduces a delay of
Tdelay = 92.65ms for vehicles and Tdelay = 105.92ms for
pedestrians.

In figure 4 the number of objects detected by the different
fusion approaches is depicted for 100 measurement frames
of scenario (II).

Fig. 4. Fusion Approach Comparison: The number of objects detected per
frame by the two fusion approaches is compared to ground truth. In this
example, the time delay introduced by the FB can be seen at the beginning.

V. CONCLUSION

The proposed low level sensor fusion uses data provided by
LiDAR, RADAR and camera to improve object detection be-
fore tracking by benefiting from the fact that objects are seen

by multiple sensors. A centralized fusion approach operating
on low level sensor data enables the reduction of detection
latency. To efficiently use this approach, different techniques
like clustering are necessary to reduce the computational load
of handling low level sensor data for association.

A single physical object can be captured by multiple
sensor modalities. As soon as data from more than one
sensor technology can be associated with the same object,
the detection hypothesis is improved. The data association
approach allows the use of asynchronous sensor setups. The
test results show that the proposed approach significantly
reduces the detection latency. The state of the art tracking-
based solution performs better for partially or fully occluded
objects. It is important to consider the main conceptual
differences of the compared sensor fusion systems. The FB
uses only one sensor modality, whereas the proposed low
level sensor fusion approach uses three sensor modalities
to detect objects. Additionally, the FB uses object tracking
and object trajectory prediction. None of those methods is
implemented in the proposed approach, as it only operates
on single measurement frames.

The proposed low level sensor fusion approach detects
objects with a decreased delay when entering the sensors’
FOV. The quicker the detection is, the faster a system can
react and avoid or mitigate a crash. In greater distances Li-
DAR measurements are sparser and object detection latency
increases with the FB.

The test results show that the great majority of vehicle
detections benefit from the low level sensor fusion approach
in terms of detection latency and the availability of data
from multiple sensor. Objects in greater distance provide
less dense LiDAR measurements, which leads to increased
detection latency for the FB or no detection. The LLSF is
able to compensate this effect by using data from other sensor
modalities.

The FB generates more false positives for each scenario
which can partially be explained by the usage of trackers.
Once an object is detected, it is not immediately dropped,
even though it might not be visible anymore. The proposed
low level sensor fusion does not have this feature. However,
introducing this capability could improve the performance in
situations with temporarily occluded objects.

Future Work

The implemented Bayesian network was used to demon-
strate the working principle of the sensor fusion. However,
the network is partially expert-based and little optimization
work has been done. This should be improved in the future
to achieve better object detection hypothesis. Additionally,
possibilities to expand the network should be considered.
Another aspect that should be investigated in the future is
the possibility to train classifiers which directly operate on
associated multi modal sensor data. The proposed object
detection has the potential to eliminate the object detection
step in state-of-the-art neural networks while providing a
richer features space in comparison to single modality based
inputs only.
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