
ExaDG: High-Order Discontinuous
Galerkin for the Exa-Scale

Daniel Arndt, Niklas Fehn, Guido Kanschat, Katharina Kormann,
Martin Kronbichler, Peter Munch, Wolfgang A. Wall, and Julius Witte

Abstract This text presents contributions to efficient high-order finite element
solvers in the context of the project ExaDG, part of the DFG priority program 1648
Software for Exascale Computing (SPPEXA). The main algorithmic components
are the matrix-free evaluation of finite element and discontinuous Galerkin operators
with sum factorization to reach a high node-level performance and parallel scalabil-
ity, a massively parallel multigrid framework, and efficient multigrid smoothers.
The algorithms have been applied in a computational fluid dynamics context. The
software contributions of the project have led to a speedup by a factor 3 − 4
depending on the hardware. Our implementations are available via the deal.II finite
element library.

D. Arndt
Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: arndtd@ornl.gov

N. Fehn · M. Kronbichler (�) · W. A. Wall
Technical University of Munich, Garching, Germany
e-mail: fehn@lnm.mw.tum.de; kronbichler@lnm.mw.tum.de; wall@lnm.mw.tum.de

K. Kormann
Max Planck Institute for Plasma Physics, Garching, Germany

Technical University Munich, Garching, Germany
e-mail: katharina.kormann@ipp.mpg.de; katharina.kormann@tum.de

P. Munch
Technical University of Munich, Garching, Germany

Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
e-mail: munch@lnm.mw.tum.de; peter.muench@hzg.de

G. Kanschat · J. Witte
Heidelberg University, Heidelberg, Germany
e-mail: kanschat@uni-heidelberg.de; julius.witte@iwr.uni-heidelberg.de

© The Author(s) 2020
H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA
2016–2019, Lecture Notes in Computational Science and Engineering 136,
https://doi.org/10.1007/978-3-030-47956-5_8

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_8&domain=pdf
mailto:arndtd@ornl.gov
mailto:fehn@lnm.mw.tum.de
mailto:kronbichler@lnm.mw.tum.de
mailto:wall@lnm.mw.tum.de
mailto:katharina.kormann@ipp.mpg.de
mailto:katharina.kormann@tum.de
mailto:munch@lnm.mw.tum.de
mailto:peter.muench@hzg.de
mailto:kanschat@uni-heidelberg.de
mailto:julius.witte@iwr.uni-heidelberg.de
https://doi.org/10.1007/978-3-030-47956-5_8

190 D. Arndt et al.

1 Introduction

Exa-scale performance of numerical algorithms is determined by two factors, node-
level performance and distributed-memory scalability to thousands of nodes over an
Infiniband-type fabric. Additionally, the final application efficiency in terms of time-
to-solution is strongly influenced by the choice of numerical methods, where a high
sequential efficiency is essential. The project ExaDG aims to bring together these
three pillars to create an algorithmic framework for the next generation of solvers
for partial differential equations (PDEs). The guiding principles of the project are as
follows:

ExaDG – PDE Solvers at Exascale

:Efficient discretization
few spatial unknowns,

few time steps

:Efficient solvers
few iterations, i.e., few

operator evaluations

Efficient implementation:
fast operator evaluation

If we define the overall goal to be a minimum of computational cost to reach
a predefined accuracy, this aim can be split into three components, namely the
efficiency of the discretization in terms of the number of degrees of freedom (DoFs)
and time steps, the efficiency of the solvers in terms of iteration counts, and the
efficiency of the implementation [22]:

E = accuracy

computational cost

= accuracy

DoFs · timesteps
︸ ︷︷ ︸

discretization

· 1

iterations
︸ ︷︷ ︸

solvers/preconditioners

· DoFs · timesteps · iterations

computational cost
︸ ︷︷ ︸

implementation

.

(1)

We define computational cost as the product of compute resources (cores, nodes)
times the wall time resulting in the metric of CPUh, the typical currency of
supercomputing facilities.

Regarding the first metric, the type of discretizations in space and time are often
the first decision to be made. Numerical schemes that involve as few unknowns
and as few time steps as possible to reach the desired accuracy will be more
efficient. This goal can be reached by using higher order methods which have a
higher resolution capability, especially for problems with a large range of scales
and some regularity in the solution [19]. However several possibilities and profound
knowledge regarding the performance capability of potential algorithms on modern

ExaDG 191

hardware are still required to select those algorithms and implementations that are
optimal with respect to the guiding metric of accuracy versus time-to-solution.
High-order (dis-)continuous finite element methods are the basic building block of
the ExaDG project due to their generality and geometric flexibility.

Regarding the second metric, solvers are deemed efficient if they keep the
number of iterations minimal. We emphasize that “iterations” are defined in a
low-level way as the number of operator evaluations, which is also accurate when
nesting several iterative schemes within each other. Note that we assume that large-
scale systems must be addressed by iterative solvers; in a finite element context
sparse direct solvers are not scalable due to fill-in and complex dependencies
during factorizations. One class of efficient solvers of particular interest to ExaDG
are multigrid methods with suitable smoothers, which have developed to be the
gold standard of solvers for elliptic and parabolic differential equations over the
last decades. Here, the concept of iterations would accumulate several matrix-
vector products within a multigrid cycle that in turn is applied in an outer Krylov
subspace solver. Due to the grid transfer and the coarse grid solver, such methods
are inherently challenging for highly parallel environments. As part of our efforts
in ExaDG, we have developed an efficient yet flexible implementation in the deal.II
finite element library [1, 15].

Third, the evaluation of discretized operators and smoothers remains the key
component determining computational efficiency of a PDE solver. The relevant
metric in this context is the throughput measured as the number of degrees of
freedom (unknowns) processed per second (DoFs/s). An important contribution of
our efforts is to both tune the implementation of a specific algorithm, but more
importantly to also adapt algorithms towards a higher throughput. This means that
an algorithm is preferred if it increases the DoFs/s metric, even if it leads to lower
arithmetic performance in GFlop/s or lower memory throughput in GB/s. Operator
evaluation in PDE solvers only involves communication with the nearest neighbors
in terms of a domain decomposition of the mesh, which makes the node-level
performance the primary concern in this regard. Since iterative solvers only require
the action of the matrix on a vector (and a preconditioner), they are amenable to
matrix-free evaluation where the final matrix entries are neither computed nor stored
globally in memory in some generic sparse matrix format (e.g., compressed row
storage). While matrix-free methods were historically often considered because they
lower main memory requirements and allow to fit larger problems in memory [8],
their popularity is currently increasing because they need to move less memory:
Sparse matrix-vector products are limited by the memory bandwidth on all major
computing platforms, so a matrix-free alternative promises to deliver a (much)
higher performance.

The outline of this article is as follows. We begin with an introduction of matrix-
free algorithms and a presentation of node-level performance results in Sect. 2. In
Sect. 3, we describe optimizations of the conjugate gradient method for efficient
memory access and communication. Next, we detail our multigrid developments,
focusing on performance numbers and the massively parallel setup in Sect. 4 and
on the development of better smoothers in Sect. 5. Application results in the field

192 D. Arndt et al.

of computational fluid dynamics are presented in Sect. 6, where the efficiency and
parallel scalability of our discontinuous Galerkin incompressbile turbulent flow
solver are shown. An extension of the kernels to up to 6D PDEs is briefly presented
in Sect. 7. We conclude with an outlook in Sect. 8.

2 Node-Level Performance Through Matrix-Free
Implementation

An intuitive example of a matrix-free implementation is a finite difference method
implemented by its stencil rather than an assembled sparse matrix [33]. For finite
element discretizations with sufficient structure of the underlying mesh and low-
order shape functions, a small number of stencils allows to represent the operator of
a large-scale problem [8]. Such methods are used in the German exascale project
TerraNeo, utilizing the regular data structures in hierarchical hybrid grids and
embedded into a highly scalable multigrid solver for Stokes systems [31, 32]. By
suitable interpolations, the stencils can be extended from the affine coarse grid
assumption to also treat smoothly deformed geometries and variable coefficients [7].

For higher-order methods, finite element discretizations lead to fat stencils,
making the direct evaluation inefficient even when done through stencils. An
alternative matrix-free scheme used in ExaDG is to not compute the explicit DoF
coupling and instead turn to integrals underlying the finite element scheme. As an
example, we consider the constant-coefficient Laplacian

− ∇2u = f in �, u = g on ∂�, (2)

whose weak form in a finite-dimensional setting is

(∇ϕi,∇uh)�h
= (ϕi, f)�h, (3)

where uh(x) = ∑

j=1:n ϕj (x)uj is the finite element interpolant of the solution
with n degrees of freedom, ϕi denotes the test functions with i = 1, . . . , n,
f is some right hand side, and �h is the finite element representation of the
computational domain �. The left-hand side of this equation represents a finite
element operator, mapping a vector of coefficients u = [ui]i to an output vector
v = [vi]i by evaluating the weak form for all test functions ϕi separately. A matrix-
free implementation is obtained by evaluating the element-wise integrals

[

(∇ϕi, ∇uh)�h

]

i=1:n =
∑

K

∫

K̂

(

J−T
K ∇̂ϕi

)T

⎛

⎝J−T
K

ndof,ele
∑

j=1

∇̂ϕju
(K)
j

⎞

⎠ det(JK) dx̂

≈
∑

K

IT
K

[nq
∑

q=1

(∇̂ϕiK (x̂q))T J−1
K J−T

K det(JK)wq
︸ ︷︷ ︸

physics at quadrature point

ndof,ele
∑

j=1

∇̂ϕj (x̂q)u
(K)
j

]

iK=1:ndof,ele

(4)

ExaDG 193

by quadrature on nq points per cell K . Here, K denotes the elements in the mesh,
x̂ the coordinates of the reference element K̂ = (0, 1)d , JK denotes the Jacobian
of the mapping from the reference to the real cell, and wq the quadrature weight.
The operator IK denotes the index mapping from ndof,ele element-local to global
unknowns and defines the element-related unknowns u(K) = IKu.

On element K , the formulation of Eq. (4) consists of two nested sums over the
elemental unknowns u

(K)
j , j ∈ ndof,ele, and the quadrature points q . The result is

tested against all test functions ϕiK on the reference element, which are related to
the global test functions ϕi through IK . Since the metric terms do not depend on
the shape function indices iK and j , and the sum over j does not depend on iK ,
the summations in the equation can be broken up into (1) an dnq × ndof,ele matrix
operation to evaluate the reference element derivative of u(K) at the quadrature
points, (2) the application of metric terms as well as other physics terms at nq

quadrature points, and (3) an ndof,ele × dnq matrix operation to test by all ndof,ele
test functions and perform the summation over the quadrature points. The separation
of point-wise physics evaluation at quadrature points is a common abstraction in
integration-based matrix-free methods [29, 41, 49, 50].

For high-order finite element methods, the naive evaluation would involve
all shape functions at all quadrature points, which is of complexity O(k2d) for
polynomials of degree k in d dimensions per element, or O(kd) per unknown,
similarly to the fat stencil of the final matrix.

At this point, the structure in the reference-cell shape function and quadra-
ture points can be utilized to lower the computational complexity. If the multi-
dimensional shape functions are the tensor product of 1D shape functions, and
if the quadrature formula is a tensor product of 1D formulas, the so-called sum-
factorization algorithm can be used to group common factors along the various
dimensions and break down the work into one-dimensional interpolations. Figure 1
visualizes the process of computing the interpolation of nodal values, visualized
by black disks, to the values at the quadrature points. Rather than using a naive
interpolation of cost 2(k+1)2d operations, it can be done in 2d(k+1)d+1 operations
instead. In matrix-vector notation, the interpolation of the gradient with respect to

Vector values on nodes at quadrature points
•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

• •
• •

• •
• •

Fig. 1 Illustration of sum factorization for interpolation from node values on the left to the values
in quadrature points (right)

194 D. Arndt et al.

x̂, evaluated at quadrature points, can be written as

⎡

⎢

⎢

⎢

⎣

∂uh/∂x̂1

∂uh/∂x̂2

...

∂uh/∂x̂d

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

I ⊗ . . . ⊗ I ⊗ D1

I ⊗ . . . ⊗ D2 ⊗ I
...

Dd ⊗ I ⊗ . . . ⊗ I

⎤

⎥

⎥

⎥

⎦

[

Sd ⊗ . . . ⊗ S2 ⊗ S1
]

u(K). (5)

Here, S1, . . . , Sd denote the n1D
q × (k + 1) interpolation matrices from the nodal

values to the quadrature points, obtained by evaluating the 1D basis at all 1D
quadrature points, and D1, . . . ,Dd the n1D

q × n1D
q matrices of the derivatives of the

Lagrangian basis in quadrature points. In this form, the multiplication by Kronecker
matrices is implemented by small matrix-matrix multiplications.

Sum factorization was initially developed in the context of spectral element
methods by Orszag [61], see [19] for an overview of the developments. In [12],
sum factorization was compared against assembled matrices with the goal to find
the best evaluation strategy among assembled matrices and matrix-free schemes.
For hexahedral elements considered in this work, the memory consumption and
arithmetic complexity indicate that this is the case already for quadratic basis
functions [11, 49], with a growing gap for higher polynomial degrees.

2.1 Implementation of Sum Factorization in the deal.II Library

As part of the ExaDG project, we have developed efficient implementations in the
deal.II finite element library [1, 4] with the following main features, see [50] for a
detailed performance analysis:

• support for both continuous [49] and discontinuous finite elements on uniform
and adaptively refined meshes with hanging nodes and deformed elements,

• support for arbitrary polynomial expansions on quadrilateral and hexahedral
element shapes as well as tensor product quadrature rules,

• minimization of arithmetic operations by using available symmetries, such as the
even-odd decomposition [69] and a switch between the collocation derivative (5)
for n1D

q ≈ k + 1 quadrature points or an alternative variant based on derivatives
of the original polynomials as used in [49] and discussed in [29],

• flexible implementation of operations at quadrature points,
• vectorization across several elements to optimally use SIMD units (AVX, AVX-

512, AltiVec) of modern processors,
• applicability to modern multi-core CPUs as well as GPUs [51, 57],
• data access optimizations such as element-based loops for DG elements [50, 56],
• and MPI implementation with tight data exchange as well as MPI-only and

shared-memory models [43, 48, 54].

ExaDG 195

The concept of matrix-free evaluation with sum factorization has been widely
adopted by now, like in the deal.II [1], DUNE [5, 40, 60], Firedrake [63], mfem [2],
Nek5000 [28] or Nektar++ [13] projects. These fast evaluation techniques are
directly applicable to explicit time stepping schemes, as we have demonstrated
for wave propagation in [42, 53, 65–68] and the compressible Navier–Stokes
equations [24]. The proposed developments make matrix-free evaluation of high-
order DG operators reach a throughput in unknowns per second almost as high as for
optimized 5-wide finite difference stencils in a CFD context [75], despite delivering
much higher accuracy.

2.2 Efficiency of Matrix-Free Implementation

In Fig. 2, we give an overview of the achieved performance with our framework
applied to the discontinuous Galerkin interior penalty (IPDG) discretization of the
3D Laplacian on an affine geometry. The most advanced implementation presented
in [50] is used, namely a cell-based loop with a Hermite-like basis for minimal
data access [56]. The figure lists the throughput, which is measured by recording
the run time of the matrix-vector product in an experiment with around 50 million
DoFs (too large to fit into caches), and reporting the normalized quantity DoFs/s
obtained by dividing the number of DoFs by the measured run time. The code is
run on a single node of six dual-socket HPC systems from the last decade with a
shared-memory parallelization with OpenMP, threads pinned to logical cores with
the close affinity rule, and using streaming stores to avoid the read-for-ownership
data transfer [33] on the result vector. As systems, we consider a 2 × 8 core AMD
Opteron 6128 system from 2010, a 2 × 8 core Intel Xeon 2680 Sandy Bridge from
2012 (as used in the SuperMUC phase 1 installation in Garching, Germany), a 2×8
core Intel Xeon 2630 v3 (Haswell) representing a medium-core count chip from

1 3 5 7 9 11 13 15
0

1

2

3

4

5

6

Polynomial degree k

bi
lli

on
D

oF
s/

s

Skylake, 96 threads
Broadwell, 80 threads
Haswell, 56 threads
Haswell, 32 threads
Sandy Bridge, 32 threads
Opteron, 16 cores

Fig. 2 Throughput of matrix-free evaluation of the IPDG discretization of the 3D Laplacian on an
affine grid

196 D. Arndt et al.

2014, a 2 × 14 core Intel Xeon 2697 v3 (Haswell) representing a high-core count
chip of the same generation (as used in the SuperMUC phase 2 installation), a 2 ×
20 core Intel Xeon 2698 v4 (Broadwell) system from 2016, and a 2 × 24 core
Intel Xeon Platinum 8174 from 2017, labeled ‘Skylake’ in the remainder of this
work, and installed in the SuperMUC-NG supercomputer. The chips are operated
at 2.0 GHz, 2.7 GHz, 2.4 GHz, 2.6 GHz, 2.2 GHz, and 2.3 GHz, respectively, and all
run with fully populated memory interfaces. The Intel machines are run with 2-way
hyperthreading, e.g. with 96 threads for the Xeon Platinum Skylake.

The throughput results in Fig. 2 demonstrate the advancements of hardware
during the last decade. In particular the increased width of vectorization, from 2 to 4
doubles with Sandy Bridge and from 4 to 8 doubles with Skylake, are clearly visible.
Furthermore, the comparison between Sandy Bridge and the smaller Haswell system
reveals the benefit of fused multiply-add (FMA) instructions and higher L1 cache
bandwidth of the latter: For low polynomial degrees with a modest number of
FMA instructions, Sandy Bridge with its higher frequency can approximately
deliver the same performance as Haswell. As the polynomial degree is increased,
the arithmetic work is increasingly dominated by FMAs in the sum factorization
sweeps similar to (5) as shown in [50], and Haswell pulls ahead. Finally, while
we observe a throughput of up to 5.7 billion DoFs/s on Skylake (with up to 1.35
TFlop/s for k = 8), we observe a relatively strong decrease of performance for
polynomial degrees k ≥ 13: This is because the vectorization across elements
leads to an excessive size of the temporary data within sum factorization—here,
a different vectorization strategy could lead to better results. However, we consider
the polynomial degrees 3 ≤ k ≤ 8 most interesting for practical simulations, where
almost constant throughput in terms of DoFs/s is reached. This somewhat surprising
result, given the expected O(1/k) complexity of throughput for sum factorization, is
because face integrals and memory access with an O(1) complexity are dominant.
Compared to our initial implementation in 2015, which achieved a throughput of
0.32 billion DoFs/s on Sandy Bridge with degree k = 3, the progress in software
technologies allowed us to reach 1.02 billion DoFs/s on the same system. For Intel
Skylake, where memory access is more important, the software progress of our
project is more than 4×.

Figure 3 shows the throughput normalized by the number of cores for polynomial
degree k = 4 over the different hardware generations. For operator evaluation
with discontinuous elements and face integrals, approximately 200 floating point
operations per unknown are involved with our optimized implementations [50]. At
the same time, we must access at least 16 byte (read one double, write one double)
plus some neighbors that are not cached, so the arithmetic intensity is around 8–12
Flop/Byte, close to the machine balance of the Skylake Xeon. This means that both
memory bandwidth and arithmetic performance are relevant for performance (on
one Skylake node, we measured memory throughput of around 160 GB/s, compared
to the STREAM limit of 205 GB/s). Likewise, continuous elements evaluated on
an affine mesh have seen a considerable increase in throughput per core (arithmetic
intensity of 7 Flop/Byte). However, the improvement has been much more modest
for continuous elements evaluated on curved elements. In this setting, separate

ExaDG 197

Opte
ron

2 �
8C

Sand
y Brid

ge
2 �

8C

Hasw
ell

2 �
8C

Hasw
ell

2 �
14C

Broa
dw

ell
2 �

20C

Skyl
ake

2 �
24C

0

25

50

75

100

125

m
ill

io
n

D
oF

s/
[s
�

co
re

s] matrix-free:
continuous k = 4, affine
matrix-free:
continuous k = 4, curved
matrix-free:
IPDG k = 4, affine
sparse matrix-vector:
continuous k = 1

Fig. 3 Evolution of throughput of matrix-vector product per core (computed on a fully populated
node and divided by the number of cores) with matrix-free evaluation with k = 4 versus a sparse
matrix-vector product with continuous linear elements on various hardware

metric terms for all quadrature points and all elements are needed (as opposed to
a single term per element in the affine mesh case), reducing the arithmetic intensity
to around 1.2 Flop/Byte.1

Figure 3 also contains the evolution of performance of a sparse matrix-vector
product for tri-linear continuous finite elements. The performance is much lower
due to the aforementioned memory bandwidth limit, and has hardly improved per
core on Skylake over the dated Opteron architecture. This illustrates the effect of
the so-called memory wall. We emphasize that the sparse matrix-vector product for
k = 1 is more than three times slower than even the matrix-free evaluation for k = 4
on curved elements. Hence, high-order methods with matrix-free implementations
are faster per unknown on newer hardware, in addition to their higher accuracy.

3 Performance-Optimized Conjugate Gradient Methods

The developments of matrix-free implementations presented in the previous section
result in a throughput for evaluation of the IPDG operator in Fig. 2 of up to 5.7
billion DoFs/s on Skylake. This is equivalent in time to the mere access of 4.5
doubles per DoF (either reading or writing). In other words, our developments
have made the operator evaluation so fast that the matrix-vector product may no
longer be the dominant operation in algorithms like the conjugate gradient (CG)
method preconditioned by the diagonal, or Chebyshev smoothers. These algorithms

1The merged final coefficient tensor J−1
K J−T

K det(JK)wq is used for the present results, i.e., 6
doubles per quadrature point [29, 51].

198 D. Arndt et al.

involve access to between 6 and 18 vectors for vector updates, the application of the
diagonal preconditioner, and inner products. For optimal application performance
it is therefore necessary to look into the access to vectors. As proposed in our
work [51, 56, 65], merging the vector operations can improve throughput by up
to a factor of two, and in particular for the DG case with cell-based loops which
allow for a single pass through data [48, 56]. Fusion of different steps of a scheme
has also been proposed for explicit time integrators in [14].

For the assessment of optimization opportunities on the algorithm level that
goes beyond the matrix-vector product, we consider a high-order finite element
benchmark problem suggested by the US exascale initiative “Center for Efficient
Exascale Discretization” (CEED). The benchmark involves a continuous finite
element discretization of the Laplacian (3), using matrix-free operator evaluation
within a conjugate gradient solver preconditioned by the matrix diagonal. In this
study, we consider the case BP5 [29], see also https://ceed.exascaleproject.org/bps/,
which integrates the weak form (4) of polynomial degree k using a Gauss–Lobatto
quadrature formula with n1D

q = k + 1 quadrature points on a cube with deformed
elements. While this integration is not exact, it is the typical spectral element setup
with an identity interpolation matrix Si = I in Eq. (5).

Figure 4 lists the contributors to run time for the plain conjugate gradient method
preconditioned by the point-Jacobi method as a function of the problem size for
the polynomial degree k = 6. Here, the metric terms JK are computed on the
fly from a tri-linear representation of the geometry. Three different performance
regimes can be distinguished in the graph: To the left, there is not enough parallelism
given the domain decomposition on 48 MPI ranks and batches of 8 elements due to
vectorization—indeed, at least 85,000 DoFs are needed to saturate all cores and
SIMD lanes. Furthermore, the synchronization barriers due to the inner products in
the conjugate gradient method also lead to a slowdown. As the problem size and
parallelism increase, the run times decrease significantly and reach a minimum for
a problem size around one million DoFs. Here, all data involved in the algorithm

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

s/
[b

ill
io

n
D

oF
s

CG
its

]

mat-vec
inner products
diagonal precond.
vector updates

aaloaadddd imbalanceiiiiiiimii a all caached fror m RAM

Fig. 4 Breakdown of times per CG iteration in CEED benchmark problem BP5 [29] for the plain
conjugate gradient method with k = 6 on one node of dual-socket Intel Skylake

https://ceed.exascaleproject.org/bps/

ExaDG 199

103 104 105 106 107 108
0

1

2

3

4

DoFs per node

[b
ill

io
n

D
oF

s�
CG

its
]/

s plain CG
merged dot products
fully merged
Nvidia V100 plain CG

Fig. 5 Study of merged vector operations for conjugate gradient solver for the CEED benchmark
problem BP5 [29] on one node of dual-socket Intel Skylake for k = 6

fits into the approximately 110 MB of L2+L3 cache on the processors. As the size
is further increased, caches are exhausted and most data must be fetched from slow
main memory. As a consequence, the run time of the solver increases significantly,
and the vector updates, the diagonal preconditioner, and the inner products take a
significant share. Note that all vector operations use the hardware optimally with a
memory throughput of 205 GB/s.

In order to improve performance, we have therefore developed conjugate gradient
implementations with merged vector operations by loop fusion. Figure 5 compares
three variants of the conjugate gradient solver: the plain conjugate gradient method
runs all vector operations through high-level vector interfaces with separate loops
for addition and inner products. In the “merged dot products”, we have merged
the dot product pTAp following the matrix-vector product into the loop over the
elements, and merged the vector updates to the residual and solution with the dot
product for rTP−1r . Here, r denotes the residual vector, p the search direction of
the conjugate gradient method, A the matrix operator (represented in a matrix-free
way), and P−1 the diagonal preconditioner. However, the improvements with this
algorithm are relatively modest.

Much more performance can be gained by creating a conjugate gradient variant
we call “fully merged”: Here, each CG iteration performs a single loop through
all vector entries and ideally reads 5 vectors (solution, residual, search direction,
temporary vector to hold the matrix-vector product, and diagonal of preconditioner)
and writes four (solution, residual, search direction, temporary vector). All vector
updates of the previous CG iteration are scheduled before the matrix-vector product
and all inner products are scheduled after the matrix-vector product. The vector
operations are interleaved with the loop over elements, ensuring that dependencies
due to the access pattern of the loop and the MPI communication are fulfilled (this
leads to slightly more access in practice). This approach applies the preconditioner
several times with partial sums to construct the inner products with a single
MPI_Allreduce, trading some local computations for the decreased memory

200 D. Arndt et al.

access. Of course, fusing the preconditioner into the loop assumes that it is both
cheap to apply and does not involve long-range coupling between the DoFs. The
results in Fig. 5 show that performance in the saturated limit, i.e., for large sizes
beyond 107 DoFs, is 2.5 times faster than with the plain CG iteration. Interestingly,
this also improves performance for the sizes fitting into caches, which is due to less
synchronization and reducing access to the slower L3 cache.

To put the performance of the fully merged case on Intel Skylake into perspective,
we compare with executing the plain CG method on an Nvidia V100 GPU using the
implementation from [51, 57]: even though the GPU runs with around 700 GB/s of
memory throughput, the performance is higher on Intel Skylake with only 200 GB/s
from RAM memory because the merged loops significantly increase data locality.
Furthermore, on the GPU we do not compute the metric terms on the fly, but
load a precomputed tensor J−1

K J−T
K det(JK)wq which is faster due to reduced

register pressure, see also the analysis for BP5 in [71]. We also note that the
GPU results with our implementation are faster than an implementation with the
OCCA library described in [29] with up to 0.6 billion DoFs/s on a V100 of the
Summit supercomputer. The reason is that our implementation uses a continuous
finite element storage that does not duplicate the unknowns at shared vertices, edges
and faces, which reduces the memory access by about a factor of two. Furthermore,
the results from [29] involve a separate gather/scatter step with additional memory
transfer to enforce continuity, while this is part of the operator evaluation within a
single loop in our code.

Figure 6 lists the achieved throughput with a fully merged conjugate gradient
solver for polynomial degrees k = 2, . . . , 8, the most interesting regime for our
solvers. We use a tri-linear representation of geometry and compute the geometric

104 105 106 107 108
0

1

2

3

4

DoFs per node

[b
ill

io
n

D
oF

s�
CG

its
]/

s

10−5 10−4 10−3 10−2 10−1
0

1

2

3

4

time per iteration

[b
ill

io
n

D
oF

s�
CG

its
]/

s

k = 2, n1D
q = 3 k = 3, n1D

q = 4 k = 4, n1D
q = 5 k = 5, n1D

q = 6
k = 6, n1D

q = 7 k = 7, n1D
q = 8 k = 8, n1D

q = 9

Fig. 6 Throughput of the CEED benchmark problem BP5 [29] on one node of dual-socket Intel
Skylake for k = 2, . . . , 8 with fully merged conjugate gradient solver

ExaDG 201

104 105 106 107 108
0

1

2

3

4

5

6

DoFs per node

m
at

-v
ec

bi
lli

on
D

oF
s/

s

104 105 106 107 108
0

1

2

3

4

5

6

DoFs per node

[b
ill

io
n

D
oF

s�
CG

its
]/

s

affine cached tri-linear compute isopara compute variable tensor cached

Fig. 7 Study of geometry representation for the CEED benchmark problem BP5 [29] on one node
of dual-socket Intel Skylake with k = 6 for matrix-vector product only (left) and with fully merged
vector operations in the conjugate gradient solver (right)

factors on the fly. Throughput is somewhat lower for quadratic and cubic elements
because the geometry data located in the vertices is still noticable.

The results in Fig. 3 motivate the analysis of the representation of the geometry
in the matrix-vector product, with results presented in Fig. 7. The figure lists both
the throughput of the matrix-vector product in the left panel and the throughput
of the complete CG iteration with merged vector operations. Highest performance
is obtained for the affine mesh case where our implementation can compress the
memory access of the Jacobian. While this case is excluded from the CEED BP5
specification that requires a deformed geometry [29], it is an interesting baseline
to compare against. Using separate tensors for each quadrature point, “variable
tensor cached”, is equally fast as the affine case as long as data fits into caches.
However, performance drops once the big geometric arrays must be fetched from
main memory. For the case the geometry is computed on the fly from a tri-linear
representation of the mesh, i.e., the vertices, the matrix-vector product is slower
than the affine variant. For the conjugate gradient solver, however, we observe that
the two reach essentially the same performance for five million and more DoFs,
as they are both limited by the memory bandwidth from vector access. The “tri-
linear compute” case involves a higher Flop/s rate with almost 700 GFlop/s, as
compared to the throughput of 330 GFlop/s for the affine mesh case. This means
that the merged vector operations allow us to fit additional computations behind the
unavoidable memory transfer without affecting application performance. Finally,
an isoparametric representation of the geometry (labeled “isopara compute” in
Fig. 7) can also be computed on the fly by sum factorization from a kth degree
polynomial [50]. While this case is obviously slower than the precomputed variable-
tensor case from caches, it leverages higher performance when data must be fetched
from main memory.

202 D. Arndt et al.

10−4 10−3 10−2 10−1
0

1

2

3

4

s / CG it

[b
ill

io
n

D
oF

�
CG

its
]/

[s
�

no
de

s]

1 node
16 nodes
64 nodes
512 nodes
6336 nodes

Fig. 8 Throughput of the CEED benchmark problem BP5 [29] with k = 6 on up to the full
SuperMUC-NG machine. Throughput normalized per node

The tri-linear and isoparametric cases are not equivalent, as only the latter
represents higher order curved boundaries. Intermediate polynomial degrees for the
geometry are conceivable, which would land between the two in terms of application
throughput. To combine the higher performance of the former, we plan to investigate
the tradeoffs in more detail in the future, e.g. by using a k-degree representation on
a single layer of elements at the boundary and a tri-quadratic representation in the
domain’s interior.

Finally, Fig. 8 shows the weak scaling of the BP5 benchmark problem up to the
full size of the SuperMUC-NG machine with 6336 nodes and 304,128 cores. The
data is normalized by reporting the number of DoF per node, so ideal weak scaling
would correspond to coinciding lines. While the saturated performance is scaling
well, giving a sustained performance of up to 4.4 PFlop/s,2 most of the in-cache
performance advantage is lost due to the communication latency over MPI, see
also [62] for limits with MPI in PDE solvers. Defining the strong scaling limit as the
point where throughput reduces to 80% of saturated performance [29], it is reached
for wall times of 56 μs on 1 node. On 512 nodes, the strong scaling limit is already
around 180 μs, whereas it is 245 μs on the full SuperMUC-NG machine. Note that
even though most optimizations presented in this section have addressed the node-
level performance, we have also considered the strong scaling in our work—indeed,
the strong scaling on SuperMUC-NG is excellent with a limit around 5 times lower
than the BlueGene-Q results presented in [29].

2The LINPACK performance of SuperMUC-NG according to the top500 list is 19.4 PFlop/s.
Considering that we use an iterative solver for PDE with optimization of throughput, this is an
extremely good value.

ExaDG 203

4 Geometric Multigrid Methods in Distributed
Environments

Multigrid methods are efficient solvers for the linear systems arising from the
discretization of elliptic problems, see [30] for a recent efficiency evaluation
and [35] for a projection of elliptic solver performance to the exascale setting. They
apply simple iterative schemes called smoothers on a hierarchy of coarser problem
representations. On each level of the hierarchy, the smoothers address the high-
frequency content of the solution by smoothening the error. On a sufficiently coarse
level with a small number of unknowns, a direct solver can be applied. The multigrid
algorithm can be realized by a V-cycle as illustrated in Fig. 9 or some related cycle
(W-cycle or F-cycle). In the matrix-free high-order finite element context, variants
of the Chebyshev iteration around a simple additive scheme, such as point-Jacobi or
approximate block-Jacobi with some rank-d approximation of the cell matrix, are
state of the art. The results in this section are based on this selection. Overlapping
Schwarz schemes are a new development detailed in Sect. 5 below.

In terms of finding the coarser representations for the multigrid hierarchy, high-
order finite element and discontinuous Galerkin methods permit a range of options.
The hierarchy can both be constructed by coarser meshes (h-multigrid), by lowering
the polynomial degree (p-multigrid), by a discontinuous-continuous transfer as well
as algebraically based on the matrix entries only (algebraic multigrid). The latter do
not fit into a matrix-free context, since they explicitly rely on a sparse matrix and
also often are not robust enough as the degree increases. As it has been shown by
the work [70], scalability to the largest supercomputers is much more favorable if
knowledge about coarsening by a mesh can be provided. In other words, geometric
multigrid is to be preferred over algebraic multigrid in case there is such structure
in the problem.

smoothen

smoothen smoothen

smoothen

coarse solve

restrict

restrict

prolongate

prolongate

active cells level = 2

level = 1

level = 0

Fig. 9 Illustration of multigrid V-cycle with smoothing on each level and restriction/prolongation
between the levels (left) and exemplary partitioning of a grid with adaptive refinement partitioned
among 3 processors. The partitioning of the active cells is shown in the mid panel and on the
various multigrid levels on the right panel

204 D. Arndt et al.

For these reasons, we have developed a comprehensive geometric multigrid
framework with deal.II. In [27], a hybrid multigrid solver with all possibilities of h-,
p-, and algebraic coarsening has been combined in a flexible framework, with the
possibility to perform an additional c-transfer from discontinuous to continuous
function spaces for the DG case. In terms of the h-MG method on adaptive meshes,
the deal.II library implements the local smoothing algorithm [9, 36, 37] where
smoothing is done level by level. Our work [15] developed a communication-
efficient coarsening strategy for this setup, at the cost of a load imbalance for
smoothing on the multigrid levels with adaptively refined meshes. The tradeoffs
in this choice and the associated costs have been quantified by a performance model
in [15].

Figure 10 shows the results of two strong scaling experiments of the multigrid
V-cycle with the h-multigrid infrastructure of the deal.II library. The uniform grid
and a typical adaptively refined case are compared for the same problem size of 137
million and 46 billion DoFs, respectively, see [15] for details on the experiment.
Differences in run time are primarily due to the load imbalance for the level
operations. The results demonstrate optimal parallel scaling of both the uniform
and adaptively refined cases down to around 10−2 s, with a slightly better strong
scaling of the adaptive case due to the slower baseline. This performance barrier—
typical for strong scaling of multigrid schemes in general—can be explained by
the specific type of global communication in this algorithm: from the fine mesh
level with many unknowns distributed among a large number of cores, we transfer
residuals to coarser meshes with restriction operators until the coarse grid solver is
either run on a single core or with few cores in a tightly coupled manner. Then, the
coarse-grid corrections are broadcast during prolongation, involving all processors
again. The communication pattern of a multigrid V-cycle thus relates to a tree-based

64 256 1024 4k 16k 65k

10−3

10−2

10−1

100

Number of cores

V-
cy

cl
e

tim
e

[s
]

approx 16.9M cells/137.4M DoFs

uniform
adaptive
model

16k 32k 65k

100

101

Number of cores

V-
cy

cl
e

tim
e

[s
]

approx 5.8B cells/46.4B DoFs

uniform
adaptive
model

Fig. 10 Strong scaling of geometric multigrid V-cycle for 3D Laplacian on uniform and adaptively
refined mesh using continuous Q2 elements with matrix-free evaluation on up to 4096 nodes (64k
cores) of 2 × 8 core Intel Sandy Bridge (SuperMUC phase 1). Adapted from [15]

ExaDG 205

implementation of MPI_Allreduce, with the difference that the communication
tree is induced by the grid and substantial operations, namely smoothing and level
transfer, are intermixed with the communication. In this particular case, nine matrix-
vector products with nearest-neighbor communication are performed per level (eight
in the smoother and one for the residual before restriction). In addition, two vertical
nearest-neighbor exchange operations are done in restriction and prolongation. A
typical matrix-vector product with up to 26 neighbors takes around 10−4 s on the
chosen Intel Sandy Bridge system when run on a few thousands of nodes [52]. When
done on seven levels plus the coarse mesh for the uniformly refined 137 million
DoFs case, the expected saturated limit of around 8 ms is exactly seen in the figure.
On the newer SuperMUC-NG machine, a latency barrier per V-cycle of around 2–
4 ms per V-cycle has been measured, depending on the number of matrix-vector
products for the level smoothers. This limit is attractive compared to alternative
solvers for elliptic problems such as the fast multipole method or the fast Fourier
transform [30, 35].

Multigrid schemes are at the heart of incompressible flow solvers through the
pressure Poisson equation, as detailed in Sect. 6 below. Applications of matrix-
free geometric multigrid to continuum mechanics were presented in [18] and to
electronic calculations with sparse multivectors in [16, 17].

As an example of the large-scale suitability of the developed multigrid frame-
work, Fig. 11 shows two scaling experiments on the SuperMUC-NG supercomputer
with up to 304,128 cores of Intel Skylake. Black dashed lines denote ideal strong
scaling along a line and weak scaling with a factor of 8 between the lines. The com-
putational domain is a cube meshed by hexahedral elements, using the affine mesh
code path for matrix-free algorithms discussed in Sect. 2. A consistent Gaussian
quadrature with n1D

q = k + 1 points is chosen. We run a conjugate gradient solver

to a relative tolerance of 10−3 compared to the initial unpreconditioned residual.
This setup is motivated by applications where a very good initial guess is already

48 192 768 3.1k 12k 49k 152k

10−2

10−1

100 512B
516464BB DoFs

D
8.68.6B DoFs

1.1B DoFs

128828MMM
DoFs

16MM
DoFs
DD

Number of cores

So
lv

er
tim

e
[s

]

Continuous Galerkin, degree k = 4

96 384 1536 6.1k 25k 98k 304k

10−2

10−1

100

1.9TT
232BB DoFs

D292929BBB DoFs

3.6B DoFs

454M
DoFs

5757M
DoFs

77M
DoFs
oF

Number of cores

Discontinuous Galerkin, degree k = 5

Fig. 11 Multigrid strong scaling analysis for tolerance 10−3 with 2 CG iterations

206 D. Arndt et al.

available, e.g. by extrapolation of solutions from the old time step [22, 45], and only
a correction is needed. More accurate solves are obtained by tighter tolerances or
by full multigrid setups [51]. The multigrid V-cycle is run in single precision to
increase throughput, together with a double precision correction through the outer
CG solver. This setup has been shown in [51] to increase throughput by around 1.8×
without affecting the multigrid convergence.

In the left panel of Fig. 11, we present results for a continuous Galerkin
discretization with a polynomial degree k = 4. A pure geometric coarsening
down to a single mesh element is used. A Chebyshev iteration of degree five
based on the matrix diagonal, i.e., point Jacobi, is used on all levels for pre- and
post-smoothing. The maximal eigenvalue λ̃max is estimated by 15 iterations of a
conjugate gradient solver and the Chebyshev parameters are set to smoothen in a
range [0.06λ̃max , 1.2λ̃max]. As a coarse solver, we use a Chebyshev iteration with
the degree set to reduce the residual by 103 in terms of the Chebyshev a-priori error
estimate [74]. We observe ideal weak scaling and strong scaling to around 10−2 s.
More importantly, the absolute run time is excellent: For instance, the 8.6 billion
DoF case on 1536 cores is solved in 1.4 s, i.e., 4.0 million DoFs are solved per core
per second.

The right panel of Fig. 11 shows the result for multigrid applied to an IPDG
discretization with k = 5. Here, we use a transfer from the discontinuous space to
the associated continuous finite element space with k = 5 on the finest mesh level
(see [3] for the theoretical background and [27] for the multigrid context) and then
progress by h-coarsening to a single element. On the DG level, we use a Chebyshev
smoother around a block-Jacobi method, with the block-Jacobi problems inverted
by the fast diagonalization method [58]. On all continuous finite element levels,
a Chebyshev iteration around the point-Jacobi method is used. The degree of the
Chebyshev polynomial is six. This solver setup achieves a multigrid convergence
rate of about 0.025, i.e., reduces the residual by 3 orders of magnitude with two
V-cycles. If used in a full multigrid setting [51], a single V-cycle on the finest
level would suffice to solve the problem to discretization accuracy. Merged vector
operations with a Hermite-like basis for the Chebyshev iteration are used according
to [56]. The final application performance of the largest computation on 1.9 trillion
DoFs is 5.9 PFlop/s, with 5.6 PFlop/s done in single precision and 0.27 PFlop/s
in double precision. The limiting factor is mostly memory transfer, however, with
an application throughput of around 175 GB/s per node (the STREAM limit of one
node is 205 GB/s).

5 Fast Tensor Product Schwarz Smoothers

In Sect. 4, we have discussed a scalable implementation of geometric multigrid
methods, obtaining an efficient solver in the sense of cost per iteration. It employs
the matrix-free operator implementation from Sect. 2 in order to reduce the compu-
tational cost for residuals and grid transfer. The missing building block for our cost

ExaDG 207

model in Eq. (1) is an efficient implementation (in terms of computational cost per
DoF) of an efficient smoother (in terms of number of multigrid iterations).

The main challenge consists of finding preconditioners whose cost is similar to
operator evaluation. So far, we have discussed Chebyshev smoothers, which can be
implemented matrix-free in a straight-forward fashion. Alas, their performance is
not robust for higher order elements. Likewise, from an arithmetic cost point of view
sparse matrices can be competitive at most for moderate polynomial degrees k =
2, 3 [55] or when done via auxiliary spaces of linear elements on a subdivided grid
using some matrix-based preconditioner. However, Fig. 3 shows that even sparse
matrices for linear elements are up to 10 times slower than the matrix-free operator
evaluation. It seems that only the two SPPEXA projects ExaDUNE and ExaDG
have addressed this question in [6, 76]. While [6] focuses on iterative solution of
cell problems for multigrid smoothing, we consider domain decomposition based
smoothers in the form of multilevel additive and multiplicative Schwarz methods
based on low-rank tensor approximations. They consist of a subdivision of the mesh
on each level into small subdomains consisting either of a single cell, or of the patch
of cells sharing a common vertex. On each of these subdomains, local finite element
problems are solved. Comparing with operator application, these smoothers share
the structural property of evaluation of local operators on mesh cells or on a patch
of cells. They differ by the fact that the smoothers involve local inverses instead of
local forward operators, and that these local inverses in general are not amenable
to a tensor decomposition like sum factorization. There is one exception though,
namely separable differential operators. In d dimensions these can be written in the
form

L = Id ⊗ · · · ⊗ I2 ⊗ L1 + · · · + Ld ⊗ Id−1 ⊗ · · · ⊗ I1, (6)

where Lk are one-dimensional differential operators and Ik are identity operators
in directions k = 1, . . . , d . This representation transfers to finite element operators
with tensor product shape functions in a straight-forward way, reading Ik as one-
dimensional mass matrices Mk .

Due to [58], the inverse of L can be represented as the product

L−1 = Q�−1QT, (7)

with the diagonal matrix � = Id ⊗ · · · ⊗ I2 ⊗ �1 + · · · + �d ⊗ Id−1 ⊗ · · · ⊗ I1,
where Ik denote identity matrices, and a rank-1 decomposition Q = Qd ⊗· · ·⊗Q1.
The tensor factors are obtained by solving d generalized eigenvalue problems

�k = QT
k LkQk,

Ik = QT
k MkQk, k = 1, . . . , d.

(8)

Thus, the computational effort for computing the inverse has been reduced from
O(k3d) to O(dk3) and for the application of local solvers from O(k2d) to O(dkd+1)

208 D. Arndt et al.

by exploiting sum factorization. Based on this technique, we have implemented a
geometric multigrid method in [76] based on earlier work in [37–39].

5.1 The Laplacian on Cartesian Meshes

In order to test our concept and to obtain a performance baseline for more
complicated cases, we first attend to the case where the decomposition described
above can be applied in a straightforward way, namely the additive Schwarz method
with subdomains equal to mesh cells. As Table 1 shows, it yields an efficient
preconditioner with less than 25 conjugate gradient steps for a gain of accuracy
of 108. While it is uniform in the mesh level, it is not uniform in the polynomial
degree due to the increasing penalty parameter of the interior penalty method. The
computational effort for a smoothing step based on local solvers in the form (7)
is below the effort for a matrix-free operator application for polynomial degrees
between 3 and 15 in three dimensions because it only involves operations on cells.
The setup time for computing Q and � is even less. Thus, in the context of the
performance analysis of the conjugate gradient method in Sect. 2, it barely adds to
the cost per iteration step, but reduces the number of matrix-vector products when
comparing to the accumulated numbers within a Chebyshev/point Jacobi method,
and almost independently of polynomial degree.

In view of application to incompressible flow, we also study vertex patches as
typical subdomains for smoothing. First, we observe that a regular vertex patch with
2d cells attached to a vertex inherits the low-rank tensor product structure from
its cells, possibly after renumbering due to changes in orientation. Thus, we can
apply the same method as on a single cell, resulting effectively in a factor 2d in the
complexity estimates above. Patches around vertices with irregular topology like 3
or 5 cells in two dimensions do not possess a tensor product structure. Fortunately,

Table 1 Fractional CG
iterations, preconditioned by
h-MG with additive Schwarz
smoother on cells

Levels Convergence steps

2D k = 3 k = 4 k = 7 k = 10

7 14.5 14.3 18.8 20.9

8 14.5 14.3 18.8 20.9

9 14.5 14.3 18.8 20.9

10 14.5 14.3 18.8 20.9

3D k = 3 k = 4 k = 7 k = 10

3 16.7 16.8 22.0 24.5

4 17.1 17.0 22.0 24.5

5 17.2 17.0 22.1 24.6

6 17.1 17.0 22.1 24.7

Relative solver tolerance of 10−8 and relax-
ation parameter ω̂ = 0.7

ExaDG 209

on meshes obtained by refinement of a coarse mesh, they are all determined by
irregularities of the coarse mesh and thus small in number.

Vertex patches lead to overlapping decompositions with overlap of at least 4
and 8 in two and three dimensions, respectively. From the analysis of Schwarz
methods, it becomes clear that a multiplicative method is required for highest
multigrid convergence rates. In order to parallelize such a smoother and to avoid
race conditions, mesh cells are colorized, that is, they are separated into “colors”
such that patches of the same “color” do not share any common face or cell.
As a consequence, the multiplicative method coincides with an additive method
within each color, such that we can execute the local solvers in parallel within each
color, and the colors sequentially. Typical convergence results for the Laplacian are
reported in Table 2, suggesting that this scheme is almost a direct solver.

The vertex patch has 4 and 8 times as many unknowns as a single mesh cell
in two and three dimensions, respectively. Thus, the effort for a smoothing step
with 16 colors and the optimizations described above turns out to be about 20 to
24 times the effort of a matrix-free operator application, measured over polynomial
degrees from 3 to 15. This seems excessive at first glance, but it must be kept in mind
that the Chebyshev smoother of degree 6 used in Fig. 11 also involves 12 matrix-
vector products for pre- and post-smooting. Futhermore, the current scheme comes
with a reduction of the number of steps by a factor 10 compared to the additive
cell smoother for the Laplacian, which makes it almost competitive [76]. Finally,
the iteration counts are independent of the polynomial degree, making the scheme
attractive for higher degrees. Moreover, we point out that this smoother also allows
for the solution of a Stokes problem in four iteration steps [39].

Table 2 Fractional GMRES iterations, preconditioned by h-MG with multiplicative Schwarz
smoothers on vertex patches

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.5 2.5 2.1 2.1 8

8 2.5 2.5 2.1 2.0 8

9 2.5 2.4 2.1 2.0 8

10 2.5 2.4 2.0 2.0 8

3D k = 3 k = 4 k = 7 k = 10

3 2.4 2.5 2.1 1.8 16

4 2.4 2.5 2.1 1.9 16

5 2.4 2.5 2.1 1.9 16

6 2.4 2.5 2.1 1.9 16

Levels Convergence steps Colors

2D k = 3 k = 4 k = 7 k = 10

7 2.9 2.9 2.6 2.5 17

8 2.9 2.9 2.6 2.5 17

9 2.9 2.9 2.6 2.5 17

10 2.9 2.9 2.6 2.4 17

3D k = 3 k = 4 k = 7 k = 10

3 2.6 2.7 2.4 2.4 35

4 2.8 2.8 2.5 2.4 49

5 2.8 2.8 2.5 2.4 51

6 2.8 2.8 2.5 2.4 52

Based on minimal coloring (left) and graph coloring (right) with a relative solver tolerance of 10−8

210 D. Arndt et al.

5.2 General Geometry

As soon as the mesh cells are not Cartesian anymore, the special structure of
separable operators in (6) is lost and the inverse cannot be computed according
to (7). In this case, we have two options: solving the local problems iteratively,
as in [6], or approximately. A possible approximation which recovers the situation
of the previous subsection consists of replacing a non-Cartesian mesh cell by an
approximating (hyper-)rectangle, then inverting the separable differential operator
on the rectangle (omitting the prefix hyper from here on).

Such a surrogate rectangle can be obtained from the following procedure: first,
we compute the arc length of all edges. From these, we obtain the length of the
rectangle in each of its natural directions by averaging over all parallel edges (in
a topological sense). Thus, the geometry of the rectangle is determined up to its
position and orientation in space. Given the fact that the Laplacian is invariant under
translation and rotation, these do not matter and we can choose a rectangle centered
at the origin with edges parallel to the coordinate directions. Different differential
operators may require different approximations here.

The convergence theory of Schwarz methods allows for inexact local solvers as
long as they are spectrally equivalent. Naturally, the deviation from exactness enters
into the convergence speed of the method. Additionally, inexact local solvers can
amplify the solution, such that a smaller relaxation parameter may be necessary.
This is exhibited in Table 3, where we compare the efficiency of multigrid with
exact local solvers and the method with surrogate rectangles as described above.
We see that a reduction of the relaxation parameter ω̂ = 0.7 for exact local solvers
to ω̂ = 0.49 is necessary for robust convergence. We point out though, that while
the inexact methods need more iteration steps, they are much faster than exact
inverses, since they use the Kronecker representation (7) of the approximate inverse.
For instance, the setup cost is 3000 times higher, with a growing gap for higher
polynomial degrees.

Table 3 Fractional CG iterations with addditive cell-based Schwarz smoothers, exact as well as
inexact local solution with varying damping factors ω̂

Levels Convergence steps to 10−8

2D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

4 17.8 28.4 24.8 24.3 30.8 >100

5 17.3 27.1 23.9 23.8 40.7 >100

6 17.2 26.8 23.7 23.9 58.1 >100

3D exact (ω̂ = 0.7) ω̂ = 0.35 ω̂ = 0.42 ω̂ = 0.49 ω̂ = 0.56 ω̂ = 0.63

2 20.6 31.8 28.5 25.8 25.0 28.5

3 20.6 33.3 29.1 26.5 27.4 74.8

4 20.6 32.4 28.6 26.6 47.0 >100

Two pre- and post-smoothing steps are used, respectively, and the polynomial degree is k = 4

ExaDG 211

5.3 Linear Elasticitiy

In order to provide an outlook on how to apply this concept to more general
problems, we consider linear elasticity, namely the Lamé-Navier equations, with
the bilinear form

a(u, v) = 2μ
(

ε(u), ε(v)
) + λ

(∇ · u,∇ · v)

. (9)

Here, ε(u) = 1
2 (∇u + ∇uT) is the strain tensor of the displacement field u and

(·, ·)
denote the appropriate DG discretization with interior penalty terms.

Consider a Cartesian vertex patch, that is, a patch with all faces aligned with
the coordinate planes and with tensor product shape functions on each cell. As
before, let Mk be the one-dimensional mass matrix in direction k and Lk the matrix
representing the Laplacian including all face terms introduced by the interior penalty
formulation. Furthermore, let Gk be the matrix associated to the first derivative,
again including the DG interface terms which arise in products of the form GT

k ⊗Gl .
With these notions and the three-dimensional Laplacian

L = M3 ⊗ M2 ⊗ L1 + M3 ⊗ L2 ⊗ M1 + L3 ⊗ M2 ⊗ M1, (10)

we can write the bilinear form a(., .) on the patch in matrix form

Ap = μ

⎡

⎣

L + M3 ⊗ M2 ⊗ L1 M3 ⊗ GT
2 ⊗ G1 GT

3 ⊗ M2 ⊗ G1

M3 ⊗ G2 ⊗ GT
1 L + M3 ⊗ L2 ⊗ M1 GT

3 ⊗ G2 ⊗ M1

G3 ⊗ M2 ⊗ GT
1 G3 ⊗ GT

2 ⊗ M1 L + L3 ⊗ M2 ⊗ M1

⎤

⎦

+ λ

⎡

⎣

M3 ⊗ M2 ⊗ L1 M3 ⊗ G2 ⊗ GT
1 G3 ⊗ M2 ⊗ GT

1
M3 ⊗ GT

2 ⊗ G1 M3 ⊗ L2 ⊗ M1 G3 ⊗ GT
2 ⊗ M1

GT
3 ⊗ M2 ⊗ G1 GT

3 ⊗ G2 ⊗ M1 L3 ⊗ M2 ⊗ M1

⎤

⎦ (11)

Clearly, this matrix lacks the simple structure of Kronecker products we
employed in the previous subsections. Nevertheless, we have Korn’s inequality [10],
and thus the block diagonal of the left matrix is spectrally equivalent to the matrix
itself. Consequently, we expect that

Ãp = μ

⎡

⎣

L + M3 ⊗ M2 ⊗ L1

L + M3 ⊗ L2 ⊗ M1

L + L3 ⊗ M2 ⊗ M1

⎤

⎦ ,

(12)

which has the desired Kronecker product structure, is a good local solver. Indeed,
Table 4 confirms this expectation. Iteration counts remain almost constant over a

212 D. Arndt et al.

Table 4 Solver performance depending on level and polynomial degree k

Levels k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

3 – – – – – – – 4.0 4.1

4 – – – 3.7 3.9 3.9 4.0 4.1 4.1

5 – 3.7 3.7 3.7 3.8 3.9 3.9 3.9 3.9

6 5.1 3.7 3.8 3.6 3.8 3.9 3.9 3.9 3.9

7 5.2 3.8 3.9 3.7 3.7 3.8 3.7 3.8 3.8

8 5.5 3.9 3.9 3.8 3.8 3.7 3.8 – –

9 5.4 3.9 4.0 – – – – – –

CG iterations to reduce the residual by 108 preconditioned by h-MG with multiplicative vertex
patch smoother and approximate local solvers Ã−1

p . Only levels with 104 to 107 degrees of freedom
are shown. μ = 1, λ = 1 and the coarse grid consists of 2 × 2 cells

Table 5 Solver performance depending on Lamé parameters μ and λ

(μ, λ)

Levels (100, 1) (10, 1) (1, 1) (1, 5) (1, 10) (1, 25)

6 3.4 3.4 3.6 6.3 19.5 >200

7 3.6 3.6 3.7 6.2 19.9 >200

8 3.7 3.7 3.8 6.0 20.2 >200

9 3.8 3.8 3.9 5.9 20.2 >200

10 3.8 3.8 3.9 5.9 20.3 >200

11 3.8 3.8 3.9 5.8 19.9 >200

CG iterations to reduce the residual by 108 preconditioned by h-MG with block-diagonal smoother.
Shape functions of degree k = 4 are used. The coarse grid consists of 2 × 2 cells

wide range of mesh levels and polynomial degrees. Comparing to Table 2, we lose
less than a factor two, typically requiring 4 steps instead of 3.

While Korn’s inequality helped us with the left matrix in (11), the matrix
corresponding to the “grad-div” term in the Lamé–Navier equations has a nontrivial
kernel and thus its inverse cannot be approximated by a block diagonal. We confirm
this in Table 5. After augmenting Ãp by the diagonal terms of the grad-div matrix,
we vary μ and λ. As expected, iteration counts increase when λ � μ to the point,
where the method becomes infeasible.

The case λ � μ corresponds to an almost incompressible material. Thus,
this behavior has to be addressed from two sides. First, the discretization must
be suitable [34]. Then, the local solvers must be able to reduce the divergence
sufficiently. Here, we have to find ways to implement a smoother like in [39] in an
efficient way. Its structure prevents us from utilizing the tensor product techniques,
namely the fast diagonalization method, used so far.

ExaDG 213

As an outlook, we describe a solution approach for two dimensions, which has
been developed in a recent bachelor’s thesis [64]. The diagonal blocks of the matrix
Ap are

A1 = (2μ + λ) M2 ⊗L1 +μL2 ⊗M1, A2 = μM2 ⊗L1 + (2μ + λ) L2 ⊗M1. (13)

Both A1 and A2 admit a fast diagonalization, for instance

A−1
2 = (

Q2 ⊗ Q1
)(

I2 ⊗ �1 + �2 ⊗ I1
)−1(

Q2 ⊗ Q1
)T

. (14)

Given the off-diagonal block B = μGT
2 ⊗ G1 + λG2 ⊗ GT

1 , the Schur complement
of Ap is

S = A1 − BTA−1
2 B. (15)

While this is not a sum of Kronecker products, Kronecker singular value decom-
position (KSVD), see [72, 73], can be utilized to construct an approximation of the
Schur complement which is fast diagonalizable. We proceed as follows:

A.1 compute the fast diagonalizations of A1 and A2
A.2 compute the rank-ρ� KSVD of the inverse diagonal matrix in Eq. 14

(

I ⊗ �(1) + �(2) ⊗ I
)−1 ≈

ρ�
∑

i=1

Ci ⊗ Di (16)

A.3 compute the rank-2 KSVD

̂S := E1 ⊗ F1 + E2 ⊗ F2 ≈ ˜S (17)

of the approximate Schur complement

˜S := A1 − BT

[

ρ�
∑

i=1

Q2C
−1
i QT

2 ⊗ Q1D
−1
i QT

1

]

B (18)

A.4 compute the fast diagonalization of ̂S.

Then, Gaussian block elimination provides an approximate inverse

A−1
p ≈

[

I −A−1
1 B

0 I

] [

A−1
1 0
0 ̂S−1

] [

I 0
−BTA−1

1 I

]

. (19)

214 D. Arndt et al.

Implementation and evaluation of these smoothers are still work in progress, but
the thesis [64] suggests fast and robust convergence at least in a finite difference
context.

The take-home message from this section is that an efficient approximate solution
of the local problems in Schwarz smoothers is possible using low-rank tensor
representations and can be achieved with effort similar to a matrix-free operator
application in the best case. Finding such low-rank representations is nevertheless
highly dependent on the differential equation and geometry. Further investigation
will be directed in particular at dealing with the grad-div operator.

6 High-performance Simulations of Incompressible Flows

Computational fluid dynamics (CFD) simulations of turbulent flows at large
Reynolds number, e.g., Re > 106, are among those problems that typically require
a huge amount of computational resources in order to resolve the turbulent flow
structures in space and time, and have been addressed as an application by the
ExaDG project. The underlying model problem is given by the incompressible
Navier–Stokes equations

∂u

∂t
+ ∇ · (u ⊗ u) − ν∇2u + ∇p = f , (20)

∇ · u = 0 . (21)

Scale-resolving simulations for engineering applications typically involve beyond
O(1010 − 1011) unknowns (DoFs) and O(105 − 107) time steps. High-performance
implementations for this type of problem are therefore of paramount importance for
the CFD community. It is important to stress that implementing a given algorithm
optimally for a given hardware, i.e., an implementation that performs close to
the hardware limits, is only one step to achieve the goal of providing efficient
flow solvers for engineering problems as emphasized in the introduction. While
the previous sections discussed the second and third term in Eq. (1), namely the
performance of matrix-free evaluation routines and fast multigrid solvers for high-
order discretizations, we now also include discretization aspects into the discussion.
The implementation makes use of the fast matrix-free evaluation routines and
multigrid solvers discussed in previous sections.

We use a method of lines approach with high-order DG discretizations in space
and splitting methods with BDF time integration. Splitting methods separate the
solution of the incompressible Navier–Stokes equations into sub-problems such
as a Poisson equation for the pressure and a (convection–)diffusion equation
for the velocity and are among the most efficient solvers currently known. In a
first contribution [45], we highlighted that previous discretization methods lack
robustness, on the one hand in the limit of small time step sizes, and on the other

ExaDG 215

hand in under-resolved scenarios where the spatial discretization only resolves the
largest scales of the flow. The stability problem for small time step sizes has been
addressed in detail in [21] where we found that a proper DG discretization of
velocity-pressure coupling terms is essential to achieve robustness at small time
steps. In [23], we presented the first high-order DG incompressible flow solver
that is robust in the under-resolved regime and that relies completely on efficient
matrix-free evaluation routines. The developed discretization approach is attractive
as it provides a generic solver for turbulent flow simulations that is robust and
accurate without the use of explicit turbulence models. Such a technique is known
as implicit large-eddy simulation in the literature and has the advantage that it
does not require turbulence model parameters. While this property of high-order
DG discretizations is already known from discontinuous Galerkin discretizations
of the compressible Navier–Stokes equations, the work [23] has been the first
demonstrating this property for DG discretizations of the incompressible Navier–
Stokes equations. The key ingredient for a robust high-order, L2-conforming
DG discretization for incompressible flows turns out to be the use of consistent
stabilization terms that enforce the divergence-free constraint and inter-element
mass conservation in a weak sense. These requirements can also be included into
the finite element function spaces by using so-called H(div)-conforming (normal-
continuous) discretizations that are exactly (pointwise) divergence-free by using
Raviart–Thomas elements. As investigated in detail in [26], such an approach has
indeed very similar discretization properties when compared with the stabilized L2-
conforming approach in practically relevant, under-resolved application scenarios.
The model has been extended to moving meshes in [20].

A detailed performance analysis has been undertaken in [22] where we discuss
the incompressible flow solver w.r.t. its efficiency according to Eq. (1). Based
on this efficiency model, we have then compared matrix-free solvers based on
incompressible and compressible Navier–Stokes formulations in [24] for under-
resolved turbulent incompressible flows. The compressible solver uses explicit time
integration and therefore only requires one operator evaluation in every Runge–
Kutta stage as opposed to the incompressible solver involving the solution of
linear system of equations such as a pressure Poisson equation within every
time step. Simple explicit solvers are often considered efficient due to better
parallel scalability since implicit Krylov solvers with multigrid preconditioning
involve global communication. However, our work shows a significant performance
advantage of the incompressible formulation over the compressible one on the node-
level for sufficient workload. Albeit speed-up factors are higher, it is difficult to
achieve a performance advantage for the algorithmically simple, explicit-in-time
compressible solver in the strong-scaling limit in terms of absolute run time. In
our experience, the potential to outperform an implicit solver at some point in the
strong-scaling limit has not materialized. We see it as a future challenge to devise
optimal PDE solvers providing good performance over a wide range of problems
and hardware platforms due to this high degree of interdisciplinarity.

We have applied this solver framework to conduct direct numerical simulations of
turbulent channel flow in [45], the first direct numerical simulation of the turbulent

216 D. Arndt et al.

flow over a periodic hill at Re ≈ 104 in [46], and to large-eddy simulation of
the FDA benchmark nozzle problem in [25]. Furthermore, we have developed
multiscale wall modeling approaches that allow to use the proposed highly efficient
schemes also for industrial cases with even higher Reynolds numbers than what is
feasible for wall-resolved large eddy simulation [47].

Here, we show performance results obtained on SuperMUC-NG with Intel
Skylake CPUs. We study the three-dimensional Taylor–Green vortex problem as
a standard benchmark to assess the accuracy and computational efficiency of
incompressible turbulent flow solvers. Regarding discretization accuracy and from
a physical point of view, the quantity of interest is the kinetic energy dissipation
rate shown in Fig. 12 as a function of time 0 ≤ t ≤ T = 20 for increasing
Reynolds numbers Re = 100, 200, 400, 800, 1600, 3000, 10,000,∞. The first
direct numerical simulation for the Re = 1600 case with a high-order DG scheme
of the incompressible Navier–Stokes equations with a resolution of 10243 and
polynomial degrees k = 3, 7 has been shown in [22]. Here, we show results
for effective resolutions up to 30723 (corresponding to 0.99 · 1011 DoFs) for the
highest Reynolds number cases. Despite these fine resolutions, grid-converged
results are achieved only up to Re = 3000. The inviscid problem (Re = ∞) is
most challenging, and the results in Fig. 12 suggest that even finer resolutions are
required for grid-convergence, a goal that might be achievable in the foreseeable
future. The largest problem with 0.99 · 1011 DoFs involved 6.6 · 104 time steps and
required 11.4 h of wall time on 152,064 cores. In terms of degrees of freedom solved
per time step per core, this results in a throughput of 1.05 MDoFs/s/core.

Fig. 12 Taylor–Green vortex: Kinetic energy dissipation rates for two different problem sizes (fine
mesh as solid line and coarse mesh as dashed-dotted line) for each Re number: The polynomial
degree is k = 3 and the effective resolutions Neff = (Nele,1d(k + 1))3 considered are Neff =
643, 1283 for Re = 100, Neff = 1283, 2563 for Re = 200, 400, Neff = 2563, 5123 for Re =
800, Neff = 10243, 20483 for Re = 1600, and Neff = 20483, 30723 for Re = 3000, 10000,∞

ExaDG 217

48 384 3072 25k 304k101

102

103

104

105

Number of cores

O
ve

ra
ll

w
al

lt
im

e
[s

]

48 384 3072 25k 304k10−2

10−1

100

101

Number of cores

W
al

lt
im

e
[s

]p
er

tim
e

ste
p

Neff = 1283 Neff = 2563 Neff = 5123 Neff = 10243

Neff = 20483 realtime limit linear scaling

Fig. 13 Scaling analysis for incompressible flow solver on 3D Taylor–Green vortex with polyno-
mial degree k = 3 at Re = 1600 and spatial resolutions of 1283, 2563, 5123, 10243, 20483

Figure 13 shows strong scaling results for the TGV problem at Re = 1600 for
effective resolutions of 1283, 2563, 10243, 20483 and polynomial degree k = 3. We
assess strong scalability in terms of absolute run times for the whole application
(including mesh-generation, setup of data structures, solvers, preconditioners, and
postprocessing) rather than normalized speed-up factors as the aim of strong scala-
bility is not only reducing but also minimizing time-to-solution, i.e., demonstrating
strong-scalability of a code with poor serial performance is meaningless. The results
in Fig. 13 reveal that we are able to perform the TGV simulations in realtime (twall ≤
T = 20s) for spatial resolutions up to 1283. These numbers can be considered
outstanding and we are not aware of other high-order DG solvers achieving this
performance, see also the discussions in [22, 24]. The minimum wall time in the
strong-scaling limit increases on finer meshes due to more time steps (the time step
size is restricted according to the CFL condition,
t ∼ 1/h, for the mixed explicit–
implicit splitting solver used here). For this reason, we also show strong scalability
in terms of the wall time per time step, to allow extrapolations of how many time
steps can be solved within a given wall time limit which is the typical use case for
large-eddy and direct numerical simulations of turbulent flows. In this metric, the
curves level off around 0.02 − 0.03 s of wall time per time step, independently of
the spatial resolution. The SuperMUC-NG machine with 3 · 105 cores is too small
to show the strong scaling limit for the largest problem size with 20483 resolution
considered here. A parallel efficiency of 80.6% is achieved with a speed-up factor
of 79.8 when scaling from 3072 cores to 304,128 cores.

218 D. Arndt et al.

7 hyper.deal: Extending the Matrix-Free Kernels to Higher
Dimensions

The matrix-free kernels developed within the ExaDG project have been imple-
mented in a recursive manner which enables compilation with arbitrary spatial
dimension. In order to be compatible with the mesh infrastructure of deal.II which
is restricted to dimensions up to 3, we have developed schemes working on a
tensor product of two deal.II meshes. This allows extension to 2+2, 2+3, and 3+3
dimensions. The corresponding framework is currently under development as the
deal.II-extension hyper.deal [59].

The major application that we have in mind are kinetic problems in phase space
where we use the tensor product of a spatial and a velocity mesh. However, other
applications might arise such as parameter-dependent flow problems. Table 6 gives
an overview of computational times on a six-dimensional Vlasov–Poisson problem,
which involves an advection in the 6D space of the particle density in x and v space
and the solution of a 3D Poisson equation for finding the electric potential that in
turn specifies the electric field that transports the density field (cf. [44] for the same
application tackled with a semi-Lagrangian solver).

Figure 14 lists the throughput of the matrix-free evaluation of cell integrals for
the multi-dimensional advection in three to six spatial dimensions for polynomial
degrees k = 2, 3, 4, 5 for AVX2 and AVX-512 vectorization over elements,
respectively, without any application-specific tuning at this stage. While throughput
is very good in 3D and 4D as well as 5D up to k = 4, performance drops
significantly in 6D because the local arrays in sum factorization exhaust caches,

Table 6 Contributions to run time on 6D Vlasov–Poisson system on 320 cores with 8.6 billion
spatial DoFs over 42 time steps

Category 6D advect total (of which MPI exchange) integrate v 3D Poisson + electric field

time [s] 560 (130) 13.0 35.9

3 4 5 6
0

2

4

6

dimension d

bi
lli

on
D

oF
s/

s

3 4 5 6
0

2

4

6

dimension d

bi
lli

on
D

oF
s/

s

k = 2
k = 3
k = 4
k = 5

Fig. 14 Throughput of cell term for advection as a function of the spatial dimension on Intel
Skylake with 4-wide vectorization (left) and 8-wide vectorization (right)

ExaDG 219

especially with AVX-512. Vectorization strategies within an element [50] are
currently under development.

8 Outlook

Our work in the ExaDG project presented in this text has resulted in a highly
competitive finite element framework. We have demonstrated excellent performance
both for the pure operator evaluation, demonstrated e.g. by the CEED benchmark
problems, as well as on an application level in computational fluid dynamics. We
plan to engage in benchmarking also in the future to establish best-practices for the
high-order finite element community. Furthermore, the evolving hardware landscape
requires a continued effort, with increasing pressure to additional performance
improvements on throughput architectures such as GPUs and FPGAs. In addition,
we plan to extend our hybrid hp-multigrid framework to also handle hp-adaptive
meshes. Finally, while the results from the Schwarz-based multigrid smoothers are
very promising from a mathematical point of view, further steps are necessary to
make them perform optimally on massively parallel hardware, and it is not yet clear
how an optimal implementation compares in time-to-solution against the simpler
Chebyshev-based ingredients we have considered on the large scale so far.

References

1. Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R.,
Heister, T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B.,
Wells, D.: The deal.II library, version 9.0. J. Numer. Math. 26(4), 173–184 (2018). https://
doi.org/10.1515/jnma-2018-0054

2. Anderson, R., Barker, A., Bramwell, J., Cerveny, J., Dahm, J., Dobrev, V., Dudouit, Y.,
Fisher, A., Kolev, T., Stowell, M., Tomov, V.: MFEM: modular finite element methods (2019).
mfem.org

3. Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz precon-
ditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci.
Comput. 70(2), 608–630 (2017). https://doi.org/10.1007/s10915-016-0259-9

4. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M.,
Pelteret, J.-P., Turcksin, B., Wells, D.: The deal.II finite element library: Design, features, and
insights. Comput. Math. Appl. (2020). https://doi.org/10.1016/j.camwa.2020.02.022

5. Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R.,
Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Turek, S.: Hardware-based efficiency
advances in the EXA-DUNE project. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.)
Software for Exascale computing—SPPEXA 2013-2015, pp. 3–23. Springer, Cham (2016)

6. Bastian, P., Müller, E.H., Müthing, S., Piatkowski, M.: Matrix-free multigrid block-
preconditioners for higher order discontinuous Galerkin discretisations. J. Comput. Phys. 394,
417–439 (2019). https://doi.org/10.1016/j.jcp.2019.06.001

7. Bauer, S., Drzisga, D., Mohr, M., Rüde, U., Waluga, C., Wohlmuth, B.: A stencil scaling
approach for accelerating matrix-free finite element implementations. SIAM J. Sci. Comput.
40(6), C748–C778 (2018)

https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1007/s10915-016-0259-9
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.jcp.2019.06.001

220 D. Arndt et al.

8. Bergen, B., Hülsemann, F., Rüde, U.: Is 1.7 × 1010 unknowns the largest finite element system
that can be solved today? In: Proceeding of ACM/IEEE Conference Supercomputing (SC’05),
pp. 5:1–5:14 (2005). https://doi.org/10.1109/SC.2005.38

9. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31,
333–390 (1977). https://doi.org/10.1090/S0025-5718-1977-0431719-X

10. Brenner, S.C.: Korn’s inequalities for piecewise H 1 vector fields. Math. Comput. 73(247),
1067–1087 (2004)

11. Brown, J.: Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci.
Comput. 45(1–3), 48–63 (2010)

12. Cantwell, C.D., Sherwin, S.J., Kirby, R.M., Kelly, P.H.J.: Form h to p efficiently: Selecting the
optimal spectral/hp discretisation in three dimensions. Math. Model. Nat. Phenom. 6, 84–96
(2011)

13. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia,
D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson,
C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: An open-source
spectral/hp element framework. Comput. Phys. Comm. 192, 205–219 (2015). https://doi.org/
10.1016/j.cpc.2015.02.008

14. Charrier, D.E., Hazelwood, B., Tutlyaeva, E., Bader, M., Dumbser, M., Kudryavtsev, A.,
Moskovsky, A., Weinzierl, T.: Studies on the energy and deep memory behaviour of a cache-
oblivious, task-based hyperbolic PDE solver. Int. J. High Perf. Comput. Appl. 33(5), 973–986
(2019). https://doi.org/10.1177/1094342019842645

15. Clevenger, T.C., Heister, T., Kanschat, G., Kronbichler, M.: A flexible, parallel, adaptive
geometric multigrid method for FEM. Technical report, arXiv:1904.03317 (2019)

16. Davydov, D., Kronbichler, M.: Algorithms and data structures for matrix-free finite element
operators with MPI-parallel sparse multi-vectors. ACM Trans. Parallel Comput. (2020). https://
doi.org/10.1145/3399736

17. Davydov, D., Heister, T., Kronbichler, M., Steinmann, P.: Matrix-free locally adaptive finite
element solution of density-functional theory with nonorthogonal orbitals and multigrid
preconditioning. Phys. Status Solidi B: Basic Solid State Phys. 255(9), 1800069 (2018). https://
doi.org/10.1002/pssb.201800069

18. Davydov, D., Pelteret, J.P., Arndt, D., Kronbichler, M., Steinmann, P.: A matrix-free approach
for finite-strain hyperelastic problems using geometric multigrid. Int. J. Numer. Meth. Eng.
(2020). https://doi.org/10.1002/nme.6336

19. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order Methods for Incompressible Fluid Flow,
vol. 9. Cambridge University, Cambridge (2002)

20. Fehn, N., Heinz, J., Wall, W.A., Kronbichler, M.: High-order arbitrary Lagrangian-Eulerian
discontinuous Galerkin methods for the incompressible Navier-Stokes equations. Technical
report, arXiv:2003.07166 (2020).

21. Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incom-
pressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations.
J. Comput. Phys. 351, 392–421 (2017). https://doi.org/10.1016/j.jcp.2017.09.031

22. Fehn, N., Wall, W.A., Kronbichler, M.: Efficiency of high-performance discontinuous Galerkin
spectral element methods for under-resolved turbulent incompressible flows. Int. J. Numer.
Meth. Fluids 88(1), 32–54 (2018). https://doi.org/10.1002/fld.4511

23. Fehn, N., Wall, W.A., Kronbichler, M.: Robust and efficient discontinuous Galerkin methods
for under-resolved turbulent incompressible flows. J. Comput. Phys. 372, 667–693 (2018).
https://doi.org/10.1016/j.jcp.2018.06.037

24. Fehn, N., Wall, W.A., Kronbichler, M.: A matrix-free high-order discontinuous Galerkin com-
pressible Navier–Stokes solver: a performance comparison of compressible and incompressible
formulations for turbulent incompressible flows. Int. J. Numer. Meth. Fluids 89(3), 71–102
(2019). https://doi.org/10.1002/fld.4683

https://doi.org/10.1109/SC.2005.38
https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1177/1094342019842645
https://doi.org/10.1145/3399736
https://doi.org/10.1145/3399736
https://doi.org/10.1002/pssb.201800069
https://doi.org/10.1002/pssb.201800069
https://doi.org/10.1002/nme.6336
https://doi.org/10.1016/j.jcp.2017.09.031
https://doi.org/10.1002/fld.4511
https://doi.org/10.1016/j.jcp.2018.06.037
https://doi.org/10.1002/fld.4683

ExaDG 221

25. Fehn, N., Wall, W.A., Kronbichler, M.: Modern discontinuous Galerkin methods for the
simulation of transitional and turbulent flows in biomedical engineering: a comprehensive LES
study of the FDA benchmark nozzle model. Int. J. Numer. Meth. Biomed. Eng. 35(12), e3228
(2019). https://doi.org/10.1002/cnm.3228

26. Fehn, N., Kronbichler, M., Lehrenfeld, C., Lube, G., Schroeder, P.W.: High-order DG solvers
for under-resolved turbulent incompressible flows: a comparison of L2 and H (div) methods.
Int. J. Numer. Meth. Fluids 91(11), 533–556 (2019). https://doi.org/10.1002/fld.4763

27. Fehn, N., Munch, P., Wall, W.A., Kronbichler, M.: Hybrid multigrid methods for high-order
discontinuous Galerkin discretizations. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.
2020.109538

28. Fischer, P., Kerkemeier, S., Peplinski, A., Shaver, D., Tomboulides, A., Min, M., Obabko, A.,
Merzari, E.: Nek5000 Web page (2019). https://nek5000.mcs.anl.gov

29. Fischer, P., Min, M., Rathnayake, T., Dutta, S., Kolev, T., Dobrev, V., Camier, J.S., Kronbichler,
M., Warburton, T., Świrydowicz, K., Brown, J.: Scalability of high-performance PDE solvers.
Int. J. High Perf. Comput. Appl. (2020). https://doi.org/10.1177/1094342020915762

30. Gholami, A., Malhotra, D., Sundar, H., Biros, G.: FFT, FMM, or multigrid? A comparative
study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube.
SIAM J. Sci. Comput. 38(3), C280–C306 (2016). https://doi.org/10.1137/15M1010798

31. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency
for parallel multigrid. Numer. Math.-Theory Me. Appl. 8(1), 22–46 (2015)

32. Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative perfor-
mance study for Stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–
521 (2016). https://doi.org/10.1016/j.jocs.2016.06.006. http://www.sciencedirect.com/science/
article/pii/S1877750316301077. Recent Advances in Parallel Techniques for Scientific Com-
puting

33. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and
Engineers. CRC Press, Boca Raton (2011)

34. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly
incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–
1908 (2002)

35. Ibeid, H., Olson, L., Gropp, W.: FFT, FMM, and multigrid on the road to exascale: performance
challenges and opportunities. J. Parallel Distrib. Comput. 136, 63–74 (2020). https://doi.org/
10.1016/j.jpdc.2019.09.014

36. Janssen, B., Kanschat, G.: Adaptive multilevel methods with local smoothing for H 1- and
Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput. 33(4), 2095–2114
(2011). https://doi.org/10.1137/090778523

37. Kanschat, G.: Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. Struct. 82(28), 2437–2445 (2004). https://doi.org/10.1016/j.compstruc.2004.04.015

38. Kanschat, G.: Robust smoothers for high order discontinuous Galerkin discretizations of
advection-diffusion problems. J. Comput. Appl. Math. 218, 53–60 (2008). https://doi.org/10.
1016/j.cam.2007.04.032

39. Kanschat, G., Mao, Y.: Multigrid methods for Hdiv-conforming discontinuous Galerkin
methods for the Stokes equations. J. Numer. Math. 23(1), 51–66 (2015). https://doi.org/10.
1515/jnma-2015-0005

40. Kempf, D., Hess, R., Müthing, S., Bastian, P.: Automatic code generation for high-performance
discontinuous Galerkin methods on modern architectures. Technical report, arXiv:1812.08075
(2018)

41. Knepley, M.G., Brown, J., Rupp, K., Smith, B.F.: Achieving high performance with unified
residual evaluation. Technical report, arXiv:1309.1204 (2013)

42. Kormann, K.: A time-space adaptive method for the Schrödinger equation. Commun. Comput.
Phys. 20(1), 60–85 (2016). https://doi.org/10.4208/cicp.101214.021015a

https://doi.org/10.1002/cnm.3228
https://doi.org/10.1002/fld.4763
https://doi.org/10.1016/j.jcp.2020.109538
https://doi.org/10.1016/j.jcp.2020.109538
https://nek5000.mcs.anl.gov
https://doi.org/10.1177/1094342020915762
https://doi.org/10.1137/15M1010798
https://doi.org/10.1016/j.jocs.2016.06.006
http://www.sciencedirect.com/science/article/pii/S1877750316301077
http://www.sciencedirect.com/science/article/pii/S1877750316301077
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1016/j.jpdc.2019.09.014
https://doi.org/10.1137/090778523
https://doi.org/10.1016/j.compstruc.2004.04.015
https://doi.org/10.1016/j.cam.2007.04.032
https://doi.org/10.1016/j.cam.2007.04.032
https://doi.org/10.1515/jnma-2015-0005
https://doi.org/10.1515/jnma-2015-0005
https://doi.org/10.4208/cicp.101214.021015a

222 D. Arndt et al.

43. Kormann, K., Kronbichler, M.: Parallel finite element operator application: graph partitioning
and coloring. In: Proceeding of 7th IEEE International Conference eScience, pp. 332–339
(2011). https://10.1109/eScience.2011.53

44. Kormann, K., Reuter, K., Rampp, M.: A massively parallel semi-Lagrangian solver for the six-
dimensional Vlasov–Poisson equation. Int. J. High Perform. Comput. Appl. 33(5), 924–947
(2019). https://doi.org/10.1177/1094342019834644

45. Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit discontinuous
Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent
channel flow. J. Comput. Phys. 348, 634–659 (2017). https://doi.org/10.1016/j.jcp.2017.07.
039

46. Krank, B., Kronbichler, M., Wall, W.A.: Direct numerical simulation of flow over periodic hills
up to Reh = 10,595. Flow Turbulence Combust. 101, 521–551 (2018). https://doi.org/10.1007/
s10494-018-9941-3

47. Krank, B., Kronbichler, M., Wall, W.A.: A multiscale approach to hybrid RANS/LES wall
modeling within a high-order discontinuous Galerkin scheme using function enrichment. Int.
J. Numer. Meth. Fluids 90, 81–113 (2019). https://doi.org/10.1002/fld.4712

48. Kronbichler, M., Allalen, M.: Efficient high-order discontinuous Galerkin finite elements with
matrix-free implementations. In: Bungartz, H.J., Kranzlmüller, D., Weinberg, V., Weismüller,
J., Wohlgemuth, V. (eds.) Advances and New Trends in Environmental Informatics, pp. 89–
110. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99654-7_7

49. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element
operator application. Comput. Fluids 63, 135–147 (2012). https://doi.org/10.1016/j.compfluid.
2012.04.012

50. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous Galerkin finite
element operators. ACM Trans. Math. Softw. 45(3), 29:1–29:40 (2019). https://doi.org/10.
1145/3325864

51. Kronbichler, M., Ljungkvist, K.: Multigrid for matrix-free high-order finite element computa-
tions on graphics processors. ACM Trans. Parallel Comput. 6(1), 2:1–2:32 (2019). https://doi.
org/10.1145/3322813

52. Kronbichler, M., Wall, W.A.: A performance comparison of continuous and discontinuous
Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40(5), A3423–A3448
(2018). https://doi.org/10.1137/16M110455X

53. Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit
hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer.
Meth. Eng. 106(9), 712–739 (2016). https://doi.org/10.1002/nme.5137

54. Kronbichler, M., Kormann, K., Pasichnyk, I., Allalen, M.: Fast matrix-free discontinuous
Galerkin kernels on modern computer architectures. In: Kunkel, J.M., Yokota, R., Balaji, P.,
Keyes, D.E. (eds.) ISC High Performance 2017, LNCS 10266, pp. 237–255 (2017). https://
doi.org/10.1007/978-3-319-58667-013

55. Kronbichler, M., Diagne, A., Holmgren, H.: A fast massively parallel two-phase flow solver for
microfluidic chip simulation. Int. J. High Perf. Comput. Appl. 32(2), 266–287 (2018). https://
doi.org/10.1177/1094342016671790

56. Kronbichler, M., Kormann, K., Fehn, N., Munch, P., Witte, J.: A Hermite-like basis for faster
matrix-free evaluation of interior penalty discontinuous Galerkin operators. Technical report,
arXiv:1907.08492 (2019)

57. Ljungkvist, K.: Matrix-free finite-element computations on graphics processors with adap-
tively refined unstructured meshes. In: Proceedings of the 25th High Performance Computing
Symposium, HPC ’17, pp. 1:1–1:12. Society for Computer Simulation International, San Diego
(2017). http://dl.acm.org/citation.cfm?id=3108096.3108097

58. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor
product methods. Numer. Math. 6, 185–199 (1964). https://doi.org/10.1007/BF01386067

59. Munch, P., Kormann, K., Kronbichler, M.: hyper.deal: An efficient, matrix-free finite-element
library for high-dimensional partial differential equations. Technical report, arXiv:2002.08110
(2020)

https://10.1109/eScience.2011.53
https://doi.org/10.1177/1094342019834644
https://doi.org/10.1016/j.jcp.2017.07.039
https://doi.org/10.1016/j.jcp.2017.07.039
https://doi.org/10.1007/s10494-018-9941-3
https://doi.org/10.1007/s10494-018-9941-3
https://doi.org/10.1002/fld.4712
https://doi.org/10.1007/978-3-319-99654-7_7
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1145/3325864
https://doi.org/10.1145/3325864
https://doi.org/10.1145/3322813
https://doi.org/10.1145/3322813
https://doi.org/10.1137/16M110455X
https://doi.org/10.1002/nme.5137
https://doi.org/10.1007/978-3-319-58667-0 13
https://doi.org/10.1007/978-3-319-58667-0 13
https://doi.org/10.1177/1094342016671790
https://doi.org/10.1177/1094342016671790
http://dl.acm.org/citation.cfm?id=3108096.3108097
https://doi.org/10.1007/BF01386067

ExaDG 223

60. Müthing, S., Piatkowski, M., Bastian, P.: High-performance implementation of matrix-free
high-order discontinuous Galerkin methods. Technical report, arXiv:1711.10885 (2017)

61. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37,
70–92 (1980)

62. Raffenetti, K., Amer, A., Oden, L., Archer, C., Bland, W., Fujita, H., Guo, Y., Janjusic, T.,
Durnov, D., Blocksome, M., Si, M., Seo, S., Langer, A., Zheng, G., Takagi, M., Coffman, P.,
Jose, J., Sur, S., Sannikov, A., Oblomov, S., Chuvelev, M., Hatanaka, M., Zhao, X., Fischer,
P., Rathnayake, T., Otten, M., Min, M., Balaji, P.: Why is MPI so slow?: Analyzing the
fundamental limits in implementing MPI-3.1. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’17, pp. 62:1–62:12.
ACM, New York (2017). https://doi.org/10.1145/3126908.3126963

63. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T.,
Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing
abstractions. ACM Trans. Math. Soft. 43(3), 24:1–24:27 (2017). https://doi.org/10.1145/
2998441

64. Schmidt, S.: Fast, tensor-based solution of problems involving incompressibility, Bachelor
thesis. Heidelberg University, Heidelberg (2019)

65. Schoeder, S., Kormann, K., Wall, W.A., Kronbichler, M.: Efficient explicit time stepping of
high order discontinuous Galerkin schemes for waves. SIAM J. Sci. Comput. 40(6), C803–
C826 (2018). https://doi.org/10.1137/18M1185399

66. Schoeder, S., Kronbichler, M., Wall, W.: Arbitrary high-order explicit hybridizable discontin-
uous Galerkin methods for the acoustic wave equation. J. Sci. Comput. 76, 969–1006 (2018).
https://doi.org/10.1007/s10915-018-0649-2

67. Schoeder, S., Sticko, S., Kreiss, G., Kronbichler, M.: High-order cut discontinuous Galerkin
methods with local time stepping for acoustics. Int. J. Numer. Meth. Eng. (2020). https://doi.
org/10.1002/nme.6343

68. Schoeder, S., Wall, W.A., Kronbichler, M.: ExWave: A high performance discontinuous
Galerkin solver for the acoustic wave equation. Soft. X 9, 49–54 (2019). https://doi.org/10.
1016/j.softx.2019.01.001

69. Solomonoff, A.: A fast algorithm for spectral differentiation. J. Comput. Phys. 98(1), 174–177
(1992). https://doi.org/10.1016/0021-9991(92)90182-X

70. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-
algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, p. 43. IEEE
Computer Society, Silver Spring (2012)

71. Świrydowicz, K., Chalmers, N., Karakus, A., Warburton, T.: Acceleration of tensor-product
operations for high-order finite element methods. Int. J. High Perf. Comput. Appl. 33(4), 735–
757 (2019). https://doi.org/10.1177/1094342018816368

72. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100
(2000)

73. Van Loan, C.F., Pitsianis, N.: Approximation with Kronecker products. In: Linear Algebra for
Large Scale and Real-time Applications, pp. 293–314. Springer, Berlin (1993)

74. Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2009)
75. Wichmann, K.R., Kronbichler, M., Löhner, R., Wall, W.A.: Practical applicability of optimiza-

tions and performance models to complex stencil-based loop kernels in CFD. Int. J. High Perf.
Comput. Appl. 33(4), 602–618 (2019). https://doi.org/10.1177/1094342018774126

76. Witte, J., Arndt, D., Kanschat, G.: Fast tensor product Schwarz smoothers for high-order
discontinuous Galerkin methods. Technical report, arXiv:1910.11239 (2019)

https://doi.org/10.1145/3126908.3126963
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1137/18M1185399
https://doi.org/10.1007/s10915-018-0649-2
https://doi.org/10.1002/nme.6343
https://doi.org/10.1002/nme.6343
https://doi.org/10.1016/j.softx.2019.01.001
https://doi.org/10.1016/j.softx.2019.01.001
https://doi.org/10.1016/0021-9991(92)90182-X
https://doi.org/10.1177/1094342018816368
https://doi.org/10.1177/1094342018774126

224 D. Arndt et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	ExaDG: High-Order Discontinuous Galerkin for the Exa-Scale
	1 Introduction
	2 Node-Level Performance Through Matrix-Free Implementation
	2.1 Implementation of Sum Factorization in the deal.II Library
	2.2 Efficiency of Matrix-Free Implementation

	3 Performance-Optimized Conjugate Gradient Methods
	4 Geometric Multigrid Methods in Distributed Environments
	5 Fast Tensor Product Schwarz Smoothers
	5.1 The Laplacian on Cartesian Meshes
	5.2 General Geometry
	5.3 Linear Elasticitiy

	6 High-performance Simulations of Incompressible Flows
	7 hyper.deal: Extending the Matrix-Free Kernels to Higher Dimensions
	8 Outlook
	References

