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Abstract

Despite the enormous increase in computational power in the last
decades, the numerical study of complex flows remains challenging. State-
of-the-art techniques to simulate hyperbolic flows with discontinuities
rely on computationally demanding nonlinear schemes, such as Riemann
solvers with weighted essentially non-oscillatory (WENO) stencils and
characteristic decompositioning. To handle this complexity the numer-
ical load can be reduced via a multiresolution (MR) algorithm with lo-
cal time stepping (LTS) running on modern high-performance comput-
ing (HPC) systems. Eventually, the main challenge lies in an efficitent
utilization of the available HPC hardware. In this work, we evaluate
the performance improvement for a Message Passing Interface (MPI)-
parallelized MR solver using single instruction multiple data (SIMD) op-
timizations. We present straight-forward code modifications that allow
for auto-vectorization by the compiler, while maintaining the modularity
of the code at comparable performance. We demonstrate performance im-
provements for representative Euler flow examples on both Intel Haswell
and Intel Knights Landing Xeon Phi microarchitecture (KNL) clusters.
The tests show single-core speedups of 1.7 (1.9) and average speedups of
1.4 (1.6) for the Haswell (KNL).

Keywords: Computational fluid dynamics; Multiresolution analysis; Par-
allel algorithms; Software engineering

1 Introduction

The study of flows exhibiting discontinuities such as shock waves or phase in-
terfaces, is a field of intense study in fluid mechanic of diverse application fields.
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Complex flow mechanisms are utilized e.g. in the generation of nanoparti-
cles [1] [2] or biomedical procedures such as lithotrispy [3] [4]. In order to deepen
the physical understanding of the underlying processes as well as for rapid
testing and engineering of improved configurations, accurate and fast numer-
ical simulations are desired. Therein, the combination of employed numerical
schemes need to be adjusted to the specific case at hand, otherwise, low-quality
or even unphysical solutions might be computed. In addition, the numerical
schemes for the simulations of complex flow are computationally costly. Here,
we consider conservative high-order finite volume method (FVM) schemes us-
ing approximate Riemann solvers [5], low-dissipation weighted essentially non-
oscillatory (WENO) stencils [6] and total variation diminishing (TVD) Runge-
Kutta (RK) time integration [7].

The high numerical load of the stated methods motivates the usage of com-
pression algorithms. In the last two decades, wavelet-based compression algo-
rithms have been applied to computational fluid dynamics (CFD) simulations.
Three main types of wavelet-based algorithms can be identified: Galerkin, collo-
cation or multiresolution (MR) approaches. For an overview of these algorithm
we refer to the review paper by Schneider and Vasilyev [8].

In this work, we employ a fully adaptive block-based MR algorithm with local
time stepping (LTS). The original MR algorithm developed by Harten [9] uses
interpolating wavelets to determine regions in which the solution of the partial
differential equation (PDE) is non-smooth. In these regions the resolution of
the mesh is refined and vice versa, coarsened accordingly in smooth regions. In
his original work, Harten, however, only used the coarse mesh representation to
save costly flux evaluations. Instead, so-called fully adaptive MR methods also
use the coarse mesh representation to reduce the memory footprint of the finite
difference (FD)/FVM scheme. Such methods have been developed by Cohen et
al. [10] for hyperbolic and Roussel et al. [11] for parabolic PDE. An additional
compression of the temporal integration scheme offers further reduction of the
computational load. Taking into account the different length scales at different
levels, locally adapted timesteps can be used to advance the solution with an
overall reduced number of timesteps [12], and, thus, number of flux evaluations.

Even with the stated compression algorithms, highly resolved three dimen-
sional (3D) simulations require large computation performance of modern high-
performance computing (HPC) systems. These compute systems owe their per-
formance mostly to parallel hardware. Therefore, it is crucial to utilize this
hardware efficiently. In standard MR algorithms every cell or scale, can be
coarsened or refined. An implementation of such an algorithm, however, re-
quires multiple data exchanges with neighboring cells per timestep, opposing
efficient parallel execution [13]. To overcome this limitation we follow a block-
based FVM variation of the MR algorithm by Han et al. [14]. Consequently,
we can make use of the single instruction multiple data (SIMD) capacities of
modern central processing unit (CPU).

Similar blocking methods have already proven useful in solving PDE on
adaptive grids [15], [16] in the context of adaptive mesh refinement (AMR) al-
gorithms. In particular, their SIMD capabilities were shown [17]. Also in wavelet
collocation methods blocking has been introduced to harvest the performance
of parallel hardware [18]. Besides the mentioned work of Han et al. Blocking
algorithms have just been recently introduced for point-based MR [19].

In this work we show the benefit of SIMD parallelization for a Message Pass-
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ing Interface (MPI)-parallel MR framework. We present weakly intrusive code
optimizations which enable successful auto-vectorization by the compiler, yet
the overall code structure with strong modularity and flexibility is unaffected.
We demonstrate speed-ups up to a factor of two for different combinations of
Riemann solvers, stencils, and cells per Block. Our performance study includes
register sizes of 256 and 512 bit. The code framework ALPACA used in this
work is published under open-source license and free-to-use for the public1.

This paper is structured as follows: in the next section a short overview of the
underlying physical and numerical models is given. In section 3, we identify the
relevant performance bottlenecks and present potential improvements in section
4. The gain in performance is evaluated in section 5 using three representative
Euler-flow test cases before we conclude in 6.

2 Numerical Models and Framework

2.1 Underlying Equations

Assuming inviscid flows, the compressible Euler equations govern the dynamics
following the conservation law

∂U

∂t
+∇F (U) = 0, (1)

where U = (ρ, ρv, E) is the state-vector with the density ρ, velocity vector v and
the total energy E = ρe+ 1

2p |v|. The internal energy e together with ρ further
defines the fluid pressure p(ρ, e) via an equation of state (EOS). The flux vector
F (U) is given by the governing equation and determines the type-of-solution.

The Euler equations can be extended by source terms for volumetric forces
such as gravity and by viscous terms to recover the Navier-Stokes equations.
In our code framework, these terms can be switched on or off at compile time.
Similarly, the employed EOS can be chosen at runtime. In this paper, however,
we restrict ourselves to the stiffened EOS p(ρ, e) = (γ − 1)ρe − γB [20], where
γ is the ratio of specific head-capacities and the background pressure constant
B is set to zero.

2.2 Riemann Solver with WENO stencils

The governing equations (1) are discretized using the FVM with cell-face Rie-
mann problems defining the fluxes. Here, we focus on two different approximate
Riemann solvers: The classical Roe solver [21] and the Harten-Lax-van Leer-
contact (HLLC) solver [22]. Both solvers require left and right eigenvectors
K5×5

i for every cell i to transform the system of equations into characteristic
space. The Roe solver additionally requires the corresponding eigenvalues λ5×1

i

and the scalar advection velocity in each cell.
In the Riemann solvers different reconstruction stencils can be used. To

demonstrate the modularity of the framework, we use two different high-order
reconstruction schemes for the flux calculations, namely the classical fifth or-
der WENO stencil, implemented as in [23], and the sixth order central-upwind
weighted essentially non-oscillatory (WENO-CU) stencil according to [24]. Note

1https://nanoshock.de
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that, for the Riemann solver the WENO stencil is applied to the fluxes them-
selves and for the HLLC solver the WENO-reconstruction gives a high-order
estimation of the cell-face states.

2.3 Block-Based MR

The fully adaptive cell- or scale-based MR algorithm [11] [10] allows to concen-
trate computational power only to relevant regions. We modify this algorithm
to work on blocks rather than single scales [14]. Rather than refining or coars-
ening a single cell the decision is made for a block of cells. Each block consist
of the same number of cells independently of its location within the domain or
its level of refinement. We restrict ourselves to cubic blocks of cubic cells, i.e.
the number of cells per direction is the same. If a block is refined eight (two
per dimension) child blocks are created, which overlay the coarser parent block.
Naturally this leads to an octree based implementation of the algorithm. We
follow standard naming convention, where a parent is a block which is over-
layed by finer child blocks, whereas a leaf is the finest block at that location.
The PDE is only solved on the leaves. On the coarsest level l0 the domain is
partitioned into a fixed number of blocks according to user input.

As in the standard MR algorithm, a fifth order tensor based prediction is
used. The maximum refinement level lmax and the MR thresholding ε are test
case specific user input. The details are computed for the mass and energy only,
as in the compressible case the momentum is directly linked to these quantities.

By using blocks a more cache and parallelization friendly data layout is
achieved, compared to the single scale-based algorithm. Stencils evaluations in
the block-based algorithm require simple array strides, where tree-based neigh-
bor searches and/or data exchange are needed in a scale-based algorithm. How-
ever, the changed data layout comes at the cost of a reduced compression rate
than in a scale-based MR implementation [18], [14], [19].

The need for neighbor data exchanges is further reduced by equipping every
block with a ring of halo cells around its internal cells. The internal cells make
up the computational domain without overlaps. The block-based mesh setup is
illustrated in Figure 1. This data layout allows to evolve internal cells in time
more independently.

The halo cells are filled with values copied from the neighboring block of
the same refinement level or from predicted values if the same-level-neighbor
does not exist. The halo cell update is shown in Figure 2, cell values are only
exchanged within one level of refinement or via parent-child exchanges. The
width of the halo layer depends on the prediction and the reconstruction stencil
width. For the stencils used in this work four halo cells per spatial dimension
are used.

For time integration we use a TVD RK2 LTS routine as given by Domingues
et al. [12], which easily adapts to our block-based structure. Time is synchro-
nized by adopting the dyadic cell refinement to adjust the timesteps between li+1

and li. Therein, the Courant-Friedrichs-Lewy (CFL) condition is maintained at
all scales if the smallest timestep is used as starting value.

Conservation between neighboring blocks of different levels is ensured by
adjusting the coarse cell fluxes. This requires the additional storage of a the
averaged fine-cell fluxes at the parent-block surfaces.
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li

level

li+1

Computational Domain

Figure 1: The block-based domain partition for a simple 2D mesh with one
level of refinement. The computational domain is distributed into blocks with
eight internal cells. In the top right the domain as seen by the user is shown.
Only on these cells the PDE is solved numerically. In the left and bottom the
representation of the mesh in memory with the halo cells is shown. The fine
leaf child blocks overlaying the coarse parent in the left whereas the coarse part
is represented by a single coarse leaf on the right.
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li

level

li+1

Figure 2: Schematic of the level li+1 halo cell dependencies: The halo cells are
filled either with copies of cell values from same level neighbors or via prediction
of parent cells. Note, halo cells not colored are filled according to external
boundary conditions.
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2.4 Code Framework

The block-based MR scheme together with the solvers is implemented oin the
open-source code framework ALPACA. The framework is written in modular
fashion using object-oriented programming (OOP) with C++11. As mentioned
above, at compile-time, we fix the number of cells in a block and the compute
kernel, i.e. a combinations of Riemann solver and reconstruction stencil.

Aiming for a convenient use of the program we determine the EOS (and
its parameters) as well as the MR thresholding coefficient from user-input at
runtime; reducing recompilations for elaborate numerical studies of different
fluids.

The MR algorithm in ALPACA is parallelized with MPI. Therein, blocks
are the smallest inter-core parallel unit. Leaf-blocks are assigned to MPI ranks
according to a 3D Hilbert space-filling curve [25] and parents are assigned to
the rank holding the most of their children. Note, no further restrictions for
domain partitions are imposed; i.e. we allow arbitrary cuts in the octree. This
allows for straight forward load-balancing, as blocks can be distributed freely if
the topology has changed after a mesh adaptation.

The overall algorithm follows the data-operator-splitting paradigm [14], i.e.
we separate memory transfer functions from rank internal calculations. Thus,
the performance bottlenecks of the code is its single-core performance per Block.
For this purpose the data (access) layout is designed for optimized SIMD exe-
cution, independently of the selected compute kernel.

3 Identification of Bottlenecks

We evaluate the SIMD performance of ALPACA using Intel Advisor 20172. We
found that over 70% of the computational time is spent in the compute kernel.
For the original implementation, it revealed that just 2% of the complete runtime
was spent in vectorized loops. Surpisingly, even the flux computation as main
compute kernel did not benefit from SIMD execution. A deeper analysis revealed
two major obstracts for automated compiler generated vectorization of the flux
computation: the loop structure within the Riemann solvers and the current
exception handling.

Firstly, we look at the loop structure in the Riemann solvers. Listing 1 shows
the implementation of the main loop nest in the Roe solver class in C++-like
pseudo-code. The HLLC solver follows an analogous setup, but without the need
for computing the physical flux or the eigenvalues. The vector sizes marked
by capital letter N indicate compile-time quantities. The second letter (T for
“total” or I for “internal”) indicates whether halos cells are included in this
array or not, respectively. Here, fives resemble the five conserved quantities
in the 3D Euler equations (1). The physical flux in every cell is computed
prior to the main loop nest. With each loop iteration, three directional cell-
face (numerical) fluxes are determined. Therefore, the eigenvalue vector and
eigenvector matrices are computed three times on-the-fly per loop iteration.
Note the unified ComputeFluxes, which is used for all three directions by simple
permutations of the passed loop indices thereby reducing code duplication.

2https://software.intel.com/en-us/advisor
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Listing 1: Baseline loop nest of the compute kernel.

// Inputs from further up the call-stack

Block const& block;

(&double)[5][N_I+1][N_I+1][N_I+1] fluxes_x, fluxes_y, fluxes_z;

//Temporarily allocated

double[5][N_T][N_T][N_T] phys_flux_x, phys_flux_y, phys_flux_z;

double[5][5] eigenvectors_left, eigenvectors_right;

double[5] eigenvalues;

// Determine physical flux - Roe only

(phys_flux_x, phys_flux_y, phys_flux_z) = ComputePhysicalFlux(

block);

for k, j, i {

// X DIRECTION

(eigenvectors_left, eigenvectors_right, eigenvalues) =

ComputeEigenvaluesX( block, i, j, k );

fluxes_x[i][j][k] = ComputeFluxes( block, i, j, k, 0,

phys_flux_x, eigenvectors_left, eigenvectors_right,

eigenvalues );

// Y DIRECTION

(eigenvectors_left, eigenvectors_right, eigenvalues) =

ComputeEigenvaluesY( block, j, i, k );

fluxes_y[j][i][k] = ComputeFluxes( block, j, i, k, 1,

phys_flux_y, eigenvectors_left, eigenvectors_right,

eigenvalues );

// Z DIRECTION

(eigenvectors_left, eigenvectors_right, eigenvalues) =

ComputeEigenvaluesZ( block, j, k, i );

fluxes_z[j][k][i] = ComputeFluxes( block, j, k, i, 2,

phys_flux_z, eigenvectors_left, eigenvectors_right,

eigenvalues );

}

The second issue conflicting automated vectorization deals with exception
handling. For the compiler-generated vectorization report it is clear, that func-
tions are auto-vectorized only if exceptions are rigorously prohibited. In AL-
PACA, the problematic routine stems from a proxy class for the EOS. With it
the respective EOS of each cell can be determined at run time. The look-up of
the correct EOS used std::find routines which do not guarantee noexcept.

4 Code Improvements

To reduce the runtime without sacrificing the code quality, i.e. its usability,
readability, extendability and portability between different architectures, mod-
ifications are limited to standard C++ instructions as well as Open Multi-
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Processing (openMP) (SIMD) pragmas instead of hard-coded architecture de-
pendent (low-level) optimizations.

Our performance measurements have identified the Riemann solvers as bot-
tleneck. As a consequence, we have re-designed its structure and slit the com-
putation of eigenvalues, eigenvectors and fluxes. Each direction is now handled
separately and the eigendecomposition is temporarily buffered. The resulting
structure is shown in Listing 2.

Listing 2: Directionally split compute kernel loop nest.

// Other quantities and arrays unchanged.

double[N_I][N_I][N_I][5][5] eigenvectors_left, eigenvectors_right

;

double[N_I][5] eigenvalues;

(eigenvectors_left, eigenvectors_right, eigenvalues) =

ComputeEigenvaluesX( block );

phys_flux_x = ComputePhysicalFluxX( block );

fluxes_x = ComputeFluxes( block, 0, phys_flux_x,

eigenvectors_left, eigenvectors_right, eigenvalues, cell_size

);

(eigenvectors_left, eigenvectors_right, eigenvalues) =

ComputeEigenvaluesY( block );

phys_flux_y = ComputePhysicalFluxY( block );

fluxes_y = ComputeFluxes( block, 1, phys_flux_y,

eigenvectors_left, eigenvectors_right, eigenvalues, cell_size

);

// Z analogously.

The new structure addresses two issues that inhibit vectorization of the
baseline implementation: Loop-nest depth and strided data access. The baseline
ComputeFluxes function used nested loops, in which only the deepest loop was
vectorizable. Grouping it with the computation of the eigenvectors thus required
the latter to be executed sequentially. By splitting the loop nest into separate
steps both functions can benefit from vectorization. The used WENO stencils
inside the ComputeFluxes make memory bandwidth problems unlikely, as such
stencils require hundreds of floating point operations per five (continuous) data
accesses. Furthermore, the compact implementation using index permutation
to handle different coordinate direction caused decelerating strided data access.
In the split version, a continuous data layout is ensured for each direction.

Finally, analyzing the new loop structure showed a complete auto-vectorization
of the ComputePhysicalFlux function. Inside the ComputeEigenvalues func-
tion single elements of one of the block’s buffers were obtained in each loop
iteration via a GetBuffer function call. This constant re-fetching was not auto-
vectorizable. Replacing it by a single fetch approach as shown in Listing 3
yields the desired vectorization. Additionally, an exception-safe variant of the
EOS proxy, mentioned in section 3, was introduced. With these changes, also
the ComputeEigenvalues functions were vectorized by the compiler according
to the vectorization report.
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Listing 3: Fetching of buffers before and after optimization.

// Before:

for i, j k

double const value = coefficient * block.GetBuffer()[i][j][k];

// Now:

double (&cells)[N_T][N_T][N_T] = block.GetBuffer();

for i, j, k

double const value = coefficient * cells[i][j][k];

Another problem for auto-vectorization are unanticipated memory access
patterns. Interestingly, we found smart logics as e.g. a running offset in a
unified array access implementation are not recognized by the compiler and
excluded from auto-optimization. As a remedy, we “simplified” the code and
achieved full auto-vectorization also in these parts. Listing 4 shows the original
implementation as well as the improved version below.

Listing 4: Vectorization of loop nests with offset indices

// Input: direction = 0 (for X), 1 (Y) or 2 (Z)

// Before

int flux_direction[3] = {0};

flux_direction[direction] = 1;

double (&cells)[N_T][N_T][N_T] = block.GetBuffer();

for i,j,k,m

double const value = cells[i+flux_direction[0]*m][j+

flux_direction[1]*m][k+flux_direction[2]*m];

// Now

const int x_off = direction==0 ? 1 : 0;

const int y_off = direction==1 ? 1 : 0;

const int z_off = direction==2 ? 1 : 0;

double (&cells)[N_T][N_T][N_T] = block.GetBuffer();

for i,j,k,m

double const value = cells[i+x_off*m][j+y_off*m][k+z_off*m]

5 Optimizations results

5.1 Test case definition

We use three representative test cases to evaluate the impact of the found op-
timization, the well-know sod shock tube [26], a one-phase viscous Rayleigh-
Taylor instability (RTI) [27] and a Gaussian pulse case. Note, all setups are
simulated in full 3D domains even though the problem definition might be of
lower dimensions. For the Sod test cases, a gas (γ = 1.4) with discontinuous left
(ρ = 1.0,v = 0, p = 1.0)y≤0.5 and right (ρ = 0.25,v = 0, p = 0.1)y>0.5 state is
simulated until time t = 0.2 with CFL = 0.6. At this point the shock wave, con-

10



-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

density
Velocity
Pressure

Figure 3: Final state t = 0.2 of the Sod shock tube problem using the HLLC
Riemann solver with WENO5 reconstruction stencil and 16 internal cell per
block. The state values along a line parallel to the Y-axis of the computational
domain are plotted. The markers indicate the cell center positions and illustrate
the mesh refinement.

tact discontinuity and the rarefaction fan have separated and are clearly distin-
guishable as shown in Figure 3. The simulated domain is [0, 0.25]×[0, 1]×[0, 0.25]
and symmetry boundary conditions are applied on all sides. The maximum level
of refinement is fixed to lmax = 2.

In the RTI test case a heavy fluid layer is accelerated into a lighter one
by gravity. By adding a small disturbance to the layered initial condition, a
mushroom shaped instability forms and growths continuously, see Figure 4 for
a visualization of the heavy (red) and light (blue) fluid at t = 1.95. The domain
is [0, 0.25]× [0, 1]× [0, 0.25] and the initial conditions are

ρ =

{
1.0 y ≤ 0.5

2.0 y > 0.5

vx = 0.0,

vy = −0.25 ∗ c ∗ cos (8πx) ∗ cos (8πz), (2)

vz = 0.0,

p = 1.0 + 2.0 ∗ y

with the speed of sound c =
√
γp/ρ and γ = 5/3.

Symmetry boundary conditions are applied, except for top and bottom where
the states (1, 0, 0, 0, 2.5) and (2, 0, 0, 0, 1) are imposed, respectively. The simula-
tion is evolved until the final time t = 1.95 is reached, the CFL number is fixed
to 0.9. The maximum level of refinement is lmax = 3.

In the Gaussian pulse test case a cubic domain with side length 12 and
all outflow boundary conditions is simulated. The initial density and pressure
profile follow a Gaussian distribution:
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(a) Roe Riemann solver, WENO5 and 16 internal cells.
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(b) Roe Riemann solver, WENO-CU6 and 16 internal cells.

Figure 4: Top view of the viscous RTI computed with different reconstruction
stencils. Plotted is the density at the final timestep t = 1.95.

ρ = 1.0 + 0.5 ∗ e−0.693
(x−6.0)2+(y−6.0)2+(z−6.0)2

2 ,

v = 0, (3)

p =
1

γ
+ 0.5 ∗ e−0.693

(x−6.0)2+(y−6.0)2+(z−6.0)2

2 ,

with γ = 1.4. The final simulation time is t = 2.6 with a CFL number of 0.6
and the maximum refinement level lmax = 6. The resulting pulses in the energy
and velocity magnitude field are shown in Figure 5 together with the refined
mesh.

As stated earlier, all test cases were run using all combinations of the two
Riemann solvers, the two reconstruction stencils and with 83 and 163 internal
cells per block. The effective resolution, i.e. the comparable resolution on a
homogeneous mesh without MR for the cases is summarized in Table 1, together
with the effective compression rate.

We verified that the code changes did not affect the accuracy of the numerical
solution. For most of the conducted tests the results are identical, only a few
cases showed differences on the order of floating point roundoff error.

5.2 Compute architectures

We executed our tests on two homogeneous clusters with different architectures.
One is based on Intel Xeon E5-2697 v3 “Haswell (HW)” CPUs with 28 cores
at 2.7 GHz and 2.3GB memory and the other cluster consists of Intel Xeon Phi
7210-F hosts “Knights Landing Xeon Phi microarchitecture (KNL)” nodes with
64 CPUs per node at 1.3 GHz with the multi-channel dynamic random-access
memory (MCDRAM) in cache mode. During parallel runs each MPI rank was
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Figure 5: Energy and velocity magnitude of Gaussian pulse at the end of the
simulation at t = 2.5

Table 1: Specification of the test cases. Compression compares a finest-level
homogeneous mesh with the cell average over the whole simulation time over all
configurations.

Test case #cells3

Block Resolution Compression [%]

Sod
8 32× 128× 32 58.19

16 64× 256× 64 43.94

RTI
8 64× 256× 64 52.45

16 128× 512× 128 43.87

Gauss
8 512× 512× 512 9.29

16 1024× 1024× 1024 3.29
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assigned to one physical core; hyper-threading was not employed. We have
compiled the source code with the Intel C++ compiler (ICC) version 16.0 with
an underlying installation of the GNU C++ compiler (GCC) version 5.4.0. All
binaries were compiled with compiler flags -ipo, -m64, and -fp-model precise.
For the optimized version, we also added -xCORE-AVX2 and -xMIC-AVX512 flags
for the HW and KNL, respectively. Thereby, the full instruction set was used,
i.e. ymm and zmm registers for the HW and the KNL, respectively. This was
verified by inspecting the produced assembler code. However, these compiler
flags should be used with caution since they affect the truncation error behavior
of the numerical scheme [28]. Therefore, we analyzed the speedups with and
without the usage of Advanced Vector Extensions (AVX) registers.

For each test case, we used a different number of MPI ranks. For the Sod
case only a single core and hence a single MPI rank was used. The RTI case
used 28 MPI ranks, which means all cores on one compute node were completely
used on the HW. For the runs on the KNL system we used both 28 and 64 ranks
to have a direct comparison of rank count and node count. Similarly, we use
(5× 28 =) 140 ranks for the Gaussian pulse test case, but also executed it with
140 and 320 ranks on five KNL nodes.

5.3 Performance estimation

We ran our test cases with different kernel and block configurations, on both
HW and KNL hardware, mentioned earlier. All runtime results were measured
with MPI Wtime and were averaged over three (execution) samples. On the HW
the standard deviation of any configuration did not exceed 3%. For the KNL,
the more ranks were used the higher deviations were measured. The average
deviation on the KNL does not exceed 11%, with a few outliers with a maximum
deviation of 24% for the RTI testcase. Note, initialization and disk input and
output were explicitly excluded from the time measurements.

In the following, we compare the achieved speedups for a range of configura-
tions on both architectures. Therein, speedup is defined as the relative runtime
as compared to the same configuration (solver, stencil, cells per block, archi-
tecture) using the baseline implementation. The average baseline wall-clock
runtime of the three cases on the HW (KNL) was 176s (1634s), 1528s (12831s)
and 1310s (3861s) for the Sod, the RTI and the Gaussian Pulse, respectively.

Figures 6 and 7 give an overview of the speedups across configurations and
test cases for the HW and the KNL cluster, respectively. For all cases we used
the same number of MPI ranks per node. Obviously, the single core runs showed
the largest improvement, but for all settings a significant speedup was achieved.
Clearly, the speedup for the KNL is larger for all test cases and configurations
than on the HW.

Analyzing the effects of the block configuration and the AVX compiler flag
in detail, we point to Table 2. It depicts the achieved speedups for all test
cases averaged over all kernel configurations run on both architectures with two
different numbers of MPI ranks on the KNL as described before. We find, that
both aspects have a stronger impact on the KNL than on the HW. So does the
AVX compiler flag show almost no difference on the HW but a factor of up to
0.38 can be observed on the KNL. The increase of the number of cells in a block
results in a performance increase for all setups, except for the single core HW
case. Again the performance gain is stronger on the KNL than on the HW.
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Figure 6: Overview of runtime speedups for all three test cases, four different
kernels and two block configurations on the Haswell architecture. In the ab-
breviations, R and H denote Roe and the HLLC Riemann solver, respectively.
W5 and WC6 indicate the WENO5 and the WENO-CU6 stencil and 8 and 16
denote the number of blocks per dimension.
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Figure 7: Overview of runtime speedups on the KNL arcitecture running 28
MPI-ranks per KNL node. For abbreviations see Figure 6.
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Table 2: Average speedup over all kernel configurations with and without the
AVX compiler flag.

Cluster #cells3

Block

Sod RTI Gauss
AVX AVX AVX

off on off on of on

Haswell
8 1.73 1.73 1.28 1.27 1.23 1.23

16 1.72 1.73 1.41 1.41 1.29 1.29

KNL28
8 1.77 2.15 1.49 1.60 1.35 1.47

16 1.82 2.14 1.64 1.91 1.52 1.67

KNL
8 - - 1.09 1.19 1.16 1.23

16 - - 1.37 1.52 1.33 1.43

We refer to Table 3, for a detailed view on the speedups obtained with dif-
ferent kernel configurations. The shown speedups are averaged over all test
cases for each kernel and cells-per-block configuration. The impact of AVX is
also stated separately. As seen before, configurations with 163 cell per block
show stronger gains than the once with 83. The configurations using a WENO5
reconstruction stencil benefit stronger than the WENO-CU6. Furthermore, the
HLLC Riemann solver based configurations benefit stronger from the optimiza-
tions than the Roe based ones. In the baseline implementation the Roe con-
figurations had a shorter time-to-solution than the HLLC ones (not shown),
whereas after the optimizations the tested HLLC configurations show shorter
runtimes.

In all configurations the single core Sod test case showed the strongest per-
formance gains. This is explainable, by the lack of MPI-overhead. Similarly,
the computation on full KNL nodes did not benefit as strongly from the code
changes as the ones on the HW. We account this to MPI overhead, as the nu-
merical load of one rank becomes too small if a whole KNL node is filled purely
with MPI. For example, the RTI can only yield 32 blocks per rank, if the mesh
is globally refined to the maximum. As seen in Table 1, however, only half of
this resolution is used on average. With such low loads the communication and
in it particular the sequential neighbor searches become bottlenecks and hinder
performance. We credit the higher speedups for 163 internal cells per block on
the KNL to the wider vector registers, which benefit from longer loop bodies.

6 Summary and Outlook

We have introduced an MPI parallelization of a block-based FVM MR scheme
for the simulation of complex flows governed by the compressible Euler or
Navier-Stokes equations. Thereby, our implementation allows to utilize modern
distributed memory machines efficiently. In particular, the SIMD capabilities of
these systems can be harvested. We focus on compiler generated SIMD vector-
ization, such that all of the modular compute kernels could benefit from vector-
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Table 3: Average speedup over all test cases of the kernel and block configura-
tions. For abbreviations see Figure 6.

Configuration
Haswell KNL-28 KNL
AVX AVX AVX

off on off on off on

RW5-8 1.38 1.39 1.60 1.70 1.15 1.19

RWC6-8 1.37 1.37 1.23 1.72 1.00 1.22

HW5-8 1.49 1.49 1.69 1.79 1.18 1.23

HWC6-8 1.40 1.40 1.62 1.74 1.16 1.22

RW5-16 1.44 1.44 1.75 1.90 1.41 1.50

RWC6-16 1.34 1.37 1.24 1.65 1.07 1.31

HW5-16 1.62 1.62 1.94 2.15 1.58 1.67

HWC6-16 1.49 1.49 1.71 1.93 1.34 1.43

ization. We showed, how to overcome common pitfalls for compiler-generated
vectorization and presented the respective performance increases. Over a broad
range of configuration and test cases considerable speedups could be achieved.
We want to highlight that the proposed (minor) code changes did not alter the
general algorithm or the communication strategy and are not custom tailored to
a specific compute kernel. The performance gain was validated on two different
micro-architectures with 256-bit and 512-bit wide vector registers.

Currently, we further optimize the computational efficiency following a hy-
brid openMP-parallelization on local compute units. Also, the optimized code
is extended for sharp-interface two-phase flows. In which, even more numerical
schemes need to be added in a modular fashion.
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