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Abstract

Nuclear fusion technology is projected to play a major role as a source of clean and safe
energy in the future. The immediate challenge is to develop sustainable fusion reactors. In
the process of converting complex physical theories to working engineering applications,
modelling and simulation assumes a vital position. While simulating nuclear fusion de-
vices, the physical and geometrical complexity arising from different scales and physical
regimes needs to be addressed. Specifically for tokamak devices, the regimes are broadly
classified into core and edge regions. Simulating both regions in a single software is a
laborious task and mostly segregated analysis is pursued.

The edge and core regions can be coupled in a way that the individual analysis remains the
same and some form of data communication across a physical boundary takes place. To
perform this coupling, a partitioned black-box approach is pursued using the open-source
coupling library preCICE. A model diffusion problem is simulated in the edge physics
code GRILLIX having a Cartesian grid and a core physics code having a polar coordinate
system. The edge region is simulated by the GRILLIX code and the core region is simulated
by a custom-built code as a part of this thesis.

A coupling in which the core is modelled with a polar coordinate system and the edge
with a Cartesian grid is shown to be first order convergent. Global and local Radial-basis
function mapping schemes available in preCICE are tested. A comparative analysis of
mapping entities within GRILLIX and doing the same operation with preCICE is shown.
In the last part, a strategy for coupling with diverted geometries in cylindrical and curvi-
linear coordinate systems is presented.
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1 Introduction

Simulations play a critical role in modern scientific methods by being the third pillar to the-
oretical and experimental analysis. Simulation science is becoming even more relevant in
fields where experiments on a large scale are becoming increasingly unfeasible. Examples
of such fields range from aerospace engineering, large structural systems to applications
of nuclear physics in power generation. In the near future fusion reactors are predicted
to become reliable machines for power generation [10]. Fusion reactors hold considerable
advantages over conventional nuclear fission reactors. Nuclear waste with long decay
times is not generated in fusion reactors and they are passively safe to operate. Fusion
reactors can be operated with sustainable sources of fuel, for example hydrogen as source
and helium as residual ash.

Plasma can be broadly characterized as consisting of charged particles that respond to
electromagnetic forces in a collective manner. When light nuclei, like hydrogen, are in an
environment of very high temperature (15 million degrees Celsius) there is a possibility
of them fusing. At high velocities they may overcome their electrostatic repulsive force
and fuse. The entities resulting from the fusion do not have the same rest mass as the
constituent colliding atoms. This minimal difference of rest mass when multiplied by the
square of the speed of light releases a high amount of energy (F = mC?). A well-known
selection of elements for fusion reactors is deuterium (D) and tritium (T) nuclei fusing to
form one helium (He) nucleus, one neutron and a high amount of energy. The ionised fuel
(deuterium and tritium) and helium ash form the plasma. This plasma can be magnetically
confined in a doughnut shaped reactor. The neutron does not have any charge and escapes
from the magnetized plasma with a high amount of kinetic energy. The walls of the reactor
absorb these neutrons and convert their kinetic energy to heat energy. This heat energy is
then used to convert water into steam on which turbines connected to generators are run
to produce electricity.

The Max Planck Institute of Plasma Physics (IPP) hosts two experimental facilities, the
ASDEX-UPGRADE [8] (Axially Symmetric Divertor Experiment) and WENDELSTEIN-7X
[15]. ASDEX-UPGRADE is a divertor tokamak type reactor (fig. 1.1). A tokamak is a
doughnut shaped device used for magnetic confinement of plasma in the shape of a torus.
WENDELSTEIN-7X is a stellarator type reactor. The experimental branch at IPP is strongly
complemented by the development of software and libraries to simulate reactor physics.

This thesis focuses on tokamak style reactors and henceforth when a reactor is mentioned
it is assumed to be a tokamak style reactor. Modelling the entire domain of a reactor with
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(a) Schematic Diagram (from IPP Online (b) Photo of Torus Chamber (from IPP Online
Archive) Archive)

Figure 1.1: Schematic Diagram and view of Torus Chamber in ASDEX-UPGRADE

a single set of equations and numerical schemes is not feasible for various reasons. Exper-
iments have shown strong evidence[5] that the plasma close to the walls of the reactor be-
haves differently than close to the toroidal axis. A surface with normal 7 is defined as a flux
surface (fig. 1.3) of a vector field Bif B-ii = 0. It can be deducted from the Hairy-Ball theo-
rem that for a non-vanishing vector field in three dimensions the only possible closed flux
surface is a topological toroid. This fact is the fundamental basis behind designing toroidal
magnetic confinement devices. For the description of a fusion plasma it is advantageous
to use coordinate systems that are aligned to these flux surfaces or even the magnetic field,
since the dynamics is strongly anisotropic (fast along magnetic field lines and slow in the
perpendicular cross-section). This alignment is characterized as flux-aligned coordinates.
In diverted magnetic fusion devices the flux/field aligned coordinates become singular at
the separatrix. The separatrix is a flux surface that separates the inner toroidally nested
flux surfaces from the outer open flux surfaces that are in contact with target plates. As a
broad distinction the entire modelling domain can be differentiated into the core and edge
regions. While there is no exact differentiation of the core and edge regions they can be
loosely characterized by the following properties:

The core region exhibits closed flux surfaces, where it is advantageous to use flux-aligned
coordinates. However, due to a coordinate singularity this description becomes problem-
atic towards the separatrix, for which a flux-independent description for the edge region
has been developed.

The need to have field- or flux-aligned coordinates in the core region and non-aligned co-
ordinates in the edge region is one of the fundamental driving forces of separating the
complete domain into these two parts. This differentiation makes it increasingly challeng-
ing to simulate the full reactor using a single set of equations and numerical schemes. In
collaborations with partners all over the world, scientists at IPP have developed the GENE




(a) Contours of flux coordinates (b) Cylindrical grid (poloidal cut-
commonly employed in plasma  section is Cartesian) employed in
core codes. Solid black line is  the edge code GRILLIX
the separatrix where the field
flux aligned coordinate system
becomes singular

Figure 1.2: Grids in Core and Edge Regions of a Tokamak

(Gyrokinetic Electromagnetic Numerical Experiment) [6] ! code to simulate regimes with
a field-aligned coordinate system. For edge modelling the GRILLIX [13] code is developed
which relies on a non-aligned coordinate system and the flux-coordinate independent ap-
proach [7]. This thesis explores geometric aspects of coupling these two regions, specif-
ically mapping data across domains having fundamentally different coordinate systems
for their geometric representation.

In theory a single software code can be developed to simulate both the core and edge re-
gions, but several limitations come forth. Not all physical models are valid or appropriate
in both regions, and modelling the most complex equations and finest mesh resolutions
for the entire domain is not feasible from a resource and processing time standpoint. As
the core and edge regions need different coordinate systems, the numerical schemes and
discretization methods used to solve equations are different in both regions. A possible
solution to handle this within a single software is to have two sub packages which handle
the regions separately and then join the two packages in some form. This joining can be
stated more scientifically as “coupling” the packages. The physical domain of the problem

'http:/ /www.genecode.org/
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Figure 1.3: Flux Surfaces in a Magnetically Confined Plasma [12]

can be divided into parts and solved individually by different software packages which are
then coupled. The connection of the divided domains can be along an interface or a vol-
ume. It is not necessary that packages or tools simulating parts of a physical problem need
to be under the same roof. Such packages can be completely different and coupling can
still be achieved if a sufficiently sophisticated intermediate tool is available. This is espe-
cially relevant if the packages already exist as sophisticated software codes concentrating
on specific regimes or types of physical scenarios. The use of an interface platform which
couples packages without any need for structural modifications to the packages them-
selves is called black-box or partitioned coupling. Simulation of a fusion device having core
and edge region segregation is a case where such a partitioned coupling strategy can be
used to achieve a consistent working model. The codes GENE and GRILLIX already exist
and have been developed over many years. Coupling these codes in a black-box manner is
a clean and efficient solution as the tedious alternative is to develop a new software from
scratch.

In this thesis the partitioned coupling is done by using the open-source library preCICE
[1]. A full GENE-GRILLIX coupling framework which can effectively simulate a toka-
mak device is a much larger and complex problem to solve, which is beyond the scope of
this thesis. For this work a simplified model problem, i.e. 2D diffusion perpendicular to
magnetic field lines, is selected, and the focus is on the geometric aspects of coupling a
prototype core code working in a flux-aligned description with an edge code working in a
flux-independent (Cartesian) description. For the core participant a new code is developed
from scratch, featuring only the most important geometric aspects of a typical core code,
like GENE. For the edge participant, the GRILLIX code is employed, using only a reduced
model with respect to its full functionality. Additional modifications to both the edge and
core codes are necessary to use the preCICE library and further functionality to map data.




Section 2 presents the preCICE library and some of its features. Additionally the software
codes which are coupled to present the geometrical aspects of the coupling are also de-
scribed in Section 2. Section 3 describes the diffusion equation in two dimensions as the
model problem. Section 4 describes the coupling strategies and different stages of mod-
elling towards a realistic coupling. A coupling between a Cartesian grid system and a
polar grid system is achieved and verified. Section 5 shows that the developed coupling
framework can also be used to couple core and edge regions having diverted geometries.
This section is especially important because real world tokamak designs have diverted ge-
ometries, which is eventually the motivation for using different geometric descriptions.
The last section discusses outlooks and the realm of possibilities for applying partitioned
coupling in fusion applications.




2 Introduction to Software Packages

To explore coupling in fusion applications the primary requirements are two packages
simulating the core and edge region and a coupling tool to handle the coupling physics.
This section describes the coupling library preCICE, the edge modelling software GRILLIX
and the custom built code to model the core.

2.1 Coupling library preCICE

preCICE[1] (Precise Code Interaction Coupling Environment) is a library for performing
coupled simulations of partitioned multi-physics applications. preCICE being a library
does not have an executable file of its own. The codes being coupled are modified in a
minimal way to include preCICE API function calls. The codes are executed individually
which is no different than the case when the codes are being used as solitary packages.
After execution preCICE takes over steering and concluding the coupled simulation. Par-
titioned coupling means that software codes which solve a part of the complete problem
are linked without the codes themselves being aware of the coupling. The core algorithm
and numerical scheme in each code remains the same. Before starting the simulation each
code must define a coupling mesh for preCICE. The coupling mesh is the only part of the
entire domain which is visible to preCICE. Within each time iteration, the code must pro-
vide values of quantities on the coupling mesh. preCICE reads these values, maps them
to the other participant and returns new values on the same coupling mesh. The code has
to apply the new values in its data structures. It is important to note that the physical
dimensions the coupling mesh on several connected participants have to be same but the
mesh itself can be different. The coupling mesh initialization, reading and writing is done
via preCICE API function calls. The API functions need to be called at particular instances
so that preCICE is initialized and takes over steering. The code snippet below shows a
skeleton solver code with the API function calls included.

preCICE handles all communication and data mapping between the codes being coupled.
It is common practice to call the codes of a coupled simulation participants of coupling. If
one or all of the codes are implemented in parallel then peer-to-peer (P2P) communication
is done. During initialization it is determined from the coupling mesh information which
ranks on either side of the coupling need to communicate further. After this step preCICE
works in a fully distributed way. The distributed P2P approach means preCICE scales
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2.1 Coupling library preCICE

well for massively parallel applications. This introduction aims to give a brief insight into
preCICE as a versatile coupling library. A host of features and capabilities are available
which are beyond the scope of discussion here. Only the features relevant to the coupling

pursued later on are discussed in this section.

turnOnSolver (); //e.g. setup and partition mesh

// Define the coupling interface

precice: :SolverInterface precice("SolverName","config.xml", rank,size);
int dim = precice.getDimensions();

int meshID = precice.getMeshID ("CouplingMesh");

int vertexSize; // number of vertices on coupling mesh (user defined)
double* coords = new double[vertexSizexdim]; // coords of coupling vertices
int+ vertexIDs = new int[vertexSize];

precice.setMeshVertices (meshID, vertexSize, coords, vertexIDs);

int rID = precice.getDatalD ("ReadVariable", meshID);
int wID = precice.getDatalD ("WriteVariable", meshID);
double* readData = new double[vertexSizexdim];
doublex writeData = new double[vertexSizexdim];

double dt; // solver timestep size

double precice_dt; // maximum precice timestep size

precice_dt = precice.initialize();

while (not simulationDone()){ // time loop
precice.readBlockVectorData (rID, vertexSize, vertexIDs, readData);
setReadData (readData) ;
dt = beginTimeStep(); // e.g. compute adaptive dt
dt = min(precice_dt, dt);
computeTimeStep (dt) ;
computeWriteData (writeData) ;

}

precice.writeBlockVectorData (wID, vertexSize, vertexIDs, writeData);
precice_dt = precice.advance (dt);
endTimeStep(); // e.g. update variables, increment time

precice.finalize(); // frees data structures and closes communication channels
turnOffSolver () ;

Figure 2.1: Example of Code adapted for coupling using preCICE

API commands and solver commands from the adapted code example have the following
functionality:

® precice ("SolverName","config.xml", .. .)(line 4): Define the preCICE in-

terface for a solver code with the name SolverName. config.xml is a configuration
file needed by preCICE which defines the quantities to be mapped, method of com-
munication and choice of coupling scheme to be used. An example of a configuration
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file is shown later when the coupling setup is discussed.

* precice.setMeshVertices (.. .)(line13): Define the coupling mesh in preCICE.
The mesh defined here is the coupling mesh for preCICE over the course of the sim-
ulation.

® precice.initialize (...)(line 24): Initializes the coupling interface.

® precice.readBlockVectorData (...)(line 26): Read a set of vector data from
preCICE. The data returned in the fourth argument readDat a is in the same order as
the coupling mesh vertices defined before. A similar command exists to read scalar
data (precice.readBlockScalarData(...)).

* setReadData(...) (line 27): Apply the data read from preCICE to the data struc-
tures of the solver.

¢ computeTimeStep (dt) (line 30): Main numerical scheme and updating mecha-
nism of the solver algorithm.

* computeWriteData (...)(line 31): Collect modified values on the coupling mesh
vertices for writing them to preCICE.

* precice.writeBlockVectorData (.. .) (line32): Write previously collected val-
ues to preCICE. A similar command exists to write scalar data
(precice.writeBlockScalarData(...)).

* precice.advance (dt) (line 33): Advance the coupling by one iteration. This func-
tion maps data between coupling meshes and communicates data between coupled
solvers.

preCICE is written in C++ and the API is available in C, Python, Fortran 90/95 and
Fortran 2003. In this work the Fortran and Python API are used because to match the
parent languages of the codes being coupled. In the above code skeleton two functions:
setReadData (readData) and computeWriteData (writeData) are important be-
cause they need to be manually implemented in the code only for the purpose of coupling.
These functions can be bundled together with the corresponding preCICE API function
calls: precice.readBlockVectorData () andprecice.writeBlockVectorData ()
respectively to form elaborate functions specifically for coupling cases. In a sufficiently
complicated case of coupling, such functions can be made generic and packaged in a way
to make them usable for multiple applications. The preCICE project takes this idea fur-
ther and develops adapters for solver codes which are coupled frequently and have a wide
range of applications.
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Figure 2.2: Features of coupling library preCICE [1]
Coupling Schemes

preCICE distinguishes between two types of coupling schemes, explicit and implicit. In
explicit coupling both participants are executed once per coupling time step. In an im-
plicit scheme both participants are evaluated multiple times until convergence is achieved
within a coupling time step. Furthermore a coupling scheme can be serial or parallel. In
a serial coupling scheme the participants are executed one after the other and in a paral-
lel setting the participants are executed simultaneously. The choice of coupling schemes
is critical for numerical stability and accuracy of the coupling. In this thesis only serial
coupling schemes are used.

For representation in pseudo code the Core participant is C' and the Edge participant is
E. Core participant calculates entity ¢ and Edge participant calculates entity e. A serial
explicit coupling scheme time loop is shown below. Here n is current time step and nt are
the total number of time steps.

e = e(0) // initialization
for n = 0 to nt do

solve C(e) = c

solve E(c) = e
end for

Figure 2.3: Pseudo Code for Explicit Coupling Scheme
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In implicit coupling both participants are executed multiple times and a residual (r) is
calculated. Each time step is re-calculated till the residual drops below a user defined
threshold (eps). A serial implicit coupling scheme time loop is shown below.

while (r > eps) do
solve C(e) C
solve E (c) e_ref
r = e_ref - e // Calculate residual
e = A(e_ref) // Acceleration Step
k =k + 1

end while

Figure 2.4: Pseudo Code for Implicit Coupling Scheme

Explicit coupling is computationally less expensive than implicit coupling but is limited
in numerical accuracy. In many cases implicit coupling becomes mandatory as explicit
coupling cannot guarantee stability. Implicit coupling demands more computational time
but produces stable and more accurate results. One important aspect of configuration an
implicit coupling scheme is setting up the Acceleration Step scheme which is already
shown in the above algorithm. Further explanation of implicit coupling can be found in
[14].

Data Mapping Methods

Data mapping between coupling meshes is a critical operation in the coupling pipeline
and selecting the correct mapping scheme affects numerical accuracy and processing time.
The mapping schemes are as follows:

* Nearest Neighbour Mapping: Points on the target mesh of a mapping get data val-
ues from the closest point on the source mesh. This mapping is first order accurate.

¢ Nearest Projection Mapping: The points of the target mesh are projected onto mesh
elements of the source mesh. At the projection point, values from the source mesh are
interpolated and then these values are copied to the target mesh. The mesh elements
on the source mesh need to be defined by the user. This method is second order if
the distance between both meshes is much smaller than the source mesh resolution.

¢ Radial-Basis Function Mapping: In this mapping interpolation of data on non-
matching meshes is done using radial-basis functions. A global interpolant is com-
puted on the mesh from which data is being sent. This interpolant is then evaluated
on the mesh on which data is being received [9]. The interpolant is formed by linear
combination of radially symmetric functions with the sending mesh point at their
center. A variant of this mapping which computes the interpolant using local basis

10
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functions is also available. The global variant is computationally more expensive as
the mesh resolution increases. Both the variants are evaluated at a later point in this
thesis.

Dirichlet and Neumann Coupling

In most coupling applications the data mapping is done along a common boundary. The
boundary is a point in one dimension, a curve in two dimensions and a surface in three
dimensions. When one participant receives values of quantities from the other participant,
they are applied as boundary conditions along the interface. If the received values are the
physical values at grid points then applying them is nothing but the equivalent of apply-
ing a Dirichlet boundary condition at the interface. If the received values are gradients of
the physical values at grid points then applying them is the equivalent of applying a Neu-
mann boundary condition. The participant which receives the Dirichlet values is typically
referred to as the Dirichlet participant and similarly there is also a reference to a Neu-
mann participant. If both participants send physical values along the interface then both
are Dirichlet participants and the coupling is referred to as a Dirichlet-Dirichlet coupling.
If one participant sends physical values along the interface and the other sends gradients
back, then such a coupling is referred to as a Dirichlet-Neumann coupling.

Uni-directional and Bi-directional Coupling

The scenario where one participant sends data and the other participant receives data is
known as uni-directional coupling. Uni-directional coupling is often the first step of at-
tempting coupling between two software packages because it helps to adapt the codes
and establish a mechanism for collecting data and allocating it along the coupling inter-
face. The scenario where both participants send and receive data is called bi-directional
coupling. Each participant of the coupling has to assemble data along the coupling inter-
face and send it to the other participant. Similarly the other participant has to receive this
data and send updated data in the reverse direction.

2.2 GRILLIX: Edge Modelling

GRILLIX [13] is a 3D fluid turbulence code based on the flux-coordinate independent ap-
proach [7] which enables the simulation of turbulence around the separatrix and in the
scrape-off layer regions of a fusion reactor in realistic diverted geometry. Discretization of
grid points along magnetic field lines by a field line mapping technique (fig. 2.5) is a hall-
mark of this software. The use of a Cartesian coordinate grid (non-aligned) in GRILLIX is
specifically for simulating of the edge region of a fusion reactor.

11
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Figure 2.5: Field Line Mapping in GRILLIX [13]
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Figure 2.6: Normalised particle Density Plot of GRILLIX Simulation [4]

The figure 2.6 shows a snapshot of density (units are 10'? particles per cubic meter) from
an ASDEX-UPGRADE simulation done using GRILLIX. The simulation is actually 3D and
the snapshot shows a single poloidal plane cut-section. The temperature and hence plasma
pressure have a similar shape, high at the core and dropping towards the wall. As the
plasma edge is simulated and scrape-off layer is reached, there is a boundary towards
the plasma core where both density and temperature are simply prescribed. The fluid

12
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2.2 GRILLIX: Edge Modelling

model being is no longer valid inwards and this is generally the coupling boundary later
on. As part of this work a model problem is solved using a simplified version of the
GRILLIX code in the form of a library. The solver is written as a Fort ran code which uses
functionality from GRILLIX. The full GRILLIX turbulence model is not used directly in this
work, but rather a simplified model problem (chapter 3) is solved using finite differences.
An example GRILLIX code is shown below:

program grillix_ schematic
! Import functions from PARALLAX Library —-——————————————-—

! Define all variables ————————————"—"—"—"——\——"——\——~—~————~——————

call MPI_init (ierr)
! read parameters from file —————————————————————————————
open (unit=33, file = 'simple_params.in', status = 'old'")

! select equilibrium (magnetic geometry)
call create_equilibrium(equi, geometry, 'config.in')

I Build mesh ——————————————————————
call mesh%initialize (equi,...)

! set up map and operators —————————————————————————————
call create_map_matrix (gmap_minus, ...)
call create_map_matrix (gmap_plus, ...)

! Initialize the system to a desired value —-—————————————
call fields%init (equi, mesh,...)

! Time Loop —————————————"———"—————————————————————————————
time=0
do t =1, n_t
! Advance fields by one time-step
call timestep(equi, mesh, fields, dt,...)
time = time + dt

! Output field
if (mod(t,nt_snaps)==0)
write_snaps (time, fields,...)
end if
end do
call MPI_finalize(ierr)
end program

Figure 2.7: Example Code for GRILLIX Software

The code snippet in figure 2.7 shows a typical GRILLIX workflow to simulate equations
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2 Introduction to Software Packages

in a toroidal geometry. The creation of a equilibrium (line 11) and mesh initialization (line
14) are necessary to define the geometry of the reactor. Map matrices are created (line 17
and 18) for field line mapping. The solution is computed within the time loop (line 27).

2.3 Custom Core Modelling Code

A code simulating the core region of a reactor is necessary for coupling to the edge code
GRILLIX. GENE is widely used to simulate the core region relying on field aligned coor-
dinates. With its capability to compute gyro-radius scale fluctuations, GENE is an ideal
candidate to simulate the core region of a fusion reactor. However, coupling an edge code
directly to GENE is a big step with many complexities. As an alternative to GENE, a code
capable of solving equations on a flux-aligned coordinate system grid is developed from
scratch. This code is hosted publicly on GitHub!. It is envisioned that successful cou-
pling between this custom-built code and GRILLIX lays the foundation for a full GENE-
GRILLIX coupling. This thesis focuses initially (chapter 3) on a simplified 2D geometry to
study the coupling in a numerically rigorous manner. Toroidicity effects are neglected and
flux surfaces are assumed circular, for which flux-aligned coordinates simplify to polar co-
ordinates (r, ). This code generates a mesh in polar coordinates for a circular cross-section
and solves the model problem (chapter. 3) using finite differences on this mesh. The path
to realistic toroidal and diverted geometries is presented in chapter 5. An adapted variant
of the code which includes all preCICE API function calls is provided to allow for cou-
pling. The custom-built code developed for core region simulation is referred to as core
code from this point onward.

The core code is written in Cython (Python + C) to utilize the simplicity of Python and
also maintain the performance of C data structures. A modular structure is adopted to
promote re-usability and ease of understanding. The main modules of the core code are as
follows:

¢ Configuration: Geometric and physical parameters are provided through a user
written JSON file. The core code provides the class Config whose object is used
to access variables from the configuration file. Variable names for coupling such as
participant name, name of the data being read and the data being written is also
provided through this file.

* Mesh Generation: The mesh is generated in the polar coordinate system based on
user defined geometric dimensions. The core code works with two dimensions,
hence for the polar grid the radial » and angular ¢ directions are used. The Mesh
class object generates the mesh and provides various get_ functions to access mesh
details.

'https:/ /github.com /IshaanDesai/ fusion-core-coupling
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2.3 Custom Core Modelling Code

Boundary Conditions: Dirichlet and Neumann boundary conditions are available
and can be imposed at the physical boundaries of the domain (r minimum and max-
imum). A boundary condition defined with a certain value can later be modified to
a new value. This is essential in coupling.

Numerical Scheme: The polar code is first order Euler explicit in time. A stabil-
ity condition is derived and checked for the given input parameters. To solve the
model problem finite differences are implemented along the grid points. The geo-
metric configuration is periodic in # direction and the numerical scheme handles this
periodicity.

Method of Manufactured Solutions: This module provides functionality to run a
validation scheme based on a prospective ansatz function. The workings of this
module are explained in detail in a later section on validation of the core code.

Output: Files are output in VIK format for visualization purposes. Data for analysis
is available in CSV format.
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3 Model Problem: 2D Diffusion in Circular
Domain

The aim of this thesis is to investigate the geometrical aspects of coupling in fusion appli-
cations. A GENE-GRILLIX coupling would involve turbulence modelling at gyroradius-
scale with highly non-linear fluid and kinetic models. These models are critical to simulate
the functioning of a fusion reactor but at the same time are very complex itself. To elimi-
nate these complexities and concentrate solely on the geometrical aspects of coupling, the
choice of the physical problem is the diffusion model.

Tokamak plasmas are three dimensional anisotropic mediums. The flux surfaces and mag-
netic field lines in the plasma have a structure that is represented by a toroidal geometry.
As explained earlier at edge region of tokamak plasmas is modelled using cylindrical co-
ordinates. Considering a two dimensional cut-section of a tokamak plasma, the toroidal
coordinates remain the same and the cylindrical coordinates are converted to Cartesian
coordinates. The geometry is further simplified by converting the cut-section to a circular
shape and ignoring the toroidicity. This simplifies the toroidal grid to a polar coordinate
grid. A two dimensional circular shaped section with polar coordinates in the core region
and Cartesian coordinates in the edge region is the model configuration for coupling. As
geometric configurations are still different in the core and edge regions, the complexity
along the coupling interface is still retained.

ARG (3.1)

where 7| is the diffusion coefficient in the 2D circular section. In this section, the diffusion
equation is stated as an initial value problem with prescribed boundary conditions. The
diffusion equation is discretized using finite differences. The discretization is formulated
on a Cartesian grid and a polar grid. In the last part of this section the model problem is
used to verify the custom built core code using the method of manufactured solutions.

The approach used in GRILLIX to solve an equation in a toroidal geometry is to simu-
late cross-section areas only at certain toroidal angles. Quantities are evaluated along
these cross-sections using a field line mapping where finite differences are evaluated in
the toroidal direction as shown in the figure 2.5.
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Figure 3.1: Circular Cross-Section for Model Problem

Boundary Conditions

Boundary conditions need to be defined at the inner and outer boundary of the circu-
lar cross-section. The outer-most points which are the points along the circumference
are referred as outer boundary points. Each circular cross-section also has a hole in the
middle and the points at the minimum radius are referred to as inner boundary points.
The boundary points and computational domain are shown in figure 3.1. Dirichlet or
Neumann boundary conditions can be imposed on the inner and outer boundaries of the
cross-section planes. Dirichlet boundary condition is applied by imposing a specific value
at the boundary points. Neumann boundary condition means specifying the flux 9, f with
respect to the normal n to the boundary surface.

Time Stepping

The diffusion equation is evaluated in time using an explicit Euler scheme. If a time step
dt is chosen then the update scheme is as follows:

it =fty stz VA f (3.2)
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3 Model Problem: 2D Diffusion in Circular Domain

Explicit Euler scheme is first order convergent. A higher order scheme is not chosen be-
cause later on only spatial convergence is checked. For an explicit Euler scheme in time
stability issues are well known. A CFL condition is devised to check the stability of the
numerical scheme:

7 -dt
dx?

—

< (3.3)

2
Here dx is the mesh width. This corresponds to dr or rdf if a polar grid is being employed.

If a sufficiently small time stepp dt is used it can be guaranteed that the time stepping does
not affect overall convergence and stability.

3.1 Discretization in Cartesian Coordinate System

The V2 operator is evaluated by a second order central difference on a uniform 2D Carte-
sian grid with a five point stencil. Let f, , be the value of field f at a point (x,y) on the
Cartesian grid. The five point stencil is formulated as follows:

fx—l,y + f:p-l—l,y + fx,y—l + fm,y—l—l - 4fm,y

2 p __
VJ_f - de

(3.4)

The simplification of using a single grid spacing dx is followed throughout this thesis as
the two dimensional Cartesian grid is a uniform grid.
The update scheme is:

dtz |
;Ll = f;,y + W(fat:fl,y + fgté+1,y + f:ﬁ,yfl + f;,erl - 4f£,y) (3.5)

3.2 Discretization in Polar Coordinate System

A two dimensional polar coordinate system has the radial component denoted by r and
the angular component denoted by . Before the model problem can be discretized in
these coordinates, the original diffusion equation has to be transformed from the Cartesian
coordinates to the polar coordinates. The coordinate transformation is as follows:

2

r?P=x?4+y*x=r-cosf,y=r-sind (3.6)

The original diffusion equation in Cartesian coordinates is:

Oif = Z1VAf = Z1(0uaf + Oyyf) (3.7)

18



3.2 Discretization in Polar Coordinate System

The terms 0,60 and 0,6 can be formulated using the original coordinate transformations as:

9,0 — S0 (3.8)

r

0,0 = ¢ (3.9)

r

0. f and 0, f are computed by using the chain rule as follows:

sin 6

Opf = OrfOrr + Opf 00 = O, f cos(6) — Oy f " (3.10)
. cos @
Oyf = Op fOyr + 0p fO,0 = Oy f sin(0) + g f " (3.11)

Similarly the second order derivatives 2 f and 92 f are calculated by applying the product
rule to the evaluations of J, f and 0, f:

O2f = 040y fOu1 + Opf0u0) = 00Oy fOur + Oy fO2T + 0209 fO0 + D fO20 (3.12)

Substituting the value of 0,0 from eq. (3.8):

. o
O2f = 02 f cos(0)” — 20,0 fw P f81n:29>
3.13
129, O)snl0) ) p5in(0)° (313)
r r
0y.f = 8y(8: fOyr + 8pf0,0) = 0,0, fOyr + O, fOyr + 0,0 f 0,0 + Dy f 06 (3.14)
Substituting the value of 9,6 from eq. (3.9):
S (0)2
2 = 82 f sin(0)? + 20,0 fCOS(‘)):mW) P fcoi(f)
3.15
oy O)in0) e 615
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3 Model Problem: 2D Diffusion in Circular Domain

Substituting the formulations of 92 f and 82 into equation (3.7):

ouf = Z<82 af %f> (3.16)
The above equation can be re-written as:
af = 7( (“ﬁ)+-ﬁ?) (3.17)
T

Discretized form of the equation is formulated by using finite differences over a staggered
grid. If f;fﬁ is value of a the field variable f on point (r, §) at time ¢, the discrete form of the
equation is as follows:

t tft, -2t
([ronf, s = P01, 1) + =2 2%; oy )

=7
Ot (m’gdr

= g+ ez (g 0fta] = g0

Tv

3.19
+f7~,9+1 + fro-1— 2fro (3.19)
r2df?
The update scheme is:
L gt Srevo — froy fro — fr-10
8 = fha i (o 8Ly, a2l
+f7’f’9+1 +fle 1 =211, (3:20)
r2d6?

The gradients specified at the Neumann boundary points are incorporated into the internal
grid point values by a second order evaluation. The evaluation is shown below for a polar
coordinate system. A similar evaluation for Cartesian coordinates can be derived but for
this work, flux computations only on the polar grid are relevant. Second order evaluations
of gradients are computed from the Taylor expansions of two neighbouring grid points in
the interior of the computational domain. If dr is the grid spacing in the radial direction
then calculation for outer boundary is as follows:

dr?
f’r‘—dr,@ :frﬂ drdfr6+7d f7‘9+0(dr )

dr?
fr72d7“,0 = fr,@ - 2drdfr,9 + Tder + O(d?”g)
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3.3 Verification of Custom Core Code

The second order term d? f, can be eliminated and the equations reformulated to get the
value at the boundary point (r = rpyax):

4 1 2
frmax,@ = gfrmax—dr,@ - gfrmax—er,@ + gdrdfrmawﬁ (321)

Analogously the update scheme for inner boundary is as follows:

dr?
frvaro = fro + drdfpg + =-d*frp + O(dr)

dr?
fr+2dr,9 = fr,@ + Qdefr,é + szfrﬁ + O(drg)
Analogously the evaluation done for outer boundary points leads to the update scheme:

4 1 2
frmin,@ = gfrminerr,G - gfrmin+2dr,9 - gdrdfrmin,e (322)

3.3 Verification of Custom Core Code

The method of manufactured solutions [11] is used to verify the core code. In this method
an ansatz function is chosen to represent the field at every point in the domain and at
every instant of time. For this case the ansatz function is of the type f = F(r,0,t). The
ansatz function is chosen in such a way that it is easy to differentiate with all variables. The
ansatz is then inserted into the differential equation and the result is stored as a source term
Smms. The numerical scheme is evaluated by choosing the initial state and the boundary
conditions according to the ansatz function. The source term is added to the updated field
values in each time iteration. At the end of the simulation the original ansatz function is
evaluated at every grid point and compared to the result of the numerical scheme. The
error between these two values is compared for different mesh resolutions to determine
the convergence order of the numerical scheme. A common choice for ansatz functions is
a combination of trigonometric entities sin() and cos() which are easy to differentiate and
evaluate. sin and cos are periodic and hence have bounded limiting values which is also
helpful in computations. The choice made for this case is as follows:

f =sin(A) cos(t) cos(6) (3.23)

where,

A= op [ Tmin (3.24)
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3 Model Problem: 2D Diffusion in Circular Domain

radial points  theta points dr dtheta dt
50 262 6.0E-03  6.0E-03 5.0E-04
100 524 3.00E-03 3.00E-03  1.25E-04
200 1048 1.50E-03 1.50E-03  3.125E-05
400 2096 7.50E-04 7.49E-04 7.8125E-06

Figure 3.2: Parameter Values for Core Code Convergence Study

The diffusion equation is a homogeneous partial differential equation, so the source term
Smms can be easily evaluated by moving all partial derivatives to one side.

Sume = O0f — Z(fur + 17 4 190) (3.25)
T T

Inserting the above ansatz into the source term formulation, the source term is determined
as:

Smms = — sin(A) sin(t) cos(6) + Z cos(t) cos(6) (s.in(A)(&«A)2
B cos(A)0, A N sm(A)) (3.26)

r r2

Initial condition of the ansatz problem is obtained by inserting ¢ = 0 in eq.3.23:

finit = sin(A) cos(0) (3.27)

Evaluation of the initial condition at boundary points (r = r_min and r = r_max) is f = 0.
The relative [? error between the ansatz solution and solution obtained by the discretiza-
tion scheme is compared. Let ¢,, be the total number of time steps calculated, ff,‘e,t be the
ansatz function evaluation at a certain 7, § and ¢ and correspondingly f5), , be the solution
of the numerical scheme. The error is computed as follows: -

r f;4 - frD 2
?Error = J 2 ’9‘ ud ’a’t"| (3.28)

Zr,@ ‘frl?e,tn ‘2

The error is computed for various mesh sizes (fig. 3.2) to check for the order of conver-
gence. The mesh size in the plot (fig. 3.3) is the number of radial points. The mesh size
is only an indicating factor that the grid is refined by a factor of two in each direction. To
capture second order spatial convergence the time step is reduced by a factor of four when
the grid is refined by a factor of two. This needs to be done because the time stepping is
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3.3 Verification of Custom Core Code
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Mesh size are the number of grid points along one axis. For each experiment the mesh size
is refined by a factor of two and time step is refined by a factor of four.

Figure 3.3: Convergence Order (spatial) for Verification of Custom Core Code

explicit Euler scheme which is first order convergent. The custom core code developed
as part of this thesis is shown to be second order convergent in space. The numerical
scheme used to discretize and solve the diffusion equation is also second order accurate.
The verification of the core code is complete.
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4 Polar-Cartesian Geometry Coupling

The edge code and core codes to be used in coupling are fully described at this point.
The core code is built from scratch and verified in the previous section. These geometric
configurations are selected such that the edge region of a reactor is modelled using non-
aligned coordinates and the core region is modelled using flux-aligned coordinates. The
edge participant is simulated using a Cartesian coordinate system and the core participant
is simulated using a polar coordinate system. The primary tasks before a Polar-Cartesian
coupling can be done are adapting both core and edge codes to use the preCICE library
and formulating methods to map data between the codes when coupling is going on.

In the first step 4.1 a Cartesian-Cartesian coupling is performed. In this coupling both the
core and edge participants are simulated with GRILLIX using a uniform Cartesian grid.
Similar geometric configurations are naturally easier to couple, but several intricacies still
arise and are discussed below. An additional purpose of this coupling is to adapt the GRIL-
LIX code for coupling with preCICE. Functions for collecting data to be written to preCICE
and assigning data which is obtained from preCICE are written and discussed. Using the
functionality developed in the Cartesian-Cartesian coupling, a polar-Cartesian coupling is
constructed. This coupling is the first step in coupling participants with non-similar geo-
metric configurations and hence in this chapter this coupling is studied in greater detail.

4.1 First Step: Cartesian-Cartesian Coupling

As a first step in setting up a coupling model a uni-directional coupling is implemented.
In a uni-directional coupling the core sends Dirichlet values to the edge which are applied
as boundary conditions on the edge. An interesting finding of the uni-directional coupling
is that a circular cross-section when represented by a Cartesian grid produces a step style
representation of a circle (fig. 4.1). This introduces an error because it is unclear from
which grid points along this step shape should values be read and to which grid points
should values be written. Using the nearest-neighbor mapping is not accurate enough as
there is a loss of data due to the uncertainty of the step shape. This problem is countered by
introducing an additional circular shaped grid on top of the Cartesian grid. This circular
grid has a width of a single grid point and is used only for data mapping purposes.

Based on the insights from uni-directional coupling a more realistic bi-directional coupling
is implemented. The problem of having a step style shaped boundary at the coupling
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4.1 First Step: Cartesian-Cartesian Coupling

.

(a) Core and edge grids (b) Step-grid at coupling boundary

Figure 4.1: Mesh Details of Cartesian-Cartesian Coupling

CORE b l\.\

EDGE

\

Red and blue circular meshes are actually at the same physical location but are shown
separately here to clarify the use of circular mesh. Red arrows are the fluxes mapped from
the core to the light red points boundary points of the edge. Blue points on the edge are
values mapped to the light blue boundary points of the core.

Figure 4.2: Use of additional Circular Mesh in Cartesian-Cartesian Coupling

interface is described in unidirectional coupling. An additional circular mesh having only
one grid point width is added at the boundary of the edge. This circular mesh is used
purely for data mapping and does not interfere with the Cartesian grid of the edge on
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4 Polar-Cartesian Geometry Coupling

which the numerical scheme is solved. The bi-directional coupling is a Dirichlet-Neumann
coupling. The data mapping (fig. 4.4) in one time window is done by the following steps:

¢ Step 1: The core participant solves the numerical scheme and updates values on

the grid points of its Cartesian mesh. If this is the first time step then the values
at the grid points are initialized by a pre-defined initial state. Gradient values are
computed for every cell of the Cartesian grid on the coupling boundary by applying
finite differences to the nodal values at the four corner grid points (fig: 4.3). The
points on the circular mesh which are lying in this cell are identified and the gradient
values are copied to those points.

Step 2: The fluxes on the circular mesh of the core are mapped to the Cartesian grid
points of the edge using radial-basis function (RBF) mapping. The mapped fluxes are
applied as a Neumann boundary condition on the coupling boundary points of the
edge. The mapped fluxes are used to compute nodal values at the boundary points
of the edge. The edge participant then solves the numerical scheme and updates
values on all the grid points of its Cartesian mesh.

Step 3: The values from the Cartesian mesh of the edge are interpolated on the cir-
cular mesh of the edge using bilinear interpolation (fig. 4.3). In this bilinear interpo-
lation, four corner values of a cell of the Cartesian grid are used to obtain the value
on the circular mesh point which lies in this cell.

Step 4: The values on the circular mesh of the edge are mapped to the Cartesian grid
points of the core using RBF mapping. The mapped values are applied as a Dirichlet
boundary condition on the core mesh boundary points. The core participant can now
solve the numerical scheme again for the next time step.

B

(a) Bilinear interpolation from Carte- (b) Finite difference approximation of
sian grid to circular mesh fluxes from the Cartesian mesh to
circular mesh

Figure 4.3: Interpolation between Cartesian and Circular Mesh

Each operation described in the steps above is done by developing additional functional-
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4.1 First Step: Cartesian-Cartesian Coupling

PARALLAX - PARALLAX
-
CORE = preCICE EDGE
PARTICIPANT PARTICIPANT

Core_cartesian Edge_cartesian

MESH
‘\%/ y)f MESH
I <, % I

Interpolating X Bilinear _
Gradients Mapping o/oe Interpolation
Core_circular .~ ™. Edge_circular
MESH MESH

Figure 4.4: Data Mapping Mechanism for Cartesian-Cartesian Coupling

ity on top of the original model problem code. The radial-basis function (RBF) mapping is
done via preCICE but the internal mapping between the Cartesian mesh and circular mesh
of a participant is done within the coupled codes. The internal mapping of fluxes is done
using first order finite differences and the internal mapping of values is done using bilin-
ear interpolation. The RBF mapping is done using preCICE and is configured in the XML
configuration file. Radial-basis functions of type thin-plate-splines are used for mapping.
In the code snippet below the mapping is defined from the perspective of the core partici-
pant. The core participant writes fluxes from its circular mesh to the Cartesian mesh of the
edge using RBF mapping. The core then reads values from the circular mesh of the edge
to its own Cartesian mesh again using RBF mappings. The same mapping configuration
can be done from the perspective of the edge participant too.

The data mapping scheme shown above is just one combination of using the Cartesian and
circular meshes on either side. With two entities (values and fluxes) being mapped using
two meshes (Cartesian and circular) on either side there are several possible combinations
of data mappings. It is not mandatory that the edge participant transfers values to the core
and the core sends back fluxes. Transferring fluxes from edge to core and values from core
to edge is also a valid mapping configuration and is shown to be a preferred combination
in the next section.
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4 Polar-Cartesian Geometry Coupling

<participant name="Core">
<use-mesh name="core_cartesian" provide="yes"/>
<use-mesh name="core_circular" provide="yes"/>
<use-mesh name="edge_cartesian" from="Edge"/>
<use-mesh name="edge_circular" from="Edge"/>
<write—-data name="flux" mesh="core circular"/>
<read-data name="value" mesh="core_ cartesian"/>
<mapping:rbf-thin-plate-splines direction="write"
from="core_circular" to="edge_cartesian"
constraint="consistent"/>
<mapping:rbf-thin-plate-splines direction="read"
from="edge_circular" to="core_cartesian"
constraint="consistent"/>
</participant>

<participant name="Edge">
<use-mesh name="edge_cartesian" provide="yes"/>
<use-mesh name="edge_circular" provide="yes"/>
<read-data name="flux" mesh="edge_cartesian"/>
<write-data name="value" mesh="edge_circular"/>
</participant>

Figure 4.5: Configuration of Mapping in preCICE for Cartesian-Cartesian Coupling

There are various ways to perform mapping between core and edge. Availability of several
combinations show that the coupling mechanism developed is versatile and there is scope
to use better interpolation techniques and mapping methods to improve performance and
numerical accuracy. The flexibility of preCICE allows the user to switch between map-
pings on different meshes with little effort.

The model problem is simulated using the bi-directional Cartesian-Cartesian coupling. A
Gaussian blob is initialized in the core domain and the diffusing field is observed through
the coupled core and edge domains. Zero valued Dirichlet boundary conditions are ap-
plied at the inner boundary of the core and outer boundary of the edge. The coupling
interface is marked in a black circle over the field images (fig. 4.6) to show that the blob
diffuses smoothly over the interface.

The intention of performing a Cartesian-Cartesian coupling as a first step is to establish
the problems in data mapping and provide mechanisms to address these problems. This
coupling also provided the foundation of writing code with PARALLAX which includes
the preCICE API. A working diffusion model for this coupling is considered as sufficient
evidence of working framework and no further analysis is done. The primary objectives
of the Cartesian-Cartesian coupling are satisfied.
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4.2 Mapping Data in Polar-Cartesian Configuration

0.0e+00 1 2 3 4 5.0e+00 1.1e-05 0.05 0.1 1.6e-01

U - N
(@) t=0 b)t=1
Black line is the coupling interface. The Gaussian blob diffuses from the core to the edge

Figure 4.6: Diffusion of Gaussian Blob in Cartesian-Cartesian Coupling

4.2 Mapping Data in Polar-Cartesian Configuration

The Cartesian-Cartesian coupling done in the previous section is a coupling between simi-
lar geometric configurations. In spite of the similarity an additional circular mesh is neces-
sary to map data accurately. The additional circular mesh defined for data mapping pur-
poses is already a step in the direction of a Polar-Cartesian coupling. The circular mesh
captures the characteristic shape of the original geometry to ensure data is transferred con-
sistently at the coupling interface. It is already discussed in the introduction that the core
region of a reactor can be modelled by field-aligned coordinates which are aligned not
only to the flux surfaces but also resemble the physical cross-sectional geometry. The core
region is now modelled by the custom built polar core code which uses a polar coordinate
system (fig. 4.7).

The edge participant is still modelled with the code used in the Cartesian-Cartesian cou-
pling. An additional circular mesh is defined for the edge participant which is used only
for data mapping purposes. The main advantage of having a polar grid in the core is that
the coupling boundary of the core is now perfectly aligned with the circular mesh of the
edge. By using matching meshes the grid points on both these meshes can be perfectly
aligned and data can be transferred in an accurate way. Figure 4.7 (right figure) shows the
data mapping implemented in polar-Cartesian coupling. The following steps are executed
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4 Polar-Cartesian Geometry Coupling

(a) Polar grid in the core and Cartesian (b) The outermost layer of the core mesh is at the
grid in the edge. The Cartesian grid ~ same physical location as the circular mesh of

is a uniform grid. There is an over-  the edge but is shown separately for repre-
lap between core and edge regions  sentation. Arrows from the edge to core are
which is explained later on. fluxes being mapped and light red points on

the edge are the values mapped from the core

Figure 4.7: Grid and Mapping Mechanism in Polar-Cartesian Coupling

in one time window:

¢ Step 1: The edge participant solves the numerical scheme and updates values on the

grid points of its Cartesian mesh. If this is the first time window then the values
at the grid points are initialized by a predefined initial state. Gradient values are
computed for every cell of the Cartesian grid on the coupling boundary by applying
finite differences to the nodal values at the four corner grid points. The points on the
circular mesh which are lying in this cell are identified and the gradients values are
copied to those points.

Step 2: The fluxes on the circular mesh of the edge are directly mapped to the cou-
pling boundary points of the polar mesh of the core using nearest-neighbor mapping.
The mapped fluxes are applied as a Neumann boundary condition on the coupling
boundary points of the core participant. The mapped fluxes are used to compute
nodal values at the boundary points of the core. The core participant then solves the
numerical scheme and updates values on all the grid points of its polar mesh.

Step 3: The new values on the coupling boundary of the polar mesh of the core par-
ticipant are mapped to the boundary points of the Cartesian mesh of the edge using
radial-basis function mapping. The edge participant can now solve the numerical
scheme again for the next time step.
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4.2 Mapping Data in Polar-Cartesian Configuration

The mapping of values from core to edge is done in the same way as for Cartesian-Cartesian
coupling the difference being that now the core has a polar mesh which can directly pro-
vide values on a circular shaped mesh for the RBF mapping. For the steps described above
the preCICE configuration for data mapping looks as follows:

<participant name="Core">
<use-mesh name="core_polar" provide="yes"/>
<use-mesh name="edge_cartesian" from="Edge"/>
<use-mesh name="edge_circular" from="Edge"/>
<write-data name="value" mesh="core write_mesh"/>
<read-data name="flux" mesh="core_read_mesh"/>
<mapping:rbf-thin-plate-splines direction="write"
from="core_polar" to="edge_cartesian"
constraint="consistent"/>
<mapping:nearest—-neighbor direction="read" from="edge_circular"
to="core_polar" constraint="consistent"/>
</participant>

<participant name="Edge">
<use-mesh name="edge_cartesian" provide="yes"/>
<use-mesh name="edge_circular" provide="yes"/>
<read-data name="value" mesh="edge_cartesian"/>
<write-data name="flux" mesh="edge_polar"/>
</participant>

Figure 4.8: Configuration of Mapping in preCICE for Polar-Cartesian Coupling

Once Polar-Cartesian coupling framework is finalized, some form of verification is neces-
sary. To predict the spatial convergence order of the coupling the individual orders of all
mapping schemes and the coupling participants themselves are taken into consideration.
Verification of participants as standalone codes and literature supporting the mapping
schemes give the following details:

¢ Standalone Edge Code: Edge code uses the PARALLAX library. Dirichlet and Neu-
mann boundary conditions in PARALLAX are first order convergent. Hence the
overall order of the edge participant is first order.

¢ Standalone Core Code: In Chapter 3 the custom built core code is verified to be
second order convergent for Dirichlet and Neumann boundary conditions.

¢ Mapping Fluxes within Core: Flux values on points of the circular mesh of the edge
are computed by first order finite differences on the Cartesian grid point values. This
internal computation in the core code is first order convergent.

* Mapping Fluxes from Edge to Core: The fluxes computed on the circular mesh of
the edge are mapped to the boundary of the core using nearest-neighbor mapping.
Nearest-neighbor mapping is second order convergent if mapping meshes are used.
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4 Polar-Cartesian Geometry Coupling

¢ Mapping Values from Core to Edge: Values are mapped from core to edge using
radial-basis function mapping which is second order convergent [9].

The overall coupling convergence is restricted to first order as the edge participant and
several mapping schemes are first order. The boundary conditions of the edge code and the
tirst order mapping schemes can be improved to higher order schemes. This is discussed
later on as part of future work.

Both the edge and core codes are explicit in time. In the update scheme the right hand side
consists of entities which are only from the previous time step. Solving such a fully explicit
algorithm using an implicit coupling scheme does not make sense as every implicit time
iteration will contribute to no improvement in the state of the solution. Hence an explicit
coupling scheme is used for polar-Cartesian coupling.

4.3 Data Initialization and Overlapping Domains

For a Dirichlet-Neumann coupling, initialization of boundaries to zero values and zero
fluxes does not work. preCICE offers functionality to initialize the quantities along the
coupling boundary to non-standard values. If this functionality is not used then the default
initialization values are zero. One of the participants starts the simulation. This participant
is called the first participant. Normally it starts with zero values initialized at the coupling
boundary. If an initial state is prescribed then the zero value initialization does not work.
In such cases the second participant defines values and writes them to preCICE. preCICE
supplies the values to the first participant before it starts.

Overlapping the domains of the two participants can be understood by studying the data
accessing and updating of one of the participant. In the scenario of this work, two par-
ticipants having fully explicit time stepping are being coupled with a Dirichlet-Neumann
coupling and an explicit coupling scheme. Considering the core participant: as soon as
the time loop starts data (Neumann fluxes) is read from preCICE and applied as boundary
conditions along the interface points. Then the numerical scheme is solved and all internal
grid points (excluding interface boundary points) are updated to the new values for the
next time step. Note that the boundary points still have the values of the old time step. If
data (Dirichlet values) is now collected from the boundary points of the core and written to
preCICE, then the old time step values would be written back to the edge. This is incorrect
as the edge participant expects updated values along its interface points.

Overlapping the domains (fig. 4.9) by a certain amount can resolve this problem. When
domains are overlapped, the data transfer happens at two interfaces rather than a single
one. Considering the data transfer from the core to the edge, the boundary values needed
for the edge are now generated using internal grid point data of the core. The internal grid
point values are updated by the numerical scheme and hence the data collected is already
updated to new values. The overlap width is selected to be two times the mesh width
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4.3 Data Initialization and Overlapping Domains

Edge reads data on red points of its Cartesian mesh. Core reads data on light blue points
of its polar mesh

Figure 4.9: Overlapping Domains for Polar-Cartesian Coupling

of the edge participant. This is done because during the flux computation on the edge
participant, entire cells are necessary as the flux on the edge_circular mesh points is calcu-
lated using four corner values of the encompassing cell. These cells need to be completely
isolated from the boundary points of the edge which are updated using the data received
from the core. An overlap width of two times the mesh width of the edge Cartesian grid
ensures this and hence is a natural choice. When the domains are overlapped the core
code has to maintain two coupling meshes, one for reading data and one for writing data.
The overlapped domain is solved by both participants and data exchange takes place at
the two boundaries of this overlapping domain. The configuration for preCICE is then as
follows:
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4 Polar-Cartesian Geometry Coupling

<participant name="Core">
<use-mesh name="core_read_mesh" provide="yes"/>
<use-mesh name="core_write_mesh" provide="yes"/>
<use-mesh name="edge_cartesian" from="Edge"/>
<use-mesh name="edge_circular" from="Edge"/>
<write—-data name="value" mesh="core write mesh"/>
<read-data name="flux" mesh="core_read_mesh"/>
<mapping:rbf-thin-plate-splines direction="write"
from="core_write_mesh" to="edge_cartesian"
constraint="consistent"/>
<mapping:nearest—-neighbor direction="read" from="edge_circular"
to="core_read mesh" constraint="consistent"/>
</participant>

<participant name="Edge">
<use-mesh name="edge_cartesian" provide="yes"/>
<use-mesh name="edge_circular" provide="yes"/>
<read-data name="value" mesh="edge_cartesian"/>
<write-data name="flux" mesh="edge_circular"/>
</participant>

Figure 4.10: Configuration of Mapping in preCICE with Overlapping Domains

4.4 Verification of Polar-Cartesian Coupling

The Polar-Cartesian coupling framework is verified using a strategy similar to the earlier
explained method of manufactured solutions. The core and edge participants are initial-
ized to an ansatz function of the form f = sin(r)cos(8)cos(t) (fig. 4.11). The discretized
form of the diffusion equation is solved up to ¢t = 0.5 for the coupled problem with vary-
ing mesh resolutions. In the method of manufactured solutions a source term is calculated
by plugging the ansatz in the original equation but here a different strategy is pursued.
The source term would need to be calculated for the edge and core regions separately and
plugged into the respective update schemes. To avoid the increase in computation time
the coupled solution is compared to a reference solution. The reference result is obtained
by simulating the entire domain using the core code at a very fine mesh resolution ( 1.3
Million grid points). The solution of the reference result is interpolated on the grid points of
the coupled solution to be compared using cubic splines. The error is calculated by taking
the 2 norm of the difference between the solution and reference at each grid point. The
error is plotted against mesh resolutions to show first order convergence (fig. 4.12).

The core and edge codes are individually run to simulate the entire domain with the mesh
resolution of the core and edge regions in each coupling case. The individual results are
compared to the same reference result. The overall error of the coupling case can be com-
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Figure 4.11: Comparison of Monolithic Ansatz Solution vs. Coupled Ansatz Solution

pared with the the errors of the core and edge codes individually.
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The polar-Cartesian coupling is shown to be first order convergent. This result is expected
as the GRILLIX edge code and multiple data mapping steps are first order convergent. The
polar code is perfectly aligned with the boundaries and is second order accurate. There-
fore, the polar code performs significantly better. The relative error of the coupled solution
is a little worse than the edge code. This gap can be predicted to the interpolation error in
data mapping between geometrically different configurations.

4.5 Analysis of Data Mapping Methods

Comparing various RBF Mapping Techniques

preCICE offers two types of radial-basis functions, one with global support (fig. 4.13) and
one with local support (fig. 4.14). In RBF mapping a global interpolant is formed on the
mesh from which data is being sent. This interpolant is then evaluated on the mesh on
which the data is received. The interpolant is formed by a linear combination of radial-
basis functions centered at each vertex and is further enriched by a linear global polyno-
mial. For the evaluation of each target vertex value, all the source vertices are taken into
consideration for local and global basis functions. Both functions lead to a linear system
with the difference being that for global basis functions the system matrix is dense and for
local basis functions the matrix is sparse. The global basis functions can be problematic
due to the algorithmic complexity and lack of scalability for big problems. Such a RBF
mapping is configured as follows:

<mapping:rbf-thin-plate—-splines direction="write"
from="core_write_mesh" to="edge_cartesian"
constraint="consistent"/>

Figure 4.13: Configuration of RBF Mapping in preCICE with Global Basis Functions

The alternative to the global approach is a local approach where an additional entity is de-
fined as a cut-off distance from the vertex on which the RBF is centered. No vertex beyond
this cut-off distance is considered in the evaluation. An example of the additional entity in
the definition is defining a support radius for the compact thin plate splines mapping which
is the radial cut-off distance from the vertex being evaluated. A reasonable value for the
support radius is such that five vertices in each direction are considered during evaluation.
The configuration is as follows:

The RBF mapping is used in the polar-Cartesian coupling when the Dirichlet values are
mapped from the boundary of the core code to the Cartesian mesh of the edge code. Using
the verification technique from the previous section the two RBF mapping techniques are
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<mapping:rbf-compact-tps—-c2 direction="write"
from="core_write_mesh" to="edge_cartesian"
constraint="consistent" support-radius="0.1"/>

Figure 4.14: Configuration of RBF Mapping in preCICE with Local Basis Functions

evaluated. The error with respect to the reference result and total computational time are
compared for varying mesh resolutions.

Results of [? error and computation time for varying mesh resolutions show that using
the global or local variants in one of the mapping schemes of a polar-Cartesian coupling
does not affect the numerical accuracy or performance. It can be predicted that for bigger
problem sizes local supported RBF mappings perform better than the global variants.

Mapping in GRILLIX vs. Mapping with preCICE

In the Polar-Cartesian coupling the mapping of fluxes is done in two stages. In the first
stage the fluxes are approximated from the Cartesian mesh of the edge to the circular
mesh of the edge. Once the fluxes are available on the circular mesh of the edge they
are mapped to the coupling boundary of the core using nearest-neighbor mapping. As
an alternative fluxes can be mapped directly from the Cartesian mesh of the edge to the
coupling boundary of the core using mapping functionality from preCICE. In general,
these approaches can be described as follows:

¢ First Approach (Internal Mapping in Edge + Mapping with preCICE): Data from
a non-aligned coordinate mesh (Cartesian mesh) in the edge is mapped internally to
a mesh having the shape of the flux-aligned coordinates (circular). The data is then
mapped from this flux-aligned coordinate shaped mesh to the core.

¢ Second Approach (Direct Mapping with preCICE): Data from a non-aligned coordi-
nate mesh (Cartesian mesh) in the edge region is mapped directly to the flux-aligned
coordinate mesh in the core region using mapping functionality from preCICE.

The first approach is already described in the Polar-Cartesian coupling (fig. 4.2). The
second approach is simulated by using radial basis function (RBF) mapping in preCICE.
Within the RBF mapping two types of mappings are tested, one with local-basis functions
and one with global-basis functions. Data is mapped from the Cartesian mesh of the edge
directly to the polar mesh of the core using RBF mapping. Plotting the {? error (fig. 4.15)
shows that there is no significant gain in numerical accuracy when the second approach
is used. In fact for a large mesh the RBF mapping with global-basis is worse than the
internal mapping. The RBF mapping with local basis performs a bit better than the global-
basis but is still worse than internal mapping. This needs to be investigated further. A
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Figure 4.15: Comparison of Mapping in GRILLIX vs. Mapping using preCICE

comparison of the computation time (fig. 4.15) of the two approaches shows that the RBF
mapping from a Cartesian mesh to a polar mesh is more expensive than combined cheaper
operations of internal mapping and nearest-neighbor mapping. The computation time of
RBF mapping depends on the mesh size from which the data is being mapped. In the
second approach the source mesh consisting of vertices in particular band of radius values
on the Cartesian grid of the edge. The number of points in this mesh band increase faster
than the corresponding increase on a circular mesh. This can possibly explain the slowing
down of RBF mapping as against internal mapping for large meshes. The difference in
total computation time of the two approaches needs to be investigated further.
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Polar-Cartesian coupling shows that a methodology can be developed to couple two par-
ticipants having different geometric configurations. The GRILLIX edge is already used to
simulate edge physics in tokamak reactors. For the flux-aligned coordinates in the core,
the simplest choice of geometry that can be made is a polar coordinate system. For more
realistic simulations in magnetic fusion applications, the interface coupling methodology
needs to be extended to handle diverted geometries.

To model realistic geometries in fusion applications, equations are commonly solved in
curvilinear coordinate system. Several coordinate systems like spherical, cylindrical and
toroidal systems are curvilinear coordinate systems. Common coordiantes used for the
tokamak core region are toroidal-like coordinate systems with the flux surface label p, a
poloidal angle  and a toroidal angle ¢. The flux surface label is a function p(R, Z) depend-
ing only on R, the distance to the symmetry axis of the torus, and the vertical coordinate Z,
but p is independent of the toroidal angle ¢. The usage of flux-aligned coordinates become
problematic in diverted geometries towards the separatrix due to a coordinate singularity
at the X-point. GRILLIX overcomes this by working in the cylindrical coordinate system
(R, Z, ). The scope of this section is to show the path how to couple a code working in
flux-aligned coordinates with GRILLIX working in cylindrical coordinates.

5.1 Analysis in Curvilinear Coordinates

To model a differential equation in a curvilinear coordinate system, an introduction to basic
concepts such as covariant and contravariant components of a vector, metric coefficients
and their use needs to be given.

Covariant and Contravariant Components of a Vector

A vector space can be defined using coordinate surfaces and coordinate curves. Surfaces
can encompass the entire space and curves are defined as intersection of these surfaces. In
a three dimensional vector space, three surfaces and three curves exist which can be used
to fully define the space. To define a vector in such a space, basis vectors based on the coor-
dinate surfaces and coordinate curves need to be defined. Basis vectors e;’s are defined as
tangent vectors to the coordinate curves. Basis vectors e'’s are vectors perpendicular to the
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5 Diverted Geometry Coupling

coordinate surfaces. Vectors e;’s are referred to as tangent basis vectors and vectors e’s are
referred to as reciprocal basis vectors. The nomenclature of using superscript for reciprocal
basis vectors and subscript for tangent basis vectors is purely for notation purposes and is
generally followed in literature.

A vector D in a 3D vector space can be represented by the tangent and reciprocal basis
vectors in the following way:

D= (D-e)el +(D-ey)e® + (D -e3)e? (5.1)

D= (D-eYey + (D -e3)e® + (D -e3)e? (5.2)

The terms D - ¢;’s are known as the covariant components of vector D. The terms D -
e'’s are known as the contravariant components of vector D. In 3D Euclidian space the
covariant and contravariant components of vectors are the same, but need to be considered
for curvilinear coordinates.

The toroidal coordinate system is a curvilinear coordinate system having coordinates p,
6 and ¢, the tangent basis vectors are e,, ey and e,. The reciprocal basis vectors for the
same system are e”, e? and e?. Ttis important to note the nomenclature by which covariant
components are represented by subscript and contravariant components are represented
by superscript.

The basis vectors can also be defined by a coordinate transformation. If a coordinate trans-
formation G is defined from the Cartesian coordinate system (z, v, z) to a general curvilin-
ear coordinate system having coordinates ¢!, c2, ¢® then the basis vectors can be formulated
as follows:

oG
el =V (5.4)

Metric Coefficients g;; and g*/

The metric coefficients provide a method to calculate the dot and cross product of vectors
in a general curvilinear coordinate system. The metric coefficients g;; are defined as the
dot product of the tangent basis vectors e; and e;. The metric coefficients ¢g*/ are defined as
the dot products of the reciprocal basis vectors e’ and ¢/. With some additional reformula-
tion and derivations [3] it is shown that the metric coefficients can be used to interchange
between covariant and contravariant components. The interchange is as follows:

ei = gije (5.5)
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el = gijej (5.6)

The metric coefficients are determined from the coordinate transformations required to
fully define a system in the curvilinear coordinate system. The problem needs to be trans-
formed to a curvilinear coordinate system, specifically the toroidal coordinate system.

Jacobian of Curvilinear Coordinate System

The Jacobian in a curvilinear coordinate system is defined using the earlier stated transfor-
mation G as follows:
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The Jacobin can be reformulated with the transformation G itself as:

G 9G _ da

el Al 7
Ocl  0Oc? % oc3 (5.7)

The relation between the Jacobian and the determinant of the tensor of the metric coeffi-
cients (g = det[g;;]) is [3]:

2
oG G aa) _ oy 8)

9= detlgi] = (alaz <o

5.2 Model Problem in Curvilinear Coordinate System

To simulate a cross-section of a reactor with a diverted toroidal geometry, the geometric
configurations of both the core and edge regions change. The core region changes from
a polar coordinate system to a toroidal coordinate system. The edge region changes from
Cartesian coordinate system to a cylindrical coordinate system.

The model problem for the core region is modified to be solved in a toroidal coordinate
system. The numerical method is still finite differences. To formulate any differential
equation in curvilinear coordinates, the metric coefficients g% need to be resolved. The
metric coefficients represent a mapping between vector spaces. Hence the full set of metric
coefficients is in fact a tensor. For the toroidal coordinates e,, ey and e, the tensor is as
follows:

gPP gp9 gmﬁ
g% P09
g% g¢9 g%?
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As the transformation between different coordinate systems is known, the metric coeffi-
cients can be algebraically evaluated, For such a system the metric coefficient tensor is
symmetric, that is g = g/!. Due to axis-symmetry g** = ¢’¢ = 0, and the metric coeffi-
cient tensor simplifies to:

grP 999 0
¢ ¢ 0
0 0 g¢>¢>

Divergence of a vector u in a general curvilinear coordinate system is defined as [3]:

Vi = (5)0K(J(Vu)) (5.9)

It is important to note that (Vu)® is the contravariant component of Vu. The model prob-
lem to be solved is the diffusion equation which can be written as:

du=V-Vu (5.10)

Substituting the definition of divergence in curvilinear coordinates:

Do — %@(J(Vu)i) (5.11)

Contravariant component of divergence of a vector (Vu)’ can be written in its covariant
component using the metric coefficients as follows:

(Vu)' = ¢"0;u (5.12)

Formulating the model problem using covariant components of a vector gives:

1 g
Ou = jﬁi(ngﬁju) (5.13)

In the following we reduce the problem to 2D by assuming that the field u is axisymmetric,
i.e. 9,u = 0, and expanding this equation in p and @ coordinates yields':

Opu = %[@(Jgpp@pu) + 39(Jg%89u) + ap(Jgf’@a@u) + 89(Jg€p8pu)] (5.14)

'Note that ¢®? still enters the Jacbian J
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The terms containing diagonal metric coefficients g”” and g% are discretized in a staggered
grid fashion:

pp  Uitlj — Uiy —J g Ui,j — ui—l,j) (515)

1
8p(=]gppaﬂu) dp(‘]l+2,]gz+2,j d,O 177’] Z**:J dp

Each entity evaluated at half a grid index length is further evaluated by averaging values
at neighbouring grid points:

1 J2+1J+Jljgz+1]+gljul+1] Uig

(S Opu) = —(
dp- 2 2 dp (5.16)
J,]+Jz 1]91j+gz 1,5 Wij — ui—l,j)
2 2 dp

Similarly the second term associated with diagonal metric coefficient g%’ is discretized as:

i(Ji,j—i-l + Jij Q%H + gf,(; Uil — Uij

- 2 2 do (5.17)
Jig + Jij—1 90 + 91 uiy — Uig-1,

2 2 do

99 (Jg" Ogu) =

The terms containing off-diagonal metric coefficients g’ and ¢% are discretized using fi-
nite differences:

1
9p(J g Ogu) = %(Jiﬂ,jgfﬁl,j(@ewiﬂ,j — Ji1,502 1 (Bgu)icry) (5.18)
1 Ui L — W . Ui 1 51 — Wi i
0 _ p9 i+1,5+1 i+1,5—1 : P i—1,54+1 i—1,j—1

Similarly for second term associated with g%

0 Ui4-1,5+1 — Ui—1,5+1 Ui41,5—1 — Ui—1,5—1
(J,Jﬂgzg’ﬂl . del P2 Jijoagyh de’ 7—) (5.20)

(T g% dpu) = 530

The core code is modified to solve the diffusion equation in toroidal coordinates. The core
code still works in two dimensions but now the effect of toroidicity needs to be considered

43



5 Diverted Geometry Coupling

in the 2D cross-section. The metric coefficients and Jacobian values for each grid point of
the geometric shape are computed by an independent package within GRILLIX. The data
from this package is read by the core code and used to solve the stencil derived above.
Dirichlet boundary conditions are implemented at the inner and outer edges of the geom-
etry.
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Figure 5.1: Diffusion of Gaussian Blob in Diverted Geometry Setup

A Gaussian blob diffusing in a diverted geometry domain looks visually reasonable (fig.
5.1). Verification of the core code for diverted geometries is not done in this thesis.
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5.3 Coupling with Diverted Geometry

The coupling framework developed for Polar-Cartesian coupling can be used for diverted
geometries with some modifications. The critical difference between a circular geometry
and diverted geometry is the computation and application of fluxes at the coupling bound-
ary. The coupling boundary contour is no longer orthogonal to the poloidal grid lines. The
normal vector to the coupling boundary needs to be calculated separately and based on
that the flux calculation is done. This added complexity is not pursued in this thesis and
is discussed further as part of future work.

Figure 5.2: Schematic of Geometric Configurations in Coupled Diverted Geometry

To show that the coupling framework developed in this thesis can be directly applied to
transfer data across diverted geometries, a uni-directional coupling is solved (fig. 5.3). In
this coupling, Dirichlet values from the core region boundary are transferred to the edge
region at the coupling boundary. A uni-directional coupling does not provide physically
valid results. This experiment is done only to show that the existing coupling framework
can be easily modified to handle diverted geometries.

The geometry is chosen from [2]. A code package in GRILLIX is used to compute the metric
coefficients and Jacobian values for the toroidal grid points of the core. The edge region
is simulated using a uniform Cartesian grid. For diverted geometries the edge region
needs to solve using cylindrical coordinates. The change from Cartesian to cylindrical
coordinates is handled within GRILLIX and no additional modifications are required. The
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The black line is the coupling interface. The interior domain is the core and the exterior
domain is the edge

Figure 5.3: Diffusion of Gaussian Blob in Coupled Diverted Geometry Setup

tig. 5.3 shows a Gaussian blob initialized in the core region diffuses into the edge region.
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6.1 Summary of the Thesis

This thesis explores geometric aspects of coupling codes simulating the core and edge re-
gions of a tokamak fusion reactor. A black-box partitioned coupling approach is pursued
using the coupling library preCICE. The physics in a fusion reactor is simplified to a dif-
fusion problem. The geometry is simplified from 3D toroidal and cylindrical coordinates
to 2D polar and Cartesian coordinates. These simplifications allow to investigate the cou-
pling in detail. A differential equation is solved on a Cartesian and polar grid separately
which are then coupled. The simplifications of physics and geometry are done in a way
that the generality of the coupling itself is still retained. This thesis addresses the com-
plexities of mapping data across different geometric configurations and attempts to build
a framework for coupling in fusion applications.

A code is developed from scratch to simulate the core region. This core code is verified
for second order spatial convergence. The core code is structured in a modular fashion
to enable re-usability in the future. The code is designed in a way to allow for further
modifications to use diverted geometries, higher order boundary condition schemes and
better initialization methods. The edge region is simulated using GRILLIX. The GRILLIX
code is adapted to use the preCICE library. The adapted form of the edge code is also
modular in fashion. The data mapping functions are bundled as generic functions which
can be used for future applications.

A Cartesian-Cartesian coupling with both core and edge simulated with GRILLIX is done.
A Dirichlet-Neumann coupling is constructed. This coupling highlights the problem that
a Cartesian grid cannot fully capture the shape of a flux-aligned geometry. An additional
internal mapping scheme is developed to address this problem. In this internal mapping
the edge code stores an extra mesh which has the shape of the flux-aligned geometry. This
internal mesh is used to map data consistently to the core region. Using this idea an ad-
ditional circular shaped mesh is defined within the edge code. This internal mapping is
a critical aspect of achieving accurate data mapping. In Polar-Cartesian coupling the cus-
tom built core code is coupled to GRILLIX. It is found that overlapping the domains of
core and edge is necessary to achieve a physically valid coupling. The resulting Polar-
Cartesian coupling with overlap is shown to be spatially first order convergent. This is
expected because the flux mapping and boundary conditions in GRILLIX are first order
convergent. The internal mapping done in the edge code can be skipped if preCICE is
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employed to map data directly between the non-aligned edge mesh and flux-aligned core
mesh. Use of internal mapping is compared against using a radial-basis function mapping
in preCICE. The comparison shows that internal mapping is computationally cheaper than
using radial-basis function mapping with global basis functions. At higher mesh resolu-
tions the RBF mapping has a higher error than the internal mapping. Behavior of RBF
mapping for large meshes needs to be investigated further.

The framework developed for Polar-Cartesian coupling is extended to handle diverted
geometries under certain restrictions. The core region is now modelled with toroidal co-
ordinates and the edge region with cylindrical coordinates. Switching from Cartesian to
cylindrical coordinates in edge is handled internally in GRILLIX. The core code models
the diffusion equation in two dimensional toroidal geometry. Implementing Neumann
boundary conditions along the coupling boundary is as straight-forward as for a polar
mesh because the poloidal grid lines are no longer orthogonal to the interface. This is
not pursued further in this thesis. A first test case of uni-directional coupling in which
Dirichlet values are exchanged from core to edge shows promising results. Coupling with
diverted geometry could not be studied in more detail within the scope of this thesis.

Partitioned coupling methodology has the capability to provide efficient and robust solu-
tions for coupling in fusion applications. A flexible tool like the preCICE library along with
adapted codes for different regimes or physics is path worth exploring for fusion research.

6.2 Future Challenges

This thesis highlights many future paths for black-box coupling in fusion applications. The
coupling framework developed in this work can be expanded in several ways to move
closer to realistic coupled simulations for fusion reactors. Some of the possible avenues
are discussed below:

¢ Diverted Geometry Coupling: The diverted geometry coupling shown in this the-
sis is very preliminary. Neumann boundary conditions along the coupling interface
are essential to have a physically valid coupling. The core code can be to be devel-
oped further to map fluxes computed by GRILLIX which are not orthogonal to the
interface.

¢ Improving Overall Spatial Convergence Order: The spatial convergence of the
Polar-Cartesian coupling is shown to be first order. By using higher order bound-
ary conditions in GRILLIX and a higher order scheme to map fluxes the spatial con-
vergence would mostly improve to second order. The explicit Euler time stepping
scheme is first order convergent and using higher order time stepping is a way to
improve overall convergence.

* Volume Coupling: This thesis explores interface coupling. For two dimensions the
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coupling interface is a curve and for three dimensions it is a surface. There are cases
in fusion simulations where different models are applicable over the same domain
but simulating the models together is difficult. Individual codes simulating each
model solve the entire domain space and preCICE is used to couple all the grid points
in the domain. In such a coupling, spatial convergence and performance are critical
aspects which could be handled in the coupling library.

Coupling Advanced Physics: In this thesis the model problem is simplified to the
diffusion equation. In realistic plasma fusion scenarios many complex models are
needed simultaneously to describe the behaviour of the system. Using a robust
coupling framework, coupling of sophisticated highly non-linear plasma turbulence
models can be pursued. A kinetic model can be coupled to a fluid model with inter-
face coupling. A plasma model can be coupled with neutral gas model using volume
coupling.
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