
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Integrated approach of Random Projections
and Sparse Grids for Density estimation

Oriolson Rodriguez Ramirez





Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Integrated approach of Random Projections and Sparse
Grids for Density estimation

Author: Oriolson Rodriguez Ramirez
1st examiner: Univ.-Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Assistant advisor: M.Sc. Severin Maximilian Reiz
Submission Date: November 15st, 2020





I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

November 15st, 2020 Oriolson Rodriguez Ramirez





Acknowledgments

First, I would thank M.Sc. Severin Reiz for sharing all his invaluable knowledge and be-
ing so patience during the development of this challenging topic. His insightful feedback
brought this thesis to a higher level.

I also would like to thank the Scientific Computing chair for giving me the opportunity
to take part in this great master program.

In addition, I would like to thank my family: Doña Rosa, Tio miro, Abe, Faby, Rosendo
and Calaca, and of course, all my nieces and nephews, for their wise counsel and support
during the hard times.

I could not have completed this project without the support of my friends, Dani, Hisham,
Brenda, Peter, Didier, Jonathan, and Samuel, who provided happy distractions to rest my
mind outside my research.

vii



The idea of a learning machine may appear paradoxical to some readers. How can the rules of
operation of the machine change? They should describe completely how the machine will react

whatever its history might be, whatever changes it might undergo. The rules are thus quite
time-invariant. This is quite true. The explanation of the paradox is that the rules which get

changed in the learning process are of a rather less pretentious kind, claiming only an ephemeral
validity (...)

An important feature of a learning machine is that its teacher will often be very largely ignorant of
quite what is going on inside, although he may still be able to some extent to predict his pupil’s

behavior.

-Alan Turing
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Abstract

Sparse Grid Density Estimation faces two challenges when it is applied to extremely
high-dimensional and clustered data. The first is the Curse of dimensionalty which makes
the required computing power increase exponentially with the number of dimensions.
Despite that Sparse Grids moderate the effect of the dimensionality it can reach a point
in which a computation is unfeasible. The second challenge is the location of some grid
points; at the beginning of the computation the grid spreads all over the domain, includ-
ing places where there is no data at all. When clustered data is used all samples are lo-
cated around cluster centroids and not scattered all over the domain, this makes the phe-
nomenon of placing grid points where they are not really necessary, to accentuate. This
unwanted product adds computational cost but does not improve accuracy. Despite that
Adaptive Refinement have shown very good results, the computation will carry all the
way those inefficient grid points added at the beginning.

To reduce the undesired aforementioned effects a pipeline is implemented. This pipeline
is divided in two parts: The first one is a Locality Sensitive Hashing algorithm that uses
Random Projections to divide the data in subsets that correspond to clusters. The second
part applies dimensionality reduction to embed the whole data set and each cluster to a
significantly lower dimensional space and then compute density estimations using Sparse
Grids. For both parts two different sets of metrics are introduced to measure the efficacy
of this implementation. Finally, the Conventional Approach using the whole data set is com-
pared to two different methodologies to treat each individual cluster in parallel(Cluster
Analysis and Clusters Extraction).

Results for a real-world data set and Synthetic one show that the Conventional Ap-
proach presents better results than Cluster Analysis in most of the scenarios. However,
Cluster Extraction exhibit very good results compare to those two methodologies in 60%
to 80% of the proposed numerical experiments. This promising results are consistent even
in scenarios when the numerical experiments have very similar computational cost.

ix





Contents

Acknowledgements vii

Abstract ix

I. Introduction and Background Theory 1

1. Introduction 3

2. Theory 5
2.1. Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Parametric Density Estimation . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Semi-parametric Density Estimation . . . . . . . . . . . . . . . . . . . 7
2.1.3. Non-Parametric Density Estimation . . . . . . . . . . . . . . . . . . . 10

2.2. Sparse Grids for Density Estimation . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1. Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2. Density Estimation Using Sparse Grids . . . . . . . . . . . . . . . . . 12

2.3. Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1. Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2. Random Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Locality Sensitive Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1. lp-LSH Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2. Distance Metrics in High Dimensional Spaces . . . . . . . . . . . . . 19

II. Implementation 21

3. Pipeline 23
3.1. Random Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1. Finding the Best Possible Projection . . . . . . . . . . . . . . . . . . . 26
3.2. Group Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1. Distance Metrics, Sketch Construction and Parameter Learning . . . 28
3.2.2. LSH Algorithm: Putting All Pieces Together . . . . . . . . . . . . . . 30
3.2.3. Validation Metrics for LSH . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3. Dimensionality Reduction of Clusters . . . . . . . . . . . . . . . . . . . . . . 34

xi



Contents

3.4. SG++ Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1. General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2. Grid Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3. Validation Metrics for SGDE . . . . . . . . . . . . . . . . . . . . . . . 38

4. Numerical Experiments 43
4.1. Input Pipeline Parameters: Summary . . . . . . . . . . . . . . . . . . . . . . 43
4.2. Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1. LSH Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2. Dimensionality Reduction and SGDE Numerical Experiments . . . . 45

III. Results and Conclusion 49

5. Results and Analysis 51
5.1. LSH Results for Gene Expression Data Set . . . . . . . . . . . . . . . . . . . . 51
5.2. LSH Results for Synthetic Data Set . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3. Dimensionality Reduction and SGDE Results for Gene Expression Data Set 53
5.4. Dimensionality Reduction and SGDE Results for Synthetic Data Set . . . . . 55

6. Conclusions 59

Bibliography 59

xii



Part I.

Introduction and Background Theory
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1. Introduction

The Curse of Dimensionality is a term introduced by Richard E. Bellman [7 ] [8 ]. It shows
how by increasing the number of dimensions in a given space, it also expands its volume
exponentially, adding sparsity to the data contained in that space. This makes imperative
to increase the amount of data exponentially in order to make statistical results drawn from
that data to be reliable. This phenomenon affects directly machine learning algorithms that
uses high dimensional data sets, these methods also require exponential growth of com-
puting power to give results in a reasonable amount of time.

Sparse Grids are used for density estimation, which is also affected by the Curse of Di-
mensionality, however, this method reduces some of the undesired effects that a highly
dimensional data set brings with it. Pflüger [27 ], Bungartz et al [10 ], Peherstorfer [25 ] and
others, using SG++ library [33 ], have proven how this methodology can give very good
results for this kind of problems. Despite that there is still space for some improvements,
one of those is the way how the Sparse Grid is distributed in the domain. Usually, the grid
points are placed in the whole domain of the input space, including some areas where
only a few are needed or none at all. This grid points add computational cost but does not
improve accuracy to the results [23 ]. Despite that Adaptive Refinement can be used, it still
can be applied more efficiently if grid points are distributed more efficiently in an scenario
of clustered data.

The main objective of this thesis is to test if by subdividing the initial data set into clus-
ters it can improve the accuracy of Sparse Grid Density Estimation. For this purpose, I use
customized grids that only converts the domain where the actual samples are. This tries
to avoid the use of grid points in areas where there is no samples.

In this thesis I implement a pipeline that ’preprocess’ a highly dimensional clustered
data set using already existing Machine Leaning and Data mining algorithms in order to
boost accuracy of Sparse Grid Density Estimation (SGDE). This pipeline consist of two
parts; the first one applies a Random Projection to reduce dimensionality then a Locality
Sensitive Hashing (LSH) algorithms to hash all similar instances to same buckets. Theses
buckets are considered clusters that later I use in two different methodologies, one I call
Clusters Analysis and the other Cluster Extraction. The second part of the pipeline is com-
pounded by Dimensionality reduction and SGDE. The former is done either with Principal
Component Analysis (PCA) or Random Projection then PCA. And the later is the actual
SGDE computation with customized grids.
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1. Introduction

All inputs to SGDE are previously reduced to lower dimensional space to make this com-
putations feasible in a reasonable time. What changes is the input data which can be either
the Whole Data Set when executing the problem with the Conventional Approach or one
cluster projected to a lower dimensional space then input to SGDE (Cluster Analysis) or
one cluster that is taken from the projected whole data set (Cluster extraction), then input
to SGDE. The two cluster methodologies are applied in a parallel computation to all of
them in the data set. In other words, the difference between the two cluster’s method-
ologies is where that cluster is taken from, either form already projected data (Cluster
Extraction) or it is taken from the input space and then projected (Cluster Analysis). In all
the methodologies (except in the Conventional approach) a customized grid with Bound-
ing Boxes is used for SGDE.

The first chapter that you find is the Theory and Background in which I show all the
theoretical basis for Density Estimation, Sparse Grid Density Estimation, Dimensional-
ity Reduction and Locality Sensitive Hashing. I make emphasis on the methods that are
used latter in the pipeline. Second comes the Implementation Chapter that contains all
the details of the pipeline: order of execution, libraries that are used, code snippets and
pseudo-code for the algorithm that were coded. Third, I show all scenarios that are pro-
posed to test the different approaches and the data sets that are used. This is called the
Numerical Experiment chapter. Finally, Result and Conclusion chapter is presented with
the comparisons between all experiments done for each data set. Then I expose all the
conclusions that are drawn from all this process.
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2. Theory

In this chapter an overview of the theoretical background and techniques used for the re-
alization of this thesis are presented. Starting with Density Estimation as a general case.
Showing the main methods to find the Probability Density Function (PDF). Then, I in-
troduce density estimation using Sparse Grids in the second part of the chapter. In the
third section, a brief review of some dimensionality reduction algorithms is given. With
focus on Random Projections (dense and sparse) and the core of this methodologies: The
Johnson-Lindenstrauss Lemma. Finally, the theory behind Locality Sensitive Hashing is
presented. Because the main focus is put on high dimensional spaces and due to an un-
usual behavior of vectors distances in this spaces, a short description of this behavior and
its possible approaches are shown.

2.1. Density Estimation

The aim of Density estimation techniques is to approximate the Probability Density Func-
tion (PDF ) of an input data [36 ]. It can either be parametric, semi-parametric or non-
parametric depending on the initial assumption of the underlying data . The non-parametric
methods make no assumption at all about the underlying data and the parametric al-
gorithms effectively make apriori assumptions about the training set’s distribution. The
semi-parametric algorithms are a hybrid of these two [36 ].

Density Estimation methods are categorized as unsupervised learning because there is
only input data. The objective is to find patterns in the input space without having the
correct values y ∈ Y in the mapping X → Y [5 ].

2.1.1. Parametric Density Estimation

The sample set X := {x1, ..., xn} ⊂ Rd is assumed to be drawn from known model (e.g.
Gaussian). Based on this assumption a finite number of parameters are computed. Once
these parameters are determined, the distribution p(x) is estimated.
This methods can be subdivided according to the dimension of the sample space; When
d = 1 the method of preference is the Maximum Likelihood Estimation (MLE). On the
other hand, when d > 1 a generalized case to multivariate is the methods of choice [5 ].

Maximum Likelihood Estimation
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2. Theory

Lets define a set of parameters θ that parameterize the known distribution p(x, θ)∀x ∈ X
and that all samples x are independent and and identically distributed (iid). An example
of a parameterized distribution is the Gaussian which is parameterized by the mean(µ)
and the variance (σ2). i.e. xi ∼ N (µ, σ2).

The objective is to find θ that makes x as likely as possible to p(x | θ). Therefore, the
likelihood of θ given the samples space X is defined as [5 ]:

l(θ | X) := p(X | θ) =
n∏
i=1

p(xi | θ) (2.1)

Where, n is the total number of samples x in the input space X .

Because, the objective is to find θ that maximizes the likelihood, the logarithmic function
is applied to equation 2.1 . This can be done due to the fact that log(·) monotonically
increases, therefore does not change the maximum value.

L(θ | X) = log(l(θ | X)) =

n∑
i=1

log(p(xi | θ)) (2.2)

Finally, maximizing the log − likelihood equation 2.2 :

θ̂ = argmax
θ

(L(θ | X)) (2.3)

Where, θ̂ is the approximated parameter set of θ. The higher the number of sample
points, the better is the approximation of θ (limn→∞ θ̂ = θ).

Multivariate Density Estimation

This is a generalization of univariate Density Estimation shown above. In this case the
input is multidimensional (d > 1), for that reason the samples are vectors with more than
one attribute. The data set can be represented as a data matrix.

X =


x11 x12 . . . x1d

...
. . .

...

xN1 xNd


The columns vectors of the input space are called attributes or features and they range

from 2 to d. The row vectors are usually referred to as observations or instances. In this
thesis the sample X is going to be multidimensional unless stated otherwise.
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2.1. Density Estimation

The main objective is also to find Θ (capital θ) which is a now a set of vectors. This
parameter is analogous to the 1 dimensional case. Now, lets consider the Gaussian mul-
tivariate distribution which is the most commonly used, the mean vector and covariance
matrix is defined as follows.

µ = [µ1...µd]
T (2.4)

The variance for the 1-dimensional case (one attribute) is σ2 and the covariance for two
attributes xi and xj is as follows.

σi,j ≡ Cov(xi, xj) = E[(xi − µi)(xj − µj)] = E[xixj ]− µiµj (2.5)

Where, E is the expected value of its argument and σi,j = σj,i. Based on these the
covariance matrix is defined as Σ, which is usually a positive definite matrix [5 ].

Σ =



σ2
1 σ12 . . . σ1d

σ21 σ2
2 . . . σ2d

...
. . .

...

σd1 σd2 σ2
d


Finally, the PDF for a sample when is assume to be normal in the multivariate case

(X ∼ Nd(µ,Σ)) is as follows. In this case the argument Θ is omitted.

p(X) =
1

(2π)d/2|Σ|1/2
exp[−1

2
(X − µ)TΣ−1(X − µ)] (2.6)

2.1.2. Semi-parametric Density Estimation

Assuming beforehand the sample distribution reduces the calculation to an small number
of parameters, however it could increase the error due to the bias added by the assumed
distribution. For example, in case of clustered data with more that one cluster (also called
groups or components), the normal distribution assumption is violated [5 ]. In cases like
these, the semi-parametric density estimation comes into play, giving more freedom to
make some underlying assumptions of each cluster in the input data. There is still an as-
sumption of the parametric model but of each individual group.

Let’s define the mixture density of X as the weighted sum of different densities 2.7 .
With k is the number of groups, p(X|Ci) is the cluster density and P (Ci) is the mixture
proportions i.e. weights. If k = 1 then P (Ci) = 1 and it becomes 2.1 .

p(X) =
k∑
i=1

p(X|Ci)P (Ci) (2.7)
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2. Theory

The parameter k is given and the learning process consist of the estimation of the com-
ponent densities and the weights. Here, the parameter set Θ = {P (Ci),µi,Σi}, i = 1...k.

In this section only a brief presentation of the most common algorithms is given. For a
detailed review of this kind of unsupervised learning algorithms refer to Xu et al. [38 ] [37 ],
Richards J.A. [29 ] and Greenlaw et al. [16 ].

Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm (EM ) try to approximate the parameters that
maximize the likelihood of the sample [13 ]. Therefore, applying the log function to equa-
tion 2.7 gives

L(Θ|X) =
∑
j

log

k∑
i=1

p(xj |Ci)P (Cj) (2.8)

Equation 2.8 is solved iteratively and it is a generalization of the popular K-Means Clus-
tering [5 ]. Where, EM is a more probabilistic algorithm. Redner et al [28 ] introduced a
second set of hidden variables, Z, in case the approximation of L(Θ|X) is not possible.
In that scenario, the complete likelihood Lc(Θ|X,Z) is computed. The two-steps iterative
algorithm is as follows:

E − step : L(Θ|Θl) = E[Lc(Θ|X,Z)|X,Θl]

M − step : Θl+1 = argmax
Θ

L(Θ|Θl)
(2.9)

In equation 2.9 , l is the iteration index, E − step is the Expectation step and M − step is
the Maximization step. One important thing of this algorithm is the used of L(expectation
given X) since Z is a hidden variable the Lc cannot be treated directly.

Hierarchical Clustering

This methodology uses a similarity measure between instances of the sample. Consider-
ing that instances in the same cluster are more similar than the instances in other groups,
this is exploited to cluster the data. In this algorithm a distance metrics is used; Usually the
Euclidean distance is the metric of choice, ensuring that all attributes have the same scale
[5 ]. However, there is a important aspect to highlight about the behavior of the distance
metric in high dimensional spaces, where the euclidean distance is not the best choice [3 ].
To perform the actual clustering an agglomeration algorithm is used. This starts with k = N ,
in other words, each instance is a cluster. Then, it starts merging all groups that fall
within a given threshold. The strategies considered to merge the neighboring algorithms
are: Single-link clustering which takes the minimum distance between the two groups (see

8



2.1. Density Estimation

Figure 2.1.: Dendogram Example. Red-dashed line correspond to the given threshold for
agglomeration. It starts with five clusters and is agglomerated to 3 three clus-
ters

Equation 2.10 ) under consideration and evaluates the given threshold. If the similarity is
smaller than the threshold, this groups are merged.

d(Ci, Cj) = min
xi∈Ci,xj∈Cj

d(xi,xj) (2.10)

Complete-link clustering considers the largest distance (see Equation 2.11 ) between all
possible combinations of instances from the two groups under comparison and evaluates
the threshold, analogously to the Single-link clustering.

d(Ci, Cj) = max
xi∈Ci,xj∈Cj

d(xi,xj) (2.11)

There exists other strategies like the Average-link clustering and the Centroids(means).
Once agglomeration algorithm finishes a useful tool to draw the clusters and their dis-
tances between them is the Dendogram. This a tree-like diagram where the leaves represent
the clusters and edges the sequence in the way they are merged. As an example see Figure
2.1 where there were 5 initial clusters and a distance threshold mark with the horizontal
dashed red line. After merging, 3 clusters remain.

The ideas of distance metric for high dimensional spaces and link clustering as agglom-
eration algorithm gain relevance in the implementation chapter.

Spectral Clustering
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2. Theory

The idea behind this algorithm is to not use the original input sample space, but instead
one of reduced dimensionality [34 ]. In a reduced space the difference between the group
are more clear therefore a clustering algorithm is more efficient. For that reason a prepro-
cessing step of dimensionality reduction is performed. Then k-means is used in the new
space. In the preprocessing step is important to preserve the pairwise similarities and to
consider carefully the parameter selection because it could make the result change consid-
erably due to the similarity propagation to neighboring clusters [34 ].

2.1.3. Non-Parametric Density Estimation

Density estimation using non-parametric methods makes no assumptions regarding the
underlying distribution of the input data, except for ”similar inputs gives similar outputs”
assumption [5 ]. Therefore, the algorithm complexity depends on the training data set ex-
clusively. Usually, train data sets has more instances than features (N > d) which results in
the biggest disadvantage of non-parametric algorithms: They involve more computation
than parametric methods. But, sometimes it is not the case and there can be more features
than instances which could lead to overfitting. This is going to be treated in later sections.

The conventional non-parametric methods require O(N) in memory and O(N) of com-
putational cost, compared to O(d) or O(d2) of parametric methods. However, there exists
more advanced algorithms that have different memory and computation requirements.
These techniques often suffer from the curse of dimensionality[7 ][8 ] for data sets with a high
number of features.

Kernel Density Estimator

Kernel Density Estimator (KDE) is the most common non-parametric density estima-
tion algorithm for multivariate data. In this case xi ∈ X(N) comes from an unknown iid
distribution f(x), approximated by the p(x). This method uses an smooth weight func-
tion K(·), kernel function which is smooth and inherits this property to p(x). The most
commonly used kernel is the multivariate Gaussian (see Equation 2.12 ). One of the most
important properties of kernel is that the integral over the whole domain must be equal to
one [5 ].

K(u) = (
1√
2π

)d exp(−‖u‖
2

2
) (2.12)

The estimated density is defined as follows:

p(x) = (
1

Nhd
)

N∑
i=i

K(
x− xi

h
) (2.13)

10



2.2. Sparse Grids for Density Estimation

Where, parameter h in 2.13 is the length of the interval or bin. Here, h is a parameter
to optimize, specially in high dimensional spaces where it can dramatically increase the
computational cost and affects accuracy.

Histogram Estimators

This technique is the most popular one in the non-parametric family. It consist of two
basic steps; The first is to define fixed consecutive intervals of length h, called bins in each
dimension of the samples. Then, as a second step, the algorithm test if the instances in
an specific dimension fall in one of the bins. Therefore, a frequency is defined for each bin
based on the number of samples that falls in it. Contrary to KDE, this algorithm is not
continuous with jumps between two bins. [5 ]

2.2. Sparse Grids for Density Estimation

This algorithms places an Sparse Grid on the domain where the input sample lays and uses
a set of Basis Functions to make a grid point wise approximation of density functions. It
bases its approach on Multigrid methodologies, Sparse matrices, Finite Elements theory
and Adaptive Mesh refinement to accomplish the task [33 ]. This method is mainly used
when dimensionality reduction algorithms cannot be applied, therefore, conventional ma-
chine learning algorithm fail due to the Curse of Dimensionality.
All the formulae and information used in this section is extracted from Bungartz et al [10 ]
and Peherstorfer [25 ]. Here, I also show the basics of Sparse Grids, to see a more detailed
explanation you can refer to those two references mentioned before.

To find the approximated f̂(x) of the unknown function f(x), most of the conventional
algorithms iterate over the whole N -samples in the data set (X = {x1, ...xN}). Evidently,
when the number of samples increase the computational cost of the algorithm also in-
creases. On the other hand, Sparse grids calculate f̂(x) as a linear combination of weights
αi and the basis functions φi(x) (See Equation 2.14 ). This make Sparse Grids independent
of the number of samples.

f̂n(x) =

n∑
i=1

αiφi(x) (2.14)

Where, φi ∈ Φ = {φ1, ..., φn}, fn ∈ Vn-space and n is the grid level. One example of
a linear basis function with compact support is φ(x) = max{1 − |x|, 0}. The αi are the
solution of a linear system of equations that we see in later sections.

11



2. Theory

2.2.1. Sparse Grids

Lets define an Sparse Grid of level n in one dimension with 2n number of intervals, subdi-
vided equidistantly (hn,i = ih) in intervals of h := 2−n length

Ωn := {xn,i|i = 0, ..., 2n}, (2.15)

Therefore the number of grid points depend exponentially on the number of dimen-
sions (O(h−dn )). The subindex n also revels the underlying principle of Sparse Grids that
uses a one dimensional Hierarchical system of basis functions and a the tensor product to
generalize results to the d-dimensional case. Also for the generalization of grid points the
Cartesian product is used.

In the general case to d-dimensions the subindexes i and n become vectors and the basis
function is the product of all 1-d basis functions.

~n = (n1, ..., nd)

~i = (i1, ..., id)

φ~n,~i =
d∏

k=1

φnk,ik(x)

(2.16)

This generalization leads in a sparse grid space V 1
n of level n. Defining I as the set of all

level index pairs and rewriting Equation 2.14 for this new grid space

f̂n(x) =
n∑

n,i∈I
αn,iφn,i(x) (2.17)

In Equation 2.17 n = |I| and all i and n are vectors.

An important characteristic to notice is that Sparse Grids usually use Spatial and dimen-
sional refinement to reduce the number of grid points, hence the computation cost. This
algorithm computes the values of |αn,iφn,i| and select the highest values. Then, takes the
grid points that correspond to those values and refine them by applying a hierarchical
method to those grid points (it basically adds more grid points). The number of grid
points to refine can be control either by a threshold value of |αn,iφn,i| or by selecting the
top z-values of that computation (z is a predefined number of grid points to be refined).
To read about dimensional refinement refer to Buse [11 ]

2.2.2. Density Estimation Using Sparse Grids

Sparse Grid Density Estimation (SGDE) is a technique that approximate the PDF using
sparse grids. To define Density Estimation using sparse grid we start with the equation ob-
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2.3. Dimensionality Reduction

tained when the density is estimated using spline smoothing [18 ], and applying Galerkin
method, we look for f̂n ∈ V 1

n such that [25 ]

∫
Ω
f̂n(x) · φ(x)dx+ λ

∫
Ω
Lf̂n(x) · Lφ(x)dx =

1

N

N∑
i=1

φ(xi) (2.18)

It holds ∀φ ∈ Φ. λ is the regularization parameter, L is the Laplacian and N is the
number of samples.
Replacing Equation 2.17 in 2.18 and taking Ri,j = (φi, φj)L2 , Ci,j = (Lφi, Lφj)L2 and bi =
1
N

∑N
j=1 φi(xj)

(R+ λC)α = b (2.19)

The linear system of equation in 2.19 is solved to findα. In the linear system of equations
all matrices are of size (M ×M) and the vector b is of size M , where M is the number of
grid points. For SGDE matrix C can be either∇ or the Identity matrix.

2.3. Dimensionality Reduction

When using data sets with many features, i.e. high dimensional data, the implementa-
tion of machine learning algorithms becomes challenging due to the computational cost
to evaluate the corresponding function in each data point (e.g. similarity search) [17 ].
Furthermore, high dimensional data can cause troubles in some algorithms when its di-
mensions are correlated and it is difficult to visualize [5 ].

Dimensionality reduction makes reference to two groups of algorithms: Feature Extrac-
tion and Feature selection. The former consist of construction an embedding on a space with
reduced dimensions than the original. This is done by performing a combination of the
original features e.g linear combinations [6 ]. In this classification we find algorithms like
Principal Component Analysis(PCA) and Random Projections (RP ), which we are going
to analyze in latter sections. And Feature Selection consist of finding the most relevant
dimensions, and discarding the remaining features [5 ]. The most relevant algorithm for
this is the Subset Selection which looks for the most relevant important features (the ones
that contribute more to accuracy) [5 ]. This type of dimensionality reduction is not going to
be shown because it plays no role on this document.

Feature Extraction

Dimensionality reduction takes x ∈ Rd to a subspace x ∈ RR where R << d, increasing
the differences between instances and, hopefully, preserving most of the information [6 ].
Dimensionality reduction is a sub-field of unsupervised learning algorithms where many

13



2. Theory

characteristic of the data are compressed either to a subset or to a single label [9 ]. The la-
bel represents the cluster where it belongs to and the subset represents a sub-space of the
original d-dimensional space.

A lower dimensional data set can be used as an stand-alone method for visualization or
as a preprocessing step before applying clustering or any other algorithm that requires low
dimensional data sets. Now lets define a data matrix (data set in matrix representation) as
X ∈ RNxd, where N represents the number of instances and d number of features of every
instance:

X =


x11 x12 . . . x1d

...
. . .

...

xN1 xNd


The element xij of X represents the i− th feature of j − th instance.

Usually, data can be projected to a sub-space RR (a.k.a lower dimensional manifolds),
with minimum loss of information [12 ]. The processes can be done either by multiplying
X by an orthogonal (or ”almost” orthogonal matrix) as it is done in Random Projections
or by decomposing X as PCA or Singular Value Decomposition (SVD) does.

2.3.1. Principal Component Analysis

In PCA the coordinate system is transformed such that the variance between the remain-
ing axis is maximized [5 ]. This is basically a projection of x onto the direction of w, it is
mathematically expressed as follows.

zi = wTi · xj (2.20)

Where, wi is called principal component of i-th feature and it is required that ‖wi‖ = 1.
By applying equation 2.20 , we are amplifying the difference between samples [17 ]. To
maximize the variance of zi we rewrite equation 2.20 as a Lagrange Problem but previously
replacing x by its covariance matrix Σ and multiplying both sides by w1 form the right. We
fixed i = 1 to indicate that it is the analysis for the first principal component. This results
in equation 2.21 . To a more detailed mathematical derivation you can refer to Alpaydin
(2014)[5 ].

max(var(z1)) = max
w1

(wT1 Σw1 − α(wT1 w1 − 1)) (2.21)
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2.3. Dimensionality Reduction

By calculating the derivative with respect to the principal component and setting to zero,
we obtain

wT1 Σw1 = αwT1 w1

wT1 w1 = 1
(2.22)

Therefore, α = λ1 which is an eigenvalue of Σ and w1 its eigenvector. And to maximize
it we take the w with highest λ. By doing this procedure we are actually calculating the
eigenvalues and eigenvectors in each iteration. For max(var(z2)) a similar process is done.
But considering that the calculation of λ2 and w2 is totally independent of the computation
for λ1 and w1.

2.3.2. Random Projections

Algorithms of random projection are also useful for dimensionality reduction, in these
cases, matrix X is multiplied by another orthogonal or almost-orthogonal random matrix
A ∈ Rd×R. By doing the dot product of a row vector of X and a column vector of A (~xi ·~a),
the input space for i-th instance is reduce from d toR, where (R << d). This operation pre-
serves all pairwise distances with an small arbitrary distortion ε [1 ]. One important fact of
A is that its elements are totally independent of X , this is a big difference with respect to
PCA where X is factorized.

XRP = X ·A (2.23)

Equation 2.23 is basically projecting each row vector of X to a subspace, it leads to a
computational cost of O(dRN). In this case the more orthogonal are the column vectors
of A with respect to ~xi, the more it preserves the pairwise distances. If A is completely
orthogonal, ε is equal to zero, therefore, no loss of information. However, it is more ex-
pensive to find such a matrix rather than chose the elements of ~aj randomly. This works
because in high dimensional spaces you can find almost any orthogonal direction. Hence,
despite the randomness nature of A, the probability that it is almost-orthogonal to X in-
creases [9 ].

There are two important aspects to control in these cases: the distribution from which
the elements of ~a are drawn and the dimension of the embedded space R. The former
derives in the different types of Random Projections e.g. Sparse, Gaussian etc. And the
latter can also be exchange for ε. In case R is given, ε becomes an observed parameters of
the added distortion, the contrary happens when ε is the input parameter.

Johnson–Lindenstrauss Lemma
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The Johnson and Lindenstrauss (JL) lemma [20 ] is a fundamental result that allows the
construction of a proper matrix A with optimal R dimensions (See Equation 2.24 ). It
shows how a random transformations preserves the inner product of the vector plus O(ε).
Equation 2.24 is fulfilled with probability of at least 1− δ, where δ is the probability from
where the values of A were drawn, in Johnson-Lindenstrauss Lemma it is a Gaussian dis-
tribution. The JL lemmas is as follows:

For any 0 < ε < 1/2 and any integer N > 4, let R =
20 log(N)

ε2
. Then for any set X of N

points in Rd ∃ f : Rd → RR, ∀xi, xk ∈ X

(1− ε)‖xi − xk‖2 ≤ ‖f(xi)− f(xk)‖2 ≤ (1 + ε)‖xi − xk‖2 with i 6= k (2.24)

Equation 2.24 can be rewritten by taking the upper bound and reinterpreting f(x) as a
matrix vector multiplication.

‖A(xi − xk)‖2 = (1 + ε)‖xi − xk‖2, i 6= k (2.25)

It can also be seen as a dot product

|〈Axi, Axk〉 − 〈xi, xk〉| ≤ ε‖xi‖‖xk‖ (2.26)

In a similar way the Euclidean distance between the two vectors is scaled by a factor of
the previous dimension and the new dimension√

d/R‖(Axi −Axk)‖2 (2.27)

Equations 2.25 and 2.27 are equivalent:

〈Axi, Axk〉 = (‖A(xi + xk)‖22 − ‖Axi‖22 − ‖Axk‖22)/2

= (1± ε)‖xi + xk‖22 − (1± ε)‖xi‖22 − (1± ε)‖xk‖22
= 〈xi, xk〉 ±O(ε)

(2.28)

In this case, the columns of matrixA, are drawn from a Gaussian distribution. Therefore,
strictly speaking these matrices are not orthogonal and highly dense. However, consider-
ing that in a high dimensional space exists much larger number of almost orthogonal than
non orthogonal directions. Thus A is close to orthogonality [9 ].
To calculate all pairwise distances for the input space we would need we need to compute
XXT which has a cost of O(N2d) [22 ]. This value is relevant when we compare to other
types of Random Projections.

Different Types of Random Projections

What tells apart one type of Random Projection from another are the distribution from
where the elements of the column vectors ofA are drawn, the number of non-zero elements
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2.4. Locality Sensitive Hashing

and how the position of this elements inside ~a is chosen. The most common Random
Projections are

1. Dense Random Projections produces the entries of A as iid drawn from N (0, σ2).
The variance can change, however it is recommended to chose (a)i,j in such a way
that it follows a symmetric distribution [22 ]. This type of Random Projection reduces
the computation of pairwise distances to O(NdR+N2R).

2. Sparse Random Projections were introduced by Achlioptas [1 ] in 2003. The column
vectors of random matrix consist of iid entries drawn as follows

(a)i,j =
√
s


1 with probability 1/(2s).
0 with probability 1 - 1/s.
−1 with probability 1/(2s).

(2.29)

With, s = 1 or s = 3. When the latter is used a threefold speedup is obtained [22 ].

3. Very Sparse Random Projections applies equation 2.29 with s =
√
d or s =

d

log d
which are significantly higher values. This adds more speedup to the algorithm with
minimum loss of accuracy [22 ].

2.4. Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a compilation of techniques that look for the Approx-
imate Nearest Neighbor search or more specifically, the (R, c)-near neighbors of a given ob-
ject(query). It was introduced by Indyk et al [19 ] in an attempt to remove the Curse of
Dimensionality. It is based on a family of hash functionH whose main objective is to hash
similar instances into same codes with a higher probability than dissimilar items [35 ]. The
widely used metrics to measure quality of results are Precision and Recall. Also other met-
rics like execution time and storage requirements are used for data base search. Its main
disadvantages are the total probabilistic nature of the algorithm and its independence of
input data. The later makes the algorithm to totally neglect the distribution of data [21 ]. In
practice this algorithm is used for data base search, duplicate detection, clustering, image
detection etc.

LSH is part of Approximate Nearest neighbor search, it requires a distance metric to
calculate similarity between candidate pairs. For this reason manyH-families for different
metrics have been develop, it all depends on the space where the data is. The formal defi-
nition of a family is a follows [35 ]
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For two instances q and p a family of H is called (R, cR, P1, P2)-sensitive if any of the
two instances:

if dist(p, q) ≤ R, then Prob[h(p) = h(q)] ≥ P1,

if dist(p, q) ≥ cR, then Prob[h(p) = h(q)] ≤ P2
(2.30)

Where, c > 1 and P1 > P2. One parameter to measure performance of an H-family is ρ,
it is defined as

ρ =
log(1/P1)

log(1/P2)
(2.31)

The smaller ρ is the better performance the family shows. The theorem also states that
for a given LSH family there exist (R, c)- nearest neighbor search problem which uses
O(dN + N1+ρ) space, with O(Nρ) distance computations and O(Nρ log1/P2

(N)) evalua-
tions of hash functions [35 ].

LSH uses tables compounded of Buckets. These bucket are hash codes where xi are
hashed, in other words, each bucket is an h(xi) result. In this case, LSH tries to maximize
collisions between similar instances, considering all instances in same bucket as candidate
pairs. At the beginning of the algorithm there are as many buckets as instances, however,
not all of them are output, only the non-empty buckets are considered.

Taking into account that P1 > P2 it is necessary to close the gap between those two prob-
abilities by concatenating many hash functions i.e. J(xi) = {h1(xi), h2(xi)..., hg(xi)}. All
g-number of functions are drawn uniformly at random fromH.

There exist different LSH-families that are chosen depending on the distance metrics
that it uses. In this case we focus on lp distances. Therefore, only this family of LSH func-
tion is presented in the next section. To a more detail description of other LSH families you
can refer to Wang et al [35 ] who made an extensive review of LSH algorithm.

2.4.1. lp-LSH Family

This family of hash functions are used when an lp metric is chosen. In this case we are
finding the similarity with ‖xi − xj‖p with p taking real values between 0 (exclusive) and
2 (inclusive). The most known lp distances are the Manhattan distances (p = 1) and the
Euclidean distance (p=2). For the former ρ = 1

c + O(Rr ), where r is the radius or distance
threshold and c = ‖xi − xj‖1. For the later, ρ < 1

c for an r carefully chosen [35 ].

The hash function for this type of LSH-family is shown in equation 2.32 . Where, b ∈ [0, r]
and ~w is the projection plane drawn from a Gaussian distribution. In some applications
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2.4. Locality Sensitive Hashing

b = 0 to save storage.

h~w,b =
wTx+ b

r
(2.32)

2.4.2. Distance Metrics in High Dimensional Spaces

This section is based entirely on the research done by Aggarwal et al [2 ], where he exposed
some interesting properties of lp-distances when they are used in high dimensional spaces.
It has been found that on spaces with high dimensions for a given query (q) the distance
between the nearest neighbor to the farthest is almost the same. This make the similarity
algorithms to look almost every instance in the data set. It also makes the selection of a
distance metric more challenging than in lower dimensional spaces.

Aggarwal et. al. shows how p = 1 gives better results than p ≥ 2. They define Fraction
distance metrics for p ∈ (0, 1) (see Equation 2.33 ) as the best way to find distance in a high
dimensional spaces. However, using Equation 2.33 represents adding more computational
cost to distance calculation. Therefore, a trade-off needs to be found between cost and ac-
curacy.

distpd =
d∑
i=1

[(xi − yi)p]1/p (2.33)

Where, xi and yi are the values of instance x and y in the i-th dimension. And d is the
number of dimensions.
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Part II.

Implementation and Numerical
Experiments
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3. Pipeline

In his section all details related to the pipeline implementation are presented. The whole
pipeline consist of 4 main stages: LSH with Random Projections, dimensionality reduction
of clusters and Sparse Grid density Estimation. See flowchart in figure 3.1 ; For the sake
of simplicity of the flowchart some intermediate calculations, as well as, quality metric
computation for each step are omitted. These metrics are shown in the subsection corre-
sponding to that phase.

The main goal of this pipeline is to implement a Locality Sensitive Hashing (LSH) with
Random Projections (RP ), together with an agglomeration algorithm. Then, apply dimen-
sionality reduction to see how the performance of Sparse Grid Density Estimation(SGDE)
is improved. The improvement is measure in terms of Grid Points Density(GPD), Elapse
time(t) and Log-likelihood (L) of test data. These three are used to compare the results of
our approach with the conventional application of SGDE (density estimation of the whole
data set at once).

The preprocessing step is the conventional instance-wise normalization of data done
before before applying any machine learning algorithm. All other phases and their pseu-
docode are shown in their corresponding section.

The main objective of this thesis is to test the application of SGDE to clusters1
 individ-

ually. These clusters are selected using Random Projections and LSH and then dimen-
sionally reduced. For that reason the left branch of if condition (condition evaluated to
True) in figure 3.1 is the one explained in detail. Furthermore, there are plenty of lit-
erature where the conventional approach ( False branch) is analyzed or implemented:
Bungartz et al [10 ], Peherstorfer [25 ], Peherstorfer et al [26 ], Garcke et al [14 ], [15 ]. How-
ever, both approaches are executed in this thesis for comparison purposes (See Numerical
Experiments chapter).

3.1. Random Projection

This step is applied to the whole preprocessed set (X̂) where a predefined set of parame-
ters like reduced dimension (R), epsilon (ε), seed and type of Random Projection (type p)
are input to the algorithm. Out of the four parameters, seed and type p are found using

1clusters are also referred in this chapter as groups
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3. Pipeline

Figure 3.1.: Pipeline flowchart: on the false branch we see the conventional application of
SGDE i.e. Density Estimation applied to the whole data set. The True branch
is the approach implemented in this project. Where, the Random projection
and group sorting belong to LSH process. Data splitting stage makes reference
to the division of input set into train and test sets. Dimensionality reduction
is applied to each clusters ci independently. Finally, SGDE is applied to each
cluster. One important remark is the ?, it means that the actual computational
task is the same, what changes is the input data and some grid modifications
that we show in later sections.
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3.1. Random Projection

an iterative approach, the remaining two parameters are given by the user. Go to Dimen-
sionality Reduction in Theory chapter for formal the definition of each of those parameters.

For the actual projection the library random projection by scikit learn [31 ] is used.
There are two functions in this library that were used: GaussianRandomProjection
and SparseRandomProjection, in our case, these are referenced as type p.

Each column vector of a Random Projection can be interpreted as a Hash function (h(·))
[24 ] and it is used in the Random hyperplanes technique [21 ]. The entries of h(·) using
scikit-learn library are drawn either from 3.1 for a Gaussian Random Projection or
from 3.2 when it is an Sparse Random Projection.

The pseudocode for this step is shown in 1 . The function johnsonLindenstrauss(N,ε)
uses the Johnson-Lindenstrauss Lemma [20 ] to recommend a minimum dimension
for the manifold embedding considering N instances and the acceptable distortion (ε) of
the pair-wise distances when projected.

{hi}Ni=1 = N (0,
1

R
) (3.1)

{hi}Ni=1 =


+
√

s
R with probability 1/(2s).

0 with probability 1 - 1/s.
−
√

s
R with probability 1/(2s).

(3.2)

With, s =
√
d is the number of non-zero entries in h(·) as recommended by Ping [22 ].

Algorithm 1 Random Projection

1: This function takes X̂ ∈ RN×d → X̂RP ∈ RN×R
2: procedure PERFORMRANDOMPROJECTION(X̂, ε, R, type p, use R = True)
3: min dim = johnsonLindenstrauss(N, ε) → N is the number of instances
4: if use R == True then → Use the recommended minimum dim or the input one
5: R = min dim
6: end if
7: if type p == ’Sparse’ then
8: X̂RP = SparseRandomProjection(R, random state = seed)
9: else

10: X̂RP = GaussianRandomProjection(R, random state = seed)
11: end if
12: end procedure
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3.1.1. Finding the Best Possible Projection

Due to the random nature of the elements contained in the projecting matrix a Random
Projection can be highly unstable and could give very different results [6 ]. Therefore, it
is necessary to find the best possible projection based on the seed and type p. Con-
sequently, for every data set one iterative algorithm that varies seed and type p was
implemented using 1 . It does not ensures a global optimal projection but only a local one
in the range of the given seeds.

In figure 3.2 we see an schematic example of two slightly different projections that lead
to different results when applied to same data. An important remark is the behavior of
the cluster radius h (see Figure 3.2 ) when projected: The better the projection, the smaller
h tends to be. It is a good property that helps the proceeding steps. However, it is not al-
ways the case, a good projection could lead to higher values of h compare to a non-optimal
projection. An indirect way to evaluate the aforementioned behavior of h is computing Re-
call and Precision after LSH application (see Section 3.2.3 ).

The metrics to evaluate the quality of a random projection are measured after clustering,
these are: recall per cluster, total recall, precision per cluster , execution time and amount of used
memory of the final clusters. All of these metrics are going to be introduced in following
sections.

3.2. Group Sorting

Once X̂RP is obtained, next step is to cluster all similar instances into groups2
 . To per-

form this clustering it is necessary to learn different parameters like distance threshold
(D), number of bands(B) and Number of rows per band(M). The distance threshold is used
to ensure that all instances in one group are close enough to each other. The parameters B
and M are used to hash the instances to their corresponding buckets, hence affecting LSH
accuracy.

In the following subsections we show how the sketch 3
 are build from the projected ma-

trix, and how D, B and M are learned. Then, the LSH implementation with a second
distance filter that uses the idea of single-link clustering is presented. Third, Quality metrics
are introduced to quantify the output of the algorithm. And finally, the pseudocode for
the whole group sorting part is exposed.

2clustering and group sorting make reference to same procedure
3An sketch is a discrete representation of the projected matrix that contains +1 and -1. It has the same

dimensions as X̂RP
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(a) Random Projection 1 with false positives in c̃2
(red dots in projection hyperplane).

(b) Random Projection 2 with no false positives
nor false negatives

Figure 3.2.: Shows the effect of randomness by comparing two Random projections for
clusters c̃1, c̃2 and c̃3. With distance D fixed for all clusters and h1 > h2. Dash
lines indicate the projection of outlier samples that belongs to same cluster.
Red dash line as well as red dots indicate a projection that causes false positives
in c̃2 and false negatives in c̃1, hence, decreasing Recall and Precision of two
neighboring clusters. On the other hand, green dots and blue dash lines de-
note a good preservation of cluster structure when projected. hi represents the
distance of the farthest points in same cluster in the projection plane.
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3.2.1. Distance Metrics, Sketch Construction and Parameter Learning

Distance Metrics
Before starting sketch construction is necessary to define three distance metrics that are

used in different parts of the implementation.

1. Jaccard Similarity(s), also called Jaccard Coefficient is a similarity measure between
two sets, A and B defines in equation 3.3 . The closer s is to one, the more similar A
and B are. Hence, the distance between those two sets is computed as 1− sim(A,B)
[21 ].

s = sim(A,B) =
|A ∩ B|
|A ∪ B|

(3.3)

2. Cosine distances are used in Eucledian Spaces where each point is seen as a vector.
This parameter measures the angle between ~a and~b. Therefore, the closer φ is to zero
the more similar two instances are [21 ].

cosd(~a,~b) = 1− φ

180°

φ = cos−1(
a · b

‖a‖2‖b‖2
)

(3.4)

3. Out of all lp-norms the most common ones are the Manhattan distance (p = 1) and
the Euclidean distance (p = 2). In this document, when using an lp-norm, we use
the Manhattan distance. When p = 1 a good behavior in high dimensional spaces is
obtained in contrast to norms with p > 1 [3 ]. It also represents a lower computational
cost compared to fractional distances (0 < p < 1) .

‖~a−~b‖p = (
d∑
i=1

‖ai − bi‖p)(1/p) (3.5)

Notice the summation in equation 3.5 goes from i = 1 to d. It means that we use
lp-norms only in the input space. On the other hand equations 3.4 and 3.3 are going
to be used only in the projected space, i.e. only applied in sketch or columns vectors
of X̂RP .

Sketch Construction
Having X̂RP with entries (x̂)i,j ∈ R the construction of the sketch (Ŝ) is done by replacing

them with discrete values from {−1,+1} [21 ], as follows

(Ŝ)i,j =

{
+1 when (x̂)i,j ≥ 0.

−1 when (x̂)i,j < 0.
(3.6)

28
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Figure 3.3.: Sketch banding process is the division in B-bands that are composed by one
or more M -row vectors of the sketch. In this example M = 3, features are row
vectors and instances are column vectors.

Parameter Learning and Sketch Banding

For this procedure we follow the step shown in Leskovec [21 ]; With sketch’s dimensions
N × R, the number of rows per band times the number of bands must be equal to the
dimension of the final embedding, i.e. R = M ×B.

First, let’s remember the structure of the sketch, where the column vectors are projected
instances to R-space. In other words, each entry of that matrix is the result of a hash
function applied using a Random projection to input instances i.e. h(x), followed by an
element-wise application of 3.6 . See figure 3.3 that illustrate the banding process.

To learn parameter M and B we use the result from the analysis made by Leskovec et.
al. [21 ] in pages 107 and 108. We take the equation 1− (1− sM )B that gives the probability
that two instances hash to same bucket in at least one band. Where, s is the minimum
acceptable similarity between two instances. In an example given by same authors, if we
choose M = 5, B = 20 and similarity s = 0.8, yields that only one in 3000 pairs are false
negatives.

To learn D we did a qualitative analysis to select what is the best threshold between
distances of samples in same cluster and distances in different clusters.

29



3. Pipeline

3.2.2. LSH Algorithm: Putting All Pieces Together

Starting from the Random Projection (or Random hyperplanes in this case) all through the
banding of sketches, we were using an LSH algorithm. In this subsection, we are showing
the remaining part of the clustering with LSH and finally an schematic of the process and
the pseudocode.
An important difference from the conventional LSH to the one used here is the lack of a
query object (~q). We do not probe for similar object to ~q, but for all similar objects that hash
to same bucket. An extensive review of LSH algorithms and its variants is given by Wang
et al. [35 ]. The following procedure is taken form Leskovec et at. [21 ] in section 3.4.2 of his
book, except step 4 and a slight modification in step 1.

Procedure

For a better understanding of the procedure see algorithm 2 and the schematic example
for the first band computation and M = 3 in figure 3.4 .

1. Using the banded sketch, we start hashing the entries for each instance in one band:
computing the dot product with a vector containing the powers of two. The result
of dot product is an integer that identifies an specific bucket. See equation 3.7 . This
computation is performed for all instances.

Bucket =
M∑
i=1

Ŝi · yi

Ŝ = (Ŝ)i for i = b ·M + 1, b ·M + 2, ..., (b+ 1) ·M
y = (2i) for i = 0, 1, ...,M

(3.7)

Where, b denotes band index and goes from b = 0, ..., B− 1 and (Ŝ)i is the i-th vector
of sketch matrix. Notice that Ŝ is different to s which is the Jaccard similarity 3.3 .

2. After all instances in one band are hashed we compare Buckets. If two instances
hash to same bucket a first distance filter is applied using equation 3.5 with same
instances in input space. If distance is smaller than a threshold then effectively put
those two samples in same bucket, otherwise, discard that computation. Further-
more, after a band is entirely probed all empty buckets are discarded.

3. Steps (1) and (2) are perform for all bands. If two instances hash to same bucket in
at least one band they are considered part of the same cluster. If this happens those
two instances are not computed again for the remaining bands.
After all bands have been processed, all remaining buckets are considered clusters
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Figure 3.4.: LSH schematics for one band andM = 3. Let’s consider the first column vector
of band one (b = 1): xT = [1,−1, 1] as an example. Then, we apply the dot
product with the powers of two (1∗20 + (−1)∗21 + 1∗22 = 3). We perform the
same computation for all column vectors in b = 1. Finally, we take instances
that hashed to bucket number 3. This corresponds to step (1) in the procedure
above.
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(a) iteration i − 1. c̃3 and c̃2 are are effectively
agglomerated. Then, clusters are renumbered
for iteration i.

(b) iteration i. Test condition is violated this time.
Therefore, no change in c̃1 and c̃2. For this it-
eration new random samples are selected.

Figure 3.5.: 2-Dimensional representation of two iterations for Agglomeration algorithm
(second filter). Where ‖ · ‖p tests if z̃ falls inside an hypersphere centered at x̃
of radius D. Red dots are the two random samples from each clusters under
comparison.

or groups denoted as c̃i ∈ C̃ for i = 1, ..., k̃. Where, k̃ is the number of found clusters
after step (3).
The number of available buckets before starting at step (1) has to be (2M ) for each
band and ((2M )×B) for the whole algorithm.

4. Finally, a second distance filter between groups c̃i is performed using once more
equation 3.5 , in this case single-link clustering is the method of choice as agglomer-
ation algorithm(see equation 2.10 from Hierarchical clustering). To agglomerate the
clusters two random vectors x̃ ∈ c̃i and z̃ ∈ c̃j where i 6= j are selected and tested
for ‖x̃− z̃‖p ≤ D. If the condition is fulfilled the two clusters are agglomerated. See
schematic example in figure 3.5 .

One important remark is the possibility of ”propagation” of the agglomeration [5 ],
wrongfully leaving only one cluster after the computation is finished. Therefore,
distance threshold D needs to be carefully chosen .

Strictly speaking, this step is not part of LSH algorithm but of nearest neighbors
search (K −NN ). We added this small modification that improves LSH results with
an extra computational cost of only O(k̃) comparisons.
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Algorithm 2 Complete LSH implementation

This function hashes instances from X̂RP ∈ RN×R into clusters/groups.
2: procedure PERFORMLSH(X̂, X̂RP , B,M,D)

(Ŝ)i,j = {+1,−1} → Sketch computation (Same size as X̂RP ).
4: C̃[0 : (2M )×B] = {∅} → Array of sets. Total number of buckets a.k.a clusters

y[0 : M ] = (2i)i, for i = 0, ...,M
6: for (b=0:B-1) do

Bucket′s = Ŝ[b×M : (b+ 1)×M ] · y[0 : M ] → Hash instances to buckets
8: for (i=0:length(Bucket′s)) do

if (Exists Bucket[j] == Bucket[i], i 6= j) OR (i ∈ C̃) then
10: Break → Do not compute already hashed instances

else
12: if ‖X̂[i]− X̂[j]‖p < D then) → Instances i and j in same Bucket

C̃[i] = {i, j} → i and j are considered to be in same cluster
14: end if

end if
16: end for

end for
18: delete C̃[k̃] ∀ k̃ such that C̃[k̃] = {∅} → Delete empty clusters/buckets

k← length(C̃)
20: for (i=k-1:0) do → Second distance filter between found clusters is applied

for (j=i-1:0) do
22: x̃← X̂[v] ; v randomly selected from C̃[i] indexes

z̃ ← X̂[w] ; w randomly selected from C̃[j] indexes
24: if ‖x̃− z̃‖p < D then

C̃[j] = C̃[i] ∪ C̃[j]
26: delete C̃[i]

Break
28: end if

end for
30: end for

return C̃
32: end procedure
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3.2.3. Validation Metrics for LSH

Up to now we do not have any indicator of the pipeline performance regarding correctness
of the found groups. In this section we introduce four different metrics that let us quantify
that performance: Recall, Precision, Average Recall and Number of missed instances.

Let’s remember that the final output of algorithm 2 is a list of sets(ci), in which each
ci contains indexes that presumably belongs to one specific cluster. With this list and the
ground truth (Ii), we can calculate the fraction of relevant indexes that were correctly se-
lected per cluster i.e Recall.

Recalli =
|{ci} ∩ {Ii}|
|{Ii}|

(3.8)

And the fraction of selected indexes that are actually relevant per cluster i.e. Precision.

Precisioni =
|{ci} ∩ {Ii}|
|{ci}|

(3.9)

In case there is no ground truth to calculate this fraction one can use the output of any
exact k-NN algorithm [24 ].

There are some cases in which 3.9 and 3.8 show an acceptable result but the algorithm
find more groups than actually exist. Therefore, we use the average Recall to punish the
algorithm performance by dividing the sum of Recalls by k (number of found groups) and
setting Recall of false clusters to zero (see Equation 3.10 ).

avg recall =
1

k

k∑
i=1

Recalli (3.10)

Finally, there can also be cases in which instances are not hashed to any group (this is
an undesired consequence of the first distance filter). Therefore, we report this metric as
a integer denoted as m. To continue with the pipeline we put the m instances into the
more similar cluster by calculating lp-norm for each of them (same idea as second distance
filter).

3.3. Dimensionality Reduction of Clusters

Sparse Grid Density Estimation show better performance than other algorithms when it
is applied to highly-dimensional data sets. However, It does not tackle entirely the Curse
of Dimensionality. Therefore, in our implementation is necessary to perform some previ-
ous steps to make feasible SGDE computations. In this section, we show how each group,
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found in LSH implementation, are reduced to an space of significantly lower dimension.

The Random projection shown in section 3.1 and LSH in general was done in order to
find the clusters i.e. put instances in groups that are closer to each other compared to in-
stances in other groups. However, these clusters are still in the input space which is of
high dimension. We have to perform an extra step of feature extraction to reduce dimen-
sionality.

The projection of clusters to a lower-dimensional space is done individually using either
PCA only or an hybrid approach of Random Projection plus PCA. In the former, PCA takes
iteratively the clusters ci for i = 0...k from the input dimension d to the reduced dimen-
sion q. In the latter, we take the clusters iteratively and reduced them to the minimum
recommended dimension according to Johnson-Lindenstrauss Lemma using an Sparse Ran-
dom Projection, then PCA to the final dimension q.

The used library for the Random Projection part is sklearn.random projection and
the functions SparseRandomProjection and johnson lindenstrauss min dim . And
The PCA funtion from sklearn.decomposition library. Both libraries by scikit learn [31 ].
The source code for this procedure is shown in the code snippet 3.1 .

3.4. SG++ Library

In this section, first we give a brief review of what SG++ is, focusing on the most relevant
classes and methods for our implementation. Second, the general settings needed by the
library are introduced. Third, we focus on how grid is customized in our implementa-
tion using the already available methods in SG++. Finally, evaluation metrics are defined.
Some code snippets for the most relevant parts are shown through the whole section.

SG++ is a C++ open-source library that is being expanded and maintained at the Tech-
nical University of Munich and the University of Stuttgart. It was develop by Dirk Pflüger
in 2010 [33 ] [27 ] . This library contains different modules for function interpolation, Data
mining and Machine learning, Partial Differential Equations, Uncertainty Quantification,
Function optimization etc. We mostly use the base features for grid creation and cus-
tomization, data structures, uncertainty quantification tools and the conjugate gradient
solver.

The most relevant modules for us are:

1. sgpp::base namespace includes sgpp::base::Grid class that creates the grid ac-
cording to user input. It has 33 different types of grids that can be created e.g. Linear
grid, Linear Clenshaw Curtis grid, Square Root grid etc. From all theses the one we
use is the linear grid without boundary points (see section 3.4.2 for more details).
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1 from sklearn.random_projection import johnson_lindenstrauss_min_dim
2 from sklearn.random_projection import SparseRandomProjection
3 from sklearn.decomposition import PCA
4 import numpy as np
5

6 def perform_PCA(cluster, q, seed_PCA):
7 #pca is an object of type decomposition.PCA
8 pca = PCA(n_components=q,random_state=seed_PCA )
9 #Here the actual dim reduction is perform:

10 # From cluster.shape[1] to q
11 projected_data=pca.fit_transform(cluster)
12 return projected_data
13

14 def perform_RP(cluster, seed_RP):
15 #"min_d" denotes the minimum recommended dimension
16 #using Johnson-Lindenstrauss Lemma
17 min_d = johnson_lindenstrauss_min_dim(cluster.shape[0],eps=0.1)
18 #RP is an object of type RandomProjection
19 RP=SparseRandomProjection(n_components=min,random_state=seed_RP)
20 #Here the actual projection is perform
21 projected_data = RP.fit_transform(cluster)
22 return projected_data
23

24 for i in range(k):
25 #cluster_idxs is the set of indexes for one cluster.
26 #Data is the whole input data set.
27 cluster_idxs=C[i]
28 cluster_samples=data[np.array(list(cluster_idxs)).astype(int),:]
29

30 if args.mode=='hybrid':
31 #random projection to minimum recommended dim by JL lemma
32 cluster_RP=perform_RP(cluster_samples,seed=seed_RP)
33

34 #Dim. Reduction from minimum recommended dim by JL lemma to q
35 cluster_PCA=perform_PCA(cluster_RP,q,seed_PCA)
36 else:
37 #Dim. Reduction from d to q
38 cluster_PCA=perform_PCA(cluster_samples,q,seed_PCA)

Source Code 3.1.: This script takes ci from d-dimension→ q-dimension, where q << d. C
is a list of sets, where, each set is a cluster that contains the instance’s
indexes that belong to that cluster. For simplicity, all code related to util
functions (save logs, plotting etc) is omitted.
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It also provides data structures like Data Vector, Data Matrix, Basis functions(e.g.
piecewise linear/polynomial, B-splines) and operations e.g. adaptive refinement
and multiple point evaluations.

2. sgpp::datadriven module provides functionalities for machine learning and data
mining. The most relevant for us is the Uncertainty Quantification (uq). This includes
a density estimation interface implemented in the classes sgpp::datadriven::KDE
and sgpp::datadriven::SparseGridDensityEstimator just to mention some.
The latter is actually the class we used for density estimation.

3. sgpp::solver module that implements different methods to solve linear systems of
equations, PDE’s, etc. This module is important for us due to the use of Conju-
gate gradient (CG) method that solves the system of equation necessary to estimate
density. Solving the linear system represents the highest computational cost for the
whole pipeline.

3.4.1. General Settings

We use the Python interface provided by SG++ in its Github repository [32 ] named pysgpp.
Out of the different methods to perform density estimation we selected the instanciation
of an SGDE distribution using config files (SGDEdist.byLearnerSGDEConfig) which
takes as arguments:

1. samples: data set that contains instances row-wise

2. grid: it is an optional argument of type sgpp::base::Grid. It is used to estimate
density based on a predefined grid instead of the one built internally based on the
config argument. This is one of the main functionalities we are going to exploit in
our implementation.

3. bounds: optional argument used in case the user wants to modify the bounds of the
hypercube where the grid points are located.

4. unitIntegrand: optional argument used to force the results to have a unit integrant,
which is not granted when using identity matrix as regularization type instead of
laplace.

5. config: dictionary that should contain all the information regarding: grid (type, level
and degree of basis functions), refinement configuration, solver settings (e.g. thresh-
old for residual when using CG method), Cross validation settings etc.

In this method we made an small modification to use a customized grid and still use a
config file for all remaining arguments. This modification consist of an If statement that
checks the use of a grid with bounding boxes. In code snippet 3.2 you can see this modi-
fication. The rest of the code in this method stays the same as the one provided by SG++.
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Also in the following section we show what are the modification done to the grid.

The main drawback for us regarding the conventional implementation (source code 3.2 )
is that initialize(unit samples vec) overwrites our grid that was previously cus-
tomize with bounding boxes. Therefore, we create a data vector that contains all the
weights computed by CG method and then we immediately start training. That solves
the situation.

3.4.2. Grid Configuration

Considering that SG++ evaluates a function at every grid point(GP ). Hence, the higher
GP is, the more expensive the computation becomes. It represent a real constrain in terms
of accuracy when more grid points are needed (adding more grid points usually leads to
a better estimation).

We observed that in certain cases (e.g. when the data is clustered) some grid points are
located in places where there is no actual data, it causes a waste of GP ’s. Therefore, by
creating different localized grids for each cluster the number of unproductive GP’s can be
reduced. This opens the possibility to increase accuracy of SGDE with same number of
grid points compared to conventional approach. Furthermore, in case there is no need for
more accuracy, this methodology can help reducing the number of GP ’s (hence, computa-
tional cost). This also allows us to compute SGDE for each cluster in parallel.

For grid construction we used sgpp::base::Grid class to create a regular sparse lin-
ear grid with no boundary points. Then, we use the sgpp::base::BoundingBox class
and the struct BoundingBox1D provided by SG++ to set the boundaries of each grid. We
set boundaries for each bounding box as the minimum and maximum value of all sam-
ples in each cluster in every dimension. See code snippet 3.3 for grid customization. And
in Figure 3.6 we show and example of Old faithful data set using the conventional ap-
proach(a) and using bounding boxes (b).

3.4.3. Validation Metrics for SGDE

To test the performance and accuracy after SGDE computation is finished we introduce
Evaluation metrics for Density Estimation. This metrics aim to quantify any improvement
or degradation of SGDE results using our methodology in comparison with conventional
approach.

1. Grid Point Density(GPD): Our implementation creates Grids contained in a volume
smaller than the unit hypercube.Therefore, it concentrates more grid points where
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1 learnerSGDEConfig =
2 SparseGridDensityEstimatorConfiguration(filename_config)
3

4 learner = SparseGridDensityEstimator(learnerSGDEConfig)
5

6 #-----Added IF branch---------
7 #unit_samples_vec: data set
8 #lambda_reg: regularization parameter
9 #(see Theory chapter in SGDE section)

10 if bbox:
11 # Creates a data vector of same number of elements as GP's.
12 alpha=DataVector(np.ones(grid.getSize()) / 3.)
13

14 # Start training using customized grid and alpha
15 #learner.train() start CG method. It finishes when converged
16 learner.train(grid,alpha,unit_samples_vec,lambda_reg)
17

18 # Makes a copy the weights computed in the training step
19 alpha_after = np.array(alpha.array())
20

21 else:
22 # This is the conventional implementation for this method
23 learner.initialize(unit_samples_vec)
24 grid = learner.getGrid().clone()

Source Code 3.2.: Lines (2), (4) and the else branch is the conventional method provided
by SG++:in(2) it creates the learner config file then it instantiate a learner
of type SGDE(line 4). In line 19 the method initialize() set all parame-
ters, create the grid and start the training. The True branch was added
by us to avoid the creation of the grid internally but to use a previously
customized one. That is why we do not call initialize() method but im-
mediately the train() step.
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1 import numpy as np
2 from pysgpp import Grid, BoundingBox,BoundingBox1D
3

4 def get_grid(dim,level,samples):
5 # Creates a regular linear sparse grid in the unit domain
6 # dim-dimensional sparse grid
7 grid = Grid.createLinearGrid(dim)
8 grid_gen=grid.getGenerator()
9 grid_gen.regular(level)

10

11 # looks for the minimum and maximum value of samples
12 # in each dimension.
13 # samples: Numpy array of samples from one cluster
14 bb=[]
15 for i in range(samples.shape[1]):
16 bb.append([samples[:,i].min(),samples[:,i].max()])
17

18 # Intantiate an object of type BoundingBox
19 # and dimension = dim
20 bb_ = BoundingBox(dim)
21

22 for d_k in range(dim):
23 # Declares and initialize struct of type BoundingBox1D
24 dimbb = BoundingBox1D()
25

26 # Sets boundaries in each dimension
27 dimbb.leftBoundary = bb[d_k][0]
28 dimbb.rightBoundary = bb[d_k][1]
29 bb_.setBoundary(d_k, dimbb)
30

31 # Compress grid to a Bounding box
32 grid.getStorage().setBoundingBox(bb_)
33

34 return grid

Source Code 3.3.: Code to create a grid and then compress it to a certain region of a unit
domain marked by bounding box in every dimension
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(a) Regular Sparse grid of level 5 with 129 GP
(black dots) for the whole unit domain. We see
that the top left quadrant has has almost no
samples (blue dots) but still grid points.This
leads to a not so efficient distribution of GP’s

(b) Our implementations using bounding boxes
with same data set as (a) but divided in two
clusters. Blue cluster (blue dots) with a grid of
level 4 with 49 GP and Orange cluster (orange
dots) with 129 GP in a level 5 grid

Figure 3.6.: Comparative example between a regular sparse grid and two grids with
bounding boxes for Old faithful data set.

the actual data is, giving a more efficient distribution of GP’s.

It makes sense to define a parameter that describes how many grid points are con-
tained in a volume unit. This parameter let us compare the two SGDE computations
in terms of the number of GP’s needed to obtain certain results in a given elapsed
time. This metric is the Grid Point Density (GPD).

GPD is a ratio between the final number of grid points (#GP ) (including adaptive
refinement) and the volume (or hyper-volume when d > 3) in which this grid points
are distributed V (see Equation 3.11 ). When the computation is performed in the unit
hypercube, this metric equals the number of grid points. On the other hand, for
smaller domains, it increases; meaning a more dense computation.

GPD =
#GP

V

V =

q∏
i=1

|max
j

((c)i)−min
j

((c)i)|, with j = 1...NT

(3.11)
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Where, maxj((c)i) and minj((c)i) means the maximum values and minimum values
in dimension i for all NT -instances in the input cluster c.

As an example, in Figure 3.6 (a) has a GPD = 129 and in (b) blue cluster GPD =
49/(0.4468 ∗ 0.5385) = 203.6 and orange cluster GPD = 447.8. We see that blue
cluster with 60% less grid points than (a), we get a GPD 58% higher. And in orange
cluster with same level as (a) we get 3.4 times higher GPD than (a).

2. Log-likelihood of test data is calculated using the computed PDF evaluated at
points x ∈ T (Test set) [26 ]. The higher this metric is, the more accurate results
are obtained from SGDE.

L =
1

NT

∑
x∈T

log(p(x)) (3.12)

Where, p(x) is the estimated density evaluated at test sample x.

3. Elapse Time of Computation(t) is the wall-clock time measured just before the cre-
ation of the grid until the Log-likelihood is computed.
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In this chapter we first present a summary of the input pipeline parameters, with a focus
on the parameters that we vary when doing the numerical experiments. Second, the data
sets used to test the pipeline is introduced, each of them with a brief description. Finally,
all scenarios used to test the pipeline are shown.

4.1. Input Pipeline Parameters: Summary

In Table 4.1 , you find a summary of all the input parameters for the whole pipeline. Most
of them vary to build different scenarios as numerical experiments.

There exist more parameters for SGDE that do not play a relevant role in testing the
implementation, therefore they are not mentioned in this table. These variables are either
used with default values given by SG++ or are static in all scenarios. When the latter
happens, we mention it explicitly in each scenario.

4.2. Data Sets

We use two data sets to test the pipeline. One is a synthetic data set and the other one a
real-world data set. Both of them have clustered samples and have a high dimensionality
(d > 1000).

Synthetic Data Set
The synthetic data is generated using a scikit-learn [30 ] library, called datasets with the
function make blobs. We generate a data set of N = 900 (instances) and d = 10000
(features). It contains 3 clusters, with 300 samples each. Furthermore, all samples in one
cluster has an standard deviation of 12.

Real-World Data Set
For the real-world data set we use expression cancer RNA-Seq Data Set from UCI-Machine
Learning Repository [4 ]. This data set contains 801 instances grouped in 5 clusters, every
sample has 20531 features. In this case there is a class imbalance considering that each
cluster represent one type of cancer: PRAD, LUAD, BRCA, KIRC, COAD containing 136,
141, 146, 78 and 300 samples respectively.
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Item Pipeline Parameter Description

1 X̂
Matrix — Pre-processed data set with dimensions
N × d. N-instances row-wise — All pipeline

2 type p
String — Type of random projection: Sparse or Gaus-
sian — Random Projection in LSH section

3 epsilon(ε)
Float — Acceptable pair-wise distortion for distances
when projecting. If R is specified this parameter is
ignored — Random Projection in LSH section

4 R
Integer — Dimension of final embedding. If ε is spec-
ified this parameter is ignored. — Random Projection
in LSH section

5 seed
Integer — Input seed for Random Projection — Ran-
dom Projection in LSH section

6 B
Integer — Number of bands for sketch banding —
LSH

7 M
Integer — Number of rows per band for sketch band-
ing — LSH

8 D
Float — Cluster radius for first and second filter —
LSH

9 mode
String — Dimensionality reduction algorithm: PCA
or Hybrid — Dim. Reduction

10 q Integer — Final dimension after Dim. Reduction —
Dim. Reduction

11 parallel
Boolean — True: Run SGDE in parallel (one cluster
per process). Otherwise, SGDE for the entire data. —
SGDE

12 ref Steps
Integer — Number of refinement steps perform on
the grid. — SGDE

12 cluster extraction
String — Methodology to obtain clusters in the re-
duced space — SGDE

Table 4.1.: Pipeline input parameters. The Description column has the format: Type of input
— Description — Algorithm in pipeline that uses that parameter.

4.3. Numerical Experiments

There are two big parts in numerical experiments. One to test from the beginning up to
LSH output and the second one test dimensionality reduction and SGDE implementation.

All numerical experiments were computed using a machine with Intel Xeon CPU E5-
2697 v3 @ 2.60GHz, for notation simplicity we call it node 1. The number of cores used for
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each scenario change, therefore we explicitly mention the number of cores used for each
case. Furthermore, it is worth mentioning that in the whole pipeline the most expensive
part to compute is the SGDE algorithm and that it is CPU-bound.

4.3.1. LSH Numerical Experiments

The first part test the implementation of LSH algorithm, including finding the best Ran-
dom Projection. That means from section 3.1 to section 3.2 in implementation chapter. To
quantify the result we use the metrics introduced in 3.2.3 .
This part represents a negligible computational cost, hence it is computed sequentially us-
ing one core.

For this purpose we use parameters 2 to 8 in table 4.1 , setting D = 4000 for Gene data
set (X̂gen) and D = 9000 for synthetic data set (X̂syn). For both data sets:

1. type p is either Random or Sparse.

2. R=100 therefore ε is an observed variable but not input.

3. seed ranges from 0 to 100.

4. B=20 and M=5.

This results in 200 scenarios for each data set. The main goal for this experiment is to
find the configuration for LSH parameters that optimizes the metrics shown in 3.2.3 . After
obtaining that configuration, we keep those parameters fixed and perform the second part
of numerical experiments with that optimal settings.

4.3.2. Dimensionality Reduction and SGDE Numerical Experiments

In these experiments we test from section 3.3 to section 3.4.2 using metrics in 3.4.3 in Im-
plementation chapter. In total there are 24 scenarios (12 experiments each data set).
For this, we use parameter 9 to 12 in table 4.1 . These variables take values as follows:

1. mode is either PCA only or Hybrid (Random Projection then PCA).

2. q=15 for the whole data set and each cluster.

3. ref Steps is either 3 or 4 refinement steps. Each refinement with up to 100 grid
points.

4. parallel, when True there is one process per cluster all computing in parallel.
Otherwise, one process computes SGDE for the whole data set at once. Each process
uses a defined number of cores.
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(a) Grid for the whole data set in the
unit domain. Here, we see the five
clusters together. This is the Conven-
tional Approach.

(b) Samples correspond to one cluster
from Gene Expression reduced to a
2-d space using PCA. Here we use
Cluster Analysis methodology.

(c) Grid for same cluster as (b) but us-
ing cluster extraction.

Figure 4.1.: Gene Expression Data set projected to a 2-dimensional space using PCA. Blue
dots represent samples and black dots are grid points from a 4-level grid. The
main difference between grids is the domain used for the computation.

5. cluster extraction in these cases we run 8 scenarios, all with parallel=True
and mode, q and ref Steps changing as mentioned above. cluster extraction
refers to the way we extract cluster samples to compute SGDE. In the first 16 scenar-
ios we vary parameters 9 to 12 as explained in the implementation chapter (see See
plots (a) and (b) in Figure 4.1 ). In cluster extraction cases we reduce dimen-
sionality of the whole data set to q, then we extract the samples that correspond to
the indexes ci found in LSH algorithm. See plot (c) in Figure 4.1 .

In figure 4.1 we see a comparative example between different grids used for SGDE com-
putations for these numerical experiments. These Figures show Gene Expression data set
in a 2-dimensional space, which is actually not the space we use, however, we include
them to guide the reader in the different types of computations that are performed.
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We use a linear regular sparse grid with level three with linear basis functions. The
regularization term is the Identity matrix with regularization parameter for both data sets
as λ = 10−5. However, as mentioned by Peherstorfer et. al [26 ] SGDE method is not very
sentitive with respect to λ.
All other input parameters for SGDE are left as the default ones given by SG++ library
[33 ].
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Results and Conclusions
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5. Results and Analysis

In this chapter we present the results obtained by running all scenarios shown in 4 . First
we present results for LSH implementation and then results for SGDE. In both parts we
divide them in Gene Expression data set and Synthetic data set subsections.

5.1. LSH Results for Gene Expression Data Set

After running all 200 scenarios explained in 4.3.1 for Gene Expression, the elapsed time for
the whole LSH algorithm is between 27.4 to 42.9 seconds each scenario when using node
1 in one core. Elapsed time includes the Random Projection part which takes 1.6 to 2.3
seconds with no noticeable time difference when using Sparse or Gaussian projections.

In figure 5.1 we present the obtained average recall (equation 3.10 ) plotted against seed.
In that plot we see how the random nature of the Random Projection affects the results with
no clear pattern regarding average Recall. One can also concludes that neither Sparse nor
Gaussian projections offer an obvious advantage when measuring the Recall of LSH im-
plementation for this data set.
In these scenarios, our implementation reaches a maximum avg recall of 95.15% and a
minimum of 33.07% with some clusters getting recalli = 100%.

The average Precision versus the seed is presented in Figure 5.2 . Once again, there is
no clear advantage when using either of the two types of projections in terms of Precision.
However, now we see that the majority of results are located in the upper part of the plot.
This pattern allows to say that given a seed between 0 to 100, there is a high probability
that the precision is higher than 80%, for this particular data set.
Our LSH implementation gets a maximum Precisioni of 100% in some clusters and an
average maximum Precision of 98.03% in all 200 scenarios.

The color bar in Figures 5.1 and 5.2 represents the number of missed samples (m). See
at the end of section 3.2.3 for the definition of m. It also does not give us a clear winner
between the two types of projections (type p). In general, LSH implementation misses
between 1.74% and 2.62% of samples.

Regarding type p there is no clear choice when using the metrics introduced in sec-
tion 3.2.3 . However, in terms of used memory the Sparse random projection consumed
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Figure 5.1.: In Y-axis is the avg recall (equation 3.10 ) and in X-axis seed (input parame-
ter). These are the LSH results using a Gaussian Random Projection(+) and a
Sparse Random Projection (•). The color bar represents m (number of missed
samples). We see that there is no clear advantage in using one type of projec-
tion over the other.

Figure 5.2.: avg precision (average over all clusters) vs seed. Both the Gaussian Random
Projection(+) and a the Sparse Random Projection (•) tends to have a precision
higher than 80% in most of the cases. The color bar represents m, which is not
affected by type p.
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0.17±0.002 MB and the Gaussian projection used 0.32±0.001 MB. Therefore, for dimen-
sionality reduction and SGDE experiments we set type p=Sparse.

Furthermore, to select the seed we filter out all scenarios and chose the one with the
the best trade-off between average Recall and Precision. With that we set seed=8 for the
remaining part of experiments in case of Gene data set. For this seed the average recall is
95.15% and the average precision 94.17% with m = 16.

5.2. LSH Results for Synthetic Data Set

In the case of synthetic data set, the total elapsed time is between 16.5 to 13.4 seconds. The
Random Projection consumes 2.0 to 1.7 seconds of that elapsed time. Once more, there is
no a relevant time difference between the two projection types when run in one core of
node 1. In terms of memory, Sparse and Gaussian projection uses 0.12±0.01 MB and
0.36±0.001 MB, respectively.

For the Synthetic data set all scenarios result in recalli = 100% and precisioni = 100%.
This is explained analyzing the structure of the data set in which every cluster is well
defined around its centroid, with all samples within the cluster radius. Therefore, any ran-
dom projection performed on these samples add some noise (ε), although cluster’s struc-
ture is preserved.

Considering the results, to perform the second part of experiments for dimensionality
reduction and SGDE all parameters are set to same values as Gene Expression Data Set
(see section 5.1 ).

5.3. Dimensionality Reduction and SGDE Results for Gene
Expression Data Set

The 12 experiments for Gene Expression data set for the Dimensionality Reduction part
are run sequentially in one core of node 1. The elapsed time for mode=PCA is between 0.10
to 1.74 seconds and 2.93 to 12.38 seconds for hybridmode. It shows a considerably longer
elapsed times when using mode=hybrid (Random Projection then PCA).

For the SGDE computation, elapsed times are shown in Table 5.1 . The difference in time
between the different scenarios is due to the overhead of process creation and, mainly,
adaptive refinement algorithm and Conjugate gradient method (CG) convergence. To
be more specific let’s make a brief refresher of how adaptive refinement works when us-
ing default values (Adaptive Refinement algorithm is embedded in SG++ library): After
completing the first computation with zero refinement it has calculated a vector of sur-

53



5. Results and Analysis

Computation Type ref Steps
Minimum

Elapsed Time
[s]

Maximum
Elapsed Time

[s]

Average
Elapse Time

[s]

Whole Data set
(Parallel=False)

3 4320 6537 5428
4 9456 10568 10012

Per Clusters Analysis
(Parallel=True)

3 6092 9934 8070
4 14358 15788 15105

Cluster Extraction
(Parallel=True)

3 4116 7011 5533
4 9804 11885 10864

Table 5.1.: Elapsed times for all scenarios of Gene Expression. This times are measured in
node 1 using one core for whole data set and five cores for clusters analysis and
clusters extraction (one core computes SGDE for one individual cluster).

pluses (~α) of the same size as the number of grid points. Then it looks for |αl,iφl,i| >
threshold, ∀ αl,i, φl,i ∈ V 1

n (For notation see Section 2.2.1 on theory chapter) and chooses
the highest values up to the number of refinement points (In our case it is 100 points). Fi-
nally, it refines those grid points that correspond to the selected values and make the new
computation (with a bigger system of equations) using Conjugate Gradient method. This
process is repeated with the new system of equations until it reaches the specified number
of refinement steps(ref Steps, which in our case is either 3 or 4). When doing this, the
number of grid points increases, therefore we have a higher system to be solved by CG.
Hence, the computation time increases.

In Figure 5.3 you can see the results in terms of Log-likelihood vs the number of grid
points (after refinement). In this case the higher log-likelihood (equation 3.12 ) the better
SGDE results are. In this plot all 12 scenarios for Gene Expression are presented. We see
how in around 80% of the cases, SGDE analysis for the whole data set outperforms in-
dividual cluster analysis (each cluster is dimensionally reduced to a q-space then SGDE
is computed). This effect could be due to the distortion added by PCA to two key char-
acteristics: relative position with respect to other clusters and cluster radius. The former
is completely lost and the latter increases up to the unit domain. This makes the SGDE
computation using grids with Bounding Boxes lost its main advantage: The concentration
of grid points in an smaller volume. To show this we plot Log-likelihood Vs Grid Point
Density (GPD) in Figure 5.4 .

On the other hand when cluster extraction is used, around 60% of the scenar-
ios present better Log-Likelihood results than the whole data set analysis. In this case, it
happends the contrary to what what is mentioned above when comparing whole data set
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5.4. Dimensionality Reduction and SGDE Results for Synthetic Data Set

Figure 5.3.: log-likelihood vs Number of Grid points for Gene Expression. Dots (•) cor-
respond to SGDE results for the whole data set, crosses (+) refers to cluster
analysis results and diamonds (♦) when cluster extraction is used.

SGDE computation to individual cluster density estimation. In figure 5.4 we see that the
higher is GPD the better Log-likelihood it tends to output. However, not being always the
case.

To test SGDE results the input data set is divided in Train and Test subsets using scikit-
learn library, with the function model selection.train test split, with arguments
test size=0.2 and random state=132. The input sample can be either the whole data
set or one cluster as mentioned before. This procedure is the same for Gene Expression as
for Synthetic Data set.

5.4. Dimensionality Reduction and SGDE Results for Synthetic
Data Set

Running the 12 numerical experiments for Synthetic data set we confirm that mode=PCA
is effectively faster than hybrid mode. With PCA ranging from 0.19 to 0.28 seconds and
hybrid taking between 3.67 to 5.05 seconds in terms of elapsed times. The elapsed time
difference for Synthetic and Gene Expression data set lies in the original dimension of
each data set, which is 10000 for the first one and 20531 for the second one. Therefore, it
is expected to take more time to reduce dimensionality for Gene expression than for the
Synthetic data set.
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5. Results and Analysis

Figure 5.4.: log-likelihood vs Grid Point Density (GPD) (see Equation 3.11 ) for Gene Ex-
pression. It follows the same notation as Figure 5.3 and X-axis is in logarith-
mic scale. Here we effectively see that grids used in cluster extraction
methodology has a higher GPD and it usually gives a better Log-Likelihood
than the other two types of SGDE computations.

To compute SGDE for this data set we use one core for the whole data set and 3 cores for
a parallel computations of each cluster, all of them in node 1. A similar analysis to what is
done for elapsed times in Gene expression scenarios can be done for the Synthetic Data set.

In terms of log-likelihood we have similar results as Gene Expression; with cluster
extraction results outperforming the other two. And whole data set SGDE compu-
tation having, most of the times, higher Log-likelihood than individual cluster analysis.
This is shown in Figure 5.5 . Furthermore, by plotting log-likelihood against GPD we see
the tendency to have better results with higher GPD’s (see Figure 5.6 ).

In Figure 5.5 we see that all 12 scenarios using cluster extraction form two ver-
tical straight lines of diamonds (♦) at 12252 GP and 18720 GP. It is a product of adaptive
refinement algorithm which in this case are refined 3 and 4 times, respectively. Every step
it refines the full set of 100 points in all scenarios. Despite that adaptive refinement algo-
rithm usually gives a different number of grid points, in this case all 3 clusters of synthetic
data set contains the same number of samples (300), encircled in a very similar cluster ra-
dius. Thus it results in the same output from adaptive refinement algorithm. It happens
only in the case of cluster extraction because it mostly preservers the cluster radius
and relative location of clusters from the original data set.

It is also important to highlight that by using mode either with PCA or hybrid does not
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5.4. Dimensionality Reduction and SGDE Results for Synthetic Data Set

Computation Type ref Steps
Minimum

Elapsed Time
[s]

Maximum
Elapsed Time

[s]

Average
Elapse Time

[s]

Whole Data set
(Parallel=False)

3 4320 6537 5428
4 9456 10568 10012

Per Clusters Analysis
(Parallel=True)

3 6092 9934 8070
4 14358 15788 15105

Cluster Extraction
(Parallel=True)

3 4116 7011 5533
4 9804 11885 10864

Table 5.2.: Elapsed times of all scenarios for Synthetic Data Sets. This times are measured
in node 1 using one core for whole data set and three cores for clusters analysis
and clusters extraction.

Figure 5.5.: log-likelihood vs Number of Grid points for Synthetic Data set. Dots (•) cor-
respond to SGDE results for the whole data set, crosses (+) refers to cluster
analysis results and diamonds (♦) when cluster extraction is used.
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5. Results and Analysis

Figure 5.6.: log-likelihood vs Grid Point Density (GPD) (see Equation 3.11 ) for Synthetic
data set. It follows the same notation as Figure 5.5 and X-axis is in logarithmic
scale. Here we effectively see that cluster extraction methodology has
significantly higher GPD and it usually outputs a better log-likelihood than the
other two types of SGDE computations.

make any difference in terms of Log-likelihood for both of the data sets.

Another important remark is that despite the fact that LSH algotihm reaches a high
Recall and Precision, it still could influence the results of individual cluster analysis and
cluster extraction methodologies for Gene Expression. This is not the case for sys-
nthetic data set because LSH gets a 100% Recall and Precision and no missed samples.
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6. Conclusions

Over the course of this thesis we have presented a pipeline that takes in a highly-dimensional
clustered data set, preprocess it and perform two different type of computations to com-
pare outputs. One is the conventional Sparse Grid Density Estimation using the whole
data set and the other one subdivide the data set in subsets that correspond to its clusters.
Various SGDE computations have been performed to both alternatives. The second ap-
proach is our proposal to estimate density using Sparse Grid in each individual cluster.

The two main algorithms have been successfully implemented into the pipeline; The
first is a modified Locality Sensitive Hashing algorithm that uses Random Projections and
Sketch matrices to hash samples into buckets of similar instances. And the second algo-
rithm is a dimensionality reduction followed by an SGDE computation. Both algorithms
have been validated using two sets of metrics, one for each algorithm.

The proposed approach to perform clustering using LSH proved to be highly compet-
itive when tested on a real-world data set and a Synthetic one. Furthermore, the Sparse
Grid Density Estimation, using grids with Bounding Boxes, applied on individual clusters
achieved remarkable results in most of the different scenarios.

The presented pipeline can be further expanded by adding a module that instead of
clustering the samples, it divides the domain into hypercubes that contains grids for den-
sity estimation and computes in parallel. Finally join the generated Probability Density
Functions to have one single estimation to test. There exist another improvement which
consist of taking the current pipeline and perform classification considering each cluster
one individual class.
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