
TUM School of Management
Technische Universität München

Smart Factory in the Automotive Industry:

Design of Novel Flexible Layouts and

Data-Driven Sequencing for Traditional Assembly Lines

Andreas Michael Hottenrott
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Abstract

The Industry 4.0 revolution is both a major challenge and a great opportunity for au-

tomotive manufacturers. By transforming their final assembly into a smart factory,

manufacturers can meet the demand for increasing vehicle heterogeneity arising from

the diffusion of alternative drivetrain technologies. To remain competitive in a dynamic,

uncertain market environment, an automotive smart factory has to achieve an optimal

balance between efficiency, flexibility, and robustness. Data-driven advanced planning

algorithms are a key enabler in such a smart factory. On top of that, major automotive

players recently started to consider a precedent break with the concept of assembly line

production, which has been the status quo in this industry for the past century. They

envision novel flexible assembly layouts, in which automated guided vehicles transport

bodyworks on individual routes between assembly stations. The greater flexibility in this

reinvented final assembly allows to cope better with high levels of vehicle heterogeneity.

In this thesis, we study the design and configuration of flexible assembly layouts and

compare them to conventional assembly lines. We find that flexible assembly layouts have

efficiency advantages of up to 30% compared to assembly lines. These advantages come

at the price of an increased work in progress and a greater complexity when planning and

controlling operations. We show that flexible assembly layouts are especially beneficial

when facing high vehicle heterogeneity or changing demand mixes, e.g., during ramp-ups.

Furthermore, we develop a data-driven robust sequencing approach for conventional

assembly lines, targeted at improving sequence stability. In light of decreasing in-house

production, stable supplier signals become of utmost importance for a reliable just-in-

sequence part supply. We show that our robust sequencing approach outperforms best

practice approaches from industry and literature regarding this objective.

This thesis aims at supporting automotive manufacturers in the vital transformation

to a smart factory. We seek to build bridges between academic research and industrial

practice. By providing quantifiable scientific evidence on future production design, the

insights from this thesis constitute a valuable guidance for automotive practitioners. For

academics, the presented problems raise challenging methodological questions that open

new fields for scientific research.
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1 Introduction

The Industry 4.0 revolution is reshaping various industries. Core element of this rev-

olution is the smart factory, a cyber-physical production system in which intelligent,

computer-based algorithms plan, control, and execute the physical operations on the

shop floor. The smart factory is enabled by recent advances in key technolgies, such

as robotics, big data processing, artificial intelligence, and the Internet of Things (IoT)

(Olsen & Tomlin, 2020). By transforming their production facility into a smart factory,

manufacturers aim to increase efficiency, flexibility, speed, and quality while reducing

cost1. Even more intriguingly, they expect to alleviate the tensions between these tra-

ditionally contradicting performance targets.

Several distinguishing characteristics affect the smart factory transformation in the

automotive industry. For years, automotive manufacturers have been facing increasing

vehicle heterogeneity. The demand for customized vehicles rises continuously, especially

in the premium market. Original equiment manufacturers (OEMs) have reacted to this

trend by offering a large number of models, engines, and selectable options (Meyr, 2004;

Pil & Holweg, 2004). Major OEMs produce more than 30 models, each with countless

configuration possibilities. For the Audi A3 alone, 1038 theoretical configuration possib-

lities exist2. Recently, the diffusion of alternative drivetrain technologies in the product

mix adds a new complexity to this vehicle heterogeneity. Battery-powered electric en-

gines seem to be the prevalent technology in the future, yet internal combustion engines

are still most common. In addition, OEMs develop hybrids and hydrogen-powered ve-

hicles. All these technologies require significantly different assembly tasks, tools, and

worker qualifications. For example, the battery assembly for an electric vehicle differs

considerably from the assembly of an internal combustion engine, and different safety

standards apply. Even though, the demand for electric vehicles is ramping up, the tran-

sition is slow and uncertain. A future market shift towards yet another technology,

e.g., from battery-powered to hydrogen-powered, may occur. Therefore, OEMs have to

1https://www.mckinsey.de/∼/media/McKinsey/Locations/Europe and Middle East/Deutschland/News/
Presse/2017/2017-03-31/dcc brochure may 2017.pdf (published: 31/03/2017, retrieved: 09/12/2020)

2https://www.automotivelogistics.media/12070.article (published: 15/12/2014, retrieved: 09/12/2020)

1

https://www.mckinsey.de/~/media/McKinsey/Locations/Europe%20and%20Middle%20East/Deutschland/News/Presse/2017/2017-03-31/dcc_brochure_may_2017.pdf
https://www.mckinsey.de/~/media/McKinsey/Locations/Europe%20and%20Middle%20East/Deutschland/News/Presse/2017/2017-03-31/dcc_brochure_may_2017.pdf


1 Introduction

plan carefully and prepare for a long phase in which vehicles with different drivetrain

technologies are produced in parallel.

Another distinguishing characteristic of the automotive industry is the tough market

environment. Increased environmental awareness and tight regulations put pressure on

the internal combustion engine. Due to overcapacities and low margins, the industry is

currently going through a phase of consolidation. News about mergers and cooperations

are omnipresent3,4. At the same time, new players enter the market for electric vehicles,

e.g., Tesla and Google5. Especially in Germany, there is fear that the local OEMs have

missed a timely adaption and now face competitive disadvantages compared to the tech

giants from the U.S and new players from China.

In order to offer a high degree of vehicle heterogeneity without loosing their com-

petitive advantage, OEMs have outsourced the production of standard parts while only

retaining competencies in key technologies, e.g., engines. The proportion of in-house pro-

duction has declined for many years and reached levels of merely 30% for major OEMs6.

However, since space is a notoriously scarce resource in an automotive plant, OEMs

seek to avoid inventories. They rely on just-in-time (JIT) or even just-in-sequence (JIS)

supply of the required parts instead. For this, a close alignment with the suppliers and

robust planning approaches are crucial, because otherwise any disruption in material

supply immediately impairs production at the OEM.

Up to now, improving efficiency has been the eminent objective of automotive OEMs.

Recently, they realize that flexibility and robustness are as important to ensure future

competitiveness, because both enable adapting to changing, uncertain market environ-

ments and to cope with disruptions. Thus, an automotive smart factory has to be de-

signed to achieve the optimum for all three objectives. From an operations management

point of view, developing intelligent, data-driven planning algorithms is the primary

success factor in this smart factory. On top of that, major players, such as Audi and

Volkswagen, consider to break with the precedent concept of assembly line production7,

which has been the status quo in the automotive industry for the past century. They

envision new, innovative layouts, so called flexible assembly layouts (FALs), to replace

3https://www.ft.com/content/92ff16ec-2162-11ea-92da-f0c92e957a96
(published: 18/12/2019, retrieved: 09/12/2020)

4https://www.handelsblatt.com/english/companies/autonomous-plans-vw-bmw-and-daimler-hold-talks-
on-cooperation-in-self-driving-cars/23909322.html (published: 25/01/2019, retrieved: 09/12/2020)

5https://www.spiegel.de/international/business/will-tesla-and-google-kill-the-german-car-a-
1293415.html (published: 04/11/2019, retrieved: 09/12/2020)

6https://www.manager-magazin.de/unternehmen/autoindustrie/die-groessten-autozulieferer-a-
1108918.html (published: 22/08/2016, retrieved: 09/12/2020)

7https://www.audi-mediacenter.com/en/audi-techday-smart-factory-7076/modular-assembly-7078
(published: 17/11/2016, retrieved: 09/12/2020)
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1.1 Automotive manufacturing process

parts of the assembly line. In these layouts, automated guided vehicles (AGVs) trans-

port bodyworks on individual routes between assembly stations8. The greater flexibility

allows to cope better with highly heterogeneous vehicles compared to conventional line

assembly layouts (LALs).

The research presented in this thesis aims at supporting OEMs in the transformation

to a smart factory. We design and configure FALs for the assembly of heterogeneous ve-

hicles, and we compare them to conventional LALs. Moreover, we develop a data-driven

planning approach to increase the robustness of sequence planning for LALs. To embed

our research questions into daily operations, we first detail the automotive manufac-

turing process in Section 1.1, and introduce the planning problems for the automotive

assembly in Section 1.2.

1.1 Automotive manufacturing process

The automotive manufacturing process consists of four consecutive production stages:

the press shop, the body shop, the paint shop, and the final assembly (cf. Figure 1.1).

In the press shop, sheet metal parts are produced. In the body shop, these sheet metal

parts are jointed together to form the vehicles’ bodyworks, which are painted in the

subsequent paint shop. The final assembly is the last production stage, where engine,

seats, and all other components are installed.

Usually, the press shop is physically decoupled from the other stages, because the sheet

metal parts are produced in batches for several shifts. The remaining stages operate in a

mixed-model flow fashion. They are sequentially arranged, only separated by resequenc-

ing buffers. Especially in-between paint shop and final assembly, large resequencing

buffers exist, e.g., automated storage and retrieval systems. While the processes in the

press shop, body shop, and paint shop are highly automated and standardized, manual

labor is still predominant in the final assembly. The complexity of the vehicles’ het-

erogeneity mainly affects this last production stage, because most configuration options

occur there. Thus, we focus our attention on the final assembly in this thesis.

1.1.1 Assembly in line assembly layouts

Traditionally, most OEMs operate LALs in their final assemblies. Due to the serial

arrangement, the vehicles have to run through all stations in the same sequence and

pace, and workers have to perform tasks in a predefined order. The line is usually

8https://www.bcg.com/de-de/publications/2018/flexible-cell-manufacturing-revolutionize-
carmaking.aspx (published: 08/10/2018, retrieved: 09/12/2020)
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Body shop Paint shop Final assembly

BufferBuffer

Press shop

Figure 1.1: Production stages of the automotive manufacturing process.

divided into multiple segments, which are decoupled by small buffers. A visualization

of this status quo is given in Figure 1.2a. Since OEMs assemble multiple models in

a mixed-model fashion, such LALs are also referred to as mixed-model assembly lines

(MMALs).

The uniform, paced workflow is both an advantage and a disadvantage of LALs. As an

advantage, it allows for JIS stocking at stations and simplifies planning and control. The

transportation effort is minimal, because stations are positioned right next to each other.

The uniform workflow permits employing a highly efficient but inflexible transportation

system, e.g., a conveyor. Consequently, LALs are best suited when producing homoge-

neous vehicles in high volumes. This is reflected in the famous quote by Henry Ford, the

inventor of the automotive assembly line in 1913, who once said: “any customer can have

a car painted any color that he wants so long as it is black”9. Indeed, Ford’s Model T

was highly standardized at that time, and therefore was a perfect fit for assembly line

production. When producing heterogeneous vehicles, in contrast, the uniform, paced

workflow turns into a disadvantage. Heterogeneous vehicles require different workloads

at the stations which, in combination with the definite cycle time, causes work overloads

at some stations and idle times at others. As an example, electric vehicles cause high

workloads at the battery pack assembly station, whereas conventional vehicles have idle

times. These imbalances result in a low efficiency and may deteriorate the output rate.

OEMs exert a great deal of effort in alleviating these imbalances, e.g., by sequencing ve-

hicles with alternating workloads consecutively, allowing workers to drift into subsequent

stations, and allocating utility workers whenever work overloads occur.

1.1.2 Assembly in flexible assembly layouts

FALs break with the concept of a uniform, paced workflow. Here, the stations are

neither arranged serially nor interconnected by a paced transportation system. OEMs

employ AGVs instead. The AGVs fulfill two purposes. First, they transport the vehicles

between stations, and second, they serve as assembly platforms. Due to the flexibility of

9Ford H. (1922). My life and work.
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Figure 1.2: Alternative layouts for the automotive assembly.

the AGVs, each vehicle can take a unique route through the layout visiting only stations

that are required for its assembly. All other stations are bypassed, e.g., a vehicle with an

internal combustion engine bypasses the battery pack assembly station. Since FALs are

not paced by a cycle time, the AGVs may enter and exit the stations at any point in time.

For instance, a four-door vehicle spends more time at the door assembly station than a

two-door vehicle. However, since the stations are not serially connected, transportation

between stations requires time. Consequently, the transportation effort is higher than

in an LAL.

In line with the smart factory vision, the AGVs and the stations are integrated in a

digital network and continuously report their statuses to a central control that steers

the movements of the AGVs in real time. This central control can exploit two types

of flexibility. Tasks that do not require a fixed order allow for operation flexibility, i.e.,

modifying the task sequence (process plan) in real time. For example, the installations

of sunroof and headlights are independent. In case the sunroof station is occupied, the

vehicle can proceed with the headlights assembly first. Routing flexibility exists whenever

the same task can be performed at multiple stations and the routing decision is made

in real time. Because manual labor is predominant in the automotive assembly, the

duplication of tasks to multiple stations requires limited investments.

LALs and FALs manifest a fundamental difference in the worker-to-vehicle relation.

While workers have to wait for vehicles to arrive at their station in LALs, vehicles wait at

stations for workers to become available in FALs. Consequently, OEMs expect that FALs

achieve higher efficiency and output levels, especially when producing heterogeneous

vehicles from changing demand mixes. The waiting vehicles, however, are likely to

induce higher work in progress (WIP). Moreover, operation flexibility can cause worker

confusion. Since the task sequence is not predefined, a worker might be confronted with

different assembly states when performing the same task on different vehicles. Routing

flexibility complicates material supply. JIS stocking is impossible, because it may only
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be decided in real time at which station a task is performed. Instead, part kits have to

be prepared in advance and are transported together with the vehicles on the AGVs.

Another disadvantage of FALs is the increased complexity when planning and controlling

operations.

In light of these advantages and disadvantages, OEMs seek to exploit the benefits of

both layout types by combining FALs and LALs in the final assembly. They plan to

replace the LAL by an FAL only in those segments in which the heterogeneity of the

vehicles is particularly high, e.g., the assembly of the power train. In segments with

low vehicle heterogeneity, e.g., the windshield assembly, the LAL is not altered. As an

example, consider Figure 1.2b. The left and right segments are realized in an LAL,

whereas the middle segment is realized in an FAL.

1.2 Planning problems for the automotive assembly

Planning for the automotive assembly is carried out in a hierarchical fashion. On the

strategic level, the OEM decides on the layout design, whereas the assembly sequence

of vehicles is optimized on the operational level.

1.2.1 Strategic layout design for the automotive assembly

Strategic layout design is a long-term decision problem with a planning horizon of several

months or even years. Herein, the OEM decides on the number of stations, their positions

on the shop floor, and the assignment of tasks to stations. OEMs seek to anticipate lower-

level operations when optimizing the layout design, because any subsequent modification

of the layout is expensive. Due to the long planning horizon, however, input data is

unreliable, e.g., demand forecasts. Hence, OEMs aim for a flexible and robust layout.

OEMs differentiate between green-field and brown-field design. In green-field design,

a new assembly layout is formed from scratch, whereas an existing layout is modified in

brown-field design. Both scenarios are common for the automotive assembly.

1.2.2 Operational sequence planning for the automotive assembly

On the operational level, the OEM defines the assembly sequence of the vehicles produced

in a shift. The goal is to balance the workload over time and to avoid work overloads.

This can be achieved by sequencing vehicles with alternating workloads consecutively.

Work overloads are costly, because they cause production delays and/or require employ-
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ing utility workers. Moreover, the risk for quality defects rises when a worker faces high

workloads over a period of time.

Sequence planning is also crucial for the alignment between an OEM and its suppliers.

In order to enable a JIT or even JIS supply of the required parts, OEMs commit to a

sequence several days prior to production. This sequence is forwarded to the suppli-

ers (supplier signal) that produce the required parts and are responsible for a timely

delivery to the final assembly. This supplier alignment is referred to as pearl necklace

concept (Boysen, Scholl, & Wopperer, 2012; Meissner, 2010; Meyr, 2004), pearl chain

concept (Wagner & Silveira-Camargos, 2012), in-line vehicle sequencing (Inman, 2003),

or stabilized production (Müller, Lehmann, & Kuhn, 2020). The committed sequence is

essential for efficient operations both at the OEM and its suppliers. Hence, sequence

stability is of utmost importance.

1.3 Research objectives

The aim of this thesis is to design FALs for segments of the automotive assembly and

to develop a robust sequencing approach for LAL segments. We contribute to the re-

search on automotive smart factory concepts by developing data-driven optimization

approaches for planning problems affected by vehicle heterogeneity. Although the prob-

lems investigated in this thesis are typical for the automotive assembly, they are also

related to other industrial sectors in which heterogeneous products are manufactured,

e.g., aerospace. Specifically, we study the following research questions:

RQ 1: How to design and configure FALs for the automotive assembly?

Inspired by the smart factory concept and pressured by increasing vehicle heterogeneity

arising from the diffusion of alternative drivetrain technologies, major OEMs recently

envision FALs for the automotive assembly. Since this is a novel layout concept, verified

planning approaches neither exist in academia nor in industry. For a successful intro-

duction of FALs, however, OEMs require reliable design and configuration approaches.

Therefore, our first research question addresses the appropriate design and configuration

of an FAL for a segment of the automotive assembly. We deduce two subquestions:

RQ 1.A: How to strategically design FALs for the automotive assembly? A funda-

mental question is obviously how to design an FAL, i.e., how many stations are required,

where should the stations be placed on the shop floor, and which tasks should be as-

signed to which station. Because the application of FALs to the automotive assembly is

novel, OEMs are most interested in a green-field design approach.
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RQ 1.B: How to tactically configure FALs for the automotive assembly? On a tac-

tical planning level, OEMs face a flexibility configuration problem in an FAL. The OEM

has to decide on the exploitation of operation and routing flexibility as well as on an

appropriate WIP target for the FAL. Hereby, the OEM has to find the optimal bal-

ance between a low WIP on the one hand and sufficient flexibility to deal with various

unknown vehicle sequences on the operational level on the other hand. By exploiting

operation and routing flexibility, the OEM can reduce the WIP without compromising

operational performance. However, operation flexibility may cause worker confusion and

routing flexibility complicates material supply.

RQ 2: What are the advantages and disadvantages of FALs compared to LALs? For

which application scenarios are FALs superior to LALs?

FALs are vividly discussed in the automotive industry. However, it remains an open

question to which extend FALs improve the efficiency of automotive manufacturing com-

pared to conventional LALs. On the downside, FALs are expected to require a higher

WIP. It is crucial that OEMs are aware of this trade-off and have quantifiable insights

on it before deciding on the introduction of FALs in practice. Additionally, research on

appropriate application scenarios is required. It is yet unknown which drivers affect the

attractiveness of FALs. Automotive experts assume that FALs are especially beneficial

when facing high vehicle heterogeneity and changing demand mixes, e.g., during ramp-

ups. Ramp-ups become increasingly frequent due to shorter product life cycles, faster

technological innovations, and continuous market launches of new models (Michalos,

Makris, Papakostas, Mourtzis, & Chryssolouris, 2010). It is presumed that FALs enable

smoother, faster, and cheaper ramp-ups than LALs. Nevertheless, quantitative research

is required to confirm this hypothesis.

RQ 3: How to increase the robustness of sequence planning for conventional LALs?

Sequence planning is pivotal for OEMs that operate LALs or combinations of LALs

and FALs, especially when producing heterogeneous vehicles. For a reliable supplier

signal, stable sequences are important. In practice, though, sequence stability is non-

satisfying (Inman, 2003; Meissner, 2010). Often, the committed sequence has to be

changed in order to react to short-term disruptions (Lehmann & Kuhn, 2020; Müller et

al., 2020). Quality problems or missing parts may delay the arrival of certain vehicles at

the final assembly, such that they miss their scheduled sequence position. To maintain

a high efficiency, the resulting gap is filled by bringing succeeding vehicles forward.

These sequence alterations, however, may cause workload changes and potentially work
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overloads at the assembly stations in LAL segments. As a remedial measure, additional

sequence alterations are necessary, which further disturb material supply. Consequently,

OEMs require a robust sequencing approach that anticipates disruptions based on past

experience.

1.4 Thesis outline and contributions

This thesis is organized as a collection of three research papers that address the research

questions outlined in Section 1.3. We propose data-driven optimization approaches for

three planning problems on different hierarchical levels, i.e., at strategic design level in

Chapter 2, at tactical configuration level in Chapter 3, and at operational sequencing

level in Chapter 4. For each problem, the related literature is outlined in the respective

chapter. From a methodological perspective, we focus on mixed-integer (non-)linear

programming. We develop solution algorithms tailored to each individual problem, and

we contribute to a wide range of algorithmic concepts, both exact and heuristic. More

specifically, the organization and contributions of this thesis are as follows:

Chapter 2 discusses the strategic design of FALs. We investigate the optimal number of

stations, their locations, and the assignment of tasks to stations. In addition, we compare

the efficiency of FALs to LALs. The chapter thus targets research questions 1.A and 2.

The contributions are fourfold. First, we provide a classification of the decision problems

related to designing and operating FALs in the automotive assembly. Second, we provide

a mathematical representation of the FAL design problem, which comprises an integrated

station formation, station location, and flow allocation problem. Third, we develop an

exact decomposition-based solution algorithm and an iterative fix-optimize matheuristic

to solve problem instances. Fourth, we evaluate the effect of vehicle heterogeneity on

the efficiency of FALs and LALs in our computational study.

Chapter 3 studies the tactical configuration of FALs. We quantify the inherent ben-

efits of flexibility in FALs and compare worker utilization, output levels, and WIP to

conventional LALs. Thus, this chapter addresses research questions 1.B and 2. There

are five key contributions. First, we show analytically that operation and routing flexi-

bility can have a significant impact on the operational performance of FALs. Second, we

present a chance-constrained integer program that formalizes the flexibility configuration

problem in FALs. Third, we show how this problem can be decomposed into determin-

istic subproblems, and we develop a branch-and-price (B&P) framework to solve the

subproblems optimally. Fourth, we apply this framework to an extensive computational

study in order to evaluate the impact of FALs in automotive manufacturing. Fifth,
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we provide managerial insights on configuration options for different flexibility levers in

FALs by quantifying their effect on operational performance. Moreover, we compare the

performance of FALs to conventional LALs for both a stationary demand mix and the

ramp-up of electric vehicles.

In Chapter 4, we answer research question 3 by developing an operational robust car-

sequencing algorithm for conventional LALs. Our contributions are fourfold. First, we

formulate the robust car-sequencing problem as a mixed-integer non-linear program. Sec-

ond, we develop a branch-and-bound (B&B) algorithm that solves small-sized instances

optimally, and we derive tailored lower bounds that significantly improve the algorithmic

performance. Third, we propose a sampling-based adaptive large neighborhood search

(ALNS) metaheuristic, which builds on observations we extract from optimal B&B solu-

tions. Fourth, we solve the robust car-sequencing problem for a major European OEM,

using extensive real-world data. We validate the superiority of our approach compared

to the industry solution and an approach from literature.

Chapter 5 summarizes our findings with respect to the defined research questions,

presents a synthesis, and gives an outlook.

1.5 Included publications

The research presented in this thesis is based on three different papers that all have been

published in or submitted to selected A journals in the field of production management.

Each of the following chapters is based on one of these papers. Accordingly, this thesis

provides a comprehensive summary on designing FALs and on robust sequencing for

conventional LALs.

Chapter 2: Hottenrott, A., & Grunow, M. (2019). Flexible layouts for the mixed-

model assembly of heterogeneous vehicles. OR Spectrum, 41(4), 943-979.

https://doi.org/10.1007/s00291-019-00556-x

Chapter 3: Hottenrott, A., Schiffer, M., & Grunow, M. (2020). IoT-driven manufac-

turing in the automotive industry: An impact assessment of flexible assembly layouts.

Submitted for publication.

Chapter 4: Hottenrott, A., Waidner, L., & Grunow, M. (2020). Robust car sequenc-

ing for automotive assembly. European Journal of Operational Research.

https://doi.org/10.1016/j.ejor.2020.10.004
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2 Design of flexible assembly layouts for

the automotive assembly

This chapter is based on an article published as:

Hottenrott, A., & Grunow, M. (2019). Flexible layouts for the mixed-model assembly of

heterogeneous vehicles. OR Spectrum, 41(4), 943-979. https://doi.org/10.1007/s00291-

019-00556-x

Abstract

The increasing vehicle heterogeneity is pushing the widespread MMAL to its limit. The

paced, serial design is incapable of coping with the diversity in workloads and task

requirements. As an alternative, the automotive industry has started to introduce FALs

for segments of the assembly. In FALs, the stations are no longer arranged serially and no

longer linked by a paced transportation system but by AGVs. This chapter investigates

the initial design of such systems.

The FAL design problem (FALDP) is the problem of designing an FAL for a segment

of the assembly of heterogeneous vehicles. It comprises an integrated station formation

and station location problem. Moreover, the FALDP anticipates the operational flow

allocation of the AGVs. We formalize the FALDP in a mixed-integer linear program

(MILP) and develop a decomposition-based solution approach that can optimally solve

small- to mid-sized instances. In addition, we transform this solution approach to a

matheuristic that generates high-quality solutions in acceptable time for large-sized in-

stances. We compare the efficiency of FALs to LALs and quantify the benefits of FALs

which increase with vehicle heterogeneity.
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2.1 Introduction

Inspired by recent technological advances in factory digitalization, automotive OEMs

have started to investigate FALs as alternative to the widespread MMALs10. They

have realized that the efficiency of conventional LALs deteriorates with high vehicle

heterogeneity. Especially in the premium market, customers wish to configure their cars

individually. Therefore, OEMs offer a large number of models, engines, and selectable

options (Meyr, 2004; Pil & Holweg, 2004). This number is further increased by new

technologies, like electric drives, which require very different assembly tasks, tools, and

worker qualifications. One of the pioneers implementing FALs is Audi, which uses them

in the assembly of the model R8 in Neckarsulm, Germany. By converting segments of

the final assembly from LALs to FALs, Audi estimates efficiency gains of around twenty

percent11.

Assembling heterogeneous vehicles on paced, serial LALs is challenging. Heteroge-

neous vehicles require different workloads at the stations which, in combination with

the definite cycle time, causes work overloads at some stations and idle times at others.

For example, electric vehicles cause high workloads at the battery pack assembly sta-

tion, whereas conventional vehicles have idle times. OEMs exert a great deal of effort

in addressing these imbalances, e.g., by consecutively sequencing vehicles with alternat-

ing workloads, allowing workers to drift out of stations, and allocating utility workers

whenever work overloads occur.

In alternative FALs, the stations are neither arranged serially nor linked by a paced

transportation system. Instead, AGVs are used to transport the vehicles between the

stations. The AGVs stay with the assigned vehicles throughout the assembly, because

the AGVs are also used as assembly platforms at the stations. Stations that are not

needed by a vehicle can be bypassed. For instance, a vehicle for a customer from a hot

climate region can bypass the auxiliary heating assembly station. FALs are not paced

by a cycle time, meaning that the AGVs can enter and exit the stations at any point in

time. As an example, a four-door vehicle spends more time at the door assembly station

than a two-door vehicle. In line with the Industry 4.0 and the smart factory vision, the

AGVs and the stations are integrated in a digital network and continuously report their

statuses to a central control that optimizes the movements of the AGVs in real time.

10https://www.audi-mediacenter.com/en/audi-techday-smart-factory-7076/modular-assembly-7078
(published: 17/11/2016, retrieved: 09/12/2020)

11https://www.handelsblatt.com/unternehmen/industrie/keine-fliessbaender-mehr-audi-plant-eine-
revolution/14894190.html (published: 27/11/2016, retrieved: 09/12/2020)
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Figure 2.1: Integration of FALs in the automotive final assembly.

The control can exploit two types of flexibility, i.e., routing and operation flexibility

(Browne, Dubois, Rathmill, Sethi, & Stecke, 1984). Routing flexibility is given when-

ever the same task can be performed at multiple stations. FALs are used for assembly

segments in which manual labor is predominant. Since the duplication of manual tasks

requires limited investments, assigning the same task to multiple stations is possible.

Operation flexibility is given whenever there is no precedence relation between a pair

of tasks. For example, it does not matter if the sunroof is installed before or after the

headlights. In case the sunroof station is occupied, the vehicle can proceed with the

headlights assembly first.

Given current vehicle architectures, combining LALs and FALs in the final assembly

appears to be most beneficial. LALs are suitable for segments in which standardized,

automated tasks needed by all vehicles are performed, whereas FALs are promising for

segments in which highly variant, manual tasks are performed (cf. Figure 2.1).

Several decision problems need to be addressed when designing and operating FALs

in the automotive assembly. Following the classification for LALs proposed by Boy-

sen, Fliedner, and Scholl (2009), Figure 2.2 illustrates the hierarchy of these decision

problems.

Starting point of this process is the segmentation of the final assembly into LAL and

FAL segments, after which, the design of these segments as well as their intermittent

buffers are determined. Initial design can be distinguished from reconfigurations. While

initial design refers to the first design of new assembly systems, reconfigurations are

adaptations of an existing assembly system during its lifetime. The design of the LAL

segments involves the balancing, in which the stations are formed, and the design of the

part feeding system. Two options exist for part feeding of LAL segments, i.e., stocking

and kitting. For FAL segments, the design of the FAL, the design of the AGV system,

and the design of the kitting system have to be created. In FAL design, tasks are as-

signed to stations (station formation) and the stations are arranged on the shop floor
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Figure 2.2: Hierarchy of decision problems when designing and operating FALs in the automo-
tive assembly.

(station location). In AGV system design, the AGV pathways and the AGV fleet are

determined. One challenge in designing FAL segments is part feeding. Limited station

accessibility makes stocking difficult. Moreover, JIT or JIS stocking is impossible, be-

cause the task and station sequence for each vehicle may only be decided in real time.

Therefore, kitting is used for part feeding. The kits of the required parts are prepared

in advance and transported together with the vehicles on the AGVs. Because the move-

ments of the AGVs are not continuous, buffers are needed within the FAL segments as

well as at their entry and exit points. The design of these buffers involves decisions on

their sizes and layouts. The buffers fulfill several objectives. They compensate for the

stochasticity of the system and attenuate blocking and starving of the stations. The

primary role of FAL segments is not to resequence the vehicles. Although FAL segments
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could theoretically be used for resequencing, changing the vehicle sequence comes along

with several challenges in practice. For example, doors are usually dismounted in the

beginning of the final assembly and remounted in the end. If the vehicle sequence was

changed, the door sequence would need to be changed accordingly. Also, a synchronized

stocking of the LAL segments becomes challenging when the vehicle sequence is changed

in the FAL segments. The outgoing sequence of an FAL segment needs to comply with

the requirements of the succeeding LAL segment. The buffers at the exit points are

used to reestablish the desired sequences. These sequences are not arbitrarily decided

in real time, but planned in advance. Thus, simple FIFO buffers cannot be used, but

more sophisticated and costly buffers that allow for resequencing are required.

Concerning the initial design, FALs have advantages and disadvantages compared to

LALs. Because FALs are not paced, vehicles only occupy the stations while tasks are

being performed. Wasting station capacity due to a smaller workload than the cycle time

is avoided. Moreover, vehicles only visit stations that they need to visit. This improves

the stations’ utilization and therefore the efficiency. On the other hand, routing and

operation flexibility lead to irregular flows that require more space and increase flow

complexity.

Reconfiguring both LAL and FAL segments may become necessary during the lifetime

of the assembly system in order to react to demand shifts, capacity changes, or new model

introductions. FALs can more easily be reconfigured than LALs. Existing stations can

be adjusted and new stations can be installed with limited effort and possibly even

without suspending production. In contrast, in LALs, production usually needs to be

suspended while the line is being rebalanced.

Master production scheduling is carried out on a mid-term planning level. It repet-

itively assigns vehicles to production periods, e.g., days or shifts. Because the LAL

segments are characterized by lower flexibility than the FAL segments, master produc-

tion scheduling is mainly restricted by the capacity of the stations in the LAL segments.

On a short-term planning level, vehicles are sequenced. Because of their high flexibility,

FAL segments pose fewer limitations on the feasibility of sequences than LAL segments.

Compared to pure LALs, the car-sequencing problem thus generally becomes easier.

After the sequences are fixed, the part feeding operations for the stations in the LAL

segments can be planned. The output of the LAL sequencing determines the arrival

times and the required completion times of the vehicles in the FAL segments. The first

step in scheduling of the FAL segments is to assign each vehicle to an AGV. Afterwards,

the sequence of performed tasks and visited stations of each vehicle (routing) as well as

the sequence of the vehicles at the stations are decided such that the arrival times and
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required completion times are satisfied and the limited buffer capacities are respected.

Moreover, the kitting operations are planned, AGV charging is scheduled, and the AGV

flow is coordinated (AGV control). In parallel to assembly scheduling, buffer operations

are planned. This involves planning the positioning, retrieval, and possibly resorting of

the vehicles in the buffers.

FALs have advantages and disadvantages in terms of scheduling. The flows between

the stations are neither paced nor coupled. Routing and operation flexibility allow a

balanced distribution of the workload among the stations. One disadvantage is that

routing and operation flexibility complicate AGV control. The higher flow complexity

is, the more effort must be exerted in avoiding AGV collisions.

Rescheduling is required when unforeseen disruptions, such as tools becoming defec-

tive, occur. FALs allow vehicles to be rerouted to other stations. Conversely, in LALs,

disruptions have more severe impacts and may even stop the entire line.

In this chapter, we investigate the initial design of FALs. More specifically, we look

into the FAL design for a given segment of the automotive assembly (cf. Figure 2.2).

We concentrate on the initial design as FALs are not yet common in the industry. We

seek to answer two questions. First, we study the optimal design of FALs. We focus

our analysis on the efficiency of FALs in order to demonstrate their capabilities. We

implicitly consider space requirements and flow complexity by imposing restrictions on

the AGV pathways and by minimizing the flow intensity. Second, we compare the

efficiency of FALs to LALs. We study the effect of vehicle heterogeneity on the efficiency

of both types of layout since this is the main driver that motivates OEMs to implement

FALs.

Our contributions are fourfold. First, we propose a classification scheme for the deci-

sion problems connected to the design and operation of FALs in the automotive assembly

as shown in Figure 2.2. Second, we provide a formal representation of the FALDP. The

FALDP is the problem of designing an FAL for an assembly segment at an automotive

OEM. It comprises an integrated station formation and station location problem. More-

over, the FALDP anticipates the operational AGV flow allocation. The flow allocation,

however, is only used to evaluate the quality of the generated layouts. Specific charac-

teristics of the FALDP are the consideration of routing and operation flexibility. The

problem is modeled as a lexicographic multi-objective MILP. The objectives are to max-

imize efficiency and to minimize flow intensity. Third, we develop a solution approach

to generate optimal layout designs. In our solution approach, we iteratively increase

the number of stations (reduce the efficiency). For any fixed number of stations, we

minimize the flow intensity. We show how this solution approach can be transformed to
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a matheuristic to solve large-sized instances. Fourth, we conduct a performance com-

parison between FALs and LALs based on an adapted standard benchmark test bed.

We show that FALs generally are more efficient than LALs. The gain in efficiency for

FALs, however, is influenced by the heterogeneity of the vehicles. When producing ho-

mogeneous vehicles, the efficiency gain is low, whereas it increases with greater vehicle

heterogeneity.

The remainder of this chapter is structured as follows: In Section 2.2, we review

the related literature. In Section 2.3, we present an MILP for the FALDP. Our exact

and matheuristic solution approaches are described in Section 2.4. In Section 2.5, we

assess the performance of the solution approaches based on adapted instances from the

literature. Also, we compare the efficiency of FALs to LALs and examine the effect

of vehicle heterogeneity. In Section 2.6, we summarize our findings and discuss future

research directions.

2.2 Literature review

The FALDP has not yet been addressed in the literature. In the following section, we

review research papers that treat design problems related to the FALDP. The discussion

is arranged by increasing flexibility of the underlying layout. We start our discussion

with assembly line design, followed by row layout design, cellular manufacturing design,

and finally job shop design. Due to the characteristics of the FALDP, we limit our

review to papers that investigate static problems and that assume a discrete shop floor

representation as well as equally-sized resources to be positioned.

Assembly line balancing is the problem of assigning tasks to stations in an LAL such

that the precedence relations are satisfied and the limited capacity of the stations is

respected. Assembly line balancing is related to the station formation problem of the

FALDP. It has received considerable attention in the scientific literature. For compre-

hensive reviews, we refer to Becker and Scholl (2006) and the classification scheme of

Boysen, Fliedner, and Scholl (2007). In the literature, mixed-model problems are usually

transferred to single-model problems by balancing the average model mix along the line.

Common tasks for multiple models are required to be assigned to the same stations.

Capacity constraints are modeled so that the average processing time is within the cycle

time at each station. With increasing vehicle heterogeneity, however, the representativ-

ity of the average model mix declines. We therefore focus our review on papers that treat

MMAL balancing by explicitly considering capacity constraints for each model and that,

similar to the FALDP, permit task duplication. Roberts and Villa (1970) were among
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the first to consider the assignment of common tasks to multiple stations. J. Bukchin,

Dar-El, and Rubinovitz (2002) divide the assembly tasks into two groups. The tasks in

the first group require costly equipment and are therefore not allowed to be duplicated.

The second group consists of manual tasks which can be duplicated. Y. Bukchin and

Rabinowitch (2006) assign cost parameters for duplicated tasks. Their objective is to

minimize the sum of station opening and task duplication cost. None of the reviewed

papers allows for splitting the workload of one model among task duplicates at different

stations (routing flexibility). Also, we did not find any paper that allows for multi-

ple process plans to be used in parallel (operation flexibility). Routing and operation

flexibility are thus not considered within MMAL balancing.

The row layout design problem deals with the arrangement of machines in a flexible

manufacturing system. It can be differentiated between single-row, double-row, and clus-

ter (multi-row) layouts (Heragu & Kusiak, 1988). Depending on the material handling

device used, the rows are arranged linearly on a straight line, in a U- or serpentine shape,

or in a loop. The flow direction can be uni- or bidirectional. A summary on row layout

arrangements, relevant objectives, and possible solution methods is available in Keller

and Buscher (2015). We limit our review to papers that consider routing flexibility by

allowing the flow to be allocated among multiple machine duplicates. The reviewed row

layout design problems are comparable to the integrated station location and flow allo-

cation problem of the FALDP. Ho and Moodie (1998) investigate uni- and bidirectional

loop and non-loop flow paths in single-row layouts. In their approach, the flow volumes

between the machine duplicates are defined a priori. In contrast, Chen, Wang, and Chen

(2001) as well as Aneke and Carrie (1986) include flow allocation decisions in their prob-

lem definition. Chen et al. (2001) seek to minimize the flow distance in unidirectional,

linear single-row layouts. The number of machine duplicates is limited and backtracking

is not permitted. Aneke and Carrie (1986) evaluate the trade-off between backtracking

and the utilization of duplicated machines in a similar problem setting. To the best of

our knowledge, there is no paper published in this field of research that considers process

plan alternatives and therefore operation flexibility.

Cell formation is the key design problem in a cellular manufacturing system. It opti-

mizes the grouping of machines into cells and parts into families such that the majority

of operations of a part family take place in a single cell (Goldengorin, Krushinsky, &

Pardalos, 2013). Cell formation shares similarities with the station formation problem

of the FALDP. However, it is different as the machines assigned to a cell can usually be

operated simultaneously. In case of the FALDP, the tasks assigned to a station cannot

be performed at the same time. Another difference is that the assignments of tasks to
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stations in the FALDP is not aimed at a complete elimination of flows between stations.

Papaioannou and Wilson (2010) published an overview on the cell formation literature.

In our review, we concentrate on papers that consider machine duplicates (routing flexi-

bility) and/or multiple process plans (operation flexibility). Rajamani, Singh, and Aneja

(1990) show that the presence of alternative process plans improves cell formation when

part families and machine groups are identified simultaneously. In their model, machine

duplicates exist, but a unique machine has to be chosen for each operation of a part. Sofi-

anopoulou (1999) considers the same problem. She develops two binary programs, i.e.,

a machine allocation and a part allocation model, which are solved sequentially. Caux,

Bruniaux, and Pierreval (2000) decompose the cell formation problem into a machine

partitioning and a route selection problem, which are solved iteratively. Solimanpur,

Vrat, and Shankar (2004) develop a multi-objective binary program in which they con-

sider part similarity within cells, processing cost, processing time, and investment cost

as objectives. All research articles discussed so far assume that for each part a single

process plan is to be chosen out of a given set of alternatives. Conversely, Heragu and

Chen (1998) allow multiple process plans to be used simultaneously. However, they

assume that the proportion of parts that follow a certain process plan is a given input

parameter. The paper of Nagi, Harhalakis, and Proth (1990) is the only reference we

have found that optimizes the proportions of parts produced along different process plans

and thereby takes full advantage of operation flexibility. Our literature review reveals

that routing flexibility is frequently considered in cell formation. In contrast, operation

flexibility is only considered in Nagi et al. (1990).

Job shop design problems are typically addressed in the context of facility layout de-

sign. Facility layout design considers the positioning of facilities, e.g., machines, cells, or

departments, on the plant floor. A good overview on problem characteristics and solu-

tion methods is provided by Drira, Pierreval, and Hajri-Gabouj (2007). In a classical job

shop, facility duplicates are positioned in adjacent locations. Since long flow distances

are inherent drawbacks of such an arrangement, the literature also discusses distributed

layouts in which facility duplicates are allowed to be placed in non-adjacent locations

(Benjaafar & Sheikhzadeh, 2000). We focus our review on distributed layout design

problems that consider machine duplicates (routing flexibility) and/or multiple process

plans (operation flexibility). The distributed layout design problem is comparable to the

integrated station location and flow allocation problem of the FALDP. Benjaafar and

Sheikhzadeh (2000) analyze the design of distributed layouts considering routing flexibil-

ity in stochastic environments. Their research contributes two major results. First, they

show that it is beneficial to place duplicates in non-adjacent locations to hedge against
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uncertainties. Second, they prove that the marginal benefits of duplication are decreas-

ing, i.e., that the first duplicate contributes the highest benefit. These results are in line

with the findings of Montreuil (1999) in the context of fractal layouts. Urban, Chiang,

and Russell (2000) as well as Jaramillo and McKendall (2010) study the deterministic

version of the same problem. While Urban et al. (2000) consider the number of facility

duplicates as given, Jaramillo and McKendall (2010) view them as a decision. There

is only limited literature on facility layout design that takes operation flexibility into

account. Askin and Mitwasi (1992) investigate the integrated facility layout design, pro-

cess selection, and capacity planning problem. They assume a cellular setting in which

the production volume of each product can be allocated among multiple process plans.

Defersha and Hodiya (2017) study integrated distributed layout and cellular manufac-

turing systems design. In contrast to the model of Askin and Mitwasi (1992), they do

not only model the inter-cell layout but also the intra-cell layout. Similar to our findings

in cell formation, also the literature on job shop design considers routing flexibility more

often than operation flexibility.

The FALDP shares features with the discussed design problems. However, there is

no approach in the literature that covers the combination of station formation, sta-

tion location, and flow allocation considering routing and operation flexibility as in the

FALDP.

2.3 Flexible assembly layout design problem (FALDP)

In this section, we formulate an MILP for the FALDP. We investigate a segment of

the final assembly at an automotive OEM in which highly variant, manual tasks are

performed. The purpose is to derive layouts that allow for the efficient assembly of a

given model mix. We consider m ∈ M models with t ∈ Tm required tasks. The shop

floor is represented by l ∈ L locations at which stations could be opened. The set of

routes r ∈ R includes all possible flow paths through the shop floor. We decide whether

a station is opened at a location (variables Xl) and which tasks are assigned (variables

Yt,l). Also, we anticipate the models’ flow allocations along the positions i ∈ Ir of the

routes (variables Zm,r,t,i). The objectives are to minimize the number of opened stations

as well as to minimize the flow intensity.

Figure 2.3 illustrates an FALDP solution. The shop floor has 16 locations L1 - L16 at

which stations could be opened. The locations are arranged in four rows and four levels.

The shown solution consists of nine stations that are positioned at locations L2, L3, L5,

L6, L7, L9, L10, L11, and L12. The assigned tasks to the stations are indicated in the
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Figure 2.3: FALDP solution sketch.

figure, e.g., tasks T2 and T3 are assigned to the station at location L6. The numbers

next to the arrows indicate the anticipated flow volumes.

Common entry and exit points are required in order to enable the interconnection to

the preceding and succeeding segments. The exact locations of the entry and exit points

are determined in the FALDP. In the example in Figure 2.3, locations L2 and L14 are

chosen. Within the segment, we aim for a directed flow. This has numerous benefits

such as a simplification of the AGV system design and control. Therefore, the created

layout should be longer than it is wide. In Figure 2.3, the layout has a length of four

stations and a width of three stations. In addition, the AGVs are only allowed to travel

downstream and between stations on the same level. As can be seen in the example, no

arcs point to the left. For all vehicles, the flow paths should be predominantly directed

in the flow direction. Also, the same station should only be visited once. Otherwise,

workers might get confused or perform tasks earlier or later than planned.

The layout is designed for a given model mix and volume that should be produced

in a given production time. In the example in Figure 2.3, the total production volume

is 400 vehicles. Each model requires that a set of specific tasks be performed. The

task sequence is not predefined but mutable within the precedence relations, resulting
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in multiple potential process plans. Different units of the same model can be assembled

along different process plans (operation flexibility). The assembly tasks are assigned to

stations so that the workload at each station does not exceed the production time. The

workloads of the different tasks assigned to the same station are added. These tasks

cannot be performed simultaneously, because only one employee works at each station.

However, the same task can be performed at multiple stations (routing flexibility). In

the example, task T2 is assigned to locations L3 and L6. To limit the adverse effects

of disruptions, caused for example by equipment malfunctioning, we enforce full routing

flexibility. This means that whenever there is a precedence relation between two tasks

for any model, none of the assignments of the successor task is positioned upstream of

any assignment of the predecessor task. In this way, the AGVs can always access all

task assignments and the robustness of the obtained layout is increased. As an example,

assume there is a precedence relation between tasks T3 and T5 in the instance plotted

in Figure 2.3. Full routing flexibility means that no assignment of task T5 is positioned

to the left of any assignment of task T3.

We make five assumptions. First, we assume that the shop floor is represented by a

discrete grid of potential station locations. The locations on the shop floor are arranged

in a grid of rows and levels as illustrated in Figure 2.3. The discrete representation is

sufficiently detailed and common practice for strategic layout design problems. Second,

we neglect the AGV flows from the exit point back to the entry point, because we

assume that the best return path is designed subsequently based on the results of the

FALDP. Third, we assume that the stations are of equal size. Since manual labor is

predominant in segments suitable for FALs, the stations do not need to accommodate

large machinery and equipment. Also, stocking areas are not needed at the stations,

because the parts are supplied in kits that are delivered on the AGVs. Fourth, we

neglect task assignment cost. Duplicating manual tasks is relatively cheap, because no

major equipment redundancies are required. However, we limit the maximum number

of duplicates for each task since the marginal benefits of duplication are decreasing

(Benjaafar & Sheikhzadeh, 2000). Finally, we assume that all input data, especially

demand and task times, are deterministic as is common practice in industry.

We use the notation as summarized in Table 2.1. Given a shop floor with a set of

potential station locations L, the FALDP is the problem of determining the minimum

number of stations to be opened as well as their positions and assigned tasks in order

to minimize the flow intensity. The static, deterministic demand for a set of models M

needs to be satisfied. The set of tasks T includes two dummy tasks TS and TE , which

represent common start and end activities for all models and are needed for implemen-
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Table 2.1: Problem notation.

Index sets

m ∈M Models
t ∈ T Tasks
[TS , TE ] ⊂ T Dummy start and end tasks
T\[TS , TE ] Real tasks
Tm ⊆ T Tasks for model m
t2 ∈ Vm,t Successor tasks of task t for model m (precedence relations):

t to be finished before t2 starts
l ∈ L Locations
r ∈ R Routes: potential AGV flow paths
i ∈ Ir Position index on route r: i = 1, ..., |r|
Parameters

wr Distance on route r
dm Demand for model m
qm,t Task time of task t for model m
τ Production time
bt Maximum number of duplicates of task t (bTS = bTE = 0)
el Level index of location l
fl Row index of location l
pr,l Position index of location l on route r

Decision variables

Xl 1 if station at location l is opened, else 0
Yt,l 1 if task t is assigned to location l, else 0
Zm,r,t,i Units of model m that receive task t at ith location on route r

tation purposes. Both TS and TE have a duration of zero time units. All other tasks

are real tasks. The set Tm comprises all tasks needed for model m. The feasible process

plans are represented through the precedence relations of the models’ tasks. The set of

successor tasks Vm,t indicates all tasks for model m that can only start after task t has

been finished.

The set of routes R comprises all potential flow paths of the AGVs from the entry to

the exit point. A route is defined as a unique sequence of visited locations along which

an AGV can navigate. Considering that the locations used as well as the positions of the

entry and exit points are decisions and not defined a priori, the cardinality of R is fairly

large. However, we will show in Section 2.4 how our solution approaches overcome this

obstacle. The flow restrictions of the AGVs can be mapped in the route definition. We

only generate routes that consist of up-, down-, and rightward moves, but no leftward

(backward) moves. Also, we only generate routes that are predominantly directed in

the flow direction and that visit a location only once. The traveled distance along each

route is known.

There are three types of decision variables. First, the binary variable Xl shows whether

a station is opened at location l. Second, Yt,l is a binary variable that states whether

23



2 Design of flexible assembly layouts for the automotive assembly

task t is assigned to location l. Third, the continuous variable Zm,r,t,i indicates the units

of model m that receive task t at the ith position on route r. The FALDP can then be

formulated as follows:

min Z1=
∑
l∈L

Xl (2.1a)

min Z2=
∑
r∈R

∑
m∈M

wr · Zm,r,TS ,1 (2.1b)

s.t. ∑
l∈L

Yt,l ≤ 1 + bt ∀t∈T (2.1c)∑
t∈T

Yt,l ≤ |T | ·Xl ∀l∈L (2.1d)∑
m∈M

∑
t∈Tm

∑
r∈R|l∈r

qm,t · Zm,r,t,pr,l ≤ τ ∀l∈L (2.1e)

∑
r∈R

Zm,r,TS ,1 = dm ∀m∈M (2.1f)∑
i∈Ir

Zm,r,t,i = Zm,r,TS ,1 ∀m∈M,r∈R,t∈Tm\TS (2.1g)

Zm,r,t2,i ≤
∑

j∈Ir|j≤i

Zm,r,t,j ∀m∈M,r∈R,t∈Tm,t2∈Vm,t,i∈Ir (2.1h)

∑
m∈M |t∈Tm

∑
r∈R|l∈r

Zm,r,t,pr,l ≤ Yt,l ·
∑
m∈M

dm ∀t∈T ,l∈L (2.1i)

∑
l2∈L|el2<el

Yt2,l2 ≤ |L| · (1−Yt,l) ∀m∈M,t∈Tm,t2∈Vm,t,l∈L (2.1j)

∑
l∈L|fl=ē

Xl ≤ |L| ·
∑

l∈L|el>ē

Xl ∀ē∈1,. . .,max
l∈L

el (2.1k)

Xl ∈ {0, 1} ∀l∈L (2.1l)

Yt,l ∈ {0, 1} ∀l∈L,t∈T (2.1m)

Zm,r,t,i ≥ 0 ∀m∈M,r∈R,t∈Tm,i∈Ir (2.1n)

We employ a lexicographic multi-objective formulation as shown in Equations (2.1a)

and (2.1b). The Primary Objective (2.1a) is to minimize the number of opened stations.

Because demand and production time are fixed, minimizing the number of opened sta-

tions is equivalent to maximizing the efficiency of the layout, which is defined as the

total workload divided by the installed capacity as shown in Equation (2.2).
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efficiency =
total workload

installed capacity
=

∑
m∈M

dm ·
∑
t∈Tm

qm,t

τ ·
∑
l∈L

Xl
(2.2)

As Subordinate Objective (2.1b), we minimize the flow intensity for the minimum

number of stations. The flow intensity is an indicator for the transportation effort and

is defined as the sumproduct of route distance and number of vehicles assembled along

a route.

Constraints (2.1c) limit the maximum number of task duplicates. To achieve common

entry and exit points, the dummy tasks TS and TE are not allowed to be duplicated,

i.e., bTS = bTE = 0. Constraints (2.1d) ensure that tasks can only be assigned to opened

stations. Constraints (2.1e) guarantee that the workload assigned to a station is less

than the production time. Constraints (2.1f) guarantee demand fulfillment and Con-

straints (2.1g) ensure flow balance. Constraints (2.1h) are used to satisfy the precedence

relations. They ensure for all precedence relations that the number of vehicles receiving

the successor task at a location cannot be higher than the number of vehicles receiving

the predecessor task at all preceding locations along a specific route. Constraints (2.1i)

link the binary assignment variables Yt,l to the continuous flow variables Zm,r,t,i. A pos-

itive flow is only allowed when the corresponding task is assigned to the corresponding

location. Constraints (2.1j) enforce full routing flexibility. They forbid any assignment

of a task t2 that is a successor of task t for any model m to be positioned to the left

of any assignment of task t. In other words, they make sure that all assignments of the

successor task t2 are accessible from any assignment of the predecessor task t by the

AGVs, which are not allowed to travel backwards. This increase in flexibility is espe-

cially beneficial in the event of disruptions. We therefore refer to Constraints (2.1j) as

robustness constraints. Constraints (2.1k) enforce the layout shape to be longer than it is

wide. The constraints only allow locations to be used if their row index is lower than the

level index of the last (right-most) used location. Finally, in Constraints (2.1l) - (2.1n),

we restrict the domains of the decision variables.

Structurally, the FALDP is an integrated quadratic assignment and multi-commodity

network flow problem with linear side constraints. Askin and Mitwasi (1992) have shown

that this type of problem is NP-hard. In order to solve real-world instances, heuristic

solution approaches are likely to be inevitable.
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2.4 Solution approaches

In this section, we design approaches to derive solutions to the FALDP. We start by

discussing layout properties in an optimal solution, which will be exploited in our solution

approaches. We then propose an exact approach that is capable of finding an optimal

solution for small- and mid-sized instances. Finally, we show how the exact approach

can be transformed to a matheuristic approach that is capable of solving large-sized

instances.

2.4.1 Preliminary considerations on layout properties in an optimal solution

Before designing an exact approach to solve the FALDP, we first investigate layout

properties in an optimal solution. We define the layout as the assignment of stations to

locations on the shop floor as well as the positioning of the entry and exit points. For a

given number of stations, not all layouts can possibly lead to a solution with minimum

flow intensity, because many layouts are dominated by other layouts.

We state the following dominance rule: given two layouts A and B with an equal

number of stations, layout A is dominated by layout B whenever there is a mapping

between the used locations in both layouts such that each route in A can be mapped to

a feasible route in B which is shorter or equally long. For a route to be feasible, it cannot

include any backward, i.e., leftward, transfer and it has to be predominantly directed in

the flow direction. To reduce symmetry, we also eliminate weakly dominated layouts.

For illustration purposes, let us consider the two layouts with four stations shown in

Figure 2.4. Keeping in mind that the assembly of each vehicle starts at entry point TS

and ends at exit point TE , and that the AGVs are neither allowed to travel backwards

nor in cycles, there exist four feasible routes in layout A. These routes are illustrated by

the solid, dashed, dotted, and dashed-dotted arrows. Let us now consider the mapping in

Table 2.2: we map locations L1, L4, L8, and L10 in layout A to locations L1, L4, L7, and

L8 in layout B respectively. All four routes in A can then be mapped to feasible routes

in B as indicated by the corresponding arrows. When comparing the route distances,

we see that all mapped routes in B are shorter or equally long (cf. Table 2.3). We

conclude that layout A is dominated by layout B. For any FALDP instance requiring

four stations, the best solution in A cannot have a lower flow intensity than the best

solution in B. In order to find an optimal solution, we do not need to consider layout A

or any other dominated layout.

In the discussed example, we have set the distance between two neighboring locations

to one distance unit and employed the Manhattan metric. The dominance rule, however,
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Figure 2.4: Example for dominance relations.

Table 2.2: Example for dominance relations: station mapping.

Station Mapping
A B

1 L1 L1
2 L4 L4
3 L8 L7
4 L10 L8

Table 2.3: Example for dominance relations: route distances.

Route Station sequence Location sequence Distance
A B A B

Solid 1-4 L1-L10 L1-L8 3.0 3.0
Dashed 1-2-4 L1-L4-L10 L1-L4-L8 3.0 3.0
Dotted 1-3-4 L1-L8-L10 L1-L7-L8 5.0 3.0
Dashed-dotted 1-2-3-4 L1-L4-L8-L10 L1-L4-L7-L8 5.0 3.0

can be applied to all other metrics as well. The sets of non-dominated layouts can be

derived for any number of stations and are independent of the instance to be solved. We

generate these sets up front and use them throughout our solution approaches.

2.4.2 An exact solution approach

In order to derive optimal solutions to the FALDP, we propose an iteratively solved

problem decomposition as illustrated in Figure 2.5. To accommodate the lexicographic

objective, we iterate in increasing order over the potential solution values of the primary

objective, which is the minimization of the number of opened stations. In each iteration,

we fix the value of the primary objective and search for the solution that minimizes

the subordinate objective. That is, we solve the subproblem of finding a solution that
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Figure 2.5: Flow chart of exact solution approach.

minimizes flow intensity for a fixed number of opened stations. As long as the sub-

problem is infeasible, we increase the number of opened stations by one and reiterate.

An optimal solution to the FALDP is found as soon as the subproblem is feasible and

yields an optimal solution. As the starting point for the iterations, we derive a lower

bound on the number of required stations NLB. The lower bound can be determined by

rounding up the ratio of total workload to production time to the next integer as shown

in Equation (2.3).

NLB =

⌈
total workload

production time

⌉
=


∑
m∈M

dm
∑
t∈Tm

qm,t

τ

 (2.3)
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When solving the subproblems, we make use of our observation that only non-dominated

layouts need to be considered. For any number of opened stations n, we iterate over all

corresponding non-dominated layouts to find a solution that minimizes flow intensity.

By only considering the non-dominated layouts, we reduce the solution space of the

subproblems significantly without excluding the optimal solution.

In order to conduct the evaluation of the non-dominated layouts in an intelligent

order, our first step when solving a subproblem is to determine a lower bound on the

flow intensity for each non-dominated layout based on the given FALDP instance. A

lower bound is obtained by relaxing two sets of constraints in the FALDP, i.e., the

constraints that limit the maximum number of task duplicates as well as the robustness

constraints. By relaxing these two sets of constraints, all assignment restrictions for real

tasks are excluded. We can thus assume that every real task can be performed at all

stations. The flow allocation problem then becomes the simple problem of allocating

the models’ workloads among the available stations in the layout without considering

task assignments. The minimum flow intensity for this relaxed problem is obtained

by assigning the largest flow to the shortest routes. The largest flow is obtained for

the models with the lowest workload. A similar lower bound procedure was proposed

by Urban et al. (2000) in the context of the integrated machine allocation and layout

problem. For each non-dominated layout, we employ the following three-step procedure:

Step 1: Let distl1,l2 be the distance between any pair of used locations l1 and l2 in the

considered layout. Assuming TS is assigned to location LS and TE is assigned

to location LE , sort all used locations l in increasing order of their combined

distances to LS and LE : d̂istl = distLS ,l + distl,LE .

Step 2: Sort all models m in increasing order of their workloads:

vm =
∑
t∈Tm

qm,t.

Step 3: Fill the available capacity of the stations in the layout in increasing order of

d̂istl with the workloads of the models in increasing order of vm. Flow intensity

is thereby minimized.

The quality of the lower bound is affected by the task assignment restrictions. In the

FALDP, task assignments are restricted by the maximum number of task duplicates and

the robustness constraints. If the number of task duplicates were unlimited and there

were no precedence relations between the tasks (and therefore no robustness constraints),

then the lower bound and the optimal solution would coincide. The more restrictive the

maximum number of task duplicates and the more precedence relations, the less tight is

the lower bound.

29



2 Design of flexible assembly layouts for the automotive assembly

𝑳𝟏 (L𝑆) 𝑳𝟑 𝑳𝟓

𝑳𝟐 𝑳𝟒 𝑳𝟔

𝑳𝟕 (L𝐸)

𝑳𝟖

Used location Unused location

20 𝑀2 10 𝑀2
5 𝑀3

10𝑀3 5 𝑀3
3 𝑀1

2 𝑀1

Figure 2.6: Example for lower bound calculation (τ = 60).

Table 2.4: Example for lower bound calculation: model data.

Model Demand dm Workload vm
M1 5 10.0
M2 30 3.0
M3 20 6.0

For illustrating the lower bound calculation, consider the layout with five stations in

Figure 2.6. LS and LE correspond to locations L1 and L7 respectively. We assume

Manhattan metric and a distance of one distance unit between neighboring locations.

The production time is 60 time units. Exemplary data for three models is given in

Table 2.4. First, we sort the used locations in increasing order of their combined distances

to LS and LE . Locations L1, L3, L5, and L7 have a combined distance of 3.0 distance

units each, whereas location L6 has a combined distance of 5.0 distance units. Next, we

sort the models in increasing order of their workloads vm, i.e., M2, M3, M1. Finally,

we fill the models’ workloads on the stations. We start by assigning as many vehicles of

model M2 to location L1. Because the production time is 60 time units and the vehicles

of model M2 have a workload of 3.0 time units, 20 vehicles can be assigned to L1. The

remaining ten vehicles of model M2 are assigned to the next location L3. Afterwards, we

allocate the vehicles of model M3. Location L3 has a remaining capacity for five vehicles

of model M3. Ten vehicles of model M3 are assigned to location L5 and the remaining

five vehicles to location L7. Finally, three vehicles of model M1 fit on location L7. The

remaining two vehicles of model M1 need to be assigned to location L6. By taking the

sumproduct of the number of assigned vehicles and the combined distance to LS and LE

for all used locations, we derive the lower bound on the flow intensity. For the shown

example, the lower bound is 20 · 3 + (10 + 5) · 3 + 10 · 3 + (5 + 3) · 3 + 2 · 5 = 169 distance

units.
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After obtaining a lower bound on the flow intensity for all non-dominated layouts,

we sort the layouts in increasing order of their lower bounds. We start the subproblem

iterations by evaluating the layout whose lower bound on flow intensity has the lowest

value. We then iterate over all non-dominated layouts in increasing order of their lower

bounds. The subproblem iterations consist of two steps. First, we solve the restricted

FALDP for the considered layout using the subordinate objective to minimize flow in-

tensity. Because the locations used as well as the positions of the entry and exit points

are specified by the layout, the problem is simplified substantially: i) all Xl variables are

eliminated, ii) the Yt,l variables are eliminated for locations which are not used, and iii)

the Zm,r,t,i variables are eliminated for routes that visit locations which are not used.

The reduced problem size and complexity allow us to solve this restricted problem

for small- to mid-sized instances using a generic MILP solver. In the second step, we

update the best-found solution whenever we obtain a layout with a lower flow intensity

than the incumbent best-found solution.

The best-found solution provides an upper bound on the optimal flow intensity. We

can therefore define a stopping criterion for the subproblem iterations. We stop whenever

we find a layout with a flow intensity that is lower than or equal to the lower bound of

all remaining yet unevaluated layouts. In case no feasible solution has been found after

evaluating all non-dominated layouts, we increase the number of stations by one and

solve the new subproblem. Otherwise, we terminate and report the solution with the

lowest flow intensity, which is an optimal solution for the FALDP.

2.4.3 A matheuristic solution approach

The exact solution approach is capable of finding an optimal solution for small- to mid-

sized instances. For large-sized instances, however, prohibitive run times occur.

We are facing two challenges when applying our exact solution approach to large

instances. The first challenge is that the number of routes r ∈ R increases exponentially

with the number of opened stations, as depicted on the left-hand side of Figure 2.7.

This leads to a substantial increase in the sizes of the restricted FALDPs and slows

down the solution time of each iteration in the subproblems. The second challenge is

that the number of non-dominated layouts also increases exponentially with the number

of opened stations, as shown on the right-hand side of Figure 2.7. Consequently, we need

to perform many iterations in the subproblems to prove optimality.

In order to find good solutions to the FALDP in acceptable time for instances of all

sizes, we propose to solve the restricted FALDPs heuristically. We design a matheuristic

approach as shown in Figure 2.8.
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Figure 2.7: Increase in average number of routes in restricted FALDPs (left) and number of
non-dominated layouts (right) with number of opened stations.

The matheuristic to solve the restricted FALDPs is composed of two heuristic stages.

In the first stage, the route reduction stage, we reduce the set of routes to a subset

of promising routes RP . In an optimal solution, it is unlikely that all potential routes

are used. We identify promising routes as all routes that are shorter or equal to a

threshold distance. The threshold distance is defined as the minimum distance such

that all locations in the layout are covered in at least one promising route.

In the second stage, the fix-optimize stage, we use a fix-optimize approach to iter-

atively improve an initial solution. We construct the initial solution by solving the

restricted FALDP as a feasibility problem that considers the subset of promising routes

RP . Solving the restricted FALDP as a feasibility problem is much faster than solving

it as an optimization problem. It allows us to quickly check whether a layout is capable

of improving the incumbent best-found solution. If a feasible solution that is not worse

than the incumbent best-found solution (UB) exists, we start the fix-optimize iterations.

Otherwise, we proceed with the next non-dominated layout. The fix-optimize iterations

consist of three steps. First, we randomly fix γ% of the binary task-location assignments

in the incumbent solution. In the solution shown in Figure 2.3, there are 15 task-location

assignments. For γ = 80%, we would fix twelve of these assignments. For example, we

might fix all assignments except for (L9, T7), (L10, T8), and (L11, T6). We employ a

tabu list in order to avoid analyzing the same fixings multiple times. In the second step,

we optimize the restricted FALDP with the objective of minimizing flow intensity while

fixing the task-location assignments that have been selected in the first step. Because

a large proportion of the binary variables is fixed, a generic MILP solver can solve this

optimization problem in short CPU time. Note that the solution value of the incumbent

solution can only improve during the iterations since the last incumbent solution is part

32



2.4 Solution approaches

𝑛 = 𝑁𝐿𝐵

Calculate minimum 
number of needed 

stations 𝑁𝐿𝐵

Read set of 
non-dominated layouts

with 𝑛 stations

Sort layouts 𝑖 by 𝐿𝐵𝑖

Identify promising routes
𝑅𝑃 in layout 𝑖

Solve restricted FALDP 
for layout 𝑖 as feasibility

problem using 𝑈𝐵

Report 
best-found solution

𝑛 = 𝑛 + 1

𝑖 = 1

yes

no

yes

𝑖 = 𝑖 + 1

no

All layouts
evaluated?

𝑈𝐵 ≤ 𝐿𝐵𝑖?
Feasible
solution
found?

yes

no

Determine lower bound
on flow intensity 𝐿𝐵𝑖 for

all non-dominated layouts
𝑖 with 𝑛 stations

Randomly fix 𝛾% of binary
task-location assignments

(tabu list)

Solve restricted FALDP 
for layout 𝑖 with 𝛾% fixed

task-location assignments

Update best-found
solution

(upper bound 𝑈𝐵)

Feasible?

New best-
found solution?

𝑗 = 𝛽?

no

yes
𝑗 = 0

𝑗 = 0

yes

no

yes

𝑗 = 𝑗 + 1
no

1
R

o
u

te
 

re
d

u
c
ti
o

n
2

F
ix

-o
p

ti
m

iz
e

Figure 2.8: Flow chart of matheuristic solution approach.

of the solution space of the next iteration. In the third step, we update the best-found

solution. The fix-optimize iterations are stopped whenever we observe β consecutive

non-improving iterations. For example, we stop whenever 25 non-improving iterations

occur. Afterwards, we evaluate the next non-dominated layout.
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2.5 Computational results and empirical analysis

The computational analysis is structured into five parts. First, we describe the generation

of our instance set and the design of experiments. In the second part, we evaluate the

computational performance of our solution approaches. Next, we summarize the key

design characteristics of the obtained solutions. In the fourth part, we compare the

efficiency of FALs to LALs. Finally, we investigate the effect of vehicle heterogeneity on

the efficiency of both types of layout.

2.5.1 Instance generation and design of experiments

In order to assess the performance of our FALDP solution approaches, we evaluate a total

of 528 instances. We base our instances on the data set of Scholl (1993). This data set is

commonly used as benchmark for simple assembly line balancing problems. The original

data set can be obtained on the website http://assembly-line-balancing.mansci

.de. The instances that we use for our computational analysis comprise between seven

and 53 tasks, which are reasonable numbers. In discussions with OEMs, we learned

that they are planning segments with 20 to 25 tasks. Note again that we are only

investigating a limited segment of the automotive assembly. Also, we do not consider

elementary worker moves as tasks, but bundled worker moves that should be performed

together. We allow each task – except for dummy tasks – to have at most one duplicate

(bt = 1 ∀t ∈ T\[TS , TE ]). Allowing more duplicates per tasks is possible. However,

we realize that there are decreasing marginal benefits of task duplication. Additional

duplicates would also require training more workers to perform a task and possibly

purchasing more tools. We fix the production time τ to 100 000 time units. The cycle

time c is generated based on the method proposed by Hoffmann (1992). Let tsum be the

sum of task times and tmax the maximum task time in the simple assembly line balancing

instance. Hoffmann (1992) derives the cycle time according to Equations (2.4) and (2.5).

nmax =

⌊
tsum

tmax

⌋
(2.4)

c(n) =

⌈
tsum

n

⌉
∀n =

⌊
nmax

2

⌋
, ..., nmax (2.5)

We use the highest value of the theoretical minimum number of stations n = nmax as

the arrangement in an FAL does not make sense for low numbers of stations. The total

demand can then be determined by dividing production time through cycle time, i.e.,

34

http://assembly-line-balancing.mansci.de
http://assembly-line-balancing.mansci.de


2.5 Computational results and empirical analysis

∑
m∈M dm = bτ/cc. To ensure feasibility, we round the obtained value to the nearest

lower integer.

Since the data set of Scholl (1993) is used for the simple assembly line balancing

problem, the instances only consists of a single model. We use a procedure similar to

that of Li and Gao (2014) to derive multi-model instances. As in Li and Gao (2014), we

consider five models in each instance and randomly assign the total demand among the

five models. The number of models might be higher in reality. However, the number

of models only needs to reflect the heterogeneity in the considered segment and not

the entire assembly. When two models have the same assembly requirements in the

considered segment, they can be treated as identical in the FALDP.

In order to generate instances with heterogeneous vehicles, we consider four levels of

structure heterogeneity (sh), i.e., 0%, 10%, 25%, and 50%. Structure heterogeneity refers

to the degree of dissimilarity in the structures of the models’ precedence graphs. It is

defined as the average percentage difference between the number of tasks in the minimum

supergraph and the precedence graphs of all models. In our base case (sh = 0%), all

models need all tasks. Thus, the structures of the models’ precedence graphs are identical

and match the precedence graphs in the data set of Scholl (1993). For sh = 25%, we

randomly remove 25% of the task-model assignments in the base case. We make sure

that each task is needed by at least one model and that each model needs at least two

real tasks. Similarly, we consider four levels of task time heterogeneity (tth), i.e., the task

times of each model qm,t are allowed to deviate from the demand-weighted mean task

time q̄t by ±0%, ±10%, ±25%, and ±50%. In our base case (tth = 0%), all models have

the same task times qm,t = q̄t ∀m ∈M, t ∈ Tm. For tth = 25%, we choose task times

such that qm,t ∈ [0.75q̄t, 1.25q̄t] ∀m ∈M, t ∈ Tm and such that the heterogeneity of task

times is maximized. In order to have comparable instances, the demand for each model

as well as the overall workload for each task are kept constant across all structure and

task time heterogeneity levels. A detailed explanation of our instance generation scheme

is provided in Appendix A.1.

The scheme to generate instances with different levels of vehicle heterogeneity is illus-

trated in Figure 2.9. By way of example, we show how to derive instances with 0% and

25% structure and task time heterogeneity from a fictitious base case. In the precedence

graphs shown, the values above the task nodes represent the task times and the values

below the model nodes represent the demands. In the upper left corner, the base case

is plotted, in which the precedence graphs and the task times of all models are iden-

tical. Consequently, structure and task time heterogeneity are both 0%. The instance

with 25% structure and 0% task time heterogeneity is shown in the upper right corner.
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Figure 2.9: Instance generation scheme.

Twenty-five percent of the 20 task-model nodes in the base case have been removed ran-

domly. The task times are identical for all models. For example, task T3 always requires

6.12 time units. The task times are derived such that the overall workload for each task,

i.e., the sumproduct of demands and task times, is the same as in the base case. For

example, the overall workload for task T3 is 5000 time units in both cases. Because

task T3 is removed for model M3, the average task time of T3 increases compared to

the base case. In the lower left corner, the instance with 0% structure and 25% task

time heterogeneity is shown. As can be seen, the structures of the precedence graphs

are identical to the base case. The task times, however, are not. For example, the task
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times for task T1 are allowed to deviate from the demand-weighted mean ¯qT1 = 8.0 by

25%, i.e., within the range [6.0, 10.0]. The task times are chosen such that their hetero-

geneity is maximized and such that the overall workload for each task is identical to the

base case. Finally, the combination of 25% structure and 25% task time heterogeneity

is depicted in the lower right corner. First, we randomly remove twenty-five percent

of the 20 task-model nodes in the base case. Second, we derive the demand-weighted

mean task times q̄t for constant overall workload. Third, we choose the task times from

the interval [0.75q̄t, 1.25q̄t] such that their heterogeneity is maximized and the overall

workloads are the same as in the base case.

We repeat the instance generation scheme using three different random seeds. When

combining all four structure and task time heterogeneity levels with the three random

seeds, we obtain a total of 48 multi-model instances for each single-model instance in

the data set of Scholl (1993). The exact data set used in our analysis can be obtained

upon request from the corresponding author.

Concerning the underlying shop floor layout, we assume a checkerboard pattern. We

employ the Manhattan metric to measure distances as this best reflects potential AGV

pathways. The application of other metrics is straightforward. Without loss of generality,

we set the distance between two neighboring locations to one distance unit.

In order to compare the efficiency of FALs to LALs, we determine the solutions to

all our instances for both an FAL as well as an LAL. To find the best LAL, we adapt

the MMAL balancing model by Y. Bukchin and Rabinowitch (2006) as shown in Ap-

pendix A.2. We use the model by Y. Bukchin and Rabinowitch (2006), because it allows

for task duplication and explicitly considers capacity constraints for individual models.

The MMAL balancing problems are characterized by much lower complexity than the

FALDPs and can be solved efficiently using a generic MILP solver.

Our solution approaches and the random instance generation are implemented in a

program application written in Python 3 and interfaced with Gurobi 7.5.1. All experi-

ments are run on a computer using an Intel Xeon E5-4660 processor with 2.10 GHz and

8 GB RAM.

2.5.2 Computational performance

Figure 2.10 shows the distributions of the CPU times of the exact approach for different

intervals of the number of tasks. As can be traced by the shape of the distributions,

the CPU times of the exact approach grow rapidly with the number of tasks. While

all instances with up to twelve tasks require CPU times of less than one second, the

CPU times increase to approximately ten seconds for instances comprising 13 to 24
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Figure 2.10: Solution performance of exact approach for different intervals of the number of
tasks.

tasks. Prohibitive CPU times inhibit us from executing the exact approach on many

instances comprising more than 24 tasks. For the group of instances comprising 25 to

36 tasks, we can solve only 72.2% of the instances to optimality within a time limit of

7200 seconds. For the group of instances comprising 37 to 48 tasks, the exact approach

does not terminate for any instance within 7200 seconds. The instances comprising

more than 48 tasks do not follow this trend. The exact approach can handle all of

them in CPU times of around ten seconds. The fast CPU times are only due to the

characteristics of the considered instances in our data set and not generalizable. We use

standard instances from the literature. In the considered instances with more than 48

tasks, i.e., the instances based on Hahn (1972) in the data set of Scholl (1993), only a

relatively small number of stations is needed even though the number of tasks is high. In

total, the exact approach is capable of solving 440 out of the 528 instances to optimality

within a time limit of 7200 seconds.

In order to justify our matheuristic solution approach, we investigate the effect of the

two heuristic stages on the solution time and quality. For our evaluation, we use the

subset of 440 instances that the exact approach is capable of solving to optimality within

a time limit of 7200 seconds.

We first investigate the effect of the route reduction stage. We therefore compare the

solutions of the exact approach when considering the full and the reduced set of routes.

Our analysis shows that reducing the number of routes has no effect on the number of

38



2.5 Computational results and empirical analysis

γ β Av.
optimality gap

Av. CPU time
reduction

50% 10 0.51% 90.6%

50% 25 0.42% 87.2%

75% 10 0.81% 93.6%

75% 25 0.67% 91.2%

Optimality gap [%]
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25-percentile 75-percentile
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outliers outliers

Figure 2.11: Comparing flow intensity optimality gaps and CPU time reductions for different
parameter settings in the matheuristic.

stations in the obtained solutions for all 440 instances. Hence, the optimality gap on

efficiency, our primary objective, is 0%. The average optimality gap on flow intensity, our

subordinate objective, is, at 0.14%, extremely low. The average CPU time reduction

is 88.3%. Using the route reduction heuristic alone, we can solve 465 out of the 528

instances within a time limit of 7200 seconds.

Next, we elucidate the effect of introducing the fix-optimize stage instead of solving

the restricted FALDPs brute-force. We evaluate different parameter settings for the

percentage of fixed task-location assignments γ and for the maximum number of con-

secutive non-improving iterations β. For γ, we tested the values 50% and 75%. For β,

we tested the values 10 and 25. By design, the fix-optimize stage cannot deteriorate the

solution quality of the primary objective. Therefore, the optimality gap on efficiency re-

mains 0% for all 440 instances. In Figure 2.11, we summarize the results of the analysis

concerning solution quality of the subordinate objective. The figure shows the box plots

on the optimality gap on flow intensity as well as the reduction in CPU time compared

to the exact approach for different combinations of the parameters γ and β. The box

plots are highly skewed. For all parameter combinations, the median is 0%. This means

that our matheuristic finds the optimal flow intensity for more than half of the 440

instances. As expected, the solution quality improves when fixing fewer task-location

assignments (γ = 50%) and allowing a larger number of consecutive non-improving iter-

ations (β = 25). In contrast, the solution time improves when fixing more task-location

assignments (γ = 75%) and allowing a smaller number of consecutive non-improving

iterations (β = 10). For all parameter combinations, the matheuristic solution approach

terminates within 7200 seconds on all 528 instances in our data set.
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Figure 2.12: CPU time distribution of matheuristic subject to the number of tasks.

We use γ = 50% and β = 25 as parameter settings in our fix-optimize iterations,

because they lead to the best solution quality while reducing the total solution time by

almost 90%. Also, the reliability of these parameter settings is convincing. For 97.5%

of the 440 instances, we observe optimality gaps below 4%. For only eight instances, we

observe optimality gaps above 5%. The average optimality gap is 0.42%. We conclude

that the reduction of routes deteriorates flow intensity by 0.14% and the fix-optimize

iterations by 0.28%. Based on the good performance on small- and mid-sized instances,

we expect that our matheuristic is capable of yielding high-quality solutions for large-

sized instances as well.

Figure 2.12 shows the distribution of the CPU times of the matheuristic approach

subject to the number of tasks. Similar to the exact approach, we observe an increase

in CPU times with higher numbers of tasks. However, this increase is less severe. The

matheuristic allows us to solve all 528 instances in acceptable time. The longest CPU

time for an individual instance is 1588 seconds.

2.5.3 Characteristics of FALDP solutions

As an illustrative example, the solution to an FALDP instance comprising 32 tasks

is given in Figure 2.13. The solution was generated using the exact approach. The

solutions to most of the FALDP instances have similar characteristics to the one shown

in the figure. First, the generated layouts are typically compact, meaning that they
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Used location Unused location Entry/exit points

Model 1 Model 2 Model 4Model 3 Model 5

𝑳𝟏

𝑇02, 𝑇03, 𝑇05,
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100.0%

𝑳𝟒

𝑇04, 𝑇07, 𝑇13,
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100.0%
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𝑳𝟐
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𝑇03, 𝑇05, 𝑇06,
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99.1%

𝑳𝟓

𝑇04, 𝑇07, 𝑇10,
𝑇12, 𝑇14, 𝑇15,
𝑇16

100.0%

𝑳𝟖

𝑇08, 𝑇18, 𝑇20,
𝑇21, 𝑇22, 𝑇23,
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100.0%

𝑳𝟑 𝑳𝟔
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91.0%

𝑳𝟗

𝑇17, 𝑇18, 𝑇19
𝑇20, 𝑇22, 𝑇25

100.0%

𝑳𝟏𝟎

𝑳𝟏𝟏

𝑇26, 𝑇27, 𝑇28,
𝑇29, 𝑇30, 𝑇31,
𝑇32, 𝑇𝐸

100.0%

𝑳𝟏𝟐

𝑇23, 𝑇26, 𝑇27,
𝑇28, 𝑇29, 𝑇32

99.7%
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Figure 2.13: Illustrative example of an FAL.

are not much longer than they are wide. The layout in Figure 2.13 has a length of

four stations and a width of three stations. Next, the entry and exit points are usually

positioned in the center and both in the same row. The stations that are positioned on

the main axis between the entry and the exit point have high utilization. In contrast,

stations that are positioned on the outer parts of the layout have the lowest utilization.

In Figure 2.13, we see that the entry and exit points are both in the center row and that

station L6 on the border of the layout has a much lower utilization than the stations on

the center axis. Finally, we observe that the majority of units of the same model are

assembled along the same route. In the example, 18 out of the 21 units of model 1 are

assembled along route L2-L1-L4-L7-L8-L11.

2.5.4 Efficiency comparison between flexible assembly layouts and line

assembly layouts

Efficiency is a major performance indicator of a layout. It measures how well the re-

sources in the layout are utilized. We use the classical efficiency measure for assembly

lines as an efficiency indicator, that is, the efficiency equals the ratio of total workload
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Table 2.5: Efficiency analysis for LALs in closed and open stations settings.

Closed stations Open stations
α = 0% α = 5% α = 15% α = 33%

Av. efficiency of LALs 71.9% 74.2% 79.4% 88.7%
Av. gain in efficiency for FALs 24.5% 22.2% 17.0% 7.7%

to installed capacity and is equivalent to the average utilization of the stations. Let

l ∈ LU be the set of locations used and ul be the utilization of the station at location l,

we calculate the efficiency of FALs and LALs using Equation (2.6).

efficiency =

∑
m∈M |t∈Tm

qm,t · dm

τ · |LU |
=

∑
l∈LU

ul

|LU |
(2.6)

Our analysis shows that FALs dominate LALs in terms of efficiency. Measured across

all 528 instances, the average efficiency of FALs is 96.4%. In contrast, the average

efficiency of LALs is only 71.9%. Consequently, we see an average gain in efficiency of

24.5% for FALs. The higher efficiency values of FALs are intuitive. Since the stations in

FALs are neither paced nor coupled, stations are only occupied by a vehicle while tasks

are being performed. Wasting station capacity due to a smaller workload than the cycle

time is avoided. The vehicles only visit a station if the corresponding tasks are needed.

The analysis above applies to LALs with closed stations (α = 0% in Constraints (A.2d)

in Appendix A.2). When using closed stations, workers are not allowed to drift out of

their stations, which means that the cycle time has to be respected for all models at

each station. The efficiency disadvantage of LALs declines when using open stations

(α > 0%), such that workers are allowed to drift out into downstream stations. As shown

in Table 2.5, the average efficiency of LALs increases and the average gain in efficiency

for FALs decreases with higher drift factors α on the line. When allowing a maximum

excess of cycle time of α = 33%, we observe an average efficiency of LALs of 88.7% and

an average gain in efficiency for FALs of only 7.7%. However, allowing workers to drift

out of their stations implies several challenges. For example, workers might interfere with

the operations of workers in downstream stations. Moreover, operational sequencing and

part supply become more complex.

It should be noted that we are investigating efficiency on a strategic design level. Our

efficiency indicator does not take into account blocking and starving of the stations that

might occur in scheduling on the operational level. Also, it is not surprising that the
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efficiency of FALs is never worse than for LALs, because the LAL solution is included

in the solution space of the FALDP.

2.5.5 Effect of vehicle heterogeneity

Vehicle heterogeneity is the main driver that motivates OEMs to investigate FALs. As

described earlier, OEMs experience inefficiencies when producing a heterogeneous set of

vehicles simultaneously in the same LAL. The industry expects that FALs can alleviate

these inefficiencies. We therefore elucidate the effect of vehicle heterogeneity on the

efficiency of both FALs and LALs. For this purpose, we conduct a series of multiple linear

regressions on our instance set using different dependent variables. The independent

variables are always structure and task time heterogeneity. We employ the ordinary

least squares (OLS) method to estimate regression parameters.

We first investigate the effect of structure and task time heterogeneity on the efficiency

of FALs. Figure 2.14 and Table 2.6 show our regression results. In Figure 2.14, we depict

projections of the regression plane from a structure and task time heterogeneity point

of view respectively. The OLS regression results in Table 2.6 show that the efficiency of

FALs is insensitive to vehicle heterogeneity. The regression coefficients of both structure

and task time heterogeneity are insignificant. These results are supported by the negative

adjusted coefficient of determination R2
adj , which indicates that the independent variables

structure and task time heterogeneity are not suitable for explaining the variation in the

efficiency of FALs.

The efficiency of LALs, in contrast, is negatively affected by vehicle heterogeneity.

Figure 2.15 and Table 2.7 show the regression results for LALs with closed stations

(α = 0%). For low levels of vehicle heterogeneity, we observe higher values of efficiency

than for high levels. For homogeneous vehicles, LALs with closed stations achieve effi-

ciency values close to 80%. With increasing vehicle heterogeneity, the efficiency drops to

values below 70%. The regression coefficients and corresponding p-values of both struc-

ture and task time heterogeneity indicate strong negative correlations that are significant

on the 1% level. Based on R2
adj , we conclude that structure and task time heterogene-

ity are two important determinants for the efficiency of LALs. More than 15% of the

variation of the dependent variable is determined by these two independent variables.

The gain in efficiency for FALs is defined as the difference between the efficiencies of

FALs and LALs. Figure 2.16 and Table 2.8 show our regression results when comparing

FALs to LALs with closed stations (α = 0%). The results point out that the gain in

efficiency for FALs depends on the level of vehicle heterogeneity. We observe efficiency
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Figure 2.14: OLS regression results for efficiency of FALs.

Table 2.6: OLS regression results for efficiency of FALs.

Coefficient P-value Significance

Constant 96.0891 0.0000 ***
Structure heterogeneity 0.0067 0.4963
Task time heterogeneity 0.0084 0.4462

R2 0.0017
R2

adj −0.0021

*** on 1% level, ** on 5% level, * on 10% level
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Figure 2.15: OLS regression results for efficiency of LALs with closed stations.

Table 2.7: OLS regression results for efficiency of LALs with closed stations.

Coefficient P-value Significance

Constant 78.2790 0.0000 ***
Structure heterogeneity −0.1736 0.0000 ***
Task time heterogeneity −0.1788 0.0000 ***

R2 0.1623
R2

adj 0.1600

*** on 1% level, ** on 5% level, * on 10% level
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Figure 2.16: OLS regression results for gain in efficiency for FALs compared to LALs with
closed stations.

Table 2.8: OLS regression results for gain in efficiency for FALs compared to LALs with closed
stations.

Coefficient P-value Significance

Constant 17.8100 0.0000 ***
Structure heterogeneity 0.1803 0.0000 ***
Task time heterogeneity 0.1872 0.0000 ***

R2 0.2023
R2

adj 0.1992

*** on 1% level, ** on 5% level, * on 10% level

gains below 20% for homogeneous vehicles. With increasing structure and task time

heterogeneity, the gain in efficiency for FALs increases substantially. For high structure

and task time heterogeneity, we note efficiency gains of around 30%. The positive cor-

relations are significant on the 1% level. Nearly 20% of the variation in efficiency gain

is explained by structure and task time heterogeneity.

When comparing FALs to LALs with open stations (α > 0%), we find similar cor-

relations just as for closed stations. While the efficiency of LALs is negatively affected

by structure and task time heterogeneity, the gain in efficiency for FALs increases with

higher levels of structure and task time heterogeneity. However, with larger α, we ob-

serve higher efficiency values for LALs and therefore lower gains in efficiency for FALs.

The regression results shown in Table 2.9 point out that the gain in efficiency for FALs

diminishes with higher drift factors α on the line, especially for homogeneous vehicles.

For α = 33%, there are no significant gains in efficiency for FALs when assembling

homogeneous vehicles.
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Table 2.9: OLS regression results for gain in efficiency for FALs compared to LALs with closed
and open stations.

Closed stations Open stations
α = 0% α = 5% α = 15% α = 33%

Constant 17.8100 *** 14.4933 *** 7.9502 *** 1.1432
Structure heterogeneity 0.1803 *** 0.2144 *** 0.2631 *** 0.2011 ***
Task time heterogeneity 0.1872 *** 0.2076 *** 0.2276 *** 0.1542 ***

*** on 1% level, ** on 5% level, * on 10% level

2.6 Conclusion

In this chapter, we investigated the design and performance of FALs in the automotive

assembly. We provided a formal representation of the FALDP and developed an exact as

well as a matheuristic solution approach. Our computational analysis showed that our

matheuristic is capable of finding high-quality solutions in acceptable time for instances

of all sizes. The obtained FALs manifest two consistent design characteristics, i.e.,

compactness and centralization. Compactness means that FALs are typically not much

longer than they are wide. Centralization means that the entry and exit points are

usually positioned in the center and both are in the same row. The stations on the main

axis between the entry and the exit point have the highest utilization, whereas stations

on the outer parts of the layout have the lowest utilization. Also, the majority of units

of the same model is typically assembled along the same route.

The comparison between FALs and LALs generated several valuable managerial in-

sights. First, we showed that FALs have advantages in terms of efficiency. Compared to

LALs with closed stations, the average gain in efficiency is 24.5%. This result is in line

with estimations by Audi that predict efficiency gains of around 20%12. When LALs

with open stations are used, such that workers are allowed to drift out of their stations,

the gain in efficiency for FALs declines. Next, we showed that the efficiency of FALs

is insensitive to vehicle heterogeneity. Conversely, the efficiency of LALs is negatively

influenced by vehicle heterogeneity. In summary, FALs become more attractive with

greater vehicle heterogeneity.

Our results are not only relevant for automotive OEMs. Many automotive components

are characterized by high levels of heterogeneity. Therefore, first-tier suppliers might

also benefit from a conversion to FALs. Moreover, other industries that are assembling

heterogeneous products, e.g., helicopters, are starting to investigate FALs as well.

12https://www.handelsblatt.com/unternehmen/industrie/keine-fliessbaender-mehr-audi-plant-eine-
revolution/14894190.html (published: 27/11/2016, retrieved: 09/12/2020)
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2.6 Conclusion

The aim of this chapter is to demonstrate the capabilities of FALs. We therefore fo-

cused our performance analysis on efficiency. Additionally, other performance indicators

deserve further attention. Due to the uniform workflow, LALs are expected to have ben-

efits in terms of complexity. Planning and control are simple, because all vehicles pass

through all stations in the same sequence and pace. In FALs, however, the exploitation

of the routing and operation flexibility requires real-time scheduling. Due to the AGVs

and buffers, FALs need more space and initial investment than LALs. A comprehensive

analysis is therefore necessary to decide on the transition from LALs to FALs.

As shown in Figure 2.2, many decision problems need to be addressed when designing

and operating FALs in the automotive assembly. At this point, we want to highlight

the most important future research topics. In the FALDP, we excluded dynamics and

uncertainty. In reality, automotive OEMs operate in a highly dynamic and stochastic

market environment. The robust design of FALs is an important direction for future

research. Especially demand is difficult to predict accurately. A two-stage stochastic

FALDP formulation could be a way to address robustness. Stochastic task times could

be incorporated by means of a sampling approach. Moreover, we focused on the initial

design of FALs. The reconfiguration of FALs, however, is also interesting. LALs are

known for their low reconfigurability. To introduce new models, react to demand shifts,

or adjust the capacity, the entire line typically needs to be rebalanced while production

is suspended. In contrast, FALs allow incremental adjustments without suspending

production. Tasks can be reassigned or new stations can be added alongside the layout

without affecting the operation of the existing stations. These reconfiguration flexibilities

make FALs highly attractive for the automotive industry.

In our problem setting, the definition of the assembly segments was given. The problem

of determining the best segmentation of the final assembly into LAL and FAL segments

requires further research. Our results suggest that the segmentation should be based on

the heterogeneity of the vehicles.

Another relevant research direction is to address lower-level planning problems. New

approaches and algorithms are needed for master production scheduling, scheduling, and

rescheduling in FALs.

47





3 Configuration of flexible assembly layouts

for the automotive assembly

This chapter is based on an article submitted as:

Hottenrott, A., Schiffer, M., & Grunow, M. (2020). IoT-driven manufacturing in the

automotive industry: An impact assessment of flexible assembly layouts. Submitted for

publication.

Abstract

Automotive manufacturers take IoT-driven manufacturing to an unprecedented level,

considering the deployment of FALs in which AGVs transport bodyworks on individual

routes between assembly stations. To this end, a methodological framework that allows

to assess the impact of technology choice decisions between traditional LALs and FALs

as well as the impact of different flexibility levers and operational policies is necessary for

optimal decision support. We provide such a framework based on an analytical analysis

and a chance-constrained problem formulation. We further show how this problem

formulation can be solved optimally using a tailored B&P algorithm.

Our results quantify the impact of different operational policies in FALs. We show

that flexibility enables a simultaneous improvement in worker utilization and WIP, re-

solving a classical trade-off in manufacturing systems. Moreover, we find that worker

utilization and output are up to 30% higher in FALs compared to LALs. Further, FALs

prove to be especially beneficial during the ramp-up of vehicles with alternative drive-

train technologies, such as the current transition to electric vehicles.

3.1 Introduction

The IoT is seeping into various industries, enabled through major enhancements in

robotics and communication technologies, big data processing, and artificial intelli-
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gence (Olsen & Tomlin, 2020). In this context, the automotive industry introduces

self-controlled, robotized facilities to improve flexibility and increase production effi-

ciency. Major players, such as Audi, Volkswagen, and Tesla, even consider a precedent

break with assembly line production13, which has been the status quo in this industry for

the past century. They design FALs in which AGVs transport bodyworks on individual

routes between assembly stations14. These new layouts allow for improved handling of

vehicle heterogeneity compared to conventional LALs, resulting in higher worker utiliza-

tion at the stations. FALs can be designed with different degrees of flexibility, which

bear different technological implementation challenges and levels of complexity in oper-

ational planning and control. Accordingly, technology selection and operational policy

determination decisions reach a new level of complexity and are crucial for successful

operations.

FALs invoke a paradigm shift in today’s automotive manufacturing systems and re-

veal an additional perspective on technology-driven flexibility. It is well-known that

manufacturing flexibility enables better performance, especially in dynamic environ-

ments (Anand & Ward, 2004). In operations management, however, flexibility has so far

mostly been studied from a macroscopic supply chain perspective, e.g., by focusing on

sourcing flexibility (see, e.g., Graves & Tomlin, 2003), or from mesoscopic perspectives,

e.g., by analyzing the impact of flexibility on inventory levels (see, e.g., Simchi-Levi,

Wang, & Wei, 2018). All of these research streams make the assumption that the pro-

duction at operational level can be treated as a black box model, and do not capture

recent flexibility improvements that result from IoT-driven manufacturing.

Automotive manufacturers optimized LALs for increasing vehicle heterogeneity over

the past thirty years. With sequencing techniques, overcapacities, and utility workers,

manufacturers managed to efficiently produce heterogeneous vehicles in an LAL. How-

ever, up to now, configuration options (e.g., sunroof or seat heating) remained the sole

heterogeneity drivers that resulted in divergent tasks and workloads. While conventional

measures were sufficient to counteract this heterogeneity, the current diffusion of alter-

native drivetrain technologies challenges this status quo, because the assembly of such

vehicles involves significantly different tasks, tools, and worker qualifications, e.g., the

battery assembly for electric vehicles differs completely from the assembly of internal

combustion engines, and different safety standards apply15.

13https://www.audi-mediacenter.com/en/audi-techday-smart-factory-7076/modular-assembly-7078
(published: 27/11/2016, retrieved: 09/12/2020)

14https://www.bcg.com/de-de/publications/2018/flexible-cell-manufacturing-revolutionize-
carmaking.aspx (published: 08/10/2018, retrieved: 09/12/2020)

15https://www.strategyand.pwc.com/de/de/studien/2018/transforming-vehicle-production/transforming-
vehicle-production.pdf (published: 09/10/2018, retrieved: 09/12/2020)
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3.1 Introduction

While dedicated LALs for different drivetrain technologies appear to be an obvious

solution, automotive manufacturers aim for a joint assembly, as the heterogeneity in-

volved affects only a few assembly segments. Moreover, alternative drivetrains con-

stitute ramp-up technologies in an uncertain market. Investing into dedicated LALs

bears a high financial risk as current production volumes for electric vehicles are too

low for efficient operations, and a market shift towards yet another technology (e.g.,

from battery-powered to hydrogen-powered) may cause significant sunk cost. However,

producing vehicles with different drivetrain technologies in an LAL challenges its design

and operational performance, e.g., it may cause significantly reduced utilization.

To discuss these challenges, we presuppose some basic knowledge of the automotive

assembly process (cf. Section 3.3) and introduce the following minimal case: we subdi-

vide the assembly into multiple segments, between which the handover of the vehicles

is paced by a cycle time c. We consider the production of two vehicles V 1 and V 2 that

subsequently arrive in a segment with two stations L1 and L2. Processing each vehicle

requires two tasks A and B, of which the former is performed on L1 and the latter on

L2. Performing a task takes q1A, q1B time units for vehicle V 1 and q2A, q2B time units for

vehicle V 2. V 1 arrives in the segment at time 0 and V 2 at time 0 + c.

Figure 3.1a shows the only production strategy for the simplest case, a conventional

LAL. In this paced, coupled setting, line stoppages occur whenever the workload at a

station exceeds the cycle time, and idle times occur whenever the workload at a station is

below the cycle time. Apparently, these imbalances may deteriorate the LAL’s utilization

and output level.

3.1.1 Benefits of flexible assembly layouts

In FALs, the abovementioned problems do not occur, because the workflow is not paced

by a cycle time. Instead, AGVs transport the vehicles on individual routes between

stations, which allows for variable production strategies. However, transportation be-

tween stations is time-consuming and vehicles may have to wait at occupied stations.

Accordingly, we expect that FALs have advantages in utilization but disadvantages in

WIP compared to LALs.

We now formally analyze our conjectures regarding the benefits and disadvantages of

FALs and their operational policies. This analysis bases on the minimal case introduced

above, which we extend as follows: we consider an FAL in which transportation between

stations lasts σ time units.

Since the vehicle sequence remains unaltered, all vehicles have the same segment cycle

time C, i.e., spend the same amount of time in the assembly segment. Figure 3.1b shows
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Figure 3.1: Possible production strategies in the minimal case for a conventional LAL, an FAL
without flexibility (NF), and an FAL with full flexibility (FF).
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Figure 3.2: Layout-dependent schedules for the example instance.

the production strategy for an FAL without flexibility (NF), where both vehicles must

pass through L1 and L2 subsequently. Figure 3.1c shows potential production strategies

for an FAL with full flexibility (FF), i.e., a production system where vehicles V 1, V 2

can receive tasks A, B in arbitrary order (which we refer to as operation flexibility), and

where both tasks A, B can be performed on each station L1, L2 (which we refer to as

routing flexibility). As can be seen, there exists only a single production strategy for the

inflexible configuration, while we can choose between eight production strategies for the

fully flexible configuration.

We now use an example instance with q1A = 6, q1B = 2, q2A = 1, q2B = 8, c = 5,

and σ = 1 to illustrate the differences between the three layouts. Figure 3.2a shows the

schedule for an LAL with closed stations. Here, line stoppages occur in the first and

third cycle as the workload at a station exceeds the cycle time. Idle times occur on

both stations in the second cycle as the workloads are below the cycle time. In practice,

one could add more stations to reduce line stoppages, but this inevitably increases the

WIP. Also, allowing workers to drift into subsequent stations could reduce the utilization

deterioration. However, the more drifting is allowed, the more the workers interfere.

Figures 3.2b and 3.2c show the optimal schedules for the FAL (NF) and the FAL (FF)

respectively. Comparing the LAL to the FAL (NF), the LAL with two stations naturally

requires a WIP of two, while the FAL (NF) requires a 20% higher WIP. While the LAL

requires two workers (one for each station) for 19 time units, the FAL (NF) requires
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Figure 3.3: FAL (FF) schedule for an alternative vehicle sequence.

two workers for 17 time units, which equals a utilization improvement of 12% as task

times remain equal. Accordingly, an FAL without flexibility can already yield utilization

improvements compared to a paced LAL at the price of a higher WIP. Comparing the

FAL (NF) to the FAL (FF), we observe that the minimum required segment cycle time

is reduced by 17% from CNF = 12 to CFF = 10 and note that the WIP is proportional

to C (cf. Section 3.3.1), which implies an equal reduction. Moreover, the FAL (FF)

allows for a utilization improvement of 13%.

Theorem 1 provides generalized ranges for WIP decreases and utilization improve-

ments that can result from flexibility in FALs in our minimal case, independent of the

underlying instance.

Theorem 1 Let NF , FF be two configurations of an instance of Problem 1 (cf. Sec-

tion 3.3), each containing a single vehicle sequence with two vehicles V 1, V 2. Let L1, L2

be the available stations, with A, B being the tasks that must be processed for each vehicle.

Further, available production strategies hold as depicted in Figure 3.1b for configuration

NF and as depicted in Figure 3.1c for configuration FF . Then, for any instance it holds

that
WIP FF

WIPNF
∈ [0.5; 1.0] and

UFF

UNF
∈ [1.0; 2.0],

with WIPX being the WIP of configuration X and UX being the respective utilization.

We refer to Appendix B.1 for a proof of Theorem 1. Remarkably, Theorem 1 indicates

that flexibility in FALs may improve WIP and utilization simultaneously, which generally

constitutes a trade-off in conventional assembly systems.

Figure 3.3 shows the optimal schedule for the FAL (FF) when producing a sequence

of two consecutive vehicles V 1. Keeping the FAL feasible for this sequence requires a

minimum segment cycle time of CFF = 9, which is one time unit shorter compared to the

sequence shown in Figure 3.2c. This highlights the importance of considering manifold

vehicle sequences when deciding on the segment cycle time of an FAL. However, these

sequences are unknown at the time of system configuration. Indeed, the segment cycle

time constitutes an additional flexibility lever, as an increased segment cycle time enables

feasibility for a larger variety of vehicle sequences at the expense of a larger WIP.
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The minimal example and the analytical findings of Theorem 1 indicate that FALs

may offer a significant improvement potential for automotive manufacturing, and recent

developments in practice confirm the manufacturers’ trust in this concept: Toyota spends

major investments in increasing the flexibility of their assembly systems16. Tesla already

uses AGVs in their production site in Fremont, California17. Also, Audi launched an

AGV-based production in Györ, Hungary18.

However, it remains an open question to which extend FALs can improve the efficiency

of automotive manufacturing for complex settings that comprise manifold (uncertain)

vehicle manufacturing sequences. As quantifying improvement potentials in closed ana-

lytical form remains intractable for such settings, the remainder of this chapter focuses

on deriving an algorithmic framework that allows to solve such complex settings and

provides an extensive numerical study to analyze the benefits of FALs in real-world

environments.

3.1.2 Contributions

Specifically, our contributions are fivefold. First, we show analytically that even for a

minimal case, the selection of operational policies in FALs can have a significant impact

on operational performance. Second, we present a chance-constrained integer program

that formalizes the flexibility configuration problem in FALs, which minimizes the seg-

ment cycle time for a multitude of potential sequences. This formulation covers all

operational policies, i.e., all possible combinations of the operation and routing flexi-

bility levers. Third, we show how this problem can be decomposed into deterministic

subproblems, and we develop a B&P framework to solve these subproblems. Fourth,

we apply this framework to an extensive computational study in order to evaluate the

impact of FALs in automotive manufacturing. Here, we are the first to develop a set of

realistic test instances for this new problem, based on expert knowledge from industry.

Fifth, we provide managerial insights on configuration options for different flexibility

levers in FALs by quantifying their effect on operational performance. We find that

increasing flexibility allows to improve utilization at lower WIP levels. Moreover, we

compare the performance of FALs to conventional LALs and show that FALs improve

utilization and output levels by up to 30%. Finally, we find that FALs are especially

16https://www.bloomberg.com/news/articles/2019-10-03/toyota-revamps-its-biggest-car-plant-for-
hybrid-suvs (published: 03/10/2019, retrieved: 09/12/2020)

17https://www.wired.co.uk/gallery/tesla-factory-fremont-tour-photos-pictures
(published: 20/07/2017, retrieved: 09/12/2020)

18https://www.automotivelogistics.media/audi-starts-electric-motor-production-at-györ/21237.article
(published: 25/07/2018, retrieved: 09/12/2020)
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3.2 Literature review

beneficial during the upcoming ramp-up of alternative drivetrain technologies, where

they can be adjusted easily to different demand mixes.

3.1.3 Organization

The remainder of this chapter is organized as follows: We review related literature in

Section 3.2. In Section 3.3, we introduce our problem setting, while Section 3.4 presents

our methodology. We then detail our design of experiments in Section 3.5 and discuss

results in Section 3.6. Section 3.7 concludes the chapter by summarizing its main insights.

3.2 Literature review

In the following, we concisely review related literature. We first focus on general flexi-

bility studies, before we review related operational planning models.

Different levers of flexibility have been studied from a strategic perspective, e.g., an-

alyzing the impact of sourcing flexibility in order to increase supply chain robustness

towards demand uncertainty (see, e.g., Graves & Tomlin, 2003; Hopp, Iravani, & Xu,

2010; Jordan & Graves, 1995; Muriel, Somasundaram, & Zhang, 2006). Studying flex-

ibility through the lens of newsvendor networks showed that inventory management

and allocation strategies also allow to mitigate demand uncertainty (see, e.g., Bassam-

boo, Randhawa, & van Mieghem, 2010; Tomlin & Wang, 2005; van Mieghem, 2007; van

Mieghem & Rudi, 2002). Further works focused particularly on the placement of safety

stocks in supply chains and support these findings (see, e.g., Graves & Willems, 2000;

Humair & Willems, 2006). Overall, these works provide profound insights at strategic

level and one may identify parallels at operational level as demand uncertainty remains

the influencing factor on both levels and sourcing flexibility constitutes the strategic

counterpart of exploiting task duplicates at operational level. However, this research

cannot be extended to analyze FALs, because it does not account for operational policy

and system structure decisions, which are necessary to capture all operational interde-

pendencies in order to allow for a thorough anaylsis.

From an operational perspective, specific flexibility levers have been included into

standard scheduling problems. Sawik (2012) focused on simultaneous balancing and

cyclic sequencing in LALs that comprise task duplicates, which have also been stud-

ied from a design perspective (Bard, 1989; Y. Bukchin & Rabinowitch, 2006). Some job

shop scheduling variants consider flexible task sequences (see, e.g., Mohammadi, Karam-

pourhaghghi, & Samaei, 2012), task duplicates (see, e.g., Mastrolilli & Gambardella,

2000), or both (see, e.g., Zhang & Wong, 2015). These works cannot be applied to study
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the benefits of FALs, because they either focus on single flexibility levers or propose

heuristic algorithms that cannot be used for comparative analyses between different

configurations. Moreover, the investigated job shop variants lack elementary require-

ments to model FALs in the automotive assembly, e.g., transportation times between

stations.

Concluding, the importance of studying flexibility in supply chains became evident

through strategic analyses. However, studies on flexibility from an operational per-

spective are still scarce and focus on single flexibility levers from a technical viewpoint.

While this might be plausible for conventional assembly systems, studying FALs requires

a generic analysis of all core levers of flexibility at operational level, their interaction,

and their implications for overall (comparative) system evaluation. However, no study

on these effects exists so far as only a single publication studied FALs but focused ex-

clusively on their strategic design (Hottenrott & Grunow, 2019).

3.3 Problem setting

Up to now, automotive manufacturers organized their final assembly in a pure assembly

line layout (cf. Figure 3.4a), i.e., a serial arrangement of workstations, at which different

tasks are performed in a predefined order. Hereby, all vehicles pass through all stations,

and the workflow is paced by a cycle time. To limit adverse effects of disruptions, such

an assembly line consists of multiple segments, decoupled by small buffers. In a mixed

layout (cf. Figure 3.4b), an FAL replaces the LAL in one or multiple segments of the

original assembly line. Here, stations are neither arranged serially nor is the workflow

paced. Instead, AGVs transport vehicles between stations, each taking a unique route

relating to its specifications. For example, electric vehicles visit the battery assembly

station, whereas conventional vehicles bypass it. Both concepts offer different degrees of

flexibility.

Line assembly layouts: LALs allow for limited flexibility, which mainly remains at

the strategic design level. The manufacturer decides on the number of stations and the

assignment of tasks to stations. Since the layout design predefines the vehicles’ assembly

schedules, hardly any flexibility exists at tactical and operational level.

Flexible assembly layouts: FALs possess similar degrees of flexibility as LALs during

strategic design, as the manufacturer again decides on the number of stations and the

assignment of tasks to stations. Moreover, the manufacturer sets the stations’ locations
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LAL segmentLAL segment LAL segment
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Buffer

(a) Pure line layout.
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… …

Buffer

(b) Mixed layout with an FAL segment.

Figure 3.4: Schematic example of a pure line layout and a mixed layout with an FAL segment.

and the number of task duplicates. Two additional flexibility levers exist at lower plan-

ning levels: modifying a task sequence (operation flexibility) and performing a task at

different stations (routing flexibility).

Apparently, both layout concepts show different structural properties, which lead to

advantages and disadvantages. In Section 3.3.1, we discuss these structural properties

and a manufacturer’s tactical planning problem, before we introduce a formal problem

definition in Section 3.3.2.

3.3.1 Structural properties and tactical decision making

A fundamental difference exists between LALs and FALs in the worker-to-vehicle rela-

tion: in LALs workers wait for vehicles to arrive at their station; in FALs vehicles wait

at stations for workers to become available. Accordingly, FALs may better adapt to

varying arrival sequences of vehicles, especially for heterogeneous vehicles from changing

demand mixes. This improved adaptability allows for a higher utilization and output

levels but also results in a higher WIP, incurred by waiting vehicles. While a higher

WIP may not necessarily be seen as a disadvantage in such a setting but rather as an

additional flexibility lever, incontestable disadvantages remain with respect to i) worker

confusion, i.e., workers facing different assembly states when performing a task on differ-

ent vehicles due to missing standard task sequences, and ii) complicated material supply

due to real-time routing, i.e., JIS stocking is no longer possible such that part kits have

to be prepared in advance to be transported together with a vehicle on its AGV.

Obviously, FALs increase the complexity of planning and controlling manufacturing

operations. Hence, automotive manufacturers consider to combine FALs and LALs in

their final assembly, hereby including FALs in-between LAL segments (cf. Figure 3.4b)

and only for segments with a high vehicle-dependent task heterogeneity. Studying such

a setting remains the focus of this chapter.
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Production planning usually follows a hierarchical structure, i.e., one first takes high-

level, strategic decisions, anticipating their impact on lower planning levels. In our

studies, we use the results from Hottenrott and Grunow (2019) to account for strategic

decisions and focus on tactical planning which is central to exploit the abovementioned

flexibility levers. Here, an automotive manufacturer faces a flexibility configuration prob-

lem, i.e., the manufacturer decides on an appropriate WIP target for an FAL segment

and on the exploitation of operation and routing flexibility. The WIP target itself is

an additional flexibility lever in FAL segments, since, similar to operation and routing

flexibility, a higher WIP facilitates scheduling on the operational level.

Deciding on a WIP target is equivalent to setting a vehicle makespan in an FAL

segment. Every vehicle spends an equal amount of time in the FAL segment as it is

surrounded by up- and downstream LAL segments and the vehicle sequence remains un-

altered. We refer to this time span as the segment cycle time C. Due to the surrounding

LAL segments, vehicles arrive and leave the FAL segment in constant increments of the

cycle time c, such that the WIP in an FAL segment is proportional to the segment cycle

time, formally, WIP= C/c.

In this context, an automotive manufacturer faces a trade-off between feasibility for

many vehicle sequences and a small segment cycle time, which translates into a low WIP,

i.e., among others lower investments into AGVs and simplified system control. Obviously,

the manufacturer must take this decision before the vehicle sequences at operational level

are known. Hence, a high-quality approximation of the unknown vehicle sequences and a

mechanism to balance between feasibility and efficiency for (a subset of) these sequences

is crucial for this planning task. Technically, the manufacturer faces a chance-constrained

optimization problem which can be stated in general form as

min f(x, ξ) (3.1a)

s.t.

g(x, ξ) = 0 (3.1b)

P(h(x, ξ) ≥ 0) ≥ p (3.1c)

where f is the objective function, g(x, ξ) is a function of equality constraints, h(x, ξ)

is a function of inequality constraints, x is the decision vector, and ξ remains the un-

certainty vector. We then seek to minimize the objective function such that the in-

equality constraints are valid with a probability p ∈ [0, 1] for a specified ξ, formally,

P(h(x, ξ) ≥ 0) ≥ p.
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Figure 3.5: Example of a route with five tasks (Isv = {A,B,C,D,E}) on three stations (L =
{L1, L3, L5}).

3.3.2 Problem definition

We now define our specific planning problem as a chance-constrained integer program.

This optimization problem aims to minimize the segment cycle time C(ξ) for a set of

unknown vehicle sequences S(ξ), which must be produced on a set of stations l ∈ L over

a discretized time horizon with time steps t ∈ T . Here, a sequence s ∈ S(ξ) is a list

of vehicles that arrive in an assembly segment in a predefined order. Accordingly, the

solution to our problem consists of schedules Πs, each encoding the assemblies for all

vehicles v ∈ Vs of a sequence s ∈ S(ξ). Then, a schedule Πs = (r1, ..., r|Vs|) is a |Vs|-tuple,

which contains one route rv ∈ Rsv for every vehicle, with Rsv being the set of feasible

routes for vehicle v in sequence s. Each route encodes a sequence of the required tasks

i ∈ Isv and allocates each task to a station. Moreover, a route includes the start and end

times of tasks at stations. Thus, each route has a specific duration wsvr, defined as the

sum of all processing, transportation, and waiting times. The binary parameter bsvrlt

indicates if route r for vehicle v in sequence s occupies station l at time t. Figure 3.5

illustrates such a route.

With the notion of a feasible route, we imply that i) the route covers all mandatory

tasks to process a vehicle, ii) tasks are allocated to stations where they can be conducted,

iii) precedence relations between tasks are respected, iv) the time between subsequent

tasks is sufficient to move a vehicle from one station to another if required, v) stations

are visited at most once to avoid worker confusion, and vi) the route follows a directed

flow, i.e., it does not include backward transfers to upstream stations in order to reduce

AGV traffic and attenuate the risk of collisions.

We state our chance-constrained integer program using binariesXsvr to denote whether

route r is used to process vehicle v in sequence s (Xsvr = 1) or not (Xsvr = 0), and con-

tinuous variables Cs to indicate the minimum required segment cycle time for sequence s

to be feasible.
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Problem 1

min C(ξ) (3.2a)

s.t. ∑
r∈Rsv

Xsvr = 1 ∀s∈S(ξ), v∈Vs (3.2b)

∑
v∈Vs

∑
r∈Rsv

bsvrltXsvr ≤ 1 ∀s∈S(ξ), l∈L, t∈T (3.2c)

Cs ≥
∑
r∈Rsv

wsvrXsvr ∀s∈S(ξ), v∈Vs (3.2d)

P
(
C(ξ) ≥ Cs

)
≥ 1− ρ ∀s∈S(ξ) (3.2e)

Xsvr ∈ {0, 1} ∀s∈S(ξ), v∈Vs, r∈Rsv (3.2f)

Objective (3.2a) minimizes the segment cycle time. Constraints (3.2b) select exactly

one route for each vehicle in all sequences. Constraints (3.2c) forbid that two vehicles

in a sequence occupy the same station at the same time. In Constraints (3.2d), we

derive the minimum required segment cycle times for all sequences. Constraints (3.2e)

represent our chance constraints, ensuring that the overall segment cycle time is feasible

for a predefined share p = 1− ρ of all sequences s∈S(ξ), from here on referred to as the

feasibility target. Finally, Constraints (3.2f) state the binary variable domain.

Two comments on this modeling approach are in order. First, we consider determin-

istic processing and transportation times, and incorporate neither breaks, nor mainte-

nance, nor breakdowns at stations. This deterministic setting is status quo for tactical

configuration problems of assembly lines. It can be readily applied to a tactical FAL

configuration problem, because a robust AGV routing can exploit the system’s flexibil-

ity to resolve any disorder at a lower level. Second, we forbid task preemption, which

reflects current practice in the automotive assembly.

3.4 Methodology

In this section, we first show how Problem 1 can be decomposed into deterministic

suproblems (Section 3.4.1), before we develop a B&P framework to solve each subprob-

lem (Section 3.4.2).

3.4.1 Problem decomposition

The computational tractability of Problem 1 depends on the characteristics of the consid-

ered uncertainty, i.e., whether it is possible to decouple decisions from random variables
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such that one can transform probabilistic to deterministic constraints, e.g., via proba-

bility density functions.

Our problem resembles a chance-constrained optimization problem as an automotive

manufacturer aims for a segment cycle time that is feasible for a large share but not

for the complete distribution of vehicle sequences. However, it diverges from standard

chance-constrained optimization problems as the uncertainty affects the set of vehicle

sequences S(ξ), and thus only indirectly affects wsvr, which implies decoupled variables.

Accordingly, one may study the problem’s sample counterpart, which becomes compu-

tationally tractable as it bears only a finite number of constraints.

We now present a sampling-based decomposition, which ensures that the segment cy-

cle time is above a certain threshold to fulfill a predefined feasibility target of 1− ρ. We

introduce binary variables Ys which indicate whether the minimum required segment

cycle time Cs for sequence s is in the lower 1 − ρ percentile of all sample sequences

(Ys = 1) or not (Ys = 0). Further, we refer to S as the sample set of vehicle sequences

and reformulate Problem 1 as follows:

Problem 2

min C (3.3a)

s.t. ∑
r∈Rsv

Xsvr = 1 ∀s∈S, v∈Vs (3.3b)

∑
v∈Vs

∑
r∈Rsv

bsvrltXsvr ≤ 1 ∀s∈S, l∈L, t∈T (3.3c)

Cs ≥
∑
r∈Rsv

wsvrXsvr ∀s∈S, v∈Vs (3.3d)

∑
s∈S

Ys ≥ (1− ρ)|S| (3.3e)

C ≥ Cs − (1− Ys)|T | ∀s∈S (3.3f)

Xsvr ∈ {0, 1} ∀s∈S, v∈Vs, r∈Rsv (3.3g)

Ys ∈ {0, 1} ∀s∈S (3.3h)

The functionalities of Objective (3.3a) and Constraints (3.3b) - (3.3d) match their

counterparts in Problem 1. We transform the chance constraints (Constraints (3.2e)) to

deterministic constraints, in which we select the feasible sequences in Constraint (3.3e)

and obtain the segment cycle time C in Constraints (3.3f). Finally, Constraints (3.3g) -

(3.3h) define the binary variable domains.
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Problem 2 has a typical min-max objective and shows a distinct block structure in

which every sample sequence forms a specific block. Only Constraint (3.3e) links these

different blocks. This allows us to decompose Problem 2 into |S| smaller subproblems,

one for each sample sequence s.

Problem 3

min Cs (3.4a)

s.t. ∑
r∈Rsv

Xsvr = 1 ∀v∈Vs (3.4b)

∑
v∈Vs

∑
r∈Rsv

bsvrltXsvr ≤ 1 ∀l∈L, t∈T (3.4c)

Cs ≥
∑
r∈Rsv

wsvrXsvr ∀v∈Vs (3.4d)

Xsvr ∈ {0, 1} ∀v∈Vs, r∈Rsv (3.4e)

Objective (3.4a) minimizes the required segment cycle time Cs for the considered

sequence. We select one route for each vehicle (Constraints (3.4b)) and ensure that

no station is occupied by two vehicles at the same time (Constraints (3.4c)). In Con-

straints (3.4d), we derive the objective value, and Constraints (3.4e) state the binary

variable domain.

We can solve Problem 2 by solving Problem 3 for all sample sequences and sorting

all Cs in increasing order. Then, the overall segment cycle time C corresponds to the

Cs at position d(1− ρ)|S|e of the sorted values. This reduces the problem’s complexity

significantly, but even Problem 3 remains NP-hard (cf. Appendix B.2) and computation-

ally intractable for instances of practical interest. In the following, we develop a B&P

framework that resolves this intractability.

3.4.2 Branch-and-price framework

For our discussion, we assume that the interested reader is familiar with the general

concept of B&P, where we integrate column generation into a B&B algorithm.

In a nutshell, we start solving a restricted master problem (RMP) (Section 3.4.2.1),

i.e., the linear programming (LP) relaxation of our original problem with a limited set

of columns. We then iterate between this RMP and pricing problems (Section 3.4.2.2)

to improve the solution by adding additional columns with negative reduced cost, or

to proof optimality in case no more such columns exist. Then, we apply branching
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(Section 3.4.2.3) to obtain an integer solution and terminate when we found the optimal

integer solution. In the following, we explain the mentioned algorithmic components and

embed the resulting B&P algorithm into a framework that exploits tight upper bounds

in order to speed up computational times (Section 3.4.2.4).

3.4.2.1 Restricted master problem

The RMP results from the LP relaxation of Problem 3.

Problem 4

min Cs (3.5a)

s.t. ∑
r∈R̄sv

Xsvr + Zsv = 1 ∀v∈Vs (3.5b)

∑
v∈Vs

∑
r∈R̄sv

bsvrltXsvr ≤ 1 ∀l∈L, t∈T (3.5c)

Cs ≥
∑
r∈R̄sv

wsvrXsvr + φ
∑
v2∈Vs

Zsv2 ∀v∈Vs (3.5d)

Xsvr ≥ 0 ∀v∈Vs, r∈R̄sv (3.5e)

Zsv ≥ 0 ∀v∈Vs (3.5f)

Here, we consider only subsets of routes R̄sv ⊆ Rsv, i.e., a reduced set of columns. We

extend the convexity constraints (Constraints (3.5b)) by dummy variables Zsv to ensure

feasibility in case R̄sv precludes a feasible solution, e.g., if the available routes of all ve-

hicles occupy the same station at the same time. In this case, the dummy variables allow

to find a feasible solution, although Constraints (3.5b) and (3.5c) would be conflicting.

We penalize the usage of dummy variables in Constraints (3.5d) with a sufficiently high

cost term φ to ensure convergence towards a feasible solution. Constraints (3.5e) - (3.5f)

state the variable domains. Here, Constraints (3.5e) differ from Constraints (3.4e) by

relaxing the integrality of the Xsvr variables.

Solving this RMP, we obtain the dual multipliers of its constraints, which we use

in the pricing problems to generate routes with negative reduced cost that iteratively

enlarge R̄sv. Specifically, we obtain a cost parameter βlt for occupying station l at time t

from (3.5c); a cost per time step γv for each vehicle from (3.5d); and a maximum cost

threshold for promising routes κv for each vehicle from (3.5b), such that a route has

negative reduced cost if its cost are below κv.

63



3 Configuration of flexible assembly layouts for the automotive assembly

Time-space network

Time

St
at

io
n

LS

L1

L2

LE

AA

BB

A A A A

A,B A,B A,B

B B B B

o

Operation Transportation Waiting

Precedence graph

A
1

B
1

Layout

L1L1
A,B

L2L2
B

LSLS

LELE

1 1

Figure 3.6: Example of a time-space network for a simplified example instance.

3.4.2.2 Pricing problems

We solve the pricing problem for each vehicle as an elementary shortest path problem

with resource constraints (ESPPRC), modeled on a time-space network, formalized as

a graph G = (N ,A) in which nodes n ∈ N represent time-station combinations (t, l).

We add an initial (LS) and a final (LE) dummy station that constitute the entry and

exit points of the FAL, and we define an origin node o = (t0, LS) as a tuple of the

vehicle’s arrival time t0 and station LS. To model the network, we use three types of

arcs a ∈ A: i) operation arcs expand in the time dimension and their length depends on

the processing times of included tasks, ii) waiting arcs also expand in the time dimension

and have a length of one time step, and iii) transportation arcs can expand in both the

time and the station dimension. Then, a route is a sequence of consecutive arcs, and we

solve a pricing problem for each vehicle to find a route with negative reduced cost that

covers all tasks i ∈ Isv, respects task precedences, and fulfills the AGV’s flow restrictions.

Figure 3.6 shows an example of such a network, its underlying precedence graph,

and its layout for a simplified setting with two tasks (A, B) that must be processed in

sequence, and two stations (L1, L2) that can perform either both tasks (L1) or solely

task B (L2). We highlight a potential route that consists of a transportation arc from

LS to L1, followed by an operation arc at L1 to perform task A, a transportation arc to

L2, a waiting arc at L2, an operation arc at L2 to perform task B, and a transportation

arc to LE. The duration of this route equals the number of time steps between starting

at LS and ending at LE and is four time units.

We develop a mono-directional forward labeling algorithm to solve the ESPPRC on

such a time-space network. This algorithm propagates partial routes through G in order

to find the route with maximum negative reduced cost and holds as follows:
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Route representation: We represent a partial route r from origin node o to a node

n ∈ N by a label Γr = (T posr , T durr , T costr , (T taskir )i∈Isv , (T
stationl
r )l∈L), consisting of the

following resources:

T posr denotes the station where route r ends;

T durr denotes the duration of route r;

T costr denotes the cost of route r;

T taskir indicates whether task i ∈ Isv is performed along route r (T taskir = 1)

or not (T taskir = 0);

T stationl
r indicates whether station l ∈ L is visited or unreachable on route r (T stationl

r =1),

or reachable and not yet visited (T stationl
r =0).

Resource extension functions: We introduce the following notation to define resource

extension functions (REFs), which propagate the label of a partial route to its next

node. We represent an arc a as the combination of its start node (tstarta , lstarta ) and end

node (tenda , lenda ). As the AGVs are not allowed to move upstream, i.e., backwards in the

station hierarchy (cf. Section 3.3.2), we define the sets Ul ⊆ L that include all stations

that are unreachable from station l. We use ηalt to indicate whether arc a occupies

station l at time t (ηalt = 1) or not (ηalt = 0), and note that only operation arcs occupy

stations. Let Icovera be the set of tasks which are performed along arc a. We then

initialize all resources at the origin node o to zero such that

T posr = T durr = T costr = T taskir = T stationl
r = 0,

and use the following REFs Fa(Γr) to extend a route r by arc a to r′ such that

Γr′ ← Fa(Γr) with

F posa (Γr) = lenda ; (3.6a)

F dura (Γr) = T durr + tenda − tstarta ; (3.6b)

F costa (Γr) = T costr +
∑
l∈L

∑
t∈T |ηalt=1

βlt + γv(t
end
a − tstarta ); (3.6c)

F taskia (Γr) = T taskir +

1 if i ∈ Icovera

0 else
∀i ∈ Isv; (3.6d)

F stationl
a (Γr) = T stationl

r +

1 if (l = lstarta ∨ l ∈ Ulend
a

) ∧ T stationl
r = 0

0 else
∀l ∈ L. (3.6e)
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The end station of the extended route corresponds to the end station of arc a, i.e., lenda

(3.6a). Straightforwardly, we propagate the route duration by adding the duration of

arc a (3.6b) and the cost resource by summing up occupation cost and duration cost

along arc a (3.6c). For all tasks i ∈ Icovera that are performed along arc a, we set the

corresponding resource T taskir to one (3.6d). Finally, we set T stationl
r to one for all stations

that have been visited along route r or that are unreachable from the end station lenda

(3.6e). Note that we can only extend a partial route by an arc a if none of the tasks in

Icovera have been performed yet, and if all predecessors of the tasks in Icovera have already

been performed.

Dominance rules: We eliminate partial routes as soon as they are dominated by an-

other partial route to keep the number of explored states as small as possible. Our

REFs are monotonously increasing and allow for the following dominance check. Let

Γk = [T posk , T durk , T costk , (T taskik )i∈Isv , (T
stationl
k )l∈L], k ∈ 1, 2, be two labels associated

with two different partial routes. Then, Γ1 dominates Γ2, i.e., Γ2 and its corresponding

route can be withdrawn from our search if all of the following conditions are fulfilled.

T pos1 = T pos2 (3.7a)

T dur1 ≤ T dur2 (3.7b)

T cost1 + γv(T
dur
2 − T dur1 ) ≤ T cost2 (3.7c)

T taski1 ≥ T taski2 ∀i ∈ Isv (3.7d)

T stationl
1 ≤ T stationl

2 ∀l ∈ L (3.7e)

We ensure that we only compare two labels that end at the same station (3.7a).

Γ1 dominates Γ2 if its route has a shorter duration (3.7b), lower cost (3.7c), covers a

superset of tasks (3.7d), and visits a subset of stations (3.7e) compared to the route of

Γ2. For a correct cost comparison, we have to artificially align the durations of both

routes by excluding the cost that arise due to duration differences between both routes,

i.e., γv(T
dur
2 − T dur1 ). If Γ1 dominates Γ2 and Γ1 6= Γ2, we discard Γ2. When two labels

Γ1 and Γ2 are equal, we keep the label that was created first.

Feasibility check: To discard labels that cannot be extended to a feasible route with

negative reduced cost anymore, we use the following additional notation: let σl be the

minimum transportation time from station l to the dummy end station LE; qvi be the
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processing time of task i for vehicle v; λli be a binary parameter that states whether

task i can be performed at station l; and CUBs is the current upper bound, i.e., the best

integer-feasible solution found so far. Then, we discard a label if at least one of the

following conditions is met:

T costr + γv(σTpos
r

+
∑

i∈Isv|T
taski
r =0

qvi) ≥ κv; (3.8a)

∃i ∈ Isv : T taskir = 0 ∧
∑

l∈L|T stationl
r =0

λli = 0; (3.8b)

T durr + σTpos
r

+
∑

i∈Isv|T
taski
r =0

qvi ≥ CUBs . (3.8c)

Condition (3.8a) discards r as soon as it no longer yields negative reduced cost, antici-

pating the remaining duration cost. Condition (3.8b) discards r if a missing task cannot

be completed without violating the flow restrictions of the AGVs. Condition (3.8c) dis-

cards r as soon as it cannot be completed to a feasible route with a duration below CUBs ,

because a longer route cannot be part of an improving integer-feasible solution.

3.4.2.3 Branching strategies

If the optimal solution to the RMP is fractional, we use a B&B algorithm to obtain

integer-feasible solutions. We use a depth-first strategy and branch on the node that

has the highest depth in the B&B tree. In case of a tie, we prioritize the node with the

smaller lower bound. Whenever we find an integer LP solution, we update the upper

bound CUBs . We prune nodes with integer-feasible solutions as well as nodes with a lower

bound that exceeds CUBs − 1, because these cannot yield an improving integer-feasible

solution. Our search terminates when all nodes are pruned, i.e., when the global lower

bound matches the global upper bound.

We apply two branching techniques: i) on the assignment of a task to a station for

a vehicle (assignment-based branching), and ii) on the start time of a vehicle’s task

(temporal branching). If both strategies can be applied to a fractional solution, we

prioritize assignment-based branching.

Assignment-based branching: We iterate over all vehicles and check the integrality of

task-to-station assignments in the LP solution. If multiple task-to-station assignments

are fractional, we branch on the assignment of the vehicle with the higher makespan in the

LP solution. If multiple fractional task-to-station assignments exist for the same vehicle,
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we choose the one that is closest to integrality, i.e., whose absolute distance to zero or

one is minimal. We create two branches. In the left/right branch, we forbid/enforce

that the vehicle receives the task at the respective station.

Temporal branching: We iterate over all vehicles and their tasks and monitor the start

times of the operation arcs selected in the LP solution. If a task is split onto multiple arcs

with different start times, we denote the earliest/latest start time of the arcs involved by

τ1/τ2. We then branch as follows: in the left/right branch, we forbid/enforce that the

operation arc which includes the task starts at time
⌈
τ1+τ2

2

⌉
or afterwards. In case of

multiple split tasks, we prioritize the vehicle with the higher makespan in the LP solution.

We note that both branching techniques only affect the route generation in the pricing

problems and allow to exclude arcs in the time-space network for the respective vehicle.

Accordingly, the size of the pricing problems reduces the deeper we develop the B&B

tree.

3.4.2.4 Algorithmic framework

Solving Problem 3, we face a large amount of symmetry that results from the problem’s

min-max objective in which only a single column determines the objective value. Usually,

we exploit the problems’ structure to derive tight bounds that resolve such a symmetry

problem. In our specific case, finding such bounds remains a tedious task, because the

problem by nature shows no promising characteristics that allow to do so. Accordingly,

we embed our B&P algorithm into a framework that iteratively exploits artificial upper

bounds.

Figure 3.7 shows the pseudocode of this framework. We first solve the root node LP

relaxation of the RMP to obtain a global lower bound CLBs on the minimum required seg-

ment cycle time Cs. Then, we set an artificial upper bound ĈUBs = dCLBs e+ 1 and solve

the problem using the B&P algorithm. By doing so, ĈUBs strengthens Condition (3.8c)

of the feasibility check in the pricing problems, where we generate much fewer columns.

Thereby, we prevent evaluating a large number of valueless linear combinations of long

and short routes in the RMP, and the RMP resembles to a large extend to a feasibility

problem. Our search terminates when we find an integer-feasible solution CUBs below

ĈUBs as this solution is always optimal. Otherwise, we increase our artificial upper bound

ĈUBs by one time unit and reiterate.
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1 Solve LP relaxation of RMP (CLB
s );

2 ĈUB
s ← dCLB

s e+ 1;
3 loop

4 Solve B&P with artificial upper bound ĈUB
s ;

5 if CUB
s < ĈUB

s exists then
6 break;
7 else

8 ĈUB
s ← ĈUB

s + 1;
9 end

10 end

11 Cs ← CUB
s ;

Figure 3.7: Pseudocode of the algorithmic framework.

3.5 Design of experiments

This section details our design of experiments. We first outline the scope of our studies in

Section 3.5.1, before we detail the corresponding computational design in Section 3.5.2.

3.5.1 Scope

The scope of our studies is twofold. First, we analyze the benefits of different flexibility

levers in FALs and their impact on operational performance. Second, we compare FALs

to LALs.

3.5.1.1 Flexibility analyses

To analyze different flexibility levers within an FAL segment, we study the following

configurations, which allow us to quantify the benefit of each flexibility lever and to

identify potential positive reinforcements between operation and routing flexibility (cf.

Figure 3.8).

NF: The no flexibility (NF) configuration bases on predefined task sequences and task-

to-station assignments. This setting constitutes a baseline for our analyses.

OF: The operation flexibility (OF) configuration considers predefined task-to-station

assignments but allows for optimized task sequences to exploit operation flexibility.

RF: The routing flexibility (RF) configuration considers predefined task sequences but

allows for optimized task-to-station assignments to exploit routing flexibility.

FF: The FF configuration combines the OF and RF configurations such that both task

sequences and task-to-station assignments can be optimized.
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Figure 3.8: Relation between flexibility levers and flexibility configurations.

Segment cycle time

Q

0
20
40
60
80

100

Fe
as

ib
ilit

y 
ta

rg
et

 [%
]

1-
ρ

Figure 3.9: Example of the variation width.

We solve all configurations by running our algorithmic framework from Section 3.4 but

fix certain decisions a priori depending on the configuration. Appendix B.3 details how

we fix task sequences and task-to-station assignments a priori for each configuration.

To evaluate the results, we use the following four performance indicators.

WIP: The WIP, which is proportional to the segment cycle time of an FAL segment,

denotes the number of vehicles simultaneously processed in a segment. In our

results, we state the average WIP per station, i.e., the total WIP divided by the

number of stations L.

Variation width (Q): Given a set of sample sequences, the variation width denotes the

spread of the minimum required segment cycle times for each sequence. Figure 3.9

shows an example of the distribution of minimum required segment cycle times

for a set of sequences and shows the resulting Q. Accordingly, a low Q implies

that the segment cycle time is more robust towards various vehicle sequences. We

report the variation width divided by the cycle time c.

Utilization (U): The utilization denotes the ratio of the workers’ realized workload com-

pared to the total work time. A high utilization indicates well-utilized workers,

whereas a low utilization indicates that workers are often idle.

Output level (O): A feasibility target below 100% causes delays in some sequences.

These delays may lead to line stoppages in succeeding segments. We use the

output level, which denotes the ratio of the actual output rate compared to the

target output rate 1/c, to measure these delays.
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3.5.1.2 Flexible assembly to line assembly comparison

We compare FALs to LALs for both a stationary demand mix and the ramp-up of alter-

native drivetrain technologies, specifically electric vehicles. Here, we study the respective

utilization, output level, and WIP. While the WIP in an LAL equals its number of sta-

tions Lline, determining the utilization and output level for a fair comparison remains

non-trivial. We determine the utilization in an LAL segment based on the optimal

vehicle sequence that results from a status-quo mixed-model sequencing problem (cf.

Appendix B.4), neglecting sequencing constraints of other segments. We use this opti-

mal sequence to simulate its assembly and denote the duration of line stoppages, which

occur whenever a worker is not able to complete tasks within the limits of her station.

We use the cumulative duration of these line stoppages to calculate the average cycle

time including line stoppages c̄. We then adapt the standard utilization formula for

assembly lines (3.9) using the average workload per vehicle ū. For the LAL output level,

we compare 1/c̄ to 1/c (3.10). By so doing, we obtain a worst-case estimate on the FAL

benefits by accounting for an utopian best case for the LAL assessment.

U line =
ū

Lline · c̄
(3.9)

Oline =
1/c̄

1/c
=
c

c̄
(3.10)

3.5.2 Computational design

We implemented all algorithms in C++, using Gurobi 8.1 to solve linear programs and

ran all experiments on a standard computer with an i7-4810 CPU at 2.80 GHz and 16

GB of RAM.

To avoid non-disclosure conflicts, we develop a realistic instance set for our studies by

adapting a popular standard data set from literature19. We verified its plausibility with

the help of our industry partner. Our instances comprise eleven tasks and are represen-

tative for a segment within the automotive assembly that may potentially be replaced

with an FAL. We account for significantly different vehicle types, e.g., conventional and

electric vehicles, as follows:

19https://assembly-line-balancing.de/
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1. We randomly split the set of tasks I into three disjoint sets I = IC ∪ IE ∪ IA.

While IC and IE include three tasks that are exclusive for conventional and electric

models, IA contains the remaining five tasks that apply to all types of models.

2. We consider two conventional and two electric models by randomly assigning tasks

from IC , IA to conventional models and from IE , IA to electric models, and draw

tasks with a probability of 75%. We choose each task’s processing time from a

uniform distribution that can deviate up to 50% from the original instance’s value

(see Hottenrott & Grunow, 2019).

3. To generate vehicle sequences, we account for a certain demand share (πC : πE)

between conventional and electric vehicles, and consider random permutations of

these vehicles. With these random permutations, we account for the fact that an

FAL segment should be able to process any permutation that is favorable for the

up- and downstream LAL segments. Accordingly, our procedure ensures that one

may derive an operational sequencing that focuses solely on the requirements of

the more restricted LAL segments.

4. We repeat steps 1-3 with different random seeds to create multiple instances.

We generate instances based on this scheme to study the following setups:

3.5.2.1 Flexibility analyses

For our flexibility analyses, we consider twelve instances. For each instance we solve 50

sequences with 20 vehicles, which we identified as a sufficient size for unbiased results

during preliminary analyses (cf. Appendix B.5). We account for a balanced demand

mix between conventional and electric vehicles with (πC : πE) = (50 : 50), and we

generate the strategic FAL design for each instance as described in Hottenrott and

Grunow (2019). Here, we assume Manhattan metric and set the transportation time

between two neighboring stations to ω = 1.0c. We note that the AGV speed remains an

additional field of study during subsequent analyses.

3.5.2.2 Flexible assembly to line assembly comparison

To compare the performance of FALs to LALs, we use an instance setup similar to

the flexibility analyses but account for additional demand mix scenarios. Besides the

balanced mix with a (50 : 50) vehicle split, we consider two additional demand mixes

with vehicle splits of (70 : 30) and (90 : 10) to model potential ramp-up stages for new
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vehicle technologies. Here, we generate LALs for comparison by using the standard

mixed-model assembly line balancing problem, minimizing the number of stations (cf.

Appendix B.6), and compute the cycle time based on Hoffmann (1992).

We account for task duplicates as follows: in an FAL, every task can be assigned to

two stations, such that at most one duplicate of each task exists. Allowing for additional

task duplicates reveals only diminishing effects (cf. Appendix B.7). We compare such

an FAL against an LAL without task duplicates. While this comparison may initially

appear biased, we chose this design, because the benefits for which one would prefer an

LAL over an FAL (e.g., no condition-based, real-time decisions; JIS stocking at stations)

could not be ensured if the LAL has task duplicates.

3.6 Results

This section details the results of our computational studies. For the sake of conciseness,

we report aggregated values throughout this section and refer to the paper’s electronic

companion for detailed results. To ensure the validity of the reported average values, we

performed two-sided Wilcoxon rank tests to ensure statistical significance. We highlight

10%, 5%, and 1% significance levels with single, double, and triple asterisks respectively.

3.6.1 Flexibility analyses

We first study the impact of the flexibility levers in an FAL segment. In the following,

we report results for a 90% feasibility target without further notice as this constitutes a

common threshold in practice. We refer to Appendix B for extended results on different

feasibility targets.

Figure 3.10 shows the impact of all three flexibility levers for a representative instance

by denoting the required segment cycle time for a certain feasibility target 1 − ρ and

each flexibility configuration. A high segment cycle time renders all vehicle sequences

for all flexibility configurations feasible at the price of a high WIP. To achieve a certain

feasibility target at a lower segment cycle time, we notice a clear dominance between

the four configurations as the NF configuration requires the highest segment cycle time

for all feasibility targets. While the OF configuration slightly outperforms the NF con-

figuration, the RF and FF configurations show significant improvements, with the FF

configuration dominating the RF configuration.

Figure 3.11 summarizes the segment cycle time reductions for the OF, RF, and FF

configurations compared to the NF configuration across all instances. The relative reduc-

tions of the segment cycle time equal the WIP reductions as they share the proportional
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Figure 3.10: Impact of the flexibility levers on the feasibility target for a representative instance.
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Figure 3.11: Reduction in the segment cycle time (WIP) due to flexibility for a feasibility target
of 90%.

relation described in Section 3.3.1. We find that all flexibility configurations achieve a

reduction compared to the NF configuration, because operation and routing flexibility

allow for additional production strategies which reduce the waiting times of AGVs at

stations. The OF configuration, however, falls short compared to the RF and FF con-

figurations for two reasons. First, options to interchange a task sequence are limited

as the vehicles’ precedence graphs are dense. Second, the flow restrictions of the AGVs

limit the exploitation of operation flexibility. Interestingly, the reduction potential of

the FF configuration exceeds the sum of the RF and OF reductions. This shows a

positive reinforcement between both flexibility levers, i.e., operation flexibility allows to

better exploit routing flexibility and vice versa. These effects remain similar for varying

feasibility targets (cf. Appendix B.8).

Table 3.1 reports average values for all four performance indicators across all instances.

Additionally, ∆ states their relative deviations from the NF configuration. We note sig-

nificant WIP reductions of up to 28%, which show that operation and routing flexibility

can mitigate the main disadvantage of an FAL. Moreover, the variation width can be

reduced by up to 54%, which shows that flexibility allows to reduce an FAL’s sensitivity

towards unfavorable vehicle sequences. Further, increasing flexibility allows to signif-

icantly improve the utilization by up to 6.9%. The output level shows no significant

changes across all configurations as it mainly depends on the feasibility target.

At a first glimpse, a simultaneous improvement of utilization and WIP seems to con-

tradict classical production theory. This is possible, because the flexibility in an FAL

reduces both waiting times of vehicles and idle times of workers, which highlights the
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Table 3.1: Average results for a feasibility target of 90%.

Configuration WIP [1/L] ∆WIP Q [1/c] ∆Q U [%] ∆U O [%] ∆O

NF 2.4 1.6 76.1 99.92
OF 2.3 -2.7% ∗∗∗ 1.4 -8.8% ∗ 76.6 +0.7% ∗∗∗ 99.92 +0.0%
RF 1.9 -21.5% ∗∗∗ 1.0 -31.2% ∗∗ 79.8 +4.9% ∗∗∗ 99.94 +0.0%
FF 1.7 -28.0% ∗∗∗ 0.7 -54.0% ∗∗∗ 81.3 +6.9% ∗∗∗ 99.95 +0.0%
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Figure 3.12: Impact of the feasibility target
on the average WIP and output
level for the FF configuration.
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Figure 3.13: Impact of the AGV transporta-
tion time ω on the average WIP
for the FF configuration.

conceptual novelty of FALs. For all quantities but the output level, we note an im-

provement hierarchy that is similar to our initial analyses. While the FF configuration

yields the highest improvements, revealing a positive reinforcement between operation

and routing flexibility, the OF configuration yields the lowest improvements.

Figure 3.12 shows the impact of the feasibility target on the WIP and the output level

for the FF configuration. As can be seen, an increased feasibility target results in a higher

WIP and a higher output level. By definition, a feasibility target of 100% achieves an

output level of 100%, because no deteriorating delays occur. However, preventing delays

requires a higher segment cycle time which entails a higher WIP. We notice that these

trends remain consistent for all other flexibility configurations (cf. Appendix B.9).

Finally, we analyze how the efficiency of the AGV system, i.e., the AGV transportation

speed, affects the performance of an FAL. Figure 3.13 shows how the average WIP per

station changes for different transportation times between neighboring stations ω. For

the artificial case of ω = 0.0c, we observe a WIP per station close to 1.0. The WIP

increases almost linearly with increasing ω for all flexibility configurations. We conclude

that an efficient AGV system is a key success factor when operating an FAL, since high

WIP levels require more space and complicate AGV routing.

Concluding, our studies show significant benefits of routing flexibility and combined

routing and operation flexibility in an FAL, while the benefits of sole operation flexibility

remain limited. While these results indicate quantifiable benefits, one may want to

consider additional factors when deciding on the right flexibility configuration of an FAL

segment in practice. Avoiding operation and routing flexibility allows for standardized
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3 Configuration of flexible assembly layouts for the automotive assembly

Table 3.2: Increase in the utilization and output level for FALs compared to LALs with
closed stations.

NF OF RF FF

U +21.3% ∗∗∗ +22.1% ∗∗∗ +27.4% ∗∗∗ +29.9% ∗∗∗

O +31.5% ∗∗∗ +31.5% ∗∗∗ +31.5% ∗∗∗ +31.6% ∗∗∗

Table 3.3: Increase in the WIP for FALs compared to LALs depending on the AGV transporta-
tion time ω.

ω[c] NF OF RF FF

0.0 +36.9% ∗∗∗ +31.1% ∗∗∗ +6.5% ∗ +0.7%
0.5 +85.8% ∗∗∗ +79.3% ∗∗∗ +46.8% ∗∗∗ +36.5% ∗∗∗

1.0 +133.8% ∗∗∗ +127.3% ∗∗∗ +82.8% ∗∗∗ +68.2% ∗∗∗

1.5 +179.3% ∗∗∗ +173.9% ∗∗∗ +118.1% ∗∗∗ +99.2% ∗∗∗

2.0 +225.6% ∗∗∗ +220.2% ∗∗∗ +152.2% ∗∗∗ +129.8% ∗∗∗

task sequences that prevent worker confusion. Further, it allows for predefined task

locations that enable station stocking.

3.6.2 Comparison of flexible assembly layouts and line assembly layouts

In the following, we compare FALs to LALs. Herein, we first consider a stationary

demand mix, before we analyze the performance of both layouts during a ramp-up

scenario.

Stationary scenario: Table 3.2 analyzes the average increase in utilization and output

level between an FAL and an LAL with closed stations. We see that an FAL achieves

higher utilization at higher output levels. While the utilization improvements vary be-

tween 21.3% and 29.9% depending on the flexibility configuration of the FAL, the output

level improvements remain constant at approximately 31.5%. In practice, one may im-

prove the utilization and the output level of an LAL by allowing workers to drift into

subsequent stations when facing varying workloads. Figure 3.14 shows the average in-

crease in utilization and output level for an FAL compared to an LAL with different drift

factors. As can be seen, the FAL preserves a minimum average utilization improvement

of more than 7% and an average output level improvement of 16% for any drift factor

up to 25%. We note that drifting remains challenging in practice, because it requires

tasks at neighboring stations to be independent of each other and to be performed at

different positions of the vehicle. Accordingly, we consider an LAL drift factor of 25%

as a worst-case evaluation of FAL benefits.
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Figure 3.14: Increase in the utilization and the output level for FALs compared to LALs with
opened stations.

Clearly, an FAL allows for these improvements in exchange for an increased WIP,

which depends significantly on the efficiency of the used AGV system. Table 3.3 reports

the average total WIP increase depending on the transportation time between neigh-

boring stations ω in an FAL. The results confirm our findings from Section 3.6.1 and

reveal an average WIP increase of up to 225.6% depending on the AGV speed and the

flexibility configuration. Only for the artificial case of ω = 0.0c, the FF configuration of

an FAL shows a negligible WIP difference compared to an LAL. Further, we observe a

significant deterioration for configurations without routing flexibility.

Ramp-up scenario: So far, our analyses focused on a stationary demand mix with an

equal share of conventional and electric vehicles for which both the FAL and the LAL

segments have been designed. However, the diffusion of electric vehicles is currently

a major ramp-up process for many automotive manufacturers, during which FALs can

be of particular advantage compared to LALs. Once designed, LALs are known to be

inflexible regarding shifting demand mixes. Contrary, FALs are expected to be capable

of mitigating shifting demand mixes without a need for overcapacities. Against this

background, we now study the performance of FAL and LAL segments during a ramp-

up scenario where the demand mix between conventional and electric vehicles shifts

from (90 : 10) to (70 : 30) to the target mix of (50 : 50). For this analysis, we detail the

results for the FF configuration and refer to Appendix B.10 for results of other flexibility

configurations.

Typically, automotive manufacturers account for ramp-up scenarios by including over-

capacities into the design of an LAL. Accordingly, we study the performance of three

different segment designs: i) an LAL exclusively designed for the target demand mix

(T-LAL), ii) an LAL that accounts for ramp-up overcapacities (R-LAL), i.e., an LAL

that has been designed according to Appendix B.6 but with Constraints (B.9d) being
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Figure 3.15: Performance of FALs (FF configuration), T-LALs, and R-LALs during ramp-up.

duplicated for all relevant demand mixes, and iii) an FAL that remains as in earlier stud-

ies designed for the (50 : 50) target demand mix. For both LAL designs, we consider

opened stations, where workers are allowed to drift 25% into the subsequent station.

Figure 3.15 shows the average utilization (3.15a) and output level (3.15b) for each seg-

ment design. We see that the FAL segment is capable of processing all demand mixes at

an output level close to 100% with a constant utilization of around 81%. This shows that

the FAL can balance even large changes in the demand mix without any overcapacities

by solely adjusting its segment cycle time. The T-LAL falls behind the performance of

the FAL, revealing an additional decrease of up to 7% and 9% in utilization and output

level, depending on the ramp-up stage. The R-LAL reveals a better performance than

the T-LAL, especially in the early stages of the ramp-up, but still falls short compared

to the FAL. We note that the R-LAL requires on average 8.2% more stations than the

T-LAL, and hence a corresponding WIP increase, to realize these improvements.

Figure 3.16 shows the required adjustments of the FAL’s segment cycle time for both

ramp-up stages. As can be seen, these adjustments remain on average 3.0% for the

(90 : 10) mix and 1.0% for the (70 : 30) mix. Even for the most extreme demand mix

deviation, the worst increase in segment cycle time remains below 12.5%. Adjusting

the segment cycle time does not cause major disturbances of the production in an FAL,

because it does not require any changes at the stations. This shows that an FAL can

accommodate different demand mixes during ramp-up scenarios without overcapacities

and with only minor adjustments of the segment cycle time, while an LAL reveals sig-

nificant disadvantages, even if overcapacities are considered during its design process.
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Figure 3.16: Adjustments of segment cycle time in FALs (FF configuration) during ramp-up.

3.7 Conclusion

In this chapter, we studied FALs with a particular focus on their deployment in IoT-

driven automotive manufacturing. We derived analytical insights on the benefits of FALs

for a minimal example. To confirm these insights for realistic instances, we proposed

a chance-constrained problem formulation, presented a problem-specific decomposition,

and developed a B&P algorithm to solve the resulting subproblems. We applied this

methodological framework to an extensive numerical study in order to analyze the im-

pact of different operational policies resulting from the combination of the different

flexibility levers within FALs. To support technology selection, we compared the per-

formance of FALs to LALs. Our results allow to conclude this paper with the following

managerial insights:

FALs show a clear impact hierarchy for different flexibility levers. At the price

of a high WIP, a high segment cycle time renders all vehicle sequences feasible for all

flexibility configurations. To realize feasibility at a low WIP, routing flexibility remains

the main improvement lever, allowing for average WIP reductions of 21.5%. Operation

flexibility reveals significantly lower improvement potentials and reduces the WIP on

average by 2.7%. However, both flexibility levers reinforce each other such that fully

exploiting both levers allows to reduce the WIP on average by 28.0%.

Flexibility in FALs resolves the well-known trade-off between WIP and uti-

lization improvements. In classical production theory, there exists a well-known

trade-off between improving a layout’s utilization or its WIP. Our results show that

operation and routing flexibility can resolve this trade-off in an FAL.

FALs outperform LALs in terms of utilization and output level. Our results

show that FALs allow for up to 30% higher utilization and output levels compared to

LALs. We obtain these best-case benefits when comparing fully flexible FALs to LALs

with closed stations. However, even in the worst case, i.e., when comparing FALs with-

out operation and routing flexibility to LALs with opened stations where workers are

allowed to drift 25% into the subsequent station, a significant improvement of a 7%

higher utilization and a 16% higher output level remains.

The operational performance of FALs depends on the efficiency of the AGV
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3 Configuration of flexible assembly layouts for the automotive assembly

system. The FAL improvements come at the price of a higher WIP. Our results show

that this WIP disadvantage is sensitive to the transportation times between stations,

i.e., the speed and operational efficiency of the AGV system employed. While the WIP

remains moderate in fully flexible FALs for transportation times that do not exceed

the cycle time, we observe significant deteriorations for higher transportation times and

configurations without routing flexibility.

FALs are particularly beneficial during ramp-up stages for new technologies.

Our results show that FALs are highly flexible during ramp-up stages with shifting de-

mand mixes and preserve stable utilization and output levels. This can be achieved

through minor adaptations of the segment cycle time. The adjustments of this flexi-

bility lever do not require physical system reconfigurations. LALs, in contrast, show a

significant performance deterioration.
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4 Robust car sequencing for conventional

line assembly layouts

This chapter is based on an article published as:

Hottenrott, A., Waidner, L., & Grunow, M. (2020). Robust car sequencing for au-

tomotive assembly. European Journal of Operational Research.

https://doi.org/10.1016/j.ejor.2020.10.004

Abstract

JIS material supply is the status quo in the automotive industry. In this process, the

assembly sequence of vehicles is set several days prior to production and communicated

to the suppliers. The committed sequence is essential for efficient operations both at the

OEM and its suppliers. In practice, however, sequence stability is insufficient. Short-

term disruptions, such as quality problems and missing parts, put the sequence at risk. If

a disruption occurs, the affected vehicle is removed from the sequence. The resulting gap

is closed by bringing the succeeding vehicles forward. Such sequence alterations, however,

cause workload changes and potentially work overloads at the assembly stations. As a

remedial measure, additional sequence alterations are necessary, which further disturb

material supply. Robustness against short-term sequence alterations is currently a key

objective of automotive manufacturers.

In this chapter, we propose a sequencing approach that includes the vehicles’ failure

probabilities in order to generate robust sequences. Robust sequences are sequences that

can be operated without modifications, even when vehicles fail. We develop a B&B al-

gorithm that optimally solves small-sized instances. For large-sized instances, we design

a sampling-based ALNS metaheuristic. The superiority of our approach is validated in

a simulation study using real-world data from a major European manufacturer. We find

reductions in the expected work overloads of 72% and 80%, compared to the industry

solution and compared to an approach taken from literature which does not take failures

into account.
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4.1 Introduction

JIS material supply is the status quo in the automotive industry. In this process, the

assembly sequence of vehicles is set several days prior to production and communicated

to the suppliers. The committed sequence is essential for efficient operations both at the

OEM and its suppliers. In practice, however, sequence stability is insufficient (Inman,

2003; Lehmann & Kuhn, 2020; Meissner, 2010). Short-term disruptions, such as quality

problems and missing parts, put the sequence at risk. If a disruption occurs, the affected

vehicle is removed from the sequence. In order to maintain the efficiency of the MMAL,

the resulting gap is rarely left idle. Instead, the succeeding vehicles are brought forward.

Such sequence alterations, however, cause workload changes and potentially work over-

loads at the assembly stations. As a remedial measure, additional sequence alterations

are necessary, which further disturb material supply. Robustness against short-term

sequence alterations is currently a key objective of automotive manufacturers.

We define robust sequences to be those that can be operated without modifications,

even when vehicles fail. With regard to vehicle failures, a robust sequence achieves high

efficiency, i.e., no empty hangers, and does not cause work overloads at the stations.

Robust sequences are beneficial in terms of material supply. Only the parts for the failed

vehicles have to be sorted out, whereas the JIS supply for the other vehicles remains

unaffected. In order to plan robust sequences, the vehicles’ failure probabilities need

to be taken into account. Although most OEMs possess sufficient data to determine

the vehicles’ failure probabilities, the analysis of such data is currently not undertaken.

We contribute to the industry’s desire for data-driven planning by developing a robust

car-sequencing approach that exploits this data.

The job of the sequence planner is to create the assembly sequence of the vehicles

produced in a shift. Since multiple variants with a variety of options are assembled

on the same MMAL, the workloads at the stations differ between the vehicles. The

workloads of some vehicles are higher than the cycle time, whereas the workloads of

others are lower. If several consecutive vehicles require high workloads at the same

station, work overloads occur. All of the numerous OEMs we have recently collaborated

with use car-sequencing approaches to minimize work overloads. Herein, so-called Ho/No

sequencing rules are used: out of any subsequence of No vehicles, only Ho vehicles are

allowed to require option o. These sequencing rules are usually experience-based. For

example, empirical evidence has shown that work overloads do not occur when only one

out of two consecutive vehicles is a long version. The corresponding sequencing rule is

Ho/No = 1/2. Sequence A in Figure 4.1 complies with this sequencing rule. The vehicles
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Figure 4.1: Examples for a non-robust sequence (left) and a robust sequence (right).

in sequence slots 1 and 3 are long versions, whereas the vehicles in sequence slots 2, 4,

and 5 are short versions.

Whenever a failure on a vehicle occurs, the initially planned sequence is altered. Let

us assume that the vehicle in sequence slot 2 of sequence A has a high risk of failure. If

this vehicle is not available on time, the resulting gap in the sequence would be closed

by bringing the succeeding vehicles forward as illustrated in sequence A*. However, this

would cause a violation of the sequencing rule between sequence slots 1 and 2, and there-

fore potentially a work overload. Sequence B is a robust sequence. For this sequence, a

failure on the high-risk vehicle would not cause a work overload (sequence B*).

The failure probabilities depend on the vehicles’ specifications. Typical failure drivers

are:

� Body color, e.g., paint quality defects occur more often for certain colors;

� Body variant, e.g., the sunroof cutting process frequently causes problems;

� Selected options, e.g., part suppliers vary in delivery date adherence.

A key failure driver is the body color. While the overall paint shop reliability affects

the failure probabilities of all vehicles, we also observe significant differences between

colors. These differences occur due to setups, paint age, and paint type. Moreover,

experience plays an important role. The more often a color is used, the less likely failures

are. Figure 4.2 shows the demand shares and failure probabilities of ten body colors at a

major European OEM. The failure probabilities represent the shares of vehicles that were

not available on time for assembly. We see that demand shares and failure probabilities

are negatively correlated. Popular colors, e.g., C6, have low failure probabilities. For

color C4, on the other hand, the demand share is only 1.5% while the failure probability

is almost 20%. One particular challenge for an OEM is the introduction of a new color.

On the one hand, demand for new colors is usually high, because dealers like to display

them in their showrooms. On the other hand, new processes are less stable and entail

higher failure probabilities.
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Figure 4.2: Demand share and failure probability by color at a European manufacturer.

Current car-sequencing approaches are insufficient, because they neglect the vehicles’

failure probabilities. This is surprising considering their huge impact and the fact that

this data is available to most OEMs. In this chapter, we study the research question of

how this data can be used in order to create robust sequences that can be forwarded to

the suppliers to enable a JIS supply of the required parts. Accordingly, we assume that

failed vehicles are removed from the sequence. We aim to close the resulting gaps by

bringing succeeding vehicles forward without causing work overloads.

The reinsertion of failed vehicles is planned in real time by a resequencing controller.

Vehicles may be reinserted in the same shift or in later shifts. The decision on when to

reinsert a failed vehicle depends on the required time to resolve the failure, the required

time to properly supply all stations with the vehicle’s parts (including JIS parts), the

urgency of the vehicle and the availability of a sequence slot in which the reinsertion

does not cause work overload at any of the stations. Because it is only possible to deal

with these influencing factors in real time, we do not consider the reinsertion of failed

vehicles in our planning approach for a robust JIS supply.

In this chapter, we focus on sequence planning for the final assembly. For our approach,

it is irrelevant if the same sequence is used throughout all production stages (body shop,

paint shop, and final assembly) or if different sequences are used and the target sequence

is obtained in resequencing buffers between the production stages. This is possible as

long as the sequences do not differ too much and the used buffers have sufficient size

and allow for random access.

We contribute to research into car sequencing in multiple ways:

� We formulate the robust car-sequencing problem as a mixed-integer non-linear pro-

gram.

� We develop a B&B algorithm that solves small-sized instances optimally. We de-

rive tailored lower bounds based on individual options that significantly improve the

algorithmic performance.
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� We propose a sampling-based ALNS heuristic, which builds on observations we ex-

tract from optimal B&B solutions. For adapted, small-sized standard benchmark

instances, we compare our heuristic against the exact algorithm. Our heuristic gen-

erates solutions with an average optimality gap of 0.49%.

� We solve the robust car-sequencing problem for a major European OEM, using ex-

tensive real-world data from 51 shifts. The average run time of our heuristic on these

industry instances is below ten minutes. In a comprehensive simulation study, we

quantify the benefits of including vehicles’ failure probabilities in sequence planning.

We find reductions in the expected work overloads of 72% and 80%, compared to the

industry solution and compared to a literature approach which does not take failures

into account. When a new color is launched, the outcome of our approach is only

marginally affected, whereas the outcomes of the two other approaches deteriorate

significantly. Moreover, we show that the relative benefits of our approach are con-

sistent for different paint shop reliabilities. The largest absolute benefits are found

when paint shop reliability is low.

This chapter is structured as follows: In Section 4.2, we review the related literature.

In Section 4.3, we formally define the robust car-sequencing problem. Our exact B&B

algorithm is described in Section 4.4. From the optimal solutions to illustrative instances,

we derive insights for the design of our sampling-based robust car-sequencing heuristic

(RCSH), which is introduced in Section 4.5. We assess the computational performance

of our algorithms and present the results of our simulation analysis in Section 4.6. In

Section 4.7, we summarize our findings and discuss future research directions.

4.2 Literature review

Sequencing vehicles on MMALs has received considerable attention in the scientific lit-

erature. For a comprehensive review, we refer to Boysen et al. (2009). The ultimate goal

in sequence planning is to minimize work overloads at the stations. Three approaches

exist, i.e., mixed-model sequencing, car sequencing, and level scheduling. While work

overloads are addressed explicitly in mixed-model sequencing, surrogate objectives are

used in car sequencing and level scheduling. Level scheduling seeks to balance part con-

sumption over time. In car sequencing, so-called Ho/No sequencing rules are used, which

limit the number of work intensive options in a subsequence of vehicles.

The car-sequencing approach is most common in industry (Lehmann & Kuhn, 2020).

An overview of the literature is given by Solnon, van Cung, Nguyen, and Artigues
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(2008). The car-sequencing problem is proven to be NP-hard in the strong sense (Kis,

2004). Many solution approaches have been proposed. These range from exact ap-

proaches, like integer programming (Drexl & Kimms, 2001; Gravel, Gagné, & Price,

2005) and constraint programming (Brailsford, Potts, & Smith, 1999), to heuristics,

such as greedy search (Hindi & Ploszajski, 1994), local search (Benoist, 2008; Estellon,

Gardi, & Nouioua, 2008), genetic algorithms (Warwick & Tsang, 1995), ant colony op-

timization (Solnon, 2008), and combinations of them (C. C. Ribeiro, Aloise, Noronha,

Rocha, & Urrutia, 2008).

We identify three particularly relevant research streams on car sequencing. One re-

search stream extends the scope of car sequencing beyond the final assembly (e.g., Bri-

ant, Naddef, & Mounié, 2008; Cordeau, Laporte, & Pasin, 2008; Gagné, Gravel, & Price,

2006). The goal is to determine sequences which remain unchanged throughout the

paint shop and the final assembly. While the sequencing rule violations are minimized

for the final assembly, the number of color changes is minimized for the paint shop. This

streams aims at unchanged sequences between the paint shop and the final assembly.

However, it does not address uncertain vehicle failures and sequence stability.

The drawback of identical sequences is that they are a compromise between the re-

quirements of the paint shop and the final assembly. When the sequences are allowed to

differ, work overloads can be reduced, but buffers become inevitable. Therefore, another

research stream addresses resequencing in buffers between the paint shop and the final

assembly. Boysen et al. (2012) review the literature in this research stream. Three buffer

types exist, i.e., mix banks, pull-off tables, and random access buffers. Heuristics for

resequencing in mix banks are proposed by Choi and Shin (1997); Ding and Sun (2004);

Taube and Minner (2018). Boysen, Golle, and Rothlauf (2011) study resequencing using

pull-off tables. The goal is to reshuffle the outgoing sequence from the paint shop in or-

der to minimize the violations of the sequencing rules in the final assembly. In practice,

many OEMs employ random access buffers. Inman (2003) determines the required sizes

of such buffers. Gusikhin, Caprihan, and Stecke (2008) investigate resequencing in ran-

dom access buffers. Given stochastic processing times in the paint shop, they optimize

the paint shop sequence such that there is a high probability that the planned assem-

bly sequence can be restored. Their heuristic essentially postpones frequent body-color

combinations, while infrequent ones are painted earlier compared to their position in the

assembly sequence. Thereby, they increase the probability that an adequately painted

body is available on time for assembly. We follow a different approach. We want to

be able to close gaps occurring due to failures by bringing succeeding vehicles forward

without causing work overloads.

86



4.3 Robust car-sequencing problem

A third research stream targets the definition of the Ho/No sequencing rules. Even

though the definition of appropriate sequencing rules is crucial, this research stream

has received little attention. Bolat and Yano (1992a) derive sequencing rules based

on operational characteristics of the assembly line. Lesert, Alpan, Frein, and Noiré

(2011) define sequencing rules using processing times. Golle, Boysen, and Rothlauf

(2010) develop a multiple-sequencing-rules approach to further improve the accuracy. All

approaches in the literature assume deterministic processing times and neglect the risk of

sequence alterations due to failures. To increase robustness, the sequencing rules could

be defined more strictly. However, this would neglect the valuable information about

the vehicles’ failure probabilities and thus unnecessarily restrict sequence planning.

Despite the large amount of research on the car-sequencing problem, only the paper

of Gusikhin et al. (2008) addresses uncertainties. Specifically, no paper exists that

determines sequences for the final assembly which are robust against work overloads in

the event of vehicle failures.

4.3 Robust car-sequencing problem

In this section, we formally define the robust car-sequencing problem as a mixed-integer

non-linear program. Given a set of vehicles v ∈ V with a set of options o ∈ O, the goal

is to assign every vehicle to a sequence slot t = 1, . . . , T such that the expected number

of sequencing rule violations is minimized. In contrast to traditional car-sequencing

literature, we sequence vehicles instead of models. Nowadays, the vehicles are very

heterogeneous and their failure probabilities depend on a multitude of specifications.

Thus, a problem formulation based on vehicles is more appropriate in our opinion.

Xvt is a binary decision variable that states whether vehicle v is assembled in slot t.

The binary parameter avo shows if vehicle v requires option o. The sequencing rule for

option o is encoded in the parameters Ho and No. Violations occur whenever more than

Ho out of No successive vehicles require option o.

Every vehicle is associated with a failure probability fv. The failure probability is

based on the vehicle’s specifications, e.g., its color, body variant, or the contained op-

tions, and can be derived from historical data. We assume that the vehicles’ failure

probabilities are independent. This assumption might be critical, because batching in

preceding production stages, e.g., the press shop, can cause correlated failures on multi-

ple vehicles. The delay of a truck can affect the JIS part supply of many vehicles. Also

regarding paint quality defects, the main source of failures, correlated failures may oc-

cur, because many OEMs still batch vehicles of the same color. However, modern paint
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Table 4.1: Problem notation.

Index sets

v ∈ V Vehicles
o ∈ O Options

c ∈ C All 2|V | possible failure scenarios
t = 1, . . . , T Sequence slots

Parameters

avo 1 if vehicle v requires option o, otherwise 0
bcv 1 if vehicle v exists in failure scenario c, otherwise 0
Ho/No Sequencing rule for option o: at most Ho out of No

successively sequenced vehicles require option o
fv Failure probability of vehicle v
pc Probability of failure scenario c

Decision variables

Xvt 1 if vehicle v is assembled in slot t, otherwise 0
Yco Number of sequencing rule violations for option o in failure

scenario c
Zcot Length of evaluation window for option o starting at slot t

in failure scenario c

shops can produce nearly any sequence and do not require extensive setups anymore,

such that batching is no longer necessary reducing the respective correlations.

We determine all 2|V | possible failure scenarios c ∈ C. In every scenario, a vehicle

either exists or fails. The binary parameter bcv is 1 if vehicle v exists in scenario c and

0 if it fails. We derive the probability pc for failure scenario c using Equation (4.1).

pc =
∏
v∈V

(
bcv(1− fv) + (1− bcv)fv

)
∀c ∈ C (4.1)

Let Yco be a decision variable that tracks the number of violations of the sequencing

rule for option o in failure scenario c. We define this variable to be continuous, however,

Constraints (4.2d) ensure that its value is integer. Zcot is an auxiliary integer decision

variable that indicates the length of the evaluation window for option o starting at

slot t in failure scenario c. We count violations using the logic of Bolat and Yano

(1992b), because Golle, Rothlauf, and Boysen (2014) showed that this logic gives the

best outcomes in terms of anticipating work overloads. We extend the sequence by

sufficiently many dummy vehicles prior to the first slot t = 1 and after the last slot

t = T . These dummy vehicles do not require any option and never fail. With the

notation defined in Table 4.1, we formalize the robust car-sequencing problem as shown

in Equations (4.2a) - (4.2g).
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4.3 Robust car-sequencing problem

min
∑
c∈C

pc
∑
o∈O

Yco (4.2a)

s.t.

T∑
t=1

Xvt = 1 ∀v∈V (4.2b)∑
v∈V

Xvt = 1 ∀t=1,. . .,T (4.2c)

Yco =

T−Ho∑
t=Ho−No+2

max

{
0;

t+Zcot∑
t′=t

∑
v∈V

bcvavoXvt′−Ho−No

(
1−
∑
v∈V

bcvXvt

)}
∀c∈C; o∈O (4.2d)

No =

t+Zcot∑
t′=t

∑
v∈V

bcvXvt′ ∀c∈C; o∈O; t=Ho−No+2,. . .,T−Ho (4.2e)

Xvt ∈ {0, 1} ∀v∈V ; t=1,. . .,T (4.2f)

Zcot ∈ Z+ ∀c∈C; o∈O; t=Ho−No+2,. . .,T−Ho (4.2g)

In the Objective (4.2a), we minimize the expected number of violations across all

options. Constraints (4.2b) and (4.2c) ensure that every vehicle is assigned to one

slot and that every slot is filled by one vehicle. In Constraints (4.2d), we derive the

number of violations of the sequencing rule for option o in failure scenario c. Violations

occur whenever more than Ho vehicles requiring option o are assigned to a subsequence

of size No. In order to track the violations, we consider the final sequences in the

failure scenarios, i.e., the sequences that remain after failed vehicles are removed and

succeeding vehicles are brought forward. The second line of Constraints (4.2d) ensures

that we only count the violations in an evaluation window starting at slot t if the vehicle

assigned to slot t does not fail in the respective failure scenario. The problem is non-

linear, because the length of the evaluation window depends on the failed vehicles in

the failure scenario. We define the variable Zcot in order to track the required length of

the evaluation window. The variable denotes how many sequence slots we have to look

ahead such that we obtain a subsequence of No unfailed vehicles (Constraints (4.2e)).

Finally, in Constraints (4.2f) and (4.2g), we define the variable domains.

The robust car-sequencing problem is a combinatorial optimization problem. In gen-

eral, all |V |! vehicle permutations are feasible. To calculate the expected number of
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4 Robust car sequencing for conventional line assembly layouts

violations in a permutation, we must evaluate all 2|V | failure scenarios. The problem

size inhibits us from using standard solving software. We can linearize the formulation

shown. However, the key purpose of the mathematical model is to provide a formal defi-

nition of our problem and not an input for off-the-shelf solvers. As the linear equivalent is

still intractable for off-the-shelf solvers, we continue to develop a B&B algorithm instead.

4.4 Exact branch-and-bound algorithm with tailored lower

bounds

We develop a B&B algorithm to solve the robust car-sequencing problem optimally

for small numbers of vehicles. We first introduce the base algorithm (Section 4.4.1) and

then propose two algorithmic improvements (Sections 4.4.2 and 4.4.3). From the optimal

solutions to small-sized instances, we derive insights (Section 4.4.4) for the design of our

ALNS heuristic presented in Section 4.5.

4.4.1 Base algorithm

In our B&B algorithm, we perform a tree search. The tree levels represent the sequence

slots. The root level represents the first slot t = 1 and the lowest leaf level the last slot

t = T . Hence, our trees have |V | levels. We create |V | trees in parallel. The root node

of the vth tree represents vehicle v.

We extend a node by considering all remaining, yet unplanned vehicles. A path from

a root node to another node represents a partial sequence. We determine the expected

number of violations in all partial sequences. Let V ′q ⊆ V be the vehicles in partial

sequence q and c ∈ C ′q be the respective failure scenarios with probabilities p′qc. We

derive the final partial sequences for all failure scenarios, i.e., the partial sequences that

remain after failed vehicles are removed and succeeding vehicles are brought forward.

Knowing the final partial sequences resolves the non-linearity of Constraints (4.2d) and

(4.2e), because the length of the evaluation windows in the final partial sequences is No.

Let T ′qc denote the number of vehicles in the final partial sequence of failure scenario c.

We obtain T ′qc using Equations (4.3), where b′qcv denotes whether vehicle v exists in

failure scenario c. The parameter a′qcot indicates whether the vehicle at position t in

the final partial sequence of failure scenario c requires option o. We can then adapt

the determination of the expected number of violations in Constraints (4.2d) and the

Objective (4.2a), and calculate the expected number of violations Y ′q in partial sequence q

using Equation (4.4).
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4.4 Exact branch-and-bound algorithm with tailored lower bounds

Table 4.2: Example data.

v av,O1 fv
V 1 1 0.1
V 2 1 0.2
V 3 0 0.3

Table 4.3: Failure scenarios for node 4 in Figure 4.3.

c b′4,c,V 1 b′4,c,V 2 p′4,c T ′4,c
1 0 0 0.02 0
2 0 1 0.08 1
3 1 0 0.18 1
4 1 1 0.72 2

T ′qc =
∑
v∈V ′q

b′qcv ∀c ∈ C ′q (4.3)

Y ′q =
∑
c∈C′q

p′qc
∑
o∈O

T ′qc−Ho∑
t=Ho−No+2

max

{
t+No−1∑
t′=t

a′qcot′ −Ho; 0

}
(4.4)

LBq = Y ′q (4.5)

Example Figure 4.3: An example with three vehicles is shown at the top of Figure 4.3.

We create three trees with three levels each. The root nodes of the first, second, and

third tree correspond to the vehicles V 1, V 2, and V 3 respectively. Let us consider a

single option O1 with sequencing rule HO1/NO1 = 1/2. Additionally, we assume the

vehicle characteristics shown in Table 4.2. For illustrative purposes, let us investigate

the partial sequence of node 4. The set of vehicles is V ′4 = {V 1, V 2} and there are

four relevant failure scenarios as summarized in Table 4.3. While no violations occur in

the first three failure scenarios, one violation occurs if both vehicles exist. Because the

probability of this failure scenario is 0.72, the expected number of violations Y ′4 is 0.72.

The expected number of violations in the partial sequence Y ′q is a lower bound LBq

for the expected number of violations in the complete sequence (cf. Equation (4.5)).

(Example Figure 4.3: Any complete sequence that includes the partial sequence of node 4

will have at least 0.72 expected violations.)

We employ a best-first search strategy. We choose the node with the lowest lower

bound for further extension. That means node q1 is chosen over node q2 if LBq1 < LBq2 .

If there is a tie, we choose the node with the greater depth in the tree. This is when
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Figure 4.3: Example for B&B tree search without/with algorithmic improvements.

LBq1 = LBq2 , q1 is extended before q2 if |V ′q1 | > |V
′
q2 |. (Example Figure 4.3: Node 5 is

chosen before node 4 and before node 2.)

Whenever a node q∗ represents a complete sequence (|V ′q∗ | = |V |), it is pruned and we

update the upper bound UB , formally UB ← min(UB , Y ′q∗). Initially, UB is set to ∞.

We prune a node q− whenever its lower bound is greater or equal to the upper bound

(LBq− ≥ UB). (Example Figure 4.3: The upper bound is updated to 0.216 in node 6

and node 4 is pruned afterward.)

The B&B algorithm terminates as soon as all nodes in all trees are either extended

or pruned. Then, the upper bound UB shows the optimal solution. (Example Fig-

ure 4.3: The optimal solution is 0.216 and it is found in node 6. The optimal sequence

is V 1−V 3−V 2. The B&B algorithm evaluates a total of 13 nodes to prove optimality.)
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4.4 Exact branch-and-bound algorithm with tailored lower bounds

4.4.2 Symmetry breaking

The trees exhibit significant symmetries, since every sequence can be reversed to form

another sequence with same objective value. Without loss of generality, we break symme-

try by enforcing that vehicle V 2 is sequenced later than vehicle V 1. The corresponding

constraint is denoted in Equation (4.6).

T∑
t=1

tXV 1 t ≤
T∑
t=1

tXV 2 t (4.6)

(Example Figure 4.3: The optimal sequence V 1−V 3−V 2 in the example shown in

Figure 4.3 can be reversed to form the optimal sequence V 2−V 3−V 1 found in node 9.

Constraint (4.6) excludes symmetric sequences from the solution space. In the center of

Figure 4.3, we show the trees with symmetry breaking. The B&B algorithm terminates

after seven nodes.)

4.4.3 Strengthening of lower bounds based on individual options of

unplanned vehicles

To reduce the tree sizes further, we strengthen the lower bounds for the partial sequences.

The lower bounds described above are not tight, because they only consider the violations

that occur in the sequence that has been planned already, but ignore the violations that

occur in the remaining, yet unplanned sequence. By anticipating future violations, we

obtain more effective lower bounds. We conservatively approximate the expected future

violations by analyzing every option individually and neglecting interactions between

the options. Also, we neglect violations that occur at the crossover between the planned

sequence and the unplanned sequence. Instead of considering all failure scenarios, we

only consider the one in which all remaining vehicles exist. This scenario has by far the

highest probability, because the vehicles’ failure probabilities are generally low. Thereby,

we reduce the problem of estimating the expected number of future violations to the

well-known deterministic car-sequencing problem.

Let v ∈ V ′′q be the remaining, yet unplanned vehicles for partial sequence q. Since we

evaluate every option individually, we define the binary decision variable X ′′qvto, which

shows whether vehicle v is placed in slot t when investigating option o. The continuous

variable Ȳqo denotes the minimum number of future violations for option o when none

of the remaining vehicles fail. For every option o, we solve the optimization problem
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4 Robust car sequencing for conventional line assembly layouts

shown in Equations (4.7a) - (4.7e). It corresponds to the deterministic car-sequencing

problem with a single option.

min Ȳqo (4.7a)

s.t.

|V ′′q |∑
t=1

X ′′qvto = 1 ∀v∈V ′′q (4.7b)∑
v∈V ′′q

X ′′qvto = 1 ∀t=1,. . .,|V ′′q | (4.7c)

Ȳqo =

|V ′′q |−Ho∑
t=Ho−No+2

max

{
0;

t+No−1∑
t′=t

∑
v∈V ′′q

avoX
′′
qvt′o−Ho

}
(4.7d)

X ′′qvto ∈ {0, 1} ∀v∈V ′′q ; t=1,. . .,|V ′′q | (4.7e)

To solve this problem, we simply have to evaluate all unique permutations of the

binary avo values of the remaining, yet unplanned vehicles V ′′q . We ignore dominated

permutations. If existing, it is always optimal to place a 1 in the last Ho positions of

the permutation. Also, it is always optimal to place a 1 in the first Ho positions of the

permutation, since we neglect the violations that occur at the crossover between the

planned sequence and the unplanned sequence.

Let p′′q represent the probability of the failure scenario in which all remaining vehicles

exist. The minimum expected number of future violations Y ′′q can then be estimated

conservatively using Equation (4.8). We can strengthen the lower bound of node q as

the sum of Y ′q and Y ′′q (cf. Equation (4.9)).

Y ′′q = p′′q
∑
o∈O

Ȳqo (4.8)

LBq = Y ′q + Y ′′q (4.9)

(Example Figure 4.3: At the bottom of Figure 4.3, we illustrate the tree search with

symmetry breaking and strengthened lower bounds. We see that the lower bound of

node 2 has increased from 0.0 to 0.72. The unplanned vehicles for this node are V 1 and

V 2. Both require option O1. Assuming both vehicles exist, the best permutation of

the avO1 values is [1, 1]. This permutation causes one violation of the HO1/NO1 = 1/2

sequencing rule. The probability that both vehicles exist is 0.9 · 0.8 = 0.72. Therefore,
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Sequence slots

1 2 3 4 5 6 7 8 9 10 11

Sequence

5% 2% 13% 3% 17% 15% 16% 10% 9% 16% 1%

Vehicle requires 𝑂1 (critical vehicle) Vehicle does not require 𝑂1 (uncritical vehicle)

Full Full Slack Slack

Figure 4.4: Optimal sequence for an instance with eleven vehicles and one option O1.

the expected number of future violations can be conservatively approximated at 0.72.

Due to the strengthened lower bound, we prune node 2 after evaluating node 5 and do

not have to extend it further. Our B&B algorithm evaluates only five nodes.)

4.4.4 Observations from optimal sequences

We study the optimal sequences for randomly generated, small-sized instances with a

single option O1 to derive insights for the design of our heuristic. As an example,

Figure 4.4 shows the optimal sequence for an instance with eleven vehicles. In this

instance, the sequencing rule for option O1 is HO1/NO1 = 1/2. The option assignments

are uniformly distributed with a 50% probability that a vehicle requires O1. The vehicles’

failure probabilities are drawn from a uniform distribution on the interval (0.0, 0.2). In

the figure, the failure probabilities are indicated below the vehicle icons.

Let us use the term “critical vehicle” for vehicles that require O1 and “uncritical

vehicle” for vehicles that do not requireO1. A “subsequence” starts with a critical vehicle

and ends before theHO1
th critical vehicle following this critical vehicle. We refer to a “full

subsequence” if there are exactly NO1−HO1 uncritical vehicles in the subsequence. In a

“slack subsequence”, in contrast, we find more than NO1−HO1 uncritical vehicles. The

following four observations are persistent in the optimal sequences of different instances:

Observation 1 - Composition of subsequences: The optimal sequences consist of the

minimal number of full subsequences and the maximal number of slack subsequences.

Full subsequences entail a high risk of violation, while slack subsequences hedge against

violations. Any surplus of uncritical vehicles is equally distributed among the slack

subsequences, because the benefits of additional uncritical vehicles are degressive. In the

example in Figure 4.4, two full subsequences and two slack subsequences are scheduled.

One additional uncritical vehicle is placed in every slack subsequence.
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Observation 2 - Distribution of uncritical vehicles: Uncritical vehicles with low failure

probabilities are placed in full subsequences, and uncritical vehicles with high failure

probabilities in slack subsequences. This is intuitive since a failure of an uncritical vehicle

in a full subsequence immediately causes a violation, whereas in a slack subsequence at

least two uncritical vehicles would need to fail. In the example, the uncritical vehicles

with low failure probabilities, i.e., 2% and 3%, are found in full subsequences, whereas

the uncritical vehicles with high failure probabilities, i.e., 9%, 15%, 16%, are found in

slack subsequences.

Observation 3 - Begin/end of sequence: We find HO1 critical vehicles with low failure

probabilities at the begin and end of optimal sequences. Critical vehicles that are unlikely

to fail are most likely to cause violations. It is intuitive to place them at the begin and

end of the sequence. In the example, the critical vehicle with a failure probability of 5%

is placed at the begin and the critical vehicle with a failure probability of 1% is placed

at the end of the sequence.

Observation 4 - Surplus of critical vehicles: If there are more critical vehicles than

capacity in full subsequences, we find additional critical vehicles with high failure prob-

abilities at the begin or end of the sequences (not shown in example).

4.5 Sampling-based robust car-sequencing heuristic (RCSH)

We use the observations from studying optimal sequences to design a robust car-sequencing

heuristic. The exact B&B algorithm introduced in Section 4.4 is not scalable to large-

sized instances. We are facing two challenges when the number of vehicles increases.

First, it is computationally intractable to evaluate all 2|V | failure scenarios. Second, it

is too time-consuming to find the optimal sequence across all |V |! vehicle permutations.

4.5.1 Sampling approach

We propose a sampling approach to address the first challenge. We observe that most

failure scenarios have marginal probabilities. Instead of considering all 2|V | possible

failure scenarios explicitly, we create a sample of failure scenarios c ∈ CS . The sample

needs to be sufficiently large so that it is representative. We do not consider scenario

probabilities anymore. However, more likely scenarios might appear multiple times in

our sample. As objective value, we consider the average violations in the final sequences

of all failure scenarios in the sample.
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We employ the descriptive sampling approach introduced by Saliby (1990) in order to

reduce the variability of the results. In descriptive sampling, a deterministic set of purpo-

sive selected values is used. For each sample, the sequence of these values is permuted.

For our application, we use a set of |V | values, defined as shown in Equation (4.10),

where U−1 is the inverse cumulative distribution function of a uniform distribution on

the interval (0.0, 1.0).

xd i = U−1[(i− 0.5)/|V |] ∀i = 1, . . . , |V | (4.10)

We randomly shuffle the list of values for every failure scenario. If the value at the

vth position is less than the failure probability of vehicle v, then vehicle v is considered

to fail. Otherwise, it is considered to be produced in its scheduled sequence position.

Example: For ten vehicles (|V | = 10), the list of values is [0.05, 0.15, 0.25, 0.35, 0.45,

0.55, 0.65, 0.75, 0.85, 0.95]. In each failure scenario, we randomly shuffle this list of

values, e.g., [0.85, 0.65, 0.15, 0.35, 0.75, 0.05, 0.45, 0.95, 0.25, 0.55]. Let us consider

vehicles’ failure probabilities of [0.01, 0.05, 0.16, 0.03, 0.19, 0.12, 0.01, 0.04, 0.20, 0.06],

then the vector of failed (0) and unfailed (1) vehicles in this failure scenario would be

[1, 1, 0, 1, 1, 0, 1, 1, 1, 1].

4.5.2 Adaptive large neighborhood search

We address the second challenge by introducing an ALNS heuristic. We chose ALNS,

because it provides a framework to employ multiple modification operators. In Sec-

tion 4.4.4, we identified several persistent characteristics of optimal sequences. ALNS

allows us to integrate operators that are inspired by different observations in optimal se-

quences. To explore a large part of the solution space, we additionally employ a random

operator and simulated annealing.

ALNS was first introduced by Ropke and Pisinger (2006). The idea is to improve a

feasible initial solution (Section 4.5.2.1) by iteratively applying modification operators

that alter the incumbent solution. The difference to other neighborhood search strategies

is that multiple operators exist (Section 4.5.2.2). The operators compete to be used. The

probability that an operator is selected depends on its performance in previous iterations.

The newly obtained solution is either accepted and becomes the incumbent solution, or it

is rejected and the incumbent solution remains unchanged (Section 4.5.2.3). Depending

on the outcome, the applied operator is rewarded (Section 4.5.2.4). Thereby, the search

adapts to the instance at hand and to the state of the search. The iterations continue
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until a stopping criterion is met (Section 4.5.2.5). The best solution found by the end

of the search is taken as the result of the heuristic.

4.5.2.1 Initial solution

The starting point of our RCSH is a feasible initial solution. Because all |V |! vehicle

permutations are feasible, we could select any of them. However, we aim for a good initial

solution to speed up our algorithm. We therefore solve the deterministic counterpart,

i.e., the car-sequencing problem without vehicle failures as proposed by Bolat and Yano

(1992b), using Gurobi 8.1.0.

4.5.2.2 Modification operators

We design five modification operators. The operators select one vehicle and move it

to a new position or swap the positions of two vehicles. Such a modification alters

the sequence. However, many parts of the sequence remain unaffected. We therefore

do not reevaluate the entire sequence. It is computationally faster to only assess the

changes in objective value that occur in the neighborhoods around the modifications.

For illustrative purposes, assume a sequence of 300 vehicles in which the last vehicle

is moved forward by two positions. Obviously, the violations in the beginning of the

sequence are not affected and do not need to be reevaluated. The sizes of the affected

neighborhoods depend on the sequencing rule of the option to be evaluated and the

failure scenario.

Critical vehicle operator: Our first operator is inspired by the optimal composition of

subsequences (Observation 1). It seeks to move a critical vehicle that is likely to cause

violations in its current position to a position where it is less likely to cause violations.

We investigate every option individually and consider the sequence without failures.

We identify vehicles that require the option and are positioned in a full or overfull

subsequence, i.e., there are at least Ho vehicles that require the option in a subsequence

of size No. Next, we identify candidate destination positions. These are positions in

which only slack subsequences occur, even when the critical vehicle is moved there. For

every option, we obtain a list of critical vehicles and a list of candidate destination

positions. By pairing the two lists for all options, we create a list of move possibilities.

Pairing two lists means to take the Cartesian product of the two lists, i.e., to get the

list of all ordered pairs (a, b) where a belongs to list A and b belongs to list B. We then

randomly pick one element from this paired list.
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Uncritical vehicle operator: The idea of this operator is also inspired by Observation 1.

It reverses the logic of the first operator. We aim to relieve the risk of violations in a

full or overfull subsequence by adding an uncritical vehicle. Again, we look into a

single option and consider the sequence without failures. We identify vehicles which

do not require the option and are positioned in slack subsequences. Then, we identify

candidate destination positions in full or overfull subsequences. We obtain two lists for

every option. The first list contains the uncritical vehicles that can be moved, the second

list the candidate destination positions. We pair both lists for all options and obtain a

list of move possibilities from which we randomly draw one element.

Swap operator: Contrary to the operators discussed so far, the swap operator does

not move a single vehicle but swaps the positions of two vehicles. It is motivated by

the observation that we find uncritical vehicles with a low failure probability in full

subsequences and the ones with a high failure probability in slack subsequences (Obser-

vation 2). We again assess every option individually and consider the sequence without

failures. We identify pairs of uncritical vehicles, i.e., vehicles that do not require the

option. If the vehicle with the higher failure probability is placed in the subsequence

with less slack, the vehicle pair is added to the list of swap possibilities from which we

randomly select one pair.

Begin/end operator: This operator makes use of the observation that Ho critical ve-

hicles are placed at the begin and end of optimal sequences (Observation 3). We check

whether this characteristic is fulfilled for all options in the incumbent sequence without

failures. If not, we identify all vehicles that require the respective option and randomly

choose one of them to be moved either to the begin or to the end of the sequence

respectively.

Random operator: Ropke and Pisinger (2006) state that it is beneficial to add a random

operator, because purely myopic operators are prone to get stuck in local optima. We

account for this with an operator that performs a random move. We randomly pick a

vehicle and randomly choose a new position for it.

4.5.2.3 Acceptance criterion

We add a simulated annealing acceptance criterion to our RCSH. In general, we accept

every new solution s′ over the incumbent solution s if s′ is better than s. Further-

more, we also accept new solutions s′ with a worse objective value with probability
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p = e−(F (s′)−F (s))/τ where F is the objective value and τ > 0 is the current temperature.

We employ an instance-specific cooling schedule. Starting from an initial temperature τ0,

the temperature is multiplied by a factor γ at the end of each iteration, where 0<γ<1.

Ropke and Pisinger (2006) suggest that τ0 should be chosen based on the initial solution

of the instance at hand. We set τ0 such that a solution which is 5% worse than the

initial solution is accepted with 50% probability. For the cooling factor γ, we choose the

conservative value γ = 0.99975 as proposed in the literature (G. M. Ribeiro & Laporte,

2012; Ropke & Pisinger, 2006). Slow cooling reduces the risk of getting stuck in local

optima.

4.5.2.4 Adaptive mechanism

We select a modification operator in each iteration using a roulette wheel mechanism.

The selection probability is based on the operator’s performance in previous iterations.

Therefore, each operator is associated with a weight ρj , which indicates the operator’s

success in previous iterations. Additionally, we introduce a minimum selection proba-

bility of φmin = 5% for all operators. Especially the random operator is mainly used to

diversify the search, however, it is less likely to find improved solutions. The minimum

selection probability ensures that its application is not excluded in later search phases.

The probability φj that operator j is chosen then follows Equation (4.11).

φj = φmin +
ρj∑

j′∈J
ρj′

(1− |J |φmin) ∀j ∈ J (4.11)

We adjust the weights dynamically. Initially, all operators have the same weights

ρj = 1,∀j ∈ J . We divide our search into segments (each segment has 100 iterations

in our implementation). At the end of a segment, the weights are updated based on

the operators’ performances during the last segment, as shown in Equation (4.12). The

performance of operator j in the last segment is encoded in the score πj . The scores of

all operators are set to zero in the beginning of a new segment. After each iteration, the

score of the chosen operator j∗ is increased by the reward parameters σ1, σ2, or σ3, as

shown in Equation (4.13).
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4.6 Analysis

ρj ← (1− η)ρj + ηπj ∀j ∈ J (4.12)

πj∗ ← πj∗ +


σ1 if s′ is new global best

σ2 if s′ is accepted and s′ is better than s

σ3 if s′ is accepted and s′ is worse than s

0 if s′ is rejected

(4.13)

As recommended by G. M. Ribeiro and Laporte (2012), we use the values 50, 20, and

5 for σ1, σ2, and σ3 respectively. The decay parameter η ∈ [0, 1] controls the sensitivity

of the weight adjustment to the performance in the last segment. We set η = 0.1 as

proposed by Ropke and Pisinger (2006).

4.5.2.5 Stopping criterion

The improvement iterations are continued until a stopping criterion is met. We stop

as soon as the best solution found has improved by less than 0.1% over the past 5000

iterations. We choose these conservative values to ensure convergence also on large-sized

instances.

4.6 Analysis

Our analysis is structured into two parts. In Section 4.6.1, we assess the computational

performance of our exact B&B algorithm and our RCSH. We use a set of small-sized

benchmark instances that we adapt from literature. In Section 4.6.2, we show the results

of real-world robust car-sequencing instances from our partner OEM. We conduct a

simulation study to evaluate the benefits of including the vehicles’ failure probabilities

in sequence planning. We therefore compare the robustness of the sequences planned by

our RCSH with the industry solution and with an approach from literature that does not

account for failures. All code is written in C++. We run our experiments on a standard

computer equipped with an Intel(R) Core(TM) i7-4810 CPU at 2.80 GHz and 16 GB of

RAM.

4.6.1 Computational performance

We use a set of randomly adapted benchmark instances to evaluate the computational

performance of our solution algorithms. The instances are based on the new, difficult
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4 Robust car sequencing for conventional line assembly layouts

Table 4.4: Average number of evaluated nodes in exact B&B algorithm.

|V | = 4 |V | = 7 |V | = 10

Base algorithm without improvements 34 5285 1 889 823
+ Symmetry breaking 19 2374 786 501
+ Strengthening of lower bounds 19 2201 447 516

data set of Gravel et al. (2005) which can be obtained at http://csplib.org/Problems/

prob001/data/. We vary the number of vehicles between |V | = 4 and |V | = 10 and

create 50 instances each. All instances feature five options. The vehicles are randomly

chosen from the models in the data sets according to the demand shares. The vehicles’

failure probabilities are drawn from a uniform distribution on the interval (0.0, 0.2). We

generate 1000 failure scenarios using descriptive sampling, as introduced in Section 4.5.1.

4.6.1.1 Computational performance of exact branch-and-bound algorithm

Table 4.4 reports the average number of evaluated nodes in the B&B algorithm as a func-

tion of the number of vehicles. One entry represents the average across 50 instances.

We present three result sets. The first row shows the performance of the base algorithm

without improvements. The second row depicts the performance with symmetry break-

ing, and the last row the performance with symmetry breaking and strengthening of

lower bounds.

We see an exponential increase in the average number of evaluated nodes with a higher

number of vehicles. We find that symmetry breaking is very powerful in reducing the

number of evaluated nodes. The reduction increases slightly in the number of vehicles

and ranges between 44% and 58%. When we additionally strengthen the lower bounds,

we can reduce the number of evaluated nodes even further. Hereby, we observe an

increasing benefit for larger instances. While the reduction compared to symmetry

breaking alone is 0% for instances with four vehicles, it increases to 43% for instances

with ten vehicles.

We find similar results for the average run time of the exact B&B algorithm. As shown

in Table 4.5, the average run time increases rapidly in the number of vehicles. Adding

symmetry breaking and strengthening of lower bounds speeds up the termination, espe-

cially on large-sized instances. When comparing the performance with all improvements

to the performance without improvements, we compute average run time reductions be-

tween 0% on instances with four vehicles and 90% on instances with ten vehicles. Using

the algorithm with all improvements, the average run time on instances with ten vehicles

is 854 seconds. For larger instances, the run times are prohibitively high.
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Table 4.5: Average run time of exact B&B algorithm (in seconds).

|V | = 4 |V | = 7 |V | = 10

Base algorithm without improvements 0.0 1.0 8652.9
+ Symmetry breaking 0.0 0.4 1984.5
+ Strengthening of lower bounds 0.0 0.4 854.2

0.0 0.5 1.0 1.5 2.0
Op�mality gaps [%]

Figure 4.5: Box plot of optimality gaps for RCSH on instances with ten vehicles.

4.6.1.2 Computational performance of RCSH

We assess the performance of our heuristic on the 50 instances with ten vehicles. After

running RCSH, we compute the expected number of violations in the obtained sequences

and compare it to the optimal value provided by the B&B algorithm.

Figure 4.5 shows the optimality gaps across the 50 instances with ten vehicles. We

note that RCSH performs very well. The average optimality gap is 0.49%. The box plot

shows that 75% of the instances have gaps below 0.74%. The largest gap is 2.19%. The

run times of RCSH are also satisfactory. We observe an average run time of 24 seconds.

The exact B&B algorithm, in contrast, requires an average run time of 854 seconds for

the same instances.

4.6.2 Simulation study

4.6.2.1 Design of experiments

We use real-world data of our partner OEM to assess the benefits of including the

vehicles’ failure probabilities in sequence planning. The OEM provided us with the

production volumes and the planned sequences for 51 shifts (17 days). In every shift,

300 vehicles are produced. The vehicles differ in the contained options and color. Four

options and 16 colors are considered in sequence planning. We estimate the failure

probabilities based on failure rates over past weeks. Since the color is the dominant

determinant, we assume that the failure probability only depends on the color.

Scenario 1 is our base case and resembles the current situation at the OEM. For this

scenario, we use the 51 instances as introduced above. In Scenario 2, we investigate the

launch of a new color. On the one hand, new colors are often in high demand. On the

other hand, they entail a high probability of failure. According to our partner OEM, a
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4 Robust car sequencing for conventional line assembly layouts

demand share of ten percent and a failure probability of 25% are typical for a new color.

To map these characteristics, we artificially increase the failure probability of a color

that has a demand share of approximately ten percent to 25%. In Scenario 3, we assess

the impact of paint shop reliability. Paint shop reliability affects all vehicles similarly.

We therefore perform a sensitivity analysis in which we systematically alter the failure

probabilities of all vehicles by ±50% compared to the base case.

We compare three different approaches to generate sequences. First, we consider our

RCSH as described in Section 4.5. Second, we consider the sequences that were planned

by our partner OEM. We refer to this approach as OEM. The OEM is currently using

a third-party software tool for sequence planning, which also employs car-sequencing

rules. Unfortunately, we do not have detailed knowledge about the algorithms used in

this software. Third, we consider an approach from literature that does not account

for failures. That is to say, we use a generic MILP solver, in our case Gurobi 8.1.0, to

solve the car-sequencing problem as proposed by Bolat and Yano (1992b). We refer to

this approach as LIT. LIT corresponds to the deterministic counterpart of the robust

car-sequencing problem and, hence, to the initial solution of our RCSH.

We optimize the sequences for all 51 instances using all three approaches. We then

perform 10 000 simulation runs for each. In the simulation runs, vehicles are removed

from the planned sequences based on their failure probabilities. We again apply descrip-

tive sampling as introduced by Saliby (1990). We use the term “planned sequence” to

refer to the optimized sequence before vehicles are removed. All planned sequences have

a length of 300. The term “final sequence” refers to the sequence that remains in each

simulation run after failed vehicles have been removed and succeeding vehicles have been

brought forward. The final sequences are shorter than the planned sequences. Having

generated the final sequences, we use the logic of Bolat and Yano (1992b) to count vi-

olations. We use this logic, because Golle et al. (2014) have shown that it performs

best in terms of anticipating work overload. Finally, we determine the expected number

of violations in the final sequences by taking the average across all 10 000 simulation

runs for every instance. We thus obtain samples with 51 sample points for all three

approaches. These samples are the basis for our evaluation. Note that we use common

random numbers in the simulation runs. This means that the same vehicles fail for all

three approaches.

4.6.2.2 Simulation-based determination of number of failure scenarios

We perform an analysis to determine the appropriate number of failure scenarios in the

sampling for our RCSH. We use the data from Scenario 1 and generate instances with
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Figure 4.6: Analysis of appropriate sample size of failure scenarios.
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Figure 4.7: Run times of RCSH.

different sample sizes |CS |. We then derive the expected number of violations for all

instances using RCSH as described in Section 4.6.2.1.

In Figure 4.6, we compare the average number of violations across all instances for

different sample sizes |CS |. Also, we visualize the average run time of RCSH. We see

that the average number of violations in the final sequences converges for sample sizes

above 500. The average run time, on the other hand, increases nearly linearly in the

sample size. We conclude that a sample size of 1000 is sufficiently large. Increasing the

sample size beyond 1000 only increases run time without providing significant gains in

solution quality.

Figure 4.7 shows the distribution of the run times of RCSH for the chosen sample size

of 1000. We note an average run time of 505 seconds. For 90% of the instances, the

run time is below 760 seconds. The longest run time is 969 seconds. These run times

are acceptable, because the sequence is planned a few days ahead of production. We

conclude that RCSH is capable of solving all real-world instances efficiently.
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Figure 4.8: Means and 95% confidence intervals for expected number of violations in Scenario 1
(left) and Scenario 2 (right). Mean performance of OEM in Scenario 1 is normalized
to 100.

4.6.2.3 Scenario 1: Current situation at partner OEM

Scenario 1 is the base case and represents the current situation at the OEM. On the

left-hand side of Figure 4.8, we show the results of our simulation analysis. We plot the

average number of violations in the final sequences across all instances as well as the

95% confidence intervals for the three approaches. For confidentiality reasons, we show

normalized results. The mean performance of OEM in Scenario 1 is set to 100. All other

values are scaled accordingly.

We see that RCSH outperforms the other approaches. OEM comes in second. As

expected, LIT performs worst, because it does not anticipate vehicle failures. The final

sequences of RCSH have on average 72% fewer violations than the final sequences of

OEM. Compared to LIT, we see an average improvement of 80%. OEM, in turn, performs

30% better than LIT. Since the confidence intervals are not overlapping, all performance

differences are significant on the 5% level.

We assume that the reason for OEM outperforming LIT is an approach which spaces

the options across the sequence. Nevertheless, the comparison with RCSH proves that

the full potential for robustness has not yet been tapped in industry. Also, OEM exhibits

the highest fluctuation in performance across the instances, as demonstrated by the

widest confidence interval. For RCSH, in contrast, we find the narrowest confidence

interval and thus the most stable results.

4.6.2.4 Scenario 2: Introduction of a new color

In Scenario 2, we study the introduction of a new color. Both the demand for the new

color and its failure probability are high. The right-hand side of Figure 4.8 shows the

results of our simulation analysis. We find similar relations as in Scenario 1. RCSH

generates by far the best results, followed by OEM. LIT comes in last.
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Figure 4.9: Effect of paint shop reliability on mean expected number of violations. Mean per-
formance of OEM in base case is normalized to 100.

Compared to Scenario 1, we observe that the average number of violations increases

for all three approaches. Also, the fluctuations in performance across the instances, as

represented by the widths of the confidence intervals, increase. However, the performance

deterioration is marginal for RCSH compared to the other approaches. Consequently,

the benefits of using RCSH are higher in Scenario 2 than in Scenario 1. On average,

RCSH generates 84% and 89% fewer violations than OEM and LIT respectively.

We conclude that OEM and LIT are unable to generate robust sequences for the

challenging situation of launching a new color. Our RCSH, on the other hand, is adequate

for addressing this challenge.

4.6.2.5 Scenario 3: Sensitivity toward paint shop reliability

In Scenario 3, we investigate the sensitivity of our results with regard to paint shop

reliability. Paint shop reliability affects the failure probabilities of all vehicles. Figure 4.9

summarizes our findings. We plot the expected number of violations for different levels

of paint shop reliability. We note a negative correlation between the reliability of the

paint shop and the expected number of violations for all three approaches. The lower

the paint shop reliability, the higher the expected number of violations. We observe the

same ranking of approaches as in the previous scenarios. RCSH outperforms OEM and

LIT for all levels of reliability. We note consistent improvements of above 70% compared

to OEM. We conclude that our approach is valuable for all levels of paint shop reliability,

even if the absolute number of violations that can be avoided by our approach is of course

highest when paint shop reliability is low.
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4.7 Conclusion

In this chapter, we studied a real-world car-sequencing problem. The goal was to gen-

erate assembly sequences that are robust in the event of vehicle failures. We formulated

the problem as a mixed-integer non-linear program and proposed an exact B&B algo-

rithm. In order to solve large-sized instances, we developed a sampling-based adaptive

large neighborhood search heuristic. We showed that our heuristic generates high-quality

solutions for real-world instances in acceptable run times. In an extensive simulation

study, we validated the applicability of our approach. We studied three scenarios. Sce-

nario 1 is the base case that represents the current situation at our partner OEM. In

Scenario 2, we studied the performance of our approach when a new color is launched. In

Scenario 3, we assessed the sensitivity of our results with regard to the reliability of the

paint shop. In our study, we considered paint defects as the key failure driver. However,

the algorithms proposed are independent of the failures considered and the application

to other failure types is straightforward.

We derive valuable managerial insights from the results of our simulation study. The

most important insight is that it is beneficial to consider the vehicles’ failure probabil-

ities in sequence planning in order to reduce expected work overloads. Compared to

the industry solution and a literature approach that does not account for failures, we

noticed improvements of 72% and 80% respectively. The improvements were significant

on the 5% level. The results of our approach were not only better than the other ap-

proaches, they were also more stable. We noted fewer fluctuations in the anticipated

work overloads.

The results for Scenario 2 showed that our approach can be of particular advantage

when new colors are introduced. While the results of our approach were only marginally

affected by the changed input data, the other approaches performed substantially worse.

Thus, the benefits of our approach were higher in Scenario 2 compared to Scenario 1.

We expect to see similar advantages for the launches of new options or even new models.

Our approach can countervail the reduced stability that comes along with new processes,

and the planned sequences are more robust.

The sensitivity analysis in Scenario 3 revealed that the relative benefits of our approach

are consistent for different paint shop reliabilities, with improvements of above 70%

compared to the industry approach. In absolute terms, though, OEMs would benefit

most from our approach when paint shop reliability is low.

Since this is a first attempt to include the vehicles’ failure probabilities in sequence

planning, further research is required. Our experiments are based on the data provided
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by our partner OEM, and we exclusively considered paint failures. To verify the appli-

cability for other OEMs and for other failures, our approach should be tested on more

and differently structured instances. Moreover, we considered sequence planning for a

single shift. In reality, OEMs operate the final assembly in different shift schemes. To

apply our algorithm for cases with continuous operations across shifts, our RCSH can

be embedded in a rolling-horizon planning framework.
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This chapter provides a summary of the research presented in the previous chapters

and discusses the findings with regard to the research questions outlined in Section 1.3.

Furthermore, we discuss directions for future research.

5.1 Summary

The Industry 4.0 revolution entails big challenges but also great opportunities for au-

tomotive OEMs. Transforming their production facilities into smart factories allows

OEMs to cope with increasing vehicle heterogeneity that arises from introducing alter-

native drivetrain technologies to the product mix. Innovative FALs and data-driven

planning algorithms are key enablers in such a smart factory. Both support OEMs

in simultaneously improving efficiency, flexibility, and robustness, and thereby staying

competitive in an increasingly dynamic and uncertain market environment.

This thesis aims at supporting OEMs in the transformation to a smart factory by

answering the research questions outlined in Section 1.3. We contribute to both the

research on FAL design and on data-driven sequencing algorithms for LALs. With our

studies, we aim to foster the liaison between academic research and industrial practice.

Our goal is to guide industrial practice by providing quantifiable scientific evidence.

In the following, we first summarize the findings for each of the research questions

and provide a comprehensive conclusion at the end of the section. We answer research

question 1 by providing detailed results on its deduced subquestions 1.A and 1.B.

RQ 1.A: How to strategically design FALs for the automotive assembly?

Chapter 2 investigated the strategic design of FALs. We formally defined the FAL

design problem as a lexicographic MILP that comprises a station formation, station

location, and flow allocation problem. The primary objective is to minimize the number

of stations, which is equivalent to maximizing efficiency. The secondary objective is to

minimize flow intensity. We developed an exact decomposition-based solution algorithm

as well as an iterative fix-optimize matheuristic. In our computational study, we showed
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that our matheuristic is capable of finding very good solutions in acceptable time for

instances of industrial size.

We discovered two consistent design characteristics in the generated FALs. First, the

obtained FALs are compact, i.e., they are typically not much longer than they are wide.

Second, they are characterized by centralization, which means that the entry and exit

points are usually positioned on the central axis. We noticed high utilization for the

stations that are on this main axis between entry and exit points, whereas the stations

in the outer parts of the layout are less utilized. Also, we found that most units of the

same model follow the same route through the layout.

RQ 1.B: How to tactically configure FALs for the automotive assembly?

Chapter 3 focused on the tactical configuration of FALs. On this level, the OEM is con-

fronted with a flexibility configuration problem. That is, the OEM has to decide on the

exploitation of operation and routing flexibility as well as on an appropriate WIP target

for the FAL segment. In general, OEMs strive for a low WIP to simplify AGV routing

and reduce the space requirements of the FAL. However, a high WIP constitutes as an

additional flexibility lever that facilitates scheduling on the operational level. Exploit-

ing operation and routing flexibility allows to reduce the WIP without compromising

operational performance. Nevertheless, operation and routing flexibility also have dis-

advantages. Operation flexibility comes along with variable task sequences that may

confuse workers, and routing flexibility implies alternative task locations that preclude

JIS stocking at stations. OEMs must consider these disadvantages when deciding on the

right flexibility configuration of an FAL in practice.

We formulated the flexibility configuration problem in an FAL as a chance-constrained

optimization problem and proposed a problem-specific decomposition. We then devel-

oped an exact B&P algorithm to solve the decomposed subproblems. In an extensive

computational analysis, we quantified the effect of an FAL’s flexibility levers on opera-

tional performance, and we derived valuable managerial insights.

We observed a clear impact hierarchy for the flexibility levers in an FAL. While routing

flexibility is the main improvement lever, operation flexibility reveals significantly lower

improvement potentials. Interestingly, we found that both flexibility levers reinforce

each other such that exploiting them together leads to higher benefits than the sum of

the individual benefits. Additionally, we showed that these flexibility levers can resolve

the well-known trade-off between increasing a layout’s utilization and reducing its WIP,

as exploiting operation and routing flexibility improves both objectives simultaneously.
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RQ 2: What are the advantages and disadvantages of FALs compared to LALs? For

which application scenarios are FALs superior to LALs?

In Chapters 2 and 3, we compared FALs to LALs. Chapter 2 studied the effect of

vehicle heterogeneity on the efficiency of both FALs and LALs, whereas Chapter 3 com-

pared worker utilization, output levels, and WIP. From our computational analyses, we

extracted several managerial insights.

In Chapter 2, we confirmed that FALs have an efficiency advantage compared to LALs.

This efficiency advantage depends on the extend of drifting in LALs. Compared to LALs

with closed stations, we computed efficiency gains of nearly 25%, which match industry

predictions. For LALs with open stations, the efficiency gain of FALs diminishes. In

addition, we found that the efficiency of FALs is insensitive to vehicle heterogeneity. The

efficiency of LALs, in contrast, declines with higher vehicle heterogeneity. Consequently,

we concluded that the attractiveness of FALs increases with higher vehicle heterogeneity.

In Chapter 3, we proved that FALs outperform LALs in terms of utilization and

output level. Our results showed that FALs achieve up to 30% higher utilization and

output levels compared to LALs with closed stations. When comparing to LALs with

open stations, these improvements decrease. However, they still remain significant, even

when operation and routing flexibility are not exploited in FALs. These results are in line

with our findings from Chapter 2. The FAL improvements come at the price of a higher

WIP. We saw that this WIP increase depends on the flexibility configuration of the FAL

and the efficiency of the AGV system employed. When operation and routing flexibility

are exploited and the AGV transports are fast, the WIP disadvantage of FALs is low.

However, it increases considerably for configurations without routing flexibility and with

slower AGV transports. Finally, we confirmed that FALs can be of particular advantage

during ramp-up stages for new technologies. In our analyses, we found that FALs can

accommodate changing demand mixes and achieve stable utilization and output levels

by slightly adapting the segment cycle time. For LALs, in contrast, both performance

measures deteriorate, even when overcapacities are considered in their design.

RQ 3: How to increase the robustness of sequence planning for conventional LALs?

In Chapter 4, we studied a real-world car-sequencing problem focusing on sequence sta-

bility in conventional LALs. We proposed a mixed-integer non-linear problem formula-

tion and developed an exact B&B algorithm. Since the problem is characterized by a

high degree of symmetry, we suggested problem-specific symmetry breaking constraints.

Moreover, we derived tight problem-specific lower bounds to accelerate the termination

of our B&B algorithm. These bounds are based on individual options and the prob-
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lem’s deterministic counterpart. Additionally, we developed a sampling-based ALNS

heuristic to solve problem instances of real-world size. Our ALNS heuristic is inspired

by insights we obtained from studying optimal solutions to small-sized instances. We

employed descriptive sampling as introduced by Saliby (1990) to reduce the variability

of the results. Our computational assessment showed that our heuristic is capable of

solving real-world instances in acceptable run times. In an extensive simulation study,

we validated the applicability of our approach by comparing our results to the industry

solution and to a literature approach that does not account for vehicle failures. In our

study, we considered paint defects as the key failure driver. However, the algorithms

proposed are independent of the failures considered, and the application to other failure

types is straightforward.

We proved that considering the vehicles’ failure probabilities in sequence planning

is beneficial in order to reduce expected work overloads, and hence improve sequence

stability. We computed significant improvements of 72% and 80% compared to the

industry solution and to the literature approach respectively. Moreover, we found that

our heuristic generates more stable results than the other two approaches. We showed

that our approach is particularly beneficial during the introduction of new colors. We

expect similar benefits for the ramp-up of new options or even new models. Our approach

can countervail the reduced stability that comes along with new processes, and the

planned sequences are more robust. Finally, we found that the relative benefits of our

approach are independent of the paint shop reliability. In absolute terms, however,

OEMs benefit most from our approach when paint shop reliability is low.

Overall conclusion

In summary, this thesis provides important insights into the smart factory transformation

in the automotive industry. We proposed quantitative planning approaches for designing

new, innovative FALs and enhancing sequence planning for conventional LALs. We

developed three data-driven planning approaches at different levels: i) a layout design

approach at strategic level, ii) a layout configuration approach at tactical level, and iii)

a sequencing approach at operational level.

We employed mixed-integer (non-)linear programming as methodology. With the

approaches that we developed, we contribute to a multitude of algorithmic concepts,

both exact and heuristic. As exact algorithms, we developed a decomposition-based

algorithm, as well as tailored B&B and B&P algorithms. As heuristics, we created

an iterative fix-optimize matheuristic and an ALNS metaheuristic. We applied our

approaches to either real-world industry cases or we adapted popular standard data sets
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from literature. Our computational analyses confirmed that the developed approaches

are well-suited to solve large-sized, real-world problem instances. From our results,

we derived valuable managerial insights related to FALs and LALs in the automotive

assembly.

We provided industry guidance into the optimal design and configuration of FALs,

and we generated quantifiable scientific evidence on the advantages and disadvantages

of FALs compared to LALs. We showed that FALs have advantages in efficiency, worker

utilization, and output level, but require a higher WIP and are more complex to plan and

control. Moreover, we investigated the appropriate application scenarios of both layout

types. We found that FALs become more beneficial with higher vehicle heterogeneity

and frequent changes in the demand mix, e.g., during ramp-ups. LALs, in contrast, are

attractive when producing stable, homogeneous product mixes, and when workers are

allowed to drift into subsequent stations. These insights are highly useful for OEMs that

consider to replace parts of their assembly line by an FAL.

Furthermore, we contributed to a robust sequence planning for conventional LALs.

LALs continue to be of high relevance in the automotive industry, either in pure line

layouts or as part of mixed layouts with FALs. Our robust car-sequencing approach

enables a reliable supplier signal and thereby facilitates efficient JIS material supply. We

tested our data-driven optimization approach on real-world data from a major European

OEM and showed significant improvement potentials. Thereby, the OEM can increase

efficiency, lower operational cost, and improve product quality, which in turn are pivotal

success factors in today’s competitive automotive market environment.

5.2 Future research directions

Given the novelty of the presented problems and the lack of previous academic research,

this thesis provides a common ground for future research on the smart factory trans-

formation in the automotive assembly. While we have answered many fundamental

questions in this thesis, several promising opportunities for future research arise. We

already suggested specific research topics in the previous chapters, and therefore outline

more general research directions in this section. We sequence them by hierarchical level,

starting at the strategic level and ending at the operational level.

We investigated new layouts for the automotive assembly, in which the vehicles can

move flexibly between assembly stations while the workers are confined to these stations.

An alternative idea is to maintain the serial, paced workflow of the vehicles as in an

LAL, but lift the restriction of fixed assembly stations with confined workers. Instead,
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tasks can be performed continuously along a U-shaped line and workers can move freely

between different vehicles. While such layouts reduce the complexity in the vehicle flow,

it becomes more challenging to manage the operations of the workers. This alternative

concept to increase flexibility is currently also discussed among automotive practitioners,

however, a strategic proof of concept and a benchmarking against FALs are still missing.

Regarding FALs, there are several opportunities for research on the strategic level.

The question on how to segment the final assembly into FALs and LALs is unsolved.

Our results from Chapter 2 give indication that vehicle heterogeneity is a key determi-

nant for deciding between an FAL and LAL for an assembly segment. However, multiple

other influencing factors play a role, e.g., assembly technology (manual vs. automated),

required tools, and material supply. For OEMs, it is crucial to have quantitative insights

on the effects of these influencing factors. Ideally, an algorithm could suggest the appro-

priate segmentation of the final assembly into FALs and LALs based on the production

scenario. In case enough real-world industry data is available for training, this resembles

a machine learning problem, where the production scenario is represented by a set of

features, and the decision on the layout concept represents the algorithm’s output.

Furthermore, we focused on the static, deterministic FAL design in this thesis. In

reality, OEMs operate in a dynamic, stochastic market environment. We already men-

tioned that ramp-ups are frequent. Moreover, the demand mix bears uncertainties.

Consequently, it is appropriate to consider robustness as an additional objective during

FAL design. Two-stage stochastic programming and robust optimization may be useful

methodologies in this context. Experts expect that FALs have even greater advantages

compared to LALs when confronted with a dynamic, uncertain market environment.

A quantitative analysis on the benefits of adaptability in FALs is another open research

topic. We considered green-field planning in this thesis, because FALs are a novel layout

concept. Nevertheless, brown-field planning, i.e., FAL reconfiguration, is worth to be

investigated. Hereby, OEMs trade-off increased efficiency against reconfiguration effort.

FALs are easier to be reconfigured than LALs, because tasks can be reassigned and new

stations can be added alongside the layout without interrupting production at the other

stations. This adaptability is beneficial when new products are being introduced or when

significant demand changes occur.

The operational level offers interesting research possibilities as well. While we investi-

gated the strategic design and tactical configuration of FALs, the operational scheduling

is only anticipated in our tactical planning. OEMs require intelligent, data-driven algo-

rithms to optimize the real-time scheduling and routing of the AGVs. The operational

planning is challenging, because it is highly dynamic and uncertain. Task execution
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5.2 Future research directions

times are stochastic by nature and disruptions may occur. Therefore, the scheduling

and routing need to be re-optimized continuously based on the system state. Since

decisions have to be taken within a few seconds, iteratively applied look-ahead heuris-

tics appear to be promising. The performance of these heuristics could be validated in

simulation studies for a wide range of parameter settings.

The operational sequence planning for mixed layouts consisting of FAL and LAL seg-

ments is another unsolved problem. However, it should be similar to sequence planning

in pure LALs, because we design FALs such that they can cope with any sequence

permutation. In general, sequence planning needs to be integrated in a rolling-horizon

framework to avoid deteriorative effects at the beginning and end of the planning horizon.

All our results are based on either data of a single OEM or on adapted instances from

literature. To ensure the general applicability, our approaches should be verified using

real-world data of other OEMs.
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A Appendices of Chapter 2

A.1 Instance generation scheme

Input : Single-model precedence graph from data set of Scholl (1993)
Output: 16 multi-model instances with different levels of structure (sh) and task time

(tth) heterogeneity

1 Randomly generate demand dm for five models;
2 Generate base case: Precedence graphs and task times of all five models are identical to

data of Scholl (1993);
3 Determine overall workload per task in base case Wt;
4 for sh ∈ [0%, 10%, 25%, 50%] do
5 Randomly remove sh of task-model nodes in precedence graphs of the base case such

that each task is needed by at least one model and that each model needs at least two
real tasks;

6 Calculate demand for each task: d̂t =
∑

m∈M|t∈Tm

dm;

7 Calculate average task times: q̄t = Wt

d̂t
;

8 for tth ∈ [0%, 10%, 25%, 50%] do
9 Solve LP

max ZLP =
∑

m∈M |t∈Tm

dm
∣∣qm,t − q̄t∣∣ (A.1a)

s.t.∑
m∈M |t∈Tm

dmqm,t = Wt ∀t∈T (A.1b)

(1− tth)q̄t ≤ qm,t ≤ (1 + tth)q̄t ∀m∈M, t∈Tm (A.1c)

Decision variables qm,t: Task time of task t for model m,
Objective function (A.1a): Maximize task time heterogeneity,
Constraints (A.1b): Ensure that overall workload for each task is identical to base
case,
Constraints (A.1c): Define heterogeneity range of task times;

10 Retrieve task times of all models qm,t from LP solution;
11 Save instance;

12 end

13 end

Figure A.1: Pseudocode of instance generation scheme.
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A Appendices of Chapter 2

A.2 Benchmark mixed-model assembly line balancing model

We adapt the MMAL balancing model formulation by Y. Bukchin and Rabinowitch

(2006). Table A.1 shows the required additional notation. We introduce a new index

set s ∈ S that represents the stations on the line. Parameter c denotes the cycle time.

We add parameter α ≥ 0 to vary between closed and open stations. α represents the

percentage of cycle time that workers are allowed to drift out into downstream stations.

Next, we denote three sets of decision variables. The binary variable X̄t,m,s shows

whether task t for model m is assigned to station s. Ȳt,s is a binary variable as well.

It indicates whether task t is assigned to station s for any model. Last, the continuous

variable Z̄ represents the number of stations used and is to be minimized (A.2a).

Table A.1: Additional notation for MMAL balancing problem.

Index sets

s ∈ S Stations (s = 1, . . . , |S|)
Parameters

c Cycle time
α Drift factor: percentage of cycle time that workers are allowed

to drift out into downstream stations

Decision variables

X̄t,m,s 1 if task t of model m is assigned to station s, else 0
Ȳt,s 1 if task t of any model is assigned to station s, else 0
Z̄ Number of stations to be used in LAL

Constraints (A.2b) force the workload of a task for a particular model to be assigned

to a single station. Note again that splitting the workload of one model among task

duplicates at different stations is not allowed in an LAL. Precedence relations are satisfied

by Constraints (A.2c). Constraints (A.2d) limit the total processing time for each model

at each station. For α = 0, we evaluate closed stations, in which workers are not

allowed to drift out into downstream stations. For α > 0, workers are allowed to drift

out into the neighboring stations by α% of the cycle time. In order to make sure that

the overall capacity of the station is not violated, we add Constraints (A.2e) to the

model by Y. Bukchin and Rabinowitch (2006). The number of stations used is derived

in Constraints (A.2f). Constraints (A.2g) link the two binary variables by checking

whether a task is performed for any model at a certain station. As an extension to the

model by Y. Bukchin and Rabinowitch (2006), we introduce Constraints (A.2h) that

limit the maximum number of task duplicates. Without these constraints, the LAL

solution would not be comparable to the FAL solution. Finally, in Constraints (A.2i) -

(A.2k), we restrict the domains of the decision variables.
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A.2 Benchmark mixed-model assembly line balancing model

min ZL = Z̄ (A.2a)

s.t. ∑
s∈S

X̄t,m,s = 1 ∀m∈M, t∈Tm (A.2b)∑
s1∈S

s1 · X̄t1,m,s1 ≤
∑
s2∈S

s2 · X̄t2,m,s2 ∀m∈M, t1∈Tm, t2∈Vm,t1 (A.2c)

∑
t∈Tm

qm,t · X̄t,m,s ≤ c · (1 + α) ∀m∈M, s∈S (A.2d)

∑
m∈M

dm ·
∑
t∈Tm

qm,t · X̄t,m,s ≤ τ ∀s∈S (A.2e)

Z̄ ≥
∑
s∈S

s · X̄t,m,s ∀m∈M, t∈Tm (A.2f)

Ȳt,s ≥
1

|M |
·

∑
m∈M |t∈Tm

X̄t,m,s ∀t∈T, s∈S (A.2g)

∑
s∈S

Ȳt,s ≤ nt ∀t∈T (A.2h)

X̄t,m,s ∈ {0, 1} ∀m∈M, t∈Tm, s∈S (A.2i)

Ȳt,s ∈ {0, 1} ∀t∈T, s∈S (A.2j)

Z̄ ≥ 0 (A.2k)
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B Appendices of Chapter 3

B.1 Proof of Theorem 1

To proof Theorem 1, we first analyze possible schedules for the no flexibility (NF) and

full flexibility (FF) configurations of the respective minimal case (cf. Section 3.1.1)

In the NF configuration, four scheduling cases may exist, depending on the instance

(cf. Figure B.1).

Case 1. The vehicles neither interfere at station L1 nor at L2: c ≥ q1A ∧ c ≥ q1A + q1B − q2A.

Case 2. The vehicles interfere at station L1 but not at station L2: c < q1A ∧ q2A ≥ q1B.

Case 3. The vehicles interfere at station L2 but not at station L1: c ≥ q1A∧c < q1A+q1B−q2A.

Case 4. The vehicles interfere at both station L1 and station L2: c < q1A ∧ q2A < q1B.

Based on these cases, we derive the required segment cycle time for the NF configura-

tion CNF as the maximum of the required segment cycle times of both vehicles CReqNF
V 1 ,

CReqNF
V 2 , formally

CNF = max{CReqNF

V 1 ;CReqNF

V 2 }

= max{q1A + σ + q1B; max{max{c; q1A}+ q2A; q1A + q1B}+ σ + q2B − c}. (B.1)

In the FF configuration, there always exists an optimal schedule in which both vehicles

do not interfere (cf. Figure B.2), and we can formalize the required segment cycle time

for the FF configuration as

CFF = max{CReqFF

V 1 ;CReqFF

V 2 } = max{q1A + q1B + σ; q2A + q2B + σ}. (B.2)

We can now determine minimum and maximum bounds on flexibility benefits.
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Figure B.1: Scheduling cases in NF configuration.

L1

L2 V2

V1

V2

V1

Figure B.2: Scheduling case in FF configuration.

Minimum bounds

For Case 1 in the NF configuration, the vehicles do not interfere, and hence, the WIP

and the utilization are the same in the NF and FF configurations. The same holds if

vehicle V 1 sets the segment cycle time in the NF configuration, i.e., CReqNF
V 1 ≥ CReqNF

V 2 .

Maximum bounds

In order to conservatively approximate a maximum bound, we study Case 4 of the NF

configuration and note that Cases 2 and 3 are special variants of Case 4. We make the

following four observations:

(i) We can only benefit through flexibility if vehicle V 2 sets the segment cycle time

in the NF configuration, i.e., CReqNF
V 2 ≥ CReqNF

V 1 .

(ii) Regarding the FF configuration, we can realize the highest flexibility benefits if

vehicle V 2 sets the segment cycle time, i.e., CReqFF
V 2 ≥ CReqFF

V 1 . We then know that

q2A + q2B ≥ q1A + q1B.

(iii) We can realize the highest flexibility benefits if both transportation times (σ → 0)

and the arrival time of vehicle V 2 (c→ 0) are negligible.

(iv) We can define q2B depending on q2A, formally, q2B = Ψq2A, with Ψ ∈ R≥0.

With observations (i) and (ii), we refine Equation (B.1) to (B.3) and Equation (B.2)

to (B.4).

CNF (i)
= CReqNF

V 2 = q1A + q1B + σ + q2B − c (B.3)

CFF (ii)
= CReqFF

V 2 = q2A + q2B + σ (B.4)
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B.2 NP-hardness proof

Now, we derive the changes in WIP and utilization as shown in Equations (B.5) and

(B.6) respectively.

∆WIP =
WIP FF

WIPNF
=

CFF

c
CNF

c

=
CFF

CNF
=

q2A + q2B + σ

q1A + q1B + σ + q2B − c
(ii)

≥ q2A + q2B + σ

q2A + q2B + σ + q2B − c
=

q2A + q2B + σ

q2A + 2q2B + σ − c
(iii)

≥ q2A + q2B
q2A + 2q2B

(iv)
=

q2A + Ψq2A
q2A + 2Ψq2A

=
1 + Ψ

1 + 2Ψ
⇒ ∆WIP ∈ [0.5; 1.0] (B.5)

∆U =
UFF

UNF
=

q1A+q1B+q2A+q2B
2(c+CFF )

q1A+q1B+q2A+q2B
2(c+CNF )

=
c+ CNF

c+ CFF
=
c+ q1A + q1B + σ + q2B − c

c+ q2A + q2B + σ
=
q1A + q1B + q2B + σ

c+ q2A + q2B + σ

(ii)

≤ q2A + q2B + q2B + σ

c+ q2A + q2B + σ
=

q2A + 2q2B + σ

c+ q2A + q2B + σ
(iii)

≤ q2A + 2q2B
q2A + q2B

(iv)
=

q2A + 2Ψq2A
q2A + Ψq2A

=
1 + 2Ψ

1 + Ψ
⇒ ∆U ∈ [1.0; 2.0] (B.6)

Then, (B.5) and (B.6) verify Theorem 1 and conclude the proof. �

B.2 NP-hardness proof

In the following, we proof that Problem 2 is NP-hard, by proving the NP-hardness of

Problem 3, which entails the hardness result for Problem 2. To proof the NP-hardness of

Problem 3, we use a transformation from the job shop scheduling problem (JSP), which

is known to be NP-hard in the strong sense (Lenstra, Rinnooy Kan, & Brucker, 1977).

The JSP in its feasibility version is defined as follows:

Job shop scheduling problem: We consider n jobs J1, J2, . . . , Jn, each having a release

date µj and a due date υj . Each job consists of a sequence of operations that

require a certain processing time on a predefined machine. Every job may visit

a machine at most once and no transportation times between machines occur.

W.l.o.g., we consider due dates that equal the jobs’ release dates plus a constant

Φ. If a job’s completion time χj is higher than its due date, job j is late, formally

Λj = χj−υj . A schedule of the JSP assigns all jobs to machines such that only one
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job is assigned to a machine at a time. In this setting, we ask whether a schedule

satisfies Λmax = maxj Λj for a given Λmax.

We transform an instance I of the JSP as described above into an instance I ′ of

Problem 3 in polynomial time as follows: for any job in the JSP, we create one vehicle

in Problem 3. The release dates represent the vehicles’ arrival times. For any machine

in the JSP, we create a station in Problem 3. The vehicle’s tasks correspond to the job’s

operations and have equal processing times. We set transportation times to zero and

neglect operation and routing flexibility.

If I is feasible to the JSP with maximum lateness Λmax, choosing the same schedule for

the corresponding vehicles in Problem 3 as for the jobs in the JSP leads to a solution to

I ′ with Cs ≤ Φ + Λmax. Vice versa, any solution to I ′ of Problem 3 with Cs ≤ Φ + Λmax

is also a feasible solution to I for the JSP with maximum lateness Λmax, which completes

the proof. �

B.3 Preselection problem

In the following, we formalize the preselection problem to predetermine task sequences

and/or task-to-station assignments for the NF, OF, and RF configurations. Here, we

select task sequences and task-to-station assignments such that the transportation dis-

tances are minimal and such that the workload is equally distributed among the stations.

Let m ∈ M be the set of models. The set r ∈ R̂m comprises all routes for model m.

In contrast to the problem formulation in Section 3.3.2, the routes here only encode the

sequence of visited stations and performed tasks but exclude the timing of the opera-

tions. The parameter dmr indicates the transportation distance of route r for model m,

and umrl shows the aggregated workload at station l for model m if route r is selected.

We encode the average workload per station in û and use two types of decision variables.

Binary variables Xmr indicate whether route r is selected for model m (Xmr = 1) or not

(Xmr = 0). Continuous variables Gl represent the positive workload deviation from the

average workload at station l.

Problem 5

min
∑
m∈M

∑
r∈R̂m

dmrXmr (B.7a)

min
∑
l∈L

Gl (B.7b)
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s.t. ∑
r∈R̂m

Xmr = 1 ∀m∈M (B.7c)

Gl ≥
∑
m∈M

∑
r∈R̂m

umrlXmr − û ∀l∈L (B.7d)

Xmr ∈ {0, 1} ∀m∈M, r∈R̂m (B.7e)

Gl ≥ 0 ∀l∈L (B.7f)

We formalize the preselection problem using a lexicographic objective. The Primary

Objective (B.7a) minimizes the transportation distances of the selected routes, while the

Secondary Objective (B.7b) equally distributes the workload across all stations. There-

fore, we minimize the sum of positive workload deviations from the average workload at

all stations. Constraints (B.7c) select one route for each model. In Constraints (B.7d),

we derive the positive workload deviation from the average workload at all stations.

Finally, Constraints (B.7e) - (B.7f) define the domains of our decision variables.

We solve the preselection problem to obtain the predetermined task sequences and

task-to-station assignments. For the NF and OF configurations, we then fix the task-to-

station assignments for all models, while we fix the task sequences of all models for the

NF and RF configurations.

B.4 Mixed-model sequencing

In order to quantify the utilization and output levels in an LAL segment, we determine

the optimal vehicle sequence for the LAL segment based on a mixed-model sequencing

problem formulation.

Let o ∈ O, l ∈ Lline, and m ∈M be the sets of sequence positions, stations, and mod-

els. The parameter νm denotes the occurrence of model m, while q̃ml is the processing

time of model m at station l, and ϑ indicates the length of all stations on the line. We

define three types of decision variables. Wlo quantifies the work overload induced by the

oth vehicle at station l, and Slo represents the worker start position at station l for the

oth vehicle. Binary variables X̃mo indicate whether model m is produced at sequence

position o (X̃mo = 1) or not (X̃mo = 0). The mixed-model sequencing problem can then

be formulated as follows:
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Problem 6

min
∑

l∈Lline

∑
o∈O

Wlo (B.8a)

s.t. ∑
o∈O

X̃mo = νm ∀m∈M (B.8b)∑
m∈M

X̃mo = 1 ∀o∈O (B.8c)

Slo ≥ Sl,o−1 +
∑
m∈M

q̃mlX̃m,o−1 − c−Wl,o−1 ∀l∈Lline, o∈O (B.8d)

Slo +
∑
m∈M

q̃mlX̃mo −Wlo ≤ ϑ ∀l∈Lline, o∈O (B.8e)

Sl0 = 0, Sl,|O|+1 = 0 ∀l∈Lline (B.8f)

Slo ≥ 0,Wlo ≥ 0 ∀l∈Lline, o∈O (B.8g)

X̃mo ∈ {0, 1} ∀m∈M, o∈O (B.8h)

Objective (B.8a) minimizes work overloads. Constraints (B.8b) ensure that all models

are produced in the correct amount, and Constraints (B.8c) state that only a single

model is assigned to a sequence position. We derive the worker start positions and work

overloads in Constraints (B.8d) - (B.8e). Constraints (B.8f) set the workers to their

initial position at the beginning and end of the sequence to be planned. The variable

domains are defined in Constraints (B.8g) - (B.8h).

B.5 Identification of sampling parameters

In the following, we give evidence to our choice of sampling parameters. We first explain

how we determined the required number of sample sequences, before we detail how we

selected a sufficient sequence length.

Number of sample sequences: To determine the number of sample sequences, we

analyze the dependency between the coefficient of variation of the segment cycle time

and the number of sample sequences. Let Cψ denote the segment cycle time considering

ψ sample sequences. For any |S| ≥ 10, we compute the coefficient of variation in Cψ

among all ψ ∈ [|S| − 9, |S|]. Figure B.3 shows the boxplots across all instances and

flexibility configurations for a feasibility target of 90%. As can be seen, the coefficient

of variation stabilizes for sample sizes above 30. Accordingly, we choose |S| = 50 as a

sufficient number of sample sequences.
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Figure B.3: Boxplot on the coefficient of
variation in segment cycle time
for different number of sample
sequences.
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Figure B.4: Average segment cycle time in
the FF configuration for differ-
ent numbers of vehicles in the
sequences.

Sequence length: Figure B.4 shows the average segment cycle time across all instances

in the FF configuration for different sequence lengths. We note that the average segment

cycle time increases degressively with longer sequences. As can be seen, the relative

changes in the average segment cycle time remain marginal for sequence lengths of more

than 15 vehicles. Accordingly, we choose a sequence length of 20 vehicles.

B.6 Mixed-model assembly line balancing

In our computational analyses, we compare FALs to conventional LALs. To construct

LALs for comparison, we use a mixed-model assembly line balancing problem with the

objective to minimize the number of stations.

Let i ∈ I, l ∈ Lline, and m ∈ M be the sets of tasks, stations, and models. The

set Fi indicates the successor tasks of task i across all models. The demand-weighted

average processing time of task i is q̄i. We define two types of decision variables. Binary

variables Vil indicate if task i is assigned to station l (Vil = 1) or not (Vil = 0). The

continuous variable N represents the index of the last opened station on the line. Then,

the mixed-model assembly line balancing problem can be formulated as follows:

Problem 7

min N (B.9a)

s.t. ∑
l∈Lline

Vil = 1 ∀i∈I (B.9b)

∑
l∈Lline

lVi1l ≤
∑

l∈Lline

lVi2l ∀i1∈I, i2∈Fi1 (B.9c)
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∑
i∈I

q̄iVil ≤ c ∀l∈Lline (B.9d)

N ≥ lVil ∀i∈I, l∈Lline (B.9e)

Vil ∈ {0, 1} ∀i∈I, l∈Lline (B.9f)

Objective (B.9a) minimizes the number of opened stations. Constraints (B.9b) assign

every task to exactly one station, and Constraints (B.9c) enforce precedence relations.

Constraints (B.9d) ensure that the average workload at a station is below the cycle time

c. We derive the objective value in Constraints (B.9e). Constraints (B.9f) state the

binary variable domains.

B.7 Discussion on the number of task duplicates

In this section, we justify our choice on the number of task duplicates in FAL segments.

We allow every task to be duplicated once such that it can be assigned to two stations

at most. We study the effect of changing the number of task duplicates on the average

segment cycle time for all flexibility configurations. Here, we found that the average

segment cycle time is insensitive to the number of task duplicates for the NF and OF

configurations, because the benefits of task duplicates cannot be exploited without rout-

ing flexibility. For the RF and FF configurations, we observe that changing the number

of task duplicates from one to zero heavily increases the average segment cycle time by

28% and 38% respectively. Increasing the number of task duplicates from one to two, in

contrast, yields insignificant changes. Accordingly, we fix the number of task duplicates

to one such that each task exists at most twice.

B.8 Effect of feasibility target on segment cycle time
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(a) Feasibility target of 75%.
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(b) Feasibility target of 100%.

Figure B.5: Reduction in the segment cycle time (WIP) due to flexibility for different feasibility
targets.
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B.9 Effect of feasibility target on average WIP and output level
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(a) NF configuration.
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(b) OF configuration.
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(c) RF configuration.

Figure B.6: Impact of feasibility target on average WIP and output level for NF, OF, and RF
configurations.

B.10 Ramp-up result figures
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(a) Utilization.
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Figure B.7: Performance of FALs (NF, OF, and RF configurations), T-LALs, and R-LALs
during ramp-up.
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Figure B.8: Adjustments of the segment cycle time in FALs (NF, OF, and RF configurations)
during ramp-up.
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