
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Prof. Dr.-Ing. André Borrmann

Implementation of Geometry Representa-
tions for Infrastructure

Carlos Mauricio Platteau

Bachelorthesis

für den Bachelor of Science Studiengang Umweltingenieurwesen

Autor: Carlos Mauricio Platteau

Matrikelnummer:

Betreuer: Prof. Dr.-Ing. André Borrmann

Štefan Jaud

Ausgabedatum: 01. Januar 2020

Abgabedatum: 15. September 2020

Abstract

Due to the high demand in architecture, engineering and construction industry for standard-

ization in infrastructure projects, the IFC-Bridge, -Road, -Rail projects were launched. This

thesis presents the implementation of the entity IfcSectionedSolidHorizontal, introduced with

the IFC 4x1 (IFC-Bridge) version of the Industry Foundation Classes standards. This entity

is implemented in the IFC 4x3 RC1 format to support the IFC-Road project in the workflow

of the open source BIM visualization software being developed at the Technical University of

Munich (TUM) called OpenInfraPlatform (OIP).

As such, the geometry converter of the OIP was expanded to interpret the IfcSectioned-

SolidHorizontal. This entity is defined by the sweeping operation of multiple CrossSec-

tions(profiles) along the IfcAlignmentCurve which is very useful for supporting bridge and

roadway geometry.

The visualization of the example files demostrated that the implementation works for the line

segment of the alignment curve when the CrossSections all have the same number of points.

Despite this, the algorithm should still be further improved to work correctly for CrossSections

that have a variable number of profile points and also for the transitions between the curve

segments and the line segments.

Zusammenfassung

Aufgrund der hohen Nachfrage der Architecture, Engineering and Construction (AEC) Indus-

trie nach einer Lösung für Standardisierung bei Infrastrukturprojekten wurden die Projekte

IFC-Bridge, -Road und -Rail gestartet. Diese Arbeit beschreibt die Implementierung der in

der Version IFC 4x1 (IFC-Bridge) neu definierten Entität IfcSectionedSolidHorizontal in das

Workflow der von der TUM entwickelten Open Source BIM Visualisierungssoftware. Diese

Software trägt den Namen OIP. Die Implementierung erfolgte unter dem IFC 4x3 RC1 Stan-

dard, um das IFC-Road Format zu unterstützen.

Für die Implementierung von IfcSectionedSolidHorizontal wurde der Geometriekonverter der

OIP erweitert, um die Geometrie interpretieren zu können. Diese neue Entität wird an-

hand einer Extrusion von mehreren Querschnittsprofilen(CrossSections) entlang einer Kurve

(IfcAlignmentCurve) beschrieben und ist daher sehr nützlich, um sowohl Straßen als auch

Brücken Geometrie zu beschreiben.

Durch die Visualisierung der Beispieldateien wurde festgestellt, dass die Extrusion von den

Profilen entlang den Linien Segmenten der IfcAlignmentCurve funktioniert, wenn alle Quer-

schnittsprofile die gleiche Anzahl an Punkten haben. Für die Extrusion von Profilen mit

verschiedenen Anzahl an Profil-Punkten muss der Algorithmus noch verändert werden sowie

für die Extrusion an den Übergängen von Kurvensegmenten zu Liniensegmenten.

IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Problem Statement . 4

1.4 Objective . 4

1.5 Thesis Structure . 4

2 Theoretical Framework 5

2.1 Industry Foundation Classes (IFC) . 5

2.1.1 IfcAlignmentCurve . 6

2.1.2 IfcSectionedSolidHorizontal . 6

2.2 OpenInfraPlatform (OIP) . 8

2.3 Linear Transformations . 9

2.3.1 Scaling . 9

2.3.2 Translation . 10

2.3.3 Rotation . 10

2.4 Helmert Transformation . 11

3 Method 13

3.1 Informal Propositions . 13

3.2 Design . 13

3.3 Testing . 14

4 Implementation 15

4.1 Helper functions . 15

4.2 IfcSectionedSolidHorizontal . 17

4.2.1 Directrix . 17

4.2.2 CrossSections . 17

4.2.3 CrossSectionPositions . 18

4.2.4 Merge Lists . 21

4.2.5 Interpolation . 23

4.2.6 Vertices . 24

4.2.7 Tessellation . 25

5 Use Cases 28

5.1 Rectangle Profile . 28

5.2 Variable Profile . 29

5.3 Extrusion along a curve segment . 30

5.4 Extrusion along a curve with a line segment 31

5.5 Unsupported Profiles . 32

6 Discussion 34

6.1 Evaluation of the Use Cases . 34

6.2 Evaluation of Methods . 35

7 Conclusion 36

7.1 Summary of Findings . 36

7.2 Future Works . 37

A Code 39

A.1 ConvertCurveOrientation . 40

A.2 CalculatePositionOnAndDirectionOfBaseCurve 41

A.3 Directrix . 42

A.4 CrossSections . 43

A.5 CrossSectionPositions . 44

A.6 CrossSectionPoints . 45

A.7 Factors for Interpolation . 46

A.8 Interpolation . 47

A.9 Tessellation . 49

A.10 Example 1 . 50

List of Figures 55

List of Tables 56

VI

Abbrevations

AEC architecture, engineering and construction

BCP BasisCurvePoints

BIM Building Information Modeling

bSI buildingSMART International

CAD computer-aided design

CMS Chair of Computational Modeling and Simulation

CS coordinate system

CSG Construtive solid geometry

CSP CrossSectionPoints

FM facility management

IAI International Alliance of interoperability

ISO Intenational Organization for Standardization

IFC Industry Foundation Classes

OIP OpenInfraPlatform

OKSTRA Objekt Katalog Straße

STEP Standard for the Exchange of Product model data

TUM Technical University of Munich

2D two-dimensional

3D three-dimensional

1

Chapter 1

Introduction

The world is shifting towards a more digitalized approach in the architecture, engineer-

ing and construction (AEC) industry. With the steadily increasing demand for digital-

ization, Building Information Modeling (BIM) has begun replacing conventional computer-

aided design (CAD). BIM takes the planning of buildings and infrastructure from a two-

dimensional (2D) point of view to a three-dimensional (3D) one, with BIM also adding the

semantic information to the represented geometry [19]. Furthermore BIM could lead the

AEC industry to a paper-free, and hence less wasteful future [18, 19].

The digital models and data exchanged between the di↵erent stakeholders of a given project

are of vital importance, and have a substantial impact on its e�ciency and long-term success.

Since there are a variety of data formats and software available, the interoperability between

project partners must be ensured. Industry Foundation Classes (IFC) is one of the most

established open data models [8]; it is currently being developed by the non profit organization

buildingSMART International (bSI) and was admitted into the ISO standards in 2013[2].

Due to the fact that most of the visualization software for BIM models do not support

all IFC versions the Chair of Computational Modeling and Simulation (CMS), open-source

software is being developed at the Technical University of Munich (TUM) named TUM

OpenInfraPlatform (OIP) to overcome this compatibility issue [4]. In addition to being

open-source TUM OIP is also vendor-neutral and bases its data model on IFC standards

[18, 2].

1.1 Motivation

While all IFC versions before IFC 4 primarily focused on buildings and as such where made

to support strucural engineering applications, the new versions intend to provide extensions

to make the description of bridges, roads and tunnels possible [3].

1.2. Related Work 2

Figure 1.1: IFC Alignment as basis for the development of IFC-Bridge, IFC-Road and IFC-Tunnel
projects. Retrieved from Amann et al.[3].

In 2013 buildingSMART International founded the ”Infra Room” to start developing exten-

sions for infrastructure [8]. With the completion of the IFC-Alignment project , the extension

to describe an alignment for infrastructure was made possible. Due to stakeholder’s high de-

mand regarding extensions pertaining to infrastructure and ones based on the IFC-Alignment,

the IFC Infra Overall Architecture project was commenced [6].

In addition to the two completed IFC projects resulting in the release of the IFC4x1 which

provided support for linear civil engineering structures [21], it also laid the foundations for

the new IfcRoad, Ifc-Rail, IfcBridge and IfcTunnel projects. As shown in Figure 1.1 the

projects IFC-Roads, -Bridge and -Tunnel all share the alignment as a common ressource.

The alignment will later on be explained in more detail later on in Chapter 2.

1.2 Related Work

Since the 1980s there has been a great deal of interest for the data exchange between di↵erent

CAD systems. The Standard for the Exchange of Product model data (STEP) was proposed

out of a need for standardization [7]. Moreover the process was very bureaucratic and was

not advancing at the speed required by the AEC industry, and the International Alliance

of interoperability (IAI) was consequently founded in 1995 by construction, engineering and

software manufacturers such as Autodesk.

As shown in Figure 1.2, the first version was introduced in 1997 under the name of ”IFC”

as version 1.0, with the intention to improve the interoperability of BIM. One year later, in

1.2. Related Work 3

Figure 1.2: IFC timeline. Retrieved from Laakso et al. [20]

1998, IFC 1.5 was released, simultaneously being the first version to be applied to construction

software [20, 7].

With the introduction of IFC 2x in the year 2000, the concept of a platform was introduced

into the context of IFC. In addition to the platform the idea of two extension models within

the framework was also developed under the name of ST-4. This extension included structural

analysis as well as steel constructions [23].

After the rebranding of the International Alliance of interoperability (IAI) in 2005 as the

non-profit organization buildingSMART International, the next big release was introduced:

IFC 2x3. This new version included new classes (such as IfcBuildingElemntComponent) to

express profile properties as well as structural members and matereials[24]. IFC 2x3 was the

most widespread version of Industry Foundation Classes until 2013, when it slowly began to

be replaced by IFC 4 [7].

The next major release was IFC. IFC 4’s novel approach consisted of putting ”quality over

speed” to achieve the goal of gaining a full ISO standard status. In 2013 IFC was finally

admitted as an ISO standard [2]. As a result many countries have adopted it as an obligatory

data exchange format in the AEC industry [7].

As previously mentioned in Section 1.1, all versions prior to IFC4 were focused on buildings,

but in 2013 the founding of a subdivision from buildingSMART International called Infra

Room changed the landscape. The Infra Room subsequently started working on extensions

necessary for infrastructure projects[8]. The IFC-Alignment project in 2015 and the IFC

Infra Overall Architecture which ended in 2017, laid the theoretical foundations with the

alignment curve on which future infrastructure projects would build upon as mentioned in

Section (cf.1.1) [3, 6].

Since the IFC4x1 release in 2018 and the IfcBridge project completion in 2019 [8], the ex-

tensions now support the modelling of bridges. Finally, the latest release is the IFC 4x3RC1

in 2020. The ongoing projects of IfcBridge, IfcRoad and IfcRail build upon the next major

release IFC 5 [16]. Other Future projects include IfcTunnel and Ifc Ports and Waterways.

1.3. Problem Statement 4

1.3 Problem Statement

The purpose of this thesis is the expansion of the TUM OpenInfraPlatform geometry con-

verter so that it can support newly introduced geometric entities such as IfcSectionedSolid-

Horizontal an entity that was introduced in IFC 4x1. To achieve this, these new entities

must to be implemented in the workflow of OIP as well as several other supporting entities

(IfcDistanceExpression, IfcProfileDef). Furthermore, example files shall be produced to test

the new code.

1.4 Objective

In order to test and implement IfcSectionedSolidHorizontal in the workflow of OIP the ob-

jectives of this thesis are outlined by the following:

1. Development of an algorithm to interpret the attributes of this new geometric entity.

2. Development of an algorithm to calculate the geometry in every profile and point along

the alignment curve.

3. Production of examples that build upon each other in matters of complexity.

4. Production of an example that is flawed and will not work for this implementation in

order to demonstrate the limits of this proposed implementation.

1.5 Thesis Structure

This thesis is structured into the following seven chapters; Chapter 1 is a short introduction

of BIM and IFC as well as a recapitulation of its chronology. Chapter 2 elaborates the

theoretical framework behind the Industry Foundation Classes, new entities and attributes.

The method for the development of the implementation for new geometry representation is

addressed in Chapter 3. The implementation is described in Chapter 4. In Chapter 5 the

results of the implementation are presented and subsequently discussed in Chapter 6. Lastly

Chapter 7 concludes this thesis with a summary of the findings and serves to incite further

research into this field (Section 7.2).

5

Chapter 2

Theoretical Framework

To understand the method and implementation of the IFC entities into the OpenInfraPlat-

form workflow, the theoretical framework must first of all be addressed to gain a deeper

insight. This begins with Section 2.1, in which the IFC is explained in greater depth. Fur-

thermore, the entities and attributes of IfcAlignment and IfcSectionedSolidHorizontal are

described. The second section presents an overview of theTUM OpenInfraPlatform project.

Finally, Section 2.3 elaborates the mathematical foundations needed for the geometrical in-

terpretation of IfcSectionedSolidHorizontal.

2.1 Industry Foundation Classes (IFC)

As previously mentioned in Chapter 1, the Industry Foundation Classes (IFC) is a vendor

neutral open data model standard [2]. It has been in development since 1995 by the for-

mer International Alliance of interoperability now known as buildingSMART International

(Chapter 1.2), in order to improve the interoperability between di↵erent BIM software from

separate vendors[20]. Since BIM can be employed in a variety of development stages, from

the designing of a building through the construction and later on in the facility manage-

ment (FM), there are wide range of stakeholders involved in its lifecycle [7]. Moreover a

study conducted by Gallaher et al. in 2002 in the USA showed that the lack of interoperabil-

ity among the software tools and redundant data accounts for 15.8 billion USD in losses per

year [17]. This is approximately an 1-2% of the AEC industry’s dividend [17, 20].

With the release of IFC 4x1 new entities were introduced to help support geometry for bridges

decks and then the IFC 4x3 roadways, which are specifically relevant to this thesis. One of

the new entities is the IfcSectionedSolidHorizontal which will be described in Section 2.1.2.

However, before getting into the details of this entity another one must first be explained:

IfcAlignmentCurve since its representation is vital for IfcSectionedSolidHorizontal [6].

2.1. Industry Foundation Classes (IFC) 6

2.1.1 IfcAlignmentCurve

The IfcAlignmentCurve has the attributes Horizontal, Vertical, Tag as well as the at-

tributes inherited from the IfcBoundedCurve and IfcCurve. It can be divided into IfcAlign-

ment2DHorizontal (which represents the horizontal Alignment) and IfcAlignment2DVertical

(which represents the vertical Alignment) [12, 15].

The horizontal alignment is defined in the X-Y plane and has the attribute CurveGeome-

try which can be of type IfcLineSegment2D if the curve segment is a line, IfcCircularAr-

cSegment2D for a circular segment ot IfcCltohoidalArcSegment2D if it is an clothoidal arc

segment (used in roads for a transition curve) [10, 15].

On the other hand the IfcAlignment2Dvertical is defined by the distance along the z-

axis and connects the segments from the beginning to end. In this case the segments

can be of type IfcAlignment2DVerCircularArc, IfcAlignment2DVerSegLine or IfcAlign-

ment2DVerSegParabolicArc [11, 15].

2.1.2 IfcSectionedSolidHorizontal

To represent solid geometry the IfcSolidModel is required. This entity is an abstract su-

pertype of IfcCsgSolid, IfcManifoldSolidBrep, IfcSectionedSolid, IfcSweptAreaSolid and Ifc-

SweptDiskSolid [14]. For this thesis, only IfcSectionedSolid will be relevant, as it is the

supertype of IfcSectionedSolidHorizontal.

Figure 2.1: IfcSectionedSolidHorizontal. Retrieved from Borrmann et al. [6]

2.1. Industry Foundation Classes (IFC) 7

As it is a subtype IfcSectionedSolidHorizontal inherits the attributes from all types above it

in the hierarchy. As such, it has the attribute Dim (always equals to 3) from IfcSolidModel

and the attributes Directrix and CrossSections from the supertype IfcSectionedSolid. In

addition to these attributes IfcSectionedSolidHorizontal also has CrossSectionPositions and

FixedAxisVertical [13]. Figure 2.2 clarifies this relationship with an instance diagram.

Figure 2.1 shows how all entities and attributes are connected to one another. The Cross-

Sections attribute is of type IfcProfileDef and defines the profiles for each section along the

directrix curve, which in this case is an IfcAlignmentCurve. CrossSectionPositions is of type

IfcDistanceExpression and indicates the position of each paired CrossSection also along the

Directrix ; there are as a consequence just as many CrossSections as CrossSectionPositions.

Lastly, FixedAxisVertical which is of type IfcBoolean and may have the values TRUE or

FALSE, which indicate the orientation of the CrossSections. For FixedAxisVertical TRUE,

the Y-axis of the profiles faces in positive Z-direction and for FALSE they are perpendicular

to the directrix [13].

IfcDistanceExpression
Layer Assignment
StyledByItem
1. DistanceAlong
2. OffsetLateral
3. OffsetVertical
4. OffsetLongitudinal
5. AlongHorizontal

S[0:1]
S[0:1]
[1:1]
[1:1]
[1:1]
[1:1]
[1:1]

IfcSectionedSolidHorizontal
Layer Assignment
StyledByItem
1. Directrix
2. CrossSections
3. CrossSectionPositions
4. FixedAxisVertical

S[0:1]
S[0:1]
[1:1]
L[2:?]
L[2:?]
[1:1] IfcProfileDef

1. ProfileType
2. ProfileName
HasExternalReference
HasProperties

[1:1]
[1:1]
S[0:?]
S[S0:?]

IfcSectionedSolid
Layer Assignment
StyledByItem
1. Directrix
2. CrossSections

S[0:1]
S[0:1]
[1:1]
L[2:?]

IfcBoolean

IfcCurve
Layer Assignment
StyledByItem
Dim

S[0:1]
S[0:1]

IfcArbitraryClosedProfileDef
1. ProfileType
2. ProfileName

HasExternalReference
HasProperties

3.OuterCurve

[1:1]
[1:1]
S[0:?]
S[0:?]
[1:1]

IfcDerivedProfileDef
1. ProfileType
2. ProfileName

HasExternalReference
HasProperties

3. ParentProfile
4. Operator
5.Label

[1:1]
[1:1]
S[0:?]
S[0:?]
[1:1]
[1:1]
[1:1]

IfcCompositeProfileDef
1. ProfileType
2. ProfileName

HasExternalReference
HasProperties

3. Profiles
4. Label

[1:1]
[1:1]
S[0:?]
S[0:?]
S[2:?]
[1:1]

IfcArbitraryOpenProfileDef
1. ProfileType
2. ProfileName

HasExternalReference
HasProperties

3. Curve

[1:1]
[1:1]
S[0:?]
S[0:?]
[1:1]

IfcParametrizedProfileDef
1. ProfileType
2. ProfileName

HasExternalReference
HasProperties

3. Position

[1:1]
[1:1]
S[0:?]
S[0:?]
[1:1]

IfcBoundedCurve
Layer Assignment
StyledByItem
Dim
PositioningElement

S[0:1]
S[0:1]

[1:1]

IfcAlignmentCurve
Layer Assignment
StyledByItem
Dim
PositioningElement
1. Horizontal
2. Vertical
3. Tag

S[0:1]
S[0:1]

[1:1]
[1:1]
[0:1]
[0:1]

IfcBsplineCurve

IfcIndexedPolyCurve

IfcPolyline

IfcCurveSegment2D

IfcCompositeCurve

IfcTrimmedCurve

Figure 2.2: IfcSectionedSolidHorizontal inheritance diagram. Based on The ifcAlignment instance
diagram from the IFC4x2 Release.[9]

Since this thesis will use an alignment curve to describe the Directrix, only the attributes of

the IfcAlignmentCurve are relevant and therefore the other subtypes of the IfcBoundedCurve

in Figure 2.2 will not be discussed in further detail.

2.2. OpenInfraPlatform (OIP) 8

2.2 OpenInfraPlatform (OIP)

As mentioned in Chapter 1 TUM OpenInfraPlatform is an open-source, vendor-neutral soft-

ware package that is capable of visualizing Building Information Modeling models. Its data

model is based on the Industry Foundation Classes standard [18, 2]. Furthermore the sofware

is written in the programming language C++ and uses CMake to manage the building pro-

cess of the sofware [18]. The architecture is best explained in the referenced paper by H.

Hecht and Š. Jaud (2019) [18].

Figure 2.3: Open Infra Platform sofware components. Retrieved from Hecht et al. [18]

Figure 2.3 presents an overview of the main components of this program. If the data imported

is in another format such as Objekt Katalog Straße (OKSTRA) or LandXML it will be

converted into IFC by the converter (Konv. in Figure 2.3). The Early Binding Generator

will model the IFC objects as a C++ library so that each class doesn’t have to be implemented

manually. This works by mirroring the EXPRESS schema and translating it into C++ [18].

Although Qt has its own rendering engine, the TUM has developed a library named Blue-

Framework which is 3D rendering engine also written in C++. What are initally abstractab-

stract geometric representation are converted in into triangules(triangulated) in the Geometry

Converter so that the graphics rendering engine can understand and visualize the geometry

[18]. This part is important to this thesis since it was necessary to expand the geometry

converter in order to understand IfcSectionedSolidHorizontal, more on this can be found in

Chapter 4.

The OIP can also add other functionalities to process data by adding the appropiate plugin

module. These plugins can be selected in CMake before generating the project [18]. It is also

worth mentioning that boost is used to supplement and expand the C++ standard library[18].

2.3. Linear Transformations 9

2.3 Linear Transformations

Linear transformations are used to translate, scale and rotate geometric objects[22]. But

before explaining the operations and matrices behind the linear transformations first of all

it is important to begin with a look at the notation used in computer graphics to describe

3D transformations and its advantages. Since it impossible to describe a translation in a

matrix form for the Cartesian coordinate system (CS) the homogeneous coordinates must to

be introduced.

The conversion between Cartesian and homogeneous coordinates adds an extra dimension to

the system. For example, a 2D point with coordinates Pc = (x, y)T would be represented as

Ph = (x⇥w, y⇥w,w)T in homogeneous coordinates [22]. If there is any scaling factor present

w will be unequal to 0. For the purpose of this thesis, w is always equal to 1. This comes

with the great advantage that now the translation may now also be written as a matrix and

consequently may be multiplied with other matrices to create a single transformation matrix

T (see below 2.1) [5].

2

66664

x
0

y
0

w
0

1

3

77775
=

2

66664

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

3

77775
⇥

2

66664

x

y

z

1

3

77775
= T ⇥

2

66664

x

y

z

1

3

77775
, [5] (2.1)

This new transformation matrix T is can be devided into the following parts [5]:

"
Scaling and rotating Translations

0 for the homogeneus representation 1

#

In the next subsections the matrices with homogeneous coordinates behind these so called

function blocks will be outlined in more detail.

2.3.1 Scaling

To scale a point P = (x, y, z, 1), the following matrix in 3D with homogeneous coordinates is

used:

S =

0

BBBB@

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 1

1

CCCCA
(2.2)

2.3. Linear Transformations 10

with scaling factors a, b, c, d 2 R

The equation for the scaling would be P
0 = P ⇥ S such that P 0 = (x⇥ a, y ⇥ b, z ⇥ c, 1) [22].

2.3.2 Translation

A translation moves the point P along the x,y and z axes. For the translation the following

matrix is used:

T =

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

dx dy dz 1

1

CCCCA
(2.3)

When multiplied with the matrix 2.3 the point P is moved to the coordinates P
0 = (x +

dx, y + dy, z + dz, 1) [22].

2.3.3 Rotation

In the case of the rotations there are three rotations possible in a 3D space, Rx for a rotation

around the x-axis, Ry for a rotation around the y-axis and Rz for the rotation around the

z-axis (see below 2.4) [22, 5].

Rx =

0

BBBB@

1 0 0 0

0 cos↵ sin↵ 0

0 � sin↵ cos↵ 0

0 0 0 1

1

CCCCA
Ry =

0

BBBB@

cos↵ 0 � sin↵ 0

0 1 0 0

sin↵ 0 cos↵ 0

0 0 0 1

1

CCCCA
(2.4)

Rz =

0

BBBB@

cos↵ sin↵ 0 0

� sin↵ cos↵ 0 0

0 0 1 0

0 0 0 1

1

CCCCA

If necessary, more than one transformation can be applied to the same point P, in this case the

transformation matrices may be mulitplied with each other to create a new transformation

matrix and then multiply that last one with the point.

T = T1 ⇥ T2 ⇥ T3.....⇥ Tn (2.5)

with T 2 R4⇥4 for 3D [5, 22].

2.4. Helmert Transformation 11

Now the T from the equation 2.5 can be multiplied with the point as followed:

P
0 = P ⇥ T

2.4 Helmert Transformation

The Helmert transformation or seven-parameter Helmert transformation is often used in

goedesy1 to convert coordinates from one right-handed CS to another right-handed CS in R3

[19].

Figure 2.4: Seven-parameter Helmert transformation of the point Pi (see equation 2.6) with (x,y,z)
as origin CS and (u,v,w) as the new CS with the parameters (tu, tv, tw,�,↵,�, �). Retrieved from

Jaud et al.[19]

To perform this transformation three translations and three rotations are needed as well as a

scaling factor. In this case � is the scaling factor. For the purposes of this thesis, the scaling

factor will remain � = 1. This means that no scaling is required. For 3D three translations

are possible (one for each axis of the CS). As for the rotations, one around each axis of the

CS is described by the matrix R below (2.7).

1”The science of the measurement and mapping of the earth’s surface”[5]

2.4. Helmert Transformation 12

2

64
ui

vi

wi

3

75 =

2

64
tu

tv

tw

3

75+ �R(↵,�, �)

2

64
xi

yi

zi

3

75 , [19] (2.6)

in which the Matrix R is:

2

64
cos � cos� cos � sin� sin↵+ sin � sin↵ � cos � sin� cos↵+ sin � sin↵

� sin � cos� � sin � sin� sin↵+ cos � cos↵ sin � sin� cos↵+ cos � sin↵

sin� � cos� sin↵ cos� cos↵

3

75 , [19] (2.7)

To express the point Pi = (xi, yi, zi)T shown in Figure 2.4 in the new CS as Pi = (ui, vi, wi)T

the Helmert transformation shown in equation 2.6 has to be performed [19].

13

Chapter 3

Method

This chapter presents the informal propositions (Section 3.1) for the implementation of Ifc-

SectionedSolidHorizontal in Chapter 4. Section 3.2 gives some insight into the design of the

implementation and therefore will list the steps needed to implement the entity. The last

Section 3.3 refers to the method used to test the implementation.

3.1 Informal Propositions

The scope of the implementation is limited by the following conditions:

1. Each CrossSection must have the same number of points in it as the next CrossSection,

so that the interpolation works correctly.

2. The directrix will be represented by an IfcAlignmentCurve.

3. Only profiles understood by the OIP profile converter can be visualized.

3.2 Design

The design of the implementation of IfcSectionedSolidHorizontal can be divided into di↵erent

steps or methods that will lead to the visualization of this entity in an IFC 4x3 (IFC-Road)

format.

1. The first step is to interpret the directrix attribute by calculating points along the curve

to which the profiles can later be attached in order to create a sweeping geometry along

the IfcAlignmentCurve.

3.3. Testing 14

2. In the second step the information of each IfcProfileDef is interpreted and saved.

3. Since the profile information is in 2D, the position along the curve as well as its rotations

must be calculated such that every profile point can then be transformated into the

curve CS and placed in the correct 3D position.

4. Next, the two lists(one with the curve points and the other with the points where

the CrossSections are defined) need to be merged into one ordered list, from the first

CrossSection to the last CrossSection on the IfcAlignmentCurve.

5. Step 5 is to calculate the profile for the curve points, since the profile is defined for the

CrossSections and not for each curve point.

6. Once the list from the step 4. is completed with the direction and profile for each point

on the curve, the vertices must be defined and converted from the CS of the curve into

the global CS.

7. The last step is to conect the vertices of each profile with those of the next profile

building a triangle mesh that represents the body of the object until it is a closed one.

These steps will be explained in more detail in the following Chapter 4 as well as the C++

code behind them.

3.3 Testing

The method used for testing the implementation will be based on the visualization of exam-

ples. As stated in the first chapter (Section 1.4) the examples will begin with a low degree of

complexity and slowly build upon each other to create more complex scenarios. For example,

the first example could be extruded along a straight line so there is no need for interpola-

tion. Then the next could have two di↵erent geometries extruded along the same line. The

more complex examples are then extruded along a curve (IfcAlignmentCurve) so that the

interpolation may also be tested.

15

Chapter 4

Implementation

Chapter 4 describes the implementation of IfcSectionedSolidHorizontal. Therefore, Section

4.1 starts by presenting the helper functions used in the code. Then in Section 4.2 the steps

stated in Chapter 3.2 are explained with more detail as well as the algorithms behind them.

4.1 Helper functions

Altough the implementation of IfcSectionedSolidHorizontal is written in the solid model con-

verter, some of the functions needed to interpret the geometry correctly can be found in

other converters inside of the OIP’s geometry converter. For example in the CurveConverter,

PlacementConverter or ProfileConverter.

getStationsForTessellationOfIfcAlignmentCurve

This helper function can be found in the CurveConverter and takes the IfcAlignmentCurve as

input. It splits the curve into di↵erent sections that are important for the correct visualization

of the curve. The output is a vector of points (stations) where the tessellation needs to be

calculated.

convertBoundedCurveDistAlongToPoint3D

Since the IfcAlignmentCurve is a subtype of the IfcBoundedCurve (Chapter 2.1) this function

takes the curve, the stations from the helper function before, a boolean, and two 3D vectors

(targetPoint3D, targetDirection3D) as input arguments. Then it calculates a point on the

curve and the direction of that point for the station and saves this information in the two

input vectors. This function is from the PlacementConverter.

4.1. Helper functions 16

convertIfcDistanceExpressionO↵sets

Another helper function from the PlacementConverter is the convertIfcDistanceExpres-

sionO↵sets which takes an IfcDistanceExpression like CrossSectionPositions (Chapter 2.1)

and interprets the lateral, vertical and longitudinal o↵set attributes. The output is a 3D

vector with the o↵set information.

calculateCurveOrientationMatrix

Also in the PlacementConverter is the function calculateCurveOrientationMatrix which takes

the direction of a point on the curve and also the attribute FixedAxisVertical from the

IfcSectionedSolidHorizontal and based on those two parameters then calculates a matrix

with the rotation of the directrix in that point.

distance

This output of this function is the distance between two points. For this, it calculates the

Euclidean norm of the points in 2D or 3D. Therefore the distance is always positive. It can

take the two points P1 and P2 or the coordinates of the points (x1, y1, z1, x2, y2, z2) as input

parameters.

getCoordinates

The function getCoordinates is in the ProfileConverter. This function returns ”paths” .

The ProfileConverter interprets the di↵erent IfcProfileDef ’s and saves the coordinates of

each profile in a vector. Since the profiles can have multiple profiles and the profile points

need to be ordered from first to last to correctly interpret the profiles later, paths is a

vector(vector(vector(2Dvector))). This means the first vector has the information of how

many profiles there are in one IfcProfileDef, the second vector states the order in which the

2D points need to be conected to form the profile. The last vector saves the 2D position of

the points.

carve

Although Carve is not a function, it is a library that provides most of the vector matrix mul-

tiplicsations and also vector arithmetics needed for the implementation to work. In addition

it automatically converts the coordinates of a vector into homogeneous coordinates (Chapter

2.3). Carve also supports operations between polygonial meshes and is therefore often used

in CSG.

4.2. IfcSectionedSolidHorizontal 17

4.2 IfcSectionedSolidHorizontal

As stated in the Chapter 3.2, the implementation of IfcSectionedSolidHorizontal is based on

various steps and methods. The first step in the implementation is to interpret the directrix

attribute which will be the curve used to perform the sweeping operation.

4.2.1 Directrix

Initially, the directrix curve must be split into segments. Therefore the helper function

getStationsForTesselationOfIfcAlignmentCurve from the CurveConverter must be used. This

returns the vector stations with the length of each segment saved as a double. The vector

is then handed to the next helper function convertBoundedCurveDistAlongToPoint3D in

the PlacementConverter. This function calculates the point on the directrix as well as the

direction in that point. Given that stations is a vector, this process must be repeated for

each element in the vector so that at the end the directrix is transformed into a list of points

(BasisCurvePoints) along with a list of their respective directions (BasisPointDirection). This

method is presented below in algorithm 1.

Algorithm 1 Calculate points and directions on the directrix [1].

Input: stations
Output: BasisCurvePoints, BasisPointDirection
1: for each element in stations do
2: calculate the point on the curve
3: calculate the direction of the point
4: save the point and direction in vectors
5: end for . Refer to A.3 to see the C++ code.

4.2.2 CrossSections

After splitting the directrix into a list of points with their directions, the profiles must then

be interpreted. The attribute CrossSections contains the information for profiles that will

be extruded along the directrix (positioned at the BasisCurvePoints). First, the vector paths

is defined as a vector(vector(vector(2Dvector))). The first vector indicates the CrossSection,

the second vector the number of profiles in the CrossSection, the third one indicates the

order of the profile points and the final vector contains the 2D coordinates for the point. For

each CrossSection one ProfileConverter is needed. The Profile converter then calls the helper

function getCoordinates and calculates the 2D points for each profile in the corresponding

CrossSection. The iteration continues until all CrossSections are covered as shown inthe

pseudocode below (algorithm 2).

4.2. IfcSectionedSolidHorizontal 18

Algorithm 2 Save CrossSections list with 2D coordinates for each profile point [1]

Input: vector of CrossSections
Output: paths
1: for i 0 to i < size.vector(CrossSection) do

2: getProfileConverter one for each CrossSection
3: for p 0 to p < size.Profiles in CrossSection) do

4: getCoordinates of each profile
5: save each CrossSection as vector of profiles with 2D coordinates
6: end for

7: save paths as vector of CrossSections
8: end for . Refer to A.4 to see the C++ code.

4.2.3 CrossSectionPositions

The next step is to interpret the CrossSectionPositions to enable the profiles to be placed

in the correct position along the IfcAlignmentCurve. Since CrossSectionPositions is of type

IfcDistranceExpression it has the attributes DistanceAlong, O↵setLateral, O↵setVertical, O↵-

setLongitudinal and the boolean AlongHorizontal as stated in Chapter 2.1 in Figue 2.2.

Algorithm 3 Interpret CrossSectionPositions [1]

Input: List of CrossSectionPositions
Output: o↵sets, CrossSectionPoints, directionsOfCurve, object placement matrix

1: for pos 0 to pos < size.vector(CrossSectionPositions) do

2: 1. Calculate o↵sets from the curve
3: 2. Calculate the CrossSectionPoint and its direction
4: 3. Interpret FixedAxisVertical
5: 4. Calculate the rotations
6: 5. Calculate the object placement matrix
7: end for . Refer to A.5 to see the C++ code.

As shown in the algorithm 3, five steps must be performed to interpret the CrossSectionPo-

sitions :

Step 1: Calculate the o↵sets from the curve

The helper function convertIfcDistanceExpression from the PlacementConverter is called to

interpret the lateral, vertical and horizontal o↵sets. For every CrossSectionPosition one 3D

vector is saved in o↵setFromCurve. o↵setFromCurve is a vector(3D vector). Every element

of the vector o↵setFromCurve saves the o↵sets from the respective CrossSectionPositions

element.

Step 2: Calculate the position and direction of the base curve

In this step, the point on the curve where the CrossSection is to be placed is calculated. The

attributeDistanceAlong indicates the position from the CrossSection based on the distance

4.2. IfcSectionedSolidHorizontal 19

along the directrix. To generate the point in the correct position, the function CalculatePo-

sitionOnAndDirectionOfBaseCurve is used (Method A.2). This function takes the directrix

and the IfcDistanceExpression as input. In addition to this, it also sets the relativeDistAlong

to 0 so that the distance is measured from the begining of the IfcAlignmentCurve. With the

distance to the point now defined, it may be used in convertBoundedDistAlongToPoint3D

(Section 4.1) to generate the output required output; pointOnCurve and directionOfCurve

which corresponds to the point in the curve where the CrossSection will be moved to in the

translation (step 5). These two vectors are saved in the vector(3Dvector) CrossSectionPoints

and directionsOfCurve such that there is exactly one point per CrossSectionPosition.

Step 3: Interpret FixedAxisVertical

Furthermore, should FixedAxisVertical be set to true, the z-component of the direction-

sOfCurve must be corrected to 0. The vector is then normalized.

Step 4: Calculate the rotations

To calculate the rotations for the transformation matrix, the program relies on the Placement-

Converter as well as the helper function calculateCurveOrientationMatrix which is presented

in Section 4.1. This function takes the directionsOfcurve of the point from the CrossSection

being analyzed and also the the value of FixedAxisVertical, it returns a transformation ma-

trix (localPlacementMatrix) which multiplied with the o↵sets will then move the point to the

correct position.

Step 5: Calculate the transformation matrix

Before calculating the final transformation matrix (object placement matrix) first the trans-

lation must first be calculated by performing the following equation 4.1:

Translate = CrossSectionPoints[pos]+localP lacementMatrix[pos]⇥offsetFromCurve[pos]

(4.1)

The transformation matrix is a Helmert transformation with a scaling factor of 1. However

unlike in Chapter 2.4, the Helmert transformation will be performed here with homogeneous

coordinates as in Chapter 2.3, so that the vector translate from the equation 4.1 may be

written as part of the transformation Matrix. Hence, the Helmert transformation will only

require te multiplying pointOnCurve with the object placement matrix. The coordinates from

the profile in 2D will then be transformed to 3D into the curves coordinate system and be

moved to the right place on the curve.

Since this Helmert transformation must be performed for each point of each profile, it is

converted into the function convertCurveOrientation. This function accepts the following

three arguments: directionsOfCurve from the CrossSectionPositions at which it is currently

4.2. IfcSectionedSolidHorizontal 20

positioned in the given iteration; the value from FixedAxisVertical and the tranlsate vector

also from the CrossSectionPositions on which it is currently positioned. It returns a matrix

like the one in Chapter 2.3 with four function blocks:

"
Scaling and rotating Translations

0 for the homogeneus representation 1

#
, [5]

or in the C++ Code A.1 :

A.1: ConvertCurveOrientation

// produce a r o t a t i on matrix

re turn carve : : math : : Matrix (

l o c a l x . x , l o c a l y . x , l o c a l z . x , t r a n s l a t e . x ,

l o c a l x . y , l o c a l y . y , l o c a l z . y , t r a n s l a t e . y ,

l o c a l x . z , l o c a l y . z , l o c a l z . z , t r a n s l a t e . z ,

0 , 0 , 0 , 1) ;

This matrix performs the 3D rotations as well as the translations from equation 4.1.

The rotations local x, local y and local z are being calculated from the vector direction-

sOfCurve as follows:

A.1: ConvertCurveOrientation

// produce a r o t a t i on matrix

carve : : geom : : vector<3> l o c a l z (carve : : geom : :VECTOR(direct ionOfCurve . x ,

d i rect ionOfCurve . y , f i x e d a x i s v e r t i c a l ? 0 . 0 : d i rect ionOfCurve . z)) ;

// get the pe rpend i cu l a r to the l e f t o f the curve in the z�y plane (curve

’ s coo rd ina t e system)

carve : : geom : : vector<3> l o c a l y (carve : : geom : :VECTOR(� l o c a l z . y , l o c a l z . x ,

0 . 0)) ; // always l i e s in the z�y plane (Curve (and x�y 2D�P r o f i l e)

// get the v e r t i c a l as c r o s s product

carve : : geom : : vector<3> l o c a l x = carve : : geom : : c r o s s (l o c a l z , l o c a l y) ;

The three vectors are also normalized before being placed in the rotation matrix in order to

keep them pointig in the same direction, only with a length of 1.

4.2. IfcSectionedSolidHorizontal 21

4.2.4 Merge Lists

The CrossSections (profiles) are only defined at the CrossSectionPoints (CSP) and not at the

BasisCurvePoints (BCP). However, since the profile needs to be swept across all points, the

profiles between each CrossSections must be calculated additionally calculated. The profile

also begins at the first CrossSection and not at the first BCP. Before merging and sorting

the BCP and CSP into one ordered list, first the startingpoint of the profile must be found.

The algorithm 4 shown below presents the method used.

Algorithm 4 Find profile starting point
Input: BasisCurvePoints, CrossSectionPoints
Output: First point in points for tessellation
1: set i = 0 . i will be the counter for the BCP
2: set j = 0 . j will be the counter for the CSP
3: if BCP[0] = CSP[0] then
4: increment i value
5: increment j value
6: else

7: define dist 1 = distance(BCP[i], CSP[0]
8: define dist 2 = distance(BCP[i+1], CSP[0])
9: while dist 1 > dist 2 do

10: increment i
11: end while

12: end if

This algorithm ends when the value j has reached the BCP that is after the first CSP .

This is the starting point for the profile; from this point on the directions of the points

will be saved in the vector directions for tessellation. The points will be saved in the vector

points for tessellation, and the corresponding information for the profiles will be saved in a

vector like paths called paths for tessellation until the last CSP is reached.

BasisCurvePoints

CrossSectionPoints

IfcAlignmentCurve

Curve-segment
IfcAlignmentCurve

Line-segment

Figure 4.1: BasisCurvePoints (BCP) and CrossSectionPoints (CSP) on the directrix represented by
an IfcAlignmentCurve

4.2. IfcSectionedSolidHorizontal 22

It is also worth mentioning that the CurveConverter does not calculate any point on a

line segment as shown in the Figure 4.1. The first CrossSection, CSP and direction are

then saved as the first elements in paths for tessellation, points for tessellation and direc-

tions for tessellation. Then the value from j is incremented.

Figure 4.1 also shows how the points are ordered along the directrix. The points on the list

should consequently also be ordered like this as well. The method used to merge both lists

of points into the new one is best shown by the following Nassi–Schneiderman diagram:

While j < CrossSectionPoints.size()

CSP[j] == BCP[i]?

NoYes

Yes No

distance(PoFT to BCS[i]) > distance(PoFT to CSP[j]

1. Save CSP[j] as new PoFT

2. Save direction from the
CSP[j] as DFT

3. Save the profile as PaFT

4. Increment j

1. Save BCP[i] as new PoFT

2. Interpolate direction

3. Interpolate profile

4. increment i

1. Save CSP[j] as new PoFT

2. Save direction from the
CSP[j] as DFT

3. Save the profile as PaFT

4. Increment j

5. Increment i

Figure 4.2: Nassi-Schneidermann diagramm for merging the lists with
PoFT: points for tessellation, PaFT: paths for tessellation, DFT: directions for tessellation .

As presented in the diagram the process is repeated until the last CSP has been reached, also

marking the end of the geometric form. At the end, paths for tessellation has one profile for

each point regardless of it being a CSP or a BCP. The profile points for a BCP need to be

interpolated as well as the directions. This method uses the CSP before and after the BCP.

This process will be explained in more detail in the next Subsection 4.2.5.

The diagram in Figure 4.2 also gives an insight into how to proceed if the next point af-

ter the points for tessellation is a CSP. In this case the profile points are already saved

in the vector paths but the geometry is still in 2D and in the CS of the profile. To cor-

rectly place the profile points in 3D and in the Curve’s CS, a Helmert transformation has to

be performed in homogeneous coordintes, this means multiplying every point with the ob-

4.2. IfcSectionedSolidHorizontal 23

ject placement matrix calculated in Section 4.2.3. The method used to transform all profile

points from one CrossSection (path[j]) is presented in algorithm 5:

Algorithm 5 Transform profile from 2D to 3D on the curve [1].

Input: paths, BCP
Output: paths for tessellation
1: compositeProfile = paths[j] . paths[j] is the CrossSection of BCP[j]
2: define vector Tcompositeprofile that will save the new crossSection in 3D
3: for w 0 to w < size.compositeProfile do

4: loop = compositeProfile[w]
5: define vector Tloop that will save the new profile points in 3D
6: for k 0 to k < size.loop do

7: (Oldpoint) = loop[k]
8: newpoint = object placement matrix⇥ (Oldpoint)
9: fill Tloop each iteration with the newpoint

10: end for

11: fill Tcompositeprofile with Tloop
12: end for

13: Save Tcompositeprofile as new 2 of paths for tessellation
14: increment j . Refer to A.6 to see the C++ code.

4.2.5 Interpolation

The process for the for the BCP is di↵erent because the profiles must to be interpolated given

that they are not yet defined at theses points. As such, the factors for the interpolation in the

first step must be calculated based on the distance from the BCP to the CSP, both before

and after. For this purpose the three variables of type double are defined: totalDistance,

factorBefore and factorAfter. The distance is calculated with the helper function distance

(4.1).

totalDistance = distance(CSP[j-1], CSP[i])

factorBefore = distance(CSP[j-1], BCSP[i])÷ totalDistance

factorAfter = distance(CSP[j], BCP[i])÷ totalDistance

Before interpolating the point, a new object placement matrix must be calculated to later

move and rotate the interpolated profile to the correct position on the curve. Therefore, the

steps 1, 4 and 5 from Section 4.2.3 must be calculated. Step one, however does not use a

helper function, as the o↵sets can simply be interpolated with the following equation and

saved in the vector o↵setFromCurve.

Io↵setFromCurve = o↵setFromCurve[j - 1] ⇥ factorAfter + o↵setFromCurve[j] ⇥ factorBefore

4.2. IfcSectionedSolidHorizontal 24

For each BCP also one object placement matrix must also be calculated. As a result, this

process is also a part of the algorithm. The method used resebmbles algorithm 5 only di↵ering

by the fact that, di↵erence being that in every step the iteration has to be performed with

paths[j-1] and paths[j] to get the informations of the profile coordinates from the profile before

and the profile after the corresponding BCP. To calulate the new profile point, the innermost

for loop first calculates the di↵erence between the x coordinates and y coordinates of the two

profiles. For that it saves the di↵erence in a 2D vector called deltapoint with the following

coordinates:

deltapoint = (x, y) = (pointAfter.x - pointBefore.x , pointAfter.y - pointBefore.y)

the pointAfter referes to the profile from the CSP[j] and pointBefore to that of CSP[j-1].

Lastly, the new profile points can be calculated in 2D by taking the profileBefore and adding

the di↵erence muliplied by the factor to it as shown below in the code.

Point interpolation

carve : : geom : : vector<2> Tpoint2D = carve : : geom : : VECTOR

(de l t apo i n t . x ⇤ f a c t o rBe f o r e + po intBe fore . x ,

d e l t apo i n t . y ⇤ f a c t o rBe f o r e + po intBe fore . y) ;

carve : : geom : : vector<3> Tpoint = ob j ec t p lacement mat r ix pos ⇤
(carve : : geom : :VECTOR(Tpoint2D . x , Tpoint2D . y , 0)) ;

Afterwards, the point is multiplied with the object placement matrix so that it is rotated in

3D and converted into the curve’s CS.

4.2.6 Vertices

Algorithm 6 Calculate vertices of the body [1]

Input: paths for tessellation along the directrix,
Output: list of vertices in the global coordinate system
1: body empty

2: for i 0 to i < paths for tessellation do

3: for w 0 to w < profiles do
4: for k 0 to k < profile points do
5: point = loop[k]
6: add the point to body and convert to global coordinates
7: end for

8: end for

9: end for . Refer to A.9 to see the C++ code.

The algorithm 6 shows the method used to define the vertices after paths for tessellations

obtained all the information from the points on the directrix and the profiles on each point.

4.2. IfcSectionedSolidHorizontal 25

The transformation from the curves CS to the global CS is achieved by multiplying the pos

matrix with all points in all the profiles. The vertices are saved in body data. Each point

representing a vertex and body data is also saved in the order of the directrix, with the first

profile point from the first profile to the last profile point from the last profile.

4.2.7 Tessellation

The last step in the implementation of IfcSectionedSolidHorizontal is to create the body of the

geometry by connecting the vertices calculated in the previous step and creating triangular

faces that then combine to form a closed solid geometric form. This process is divided into

three steps:

1. Add faces between the profiles to create a body along the directrix.

2. Close front cap of the body.

3. Close back cap of the body.

Step 1: Create the body along the directrix

P[i]

P[i+1]

Profile[i+1]

Profile[i]

Pp[0] Pp[1]

Pp[4]

Pp[3] Pp[2]

Pp[5]

Pp[6]Pp[7]

directrix

Figure 4.3: Two profiles placed at the points for tessellation along the the directrix with
P: points for tessellation , Pp: Profile points.

As shown in the Figure 4.3 the profiles are positioned at the corresponding points for tessellation,

but are not connected to each other. To create a body along the directrix it is necessary to

add faces to body data, so as to connect each profile point with one from the next profile.

This gradually forms triangles that are then connected with each other, creating a closed

outer hull for the body that can then be understood by the rendering engine (Chapter 2.2

[18]). Now that all the profile points are saved as one long list of vertices, numbered from 0

(first point of the first profile) to the last vertex index (last point of the last pofile) in the

directrix. For the Figure 4.3, this would mean that the first vertex is the point 0 and the last

vertex is the point 7.

4.2. IfcSectionedSolidHorizontal 26

Sides Points Faces

1 (0,1,4,5) (0,1,5), (0,4,5)
2 (0,3,4,7) (0,3,7), (7,0,4)
3 (2,3,6,7) (3,2,7), (2,6,7)
4 (1,2,5,6) (6,1,5), (6,2,1)

Table 4.1: Table of faces required to create the outer shell.

Table 4.1 shows the faces needed to close the body for the Figure 4.3. For more complex

models with more faces or with more profiles this is written into the algorithm 7.

Algorithm 7 Calculate faces and body of IfcSectionedSolidHorizontal [1].

Input: Vertices, paths for tessellation (PFTS),
Output: Faces and closed body of IfcSectionedSolidHorizontal
1: for i 0 to i < PFTS-1 do

2: for j 0 to j < ppoints(pp) -1 do

3: add face to body (i*pp+j, i*pp+j+1, (i+1)*pp+j) . i+1 = next profile
4: add face to body (i*pp+j+1, (i+1*pp+j, (i+1)*pp+j+1))
5: end for

6: end for

7: add face to body (0, pp-1, pp)
8: for ii 0 to ii < (vertices÷pp)-1 do

9: add face to body (ii*pp, ii*pp-1, (ii+1)*pp-1) . ii+1 = next profile
10: add face to body ((ii+1)i*pp, ii*pp, (ii+1)*pp-1))
11: end for . Refer to A.9 to see the C++ code.

Step 2: Close front cap of the body

To close the front cap, the points of the first profile must be connected to each other to form

triangles and subsequently faces. Therefore, the method used to close the front cap takes the

first vertex(0) and iterates to the vertex (number of profile points - 3) connecting the faces

as followed:

Algorithm 8 Closing front and back profile of IfcSectionedSolidHorizontal [1].

Input: Vertices
Output: Closes front and back from the IfcSectionedSolidHorizontal
1: for jj 0 to i < ppoints - 2 do . closing front
2: add faces to body (0, jj+1, jj+2)
3: end for

4: for jj vertices� pp to jj < vertices do . closing back
5: define the last vertex (vertices-1)
6: add faces to body (last, jj-1, jj-2)
7: end for . Refer to A.9 to see the C++ code.

4.2. IfcSectionedSolidHorizontal 27

Step 3: Close back cap of the body

As shown, algorithm 8 is the method defined to close the body at the end. Since the final

profile is at the end of the vertex list, the iteration must start at the first point of the final

profile (vertices - profile points(pp)), and terminate at the last point defined as last (vertices

- 1) therefore closing the back part of the body by connecting the points of the last profile

to the last profile point.

28

Chapter 5

Use Cases

This chapter will test the implementation by visualizing IFC example files. The examples

begin at a low level of complexity, such as extrusions along a line segment, and build up to

more complex operations, such as sweeping the geometry along a curve. To also test the

limits of the implementation, the last example file 5.5 is designed to surpass the limit and

thus will not render.

5.1 Rectangle Profile

(a) Top view. (b) Bottom view.

Figure 5.1: Visualization of IfcSectionedSolidHorizontal with the profile extruded along a
line-segment.

The first example for the IfcSectionedSolidHorizontal is a rectangle that is extruded along

the line segment of the IfcAlignmentCurve which can be observed in Figure 5.1. The profiles

are of the type IfcRectangleProfileDef with only two CrossSections in this case.

5.2. Variable Profile 29

IfcSectionedSolidHorizontal example snippet of A.10

#15= IFCSHAPEREPRESENTATION(#9 , ’Body ’ , ’ T e s s e l l a t i o n ’ ,(#18)) ;

#18= IFCSECTIONEDSOLIDHORIZONTAL(#97 ,(#98 ,#98) ,(#103 ,#104) , .T.) ;

#103= IFCDISTANCEEXPRESSION(0 . , $, $, $, .T.) ;

#104= IFCDISTANCEEXPRESSION(4320 . , $, $, $, .T.) ;

#98= IFCRECTANGLEPROFILEDEF(.AREA. , ’ 1m x 2m re c t ang l e ’ , $, 1 0 0 0 . , 2 0 0 0 .) ;

#18 connects the profiles with the corresponding IfcDistanceExpressions and to the IfcAlign-

mentCurve (#97). Position #103 defines the position of the first CrossSection with the profile

#98(1⇥ 2 [m] rectangle) and the position #104 defines the position of the second and last

CrossSection also with the same profile.

It is also worth mentioning that all examples have the same ”FILE SCHEMA”, in this case

”IFC4x3 RC1” as they are designed to be part of the IFC4x3 version.

5.2 Variable Profile

(a) Top view. (b) Bottom view.

Figure 5.2: Visualization of IfcSectionedSolidHorizontal with two profiles extruded along on a
line-segment.

The second example builds upon the first and has one addtional CrossSection. Unlike example

5.1, the profile at the end is no longer the same anymore as shown in Figure 5.2. In this case,

the profile widens in a similar fasion to a highway, for example. This example still uses the

same #97 IfcAlignmentCurve for the extrusion along the line segment.

5.3. Extrusion along a curve segment 30

IfcSectionedSolidHorizontal example snippet of A.10

#15= IFCSHAPEREPRESENTATION(#9 , ’Body ’ , ’ T e s s e l l a t i o n ’ ,(#18)) ;

#18= IFCSECTIONEDSOLIDHORIZONTAL(#97 ,(#98 ,#99 ,#100) ,(#103 ,#104 ,#105) , .T.)

;

#103= IFCDISTANCEEXPRESSION(0 . , $, $, $, .T.) ;

#104= IFCDISTANCEEXPRESSION(2160 . , $, $, $, .T.) ;

#105= IFCDISTANCEEXPRESSION(4320 . , $, $, $, .T.) ;

#98= IFCRECTANGLEPROFILEDEF(.AREA. , ’ 1m x 1m re c t ang l e ’ , $, 1 0 0 0 . , 1 0 0 0 .) ;

#99= IFCRECTANGLEPROFILEDEF(.AREA. , ’ 1m x 1m re c t ang l e ’ , $, 1 0 0 0 . , 1 0 0 0 .) ;

#100= IFCRECTANGLEPROFILEDEF(.AREA. , ’ 1m x 2m re c t ang l e ’ , $, 1 0 0 0 . , 2 0 0 0 .) ;

The new CrossSection (profile #100) is paired in #18 with the IfcDistanceExpression in

#105 as shown in the code snippet above. There is still no need for a interpolation because

the example does not generate BasisCurvePoints, just CrossSectionPoints.

5.3 Extrusion along a curve segment

(a) Top view. (b) Bottom view.

Figure 5.3: Visualization of IfcSectionedSolidHorizontal with the profile extrudet along a
curve-segment

The third example is the first one to be extruded along a curve segment of the IfcAlign-

mentCurve as shown in Figure 5.3. In this case the CurveConverter mentioned in Chapter

4.2.1 calculates the BasisCurvePoints (BCP), and the profiles must be interpolated using the

profiles form the CrossSectionPoints, both before and after the BCP.

5.4. Extrusion along a curve with a line segment 31

Curvature of the IfcAlignmentCurve

#97= IFCALIGNMENTCURVE(#489 ,#490 ,$) ;

#489= IFCALIGNMENT2DHORIZONTAL($,(#541)) ;

#490= IFCALIGNMENT2DVERTICAL((#543 ,#544)) ;

#541= IFCALIGNMENT2DHORIZONTALSEGMENT(.T. , ’ 61+25.00 ’ , ’ 63+72.14 ’ ,#595) ;

#543= IFCALIGNMENT2DVERSEGLINE(.T. , $, $, 0 . , 3 6 0 0 . , 1 9 0 . 5 6 , 0 . 0 5 7 9) ;

#544= IFCALIGNMENT2DVERSEGPARABOLICARC(.T. , $, $

, 3 6 0 0 . , 3 6 8 5 . 6 8 , 3 9 9 . , 0 . 0 5 7 9 , 3 6 0 0 0 . , .F .) ;

#595= IFCCIRCULARARCSEGMENT2D(#485 ,13 .35833333 ,2965 .68 ,9279 . , .F .) ;

#485= IFCCARTESIANPOINT((0 . , 0 .)) ;

The curvature of the IfcAlignmentCurve in the example shown in Figure 5.3 is generated

by the ”IFCCIRCULARSEGMENT2D” in position #595 as presented in the code snippet

above. Since the curved segment is referenced by the horizontal part of the Alignment (#489),

the curvature appears not only in the horizontal but also in the vertical fraction of the curve

by adding the line #544 (which is of type IfcAlingment2DVerSegParabolicArc).

5.4 Extrusion along a curve with a line segment

(a) Top view. (b) Bottom view.

Figure 5.4: Visualization of IfcSectionedSolidHorizontal with a profile extruded along a
curve-segment and a line-segment

Figure 5.4 displays an IfcRectangleProfileDef swept along the directrix. In this case the

directrix IfcAlignmentCurve has a curve segment and a line segment at the end. Therefore,

the profile is simply interpolated at the BasisCurvePoints from the curve segment.

5.5. Unsupported Profiles 32

Additional line segment at the end of the IfcAlignmentCurve

#97= IFCALIGNMENTCURVE(#489 ,#490 ,$) ;

#489= IFCALIGNMENT2DHORIZONTAL($,(#541 ,#542)) ;

#490= IFCALIGNMENT2DVERTICAL((#543 ,#544)) ;

#541= IFCALIGNMENT2DHORIZONTALSEGMENT(.T. , ’ 61+25.00 ’ , ’ 63+72.14 ’ ,#595) ;

#542= IFCALIGNMENT2DHORIZONTALSEGMENT(.T. , ’ 63+72.14 ’ , ’ 65+65.00 ’ ,#596) ;

#543= IFCALIGNMENT2DVERSEGLINE(.T. , $, $, 0 . , 3 6 0 0 . , 1 9 0 . 5 6 , 0 . 0 5 7 9) ;

#544= IFCALIGNMENT2DVERSEGPARABOLICARC(.T. , $, $

, 3 6 0 0 . , 3 6 8 5 . 6 8 , 3 9 9 . , 0 . 0 5 7 9 , 3 6 0 0 0 . , .F .) ;

#595= IFCCIRCULARARCSEGMENT2D(#485 ,13 .35833333 ,2965 .68 ,9279 . , .F .) ;

#485= IFCCARTESIANPOINT((0 . , 0 .)) ;

#596= IFCLINESEGMENT2D(#597 ,�4.95408690777971 ,4320.) ;

#597= IFCCARTESIANPOINT((2945 .13464253837 ,216 .386895560319)) ;

As shown in the code snippet above now the IfcAlignment2dHorizontal(#489) not only ref-

erences the IfcCircularsegment2D (#595) but also the IfcLineSegment2D in the line #596

which generates the line seen at the end of the Figure 5.4.

5.5 Unsupported Profiles

Finally the Example 5 shows the limits of this implementation and consists of five pro-

files(CrossSections) of type IfcArbitraryClosedProfileDef which are then defined by the

points that are connected by anIfcIndexedPolyline to create profiles that may have more

edges(vertices) than the four edges in a IfcRectangleProfileDef per profile.

CrossSection described by an IndexedPolycurve

#9= IFCSHAPEREPRESENTATION(#2 , ’Body ’ , ’ AdvancedSweptSolid ’ ,(#38)) ;

#38= IFCSECTIONEDSOLIDHORIZONTAL

(#97 ,(#98 ,#98 ,#98 ,#98 ,#98 ,#99 ,#100 ,#101 ,#102)

,(#103 ,#104 ,#105 ,#106 ,#107 ,#108 ,#109 ,#110 ,#111) , .T.) ;

#103= IFCDISTANCEEXPRESSION(0 . , $, $, $, .T.) ;

#97= IFCALIGNMENTCURVE(#489 ,#490 ,$) ;

#98= IFCARBITRARYCLOSEDPROFILEDEF(.AREA. , $,#491) ;

#491= IFCINDEXEDPOLYCURVE(#545 ,(IFCLINEINDEX((1 , 2 , 3 , 4 , 1))) , .F .) ;

#545= IFCCARTESIANPOINTLIST2D(((1 8 0 . , 1 4 . 4) , (0 . , 0 .) , (0 . , 1 9 2 .) , (1 8 0 . , 2 0 6 . 4)

) , $) ;

The code snippet above presents one of the many CrossSections of this example. Each Cross-

Section(profile) is defined by the IfcArbitraryClosedProfileDef which, as mentioned before is

defined by the IfcIndexedPolyline that marks the vertices of the profile.

5.5. Unsupported Profiles 33

This presents a problem for the implementation, since the ProfileConverter does not as of yet

support the IfcIndexedPolyCurve. In addition, the IfcIndexedPolyCurve can have as many

points as needed to define the profile, whichwould also lead to a compiler error if the code

could support it. This is due to the fact that the CrossSections must have the same number of

profile points in order to correctly calculate the vertices and interpolation as well as connect

the faces to form the body.

34

Chapter 6

Discussion

This chapter evaluates the implementation of IfcSectionedSolidHorizontal by discussing the

results from the use cases in the previous chapter (Chapter 5). Section 6.1 will start by

discussing those use cases that have a lower level of complexity, and then proceed to those

that are more complex. Section 6.2 will then evaluate the limitations of the methods pre-

sented in the informal proposition in Chapter 3.1 as well as suggestions for improving the

implementation.

6.1 Evaluation of the Use Cases

The first two use cases (see Sections 5.1 and 5.2) showed an extrusion along a IfcLineSegment

with the first use case having the same profile throughout the rectangular geometry and the

second use case having a variable geometry. In both cases, the implementation connected the

CrossSections along the directrix correctly producing the visualization shown in Figures 5.1

and 5.2.

Since the CrossSections (IfcProfileDef) are extruded(swept) along a curve segment in the use

cases 5.3 and 5.4, the implementation relies on methods such as the interpolation to calculate

the profiles between the CrossSections. As shown in the Figure 5.3, the interpolation for the

profiles on the directrix curve creates a profile for each BasisCurvePoint with such a small

distance between BasisCurvePoints that the object appears curved and lacks sharp edges.

However, in the next use case (5.4), the change from the curve segment to a line segment is

clearly reflected in the geometry. The angle of the last CrossSection before the line segment

creates a visible edge. Furthermore, one side of the CrossSection is pushed into the first

CrossSection of the line segment, whilst the other side does not reach the point. In order for

the implementation to work correctly, this angle must be corrected.

6.2. Evaluation of Methods 35

6.2 Evaluation of Methods

The implementation of IfcSectionedSolidHorizontal requires the CrossSections to be extruded

along the IfcAlignmentCurve (sweeping operation [21]). To define profiles between the Cross-

Sections they must be calculated by interpolating the known profiles. One of the limitations

presented by the interpolation is that the CrossSections must have the same number of points.

This enables each profile point to be calculated by taking the same point from the profile

prior to as well as directly after the curve point. Should it be the case that the profiles

have a di↵erent number of points, the calculation would have to use a modified algorithm.

This modified algorithm would be such that so that the interpolated profile could retrieve

the information needed from the two CrossSections without the vectors going out of scope in

the iterations and thus producing an error. In addition, if the CrossSections were to have a

di↵erent number of points, the method used to calculate the body of the function would also

have to be improved.

Furthermore, to improve the implementation an algorithm should be developed to provide a

smooth transition between the profile sweept along the curve segment and the connection to

the extrusion along the line segment of the IfcsAlingmentCurve. This would avoid the sharp

edges shown in Figure 5.4 by correcting the angle of this transition.

36

Chapter 7

Conclusion

The conclusion presents a summary of the findings in Section 7.1. Furthermore, the Section

7.2 provides an outlook on the future research that could be conducted in this field.

7.1 Summary of Findings

The release of IFC 4x1 introduced new entities such as IfcSectionedSolidHorizontal to help

support infratstructure extension. Moreover, projects such as the IFC-Bridge, IFC-Road and

IFC-Rail rely on the Alignment as a common ressource for the representation and visualization

[3]. The IfcAlignmentCurve is also the main curve along which the profiles are swept along

in the newly introduced entity IfcSectionedSolidHorizontal.

This entity is also of vital importance for the IFC-Road project, as it helps support roadway

geometry by allowing multiple profiles, called CrossSections to be swept along the Alignment

[6]. Therefore, it is also of vital importance to implement this entity into the workflow of

the existing Open Source BIM visualization software of the TUM called OpenInfraPlatform

(OIP), as mentioned in Chapter 2.2.

As stated in the propositions in Chapter 3.1, the implementation of IfcSectionedSolidHori-

zontal will visualizes this entity as long as every CrossSection has the same number of profile

points and the profile is understood by other parts of the OIP such as the ProfileConverter.

First of all, in the implementation directrix (IfcAlignmentCurve) is split into characteristic

points called BasisCurvePoints (BCP) by the OIP’s CurveConverter. These points do not

possess any information about the profiles since these are only defined at the CrossSections

along the directrix.

Furthermore, the profiles (CrossSections) are defined in 2D. The method presented in Chap-

ter 4.2.3 converts the information contained in the CrossSectionPositions in order to find the

7.2. Future Works 37

position and direction of the points where these profiles are defined along the directrix. It

then saves the list of points as well as the transformation matrices discussed in Chapters 2.3

and 2.4 using the mtehod performed in Chapter 4.2.3.

Next, the two lists (one with the CSP and the profiles and the other with the BCP) are

merged into one list containing the points along the directrix where the profiles are defined.

This new list also simultaneously calculates the missing profiles at the BCP by interpolating

them with the method with the profiles before and after the point, rotates the profiles in 3D

and places them in the correct position along the directrix.

The last part then defines the vertices of each profile and connects them forming triangular

faces that add up to a solid geometry, allowing the model to be rendert by the rendering

engine.

As a result of the testing with the examples, it is clear that the next step for the implemen-

tation would be to improve the code so as to correct the angle of the profiles between a curve

segment and a line segment, as well as to improve the interpolation so that it may represent

profiles in which the number of points for each profile CrossSection) is not the same.

7.2 Future Works

Regarding the implementation presented in this thesis, there is still much work that can be

done to improve the code, starting with the development of a smarter interpolation algorithm

that could interpret CrossSections with a variable number of points without the iterations

going out of scope. Also, the profile angles should be corrected in the transitions from a curve

segment to a line segment of the IfcAlignmentCurve as previously mentioned in the Chapters

6.2 and 7.1.

As for the IFC-Road project the Alignment could also be expanded to support new scenarios

such as crossing two roads at an intersection [6]; this could then support di↵erent angles of

the two roads or for the IFC-Bridge, where two roads could cross each other but at di↵erent

heights so that they pass without intersecting with each other.

For the purpose of this thesis, the IfcSectionedSolidHorizonzal was implemented for the IFC

4x3 format (IFC)-Road), but it is important to highlight the fact that it could be expanded to

go further and also support other infrastructure projects such as the upcoming IFC-Rail, as

this project since it also relies on the Alignment curve and may contain variable CrossSections

[6]. To support the rail it could also define new entities to describe the superelevation on the

railway alignment[6]. The harmonization between the Rail, Road and Bridge projects builds

upon the next major release of the Industry Foundation Classes standard with the version

IFC 5 [16].

7.2. Future Works 38

In addition, the OIP could also be expanded to implement new entities to support more use

cases in the road project, such as the crossing of roads and junctions or also support the next

IFC versions such as the IFC Tunnel, IFC Ports and Waterways.

39

Appendix A

Code

The most relevant parts of the C++ code are listed in the appendix as well as one example

file. The complete OIP code and the more complex examples developed for this thesis can

be found on Github: https://github.com/tumcms/Open-Infra-Platform/blob/development/

Core/src/IfcGeometryConverter/SolidModelConverter.h

https://github.com/tumcms/Open-Infra-Platform/tree/development/testdata/IFC4X3ExampleFiles

https://github.com/tumcms/Open-Infra-Platform/blob/development/Core/src/IfcGeometryConverter/SolidModelConverter.h
https://github.com/tumcms/Open-Infra-Platform/blob/development/Core/src/IfcGeometryConverter/SolidModelConverter.h
https://github.com/tumcms/Open-Infra-Platform/tree/development/testdata/IFC4X3ExampleFiles

A.1. ConvertCurveOrientation 40

A.1 ConvertCurveOrientation

Listing A.1: ConvertCurveOrientation

1 carve : : math : : Matrix convertCurveOr ientat ion (

2 const carve : : geom : : vector<3> direct ionOfCurve ,

3 const bool f i x e d a x i s v e r t i c a l ,

4 const carve : : geom : : vector<3> t r a n s l a t e = carve : : geom : :VECTOR(0 . , 0 . , 0 .)

5) const throw (. . .)

6 {
7

8 carve : : geom : : vector<3> l o c a l z (carve : : geom : :VECTOR(direct ionOfCurve . x

, d i rect ionOfCurve . y , f i x e d a x i s v e r t i c a l ? 0 . 0 : d i rect ionOfCurve

. z)) ;

9

10 // get the pe rpend i cu l a r to the l e f t o f the curve in the z�y plane (

curve ’ s coo rd ina t e system)

11 carve : : geom : : vector<3> l o c a l y (carve : : geom : :VECTOR(� l o c a l z . y ,

l o c a l z . x , 0 . 0)) ; // always l i e s in the z�y plane (Curve (and x�y 2

D�P r o f i l e)

12

13 // get the v e r t i c a l as c r o s s product

14 carve : : geom : : vector<3> l o c a l x = carve : : geom : : c r o s s (l o c a l z , l o c a l y)

;

15

16 // normal ize the d i r e c t i o n ve c t o r s

17 l o c a l x . normal ize () ;

18 l o c a l y . normal ize () ;

19 l o c a l z . normal ize () ;

20

21 // produce a r o t a t i on matrix

22 re turn carve : : math : : Matrix (

23 l o c a l x . x , l o c a l y . x , l o c a l z . x , t r a n s l a t e . x ,

24 l o c a l x . y , l o c a l y . y , l o c a l z . y , t r a n s l a t e . y ,

25 l o c a l x . z , l o c a l y . z , l o c a l z . z , t r a n s l a t e . z ,

26 0 , 0 , 0 , 1) ;

27 }

A.2. CalculatePositionOnAndDirectionOfBaseCurve 41

A.2 CalculatePositionOnAndDirectionOfBaseCurve

Listing A.2: CalculatePostionOnAndDirectionOfBaseCurve

1 std : : tuple< carve : : geom : : vector <3>, carve : : geom : : vector<3>>

calculatePos it ionOnAndDirect ionOfBaseCurve (

2 const EXPRESSReference<typename IfcEntityTypesT : : I fcCurve>& d i r e c t r i x ,

3 const EXPRESSReference<typename IfcEntityTypesT : : I f cD i s tanceExpre s s i on>&

c r o s s s e c t i o n p o s i t i o n s ,

4 const double r e l a t i v eD i s tA l ong = 0 .

5) const throw (. . .)

6 {
7 // check input

8 i f (d i r e c t r i x . exp i r ed ())

9 throw oip : : ReferenceExpiredExcept ion (d i r e c t r i x) ;

10 i f (c r o s s s e c t i o n p o s i t i o n s . exp i r ed ())

11 throw oip : : ReferenceExpiredExcept ion (c r o s s s e c t i o n p o s i t i o n s) ;

12

13 // d e f a u l t s

14 carve : : geom : : vector<3> pointOnCurve = carve : : geom : :VECTOR(0 . 0 , 0 . 0 , 0 . 0) ;

15 carve : : geom : : vector<3> direct ionOfCurve = carve : : geom : :VECTOR(1 . 0 , 0 . 0 ,

0 . 0) ;

16

17 // account f o r r e l a t i v e placement

18 double dDistAlong = c r o s s s e c t i o n p o s i t i o n s �>DistanceAlong ⇤ UnitConvert

()�>getLengthInMeterFactor ()

19 + re l a t i v eD i s tA l ong ;

20

21 // convert the po int

22 placementConverter�>convertBoundedCurveDistAlongToPoint3D (

23 d i r e c t r i x . as<typename IfcEntityTypesT : : IfcBoundedCurve>() ,

24 dDistAlong ,

25 c r o s s s e c t i o n p o s i t i o n s �>AlongHor izonta l . v a l u e o r (t rue) ,

26 pointOnCurve ,

27 d i rect ionOfCurve

28) ;

29 re turn { pointOnCurve , d i rect ionOfCurve } ;
30 }

A.3. Directrix 42

A.3 Directrix

Listing A.3: Directrix

1 //Give d i r e c t r i x to Curve conve r t e r : f o r each s t a t i o n 1 Point and 1

Di r e c t i on

2 // the s t a t i o n s at which a po int o f the t e s s e l l a t i o n has to be c a l c u l a t ed

� to be converted and f i l l the targetVec

3 std : : vector<double> s t a t i o n s = curveConverter�>
getSta t i onsForTes se l l a t i onOf I f cA l i gnmentCurve (d i r e c t r i x . as<typename

IfcEntityTypesT : : IfcAlignmentCurve >()) ;

4

5 carve : : geom : : vector<3> targetPoint3D ;

6 carve : : geom : : vector<3> ta rge tDi rec t i on3D ;

7 std : : vector<carve : : geom : : vector<3>> BasisCurvePoints ;

8 std : : vector<carve : : geom : : vector<3>> Bas i sPo in tD i r e c t i on ;

9

10 // attach the curve po in t s

11 f o r (auto& i t s t a t i o n : s t a t i o n s)

12 {
13 // c a l l the placement conve r t e r that handles the geometry and c a l c u l a t e s

the 3D point along a curve

14 placementConverter�>convertBoundedCurveDistAlongToPoint3D (d i r e c t r i x . as<

typename IfcEntityTypesT : : IfcBoundedCurve>() , i t s t a t i o n , true ,

targetPoint3D , targe tDi rec t i on3D) ;

15 BasisCurvePoints . push back (targetPoint3D) ;

16 Bas i sPo in tD i r e c t i on . push back (targe tDi rec t ion3D) ;

17 }
18

19 std : : shared ptr<carve : : input : : PolyhedronData> body data = std : :

make shared<carve : : input : : PolyhedronData>() ;

20 itemData�>c l o s ed po lyhedrons . push back (body data) ;

21

22 i n t num curve points = BasisCurvePoints . s i z e () ;

23 carve : : math : : Matrix matrix sweep ;

24

25 // Less than two po in t s i s a po int

26 i f (num curve points < 2)

27 {
28 throw oip : : Incons i s t en tMode l l i ngExcept i on (s e c t i o n e d s o l i d h o r i z o n t a l , ”

num curve po in t s < 2”) ;

29 }

A.4. CrossSections 43

A.4 CrossSections

Listing A.4: CrossSections

1

2 // d e f i n e vec to r to f i l l with the coo rd ina t e s o f the Cros sSec t i ons

3 std : : vector<std : : vector<std : : vector<carve : : geom : : vector<2> > > > paths ;

4

5 f o r (i n t i = 0 ; i < v e c c r o s s s e c t i o n s . s i z e () ; ++i)

6 {
7 std : : shared ptr<Prof i l eConverterT<I fcEntityTypesT>> p r o f i l e c o n v e r t e r =

pro f i l eCache�>ge tP ro f i l eConve r t e r (v e c c r o s s s e c t i o n s [i]) ;

8 const std : : vector<std : : vector<carve : : geom : : vector<2> > >& p r o f i l e c o o r d s

= p r o f i l e c o n v e r t e r�>getCoord inates () ;

9

10 // Save p r o f i l e coords in paths

11 std : : vector<std : : vector<carve : : geom : : vector<2> > > p r o f i l e c o o r d s 2 d ;

12 f o r (i n t p = 0 ; p < p r o f i l e c o o r d s . s i z e () ; ++p)

13 {
14 const std : : vector<carve : : geom : : vector<2> >& p r o f i l e l o o p = p r o f i l e c o o r d s

[p] ;

15

16 p r o f i l e c o o r d s 2 d . push back (p r o f i l e l o o p) ;

17 }
18 paths . push back (p r o f i l e c o o r d s 2 d) ;

19

20 }

A.5. CrossSectionPositions 44

A.5 CrossSectionPositions

Listing A.5: CrossSectionPositions

1 f o r (i n t pos = 0 ; pos < c r o s s s e c t i o n p o s i t i o n s . s i z e () ; ++pos)

2 {
3 // 1 . get o f f s e t from curve

4 carve : : geom : : vector<3> o f f s e t = placementConverter�>
c onve r t I f cD i s t an c eExp r e s s i onO f f s e t s (c r o s s s e c t i o n p o s i t i o n s [pos]) ;

5 of fsetFromCurve . push back (o f f s e t) ;

6

7 // 2 . c a l c u l a t e the po s i t i o n on and the d i r e c t i o n o f the base curve

8 // a l s o applay the r e l a t i v e d i s t a long

9 carve : : geom : : vector<3> pointOnCurve ;

10 carve : : geom : : vector<3> direct ionOfCurve ;

11 std : : t i e (pointOnCurve , d i rect ionOfCurve) =

calculatePos it ionOnAndDirect ionOfBaseCurve (d i r e c t r i x ,

c r o s s s e c t i o n p o s i t i o n s [pos]) ;

12 Cros sSec t i onPo int s . push back (pointOnCurve) ;

13 d i r ec t ionsOfCurve . push back (d i rect ionOfCurve) ;

14

15 // 3 . get in fo rmat ion from FixedAx i sVer t i ca l

16 i f (f i x e d a x i s v e r t i c a l == true)

17 {
18 d i rec t ionsOfCurve [pos] . z = 0 ;

19 d i r ec t ionsOfCurve [pos] . normal ize () ;

20 }
21

22 // 4 . c a l c u l a t e the r o t a t i o n s

23 // the d i r e c t i o n o f the curve ’ s tangent = direct ionOfCurve

24 //now that localPLacement Matrix i s a Vector ����> 1 Matrix f o r each

Cro s sSec t i onPos i t i on saved in the Vector loca lPlacementMatr ix

25 carve : : math : : Matrix localm = placementConverter�>
ca l cu la teCurveOr i entat ionMatr ix (d i r ec t ionsOfCurve [pos] ,

f i x e d a x i s v e r t i c a l) ;

26 loca lPlacementMatr ix . push back (localm) ;

27

28 // 5 . c a l c u l a t e the po s i t i o n

29 // the po s i t i o n on the curve = pointOnCurve & o f f s e t s = offsetFromCurve

30 carve : : geom : : vector<3> t r a n s l a t e = Cros sSec t i onPo int s [pos] +

loca lPlacementMatr ix [pos] ⇤ offsetFromCurve [pos] ;

31 carve : : math : : Matrix ob j e c t p lacement mat r ix pos = convertCurveOr ientat ion

(d i rec t ionsOfCurve [pos] , f i x e d a x i s v e r t i c a l , t r a n s l a t e) ;

32 ob j ec t p lacement matr ix . push back (ob j e c t p lacement mat r ix pos) ;

33 }

A.6. CrossSectionPoints 45

A.6 CrossSectionPoints

Listing A.6: CrossSectionPoints

1

2 // 1 . Save the po int and d i r e c t i o n in new vec to r

3 p o i n t s f o r t e s s e l l a t i o n . push back (Cros sSec t i onPo int s [j]) ;

4 d i r e c t i o n f o r t e s s e l l a t i o n . push back (d i rec t ionsOfCurve [j]) ;

5

6 // 2 . Save Cros sSec t i ons

7 std : : vector<std : : vector<carve : : geom : : vector<2> > >& compos i t eP ro f i l e =

paths [j] ;

8 std : : vector<std : : vector<carve : : geom : : vector<3> > > Tcompos i t ep ro f i l e ;

9 f o r (i n t w = 0 ; w < compos i t ePro f i l e . s i z e () ; ++w)

10 {
11 std : : vector<carve : : geom : : vector<2> >& loop = compos i t eP ro f i l e [w] ;

12 std : : vector<carve : : geom : : vector<3>> Tloop ;

13 f o r (i n t k = 0 ; k < loop . s i z e () ; ++k)

14 {
15 carve : : geom : : vector<2>& point = loop [k] ;

16

17 carve : : geom : : vector<3> Tpoint = objec t p lacement matr ix [j] ⇤ (carve : :

geom : :VECTOR(po int . x , po int . y , 0)) ;

18 Tloop . push back (Tpoint) ;

19 }
20 Tcompos i t ep ro f i l e . push back (Tloop) ;

21 }
22

23 p a t h s f o r t e s s e l l a t i o n . push back (Tcompos i t ep ro f i l e) ;

24

25 // 3 . increment based on i t s p o s i t i o n on the d i r e c t r i x

26 ++j ;

A.7. Factors for Interpolation 46

A.7 Factors for Interpolation

Listing A.7: Factors for interpolation

1 //Save the po int in the curve in the new vec to r

2 p o i n t s f o r t e s s e l l a t i o n . push back (Bas isCurvePoints [i]) ;

3 d i r e c t i o n f o r t e s s e l l a t i o n . push back (Bas i sPo in tD i r e c t i on [i]) ;

4

5 // c a l c u l a t e the d i r e c t i o n o f the po int (I n t e r p o l a t e with the pointOnCurve

be f o r e and a f t e r that po int)

6 i n t d i r e c t i o n S i z e = d i r e c t i o n f o r t e s s e l l a t i o n . s i z e () �1;
7 i n t l a s tPo i n t = p o i n t s f o r t e s s e l l a t i o n . s i z e () �1;
8

9 double t o t a lD i s t an c e =

10 d i s t ance (Cros sSec t i onPo int s [j � 1] , Cros sSec t i onPo int s [j]) ;

11

12 double f a c t o rBe f o r e =

13 (d i s t ance (Cros sSec t i onPo int s [j � 1] , Bas isCurvePoints [i])) / t o t a lD i s t an c e

;

14 double f a c t o rA f t e r =

15 (d i s t ance (Bas isCurvePoints [i] , Cros sSec t i onPo int s [j])) / t o t a lD i s t anc e ;

A.8. Interpolation 47

A.8 Interpolation

Listing A.8: Interpolation

1 // 1 . i n t e r p o l a t e OffsetsFromCurve

2 carve : : geom : : vector<3> Iof f setFromCurve = offsetFromCurve [j � 1] ⇤
f a c t o rA f t e r + offsetFromCurve [j] ⇤ f a c t o rBe f o r e ;

3

4 // Ca l cu la t e Matr ices

5 // 2 . l o ca l p l a c ement

6 carve : : math : : Matrix localm = placementConverter�>
ca l cu la teCurveOr i entat ionMatr ix (Bas i sPo in tD i r e c t i on [i] ,

f i x e d a x i s v e r t i c a l) ;

7

8 // 3 . c a l c u l a t e the po s i t i o n

9 // the po s i t i o n on the curve = pointOnCurve

10 // the o f f s e t s = offsetFromCurve

11 carve : : geom : : vector<3> t r a n s l a t e = BasisCurvePoints [i] + localm ⇤
Iof f setFromCurve ;

12 carve : : math : : Matrix ob j e c t p lacement mat r ix pos = convertCurveOr ientat ion

(Bas i sPo in tD i r e c t i on [i] , f i x e d a x i s v e r t i c a l , t r a n s l a t e) ;

13

14

15 // i n t e r p o l a t e p r o f i l e

16 // Informal p r opo s i t i on : f o r the I n t e r p o l a t i o n to work the p r o f i l e s o f

the Cros sSect ion be f o r e and a f t e r need to have the same amount o f

po in t s and loops .

17

18 std : : vector<std : : vector<carve : : geom : : vector<2> > >&

19 compos i t ePro f i l eBe f o r e = paths [j � 1] ;

20

21 std : : vector<std : : vector<carve : : geom : : vector<2> > >&

22 compos i t eP ro f i l eA f t e r = paths [j] ;

23

24 std : : vector<std : : vector<carve : : geom : : vector<3> > > Tcompos i t ep ro f i l e ;

25

26 f o r (i n t w = 0 ; w < compos i t ePro f i l eBe f o r e . s i z e () ; ++w)

27 {
28 std : : vector<carve : : geom : : vector<2> >& loopBefore =

compos i t ePro f i l eBe f o r e [w] ;

29 std : : vector<carve : : geom : : vector<2> >& loopAfte r =

compos i t eP ro f i l eA f t e r [w] ;

30

31 std : : vector<carve : : geom : : vector<3>> Tloop ;

32 f o r (i n t k = 0 ; k < l oopBe fore . s i z e () ; ++k)

A.8. Interpolation 48

33 {
34 carve : : geom : : vector<2>& pointBe fo re = loopBe fore [k] ;

35 carve : : geom : : vector<2>& po intAf t e r = loopAf te r [k] ;

36

37 carve : : geom : : vector<2> de l t apo i n t = carve : : geom : :VECTOR(

po in tAf t e r . x � po intBe fo re . x ,

38 po in tAf t e r . y � po intBe fo re . y) ;

39 carve : : geom : : vector<2> Tpoint2D = carve : : geom : :VECTOR(de l t apo i n t .

x ⇤ f a c t o rBe f o r e + po intBe fore . x ,

40 de l t apo i n t . y ⇤ f a c t o rBe f o r e + po intBe fore . y) ;

41

42 carve : : geom : : vector<3> Tpoint = ob j ec t p lacement mat r ix pos ⇤(
carve : : geom : :VECTOR(Tpoint2D . x ,

43 Tpoint2D . y , 0)) ;

44 Tloop . push back (Tpoint) ;

45 }
46 Tcompos i t ep ro f i l e . push back (Tloop) ;

47 }
48

49 p a t h s f o r t e s s e l l a t i o n . push back (Tcompos i t ep ro f i l e) ;

A.9. Tessellation 49

A.9 Tessellation

Listing A.9: Tessellation

1

2 s i z e t num vert i ce s = body data�>getVertexCount () ;

3 i n t PFTS = p a t h s f o r t e s s e l l a t i o n . s i z e () �1;
4 f o r (i n t i = 0 ; i < PFTS ; ++i)

5 {
6 f o r (i n t j = 0 ; j < ppoints � 1 ; ++j)

7 {
8 body data�>addFace (i ⇤ ppo ints + j , i ⇤ ppoints + j + 1 , (i + 1) ⇤

ppoints + j) ;

9 body data�>addFace (i ⇤ ppo ints + j + 1 , (i + 1) ⇤ ppo ints + j , (i +

1) ⇤ ppoints + j + 1) ;

10 }
11 }
12

13 // c l o s e the f i r s t p o s i t i o n s o f the body

14 body data�>addFace (0 , ppo ints � 1 , ppo ints) ;

15

16 // c l o s e the body

17 i n t c l o s ingBodyVer t i c e s = num vert i ce s / ppo ints ;

18 f o r (i n t i i = 1 ; i i < c l o s ingBodyVer t i c e s � 1 ; ++i i)

19 {
20 body data�>addFace (i i ⇤ppoints , i i ⇤ ppoints � 1 , (i i +1)⇤ ppoints � 1) ;

21 body data�>addFace ((i i + 1) ⇤ppoints , i i ⇤ppoints , (i i + 1) ⇤ ppo ints �
1) ;

22 }
23

24 // c l o s e f r on t cap

25 f o r (i n t j j = 0 ; j j < ppo ints � 2 ; ++j j)

26 {
27 body data�>addFace (0 , j j + 1 , j j + 2) ;

28 }
29

30 // c l o s e back cap

31 i n t BackCapVertex = num vert i ce s � ppoints ;

32 f o r (i n t j j = BackCapVertex ; j j < num vert i ce s ; ++j j)

33 {
34 i n t l a s t = num vert i ce s � 1 ;

35 body data�>addFace (l a s t , j j � 1 , j j � 2) ;

36 }

A.10. Example 1 50

A.10 Example 1

Rectangle example

1 ISO�10303�21;
2 HEADER;

3 FILE DESCRIPTION((’ ’) , ’ 2 ; 1 ’) ;

4 FILE NAME(’ ’ , ’ 2019�03�20T15 : 5 6 : 2 1 ’ , (’ ’) , (’ ’) , ’ Bui ldingSmart I f cK i t by

Cons t ruc t i v i t y ’ , ’ I fcDoc 1 2 . 0 . 0 . 0 ’ , ’ ’) ;

5 FILE SCHEMA((’ IFC4X3 RC1 ’)) ;

6 ENDSEC;

7 DATA;

8

9 #1= IFCPROJECT(’ 0xScRe4drECQ4DMSqUjd6d ’ ,#2 , ’ proxy with t e s s e l l a t i o n ’ , $, $,

$, $,(#3) ,#4) ;

10 #2= IFCOWNERHISTORY(#6,#7,$, .ADDED. ,1320688800 , $, $,1320688800) ;

11 #3= IFCGEOMETRICREPRESENTATIONCONTEXT($, ’Model ’ , 3 , 1 . 0E�05,#8,$) ;

12 #4= IFCUNITASSIGNMENT((#10 ,#11)) ;

13 #6= IFCPERSONANDORGANIZATION(#12 ,#13 ,$) ;

14 #7= IFCAPPLICATION(#13 , ’ 1 . 0 ’ , ’ IFC text ed i t o r ’ , ’ i fcTE ’) ;

15 #8= IFCAXIS2PLACEMENT3D(#14 ,$, $) ;

16 #9= IFCGEOMETRICREPRESENTATIONSUBCONTEXT(’Body ’ , ’Model ’ , 0 , $, $, $,#3 ,$, .

MODELVIEW. , $) ;

17 #10= IFCSIUNIT (⇤ , .LENGTHUNIT. , . MILLI . , .METRE.) ;

18 #11= IFCCONVERSIONBASEDUNIT(#16 , .PLANEANGLEUNIT. , ’ degree ’ ,#17) ;

19 #12= IFCPERSON($, ’ ’ , ’ ’ , $, $, $, $, $) ;

20 #13= IFCORGANIZATION($, ’ buildingSMART In t e r n a t i o n a l ’ , $, $, $) ;

21 #14= IFCCARTESIANPOINT((0 . , 0 . , 0 .)) ;

22 #16= IFCDIMENSIONALEXPONENTS(0 , 0 , 0 , 0 , 0 , 0 , 0) ;

23 #17= IFCMEASUREWITHUNIT(IFCPLANEANGLEMEASURE(0 .017453293) ,#20) ;

24 #20= IFCSIUNIT (⇤ , .PLANEANGLEUNIT. , $, .RADIAN.) ;

25

26 #5= IFCRELAGGREGATES(’ 2YBqaV 8L15eWJ9DA1sGmT ’ , $, $, $,#1 ,(#23)) ;

27 #22= IFCBUILDINGELEMENTPROXY(’ 1kTvXnbbzCWw8lcMd1dR4o ’ , $, ’P�1 ’ , ’ sample

proxy ’ , $,#24 ,#19 ,$, $) ;

28

29 #24= IFCLOCALPLACEMENT(#26,#27) ;

30 #26= IFCLOCALPLACEMENT($,#28) ;

31 #27= IFCAXIS2PLACEMENT3D(#29 ,$, $) ;

32 #28= IFCAXIS2PLACEMENT3D(#14 ,$, $) ;

33 #29= IFCCARTESIANPOINT((1 0 0 0 . , 0 . , 0 .)) ;

34 #23= IFCBUILDING(’ 2FCZDorxHDT8NI01kdXi8P ’ , $, ’ Test Bui ld ing ’ , $, $,#26 ,$, $, .

ELEMENT. , $, $, $) ;

35

A.10. Example 1 51

36 #25= IFCRELCONTAINEDINSPATIALSTRUCTURE(’ 2TnxZkTXT08eDuMuhUUFNy ’ , $, ’

Phys i ca l model ’ , $,(#22 ,#373) ,#23) ;

37

38 #19= IFCPRODUCTDEFINITIONSHAPE($, $,(#15)) ;

39

40 #15= IFCSHAPEREPRESENTATION(#9 , ’Body ’ , ’ T e s s e l l a t i o n ’ ,(#18)) ;

41

42 #18= IFCSECTIONEDSOLIDHORIZONTAL(#97 ,(#98 ,#98) ,(#103 ,#104) , .T.) ;

43 #103= IFCDISTANCEEXPRESSION(0 . , $, $, $, .T.) ;

44 #104= IFCDISTANCEEXPRESSION(4320 . , $, $, $, .T.) ;

45 #98= IFCRECTANGLEPROFILEDEF(.AREA. , ’ 1m x 2m re c t ang l e ’ , $, 1 0 0 0 . , 2 0 0 0 .) ;

46

47 #373= IFCALIGNMENT(’ 0oo95mAXjAB8ZG7EUGVOwd ’ , $, ’ Alignment ’ , $, $,#602 ,$

,#97 , .NOTDEFINED.) ;

48 #602= IFCLOCALPLACEMENT($,#604) ;

49 #604= IFCAXIS2PLACEMENT3D(#14 ,#610 ,#611) ;

50 #610= IFCDIRECTION((0 . , 0 . , 1 .)) ;

51 #611= IFCDIRECTION((1 . , 0 . , 0 .)) ;

52 #97= IFCALIGNMENTCURVE(#489 ,#490 ,$) ;

53 #489= IFCALIGNMENT2DHORIZONTAL($,(#541)) ;

54 #490= IFCALIGNMENT2DVERTICAL((#543)) ;

55

56 #541= IFCALIGNMENT2DHORIZONTALSEGMENT(.T. , ’ 61+25.00 ’ , ’ 63+72.14 ’ ,#595) ;

57 #543=IFCALIGNMENT2DVERSEGLINE(.T. , $, $, 0 . , 4 3 2 0 . , 1 9 0 . 5 6 , 0 . 0 5 7 9) ;

58 #595= IFCLINESEGMENT2D(#597 ,�4.95408690777971 ,4320.) ;

59 #597= IFCCARTESIANPOINT((0 . , 0 .)) ;

60

61 ENDSEC;

62

63 END�ISO�10303�21;

BIBLIOGRAPHY 52

Bibliography

[1] based on the Open Infra Platform code. https://github.com/tumcms/

Open-Infra-Platform/tree/development/Core/src/IfcGeometryConverter.

[2] Industry Foundation Classes (IFC) for data sharing in the construction and facility

management industries. ISO, Geneva, 2013.

[3] J. Amann and A. Borrmann. Creating a 3D-BIM-compliant road design based on IFC

alignment originating from an OKSTRA-accordant 2D road design using the TUM Open

Infra Platform and the OKSTRA class library. 2015.

[4] J. Amann, F. Schöttl, D. Singer, M. Kern, A. Widner, P. Geisler, D. Below, H. Hecht,

L. Coetzee, C. andDuckerschein, R. Schill, M. Werner, M. Böckle, N. Gupta, Ahmed

Mustafa, Štefan Markič, and André Borrmann. Tum open infra platform 2019, (2019).

[5] F. Bensaali, A. Amira, I.S. Uzun, and A. Ahmedsaid. An FPGA implementation of

3D a�ne transformations. In 10th IEEE International Conference on Electronics, Cir-

cuits and Systems, 2003. ICECS 2003. Proceedings of the 2003, pages 715–718, Sharjah,

United Arab Emirates, 2003. IEEE.

[6] André Borrmann, Julian Amann, Tim Chipman, Juha Hyvärinen, Thomas Liebich,

Sergej Muhič, Laura Mol, Jim Plume, and Paul Scarponcini. IFC Infra Overall Ar-

chitecture Project: Documentation and Guidelines. Technical report, buildingSMART

International, 2017. (Accessed: 2020-05-05).

[7] André Borrmann. Building information modeling: technology foundations and industry

practice. Springer Berlin Heidelberg, 2018.

[8] André Borrmann, Sergej Muhic, Juha Hyvärinen, Tim Chipman, Stefan Jaud,

Christophe Castaing, Claude Dumoulin, Thomas Liebich, and Laura Mol. The IFC-

Bridge project – Extending the IFC standard to enable high-quality exchange of bridge

information models. pages 377–386, July 2019.

[9] buildingSMART International. IfcAlignment instance diagram. http://docs.

buildingsmartalliance.org/IFC4x2 Bridge/link/alignment-attributes.htm. (Accesed:

2020-09-02).

https://github.com/tumcms/Open-Infra-Platform/tree/development/Core/src/IfcGeometryConverter
https://github.com/tumcms/Open-Infra-Platform/tree/development/Core/src/IfcGeometryConverter
http://docs.buildingsmartalliance.org/IFC4x2_Bridge/link/alignment-attributes.htm
http://docs.buildingsmartalliance.org/IFC4x2_Bridge/link/alignment-attributes.htm

BIBLIOGRAPHY 53

[10] buildingSMART International. IfcAlignment2DHorizontalSegment. https:

//standards.buildingsmart.org/IFC/DEV/IFC4 2/FINAL/HTML/schema/

ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm. (Ac-

cesed: 2020-09-04).

[11] buildingSMART International. IfcAlignment2DVertticalSegment. https:

//standards.buildingsmart.org/IFC/DEV/IFC4 2/FINAL/HTML/schema/

ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm. (Accesed:

2020-09-04).

[12] buildingSMART International. IfcAlignmentCurve. https://standards.buildingsmart.

org/IFC/DEV/IFC4 2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/

ifcalignmentcurve.htm. (Accesed: 2020-02-15).

[13] buildingSMART International. IfcSectionedSolidHorizontal. https:

//standards.buildingsmart.org/IFC/DEV/IFC4 2/FINAL/HTML/schema/

ifcgeometricmodelresource/lexical/ifcsectionedsolidhorizontal.htm. (Accesed: 2020-

02-15).

[14] buildingSMART International. IfcSolidModel. https://standards.buildingsmart.

org/IFC/DEV/IFC4 2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/

ifcsolidmodel.htm. (Accesed: 2020-09-03).

[15] C. A. Coetzee. Sketch-BasedAlignmentDesign, 2019. Technische Universität München,

Lehrstuhl für Computergestütze Modellierung.

[16] Sebastian Esser and Korbinian Aicher. Ifcbridge model generation using visual program-

ming. In 31. Forum Bauinformatik: 11.–13. September 2019 in Berlin. Proceedings, page

101. Universitätsverlag der TU Berlin, 2019.

[17] Michael P. Gallaher, Alan C. O’Connor, John L. Dettbarn, Jr., and Linda T. Gilday.

Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry.

Technical Report NIST GCR 04-867, National Institute of Standards and Technology,

August 2004.

[18] Helge Hecht and Štefan Jaud. TUM OpenInfraPlatform: The Open-Source BIM Visu-

alisation Software. 2019.

[19] Štefan Jaud, Andreas Donaubauer, Otto Heunecke, and André Borrmann. Georefer-

encing in the context of building information modelling. Automation in Construction,

118:103211, 2020.

[20] Mikael Laakso and Arto Kiviniemi. The IFC Standard - A Review Of History, Develop-

ment, And Standardization.

https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignmentcurve.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignmentcurve.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignmentcurve.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsectionedsolidhorizontal.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsectionedsolidhorizontal.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsectionedsolidhorizontal.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsolidmodel.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsolidmodel.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/ifcgeometricmodelresource/lexical/ifcsolidmodel.htm

BIBLIOGRAPHY 54

[21] Štefan Markič. Ifc-bridge: Previous initiatives and their proposals. In Proc. of the 29th

Forum Bauinformatik, Dresden, Germany, 2017.

[22] R. Mundani. Bau- und Umweltinformatik 2 Vorlesung Teil 4: Lineare Transformationen.

Technische Universität München, Lehrstuhl für Bauinformatik, 2019.

[23] Matthias Weise, Peter Katranuschkov, Thomas Liebich, and Raimar J Scherer. Struc-

tural analysis extension of the ifc modelling framework. Journal of Information Tech-

nology in Construction (ITcon), 8(14):181–200, 2003.

[24] Ayako Yasaka, Hiromi Kataoka, Kou Kasima, Makoto Takeda, Masato Usami,

Nobuyoshi Yabuki, Norihide Matumoto, Satoru Furukawa, Yoshihiro Mogi, and Yoshi-

nobu Adachi. The development of the reinforced-concrete structural model on ifc specifi-

cation. In Proc. of the joint international conference on computing and decision making

in civil and building engineering, pages 3116–25, 2006.

LIST OF FIGURES 55

List of Figures

1.1 IFC Alignment as basis for the development of IFC-Bridge, IFC-Road and

IFC-Tunnel projects. Retrieved from Amann et al.[3]. 2

1.2 IFC timeline. Retrieved from Laakso et al. [20] 3

2.1 IfcSectionedSolidHorizontal. Retrieved from Borrmann et al. [6] 6

2.2 IfcSectionedSolidHorizontal inheritance diagram. Based on The ifcAlignment

instance diagram from the IFC4x2 Release.[9] 7

2.3 Open Infra Platform sofware components. Retrieved from Hecht et al. [18] . 8

2.4 Seven-parameter Helmert transformation of the point Pi (see equation 2.6)

with (x,y,z) as origin CS and (u,v,w) as the new CS with the parameters

(tu, tv, tw,�,↵,�, �). Retrieved from Jaud et al.[19] 11

4.1 BasisCurvePoints (BCP) and CrossSectionPoints (CSP) on the directrix rep-

resented by an IfcAlignmentCurve . 21

4.2 Nassi-Schneidermann diagramm for merging the lists with PoFT: points for tessellation,

PaFT: paths for tessellation, DFT: directions for tessellation 22

4.3 Two profiles placed at the points for tessellation along the the directrix with

P: points for tessellation , Pp: Profile points. 25

5.1 Visualization of IfcSectionedSolidHorizontal with the profile extruded along a

line-segment. 28

5.2 Visualization of IfcSectionedSolidHorizontal with two profiles extruded along

on a line-segment. 29

5.3 Visualization of IfcSectionedSolidHorizontal with the profile extrudet along a

curve-segment . 30

5.4 Visualization of IfcSectionedSolidHorizontal with a profile extruded along a

curve-segment and a line-segment . 31

LIST OF TABLES 56

List of Tables

4.1 Table of faces required to create the outer shell. 26

Declaration

With this statement I declare, that I have independently completed this Bachelor’s thesis.

The thoughts taken directly or indirectly from external sources are properly marked as such.

This thesis was not previously submitted to another academic institution and has also not

yet been published.

München, 15. September 2020

Carlos Mauricio Platteau

Carlos Mauricio Platteau

	Introduction
	Motivation
	Related Work
	Problem Statement
	Objective
	Thesis Structure

	Theoretical Framework
	Industry Foundation Classes (IFC)
	IfcAlignmentCurve
	IfcSectionedSolidHorizontal

	OpenInfraPlatform (OIP)
	Linear Transformations
	Scaling
	Translation
	Rotation

	Helmert Transformation

	Method
	Informal Propositions
	Design
	Testing

	Implementation
	Helper functions
	IfcSectionedSolidHorizontal
	Directrix
	CrossSections
	CrossSectionPositions
	Merge Lists
	Interpolation
	Vertices
	Tessellation

	Use Cases
	Rectangle Profile
	Variable Profile
	Extrusion along a curve segment
	Extrusion along a curve with a line segment
	Unsupported Profiles

	Discussion
	Evaluation of the Use Cases
	Evaluation of Methods

	Conclusion
	Summary of Findings
	Future Works

	Code
	ConvertCurveOrientation
	CalculatePositionOnAndDirectionOfBaseCurve
	Directrix
	CrossSections
	CrossSectionPositions
	CrossSectionPoints
	Factors for Interpolation
	Interpolation
	Tessellation
	Example 1

	List of Figures
	List of Tables

