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Abstract

The Vickrey-Clarke-Groves (VCG) mechanism is known to be the only efficient, strate-
gyproof mechanism when agents have quasi-linear utilities. However, it is not applicable
outside of quasi-linear environments and depends on optimal allocations which are rarely
available in non-convex markets. We present three projects motivated by real-world ap-
plications where the assumptions of the VCG mechanism are not given. We use prices
to achieve practically important properties such as strategyproofness or core-stability.

In the absence of optimal allocations, the VCG mechanism loses its strong game-the-
oretical guarantees. We consider a network design problem in the telecommunications
sector where the underlying non-convex allocation problem is NP-hard and thus needs
to be approximated in practice. We extend approximation algorithms for the underlying
Steiner minimum tree problem into strategyproof mechanisms and consider three vari-
ants of the deferred-acceptance auction. Results of a computational study show that the
resulting strategyproof mechanisms achieve high average efficiency.

Moreover, the VCG mechanism cannot be applied in markets where utilities are non-
quasi-linear. An application in secondary markets for airport time slots constitutes
the second project. The market under consideration is non-quasi-linear due to budget
constraints airlines may have in this cost intensive industry. No strategyproof mechanism
can be obtained, but core-stable solutions can be computed if the core is non-empty.
We use a mixed-integer bilevel linear program leveraging problem-specific constraints
and solve problem instances of relevant size despite the inherent complexity (35-hard).
Additionally, ignoring budget constraints does not only lead to a loss in welfare, but also
to unstable solutions, arguing in favor of markets beyond quasi-linear utilities.

Furthermore, the VCG mechanisms is not applicable in online settings where bids arrive
over time. Real-time congestion pricing serves as a practical example. Currently, most
roads are not priced at all, and even if road pricing mechanisms are in place, they
exclusively use non-responsive pricing schemes. We implement a dynamic pricing scheme
by using an online linear programming algorithm. A computational study shows that
our mechanism leads to a reduction in congestion when compared against low or high
static, area-based prices and unpriced roads.

Despite the computational hardness of the underlying non-convex allocation problems,
we show that practically relevant problem sizes can be solved for all problems. These
results provide insights into markets for which the VCG mechanism is not applicable
due to unavailability of optimal allocations or non-quasi-linear utility functions.
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1 Introduction

In a society where professions are highly specialized, trade plays a crucial role in the
distribution of goods and services. Beyond bilateral trade, there is a need for markets
which enable the emergence of efficient such distributions. However, the design of those
markets has many inherent challenges as buyers and sellers usually pursue opposite
goals. Incomplete information about their negotiation partners is the central challenge
for market participants as parties keep their true valuations secret in order to come
to a more favorable agreement. Prices can be used to communicate (and thus also
elicit) valuations in a market. Whenever the seller suggests a price, the buyer can
either accept or reject a trade at this price. By accepting a price, the buyer implicitly
communicates that the item is worth at least the price and, analogously, can indicate that
the item is worth less than the price by rejecting the offer. Despite its importance, the
communication aspect is but one facet of the benefits prices offer. Choosing correct prices
can also lead to a state of equilibrium in the market, discourage strategic manipulation

by rational market participants, or maximize revenue of the seller.

The foundations for the corresponding theoretical concepts lie in Mechanism Design The-
ory, a field concerned with the development of economic mechanisms for rational bidders
with private information. In 2007, the Nobel Memorial Prize in Economics was awarded
to Leonid Hurwicz, Eric S. Maskin, and Roger B. Myerson for their contributions to
this field of economic theory (Mookherjee, 2008). Based on axiomatic assumptions, one
can derive mechanisms that satisfy relevant properties in regard to strategic behavior or
perceived fairness (Borgers and Krahmer, 2015). In economic contexts, mechanisms with
monetary transfer are more commonly used as they allow to transfer utility by means
of payments. In this dissertation, we focus on mechanisms with monetary transfers in

economic settings with special attention to setting prices (pricing mechanisms).

In general, such mechanisms can be decomposed into two functional units: allocation and

pricing. In the former, the mechanism determines the distribution of items to market



1 Introduction

participants. Social welfare maximization is the most frequently optimized objective
here, but others, such as maximizing the number of allocated items, are possible. Prices
are then used to offset the utility which was transferred via items. Carefully designed
pricing rules can set strong incentives for truthful behavior or enable equilibrium states

where no coalition of participants wants to deviate.

Due to the inherent interdisciplinary nature of pricing problems, researchers from many
different fields, including economics, mathematics, operations research, and computer
science, contributed to the existing literature in significant ways. At this intersection,
auctions constitute an important class of pricing mechanisms. While Paul R. Milgrom
and Robert B. Wilson just recently received the Nobel Memorial Prize in Economics
for their work in this field, auctions date back 2500 years. Auctions have come a long
way since ancient Babylon and experience an increase in popularity in recent times.
Reasons for this trend can be found in improved auction formats incorporating real-
world requirements to a sufficient degree and larger computational power allowing to
solve allocation problems that were formerly considered intractable. Nowadays, auctions
are used to sell off perishable goods (e.g., flowers using a Dutch auction), one-of-a-kind
items (e.g., a painting using an English Auction), and even public goods such as licenses
for fishery or the utilization of specific bands of the electromagnetic spectrum. Online
marketplaces offer private sellers a simple way to use an auction format for their sale, a
popular solution due to the insufficient knowledge private sellers have of the market. Yet,
suitable pricing mechanisms are still missing for many applications as a considerable gap
between theory and practice remains. The Vickrey-Clarke-Groves (VCG) mechanism

serves as a prominent example of an elegant theory rarely applicable in practice.

The celebrated VCG mechanism is a well-known example of a truthful mechanism
(Clarke, 1971; Vickrey, 1961; Groves, 1973). Rested on an optimal allocation, it com-
putes a bidder’s payment based on the opportunity cost of this bidder’s participation.
Green and Laffont (1977) have shown that this is in fact the only efficient mechanism
where no single bidder can gain by deviating from truthful bidding. Unfortunately, the
assumptions in theory only seldomly translate to practice, and the VCG mechanism is
rarely used in real-world applications (Rothkopf, 2007). This dissertation offers pricing
mechanisms for markets where practical needs are not in line with central assumptions

underlying the VCG mechanism.

The VCG mechanism assumes an allocation problem that can be solved to optimality.

However, the allocation problem in many markets is computationally hard and thus does



not allow for an optimal solution in practically feasible time. This is often the case when
participants are interested in not only a single item but rather aim to trade certain bun-
dles thereof (e.g., in spectrum auctions (Bichler and Goeree, 2017)). Problems of such
combinatorial nature are notoriously difficult to solve due to the large number of possi-
ble combinations. Even if approximations are available, using approximate solutions in
the VCG mechanism almost always leads to the loss of its game-theoretical properties
(Lehmann et al., 2002)!, enabling market participants to benefit from strategic manipu-
lation. Markets where bids arrive in an online fashion, i.e., one by one over time, pose a
similar challenge to the VCG mechanism. As decisions regarding the acceptance of bids
need to be made at their arrival and the auctioneer lacks knowledge about subsequent
bids, these online problems cannot be solved to optimality. Thus, there is a need for

new practical mechanisms in these markets.

Secondly, the quasi-linear setting, which the VCG mechanism is designed for, has its
inherent restrictions. In the quasi-linear setting, utility is transferable by monetary
payments without limitation. In other words, theory assumes that market participants
have sufficient capital to pay up to their valuation, while, in practice, many market
participants may have private budget constraints. Markets where budget constraints
need to be considered cannot be modeled using quasi-linear utility functions and thus

require pricing mechanisms other than VCG.

To conclude, practice requires the development of new pricing mechanisms that relax
assumptions of the VCG mechanism to achieve greater applicability. We present three
such pricing mechanisms with applications in network procurement, airport time slot al-
location, and congestion pricing. We use prices to achieve important mechanism design
desiderata and provide brief descriptions of the projects in the following paragraphs. In
our first project, we consider a computationally challenging problem in a network design
market stemming from an application in the telecommunications industry. The auction-
eer uses a reverse auction to buy network links from suppliers to establish connectivity
between certain nodes in a network. While a variety of approximations is available,
the VCG mechanism is not applicable since the allocation problem cannot be solved
to optimality. Based on a result by Myerson (1981), we develop mechanisms based on
approximate solutions and use prices to set incentives that inhibit beneficial strategic

manipulation by individual market participants.

! Algorithms which are maximal-in-range (MIR) constitute an exception. However, approximations are
almost never MIR by accident. http://timroughgarden.org/wi14/1/128.pdf, accessed: 28.11.2020


http://timroughgarden.org/w14/l/l28.pdf
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We consider a secondary market for airport time slots in our second project. Time
slots are utilized at over-demanded airports and constitute the right to take-off/land at
an airport at a certain time. Since, in the secondary market, airlines trade amongst
themselves, we use an exchange rather than an auction format. The exchange general-
izes the auction setting in that it has multiple buying and selling market participants,
while an auction is restricted to a one-to-many relationship. Additionally, the airline
industry is financially taxing, and many airlines face budget constraints. Due to the
budget constraints, the problem cannot be modeled using quasi-linear utility functions,
disqualifying the VCG mechanism. We suggest an approach where airlines are allowed
to state both their valuations and their budget, making the problem harder but more
accurately reflecting the needs in practice. Prices need to be chosen carefully in order
to find a combination of allocation and prices that is stable even against deviation by
groups of participants. To this end, we use a bilevel formulation of the market and lever-
age efficient problem-specific constraints to compute solutions for this computationally

challenging, Eg—hard, problem.

Similar to airport time slots, road capacity is a scarce resource in major cities. Allocat-
ing it efficiently constitutes our third project. Road capacity is often not priced at all,
leading to congestion with severe consequences for the environment (Chin, 1996), health
(Currie and Walker, 2011; Simeonova et al., 2018), and the economy?. Pricing mecha-
nisms currently implemented in practice are based on either entering an area or traveled
distance, not on demand, but there is reason to believe that prices which respond to
the current traffic situation result in a more meaningful reduction of congestion than
static prices (Cheng et al., 2017). This requires price updates to be computed almost
instantaneously and on incomplete information as drivers request road capacity one by
one over time. The VCG mechanism cannot be implemented since no optimal alloca-
tions are available. Instead, we propose a real-time pricing mechanism and use a fast
online approximation to compute prices which provide guidance for drivers by raising

road prices dependent on utilization.

2See, for example: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-
2019.pdf, accessed: 02.11.2020


https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf
https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf

Outline

The remainder of this thesis is organized as follows: In Chapter 2, notation, concepts, and
methods important to the projects of this dissertation are briefly outlined. We introduce
notation and definitions standard to non-convex markets as well as important mechanism
design desiderata. Furthermore, we describe the application domains of the following
chapters. Chapter 3 presents the first project on strategyproof mechanisms for network
procurement. In Chapter 4, we present work on secondary airport time slot markets
with financially constrained bidders. The last project on real-time congestion pricing is

presented in Chapter 5. Finally, we discuss results and contributions in Chapter 6.






2 Scientific Context

In this chapter, we introduce terms which are prerequisites to Chapters 3, 4, and 5.
However, this chapter cannot replace the stimulating read of an introductory textbook.
To this end, we recommend Bichler (2017) and Krishna (2009). We start by describ-
ing standard notation and give desirable properties. Afterwards, we introduce markets
beyond standard assumptions and corresponding solution techniques. We conclude by
describing real-world applications and reviewing related literature. Topics are presented
largely on their own as they constitute necessary fundamentals for the following chap-
ters. We indicate connections to Chapters 3, 4, and 5 wherever appropriate. Notation
and definitions mostly follow Bichler (2017).

2.1 Quasi-linear Markets

Auctions are mechanisms where the outcome is solely dependent on the bids stated by
market participants. Since auctions are the predominant class of pricing mechanisms
and our projects consider auctions and an exchange (a more general auction), we use
notation and take assumptions standard in combinatorial auction theory (Blumrosen
and Nisan, 2007). Throughout this chapter, we consider markets with n bidders, m in-
divisible items, and a single auctioneer sp (unless stated otherwise). Market participants
are categorized as either buyers or sellers according to their intentions in the market.
Unless stated otherwise, we will use Z to refer to the set of bidders and assume buying
bidders (and a selling auctioneer). Every bidder ¢ € Z has a valuation v;(x) € R for
every allocation of items x = (S1,...,5,). Here, x is the allocation computed by the
market mechanism such that bidders 1,...,n receive bundles Si, ..., S, with S being a
subset of the m indivisible items K (2 S) and X is the set of allocations. In general,

these valuations might be dependent on any circumstance affecting the bidder, including
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personal preference or estimated realizable profit, and are expressed in terms of mone-
tary units. The valuation function for bidder ¢ can be formally defined as v; : X — R.
We further assume bidders’ valuations to solely depend on their own assessment, i.e.,
they are independent of whether a competitor gets a certain bundle. This class of utility
functions is referred to as independent private valuations. In this setting, v;(x) is thus
only dependent on the bundle S bidder i receives, and hence v;(z) = v;(S). Moreover,
we adopt the standard assumption of quasi-linear utilities to model the benefit u; bidder
i receives in outcome o = (x,p). An outcome is defined by its allocation z and a price

or payment vector p € R™.

Definition 2.1: Quasi-linear utility function. Under independent private valuations,

a quasi-linear utility function u : O — R of a bidder i € T is given by
u;(0) = vi(S) — p;

where o = (x,p) is an element in the outcomes O, v; : X — R is a valuation function,

and p; € R refers to the ith element in payment vector p € R™.

In other words, p; € R refers to the payment bidder ¢ receives or is obliged to make.
Quasi-linearity implicitly includes the assumption of transferable utilities, i.e., utilities
can be transferred between participants without constraints via monetary payments. We
further assume rational behavior, i.e., participants always try to maximize their utility
value u;. This definition can also be applied to sellers which receive payments and might
incur a loss in utility by selling items. However, unless stated otherwise, we adopt the
standard assumption of a seller’s valuation function being 0 for all allocations z € X

(i.e., a situation of sell-off).

Bidding Languages

Bidding in a market requires precise communication of bids. This is straightforward
when only a single item is sold. However, there are many contexts where multiple items
are auctioned off at the same time. Examples include, but are not limited to, spectrum
auctions (Bichler et al., 2014), airport time slots (Avenali et al., 2015), the London bus
routes market, and procurement of freight transportation (both discussed in Cramton
et al. (2006)). If all bidders had additive valuations (v;(A) + v;(B) = v;({4, B}),Vi €
Z,YA, B € K), items could be traded independently in a series of sequential or in parallel
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auctions. However, the whole may be worth more than the sum of its parts. For example,
this is the case for airport time slots (rights to take-off /land) where a single slot is difficult
to use, but a pair of interrelated slots can be very valuable (items are complements). The
opposite is true when items are substitutes, i.e., a bidder is only interested in acquiring
one of two (or several) possible items. Examples for this can be found in markets for
natural gas or certain agricultural contracts (Milgrom and Strulovici, 2009). Bidding in
a parallel or sequential series of single-item auctions puts bidders at risk of the exposure
problem. This problem describes the phenomenon of bidders being left with either a
subset of the desired, complementary items or several substitute items. Using multi-
item formats with package bids, which allow bidders to specify combinations of items,
can prevent the exposure problem but require an effective way for bidders to express their
valuations. XOR and OR bidding languages are the most important bidding languages
in combinatorial auctions as they are the most fundamental and serve as a basis for a

multitude of other bidding languages.

In an XOR bidding language, bids are mutually exclusive and at most one bid can be
accepted per bidder. While this allows the expression of valuations for every bundle,
it requires stating an exponential number of bids. In general, an auction with m items
requires 2™ — 1 bids per bidder. Even in a small auction with 20 items, each bidder
would need to state more than a million (22° — 1) bids. In practice, this is infeasible and
leads to the missing bids problem - essentially, the allocation problem is incomplete due
to the inability of bidders to state all their bids (Bichler et al., 2020c).

In contrast, an OR bidding language implicitly assumes bidders are willing to receive
any disjoint combination of their bids for the aggregate of the corresponding prices.
This reduces the number of required bids, but can only express valuations without
substitutabilities, such as additive and super-additive valuations (where the whole is
weakly greater than the sum of its parts). Even in a simple auction with two items,
a bidder who wants either one of those items cannot express their valuation function
accurately using an OR bidding language. In general, every combination of bids can be
accepted as long as bids do not overlap in a way that would make accepting all of them
infeasible due to insufficient supply. Dummy items can be used to create an overlap of
artificial items. This extension known as OR* has the same expressiveness as the XOR
bidding language, uses the same number of bids, and requires a number of dummy items
that is quadratic in the number of bids (Nisan, 2006).
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Several additional combinations of OR and XOR have been proposed to adhere to par-
ticular market needs (Nisan, 2006). Moreover, specific bidding languages have been
designed for certain applications, e.g., for 5G auctions (Bichler et al., 2020c), to express
characteristics of a supplier’s cost functions in markets of scope and scale (Bichler et al.,
2011), for online advertising (Lahaie et al., 2013), and for combinatorial exchanges (Lu-
bin et al., 2008). In this line, we suggest a bidding language that combines elements of
both XOR and OR for the secondary airport time slots market in our second project
(Chapter 4). For a thorough introduction to bidding languages, we refer the interested
reader to Nisan (2006).

2.2 Desiderata, Payment Rules and Incentives

While certain scenarios require dedicated performance indicators, some properties are
generally considered desirable for pricing mechanisms. Let M(f,p) be a pricing mecha-
nism with f: B — X and p: B x X — R"” being the allocation and payment function,
and B referring to the set of all possible bid vectors b € B. Note that bids are not
necessarily truthful, i.e., there might be lying bidders i with b;(S) # v;(S) for bundles
S C K. Allocative efficiency (sometimes short: efficiency) of a mechanism M relates
the social welfare )7 vi(x) generated by the allocation « computed by f to the social

welfare of an optimal, i.e., welfare-maximizing, allocation.

Definition 2.2: Allocative Efficiency. Allocative efficiency is defined as

f(b)
OPT(b)*

where f(b) refers to the welfare computed by an allocation function f : B — X and

OPT(b)* refers to an welfare-mazimizing allocation for a bid vector b € B.

Mechanisms which maximize the social welfare f(b) € arg max,cx > ;,c7vi(z) are re-
ferred to as efficient. Finding a welfare-maximizing allocation is NP-hard for most
combinatorial allocation problems. For problems in the complexity class of NP, only
exponential time algorithms are known, and unless P=NP (an open Millennium Prize
Problem), no polynomial time algorithms exist for this class of problems. Exponential
time algorithms are improper for many practical applications as the runtime increases
exponentially on input length. However, polynomial time algorithms that approximate

the optimal solution can be designed. If such an algorithm has a proven worst-case

10
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approximation ratio, i.e., a guarantee on how far off the solution is at most, we speak of
an approximation. In contrast, an algorithm that is based on a plausible idea but has

no proven approximation ratio would be considered a heuristic.

Definition 2.3: Approximation Ratio. The approzimation ratio of a mechanism

M(f,p) is defined as
A(b)

MiNbE B A D (1)

OPT*(b)
where A(b) denotes the value of an allocation computed by an approximation algorithm
A: B — X and OPT*(b) denotes an optimal allocation for a bid vector b € B.

Diligently designed pricing functions can achieve further important mechanism design
desiderata by providing additional (monetary) incentives for bidders. Incentives which
lead to truthful behavior are among the most important ones; the resulting mechanisms
are referred to as strategyproof or incentive-compatible. These mechanisms prevent ma-
nipulation of the outcome and relieve bidders of the burden to develop complex bidding
strategies since truthful bidding is an optimal strategy. In other words, regardless of
the behavior of competing bidders, truth-telling always leads to weakly higher utility
than any other strategy. For a bid vector b, let b_; denote the bid vector where the ith
entry is removed, and by the tuple (v;,b_;), denote the bid vector where the ith entry is
replaced by the true valuation of bidder i. Also, in a slight abuse of notation, let u;(b)
give the utility of bidder ¢ given bid vector b.

Definition 2.4: Strategyproofness. A mechanism M(f,p) is strategyproof if for all
bidders i € T truth-telling leads to a weakly higher payoff for all bid vectors b € B:

ui(vi, bfl) Z Ul(b)

If possible, it is preferable to realize stronger notions of strategyproofness. Group-stra-
tegyproofness extends the concept such that even groups of bidders cannot benefit by
colluding and deviating in a coordinated manner. By bc, we denote the vector of bids
where a coalition C' C 7 deviates from truthful behavior, and by b_¢ = bc \ {b;}, the
vector without the bid of bidder i € C.

11
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Definition 2.5: Group-Strategyproofness. A mechanism M(f,p) is group—strate-
gyproof if for all coalitions of bidders C' C T and all bid vectors b € B, whenever one
bidder 5 € C has a strictly higher utility by deviating, there is at least on other bidder
1 € C,i # j for whom truth-telling leads to a strictly higher payoff:

dj € C: u]‘(vj,b_c) < ul(b) =dieC: ui(vi,b_c) > ul(b)

Unfortunately, group-strategyproofness is difficult to achieve in many contexts. Weak
group-strategyproofness, however, might still be attainable. This closely related concept
is satisfied as long as deviating behavior does not lead to strictly higher utilities for every
colluding bidder. In practice, this weaker notion is often sufficient due to the fact that
collusion involves both trust and work - resources bidders not strictly increasing their

utilities might not be willing to commit.

Definition 2.6: Weak Group-Strategyproofness. A mechanism M(f,p) is weakly
group-strategyproof if for all coalitions of bidders C' C T and all bid vectors b € B,
truth-telling leads to a weakly higher payoff for at least one bidder i € C':

Ui(Ui, b_c) Z uz(b)

Besides offering additional monetary benefits to achieve strategyproofness, not over-
charging bidders is an equally important consideration in pricing mechanisms. Ex-ante,
accurately assessing the landscape of competition can pose a challenging task for bidders.
In many cases, only a fraction of the stated bids gets accepted, leaving the majority of
bids unallocated. We refer to the bidders with allocated (unallocated) bids as winning
(losing) bidders. Imposing a participation fee on bidders would lead to negative utilities
for losing bidders and thus discourage participation. Since this would ultimately lead
to less competition, which is undesirable in most contexts, participation should be free
of charge. This claim for free participation can be generalized to individual rationality

where prices may not exceed the respective valuations.

Definition 2.7: Individual Rationality. A mechanism M(f,p) is individually ratio-
nal if for all bidders i € Z, all bid vectors b € B, and all valuations v;, the reported value

of outcome x € X to bidder i is greater than or equal to the payment p;((b,x))

vi(z) > pi((b, 7))

12
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Finally, the payments (both made by buyers and collected by sellers) in a mechanism
should sum up to 0. If the mechanism incurs a loss, payments need to be subsidized
from an altruistic entity. On the other hand, there might be a lack of acceptance if the
mechanism diverts part of the payments to an outside party. Instead, payments made
by the buyers should be distributed in full among the seller(s). Note that for a single

seller sq, this usually implies ps, = > ;c7 Di-

Definition 2.8: Budget-Balance. A mechanism M(f,p) is budget-balanced if the sum

of its payments equals 0.

To summarize, strong notions of strategyproofness in economic applications are usually
realized by additional payments to the bidders. Carefully designed pricing schemes are
required to compute payments that are sufficiently high without overpaying bidders
or imposing fees on participation while achieving budget-balance. Chapter 3 features
mechanisms which are strategyproof or even weakly group-strategyproof, including the

VCG mechanism, which is the best-known example of a strategyproof mechanism.

The VCG Mechanism

The Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves,
1973) is unique in the sense that it is the only strategyproof mechanism that maximizes
social welfare (Green and Laffont, 1977). In a first step, the VCG mechanism determines
an optimal (welfare-maximizing) allocation. Given the assumptions in Section 2.1 and
using binary allocation variables x;(S) to indicate the allocation of bundle S to bidder i
when z;(S) = 1, this can be formulated in the Winner Determination Problem (WDP).
The WDP is an integer linear program maximizing the social welfare subject to typical

economic constraints.

WDP(Z) =max Y > zi(S)vi(5) (WDP)
SCK i€l
s.t. Z ZmZ(S) <1L,Vke Kk (2.1a)
S:keS i€l
d o m(S) <LViCT (2.1b)
SeK
z;(S) e {0,1},VSCK,VieZ (2.1c)

13
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This standard formulation depicts an auction with a single seller and different items with
a supply of 1 each. The objective function (WDP) maximizes the sum of valuations for
assigned bundles. This is subject to the constraint of supply and demand (2.1a) to
account for limited supply while each bidder can win at most one bid (using a XOR
language, 2.1b). As mentioned before, z;(S) are binary variables (2.1c). The WDP is
a pure allocation problem which does not consider prices and can serve as a basis to

model a variety of related scenarios.

In the example depicted in Table 2.1, bidders 1 and 2 are interested in obtaining a single
item while bidder 3 wishes to acquire both. To maximize social welfare, items A and B
are allocated to bidders 1 and 2.

Item A | Item B | Items A&B

Bidder 1 | 2 0 0
Bidder 2 | O 2 0
Bidder 3 | 0 0 3

Table 2.1: Example: VCG auction

The payment that winners in a VCG auction are obliged to takes into account the stated
valuation (bid) and a discount based on the respective marginal contribution to social

welfare. Formally, the VCG payment can be defined as follows

pi “¢ = bi(S) — (WDP(T) - WDP(T \ {i})) (2.2)

where WDP(Z) is the objective function value of the WDP. Note that VCG payments
can only be computed if the removal of any single bidder still admits a feasible allocation
and might not be budget-balanced otherwise (no single-agent effect). In the example,
WDP(Z)=4(=2+2) and WDP(Z \ i) = 3,i € {1,2}. This results in a discount of 1

for both allocated bidders, generating a total revenue of 2.

While the VCG mechanism offers many desirable properties such as efficiency and strat-
egyproofness, it is no universal remedy. Firstly, it is limited to the quasi-linear setting.
This implicitly assumes that market participants can pay up to their valuations, which
is inappropriate in markets like the secondary market for airport time slots we consider
in Chapter 4. Further, it is evident that the computation of VCG payments requires
repeated solving of the allocation problem (once for the actual allocation and one addi-

tional time for each winning bidder). Depending on the problem, not even solving the
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original allocation to optimality might be tractable. Most commonly, problems solvable
in polynomial time are considered tractable, while NP-hard problems are not. If an
optimization problem can be solved in polynomial time is often determined by whether
it is convex or non-convex. An optimization problem is convex if its objective function
and its constraints are convex. Further, most convex problems admit efficient solution
algorithms (Boyd et al., 2004). However, the WDP problem is non-convex due to the set
of binary variables x;(S) (Constraints 2.1c) being inherently non-convex. In fact, even
very restricted settings of the WDP are known to be NP-hard (Lehmann et al., 2006).
Simply using an approximate allocation instead is not feasible, since in combination with
the VCG pricing rule this does not lead to a strategyproof mechanism (Lehmann et al.,
2002). As many allocation problems are NP-hard, the dependency on optimal alloca-
tions limits the applicability of the VCG mechanism in practice substantially (Rothkopf,
2007; Ausubel et al., 2006). We consider one such problem stemming from the telecom-
munications industry in Chapter 3. A similar problem arises when decisions regarding
the allocation of bidders need to be made on incomplete information. This is the case
whenever bids arrive in an online fashion; we consider an online market for road capacity
in Chapter 5.

Even if the allocation problem can be solved to optimality, coalitions can manipulate the
outcome. In the example, consider the bid on {A, B} by bidder 3. This bid is pivotal
for discounts of the other bidders. If the bid was lower or not stated, the remaining bid-
ders would receive their respective item for free, contradicting group-strategyproofness.
Finally, the winning bidders pay a total of 2 in our example, but bidder 3 would have
been willing to pay an amount of 3. Thus, bidder 3 and the auctioneer have incentives
to ignore the VCG outcome and trade among themselves. Only appropriately chosen

(core) prices can prevent such scenarios.

The Core

Even after an allocation and prices have been computed, market participants may try
to deviate. The core provides a notion of stability that prevents coalitional deviations
after the market closes. Such deviations are provoked by outcomes that a subset of
participants can improve upon. The example introduced in the previous section (Table
2.1) can serve as an illustration: Items are assigned to bidders 1 and 2 for a total cost of
2, while bidder 3 would have been willing to pay a total of 3. This scenario is depicted
in Figure 2.1.
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B1
Price B
3 -
B3
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Core
14 VCG o
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Figure 2.1: Example: the core (gray area), VCG payments (blue point), coalitional pay-
ments (red point), VCG-nearest core payments (yellow point), and bidder-
optimal payments (blue line)

Such a scenario is perceived as unfair by unallocated buyers willing to pay the demanded
prices (or more). By proposing a payment of 2.5 for both items, bidder 3 and the
auctioneer can increase their respective utilities by at least 0.5 each (Figure 2.1, red
point). We use sg to denote the (single) auctioneer and N' = Z U {s¢} to refer to the set
of bidders and the auctioneer. Also, we refer to subsets of participants as coalitions C' C
N. Note that, in deviation to the definition used for (weak) group-strategyproofness,
coalition C' may include the single seller sg. Forming a coalition can be viewed as
a coalitional game with transferable utility (Ausubel et al., 2006). In this line, we can
formally define the corresponding coalitional welfare w(C') as the sum of the transferable

utilities.

maxgexq {Xiccvj(X)} ifsoeC

0 else

YO C N, w(C) = { (2.3)

where, by X¢, we denote the set of allocations feasible for coalition C. Only coalitions
C including the auctioneer sy can actually trade; hence, the welfare is 0 if sg & C. If
beneficial deviation for a coalition of participants is possible, we consider the proposed

allocation-price combination unstable and refer to the coalition as blocking. In practice,
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stability of outcomes is essential since unstable outcomes would not endure but fall

victim to lucrative collusion. The core provides a formal concept of stability.

Definition 2.9: The Core. A core payoff vector 11 is defined as:

Core(N,w) ={I1 >0 | wN) = > u;,w(C) <Y u;, VO C N}
ieN icC

Under the standard assumption of transferable utilities, the outcome of a mechanism
is stable if a coalition’s welfare is weakly lower than the sum of transferred utilities in
the proposed outcome. This definition depicts the strong core, while the weak core only
requires the absence of coalitions where all members are strictly better off. When either
definition is satisfied, the outcome is considered core-stable. Reconsidering our example,
we can observe that assigning both items to bidder 3 would in turn be unstable against
the originally proposed distribution of items to bidders 1 and 2. It is then evident that
the suggested allocation allows for stable prices, but VCG pricing simply leads to prices

which are too low.

Setting prices to the value of the corresponding winning bid (pay-as-bid or first-price)
would give a stable outcome. In fact, using a first-price rule on a welfare maximizing
outcome always leads to a stable outcome, and hence the core is never empty for auctions
(Day and Milgrom, 2008). However, bidding strategies in first-price auctions are not
straightforward as concealing bids can increase a bidder’s margin but at the same time
lowers the probability of winning. Strategies are known for a few simple settings such
as single-item auctions (Krishna, 2009) but are hard to determine for other scenarios.

In general, first-price auctions are not strategyproof.

It has been shown that, if the VCG outcome is not in the core, no truthful, core-
selecting auction exists (Goeree and Lien, 2016). Still, core-stable outcomes can be
computed. However, since the core usually admits several outcomes, it is not obvious how
to rank outcomes, let alone choose one. Bidder-optimal core prices minimize the sum of
payments transferred to the auctioneer and have been proposed to limit the participants’
ability to manipulate the outcome (Day and Raghavan, 2007). The blue line in Figure 2.1
indicates the several different combinations of prices minimizing the seller revenue among
the core outcomes, illustrating that this still does not lead to a unique outcome in general.
Parkes et al. (2001) argue that the difference between the computed payment and the
VCG payment poses a “residual incentive to misreport” and should thus be minimized

(Figure 2.1, yellow point). Day and Cramton (2012) suggest an approach minimizing

17



2 Scientific Context

the sum of squared deviations from a reference point (e.g., the VCG point, Figure
2.1). These and closely related results have been applied to spectrum auctions (e.g., in
Cramton (2013); Goetzendorff et al. (2015)), auctions of natural resources (Cramton,
2010), and the allocation of virtual machines in cloud computing (Fu et al., 2014).
Open questions remain in regard to combinatorial exchanges for which Bikhchandani
and Ostroy (2002) have shown that, contrarily to auctions, the core can be empty. We
present results on computing welfare-maximizing core-stable outcomes in combinatorial

exchanges in Chapter 4 and introduce the necessary prerequisites in 2.3.1.

2.3 Beyond Standard Assumptions

In some applications, not all the assumptions made in traditional combinatorial auc-
tion literature translate to practice. In advertisement markets (Bichler and Merting,
2018) and markets where buyers are financially constrained (Chapter 4), utilities are
not quasi-linear. Furthermore, online markets demand prices to be computed dynami-
cally on incomplete information (Chapter 5). In both markets, the VCG mechanism is
not applicable due to the non-quasi-linear setting or incomplete information inhibiting
the computation of welfare-maximizing allocations. This section gives a short intro-
duction to these markets beyond standard assumptions, the respective literature, and

corresponding solution strategies.

2.3.1 Non-quasi-linear Markets

It is not always realistic to assume that bidders can pay up to their valuation, as in
many industries bidders are financially constrained. The market we consider in the
second project (Chapter 4) can serve as an example, as it considers the very cost intensive
airline industry. One could deal with budget constraints by having bidders not state their
valuation but the minimum out of their valuation and budget (a capped bid) instead.
However, this results in incomplete information constituting the risk of inefficient or
unstable outcomes as we show in Chapter 4. Alternatively, the mechanism might allow
bidders to state their valuations and budgets separately as done in practice for auctions
for online (Balseiro et al., 2015) and TV ads (Nisan et al., 2009). It is important to
note that in the presence of budget constraints, the assumption of quasi-linear, i.e.,

fully transferable, valuations does not hold. Thus, the VCG mechanism is inapplicable,
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and no strategyproofness mechanism can be designed (Dobzinski et al., 2012). At the
same time, the ability of individuals to influence the outcome dwindles in large markets
with many participants (Roberts and Postlewaite, 1976): Bidders become price-takers
and strategyproofness becomes a second-order objective. In this light, another design

desideratum becomes crucial: core stability.

While core-stable outcomes always exist for auctions (Milgrom, 2004), the same is not
true for exchanges. In an exchange, multiple buyers Z and multiple sellers J trade on
the same market. Stable allocations are harder to achieve here since no single, in regard
to stability pivotal, auctioneer exists. In fact, for combinatorial exchanges, the core can
be empty even in the absence of budget constraints. An example is given in Table 2.2
where two bidders compete over items A and B offered by two sellers. Whenever a single
item is allocated to bidder 1, bidder 2 can form a coalition with the sellers by offering
a price > 2 for the item assigned to bidder 1. However, allocating the package AB to
bidder 2 is not stable either, as there will always be (at least) one item with a price
< 2, i.e., an opportunity for bidder 1 to outbid bidder 2 on this item. Due to the cyclic
relationship of the blocking coalitions, no stable outcome can be computed and the core

is empty.

Item A Item B Items A&B
(Seller 1) | (Seller 2) | (Sellers 1&2)
Bidder 1 | 2 2 0
Bidder 2 | 0 0 3

Table 2.2: Example: Combinatorial exchange with empty core

Evidently, assigning trivial budgets (up to the bidders’ respective valuations) gives an
example where the core is empty for a combinatorial exchange with budget constraints.
Still, in general, one cannot simply ignore budgets and draw conclusions for the scenario
with budget constraints. Bichler and Waldherr (2019) have shown that the core can
be empty for one scenario but non-empty for the other. For illustration, we restate the
proof of Bichler and Waldherr (2019) below:

Assigning the bundle AB to bidder 1 is welfare-maximizing and stable when ignoring
budgets. However, the core is empty when taking budgets into consideration. The allo-
cation problem in combinatorial exchanges without budgets is already NP-hard, but it
has been shown that computing welfare-maximizing core-stable solutions for combinato-
rial exchanges with budgets constraints is even Zg—hard (Bichler and Waldherr, 2019).
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Item A Item B Items A&B
Sellers 1&2) | Budgets

(Seller 1) | (Seller 2) | (
Bidder 1 | O 0 10 3
Bidder 2 | 4 4 0 2

Table 2.3: Example: Combinatorial exchange with non-empty core that is empty when
considering budgets (taken from: Bichler and Waldherr (2019))

This complexity class is one step above NP in the polynomial hierarchy, i.e., if there was
an oracle that could solve problems in NP in constant time, the problem would still be
NP-hard. Motivated by an application in airport time slot markets, our second project
(Chapter 4) is concerned with the ¥¥-hard problem of computing welfare-maximizing
core-stable outcomes in combinatorial exchanges with budget-constrained bidders. De-
spite its inherent complexity, we can solve instances of relevant size using an approach

based on bilevel programming.

Bilevel Programming

Only few solution strategies exist for problems in the complexity class of ¥5. Mixed-
integer bilevel linear programs pose one possible way to formulate problems in this class.
A bilevel linear program is an optimization problem constrained by another optimization

problem. The general form of a mixed-integer bilevel linear problem is depicted below.

mingex F(x,y) (2.4a)
st. G(z,y) <0 (2.4Db)

minyey f(x,y) 240

s.t. g(z,y) <0 (2.4d)

where F, f : R» x R™ — R G : R* x R™ — RY,g : R® x R™ — RP are continuous,
twice-differentiable linear functions and X,Y are sets of decision variables, which can
be continuous or integer. One can think of bilevel programs as a game of leader and
follower: The leader solves the upper level (UL) problem with objective function 2.4a
subject to constraints 2.4b and variables x. The UL variables are then fixed in the lower

level problem (LL) (the follower “observes” the leader’s decision). Subsequently, the
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follower optimizes objective 2.4c given x and constraints 2.4d. The decision variables y
of the LL are then passed back to the leader. Finally, the follower’s decision is reflected
in the objective function or the constraints of the UL, worsening the objective function

value or rendering the solution infeasible.

Depending on whether variables are continuous, integer, or both in the respective levels,
different solution strategies can be employed. If the LL is purely continuous, the problem
can be re-formulated into a single level problem. This is most often done by replacing
the LL by the respective Karush-Kuhn-Tucker (KKT) conditions (optimality conditions)
in the UL (Karush, 1939; Kuhn and Tucker, 2014). If the linking variables, i.e., variables
that appear in both the UL and the LL, are integer, the convex hull of the feasible set
is closed, and at least one solution exists. Fischetti et al. (2017) and Tahernejad et al.
(2017) developed algorithms based on this observation. The mixed-integer case, where
both levels have integer as well as continuous variables, has received less algorithmic
proposals. Depending on the context, meta-heuristics such as differential evolution (Koh,
2013) or tabu search (Rajesh et al., 2003) could be applied, but the non-deterministic
nature of these approaches rules them out for most applications in markets. They
also experience surprisingly long runtimes if the LL is hard to solve since all randomly
generated points need to be evaluated, which requires solving the LL repeatedly. A
single-level reformulation for special cases where the LL is independent of the UL was
suggested by Dempe and Franke (2014). For the same class of problems, Jeyakumar et al.
(2016) suggested an algorithm based on semidefinite relaxations. There is, however, only

little literature on the general case.

The lack of algorithms for general mixed-integer bilevel programming is arguably due to
the fact that many techniques known to be helpful in the context of solving single-level
mixed-integer programs do not translate to the bilevel case (Dempe, 2002). Relaxing
integer variables in the LL does not lead to a lower, but rather an upper bound of the
bilevel (minimization) problem. Also, constructing a convergent lower bounding problem
is notoriously difficult (Mitsos and Barton, 2006). Finally, partitioning (branching on)
the space of the LL can lead to invalid bounds and the selection of infeasible solutions.
It has been argued that algorithms should always consider the whole LL domain (Mitsos
et al., 2008), but literature on branching the LL is sparse.

When solving general mixed-integer bilevel programs, one can adopt one of two per-
spectives if multiple optimal solutions for the LL exist. In the optimistic perspective,

which the majority of research follows, one assumes that out of the LL-optimal solutions
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the solution leading to the best UL objective function value is returned. Contrarily,
one believes the worst LL-optimal solution (in terms of UL objective function value)
is chosen in the pessimistic perspective (Bard, 2013). Based on the optimistic formu-
lation, Kleniati and Adjiman (2014) developed a branch-and-sandwich algorithm for
general, mixed-integer (non-linear) bilevel programs. Their algorithm allows branching
in both (upper and lower) domains using an elaborate system of lists to manage nodes.
Improvements have been made over a series of subsequent papers (Kleniati and Adji-
man, 2015; Paulavi¢ius and Adjiman, 2020) with the computational studies available in
Paulavi¢ius et al. (2016) and Paulavi¢ius et al. (2020).3 The approach heavily relies on

overestimations and reformulations and is fairly challenging to implement.

A simpler method was proposed by Zeng and An (2014). Their algorithm further con-
straints the UL problem in every iteration by adding KKT conditions for the LL problem.
However, KKT conditions are only applicable if the problem they are based on is convex,
and thus values of integer variables need to be fixed in the LL. In the worst-case, this
deteriorates to an enumeration approach but has shown promising results in a compu-
tational study (Zeng and An, 2014). It also stands out due to its simplicity and mild

assumptions, making it a very applicable framework we use in Chapter 4.

2.3.2 Online Markets

In the context of combinatorial auctions, it is standard to assume that all bids are
available when the outcome is computed, but this is not necessarily the case. In fact,
our third project (Chapter 5) is concerned with an application in congestion pricing
where drivers arrive one by one. We refer to problems where at the decision point only
incomplete information is available as online problems. Dynamic pricing constitutes a
prominent example, as many economic applications can be related to this (e-commerce,
booking of hotels or flights, and car rental) (Gallego and Van Ryzin, 1994). In this

problem, a seller aims to maximizes revenue over a finite time horizon given a finite

3Just recently, an implementation of the branch-and-sandwich algorithm was made available
in the Minotaur toolkit: https://wiki.mcs.anl.gov/minotaur/index.php/Running Binaries
(Paulavicius and Adjiman, 2019). Our work in Chapter 4 precedes this implementation.
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2.3 Beyond Standard Assumptions

inventory of items. The corresponding offline problem can be modeled as slight variation
of the WDP:

max Z Zmi(S)vi(S’) (2.5a)

SCK i€l
s.t. Z Z a;x;(S) < c(k),Vk € K (2.5Db)
SCK i€z
doai(S)<LViCT (2.5¢)
Sek
z;(S) e {0,1},VSCK,Viel (2.5d)

where c(k) € R{ denotes the inventory available of item k € K and vector a; € {0,1}™
denotes the items requested in bid x;(S). In the online problem, inventories c(k) are
known at the beginning for all m items k € KC, but the n requests (bids), i.e., coefficients
v;(S) and columns a; of the constraint matrix, arrive one by one. The corresponding
decision on accepting or rejecting this request is due immediately: the seller needs to
choose x;(S) such that the objective function value is maximized at the end of the
time period while adhering to inventory constraints. Usually, the decision is based on
availability of the requested items and/or a comparison of the coefficient v;(S) against
some threshold value (e.g., a sum of item prices) which is learned as requests arrive over
time (Agrawal et al., 2014).

To assess the performance of online algorithms, two measures have developed mostly
independently in fields closely related to online linear programming (Andrew et al.,
2013). Metrical task systems (MTS) decide on a sequence of actions in an online fashion,
incurring costs for the actions themselves and switching costs between them (defined on
a metric), aiming to minimize the total costs. The predominant measurement in MTS
is the competitive ratio, i.e., the ratio of the solution computed by the online algorithm
and an optimal dynamic offline solution (e.g., Coté et al. (2008)). An optimal dynamic
offline solution is computed on the complete set of requests (including their ordering)

and can thus be determined optimally.
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Definition 2.10: Competitive Ratio. The competitive ratio of an online allocation

algorithm fonline : B — X is defined as

fonlz'ne (b)

Shi (2.6)

where OPT} is an optimal dynamic offline solution.

Online convex optimization (OCO), where action spaces and valuation (traditionally
considered as cost) functions are convex, does not consider switching costs. Furthermore,
it is usually assessed using regret instead of the competitive ratio (e.g., Herbster and
Warmuth (1998)). Regret is defined as the difference between an optimal static offline
solution and the solution computed by the online algorithm. Note that while an optimal
static offline solution has knowledge of all requests at the point of decision (offline), the
action cannot be changed in between requests (static). For a maximization problem, it

can be formalized as follows:

Definition 2.11: Regret. The regret of an online allocation algorithm fonpine : B — X
is defined as
Regret = OPT; — fontine(b) (2.7)

where OPTY is an optimal static offline solution.

When analyzing online optimization problems under the traditional assumption of worst-
case input (Borodin and El-Yaniv, 2005), the performance bound is very pessimistic as
only O(1/n) of the optimal objective function value can be attained by any online algo-
rithm (Babaioff et al., 2008). The proof can be sketched in the following way: for a single
resource with an inventory of 1 and a sequence of requests K%, K', K2, ..., K™ 1,1,...,1
with K >> n, m can be chosen in such a way that any algorithm will choose a request
other than K™ and thus achieves an object function value of at most 1/n of the optimum.
On the other hand, assuming independent and identical distributed (i.i.d.) requests ac-
cording to a known distribution, the optimal strategy can be determined in polynomial
time (Babaioff et al., 2008).

In the search for a middle ground between worst-case analysis and known distribution,
two important models have emerged: stochastic input and random permutation. In
the stochastic input model, one assumes that columns and corresponding coefficients
are i.i.d. drawn from an unknown distribution. In contrast, the random permutation

model assumes columns and coefficients arriving in random permuted order with uniform
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distribution over all permutations. Note that values can be chosen to be adversarial in
the random permutation model. In particular, the random permutation model is weaker
in its assumptions (Mehta, 2013) and subsumes the stochastic input model (Babaioff
et al., 2008). The random permutation model is thus considered more suitable to depict
the possibility of heterogeneous, non-stationary, or unfavorable demand (Li et al., 2020;
Agrawal et al., 2014).

There are algorithms that (in expectation and under the assumptions of one of the
models) achieve a constant-factor competitive ratio (Lin et al., 2012) or sub-linear regret
(“no regret”) (Zinkevich, 2003) for certain problems, but Andrew et al. (2013) have shown
that no algorithm can achieve both. Recently, Agrawal et al. (2014) have established that
the necessary right hand-side condition for a (1—¢)-competitive algorithm is ¢ € Q(lof—Qm)
The sufficient part has been completed in subsequent work by Kesselheim et al. (2014)
and Gupta and Molinaro (2014) who developed (1 — €)-competitive algorithms based on
the necessary condition. In a similar fashion, Li and Ye (2019) have investigated regret
under the condition of the right-hand side growing linearly in the number of requests

and derived a regret bound of O(log(n)log(log(n))).

In online integer linear programming, the action space is not convex and possibly very
limited if decision variables are binary. In dynamic pricing, the action space usually
only contains the binary decision to either accept or reject the request. The standard
definition of regret stated above becomes less meaningful then, as an optimal static offline
solution might reject every request (to not violate capacity constraints). To overcome
this limitation, expected dynamic regret is used instead (e.g., Li et al. (2020)). Departing
from the definition of regret used in OCO, expected regret is defined on the optimal

dynamic offline solution and, eponymously, on (worst-case) expectation:

Definition 2.12: Expected Regret. In online linear programming, expected regret of

an online algorithm foniine : B — X is defined as
marpe= (EP [OPT; - fonline]) (2'8)

where P is an input distribution, Z is the set of input distributions according to the
assumptions of the model, Ep is the expectation defined on P, and OPT} is an optimal

dynamic solution.

Since, in the context of online integer linear programming, solutions are not feasible in

general, constraint violation has been established as an additional metric.
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Definition 2.13: Constraint violation. Constraint violation of an online linear pro-
gram is defined as the 2-norm on the constraint matrix A, the decision vector x, and the

right-hand side c:
1(Az = ¢) 7|2 (2.9)

where X enotes € positive part o a junciion ) an Zlll2 %S e uchtraean
h * denotes th iti t ti d is the Fuclid

norm, i.e., ||z|||l2 = /D1 |xi|? for a vector x of dimension n.

Finally, the capability to handle large inputs is often considered crucial in online algo-
rithms (Agrawal et al., 2014; Li et al., 2020). Li et al. (2020) developed an algorithm
which can handle large inputs due to fast computation of updates, achieves expected
(dynamic) regret and constraint violation of O(m+/n), and is minimal in its assumptions.

We apply this algorithm to a problem in congestion management in Chapter 5.

2.4 Real-World Applications

In this section, we introduce the real-world applications on which the following chapters
are based on. We give a brief introduction to the respective application, provide a short

literature review, and point out complications of practical relevance.

2.4.1 Steiner Trees in Telecommunications

The telecommunications industry generates revenue by operating and providing access to
networks such as the mobile network, landlines, or the Internet. The perceived service
quality heavily depends on network reliability and speed, making efficiently designed
networks a necessity. A typically network design problem in telecommunications is to
establish connectivity between essential nodes at minimal cost, while the inclusion of
further nodes is optional. Motivated by a real-world application (subject to NDAs), we
consider a reverse auction where a single auctioneer buys connections between nodes
from suppliers with quasi-linear utilities. Thus, strategyproof mechanisms are essential

to prevent manipulation in this setting.

The underlying allocation problem corresponds to the Steiner minimum tree (SMT)
problem, considered “the combinatorial optimization problem in telecommunications”
(VoB, 2006). Outside of the game-theoretical setting, the SMT problem has received a

lot of attention as an optimization problem with various industry applications (Cheng
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and Du, 2013). In general, the SMT problem is NP-hard to approximate within 96,/95
of the optimal solution (Chlebik and Chlebikové, 2008) and is in fact one of Karp’s 21
NP-complete problems (Karp, 1972). Researchers suggested exact approaches based on
dynamic programming (Dreyfus and Wagner, 1971; Erickson et al., 1987; Fuchs et al.,
2007; Molle et al., 2006) and branch-and-cut (Lucena and Beasley, 1998; Chopra et al.,
1992; Koch and Martin, 1998). As the associated runtimes are exponential in the number
of terminals, these algorithms are impractical when inputs grow large. Incidentally, this

rules out application of the VCG mechanism for practical applications.

Numerous approximations for the SMT problem are available (Berman and Ramaiyer
(1994); Zelikovsky (1996); Promel and Steger (2000); Karpinski and Zelikovsky (1997),
and (Hougardy and Promel, 1999)) but cannot guarantee strategyproofness in combina-
tion with VCG payments, and despite the need for strategyproof mechanisms in network
design markets, there is only little prior work (Guala and Proietti, 2005). Guala and
Proietti assume single-minded bidders, i.e., suppliers that offer exactly one edge. We
adopt this assumption, which is realistic in the telecommunications setting, and, building
on results by Myerson (1981), provide further strategyproof approximation mechanisms
for the SMT problem. Additionally, we consider deferred-acceptance auctions (DAA), a
general class of weakly group-strategyproof mechanisms. There is no known approxima-
tion bound for DAAs on the SMT problem, and the stronger notion comes at the price
of additional payments to the suppliers. However, the results of a computational study
show that simple DAA variants find better allocations than dedicated SMT approxima-
tions, and the premium associated with weak group-strategyproofness is relatively low
(Chapter 3).

2.4.2 Airport Time Slots

Prior to (and most likely after) the COVID-19 pandemic, demand at virtually all major
European airports exceeded available capacities. Different mechanisms battling airport
congestion have been installed, with the IATA slot allocation system being the most
widely used (Ulrich, 2008). Under IATA regulations, time slots (rights to take-off or
land at a certain airport at a certain time) are assigned biannually to airlines (primary
markets). Grandfathering rights enable incumbents to keep the market share of entrants
low by blocking them from acquiring a meaningful number of slots. Thus, primary mar-
kets are currently dominated by grandfathering rights, and although secondary markets

(trades among airlines) with monetary transfers are permitted in the EU, the acceptance
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has been low. While there is consensus that current practices are inefficient, suggestions
for improvement range from enhancing allocations in primary markets (Zografos et al.,
2012; Corolli et al., 2014; Pellegrini et al., 2017) to abolishing grandfathering rights
altogether (Ewers, 2001). Since the IATA clearly stated “[they] would oppose any con-
sideration of market-based primary slot allocation mechanisms” (Organization, 2016),

focusing on secondary markets seems to be the more promising way going forward.

Secondary markets have been identified as a beneficial addition to primary allocations
(Ltd., 2001; MacDonald, 2006) to compensate for slot complementarity problems (Madas
and Zografos, 2013), but the current implementation is hindered by the need of bilateral
negotiations. Recent proposals have sought to overcome this by implementing combi-
natorial exchanges (Pellegrini et al., 2012). In our second project, we propose a combi-
natorial exchange with budget constraints, which have not been previously considered
despite the cost intensity of the airline industry (Chapter 4). Under budget constraints,
utility functions are no longer quasi-linear, as only part of the utility can be transferred
by payments. As the VCG mechanism is designed for quasi-linear markets, it is not
applicable here. In fact, no mechanism can achieve strategyproofness in this setting
(Dobzinski et al., 2012). We instead aim for core stable outcomes to ensure resilience
of the outcome after the market closes. Computing welfare-maximizing core-stable out-
comes in combinatorial exchanges is ¥5-hard (Bichler and Waldherr, 2019), which is
usually considered intractable. We use a bilevel mixed-integer linear program to model
the problem and apply an algorithm by Zeng and An (2014) to solve it. We replace
the general purpose KKT constraints used in the algorithm by a set of constraints rep-
resenting the sum of transferable utility (similar to Definition 2.9). This yields large
performance improvements, which permit solving instances of relevant size despite the
inherent complexity of the problem. Further results underline the importance of bud-
get constraints by providing evidence that solutions are not welfare-maximizing or even

unstable when budgets are ignored.

2.4.3 Congestion Pricing for Road Networks

Urban areas all over the world suffer from congested roads, especially on highways and
in city centers. On a societal level, this leads to detrimental effects on the environment
and the economy. In their 2019 report, the Texas Transportation Institute reports a 15%

increase in yearly delay per car commuter and even a 19% increase in congestion cost
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between 2012 and 2017 in the USA.# Congestion is a concise example of the tragedy of the
commons. In this allegory, more and more people make use of a free resource (a road)
until a state of overuse (congestion) is reached. Consequently, the usefulness (travel
speed) of the resource either decreases significantly or is even nullified. In other words,
free-riding behavior by individuals does not take into account the caused externalities
regarding congestion, making society as a whole worse off. Marginal social pricing is
based on the idea that the externalities a participant causes should be paid for by
that participant (Pigou, 1920). While not specific to it, this laid the foundation for
congestion pricing, with Nobel laureate William Vickrey (1952) being the first to argue

in its favor.

Modern congestion pricing schemes differ in two main dimensions: how payments are
registered and how prices are adapted. Along the first dimension, schemes defined on
facilities, cordons, areas, and distance can be distinguished. In a facility-based scheme,
simple entities such as single roads, tunnels, or bridges are priced (e.g., the Channel
Tunnel®). Cordon-based schemes require payment whenever a driver crosses a cordon
(in- and/or outbound). For example, several Norwegian cities implemented cordon-
based systems and Milan introduced one in 2008 (mainly to reduce emissions) (Rotaris
et al., 2010). Similarly, pricing mechanisms that are based on an area (defined by either
natural or artificial borders) charge customers for entering the area and starting trips in
it. The London congestion charge in the central city area provides a practical example.b
Finally, distance-based schemes charge travelers based on the distance traveled on priced
facilities. Many European countries introduced such schemes for heavy vehicles with the
goal of recovering cost related to road erosion (de Palma and Lindsey, 2011). From a
theoretical point of view, road-level prices should be preferred since they correspond to

the ideal of Pigouvian prices (de Palma and Lindsey, 2011).

Congestion pricing schemes can further be distinguished by responsiveness of prices.
Static schemes charge pre-determined prices at all times and do not adapt prices based
on time of day and/or congestion levels. In this class of pricing schemes, prices can
change regularly but always follow a pre-determined pattern that is non-responsive to

congestion. Examples include the @resund Bridge” (no differentiation) and the London

‘https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf, accessed:
02.11.2020

Shttps://www.eurotunnel . com/uk/, accessed: 28.11.2020

Shttps://www.bbc.com/news/uk-england-london-52677059, accessed: 02.11.2020

"https://wuw.oresundsbron.com/en/prices, accessed: 30.11.2020
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2 Scientific Context

congestion charge (time-of-day differentiation only). Contrarily, responsive (dynamic)
pricing schemes adopt prices based on the current traffic situation. These schemes are
more potent than non-responsive schemes, as they can reproduce static behavior while
also providing options to adapt prices more freely based on demand. In particular, they
more accurately represent marginal social pricing (Cheng et al., 2017). So far, only
trials of dynamic pricing schemes have been implemented in practice (Cramton et al.,
2017). Finally, predictive pricing schemes set prices according to predicted instead of
observed demand. However, predictive pricing schemes have only been considered in
very restricted setting with one road (Yin and Lou, 2009; Lou et al., 2011; Lu and Zhou,
2014), as the field is still in its infancy. Thus, dynamic pricing schemes represent the

most practical way to reduce congestion in major cities.

While trial runs in dynamic road pricing have shown promising results (Cramton et al.,
2017), implementing network-wide dynamic pricing schemes remains an open question
(Cheng et al., 2017). To adhere to marginal social pricing, prices need to be updated in
real-time. Thus, fast price updates are obligatory although information regarding future
demand is sparse. Due to the online nature of the problem, the VCG mechanism cannot
be applied, as no welfare-maximizing allocation can be computed based on incomplete

information.

Under the assumption of quasi-linear utility, computing prices such that an (approxi-
mately) welfare-maximizing fraction of the drivers is admitted to the road is similar to
pricing scarce resources in order to maximize revenue. Thus, the optimization problem
can be formulated as an online linear program where drivers arrive one by one and road
capacity is the scare resource (the online variant of 2.5a). In our third project, we apply
an algorithm by Li et al. (2020) to solve the online linear programming formulation
(Chapter 5). The algorithm achieves expected regret of O(m+/n) and O((m+log n)/n)
in the stochastic input and random permutation model, respectively. In a computa-
tional study on the traffic simulation SimMobility (Adnan et al., 2016), we show that
dynamic road prices computed by an online linear program can more effectively reduce
congestion and achieve higher welfare than static prices. Importantly, a large share of
car trips is admitted, i.e., the prices lead to more efficient rather than less traffic flow by
discouraging drivers through high prices. The model only assumes quasi-linear utilities,
known road capacities, and availability of predictions for the number of requests in a

time interval and thus provides valuable insights for practical applications.
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1 Introduction

There is a significant literature in the design of approximation algorithms for
computationally hard problems (Vazirani 2013). Algorithmic mechanism design
extends this literature in an important way (Nisan and Ronen 1999). The goal of
approximation mechanisms is the design of computationally efficient algorithms
which take into account the incentives of participants as well. These mecha-
nisms should run in polynomial time and satisfy strong game-theoretical equi-
librium solution concepts such that bidders have incentives to reveal their valu-
ations truthfully and the auctioneer can determine the optimal allocation or one
that approximates the optimal solution. This has led to a rich literature study-
ing approximation mechanisms for different types of NP-hard resource alloca-
tion problems. Typically, designers of approximation mechanisms aim for domi-
nant-strategy incentive-compatibility or strategyproofness. Such mechanisms are
prior-free, and truthful bidding is a dominant strategy for individual bidders.

Network procurement is a prime application where auction mechanisms play
an important role in business practice. A telecom is interested in connecting sev-
eral sites or terminals via a cost-minimal set of edges connecting vertices in a
network. The terminals constitute a subset of all vertices in the network, and sup-
pliers can provide individual edges in the network at a certain cost. The mini-
mum Steiner tree problem is a well-known model of this network procurement
problem, and even with complete information about suppliers’ costs, finding a
cost-minimal solution is A/P-hard. The minimum Steiner tree problem on graphs
is one of the most well-known NP-complete problems (Karp 1972), and central
in various types of network design problems, which have received significant
attention in operations research (Xu et al. 1995; Oncan et al. 2008; Contreras and
Fernandez 2012).

In the procurement environment, the cost of establishing a link is the private
information of its supplier. Each supplier wants to maximize her payoff, i.e. her
bids minus their private costs for setting up the connection. In such an auction,
the auctioneer wants to set incentives for bidders to reveal their costs truthfully.
It is well known that the Vickrey—Clarke—Groves (VCG) (Vickrey 1961; Clarke
1971; Groves 1973) mechanism is the only quasi-linear mechanism which max-
imizes social welfare and is strategyproof (Green and Laffont 1977). Still, the
resulting discounts can be manipulable by coalitions of suppliers, a property
which can well be a problem in procurement. This means the VCG mechanism
1s not group-strategyproof. In addition, the VCG mechanism is no longer strat-
egyproof if the allocation does not maximize social welfare, i.e. if the allocation
cannot be solved exactly. Since the minimum Steiner tree problem is NP-com-
plete, its optimal solution, which corresponds to the maximally achievable social
welfare, cannot be expected to be obtained in reasonable time.

If the allocation cannot be computed optimally, but only approximately, then
the VCG mechanism loses this strong game-theoretical property (Lehmann et al.
2002). This paper analyzes several well-known approximation algorithms for the
minimum Steiner tree problem with respect to their implementability in settings
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where the edges of the graph are strategic agents. Based on well-known theory
from mechanism design, we verify that some of these approximation algorithms
can be extended to strategyproof mechanisms, while others are not.

Motivated by the Incentive Auction of the US Federal Communications Commis-
sion (FCC), Milgrom and Segal (2019) and Leyton-Brown et al. (2017) recently pro-
posed deferred-acceptance auctions (DAAs), a class of greedy algorithms which are
weakly group-strategyproof for bidders with single-dimensional types. This means
even a coalition of bidders cannot manipulate profitably via deviations from truthful
bidding, which makes them robust against collusive bidding strategies. This is a very
desirable property in many applications. Also, a deferred-acceptance auction can be
implemented both as a sealed-bid and as a clock auction.

An important question is whether these strong incentive properties are at the expense
of solution quality, i.e. they might lead to low allocative efficiency. Diitting et al. (2017)
derived worst-case approximation ratios for two important problem classes. Still, for
most problems no worst-case approximation ratios have been proven. Interestingly,
experimental analysis of the specific allocation problem in the US FCC Incentive Auc-
tion showed very high solution quality on average (Newman et al. 2017). In their simu-
lations, which focused on the efficiency of the reverse auction, the reverse clock auc-
tion achieved highly efficient solutions. The specific scoring rule by the FCC played an
important role in the solution quality and the payments computed. The allocation prob-
lem in the Incentive Auction is special, and it is not clear whether one could achieve
high average efficiency with a DAA also for other problems.

We perform a thorough computational study in which we compare DAA variants to
more sophisticated approximation mechanisms for the Steiner minimum tree problem.
The results show that in general, the DAA (with an adequately chosen scoring function)
results in high solution quality, but that in environments with a very sparse network and
few terminals, primal-dual algorithms or Mehlhorn’s algorithm is better. All approxi-
mation algorithms and heuristics were computed within only two minutes on average,
while the computation times for exact solutions with a Vickrey—Clarke—Groves pay-
ment rule are extensive and took more than 18 hours on average for the larger instances.
The revenue is lowest in the Vickrey—Clarke—Groves mechanism. The DAA variants
led to higher payments for the buyer, which can be seen as a premium paid for group-
strategyproofness, i.e. its robustness to collusion. Our empirical results illustrate the
order of magnitude of these trade-offs.

In Sect. 2, we introduce related literature, before we introduce the minimum Steiner
tree and relevant definitions in Sect. 3. In Sect. 4, we analyze the implementability of
well-known approximation algorithms for the minimum Steiner tree problem, and a
critical payment scheme, before we introduce deferred-acceptance auctions. Then, in
Sect. 6 the results of numerical experiments based on the SteinLib are presented.

2 Related literature
The minimum Steiner tree problem has many important applications in a variety

of fields. Examples include biology (phylogenetic trees), the design of integrated
circuits, and it occurs as a special case or subproblem in many other problems in the
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field of network design (single-sink rent-or-buy, prize-collecting Steiner tree, single-
sink buy-at-bulk). Due to its relevance, the problem received a lot of attention and
different classes of algorithms emerged.

Approximation algorithms based on distance networks were proposed by Taka-
hashi and Matsuyama (1980) and Kou et al. (1981). Mehlhorn (1988) developed a
faster variant of the latter algorithm. All algorithms in this class achieve an approxi-
mation ratio of 2, which is also achievable by means of primal-dual algorithms, see
e.g. Goemans and Williamson (1995). Loss-contracting approximations are another
class of algorithms studied in the context of the minimum Steiner tree problem.
This approach has been improved in a series of papers. The algorithm due to Rob-
ins and Zelikovsky (2005) currently reaches the best approximation ratio of 1.55.
Byrka et al. (2010) proposed a randomized technique that achieves an approximation
ratio of [n(4) + ¢, i.e. 1.39 in the limit. While the algorithm can be derandomized
to obtain a deterministic approximation algorithm with polynomial time complex-
ity, the polynomial and constants required to reach the approximation factor of 1.39
result in a runtime which is not feasible in practice. In our analysis, we start with the
best known approximation algorithm by Robins and Zelikovsky (2005), before we
analyze the approach by Mehlhorn (1988), and primal-dual algorithms (Goemans
and Williamson 1995). These are arguably the most prominent approaches to the
minimum Steiner tree problem in the literature.

We focus on the design of approximation mechanisms, i.e. approximation algo-
rithms that can be implemented in dominant strategies. The field of algorithmic
mechanism design has made substantial progress in the past years, and there are
general frameworks to achieve truthfulness with randomized approximation mech-
anisms, and deterministic approximation mechanisms for specific problems. For
example, a well-known black-box method to convert approximation algorithms for
any packing problem into strategyproof mechanisms is the framework by Lavi and
Swamy (2011), which is a randomized approximation algorithm.

Yet randomized approximation algorithms are often not acceptable in industrial
procurement. Unfortunately, as of now there is no general framework to transform
deterministic approximation algorithms into strategyproof mechanisms. However,
there exist quite general approaches when additional conditions on bidders’ valu-
ations are met. Single-mindedness has received most attention in the literature on
combinatorial auctions (Lehmann et al. 2002). It means that bidders are only inter-
ested in one specific subset of items (package). This can be a reasonable assumption
for many real-world markets, and it is a very good starting point for our analysis of
strategyproof approximation mechanism for the minimum Steiner tree problem on
graphs. In the context of network procurement, we talk about bidders with single-
dimensional types, which means each supplier only having access to a single link
which she can sell.

Mu’alem and Nisan (2008) extended the framework of Lehmann et al. (2002)
and presented conditions for approximately efficient and strategyproof mechanisms
and single-minded bidders. Apart from this, numerous approximation mechanisms
have been developed for specific algorithmic problems such as parallel scheduling
and maximum flow problems (Archer and Tardos 2001), or graph traversal prob-
lems (Bilo et al. 2007). Interestingly, in spite of the importance of the minimum
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Steiner tree problem, it has received very little attention in the literature on algorith-
mic mechanism design so far, with the only prior work being due to Guala and Proi-
etti (2005). They present a distance-network-based approximation mechanism which
draws on the ideas of Takahashi and Matsuyama (1980).

We are particularly interested in the new class of deferred-acceptance auctions,
which were introduced by Milgrom and Segal (2019) in the context of the Incentive
Auction design for the US Federal Communications Commission (Leyton-Brown
et al. 2017). Little is known so far about the solution quality deferred-acceptance
auctions as compared to other deterministic and strategyproof approximation mech-
anisms in general. Diitting et al. (2017) is an exception, and they discuss approxima-
tion ratios of deferred-acceptance auctions for knapsack auctions as well as general
combinatorial auctions with single-minded bidders. Recently, deferred-acceptance
auctions have been generalized by Gkatzelis et al. (2017) for non-binary settings
in which bidders do not simply win or lose but receive some level of service (e.g. a
number of items awarded in a multi-item auction).

3 Notation and definitions

Let G = (V,E, c) be a weighted, connected graph, where c, is the cost of each edge
e € E. For a subset of edges F' C E, the cost of the edge-induced subgraph is defined
by ¢(F) = Y, ¢, A spanning tree of G is a subset of edges of E such that the
resulting edge-induced subgraph is connected, cycle-free and contains all vertices V.
The minimum spanning tree, denoted by MST(G), is a spanning tree where the sum
of the costs of its edges is minimal in comparison with all other spanning trees.

The minimum Steiner tree problem on a connected graph G = (V, E, ¢) is defined
as follows. For a subset of vertices K C V called terminals, any tree spanning K is
called a Steiner tree. Any vertex in a Steiner tree which is not a terminal is called a
Steiner point. We refer to the set of all Steiner trees over G as StT(V, E). The objec-
tive then is to find a minimum cost Steiner tree.

Let Gy be the complete graph induced by the vertex set V, i.e., a complete
weighted graph G, = (V, Ey,, ¢y,), where each edge cost equals the cost of the short-
est path in G between the two adjacent vertices of that edge. Gy, is then a metric
graph satisfying the triangle inequality. We call Gy, the distance network of the
graph G. Likewise, Gy denotes the distance network induced by the terminal set K,
Gy = (K, Eg,cg). Note that Gy € Gy, as K C V.

In the following, we describe the design of mechanisms for the minimum Steiner
tree problem. We consider a set of bidders N, where bidders i € N have single-
dimensional types, i.e. each bidder i only provides one specific single edge e;. With
slight abuse of notation, we denote with c; the true cost of bidder i while c refers to
the corresponding tuple (c;);cy taken over all bidders. Denote with B; the domain
of bids, i can report as her cost for edge ¢;, e.g. B; = R,. B is defined as the Car-
tesian product []..y B;. For a single-dimensional bidder i, there is a unique and
publicly known edge e; € E such that her true private cost is c; only for edge e,
while for all other edges e; # e, her true private cost is co. Given a vector of reported
bids b € B with b = (b;), the expression b_; denotes the bid tuple without the i-th
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entry, b_; = (bj)jeE\ (i and (¢;, b_;) denotes the bid tuple where the i-th entry of b is
replaced by c;, 1.e., bidder i reports her true cost.

A deterministic mechanism M = (f,p) for the minimum Steiner tree prob-
lem over vertices V and edges E is defined by a deterministic allocation function
f B —= StT(V,E) and a payment scheme p; : BX StT(V,E) — R for each bidder
i. Given the bidders’ reported bids b € C, the mechanism M = (f, p) computes a
Steiner tree f(b) and pays each bidder i a payment of p,(b,f(b)). In an approximation
mechanism, the allocation function fis implemented via a deterministic approxima-
tion allocation algorithm 4. A mechanism with an approximation allocation algo-
rithm A achieves an approximation ratio of » for minimum Steiner tree if

nax SOPTO))
beB  c(A(b))

where OPT(b) denotes a welfare-maximizing allocation (i.e. an optimal minimum
Steiner tree given costs b), c(OPT(b)) the corresponding social welfare (i.e. cost of
the Steiner tree), and c(A(b)) the welfare achieved with the approximation algorithm
A.

Since bidders are self-interested, their reported bids » do not necessarily reflect
their true costs c. Instead, bidders try to maximize their quasi-linear utilities u;, 1.e.,
payment received minus true cost: u;(b) = p;(b,f(b)) — c;. As a result, a strategy-
proof mechanism must offer bidders some incentives to reveal their true costs.

Definition 1 (Strategyproofness) A mechanism M = (f, p) is strategyproof if for
all bidders i € E and all reported bid tuples b € B it holds that bidder i has a weakly
higher payoff by telling the truth:

u,(c;,b_;) > u;(b)

Then, a bidder cannot make herself better off by not telling the truth about her
costs. We also consider the stronger criterion of weak group-strategyproofness,
where groups of bidders cannot make themselves better off by colluding.

Definition 2 (Weak Group-Strategyproofness) A mechanism M = (f, p) is weakly
group-strategyproof if for every set of bidders I C E and all reported bid tuples
b € B it holds that at least one bidder i € E has a weakly higher payoff by telling the
truth:

u,(c;,b_;) = u(b)

In other words, in a weakly group-strategyproof mechanism it is impossible for a
group of bidders to find alternative (non-truthful) bids that make all members of the
group strictly better off.

We assume w.l.o.g. that for any two bidders i, j with i # j, itis ¢; # e;. If there are
multiple bidders providing the same edge, we only consider the lowest reported bid
for the allocation algorithm (though, of course, we consider all bids for the payment
scheme). So from now on, we assume i=e;. To avoid monopoly, we restrict G to be
2-edge-connected, i.e., G remains connected even if any single edge is removed.
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With this, we can now formulate the minimum Steiner tree problem as a mecha-
nism design problem: Let G = (V, E, b) be a 2-edge-connected graph. V] is the num-
ber of vertices, |El is the number of edges/bidders, and b is the vector of reported bid
prices. Let K C V be the set of terminals. Then, the objective is to design a poly-
nomial time approximation mechanism which computes an approximately efficient
allocation A, and a payment scheme p which makes truthful bidding a dominant
strategy, such that p and A form a strategyproof mechanism.

Definition 3 (Monotonic allocation rule) An allocation rule f of a mechanism
M = (f, p) is monotonic if a bidder i who wins with bid b; keeps winning for any
lower bid b] < b, (for any fixed settings of the other bids).

Definition 4 (Critical payment scheme) A payment scheme p of a mechanism
M = (f,p) is critical if a winning bidder i receives payment p;, which is her maxi-
mum bid allowed for winning: p¥ :=sup{b] € B; : i € A(b,b_;)}, where A(b],b_,)
denotes the set of bidders that would have won if the reported bids were (b;, b_;)

Intuitively, a monotonic allocation ensures that a winner remains winning with
any better bid, while the critical payment for a winning bidder is the highest cost
that she may declare and still win. In his seminal paper, Myerson (1981) showed that
an allocation rule f'is implementable (i.e., there exists a payment vector p such that
M = (f, p) is strategyproof) if and only if the allocation rule is monotonic. Moreo-
ver, if the allocation rule is monotonic and losing bidders pay 0, a critical payment
scheme is the unique payment rule p such that M = (f, p) is strategyproof. Hence,
with single-dimensional types and monotonic approximation algorithms, we can
implement an outcome in dominant strategies, if we compute critical payments.

4 Approximation mechanisms for single-dimensional bidders

In this section, we briefly introduce important approximation algorithms for the
minimum Steiner tree problem. A more extensive discussion can be found in the
appendix. For the algorithms which can be extended to approximation mechanisms,
we provide a corresponding critical payment scheme in Sect. 4.2, which then yields
a strategyproof approximation mechanism. Finally, in Sect. 5 we design a deferred-
acceptance auction for the minimum Steiner tree problem and discuss the worst-
case approximation ratio of the deferred-acceptance auction and general greedy
algorithms.

4.1 Approximation algorithms for the Steiner minimum tree
Table 1 lists the approximation algorithms for the minimum Steiner tree that we

compare to the greedy approximation algorithms used in the deferred-acceptance
auctions. These algorithms are representatives of very different approaches to
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Table 1 Selected approximation algorithms for the minimum Steiner tree problem on graphs

Year Approx. ratio Authors Monotonic? Paradigm

1988 2.00 Mehlhorn Yes Distance network
1997 2.00 Goemans, Williamson Yes Primal-dual

2005 1.55 Robins, Zelikovsky No Loss-contracting

approximation. While two of them are monotonic, the one by Robins and Zeliko-
vsky (2005) with the best approximation ratio so far is not.

We only provide an overview with a classification of whether these algorithms
are monotonic or not. While this is fairly straightforward to answer for most approx-
imation algorithms in the literature, the currently best class of algorithms for the
minimum Steiner tree problem, the loss-contraction algorithms, are challenging to
analyze. In the appendix we provide a detailed description of these algorithms and
proofs of their monotonicity.

4.1.1 Loss-contracting algorithms

Loss-contracting algorithms have been the most successful approach to the design
of approximation algorithms for the minimum Steiner tree on graphs so far. Any
Steiner tree S(G, K) of G is either a full Steiner tree, i.e., all its terminals are leaves,
or can be decomposed into a forest of full Steiner subtrees (full components) by
splitting all the non-leaf terminals (splitting a terminal results in two copies of the
same terminal). The algorithm by Robins and Zelikovsky (2005) builds an MST on
the subgraph G, induced by the terminal set K and repeatedly adds full components
to improve the temporary solution. In each iteration, full components are ranked
according to their gain (by how much the component improves the current tempo-
rary solution) divided by their loss (i.e., the cost committed by adding a component
or more precisely its Steiner points). After a full component is added, the tempo-
rary solution is improved. This step also involves loss-contracting, a method to make
components which are in conflict with added ones less appealing. By these means,
the algorithm by Robins and Zelikovsky (2005) achieves an approximation ratio of
1.55 if k — co and it is computable in O(|K|* - |V — K|*2 + k - |[K|**! log |K]).
This is the best approximation algorithm so far, but unfortunately it is not monotonic.

Proposition 1 Allocation algorithm AR is not monotonic.

4.1.2 Distance-network-based approximations

Similarly to the loss-contracting approximation, the general idea of distance-net-
work-based approximation algorithms is to build a MST on a complete subgraph Gy
in the first phase. In the second phase, edges in MST(G) are re-transformed back

to edges in G, and an MST is computed on the resulting graph to remove possible
cycles. Finally, in the third phase, non-terminal leaves are deleted. This algorithm
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was proposed by Kou et al and runs in O(|K||V|?). However, due to the cycles that
can occur in the first phase, this standard variant is not monotonic. Mehlhorn (1988)
designed an algorithm which differs in phase 1. Here, the algorithm first partitions G
into Voronoi regions, which are then utilized to construct a subgraph of G, called
G. It then proceeds with phase 2 and phase 3. This leads to a worst case runtime of
O(|V|log|V| + |E|) and achieves an approximation ratio of 2(1 — 1/[) where [ is the
minimal number of leaves in any minimum Steiner tree (which is naturally bounded
above by the number of terminals). This algorithm is monotonic.

Proposition 2 The allocation algorithm AMH by Mehlhorn is monotonic.

4.1.3 Primal-dual approximation algorithms

The approximation algorithm for the minimum Steiner tree problem by Goemans
and Williamson (1995) follows a primal-dual approach in which the minimum
Steiner tree problem is transformed into a hitting set problem and modeled as an
integer linear program (IP). By relaxing the IP and considering its dual, Goemans
and Williamson (1995) where able to propose an approximation algorithm that
requires a runtime of O(|V|?log |V|) and also has an approximation ratio of 2.

Proposition 3 The allocation of the primal-dual-based minimum Steiner tree
approximation AP is monotonic.

4.2 Payment schemes

Since the allocations of the algorithms AM? by Mehlhorn (1988) and the primal-
dual algorithm A"P by Goemans and Williamson (1995) are monotonic, they meet
the first requirement to be extendable to a strategyproof approximation mechanism.
For the second requirement, the payment scheme p needs to find the critical payment
p; for any winner i, such that every reported bid b; with b; < p* is guaranteed to win,
while every reported bid b; with b; > b is guaranteed to lose.

We first discuss a payment scheme for distance-network-based approximation
algorithms initially introduced by Guala and Proietti (2005) which can be computed
in O(|V| + |K|?)|E| - log a(|E|, |V])). For this, consider the basic structure of an
algorithm based on the distance network. Each winning edge e lies on at least one
path connecting two terminals (v, v,). If we now increase the cost of e, there are
two possible causes that lead to e getting excluded from the solution. Either, there
might be a shorter path between v, and v, that e is not part of. Apart from this, even
if e is still on the shortest path between v, and v,, the edge (v,, v,) might be replaced
by some other edge (v’l , vg) in the MST of distance network for which e is not on the
resulting shortest path. The critical payment for e is then calculated by adding the
difference between the original cost of the shortest path including e and the mini-
mum cost of one of these alternatives without e.

The corresponding values can be calculated similar to (Guala and Proietti 2005):
First, the all-to-all distances problem is solved. Then, for every winning edge e on
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a shortest path between terminals v, v,, an alternative shortest path between v, and
v, that does not contain e can efficiently be computed using several tweaks (Buchs-
baum et al. 1998; Guala and Proietti 2005; Pettie and Ramachandran 2002). Compu-
tation of an alternative path in the distance network between two different terminals
v’] , v’2 can also be done efficiently by standard sensitivity analysis (Tarjan 1982).
While the previous approach can be used for distance-network-based approxima-
tion, there is no efficient scheme for calculating the payments for the primal-dual
approach and the loss-contraction algorithm by Robins and Zelikovsky (2005). In
this case, another possibility to obtain critical payments is to find them through

binary search. For a winning bidder i, a starting interval [b;, sp(b_;)], and first provi-
bi+sp(b_;)

5 J the binary search recursively computes a sequence

sional payment p := [

of payments (p;):

it e & AG, ,K)

p] R BEN .
P if e € A(Gpj_l’K)

where GP}_l = (V,E, (pj’:_l,b_i)) is the original graph G with the only change being
that the reported bid price of bidder i for his edge e; has now become p}._l instead of
b;, and A is the corresponding approximation algorithm. So ¢; € A(Gpjg_l , K) means
that reporting pj’._l, bidder i still wins with all other bids fixed. This means that each
computed payment p]’. is tested by the respective allocation algorithm.

Since the payments described above are critical, they can be used in combination
with their corresponding approximation algorithm to yield a strategy-proof approxi-
mation mechanism for single-dimensional bidders due to the results of Nisan et al.
(2007).

5 Deferred-acceptance auctions

Greedy algorithms are an important class of approximation algorithms. A greedy-
in algorithm iteratively chooses the best available option based on the current state
(i.e., the previous iterations) and adds it to the solution. Contrarily, in the deferred-
acceptance auction (DAA), a greedy-out algorithm is used which removes the least
favorable alternative from the solution in every iteration. A greedy-in procedure
which greedily accepts edges is not suitable for constructing a Steiner tree, since
greedily accepting edges leads to being forced to ’correct’ the structure afterwards
(e.g. assuring that Steiner points do not end up as leaves), while within a greedy-out
procedure one only needs to assure that it is still possible to construct a Steiner tree
based on the remaining edges (i.e. all terminals are still connected). Thus, this sec-
tion describes a greedy-out approximation for the Steiner tree problem implemented
as a DAA (Milgrom and Segal 2019). The DAA is not only strategyproof but also
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weakly group-strategyproof and therefore provides a form of protection against bid-
der collusion.

The DAA greedily excludes the least desirable option from the solution until
further removal would lead to an infeasible solution. To decide which option
should be excluded in each iteration a scoring function is used. A scoring func-
tion assigns a value of at least O to an option i based on the cost of i and the
remaining options. It is important to note that only the presence of remaining
options, not their cost, may be considered in the scoring function as otherwise
the mechanism might lose its incentive properties. Also, a scoring function needs
to be non-decreasing in the first argument (cost of i). In each iteration, the option
with the highest assigned score is removed from the allocation, options that can-
not be removed without making the resulting solution infeasible receive a score
of 0. All remaining edges with a score of 0 are accepted in the end. Hence, the
algorithm always returns a feasible Steiner tree at the end. A representation of the
algorithm is given below (Algorithm 1).

Data: 2-connected graph G = (V| E,b), terminal set K C V', a scoring
function s

Result: A Steiner tree in G spanning K.
while true do
for each edge e do

assign score s(e) to e

if s(e) = 0 then

| compute payment p(e)

end
end
if highest score equals 0 then

| return remaining edges (Steiner trec)

end
remove e with highest score

© 0 N o ok W N

[
= o

end

=
N

Algorithm 1: Deferred-acceptance auction (DAA)

The payment p(e) for an alternative e is calculated the moment we cannot
exclude e from the solution any more, i.e. the moment we assign a score of 0 to
it. The payment is equal to the bid e could have stated such that her score would
have been equal to the one removed in the last iteration.

In a network procurement context, the set of options is the set of edges E. An
edge cannot be excluded from the solution if its removal would lead G to decay
into two connected components each of which contains at least one terminal. To
account for the specific requirements of the network procurement context, we
analyze three scoring functions in our experimental analysis:

1. the weight of the edge
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Fig.1 An example where DAA leads to an approximation ratio of (n — 1)/2

2. the weight of the edge divided by the number of adjacent edges

3. the weight of the edge divided by the betweenness centrality of the edge, where
the betweenness centrality for each edge is defined by the number of shortest
paths within the graph that use this edge

We calculate betweenness centrality by using the algorithm by Kourtellis et al.
(Kourtellis et al. 2015) on a variant G, of G where all edges have weight 1, i.e.
G, 1s the unweighted version of G. This is necessary, since due to incentive rea-
sons a scoring function may only take the respective bid and the underlying graph
structure into account, not the bids of other active bidders. Since in our environment
bids are the cost of edges, when calculating the score of an edge e, we must ignore
the costs of all other edges ¢’ # e in our calculations. In the following, let DAA,
(DAA ;DAA,) denote the DAA with scoring by weight (divided by adjacent edges;
betweenness centrality).

Proposition 4 The DAA for the minimum Steiner tree problem runs in
O(|E|? + |E||V| + 1) including payment calculation where t is the time necessary to
update the scores.

Proof In each iteration, at most |El scores need to be updated. This takes |E| + | V|
operations once to check for connectivity by Tarjan’s bridge finding algorithm (Tar-
jan 1974) and constant time to update the score. Since there are at most |E| itera-
tions, this leads to a total runtime of O(|E|*> + |E| - (|E| + |V])) € O(|E|? + |E||V])
for DAA,, and DAA,. For DAA, betweenness centrality has to be calculated. This
can be done in O(|E||V]) for each removal, i.e. in each iteration, using Kour-
tellis” algorithm (Kourtellis et al. 2015). Hence, the total runtime for DAA, is
O(E)? + |E||V| + |EI*|V]) € O(E|?|V|). In all variants, payments need to be cal-
culated for at most |El edges in constant time each. Thus, the runtime complexity is
dominated by score updates. O

Greedy algorithms are usually fast, but can lead to arbitrarily bad results com-
pared to an optimal solution for some problems. For instance, consider the three
weight functions discussed above and a network as shown in Fig. 1. The network
consists of n nodes v, ...,v,, two of which (v, and v,) are terminals. The opti-
mal Steiner tree consists of only keeping edge (v,,v,), but under DAA this edge is
rejected first under all weight functions, forcing the algorithm to accept all other
n — 1 edges in order to remain connected. This leads to an approximation ratio of
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(n—1)/2 proving the impossibility of a constant-factor approximation ratio. It
remains an open question whether there exists a weight function that allows for such
an approximation ratio.

6 Experimental evaluation

In the following, we present a thorough analysis of the different mechanisms dis-
cussed in this paper. For the approximation mechanism based on Mehlhorn (1988)
and the primal-dual algorithm of Goemans and Williamson (1995), we computed
the payments as described in Sect. 4.2. For the former, we employed the payment
scheme for distance-network-based approximation algorithms by Guala Proi-
etti, and for the latter, we calculated the payments based on binary search. For the
DAA, we use the threshold payments which are dynamically updated throughout
the run of the algorithm as described in Sect. 5. Finally, we also included the Vick-
rey—Clarke—Groves mechanism as a baseline. We used the send-and-split method
(Erickson et al. 1987) as implemented by Iwata and Shigemura (2018) to determine
optimal solutions. All algorithms were implemented in Java. The experiments were
executed on a laptop with Intel core 15-6600k (4 cores, 3.5 GHz) and 8GB RAM. We
first describe the data set in Sect. 6.1 before we presenting our results in Sect. 6.2.

6.1 Data

Experiments are conducted on set 1080 of the SteinLib Testdata Library (Koch et al.
2000).! Instances which are not 2-edge-connected are not considered since a monop-
oly edge would be worth infinite amounts of money. Thus, instances with names
ending on Ox or 3x are not included. The remaining instances covered graphs with 4,
8, 16, and 20 terminals and densities of 11, 20, and 100 percent (very sparse as well
as complete graphs). For each combination of terminal and density, the SteinLib
test set contained 5 instances, i.e. a total of 60 instances. In order to investigate the
effect of a graph’s density on the performance of algorithms, we created additional
instances with more diverse density values. Based on complete instances in 1080,
we created instances with densities between 0.3 and 0.9 (in increments of 0.1) by
deleting edges randomly. For each combination of number of terminals and density,
we generated 5 instances, for a total of 140 additional instances. Overall, we have an
extensive set of 200 instances and 6 algorithms, resulting in 1200 experiments.

6.2 Results

Let us now summarize the results with respect to allocative efficiency, runtime, and
revenue. We conclude this section with a short discussion of the results, comparing
the different mechanisms.

! http://steinlib.zib.de/showset.php?1080.
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Fig.2 Average efficiency over all instances

6.2.1 Allocative efficiency

In Fig. 2, we illustrate the efficiency of the five algorithms considered in our experi-
mental evaluation for different levels of density. For each level of density, we show
the mean efficiency of the algorithm for 20 instances (5 instances each for 6, 8, 16,
and 20 terminals). While the approximation algorithm by Robins and Zelikovsky
(2005) is not monotonic and thus cannot be extended to an approximation mecha-
nism, it is still interesting to compare its allocation efficiency to the other algorithms
in a complete information setting. Overall, DAA, and DAA, were the best perform-
ing algorithms and the scoring function based on the betweenness centrality came
out to be the best scoring function for DAAs.

With a paired Wilcoxon rank-sum test, the differences in efficiency between MH
and PD (p = 0.059) were not significant at p < 0.0001, while all other pairwise
comparisons were significant at this level. We also analyze differences in efficiency
using a linear regression with efficiency as dependent variable, the algorithm, the
number of edges and terminals as covariates. With the DAA_ as baseline, the dif-
ferences to this greedy algorithm were positive and significant at the following lev-
els: DAA,, (p < 0.0001), MH (p < 0.0001), PD (p < 0.0001), RZ (p < 0.0001), and
DAA, (p < 0.01). The estimated coefficients further allow us to order the algorithm
with respect to efficiency. Since we used the DAA_ as the baseline and all estimated
coefficients are positive, we see that this approach provides the best results. The
DAA, (coefficient: 0.04) and the algorithm by Robins and Zelikovsky (coefficient:
0.14) follow closely, while both Mehlhorn’s algorithm and the primal-dual approach
exhibit a coefficient of 0.22. Finally, the DAA , has the highest coefficient of 0.92.

Let us now report averages for different subgroups of the experiments in more
detail. The algorithm by Robins and Zelikovsky performs best for sparse instances,
on average finding a solution only 25% worse than the optimum and even solutions
as good as 1.01 times the optimum (instance 1080-015 of SteinLib). Moreover, it
performs well for complete graphs, too (1.3 approximation ratio). Mehlhorn’s algo-
rithm and the primal-dual algorithm achieve similar results (130-140% of the opti-
mum). The performance of these approximation algorithms gets slightly worse the
denser the graph is.
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The performance of the DAA heavily depends on the scoring function. Using
only the weight of an edge c, as a score, allocative efficiency is never better than
1.48 times of the optimum, usually worse than 1.6 times of the optimum. It seems
clear that without taking into account the structure of the graph, the greedy algo-
rithm employed in DAA,, cannot compete with more sophisticated methods. Even in
later stages of the DAA, edges are only selected based on their individual cost with-
out considering the possible paths this edge is a part of. DAA_ (and especially, for
smaller densities, DAA,) generally provides better results on average than the more
sophisticated approximation mechanisms. Only on very sparse instances, the algo-
rithm by Robins and Zelikovsky can keep up with the performance of the DAA vari-
ants DAA_, and DAA,. If we use edge weight divided by number of adjacent edges as
scoring function, DAA_, performs better than the primal-dual algorithm for most sets
of instances and even achieves results that are better than the results of the algorithm
by Robins and Zelikovsky, except for the instances with 100 percent density.

The performance of DAA, decreases significantly between a 90 percent density
and 100 percent density. We generated further instances, increasing the density by
a single percentage point between 90 and 100 percent. The efficiency ratio steadily
increases between 90 and 100 percent. While DAA, is equivalent to DAA,, in the
first stages in very dense graphs (since every edge has the same number of adja-
cent edges), this effect does not come into play except for very dense graphs. Over-
all, DAA, performs significantly better than DAA,, (on a significance level of 0.1%).
Moreover, it can be seen that efficiency of DAA, and DAA, is nearly identical for
sparse graphs and even up to a density level of 90 percent. In sparse graph, the num-
ber of possible paths between two nodes is more limited. Since an edge e with a
lot of adjacent edges naturally allows for more paths (and hence also more shortest
paths) to pass through e, the betweenness centrality of e is very dependent on its
adjacent edges. Therefore, the DAAs with the corresponding scoring functions per-
form very similarly.

Figure 3 shows the average performance of the algorithms depending on the
number of terminals (averaged over all densities, i.e. 50 instances per number of ter-
minals). It can be seen that performance of all DAA variants improves as the num-
ber of terminals grows. This is to be expected since a greedy-out procedure actually
solves MST optimally and the Steiner minimum tree problem becomes more like the
MST problem for an increasing number of terminals (in the limit, when all vertices
are terminal, they are identical). In contrast, all other approximation algorithms per-
form worse the more terminals are present in the graph.

In the following, we discuss the efficiency of the algorithms for fixed number
of terminals. Since results for 6 and 8 as well as for 16 and 20 terminals, respec-
tively, are very similar, we consider instances with a small number (6) and large
number (20) of terminals. To improve readability, in the following we excluded
DAA,, from the graphs and discussion as it was performing worse than all other
mechanisms, in general. For 6 terminals, the density appears not to have a signifi-
cant impact for MH, the primal-dual approach, and DAA, (Fig. 4). This can easily
be seen by means of linear regression where the p-value of density is > 0.1 for all
of them. The algorithm by Robins and Zelikovsky performs worse the denser the
graph is (p < 0.001), an effect easily observable in Fig. 4. In contrast, the DAA,
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Fig.4 Efficiency for 6 terminals

reveals favorable behavior if the graph is denser (p < 0.01). We can clearly see
that independent of the number of terminals, DAA, performs well for density lev-
els up to 90 percent and then becomes significantly worse for very dense graphs.

This is in line with the results for 20 terminals where the density leads to better
efficiency of the DAA_, for density values in [0.11, 0.9] (p < 0.001).

Figures 4 and 5 show that the MH and PD find very similar solutions that are
below 1.4 times the optimal solution. The denser the graph, the worse the solu-
tions these algorithms find. The algorithm by Robins and Zelikovsky finds even
better solutions, but its performance decreases not only with increasing density
but also as the number of terminals grows. Only for sparse instances with few ter-
minals, it finds more efficient solutions than the more sophisticated DAA variants.
DAA, and the DAA, find similarly efficient solutions for sparse graphs, where no
significant difference was observed. The solutions found by the DAA, are never
worse than 1.09 times the optimum and in eight out of ten instances at most 6%
worse than the optimal value for complete graphs with 16 or 20 terminals.
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Table 2 'Runtime combined Density 6 Terminals 20 Terminals
means (in seconds)
11% 100% 11% 100%
MH 0.24 0.46 0.33 1.26
PD 0.28 3.14 1.93 12.97
DAA,, 0.33 2.55 0.14 2.52
DAA, 0.71 3.03 0.28 3.25
DAA, 5.82 109.11 4.50 95.14
VCG 2.05 1.80 67544.54 58556.20

6.2.2 Runtime

In the following, we discuss the combined runtime required for the approximation
mechanism to obtain both allocation and payments. Since the relative runtimes
between mechanisms show a continuous pattern when incrementing the number of
terminals and density, we only discuss extreme cases. Table 2 depicts the runtimes
for the smallest and highest densities, as well as the smallest and largest numbers
of terminals. Over all instances and densities, pairwise differences between two
algorithms are significant at a level of p < 0.0001 using a Wilcoxon rank-sum test
with the difference between the mechanism based on Mehlhorn’s algorithm and the
DAA,, being the only exception (p = 0.026). All mechanisms are significantly dif-
ferent from VCG (p < 0.0001). Our experiments show that MH, DAA,,, and DAA,
are the fastest group with PD following closely for instances with 6 or 8 terminals.
Runtimes observed for the fastest group are lower than 4s on average on the set of
instances with high numbers of both terminals and edges. Performance for lower
numbers of terminals or edges is even better. Within the fastest group, the mecha-
nism by Mehlhorn takes less time on complete graphs but is usually outperformed
by the faster DAA variants for sparse graphs with more than 6 terminals.

Arguably, the more advanced payment computation used within MH leads
to faster completion than calculating prices for PD, although we observed higher
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Table 3 Revenue combined

. . . Density 6 Terminals 20 Terminals

means (in arbitrary bid’s

currency) 11% 100% 11% 100%
MH 2004.40 1496.00 6569.80 5580.00
PD 1920.40 1493.40 6654.80 5578.20
DAA,, 3376.60 2703.00 7393.60 6822.80
DAA, 2152.27 2937.95 6133.26 9561.76
DAA, 2735.85 2708.28 7404.98 6904.70
VCG 1644.80 1191.60 5078.80 4170.20

allocation runtime of the primal-dual algorithm when prices were not considered.
The runtime required by all DAA variants is very dependent on the density of the
graph, while it scales very well with the number of terminals. In our test instances,
the computation time even slightly decreases with an increasing number of terminals
in contrast to all other mechanisms. VCG in particular is very sensitive to higher
number of terminals. Calculating exact solutions for minimum Steiner tree problems
in the case of 20 terminals proved to be computationally inefficient, requiring a fac-
tor of up to 370.000 of the runtime as compared to the best performing DAA vari-
ants. Differences between the simpler scoring functions DAA,, and DAA, are very
small, while the calculation of betweenness centrality leads to higher runtimes for
the DAA,.

6.2.3 Revenue

Table 3 shows the extreme cases with the lowest density and highest density as
well as the lowest and largest number of terminals. We have decided on this type of
report, because again the developments between the extremes are smooth. In gen-
eral, the payment increases with the number of terminals (since more edges need to
be bought) and decreases with the density (since more competition between bidders
allows for selecting cheaper options). The only exception is DAA, with 100 percent
density due to the bad (and hence more expensive) outcome that is obtained by the
algorithm. Overall, the payments are lowest for VCG and the more sophisticated
approximation algorithms yield a lower payment than the DAA variants (except for
DAA , for very sparse graphs).

The differences between DAA,, and DAA., MH and DAA,, MH and DAA_, PD
and DAA,,, PD and DAA, and VCG and all other algorithms are significant at a
p < 0.0001 level using a Wilcoxon rank-sum test. The other pairs were not signifi-
cantly different at this level, and their revenues are close. A regression with the sum
of payments as the dependent variable and the number of edges, the number of ter-
minals, and the algorithm as predictor variables shows that there are significant dif-
ferences in revenue among most mechanisms. With PD as a baseline, we find that
this approach yields lower payments than DAA,, (p < 0.0001), DAA, (p < 0.0001),
and DAA, (p < 0.0001). No significant difference to the payments computed for the
mechanism based on Mehlhorn’s algorithm was found at this level. Using the VCG
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Table 4 Ave;rage seller utility Density 6 Terminals 20 Terminals
(in % of their cost)
11% 100% 11% 100%
MH 19.87 1.33 11.55 1.05
PD 15.15 1.25 12.64 1.02
DAA,, 2.65 1.69 2.71 1.45
DAA, 22.46 70.41 22.01 106.54
DAA, 46.22 103.66 48.08 65.70
VCG 13.65 1.85 12.51 6.00

mechanism as a baseline, all other algorithms yield significantly higher payments
(p < 0.0001).

We also report results on the mean total utility calculated as the difference of total
cost and total payments as percentage of total cost in Table 4. For MH and PD, the
payments offered to winners of complete instances are low compared to their costs
leading to low payoffs. For the DAA, and DAA_, sellers get a much higher payoff in
all settings. The costs using the VCG mechanism are lowest.

Overall, we observe that the DAA mechanisms require significantly higher pay-
ments than VCG or the two approximation algorithms. While all of the mechanisms
are strategy-proof, the allocation and payments are computed very differently. To
see this, consider the example in Fig. 6 with two nodes A and B connected via a
direct edge whose cost is $10. There is another path between these two nodes with
9 edges with a cost of $1 each. With threshold payments in a DAA, each of the win-
ning edges gets $10 when the direct edge is removed, and the overall revenue of the
bidders on the 9 winning edges is $90. With critical payments as they were used for
MH and PD, the payments on each edge would be the maximum bid that would have
still made the specific bidder winning (i.e., 2 — €), and the resulting revenue would
be less than $18.

7 Conclusions
In this paper, we showed which approximation algorithms can be extended to
approximation mechanisms for the Steiner minimum tree problem with single-

minded bidders. We proved that the best known algorithm by Robins and Zeliko-
vsky violates monotonicity, a necessary condition for implementability. However,
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the algorithms by Mehlhorn (1988) and the primal-dual algorithm by Goemans and
Williamson (1995) are monotonic and could be extended to strategyproof approxi-
mation mechanisms. Further, we designed a deferred-acceptance auction for the
minimum Steiner tree problem and analyzed several scoring functions.

While the worst-case approximation ratio of deferred-acceptance auctions can
be very low, the average-case solution quality is remarkably high, as shown in our
numerical experiments. The results show that the group-strategyproof DAA with a
scoring function based on betweenness centrality (DAA_) yields very high allocative
efficiency at low computation times in most environments (characterized by density
and the number of terminals). DAA, with a scoring function based on the number
of adjacent edges performs similarly well (and even better for graphs with a higher
number of terminals). Only for very dense graphs, the algorithm’s solution quality
declines.

Obviously, in terms of allocative efficiency, the exact VCG mechanism is best,
but runtime can be prohibitive as the number of terminals grows. The runtime of all
other algorithms is less than two minutes even for the large instances. MH exhibits
a very low runtime over all instances and lower payments than DAA variants. Its
allocative efficiency is significantly worse than that of DAA, and DAA,_ except for
very sparse graphs with a low number of terminals. Overall, DAA , has the best solu-
tion quality for density levels between 20 and 90 percent.

A number of questions are left for future research. The group-strategyproofness
and the high average solution quality of the DAA variants come at the cost of higher
payments for the buyer and higher profit for the sellers. This interesting trade-off for
procurement managers requires further analysis to better understand which condi-
tions justify the additional payment.

Another extension is to consider cases where bidders not only provide single
edges, but packages of multiple edges. Unfortunately, this extension towards multi-
dimensional mechanism design is far from trivial. One of the main problems is that
bidders might not only lie about the cost of their edges but also about which edges
they possess. This considerably complicates the construction of truthful mecha-
nisms, such that we cannot rely on critical payments and monotonicity any more. In
general, the design of deterministic approximation mechanisms for hard computa-
tional problems with multi-minded bidders remains a challenge.
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Appendix: Approximation algorithms for the minimum Steiner tree

In Section “Loss-contracting approximation: the algorithm by Robins and Zeliko-
vsky,” we discuss loss-contraction algorithms on the basis of the algorithm by Rob-
ins and Zelikovsky (2005), in Section “Distance-network-based approximations,” we
consider distance-network-based approaches, and in Sect. 1, the approximation by a
primal-dual algorithm.

Loss-contracting approximation: the algorithm by Robins and Zelikovsky

Any Steiner tree S(G, K) of G is either a full Steiner tree, i.e., all its terminals are
leaves, or can be decomposed into a forest of full Steiner subtrees (full components)
by splitting all the non-leaf terminals (splitting a terminal results in two copies of the
same terminal). The algorithm builds a MST on the subgraph G induced by the ter-
minal set K and repeatedly adds full components to the temporary solution. In each
iteration, full components are ranked according to their gain (by how much the com-
ponent improves the current temporary solution) divided by their loss (i.e. the cost
committed by accepting a component or more precisely its Steiner points). After a
full component is chosen, it is added to G. The full component is also added to the
temporary solution in loss-contracted form. This ensures that components which are
in conflict with accepted ones are less appealing subsequent iterations. Finally, a
MST is built on the union of G and all chosen full components. By these means, the
algorithm achieves an approximation ratio of 1.55 if kK — oo and is computable in
O(K|*- |V = K|*2 + k- |K|**! log |K]|) (Robins and Zelikovsky 2005).

A k-restricted full component F is a full component with k > 3 terminals. By
C,[F], we denote the loss-contracted full component of . We define the gain and
loss of a full component F' formally and then describe the execution of Algorithm 2.

Definition 5 (Gain and Loss of a Full Component (Robins and Zelikovsky 2005))
Let T be a tree spanning K and F be an arbitrary full component of G given K.

Let TTF] be a minimum cost graph in F'U T which contains F completely and
spans all terminals in K. This means 7]F] is the result of replacing a part of the tree
T with the full component F.

Then, the Gain of F w.r.t. T is the cost difference between 7 and T[F]:

gainy(F) = cost(T) — cost(T[F])

The loss of F'is a minimum-cost subforest of F containing a path from each Steiner
point in F to one of its terminals: Loss(F,) = MST(F, U Ey(F,))\Ey(F,), where
E,(F) denotes a complete graph containing all terminals of F, with all edge costs
being 0. It follows that

loss(F) = cost( MST(F U Ey())\Ey(P) )
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%  ®
3 3
[s2(») ®
1 1 >
® ® :
(a) Full component (b) Loss of full component (¢) Contracted full compo-
nent

Fig. 7 Full components

Data: 2-connected graph G = (V, E, b), terminal set K C V, an integer k with
3<k<|K|

Result: A k-restricted Steiner tree S(G) in G spanning K.
Compute Gy and Gk
T=MST(Gk)
repeat

Find a k-restricted full component F' maximizing

r = gainy (F)/loss(F)

Gg =GgUF

T = MST(T U Cy[F])
until r < 0;
S(G,K) = MST(Gk)
Replace artificial edges in S(G, K)
Cut Steiner point leaves of S(G, K)
return S(G, K)

© 0 N O N WN R

[Err——
N = O

Algorithm 2: Approximation Allocation Algorithm Af%

The algorithm starts by computing Gy, its subgraph G (Line 1) and the MST on
Gy (Line 2). Afterwards, the gain-over-loss ratios for all k-restricted full components
are computed. It is sufficient to consider k-restricted full components consisting of k
terminals and between 1 and k — 2 Steiner points since every component is uniquely
identified by its Steiner points of degree larger than 2 (Fig. 7a). Note that the gain of
a full component F is dependent on 7, while the loss is not. After choosing the full
component with the highest gain-over-loss ratio, the selected component is added to
Gy (Line 6). The component is also added to T in loss-contracted form C;[F] (Line
7).

To contract the loss of a full component F, we merge every connected tree of the
forest Loss(F) into a single vertex, the respective terminal of the component. Two
terminals are connected in C,;[F] if their respective components in Loss(F) have an
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Fig.8 G

(a) solution for G where the owner of (b) solution for G’ where the owner
{V4,V13)} bids 3.15 of {V4,V13} bids 3.11

Fig. 9 RZ: solutions a solution for G where the owner of {V4, V13} bids 3.15 b solution for G’ where the
owner of {V4,V13} bids 3.11

adjacent edge in F’ (Fig. 7b) and the cost of the edge in C;[F]is equal to the cost of
the respective edge in F (Fig. 7c).

After C;[F] was added to T, an MST is built on T U C,[F]. By improving 7, the
gain-over-loss ratio for the remaining full components is decreasing. Eventually,
all components will have a gain-over-loss ratio of at most zero. At this point, the
algorithm computes the MST(Gg) (Line 9), transforms all its artificial edges back
into original edges, i.e. replaces artificial edges by the respective shortest path,
and cuts leaves which are Steiner points (Line 11).

Proposition 5 Allocation algorithm AR is not monotonic.

Proof The proof is by counter example. Consider graph G (Fig. 8) with termi-
nal set K = {v|,Vv,,V4,Vs,Vg, V7,9, V;;} (round nodes) and the non-terminals
{v3,Vg, V10> V12, V13 } (rectangular nodes). The owner of e = {v,, v,5} bids 3.15.

The computed solution of cost 22.85 can be seen in Fig. 9a. Note thate = {v,,v5}
is part of the solution.
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(a) G

Fig. 10 G and distance network G

(a) solution for G where the owner of (b) solution for G where the owner
{V9,V10} bids 4 of {vg,v10} bids 3

Fig. 11 MST-based solutions. a Solution for G where the owner of {V9, V10} bids 4 b solution for G
where the owner of {vqy, v} bids 3

Howeyver, if the owner of e reduces her bid to 3.11, the solution does not include
e any more (Fig. 9b). Thus, monotonicity is violated and we cannot hope to achieve
strategyproofness by using a critical payment scheme. O

So, the algorithm by Robins and Zelikovsky (2005) based on loss-contraction
cannot easily be extended to a strategyproof mechanism. Let us next analyze approx-
imation algorithms based on the distance network.

Distance-network-based approximations

Similarly to the loss-contracting approximation, the general idea of distance-net-
work-based approximation algorithms is to build a MST on a complete subgraph G
in the first phase. In the second phase, edges (shortest paths) in the MST are decom-
posed into edges in E, and a MST is computed on the resulting graph to remove
possible cycles. Finally, in the third phase, non-terminal leaves are deleted. This
algorithm was proposed by Kou et al. and runs in O(|K||V|?). However, due to the
cycles that can occur in the first phase, this standard variant is not monotonic. To
see this, consider the graph G in Fig. 10 with its relevant edges of the respective dis-
tance network G. If the bid for e = {vy, vy} 1s 4, e is part of the solution (Fig. 11a).
However, if the bid was only 3, ¢ might be removed from the solution (Fig. 11b).
Hence, monotonicity is violated.
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Guala and Proietti (2005) change the algorithm in its second phase when the
MST on the subgraph G is replaced by the corresponding shortest paths. Instead
of adding all shortest paths and afterwards calculating the MST on the result-
ing graph to remove the cycles, in the extended algorithm the shortest paths
are inserted iteratively in a way such that no cycles are introduced. The authors
show that such an acyclic expansion is always possible. The resulting algorithm
requires a runtime of O((|V| + |K|?)|E| - log a(|E|,|V])) where a(.,.) is the clas-
sic inverse of the Ackermann’s function as defined in Tarjan (1982) and yields a
2(1 — 1/|K])-approximation.

Mehlhorn (1988) designed an algorithm which differs in phase 1. Here, the
algorithm first partitions G into Voronoi regions, which are then utilized to con-
struct a subgraph of Gy, called G. It then proceeds with phase 2 and phase 3 as
described above. This leads to a worst case runtime of O(|V|log|V| + |E|) and
achieves an approximation ratio of 2(1 — 1//) where [ is the minimal number of
leaves in any minimum Steiner tree (which is naturally bounded above by the
number of terminals). In the following, we discuss Mehlhorn’s algorithm and
show that the allocation is monotonic. Hence, the algorithm is also suitable to
be extended to an approximation mechanism with a slightly better runtime and
approximation ratio than other algorithms based on distance-network-based
approximation algorithms.

Definition 6 (Voronoi Regions V(s)) Given a general graph G = (V,E, b) and the
set of terminals K C V, the Voronoi region V(s) of a terminal s € K contains all ver-
tices v € V for which the shortest path sp(s,v) < sp(t,v) for all t € K. We break ties
randomly, such that each vertex v uniquely belongs to one such region.

Definition 7 (Distance network based on V) Let G = (K, Eg, bg) be the distance
network with edges and weights as follows:

(s,1) € Ez © 3 (u,v) € E such thatu € V(s) and v € V(1)
bg(s,t) = min{sp(s,u) + b(u,v) + sp(v,t) : u € V(s),v € V1), (u,v) € E}

Data: 2-connected graph G = (V, E,b), terminal set K CV
Result: A Steiner tree S(G, K) in G spanning K

Compute Voronoi regions of G' and generate G;

S(G,K) = MST(Q)

Replace artificial edges in S(G, K)

Cut non-terminal leaves of S(G, K)

return S(G, K)

B W N =

Algorithm 3: Approximation Allocation Algorithm AMH
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Similar to the algorithm by Guala and Proietti (2005), the algorithm by Mehlhorn is
also monotonic.

Proposition 6 The allocation of Mehlhorn’s algorithm is monotonic.

Proof Suppose there is a graph G, an allocation A computed by Mehlhorn’s algo-
rithm and an edge e € A. Further assume that the owner of e lowers her bid. Reduc-
ing a bid for an edge e can only mean that e is now part of at least as many shortest
paths as before. In general, this may change the allocation. However, only shortest
paths which contain e are cheaper after the changed bid. Hence, e will remain part of
the solution even though it might be chosen in another path. It remains to be shown
that a changed allocation cannot lead to cycles in the solution and thus to the pos-
sible exclusion of e.

Suppose there is a cycle between two Voronoi regions. This would mean that two
paths between the respective regions have been chosen. Since an MST is built on the
subgraph induced by the Voronoi regions, this can never happen during Mehlhorn’s
algorithm. A similar argument holds for cycles in more than two Voronoi regions.
Finally, there can be no cycles inside a single Voronoi region (by definition). Since
no cycle can occur, no edge that has been added to the solution will be removed
from the solution at a later point and therefore e is in the final solution. Thus, the
allocation computed by Mehlhorn’s algorithm is monotonic. O

Primal-dual approximation algorithms

This section describes the general approach for primal-dual approximations and the
approximation algorithm for the minimum Steiner tree problem by Goemans and Wil-
liamson (1995) which requires a runtime of O(|V|? log | V|) and also has an approxima-
tion ratio of 2.

Many problems in graph theory can be reduced to the hitting set problem. For a
ground-set E with cost ¢, > O for every element e € E and subsets 7,7, ... T, C E,
the hitting set problem is to find a subset A C E of minimal cost such that AN T, # @
for all subsets i = {1, ... n}. The primal integer program for the hitting set problem can
be formulated as follows:

Min z C,X,

eeE
subject to z x,>1, Vi
eeT;

x, € {0,1}.

To obtain the relaxation, simply the constraint x, € {0, 1} needs to be relaxed to
x, > 0. The corresponding dual program is stated below:
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Max Z Vi
i

subject to Z yi<c, VeeE
i:e€T;

y; =20, Vi

To obtain an a-approximation, we compute a solution x to the primal integer pro-
gram and a solution y to the dual of the relaxed primal program such that
n
Z Ce;e Sa Z Vi
i=1

eEE

Data: ground-set F, subsets T1,715%,...T, C E
Result: allocation A
y=0 Vy
A=10
while A not feasible do
Find violated Ty (T NA = 0)

Increase yi until Je € T, s.t. Y. y; = ce
i:eETi

oA WN R

o

A=AU{e}
7 end
8 return A

Algorithm 4: Approximation Algorithm for the hitting set problem

Algorithm 4 describes the necessary steps to compute A. During the initializa-
tion, A is empty and all dual variables y are set to 0. In each iteration, a violated set
T, 1s chosen. Afterwards, the corresponding dual variable y, is increased (loaded)
until one of the constraints holds with equality (it goes “tight,” Line 5). The corre-
sponding element e is then added to the solution. If the allocation A is feasible, the
algorithm stops and returns A.

Mapping the hitting set problem to the minimum Steiner tree problem is straight-
forward: The ground-set is given by the edges E of the graph and c, is the cost of the
respective edge e € E. Let S; be a subset of vertices that contains at least one, but
not all terminals, i.e. a cut. When all cuts are crossed, the solution is a feasible allo-
cation for the minimum Steiner tree problem. By definition, the edges adjacent to
exactly one vertex v € §; are the edges crossing the cut S;. Let 6(S;) denote the set of
these edges. Let T; = 6(S;). The adapted algorithm can be seen below (Algorithm 5).
It achieves an approximation ratio of 2 (Goemans and Williamson 1995).
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Data: 2-connected graph G = (V, E,b), terminal set K CV
Result: A Steiner tree S(G) in G spanning K

1 y=0 Vy
2 Ag=10
3 1=0
4 while A; not feasible do
5 Choose violated sets U
6 Increase yj, uniformly for all T, € U until Je; € A; st. > yi = ce;
ire; €Ty
7 A; = A; U {61}
8 1=1+4+1
9 end
10 A/ = Aifl

11 fori;4>0;71=4¢—1do

12 if A’ \ {es,} still feasible then
13 | A" =A"\{e}

14 end

15 end

Algorithm 5: Approximation Allocation Algorithm AFP

Two modifications can be seen in Algorithm 5 in comparison with the basic
primal-dual algorithm (Algorithm 4). Firstly, load is not increased on one, but
multiple (minimal) unsatisfied components 7, € U. U contains all 7, that are
unsatisfied and minimal, i.e. there is no unsatisfied set TJ with Tj C T;. Secondly,
after computing the allocation A a reverse deletion is conducted. In this phase,
edges are assessed in regard to their necessity in reversed order (LIFO). Unneces-
sary edges either connect a Steiner point as a leaf or close a cycle. In either case,
the edge is not contributing to the solution (apart from inflicting costs).

Proposition 7 The allocation of the primal-dual based minimum Steiner tree
approximation is monotonic.

Proof Suppose there is a graph G, an allocation A computed by the primal-dual
approximation algorithm for Steiner trees and an edge e € A whose cost has been
truthfully stated by its owner. Further assume that the owner of e lowers her bid to
c!. Due to the lower cost, e can go tight only sooner. Since e was part of the first
allocation, we know that conflicting edges have been removed before e was candi-
date for removal. Since e is now cheaper and was thus added to the solution earlier
or at the same point, it still is considered for removal later than the conflicting edges.
Hence, when e is assessed for necessity, the conflicting edges have already been
removed. The allocation computed by the primal-dual approximation algorithm for
Steiner trees is thus monotonic. O
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1 Introduction

Airport time slots for the start and landing of airplanes are a scarce resource at major airports.
Nowadays, the assignment of slots by the airport coordinator is largely based on grandfathering.
Only if a slot is not used up to 80% an airline loses this slot. Current practices have been challenged
as inefficient. Airlines leverage grandfathering rights to block valuable slots for the competition,
although there would be much more valuable uses (Avenali et al. 2015). It is widely accepted that
“market mechanisms would improve allocative efficiency” by bringing appropriate incentives to
bear to ensure that slots are allocated to whomever values them the most (Madas and Zografos
2010). Unfortunately, the design of such markets is considered very challenging, which is a major
barrier to the adoption of market-based solutions. Jones et al. (2004) write:

--- auctions of 10% of slots, combined with secondary trading could, in theory, achieve
the most efficient allocation of slots possible. But in practice, many of the auctions are
likely to be so complex, both for auction organisers and for airlines bidding for slots,
that it is probably unlikely that an efficient allocation of slots will emerge from this
process.

This leads to interesting market design problems at the intersection of information systems and
operations research, a field that has drawn considerable attention in the past decade (Adomavicius
and Gupta 2005; Adomavicius et al. 2013; Bichler et al. 2010; Goetzendorff et al. 2015). This paper
contributes to the theme of this year’s workshop: markets for policy making and sustainability.

We propose a mechanism that improves the allocation of airport time slots while also taking
into account important constraint the participants face, such as complementarities between take-off
and landing slots, and budget constraints. We show that ignoring the latter leads to severe losses
in welfare as well as instabilities when airlines are forced to submit bids lower than their actual
values in order to avoid making a loss. These negative aspects are potentially very discouraging
for airlines from participating in existing mechanisms for slot allocation. Stability is often seen
as a first-order goal in market design (Roth 2002). The core is the most well-known notion of
stability in game theory and it is natural to ask for core-stable outcomes of a market. Such an
outcome requires that there cannot be any coalition of participants that have incentives to deviate
from the allocation determined by the mechanism. It was shown that core-stability coincides with
the notion of competitive equilibria in markets with payoff-maximizing bidders and that the core
might be empty in a combinatorial exchange (Bikhchandani and Ostroy 2002).
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Unfortunately, it turns out that the presence of budget constraints makes the computation of
core-stable outcomes a much harder computational problem. The problem actually becomes X5 -
hard, a complexity class that is one step above NP in the polynomial hierarchy (Bichler and Wald-
herr 2019). While problems in this complexity class are typically considered intractable, in this
paper we design a market mechanism for slot allocation and show in experiments that problem
instances of practically relevant size can be solved in reasonable computational run time.

We model the assignment and pricing of airport time slots as a bilevel optimization problem
which takes into account the complementarities in take-off and landing slots as well as the financial
constraints of airlines. Our mechanism then determines a stable allocation with the highest social
welfare. Despite economic struggles of airlines, financial constraints have not yet been considered
in the design of mechanisms for airport slot allocation. In a computational study, we demonstrate
that ignoring budget constraints leads to severe welfare losses and instabilities when using current
market mechanisms. In fact, our experiments show that gains from trade decrease by 15 to over
20% when airlines are forced to shade their bids in order to avoid making potential losses when
participating in the auction. These results indicate that ignoring budget constraints may be a major
factor for airlines to abstain from trading slots. While incorporating budget constraints leads to a
very tough combinatorial optimization problem, we show that problem instances of relevant size
can be solved.

In summary, our contribution is a mechanism that achieves four important goals: (i) Designing
a central market for slot allocation, (ii) incorporating budget constraints, which are of high concerns
in the airline industry, (iii) being efficient in finding stable outcomes, (iv) improving the welfare as
opposed to mechanism that ignore budget constraints.

The paper is structured as follows. In Section 2, we describe the airport slot allocation problem
and discuss related work. In Section 3, the mathematical model is presented and the mechanism to
allocate airport time slots and derive prices is introduced in Section 4. We evaluate our mechanism
in Section 5 before drawing our conclusions in Section 6

2 Problem Description

In this section, we briefly describe how airport slots are currently allocated and traded. We re-
view a large number of papers that advocate for replacing the current process with central market
mechanisms. Further, we discuss budget constraints and their effects on market mechanisms in
general, as well as the prevalence of financial struggles in the airline industry.

2.1 Airport Slot Allocation Mechanisms

Congestion at airports has been a problem for many years and many attempts have been made to
improve conditions. One of the most important improvements was the introduction of slot control
systems in the 1960s. A slot at an airport is defined as a time interval available for the arrival or
departure of a flight. Airports declare their capacity in number of available slots per hour, where
the number of slots reflects the amount of air traffic an airport can handle within the specified
time frame. The IATA (International Air Transport Association) slot guidelines were first issued
in 1976. Nowadays, almost all European airports use slot allocation systems based on the IATA
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guidelines and the regulations of the European Commission. However, only four major US airports
use slot control systems due to a variety of reasons (Ball et al. 2017).

Assignment and pricing mechanisms for slots have come under much scrutiny over the years.
At participating airports, slots are allocated in two steps. In the primary allocation, which takes
place twice a year, slots for the upcoming summer or winter season are allocated from airports to
airlines. The number of available slots is based on IATA and European Commission guidelines and
slots are allocated first according to grandfather rights, given that the requirements to keep these
rights were reached. Afterwards, half of the remaining slots are distributed to new entrants. Only
the remaining slots are open for sale and allocated to interested airlines. Grandfather rights are
only lost in case that a slot is underutilized. Due to the limited number of slots, incumbent airlines
will want to keep these slots simply to protect them from competition. Hence, airlines “babysit”
slots, using them for the minimum required amount in order to keep their grandfather rights. Ball
et al. (2017) state that “It [is] clear that current slot allocation policies do not encourage allocating
slots to their highest and best use, and in some respects actually discourage it”.

After the primary allocation, airlines can participate in secondary trading of slots during the
season. While these secondary markets have been used in the US, they currently are not in place.
On the other hand, secondary trading is allowed in Europe where it is legal to exchange slots, even
with additional financial transactions based on a 1999 English High Court judgment in R v Airport
Coordination (Ball et al. 2017). However, participation in these secondary markets is low. A
2006 report of the European Commission reported that only 1.2 % of slots were traded at London
Heathrow, Europe’s busiest airport.

Ball et al. (2017) argue that nowadays there is a strong case for the use of market mechanisms.
In fact, auction mechanisms have long been proposed for the primary allocation of airport time slots
(Rassenti et al. 1982; Castelli et al. 2011; Pellegrini et al. 2012; Ball et al. 2006). Similarly, strong
cases have been made for centralized mechanisms for secondary trading (Ltd. 2001; Pellegrini et al.
2012), as currently secondary trading only occurs through bilateral exchanges. Unfortunately, an
abolishment (or severe limitation) of grandfather rights seems like a necessity for the successful
implementation of mechanisms for primary markets. This may well be a reason for the backlash
these proposals have received in the past. Hence, in this paper we will focus mostly on the design
of a centralized market for secondary slot trading.

Package bids are essential in the slot allocation domain and need to be considered by any
mechanism in order to produce stable outcomes. A takeoff slot at a flight originating airport is only
valuable with a landing slot at the flight destination airport. Combinatorial auctions and exchanges
allow participants to state these package bids. Since its inception (Rassenti et al. (1982), tellingly
using airport slot auctions as a motivating example), combinatorial auctions have found widespread
application for the sale of spectrum licenses (Bichler and Goeree 2017), day-ahead energy markets
(Martin et al. 2014), and supply chain coordination (Fan et al. 2003; Guo et al. 2012; Walsh et al.
2000).

2.2 Budget Constraints

In order to result in efficient outcomes, market mechanism need to consider all relevant constraints
to be accepted in practice. In this paper, we argue that airlines face substantial financial constraints.
Further, these constraints need to be modeled within the auction mechanism as failing to do so may
lead to inefficiency and instability.

Workshop on Information Technology and Systems, Munich, Germany 2019 3



Combinatorial exchanges for airport time slots

In standard auction formats, potential buyers are allowed to place bids for the items they want
to obtain. An important feature of any reasonable auction mechanism is to preserve individual ra-
tionality of all participants which translates into no buyer having to pay more than their posted bid
for the items they receive. While the prices cannot exceed the bids of buyers, they can however be
equal to them, e.g. when two buyers place the same bid for an unique item. The celebrated VCG
mechanism offers a dominant strategy for all participants to simply declare their true valuations
over all items and then payments are calculated in such a way that the prices for each buyer resem-
ble the minimum amount of money required to outbid other bidders (Vickrey 1961). Moreover,
since the mechanism has access to the true valuations of all participants, it is possible to derive an
efficient allocation with maximal social welfare. However, this result relies heavily on the theories
that 1) financial markets are efficient such that buyers can raise enough funding to pay a price up
to their valuation and 2) buyers need to have certainty over their true valuation.

In the airline industry, both of these points are unrealistic to assume in practice. Ever since
September 11, 2001, airline carriers face severe financial difficulties. In the US, 11 major air
carriers merged into four between 2004 and 2015. In Europe, 2017 saw two large airlines go out
of business (Air Berlin and Monarch) and Alitalia, the Italian flag carrier, saved from bankruptcy
(again) and bought up by the Italian government. As a result of their financial struggles, most
airlines face low investor ratings!, making it more expensive for them to obtain loans. In addition,
predicting the cost and value for operating certain flights (and hence requiring specific slots at
airports) is notoriously hard. Another financial crisis can make air travel less affordable for the
general public, spikes in oil prices can drive up costs, and political climate can make once popular
travel destinations unattractive (as has happened to Turkey and Egypt in recent past).

In the face of these difficulties, airlines are either financially constraint or would face significant
risk by bidding up to their true (expected) net present value. In most markets, bidders can only
submit their budget-capped valuations, which can lead to significant inefficiencies as we show in
our computational study. Hence, in order to determine efficient and stable allocation, bidders have
to be allowed to submit both, their valuation of packages as well as their financial constraints.
Indeed, some markets elicit both, valuations and budgets that must not be exceeded (Nisan et al.
2009), in order to allow bidders to adequately express their preferences and constraints.

The importance of budget constraints in practice has led to significant research in mechanism
design. Unfortunately, it was shown that we cannot hope for incentive-compatible mechanisms
in the presence of budget constraints in multi-object auctions with private budget constraints (Do-
bzinski et al. 2008). Incentive-compatibility might be too much to ask for and less of a concern
in large markets such as the ones introduced above where participants often have very little infor-
mation about the preferences of others and strategic manipulation is challenging to say the least.
However, even if strategic manipulation is less of a concern, a designer might be interested in sta-
ble outcomes, where no participant would want to deviate. Bichler and Waldherr (2019) showed
that finding the stable outcome that maximizes welfare requires solving a Zg—hard optimization
problem and described how bilevel programming can be used to derive solutions.

L A5 of the time of this writing, Moody’s has rated American Airlines, the worlds largest airline, as Ba3 (speculative,
non-investment grade); Lufthansa and British airways, two of the largest European carriers, as Baaa3 (lower medium
investment grade).
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3 Mathematical Model

Bichler and Waldherr (2019) showed that the allocation and pricing problem for financially con-
strained buyers is 212) -hard and proposed an approach based on mixed integer bilevel linear pro-
gramming (MIBLP). We introduce the general form of a MIBLP, briefly describe the model sugge-
sted in Bichler and Waldherr (2019) and explain how we modified the model to reflect the specific
conditions in secondary markets for airport slot allocation. We also describe how the model can be
adjusted in order to also be used as a mechanism for primary slot allocation.

3.1 Bilevel Programming

Bilevel linear programs are frequently used to model sequential distributed decision making. In
these situations, typically a leader makes the first decision and a follower reacts after observing
the leader’s decision. The follower’s action is important to the leader as it might interfere with the
leader’s objective. The challenge of the leader is to predict the follower’s reaction and take action
in such a way that after the follower’s reaction the leader’s objective is reached to the highest
possible degree. More technically, a bilevel linear program is a linear program that is constrained
by another linear optimization problem. Usually the first optimization problem is called the upper
level problem (leader) while the constraining problem is referred to as the lower level problem
(follower). Given an upper level solution, the lower level computes an optimal solution under
consideration of its respective constraints. This in turn affects the upper level by altering the value
of the objective function or violating constraints, possibly making the overall solution infeasible.
Let X be the set of variables in the upper level problem and Y be the set of variables in the lower
level problem. The general form of this problem is

max F(x,y) (la)
xeX

s.t. G(x,y) <0 (1b)

min f (x,¥) (L)

s.t. g(x,y) <0 (1d)

where F, f : R* x R" - R G : R" x R" — RP, g : R"* x R” — RY are continuous, twice differen-
tiable functions. Note that in MIBLP, F and f are represented by linear objective functions of the
upper and lower level, while G and g are the respective linear constraints. X,Y include continuous
as well as integer variables.

A bilevel program can be applied to obtain stable outcomes in combinatorial exchanges of
goods. In this case, x is the vector of allocation and payments that are derived by the mechanism
in the upper level (the outcome of the upper level). F(x,y) is the social welfare function that needs
to be maximized (e.g. gains from trade) and G(x,y) contains all allocation and pricing constraints
such that the resulting outcome determined in the upper level is feasible. In the lower level, in
return, maximizes the minimal improvement d that is achievable by a member of a blocking coali-
tion, if all of its members would deviate from the outcome determined in the upper level and only
trade among themselves.

If a coalition exists such that they could improve upon the upper level outcome, the upper level
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outcome is instable. Hence, the upper level contains the constraint ’d < 0’ which turns the upper
level infeasible for all outcomes for which such a blocking coalition exists. Blocking coalitions are
determined in the lower level by setting the objective functions to "'maxd’, with the constraint set g
determining such a coalition and assuring a feasible outcome y between their members. If d cannot
be maximized beyond 0 in the lower level, the upper level outcome is stable since there exists no
coalition that can deviate from its outcome such that all members in the coalition can make a profit
by doing so.

3.2 Bilevel Programming for Slot Trading

In the following, we describe a bilevel program to model secondary slot trading such that the
outcome respects budget constraints and maximizes gains from trade among all stable outcomes.
Let I be the set of bidders (airlines) and K be the set of slots available in the exchange. For each
bundle of items S C K, v;(S) defines the true value of bidder i for bundle S. For all i € I,S C
K, let x;(S) € {0,1} define a binary variable whether i is assigned S in the upper level and let
yi(S) € {0,1} define whether i sells package S in the upper level. For each bidder i, y;(S) are
only defined for packages S that are owned by i. Let p; € R be the corresponding payment for i
in the upper level. In case p; is positive, i receives this payment in the exchange, while she pays
|pi| in case p; is negative. This is where the model varies substantially from the one presented in
Bichler and Waldherr (2019) where the set of buyers and sellers are disjoint (i.e. bidders could not
buy and sell at the same time) and payments were strictly non-negative. Below, we show that our
bilevel program can easily be adapted to the case with disjoint buyers and sellers (as in the primary
allocation of slots) and hence generalizes their model.

Let d € R be the minimal profit of a member of a blocking coalition that is determined in
the lower level. Further, let x;(S) € {0,1} describe whether i is assigned S in the lower level,
%:(S) € {0,1} describe whether i sells S in the lower level and p; € R describe the payment of i
in the lower level. For each bidder we also introduce an auxiliary variables a; to keep track of
whether i is a member of the coalition blocking the upper level outcome. Then, the MIBLP looks
as follows.

max Y Y vi(S) - (xi(S) —yi(S)) (CEx)
Y SCkiel
s.t. Zpi =0 (2a)
i€l
Y Y ()<Y vl Vke K (2b)
S:kCK i€l SCK
pi= Y Y vilS) (3ilS) —xi(S)) viel (2¢)
SCKiel
—pi <B; Viel (2d)
d<0 (2e)
d = maxd (Lower Level)
st. Y ) pi($)=0 (2f)
i€l SCK
Y Y <Y %) VkeK (29)
S:kCK i€l SCK
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pi > ) Y vi(S)- (1(S) — 2:(9)) Viel (2h)
SCKiel
—pi(S) < B Viel (21)
a; > %i(S) VSCK,icl (2j)
a; > %(S) VSCK,iel (2k)
d<M-(1—a)+ Y vi(S) (xi(S) = %(S)) +pi—
SCK
Y vi(S) (xi(S) = yi(S)) + pi Viel 1)
SCK
Za,- >1 (2m)
iel
%i(8),%(S) € {0,1} VSCK,iel (2n)
a; €{0,1} Viel (20)
pi(S) eR VSCK,iel (2p)
deR (29)
xi(8),yi(8) €{0,1} VSCK,iel (2r)
pi(S) eR VSCK,iel (2s)

(CEXx) determines an outcome that maximizes the gains from trade under all feasible and stable
outcomes. The upper level constraints include economic pricing and allocation constraints such as
budget balance (2a), balance of supply and demand (2b), individual rationality (2c), and respects
the budget constraints of all bidders (2d). Constraint (2e) states that the solution is infeasible
(unstable) if the lower level finds a coalition with positive deviation value d.

Given the upper level solution, the lower level problem tries to find a coalition that can deviate
in a beneficial way from the upper level. This is modeled as a maximization problem similar to
the upper level. Trades in the lower level also have to fulfill all economic pricing and allocation
constraints (2f)-(21).

Constraints (2j) and (2k) set a; = 1 if bidder i performs a trade in the lower level. In this
case, i is member of a blocking coalition. Constraints (21) models the gains from deviation for
each individual bidder, comparing her outcomes (and hence her payoff) in the upper and the lower
level. Only if i € I actually participates in a blocking coalition (i.e. when @; = 1), her difference
in payoffs should be considered. We define a very large number M such that d is not affected by
bidders that are not members of the blocking coalition. To avoid empty coalitions with only trivial
bounds on the d value an constraint (2m) ensures that at least on participant makes a trade in the
lower level. The corresponding domains of the upper and lower level variables are defined in (2n)
- (2s).

We briefly show how the MIBLP from the preceding section can easily be adapted for primary
slot allocation. In the primary market, each bidder is either a buyer (airline) or a seller (airport).
Hence, we can simply ignore all variables x; and J; for sellers i as well as all variables y; and ¥
for buyers i. The remaining constraints and variables can be used in the same way as in (CEx).
Additional constraints (grandfather rights, etc.) can be easily incorporated as well.
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4 Algorithmic Solution

Bard and Moore (1990) initiated algorithmic solutions to MIBLPs. Their algorithm converges if
either all leader variables are integer, or when the follower subproblem is an LP. Until recently,
MIBLPs were considered “still unsolved by the operations research community” (Delgadillo et al.
2010). Only two years ago, two general purpose branch-and-cut MIBLP algorithms have been
proposed by Fischetti et al. (2017) and Tahernejad et al. (2017). Fischetti et al. (2017) extend their
earlier algorithm for MIBLPs with binary first-level variables to problems where linking variables
are discrete. Tahernejad et al. (2017) propose another general-purpose MIBLP solver based on
branch-and-cut which is available open source in the MibS solver. The latter requires the linking
variables, those variables that have non-zero coefficients and are present in the upper- and lower-
level program, to be integer.

If the lower level problem does not contain integer variables and is an LP, bilevel programs can
be reformulated as single-level problem by replacing the lower level with its optimality conditi-
ons (e.g., Karush-Kuhn-Tucker (KKT)) and then solving the resulting problem (Bard and Moore
1990). For general mixed-integer bilevel problems, in which linking variables can be both, inte-
ger and continuous, Zeng and An (2014) proposed a column-and-constraint generation framework
that fixes integer variables in the lower level (thereby transforming it into an LP) and then adds
optimality conditions for these solutions to the upper level problem. Bichler and Waldherr (2019)
extend this framework for problems in which the lower level is always feasible regardless of the
upper level and the objective of the lower level is to make the upper level (and hence the whole
MIBLP) infeasible. This is the case in (CEXx) since simply making the same trades as in the upper
level is always feasible for the lower level and the upper level is feasible if and only if an objective
value of d > 0 is obtained in the lower level.

In the following, we give a short outline of the algorithm. First, the upper level U of the
bilevel program is solved, ignoring all lower level variables and constraints, resulting in optimal
allocations x*,y* and prices p*. Afterwards, the lower level is solved for the optimal upper level
outcome. If for the optimal solution d* of the lower level, it holds that d* < 0, the upper level
outcome is stable. Otherwise, a blocking coalition can be read from the lower level variables
x*, 7", p*. Inthis case, the KKT conditions for the fixed variables }* and y* are added to the upper
level U and the upper level is solved again. The KKT conditions assure that in this iteration U will
return an outcome that is stable against a coalition with assignments ) *, v*. The process is repeated
iteratively until either no more blocking coalition can be determined in the lower level (in which
case the last upper level outcome is the one that maximizes welfare among all stable outcomes) or
U is no longer feasible itself (in which case there is no stable outcome).

Iteratively adding KKT conditions to the upper level adds immensely to an already large in-
teger program as in each iteration we have to add a large number of lower level primal and dual
constraints and variables, as well as the complementary slackness conditions. The latter, espe-
cially, complicate the program since they either require quadratic constraints or linearization by
using even more big M constraints. In the following, we describe an alternative to adding KKT
conditions that vastly reduces the number of necessary constraints and variables while ensuring
stability against the same blocking coalitions in each iteration. In comparison to KKT conditions,
we refer to this set of constrains as the blocking coalition elimination (BCE) constraints.

The main idea behind these constraints is that we can calculate the amount a buyer is willing
to pay in a blocking coalition C and what payment sellers demand in order to deviate. For both
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buyers and sellers we can calculate their utility 7 in the upper level solution. For a buyer this is
her valuation for the allocated bundle minus the price she has to pay. Similarly, a seller’s utility is
the payment she receives minus her valuation for the bundle she sold. If a participant acts in both
roles, her utility is the sum of the aforementioned terms (UB). To indicate the change in utility a
participant experiences when deviating with the given coalition let the constant viC denote the utility
a participant has when buying and selling items in C. Then, in a coalition with given allocation,
a participant is willing to pay the difference of viC (her utility given the lower level allocation)
and 7 (her utility given the current upper level allocation and prices) in combination with a small
€ she wants to gain by deviating (WtP). Note that her willingness to pay wl-c is still constrained
by her budget (WtP). While this min function also results in either quadratic constraints or the
necessity of linearization, the overhead is way lower than for KKT conditions. If a participant by
the allocation alone has negative utility vic < 0 1in the coalition she will instead demand a payment
of amount wic instead. Hence, if the sum of wic is negative participants in the coalition demand
more money for selling their items than the other participants are willing to pay for these items and
the coalition will not deviate (Ex).

m=Y vi(S) (xi(S) —yi(S)) + pi VieC (UB)
SCK
w = min{B;,v¢ — m; — €} VieC (WtP)
Y wi <0 (Ex)
ieC
wé eR VieC (Real)

The careful reader might wonder whether a coalition would deviate when a participant that
only has the role of a buyer demands a payment in the coalition (because the upper level allocation
and prices are preferable to her). One could argue that this coalition would not form and that since
we are not accounting for this case we restrict the upper level in inadmissible ways. However,
if (Ex) is still violated, i.e. the coalition collectively is willing to pay enough money to cover
for the demanding buyer, a smaller coalition could form by dropping the buyer in question. The
constraints in this sense not only ensure stability against coalitions with known allocations but also
some similar coalitions whose formation is predictable. After these constraints have been added
to the upper level based on a lower level allocation, all solutions that satisfy these constraints are
resistant to deviations with the given or very similar allocations. Similar to the general framework
with KKT conditions, iteratively adding BCE constraints either leads to an outcome for which
there no longer exists a blocking coalition (a stable outcome) or to infeasibility in the upper level
(proving non-existence of a stable outcome).

5 Experimental Results

In this section, we provide evidence that our mechanism is computationally efficient and impro-
ves the welfare in secondary slot trading markets as opposed to mechanisms that ignore budget
constraints. We describe the data set that we used to evaluate our mechanism in Section 5.1. Af-
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terwards, we analyze the benefits of using the new BCE constraints in comparison to the classical
KKT conditions in Section 5.2 before showing that with the help of these new constraints our
mechanism is capable of solving instances of practically relevant size in Section 5.3. Finally, we
demonstrate the necessity of using our mechanism that elicits budget constraints in combinatorial
exchanges in Section 5.4. All algorithms were implemented in Java. The experiments were execu-
ted on a laptop with Intel core 15-6600k (4 cores, 3.5 GHz) and 8GB RAM. Gurobi 7.5.2 was used
for solving linear programs.

5.1 Data

The set of instances depicts a secondary market where all bidders are buyers and sellers at the
same time. To model the bids of buyers we used the approach suggested in the combinatorial
auction test suite (CATS) (Leyton-Brown et al. 2000). In this, participants are interested in buying
a random flight between 2 of the 4 coordinated US airports. Additionally, participants place bids
on flights where takeoff/landing times deviate by a small margin from their preferred flight. This
flights are adjacent in a temporal sense but travel between the same origin-destination pair as the
preferred flight. The valuation of the preferred flight is based on common valuations of the slots
and a private random deviation. Valuations for similar flights are based on the valuation of the
preferred flight and the degree of deviation. Unfortunately, buyers’ budgets are not considered in
CATS. We therefore cautiously extended the approach by CATS by randomly generating a buyer i’s
budget in the interval of half her highest valuation v{"** and her highest valuation [%v}"“x, V). On
the seller side, CATS does only consider a single seller without ask prices. However, secondary
markets feature several sellers that could potentially use a slot that is not sold in the exchange
for themselves and thus have ask prices for the slots they offer. We therefore implemented a
general mechanism that assigns slots to sellers and computes ask prices based on the valuations
proposed by CATS. We distribute slots in such a way that the number of items per participant
is approximately uniform, but choose the assigned slots randomly. According to the buyer case,
valuations for these items were generated by common valuations and private value deviation. To
model the participants willingness to sell these items, we further applied a factor of 0.3 to compute
the final ask prices. The exact number of instances for a specific parameter configuration will be
discussed in the appropriate sections of this chapter.

5.2 Comparison of KKT to BCE conditions

First, we evaluate the benefits of the BCE introduced in Section 4 as opposed to using the standard
KKT conditions. For this, we consider two settings with 10 and 15 bidders, respectively. In
both scenarios, 40 slots are traded. We solved 10 instances each, one time using standard KKT
conditions, the other time using our BCE constraints. The results are depicted in Table 1. Out
of 10 instances with 10 bidders that both buy and sell and 40 items we can solve 7 when using
KKT conditions and all 10 when using BCE constraints. Even if we consider only the times of
solved instances for the averages, the KKT conditions lead to significantly larger runtimes (23.57s
compared to 1.87s). The differences become even more evident when we consider instances with
15 bidders and 40 items. Using KKT conditions not a single instance could be solved within 300s
while with BCE all instance in 11.7s on average could be solved.
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#Bidders | #Slots | Method | avg. runtime of solved <300s | avg. #iterations
solved instances (s)

10 40 KKT 23.57 7 11.3

10 40 BCE 1.87 10 14.2

15 40 KKT n.a. 0 n.a.

15 40 BCE 11.70 10 332

Table 1: Comparison of KKT and BCE constraints

The examples showed that BCE constraints perform significantly better than the KKT conditi-
ons for the scenarios under consideration. We attribute these gains in time to the lower number of
constraints in general and the lower number of big M constraints, specifically.

5.3 Computability

In the following, we show that our approach can solve instances of practically relevant size despite
the high complexity of the underlying problem. Let us first discuss how many participants realisti-
cally compete against other in secondary slot trading markets. The world’s largest airline alliance,
Star Alliance, consists of 27 members2. Since only a handful of such alliances exists, almost all ai-
rlines are member in one of them and members of one alliance only compete to a certain degree in
the same region, we argue that usually not more than 25 airlines will compete in the same market.
The ACL reported that the annual trade volume at Heathrow was around 250 slots from 2014 to
2016°. Since slots are usually traded for every day of the week, this number is essentially inflated
by a factor of 7. This leaves us with around 30 annually traded slots at one of the busiest airports
in the world. For this computational study we assume that between 100 and 200 total slots from
4 different airport are traded. This scenario matches the number of coordinated airports in the US
and the number of slots offered per airport is around 83 — 166% of slots traded at Heathrow in
recent years.

For these experiments we generated instances each for 20, 25 and 30 bidders. We incremented
the number of slots in steps of 20 from 100 to 200 (inclusive) and generated 2 instances per number
of slots leading to a total number of 12 instances per participant count. The number of slots offe-
red did not lead to significant differences in computational time, therefore we report the aggregated
results for the 12 instances each in Table 2. For 20 to 30 bidders, we report how many of the 12
instances we were able to solve (i.e. obtain a welfare-maximal stable outcome or proof that no such
outcome exists) within a time limit of 1 hour. We also report the average computational time (in
seconds) of the solved instances. It can be seen that all of the smaller instances could be solved in
very short time and our approach was still able to obtain solutions for 7 out of the 12 largest instan-
ces, providing welfare-maximal outcomes that are stable against blocking coalitions of all sizes.
In practice, however, blocking coalitions of arbitrary large size may not form since coordinating
towards blocking an outcome may be hard for large groups of (self-interested) airlines. Hence, we
also determined welfare-optimal outcomes that are only stable against blocking coalitions of size
at most 3 (3-stable) or 5 (5-stable). It can be seen, that our approach is well capable of obtaining

Zhttps://www.staralliance.com
3https://www.heathrow.com/file_source/ HeathrowNoise/Static/HCNF_ACL _Slot_Coordination.pdf
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outcomes against coalitions of these sizes, solving all of the larger instances in only a matter of
seconds. While solving instances of increasing size becomes computationally more challenging,
these results indicate that 3- and 5-stable outcomes can be obtained for an even larger number of
bidders, should the policy maker be satisfied by this level of stability.

#Bidders Stable Outcome 3-Stable Outcome 5-Stable Outcome
#Solved | Runtime (s) | #Solved | Runtime (s) | #Solved | Runtime(s)

20 12 67 12 1 12 2

25 9 382 12 1 12 3

30 7 2426 12 1 12 8

Table 2: Computability of secondary market instances

5.4 Inefficiencies with Capped Bid

Incorporating budget constraints into the allocation and pricing mechanism comes at the cost of a
more complex algorithm. Finding core prices for allocation problems without budget constraints
does not require solving a Z‘z’ -complete optimization problem, but only’ a NP-complete problem
(Lehmann et al. 2006). However, we show in the following that ignoring budget constraints may
lead to really bad outcomes of the mechanism.

When bidders cannot communicate their financial constraints, it is risky for them to state their
true valuations if these are above their budgets. In order to avoid prices that they cannot pay,
bidders’ reported values and bids need to therefore be capped at their budget. This also makes
it hard for bidders to communicate differences in valuations for bundles that are both above their
budget. In case they report two capped bids, the corresponding bundles appear to have the same
associated valuation while in reality the true valuations might differ substantially. In the following,
we refer to the scenario where bidders only submit their capped bids as the capped market, and to
the scenario where they communicate their true valuations and budgets as the uncapped market.

In order to investigate the welfare loss incurred by inability to communicate budgets, we ana-
lyzed markets with 10, 15 and 20 bidders as well as 40 and 50 slots traded. For each combination
of bidders and slots, we solved 10 instances, determining a welfare-maximal stable outcome for
the capped as well as for the uncapped market. We calculate the loss in welfare by comparing
the sum of true (uncapped) payoffs achieved by the winners in the capped market to the sum of
payoffs achieved by winners in the uncapped market. Table 3 summarizes the results, showing
for each combination of bidders and traded slots the percentage of the uncapped market’s welfare
that is achieved in the capped market. We report the average welfare over the ten instances as well
as the worst and best welfare achieved in the capped market for these ten instances. The average
welfare loss in secondary markets ranged from 15% to 20% (Table 3). For no instance can the
capped market find an outcome that achieves 100 % of the welfare of the uncapped market. In
some instances, the welfare loss is even higher than 50%.

In addition to these severe losses in welfare, not being able to communicate budgets can also
lead to instabilities. An outcome that is stable in the capped market may not be stable when the
true valuations of bidders are considered. To analyze this effect, we determined a welfare-maximal
stable outcome in the capped market and then tested whether a blocking coalition forms when
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#Bidders | #Slots | Avg Welfare | Worst Instance | Best Instance
10 40 0.84 0.61 0.93
10 50 0.79 0.46 0.97
15 40 0.80 0.51 0.91
15 50 0.84 0.68 0.98
20 40 0.84 0.56 0.97
20 50 0.85 0.74 0.89

Table 3: Welfare losses due to capped bidding

true valuations are considered. Table 4 summarizes the results for the same instances we used for
the analysis of the welfare losses. Almost all computed solutions based on capped valuations are
unstable when considering real valuations, even for small instances with 10 bidders. We report for
how many of the instances, a blocking coalition would form against the outcome of the capped
market given the true valuations. It can be seen that over all 60 instances, only a single outcome
is also stable in the uncapped market. Even worse, we also report how often reasonable small
coalitions (of size up to 5 or 3) block the capped market’s outcome. While it may be unrealistic for
larger coalitions to form, these small coalitions constitute a significant risk to stability. Determining
allocations and prices based on capped valuations thus seem impractical in general as bidders
almost always have an incentive to deviate from the outcome.

#Bidders | #Slots Instances with blocking coalitions
in general | of sizeupto 5 | of size up to 3
10 40 9 7 3
10 50 10 10 6
15 40 10 10 5
15 50 10 8 6
20 40 10 10 9
20 50 10 10 7

Table 4: Instability due to capped bidding

6 Conclusion

Airport time slots are the legislative answer to growing air traffic and congested airports. While
markets for secondary trading of time slots are implemented in practice, they fail to take budget
constraints of the bidders into account. We argue that budget constraints play an important role in
practical applications and propose a model for budget constrained secondary markets based on a
MIBLP. We conducted experiments on instances of realistic size to show that contrary to popular
belief some MIBLPs are tractable in practice. In computational experiments we also proved that
the ability to communicate budget constraints is of crucial importance. Our experiments show that
ignoring budgets leads to substantial loss in social welfare, up to 50% in extreme cases. Addi-
tionally, outcomes determined based on capped bids also lead to severe instabilities and market
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bidders would form blocking coalitions due to their true valuations. We conclude that budget con-
straints should be incorporated into a mechanism for airport time slot allocation to find allocations
and prices that are feasible in practice. To this end, we were able to show that our approach based
on bilevel programming can be used as an efficient mechanism.
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1 Introduction

Mobility-as-a-Service (MaaS) and transportation sharing platforms are expected to be the
future of transportation, at least in urban areas. The prices for transportation are decreas-
ing even further with such new technologies and increasing competition for mobility and
transportation services. Overall, the global on-demand transportation market is expected
to reach $290.3 billion by 2025.8 Together with increased urbanization, this will lead to
more and more traffic in major cities, and, as a result, more and more congestion: one of
the major problems of our society. Costs due to traffic jams worldwide were estimated $1
trillion already in 2013 in an article by the Economist. In the U.S.; congestion cost was
at €87 billion in 2018.2 Those numbers come from the lost productivity of workers sitting
in traffic, and wasted fuel, among other factors. Not surprisingly, traffic takes the biggest
economic toll on the largest, most economically vibrant cities.

A central challenge to traffic jam prevention is mispricing of the core resource for mobility,
the road capacity. In most cities, road capacity is not priced at all. A combination of MaaS,
car sharing apps, and congestion pricing has the potential to alleviate the problems that
have emerged due to traffic jams. Congestion prices are charged to drivers who enter roads
in high demand and can lead individuals to carpool, possibly in a self-driving car fleet, to
switch to public transit, or cancel a leisure trip if roads are already congested. Even in the
absence of MaaS and car sharing apps, this can lead to a much better utilization of scarce
road capacity. Congestion pricing therefore also reduces private car travel demand and the
associated carbon dioxide emissions (Wang et al. 2014).

A few cities such as London, Milan, Stockholm, or Singapore have introduced road pricing
to combat congestion, and several more are about to follow suit soon (e.g. Beijing in 2020,
New York in 2022, Sao Paulo in 2025). The pricing systems largely fall into three categories:
zonal-based (sometimes called area-based) pricing for being inside an area, cordon-based
pricing for passing a cordon line, and distance-based pricing (Cheng et al. 2017). The zonal-
based pricing scheme was already established in 1975 in Singapore. The Electronic Road

Ihttps://www.economist.com/the-economist-explains/2014/11/03/the-cost-of-traffic-jams
2http://inrix.com/scorecard/
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Pricing (ERP) system, which was introduced in 1998, works with other information systems
to manage traffic congestion and improve transportation efficiency. The traffic volume in the
toll area was reduced by 45%, which was considered a huge success. A cordon-based pricing
scheme was introduced in central London in 2003 and in Stockholm in 2006. Most of the
existing congestion pricing models are based on static prices (Chiu et al. 2011; de Palma and
Lindsey 2011).

However, efficient congestion prices need to adapt to changing traffic conditions to price
at marginal costs (Cheng et al. 2017). Static models only account for the network flows in a
stationary manner, ignoring the time-dependent nature of traffic flows and travel behavior.
Lo and Szeto (2004) showed that transportation management schemes based on static traffic
assignment theory can actually worsen the congestion problem. Prices might be too high or
too low to avoid congestion. In addition, static congestion pricing models do not consider the
temporal effect of the current toll on future congestion (Wie and Tobin 1998). Singapore’s
ERP differentiates by vehicle type, time of day, and location of tolling gantry and comes
closest to a dynamic congestion pricing scheme in practice today. Such prices are typically
not determined in real-time and do not respond to sudden changes in demand or the length
and specific route of a driver. All implemented congestion pricing schemes adopt the flat-toll
method regardless of the travel distance, travel time, or congestion level in the pricing zone.
Hence, this toll method may cause inequitable charging problems due to undercharging for
long journeys and overcharging for short ones. Cheng et al. (2017) write: “How to formulate
distance-based congestion toll encapsulating all facets of a dynamic transportation network
while alleviating urban traffic congestion remains an open question.”

New technology such as mobile apps and privacy-preserving tracking of vehicles allows for
real-time dynamic pricing today (Hensher 2018). Compared with conventional static conges-
tion pricing models, real-time congestion pricing models are much more efficient due to the
inherent uncertainty, randomness, and time-varying properties of traffic. However, real-time
congestion pricing requires new algorithms to best adapt to changing market conditions and
new information systems designs. Following the theme of this year’s workshop, we provide
a multi-method design for an intelligent information system for social good: congestion-free
traffic.

1.1 Scenario

We consider a scenario where a service operator or regulator “owns” capacity on roads in a
city. The service provider sells her inventory to end users such as daily commuters in private
cars, taxis, ride-hailing providers, or professional carriers and craftsmen who need to visit
their clients.> The objective of the service provider is to price individual roads over time
such that the road capacity is not exceeded and no congestion emerges. While the service
provider might want to provide long-term plans for regular trips (e.g., the daily commute), a
large part of the trips needs to be priced dynamically in real-time, and these prices need to
adjust to changing traffic conditions. Without congestion, consumers would drive for free,
but with higher demand prices shall rise. In this scenario, a consumer wants to drive from

3Protected groups get reduced prices for regular trips they have to make. Examples would be single moms
getting their kids to childcare, or retired persons going to recreational events. We do not further consider
equity issues in this paper.
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a certain origin to a destination. She submits a query to the service provider online, who
responds with a number of possible routes and prices for each of these routes.

For occasional trips, drivers can also search ahead of time and lock in a price to drive
from an origin to a destination within a certain time frame. If the customer does not start
her trip within the time slot scheduled (either immediately or in some future time slot), she
will also not be charged or only be charged a minimal fee. If she has to terminate her trip
before reaching the destination (e.g., due to an accident), she will only be charged the roads
driven.

The key challenge is that the service provider needs to compute a price for hundreds
of thousands of trips dynamically. Real-time dynamic pricing requires very fast algorithms
because the prices must be updated frequently to adapt to changing demand patterns. Real-
time pricing algorithms that consider the time and the route of the trip have not yet been
discussed in the literature to our knowledge. If all bids were available at one point in
time, the decision maker would need to solve a very large-scale optimization problem. This
problem aims to maximize welfare and decides which road trips to accept. If the problem
was convex, dual prices could be interpreted as market prices of such an offline optimization
problem. However, the problem has to be solved dynamically as new drivers arrive, and it
is a non-convex integer optimization problem. We draw on recent advances in online linear
programming (Agrawal et al. 2014; Li and Ye 2019; Li et al. 2020) and combine them with
short term forecasting in order to provide good estimates for parameters needed in the online
integer program. We solve the problem in dual space, and compute dual prices that reflect
the scarcity of the resources, as we discuss next.

1.2 Pricing Roads in Real-Time

In our problem, the individual resources can be seen as roads in an urban road network.
Each road leads to a capacity constraint of an optimization problem, a maximum number of
vehicles that must not be exceeded during a time slot. A route for a driver can be modeled
as a 0-1 column vector in an online integer linear program that has strictly positive entries
on all the roads (components of the vector) on this route and 0 otherwise. The dual prices of
each capacity constraint reflect the opportunity costs of another car on this road in a time
slot. The sum of the dual prices of all roads on a route then results in the price of this route.

The question is how to react to demand changes over time and adapt prices in real-time.
This requires solving a large integer packing problem dynamically. Very recently, Li et al.
(2020) provided a fast optimization algorithm based on projected stochastic subgradient
descent to address this task. Stochastic gradient descent is widely used for training neural
networks and is known to be very fast. As such, the algorithm has potential for pricing roads
in real-time for realistic problem sizes with thousands of roads. The algorithm outputs an
integer solution with an expected regret of O(m/n) under the stochastic input model, which
is a measure in online optimization for how well an algorithm is doing compared to the best
dynamic decisions in hindsight. In our context, m would be the number of roads, and n the
number of trips. The algorithm can be seen as integer approximation of the offline integer
linear program. The online integer program makes sure that resources are not depleted too
early and adapts to demand peaks in contrast to a fixed price that a service provider would
set during the time slot.
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Two parameters are essential in online integer programming: the value or willingness-
to-pay v that each bidder has for a trip, and the number n of trips (or requests) we expect
to arrive over time. While we do not know the number of vehicles which will drive on a
road within this time slot exactly, we can get very precise forecasts for an hour or less. This
forecast can be done just before the hour starts in order to be as precise as possible. A
big advantage of the algorithm suggested in this paper is that we do not need to elicit the
precise willingness-to-pay from a driver. The system generates a price and the driver accepts
or rejects this price, which is all the information needed. Therefore, no driver needs to reveal
his precise value v, she just needs to accept or reject an offer at a price. This is important as
many drivers might want to keep their willingness-to-pay private information. This is similar
to ascending auctions following the primal-dual design recipe, where winning bidders do not
have to reveal their private values (Bikhchandani et al. 2011; Bichler 2017). Yet, without
knowing all valuations, primal dual auctions maximize welfare. The property also preserves
privacy of the drivers.

1.3 Contribution

Computing congestion prices in real-time that take into account the time and the very route
of a driver has been an open problem. Solving such a problem will enable efficient pricing
of road capacity and ultimately mitigate or eliminate traffic congestion. We introduce a
dynamic algorithm based on short-term forecasting and stochastic gradient descent which
allows us to update tens of thousands of prices in real-time based on changing demand. We
provide an experimental evaluation of dynamic congestion pricing based on the SimMobility
framework?®. This software framework is a state-of-the-art tool used by the traffic engineering
community to benchmark and analyze traffic in a mid-sized artificial city (Adnan et al.
2016). The results show that the algorithm scales to the problem sizes required in practice,
effectively reduces traffic jams, and increases welfare compared to static pricing or no pricing.

1.4  Outline

The paper is organized as follows: In Section 2, we review prior literature on congestion
pricing. We describe the model under consideration in Section 3 and the online algorithm in
Section 4. In Section 5, we provide a brief introduction to the SimMobility framework. An
experimental evaluation is given in Section 6. Finally, we conclude in Section 7.

2 Related literature

Maximizing social welfare requires efficient pricing, i.e. the cost of a trip must equal its
marginal social cost. Static pricing schemes are inefficient because they generally are not
demand-responsive. Drivers may either pay much more than necessary or too little to avoid
congestion. Prior literature agrees that dynamic congestion pricing schemes offer the most
efficient approach to manage and operate roads (de Palma and Picard 2005; Rouhani and
Niemeier 2014). Dynamic congestion pricing (DCP) is the determination of time-varying

“https://github.com/smart-fm/simmobility-prod
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prices to control or otherwise reduce traffic congestion, and hence improve social welfare
(Do Chung et al. 2012; Cheng et al. 2017). Nobel laureate William Vickrey was the first to
suggest congestion prices and he already suggested dynamic and real-time prices (Vickrey
1963). He argues that “the results of not charging motorists for their rush-hour usage can
be disastrously expensive.”

The existing literature on DCP can be categorized in within-day and day-to-day models
which aim to determine time-varying tolls. Many of these models are formulated as bi-level
programming models or mathematical programming models with equilibrium constraints
with the objective of minimizing total system travel times and the constraints of dynamic
route choice and departure time decisions of each individual.

DCP is not necessarily real-time and does not adapt to changes in demand. New technol-
ogy including mobile applications and GPS-based and privacy-preserving tracking of vehicles
allow for real-time dynamic pricing today (Hensher 2018). The analysis of real-time conges-
tion prices has been focused on simple networks (Laval et al. 2015). In contrast, we aim to
compute real-time dynamic prices for the entire road network of a city taking into account
the length and very route of a trip. For this, we draw on recent advances in online linear
programming (Li and Ye 2019). These algorithms have proven regret bounds and allow for
computation and real-time adaptation of prices in very large-scale road networks.

3 The Model

Let N(V,E,c) be a directed graph where ¢: E — Rar denotes the capacity of an edge or road
segment e € E, i.e. the vehicles that can drive on this road segment per time slot without
congestion. Drivers want to take trips between an origin-destination pair and bid routes
S CE with m = |E|. There are n drivers i € .. For each route S a driver i has a willingness-
to-pay v;(S) > 0. We use parameters a; to denote whether a road segment e is part of a route
S for driver i. These parameters might also be used to describe different types of vehicles
(e.g., a truck or car). For our basic model, we treat all vehicles equal. The vector a; € {0, 1}"
describes all the roads visited on a route by a driver i. By decision variable x;(S) € {0,1}
we denote whether driver i is assigned the route S and by p(e) the price for road e € E.
The integer linear programming formulation for the offline version of the resulting resource
allocation problem is straightforward.

max ) Y vi(S)xi(S) (Primal)

SCEic.sy

subject to
Z Z a;ixi(S) < c(e) Ve € E (p(e)) (Capacity)
SCEicy
Y xi(S) <1 Vie s (m) (XOR)
SCE
xi(S) {0,1} Vie #/,SCE (Binary)

In the objective function, we aim to maximize the sum of valuations for assigned routes,
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i.e. the social welfare. Here, we also assume that a driver might have requests for two or
more different routes. In an online version, this might be different requests, arriving in a
sequence. The Capacity constraint enforces the respective capacity limit of road segment e
for multiple trips a driver wants to take within the relevant period of time. The model uses
the XOR bidding language, i.e. assigns at most one route out of several possible ones to a
driver (Constraint XOR). Dual variables can be found to the right in brackets. The dual
of the relaxed Primal with 0 <x;(S) <1 for all i € .# and § C E can now be formulated as
follows:

min ) c(e)pe)+ Y m (Dual)

ecE ics
subject to
Y aip(e)+m > vi(S) VSCE,ie I (Payoff)
eck
ple),m >0 Vec ENie I (Real)

Corresponding to the m capacity constraints for all roads in the primal problem, we now
have dual variables p = (p(1),---,p(m)) for all roads, and payoffs &= = (m,---,m,) for all
drivers. The sum of the dual prices on a route serves as a threshold price for a specific route.
From LP duality we know that if (p*, ") is an optimal solution for the Dual, then the primal
optimal solution must satisfy

1, vi(S)>alp*
(s) =4 - vi($) i r”
0, vi(S)<a;p

where a; = (a(1);,--- ,a(m);). Thus, the prices p* serve as thresholds in the mechanism such
that only drivers with a willingness-to-pay higher than the (sum of) the shadow prices for
all roads on a route get a route assigned. Note that the Dual can be rewritten as

f(p)=min } c(e)p(e)+ Y. (Vi(S) - aiP(é’))

ecE icd ¢€E
ple)>0,e=1,....m

where ()T is a ReLu function. This convex objective function can be interpreted as an
n-sample approximation of a stochastic programming problem (Li et al. 2020).

In the offline version of the relaxed Primal problem (assuming trips were divisible), we
would get competitive equilibrium prices such that each driver maximizes his payoff m; at the
prices p(e) (Bikhchandani and Mamer 1997). However, our problem has integer variables
and it needs to be solved online with drivers arriving over time.
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4 Online Optimization

In our algorithm, we slice the day into time slots (e.g., 30 minutes) for which we can predict
the number n of vehicles (or trips between origin-destination pairs) with high accuracy shortly
before the time slot starts. Within this time slot, we use an online algorithm to adapt prices
to changing demand in real-time. For this, we leverage a simple and fast subgradient descent
algorithm on f(p) (Li et al. 2020). This algorithm allows us to update prices continually.
The algorithm performs one pass of projected stochastic subgradient descent in the dual
space and determines the primal solution based on the dual iterate solution online. Note
that a bidder’s index i is determined solely based on the ordering of arrival. In what follows,
we will thus replace the subscript i € .# by t € ., in order to emphasize that each request
of a driver comes at a specific time, one after the other.

This online algorithm starts at the prices from the last period piast period, Observes the
input requests or bids of the Primal sequentially, and computes the value of decision variable
x(S) after each request (v(S),a;). At each time 7, it updates the current price vector p;
at step ¢ with the new observation (v(S),a;). In Algorithm 1, Line 4, the gradient step is
performed.

The price will decrease for roads that were either not requested or when the request was
rejected as both of these result in a,x;(S) =0 at the corresponding positions. Ouly if the
request contains road e and was accepted, the price will increase by y(1 —c¢/n) since typically
¢ <<nand thus ¢/n < 1. In Algorithm 1, Line 5, the price is projected to the feasible region of
(non-negative) prices. The operator V describes the element-wise maximum of both vectors,
and ¥ is the step-size. We use a step size of 3 = 1/4/n, for which the regret and constraint
violations are O(m+/n) (Li et al. 2020). The resulting solution is an approximation to the
optimal solution of the Primal.

Data: Input: c,n, plast period

Initialize p1 = piast period
2 fort=1,---,ndo

x(S) = {1’ ()= e
0, v(S)<a p
Pr+1 = pe+ % (@ (S) — (¢/n))
Pr+1=Pr+1 V0
end
return x = (x1(S), -, x,(5))
Algorithm 1: Simple Online Algorithm

—_

w

Note that the algorithm requires only one single pass through the input and is free of
any matrix inversion or other costly operation. The algorithm directly outputs an integer
solution to the relaxed linear program, an approximate solution to the integer linear program.

In order to avoid exceeding capacity constraints with non-stationary arrivals of requests,
pricing should incorporate how much capacity is remaining for a specific road and raise prices
accordingly. The modification of Algorithm 1 used in our experiments works similar to the
simple online algorithm, but takes residual capacities into account during the price update.
More precisely, Algorithm 1, Line 4 is replaced by the following:
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¢t =cr—1—arx(S)
pre1 = pr+ Y (@i (S) — (¢ /(n—1)))

This replacement has two main features. Firstly, if the remaining capacity for a road e
approaches 0, the term ¢;/(n—t) in the respective price update approaches 0, too. This leads
to higher subsequent price updates whenever an additional capacity is sold and inversely, the
price decreases at a slower rate whenever the road is not requested or the request is rejected.
Secondly, the denominator now reflects the number of still to be expected requests. While
in the beginning of a time slot this has little implications, a road with a lot of remaining
capacity would get substantially cheaper after the majority of requests has been processed
since the term n—t approaches 0 then, leading to a greater value ¢;/(n—t). This allows for
more adaptive admission of trips, which is reflecting the current traffic situation better.

5 Experimental Environment

In our experimental evaluation, we draw on SimMobility as a widely used traffic simulator
(Adnan et al. 2016). It integrates state-of-the-art scalable simulators to predict the impact
of mobility demands on transportation networks, intelligent transportation services, and
vehicular emissions. The platform enables the simulation of the effects of a portfolio of
technology, policy and investment options under alternative scenarios.

SimMobility is an activity-based, multi-modal simulation for different levels of tempo-
ral abstraction. It offers three distinct levels of simulation granularity: In the long-term
framework, agents are simulated regarding land use and economic activity such as changing
their workplace or their residence (year-to-year). The mid-term simulates transportation
demands based on an agent’s activity and travel patterns (day-to-day). Vehicles are moved
on an aggregated level. Finally, the short-term framework provides a detailed simulation of
individual vehicles. This includes acceleration, stopping at red lights, and other microscopic
movements. We use the mid-term framework and the provided prototypical city to evaluate
the effect of real-time road pricing on aggregate movements during a full day of traffic. The
provided city has around 100,000 households and 254 roads segments, and features different
types of roads, distinct households, and establishments as well as public transport networks.
Available modes of transportation include private (car, motorbike, bus, taxi) and public (bus,
subway) options while the purpose of a trip is either work or leisure. The parameters of the
framework are set such that congestion arises.

In SimMobility, one can distinguish two types of agents: private individuals and pro-
fessional drivers. Agents in the first group have an individual activity schedule including
pre-determined start times, trip purpose and preferred modes of transportation which they
follow for the duration of the simulation. Whenever such an agent starts a trip, she tries
to find a connection between her origin and destination pair using the pre-determined mode
from the activity schedule. If the agent prefers a mode of public transport they use a combi-
nation of walking, waiting, bus and MRT (a metro system) legs to arrive at their destination.
Since prices for public transport are constant and known before the simulation starts, agents
intending to use public transport can always do so and simply choose the fastest route via
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public transportation.

On the other hand, roads are priced dynamically and typically several routes connecting
origin and destination in the road network are available. If the agent intends to use a private
vehicle, she thus needs to incorporate both costs and travel times in her route choice. To
this end, the agent uses a quasi-linear utility function u;(S) = v¢(S) — (p:(S) + 10 (1£,(S) —
(1t,(Qs))) to rank alternatives where p;(S) denotes the congestion price and 10 x (¢£(S) —
11;(Qs) the costs for expected additional travel time 7 (in hours) for path S at time # relative
to the minimal travel time #,(Qys) of all paths between OD at time . The valuation v;(S) for
the trip is drawn from the uniform distribution over [5,15]. If at least one route results in a
utility u,(S) > 0, the agent chooses the route with the highest utility and informs the service
provider about the intention to drive on this path. The agent does not need to communicate
her true willingness-to-pay v;(S) but only make a choice for one of the routes between origin
and destination. While prices are valid for a short amount of time (e.g., 30 seconds), a trip
can also be rejected by the service provider in case a driver waits too long and the prices
change (e.g., due to an accident).

Choose fastest
Public mode connection }-< End
New trip .

to be started Check trip mode R

Highest utility Book path with
positive service provider
Compute route
—-<prvate mud>—{ utilities
Highest utility
negative

-
Make (random) )
decision Leisure

Figure 1: Individual agents’ mode and route choice model

Accepted

Check trip
purpose

If, however, all routes result in a negative utility the agent refrains from booking a route
with the service provider and instead either changes to public transport or postpones the
trip once by 30 minutes. Modes of leisure trips are changed with a probability of 30% (the
remaining 70% are postponed) while work trips cannot be postponed and always change
modes. In case the mode of a trip was changed, the agent also changes subsequent schedule
items if the intention was to use the same, now left behind, private vehicle. The overall
process for this group of agents is depicted in Figure 1.

The second group in the simulation constitutes professional drivers such as taxi drivers.
These agents have no pre-determined activity schedule, but instead decide where to drive
during run-time. We assume that these drivers are on subscription plans so while they still
book paths with the service provider to indicate the use of road capacity they will not be
affected by dynamic prices. Professional drivers stick to their mode of transportation while

9
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all other drivers can switch to public transit.

6 Results

In our simulations, we analyze the overall number of traffic jams on a given day, the total
welfare considering the true values of drivers, the revenue of the road service provider, and
the number of realized private mode trips. We define a road segment to be congested if the
average density in a timeslot is > % (Knoop and Daamen 2017). Welfare is the sum of
valuations v(S) of completed trips, while revenue is the sum of the prices paid by drivers.
We consider three different mechanisms: static (zonal) pricing, dynamic pricing on the
level of road segments, no pricing. For static prices, we defined a zone and charged either a
low or a high fixed price whenever a driver enters the zone on his trip (see Figure 2a). The
key parameter in our online algorithm is the number of trips requests we expect in a time
period (30 minutes). We ran simulations with different levels of predictive accuracy, which
we do not report due to page restrictions. For the reported results, we used the number
of trips in the activity schedule per time slot as a forecast, which is not very precise. It
does not include the trips of professional drivers as these are only determined at run-time
(around 10-15% of overall traffic) and also it does not take into account delayed trips. In
total, this leads to significant deviations from the actual number of trips requested in each
time period. In spite of this poor forecast, the real-time pricing can still reduce the number
of traffic jams effectively and achieve very high welfare. In this sense, the numbers we report
are very conservative for the benefits that can be achieved with real-time dynamic pricing.

(a) Priced zone in static pricing (bold)  (b) Express and urban roads priced in real-
time pricing (bold)

Figure 2: Road network and priced road segments
The average results of a simulation of one day (3 repetitions) are summarized in Table
1. Each repetition takes roughly three hours with SimMobility. When road usage is free of

charge, we achieve a social welfare of 1.0 million $ on average and a high number of traffic
jams. 76,218 planned trips with private transport modes can be completed. If drivers are

10
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std. std. std. realized | std.
prices # jams | dev. | $ welfare dev. | $ revenue dev. | priv. trips | dev.
none (baseline) 2,111 27 | 1,002,940 | 4,383 0 0 76,218 | 2,778
static (low) 1,938 56 953,811 | 5,425 205,352 | 1,957 70,407 | 2,729
static (high) 854 30 | 1,299,298 | 7,336 261,010 | 2,797 77,046 | 1,409
real-time 784 50 | 1,396,007 | 11,788 432,001 | 14,063 109,457 | 5,199

Table 1: Results for 4 different pricing mechanisms and standard deviations

stuck in traffic for too long, they cannot conduct a second or third trip on that day, which
leads to a reduction in the number of actual trips. This serves as our baseline scenario.

In the low price scenario, we charge drivers for a payment of $7 in case they want to enter
the priced zone. The results show that this is not an effective measure to prevent jams since
most of the drivers are willing to pay this price and only around 21,000 people on average
deviate to public transport. The number of traffic jams is still relatively high (Table 1).
Yet, the small share of drivers changing to public transport leads to an even lower number
of completed private trips than the baseline. The mechanism does, however, transfer part
of the social welfare from the drivers to the service provider which earns around $205,000.
In other words, low static prices reduce the drivers’ utility (an average of $2.92 per trip)
without reducing traffic jams.

The high static price scenario sets the price to $13. This discourages an average of 95,500
of the private travelers from using their cars or motorbikes and reduces the number of jams
greatly. Only few drivers still want to afford driving into the priced area, but they pay a
high price, leading to a revenue of around $261,000 for only 77,000 realized private trips.
Note that this number of completed trips is higher than in the low-price scenario, because
in the latter many drivers cannot complete their trips due to traffic congestion. With high
prices of $13, drivers can largely use uncongested roads. Private drivers who use their private
vehicles typically buy paths around the priced area (74%) and only a small fraction affords
the luxury to use road segments in the priced area, resulting in a average price pf $3.39 per
trip. The welfare with high static prices is relatively high, because most drivers leave their
cars at home and take public transit.

Finally, real-time pricing controls prices for a number of road segments in the network,
and effectively guides traffic to routes with less frequently used road segments. In this sce-
nario, we price only express and urban roads (Figure 2b) and reserve 20% of the capacity
for professional drivers. This achieves the highest welfare for the travelers ($1.39 million)
and prevents almost two out of three traffic jams compared to the unpriced baseline scenario
(with 2111 jams). In contrast to the high static prices, this approach sets incentives to use
uncongested roads and leads to the completion of a high number of private trips (109,457).
Additionally, on average 90,000 drivers opt to use public transit. Overall, the price signals
effectively guide drivers to use the least congested routes and thus makes effective use of the
existing road capacity. In contrast, in the treatment with high static prices most private
drivers just use public transportation and the road capacity is underutilized. In our simula-
tion, we assume that public transportation has sufficient capacity, which might not always
be the case. If there is enough capacity of public transportation facilities and there is a goal

11
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to set incentives for drivers to use public transit for environmental reasons, the regulator
can always increase the real-time dynamic price.

Prices depend on the corresponding requests and one might assume high prices follow a
high number of requests and vice versa. Figure 3 exemplarily pictures the price development
of road segment 88. Requests may or may not include a specific road segment and are either
accepted or rejected. Out of the four combinations, only requests that include a certain road
segment and are accepted increase the price of this road segment while requests that are
either rejected or do not include the road segment lead to a price reduction in our gradient
descent algorithm. The ratio between these groups of requests thus plays a crucial role.
Note that if the total number of requests n is very high relative to the requests for a specific
road segment, then prices can even go down because the road segment is relatively more
attractive to other road segments in the traffic network in this price update rule. We have
worked with different price update rules to analyze their results on welfare and the reduction
of traffic jams. A more comprehensive discussion with different price update rules can be
found in the long version of the paper.
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Figure 3: Price development of road segment 88 (solid line) compared to the number of
requests for this road segment (histogram)

7 Conclusions

Traffic congestion is the key problem in the future of mobility. Current mechanisms to solve
this problem by pricing roads include cordon-based, zonal-based and distance-based pricing.
Unfortunately, such static pricing is known to be inefficient. On the other hand, real-time,
trip- and distance-based pricing has only received little attention due to its inherent com-
plexity. We suggest a system where drivers can buy either long-term plans for re-occurring
trips (e.g., commutes) or short-term road capacity for individual trips. We focus on pricing
of the latter. Our approach is based on short-term traffic forecasting and recent trends in
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online optimization that allow for real-time price updates of individual road segments in
real-time.

Using the state-of-the-art traffic simulation framework SimMobility, we show that these
real-time dynamic pricing mechanisms are computationally feasible, and that they achieve
substantially higher welfare while reducing the number of jams compared to static pricing.
Also, this approach does not discourage road usage in general (as is the case with high static
prices), but instead indicates which roads are approaching their capacity limits and guides
drivers effectively to pick routes which are less congested. Therefore, real-time dynamic
pricing makes best use of scarce road capacity. Our approach also preserves privacy as
drivers do not need to reveal their true willingness-to-pay. Drivers only need to reveal
whether they are willing to accept a price or not.

The reported results are based on a simulation with poor forecasts of the number of
requests expected in a time period (the only parameter needed in our algorithm) and yet
real-time pricing outperforms static pricing methods by far. With better forecasting, we
expect to reduce traffic jams even more effectively. Overall, there is a lot of room for fine
tuning. However, the benefits of real-time dynamic pricing were already obvious in a wide
range of simulation settings that we tested.
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6 Discussion and Conclusion

While the Vickrey-Clarke-Groves (VCG) mechanism is known to be the only efficient,
strategy-proof mechanism, it is rarely used in practice (Rothkopf, 2007). Ausubel et al.
(2006) attribute this phenomenon to low seller revenues and vulnerability to coordi-
nated deviation by a coalition of bidders. Furthermore, the VCG mechanism requires
repeated solving of the underlying allocation problem to optimality. There is, however,
a great number of problems where no polynomial time algorithm is known due to their
combinatorial nature. Algorithms which find an approximate solution can be deployed,
but the VCG mechanism loses its properties if the allocation problem is not solved to

optimality.

In this dissertation, we suggest pricing mechanisms for settings where the VCG mech-
anism falls short. We consider applications where the allocation needs to be approxi-
mated, budget constraints need to be considered, or bids arrive in an online fashion, and
provide algorithms appropriate for the practical requirements. Despite their non-convex
structure, instances of relevant size can be solved for all problems in feasible time, and

we use prices to achieve important goals such as strategyproofness or core-stability.

As a first example, we consider a network procurement problem which needs to be ap-
proximated in practical applications (Chapter 3). In this setting, a telecommunications
provider aims to connect a crucial subset of the available nodes at minimal cost. The
provider needs to buy connections from suppliers which have private information about
the cost of the connections they offer. We suggest a procurement auction to reduce trans-
action cost and increase competition. The underlying allocation problem refers to the
Steiner minimum tree (SMT) problem, which belongs to Karp’s 21 NP-complete prob-
lems (Karp, 1972), and hence does not have a polynomial time approximation within
96/95 unless P=NP (Chlebik and Chlebikova, 2008). A number of approximations for
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the SMT problem is available, but, prior to our work, the strategyproofness of mech-
anisms based on these approximations has been barely examined (Guala and Proietti,
2005). Based on the assumption of single-minded bidders, we extend approximation

algorithms to strategyproof mechanisms for network procurement.

Besides approximations for the SMT problem, we applied deferred acceptance auc-
tions (DAA). The DAA is a general greedy-out approach that is even weakly group-
strategyproof, but, for most problems, including the SMT, no worst-case approximation
ratios are known. Our analysis shows that the DAA with simple scoring functions finds
better solutions than approximations specifically designed for the SM'T problem on av-
erage. Moreover, the premium for weak group-strategyproofness is surprisingly low.
The convincing DAA performance is arguably the main result of this project. Among
the monotonicity assessments, the disproof of monotonicity of the algorithm by Robins
and Zelikovsky stands out because the complex algorithm defied intuition regarding
monotonicity of its allocation. Moreover, the algorithm has the best known approxima-
tion ratio expect for Byrka et al. (2010), where de-randomization leads to a blow-up in
the polynomial terms but computes allocations which are on average inferior to those
computed by DAAs. The results give additional evidence for the strong performance of
DAAs and provide valuable insights for the design of strategyproof network procurement

auctions beyond the VCG mechanism.

Being restricted to the quasi-linear setting is another deficiency of the VCG mechanism.
Markets where participants are constrained by budgets lie outside the quasi-linear set-
ting and are thus unsuitable for the VCG mechanism. Such budget constraints are a
valid concern in the secondary market for airport time slots we consider in our sec-
ond project (Chapter 4). Since strategyproofness cannot be achieved under budget
constraints (Dobzinski et al., 2012), we aim for core stable outcomes instead. The
corresponding problem of computing a welfare-maximizing core-stable outcome in com-
binatorial exchanges with financially constrained bidders is in the complexity class of ¥
(Bichler and Waldherr, 2019). Problems in this complexity class are often considered

intractable, and only few solution strategies exist.

We use a mixed-integer bilevel linear program formulation of the problem and apply an
algorithm by Zeng and An (2014). We improve the performance of this general purpose
algorithm by leveraging problem-specific constraints, which enables us to solve instances
of relevant size for the secondary airport time slots market. In a comparison to the

initial implementation, we demonstrate the evident benefits of using problem-specific
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constraints regarding reduced runtimes. Moreover, we make two arguments in the favor
of budget constraints. Firstly, when buyers are financially constrained but forced to state
capped bids, the resulting outcome might actually be unstable. Furthermore, there is
a considerable loss in welfare when budgets are ignored. In conclusion, we show that
budget constraints need to be considered when setting prices in combinatorial exchanges.
Despite the complexity of the resulting problem, we can solve instances of practically

relevant size in a non-quasi-linear setting where the VCG mechanism is inapplicable.

The online setting is another example where the VCG mechanism falls short. As optimal
allocations are generally unattainable in online markets, one of the central assumptions
in the VCG mechanism is violated. Consequently, welfare losses are inevitable in these
markets because decisions need to be made on incomplete information. Yet, there are
applications where a timely decision based on partial information is preferable over a
delayed decision. Congestion pricing, which we consider in our third project, is an
important representative of online markets (Chapter 5). In this problem, road prices need
to be set such that traffic congestion is reduced. Real-time congestion prices smoothly
adapt road prices according to the current traffic situation, providing more flexibility
than non-responsive pricing schemes. However, this requires nearly instant price updates
as many requests need to be processed in real-time. We use a fast algorithm based on
online linear programming (Li et al., 2020) and assess its performance on the SimMobility
framework, a state-of-the-art traffic simulation. We show that real-time prices can reduce
the number of congestions and increase the social welfare of travelers more than static
area-based prices can. In comparison to the unpriced scenario, about two out of three
traffic jams can be prevented, greatly increasing the social welfare of travelers. Our
experiments further demonstrate the capability of the algorithm by Li et al. to compute
prices quickly enough to satisfy practical requirements in a domain where the VCG

mechanism is inadequate.

In conclusion, the assumptions in the VCG mechanism are not correctly reflecting all
requirements in practice. Our results show that the shortcomings of the VCG mechanism

in three of these markets can be overcome by dedicated pricing mechanisms.
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