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Abstract

Many of the machine learning (ML) models used in the field of bioinformatics and computational
biology to predict either function or structure of proteins rely on the evolutionary information as
summarized in multiple-sequence alignments (MSAs) or the resulting position-specific scoring
matrices (PSSMs), as generated by PSI-BLAST. Due to the exhaustive database search to retrieve
evolutionary information, the current procedure used in protein structure and function prediction
is computationally exhaustive and time-consuming. This issue is becoming more problematic
since the protein sequence databases are increasing in size exponentially over time, and hence
raising PSI-BLAST runtime as well. According to previous experiments we have conducted, one
query protein takes PSI-BLAST on average 14 minutes to build a PSSM profile. Therefore, in
order to build a simple ML model, one may need a couple of months waiting for PSI-BLAST to
generate PSSMs for a few thousands of query proteins. This runtime bottleneck issue makes it a
major problem that requires an efficient alternative solution. A protein sequence is a collection of
contiguous tokens or characters called amino acids (AAs). This analogy to natural language
allowed us to exploit the recent advancements in the field of Natural Language Processing (NLP)
and therefore transferring NLP state-of-the-art algorithms to bioinformatics. A recent prominent
alternative to replace the need of PSSMs as input to our prediction methods is the direction of
Embedding Language Models (ELMo), converting a protein sequence to a numerical vector
representation. ELMo/SeqVec is a state-of-the-art deep learning pre-trained model that embeds a
protein sequence into a 3-dimensional tensor of numerical values. This ELMo trained a 2-layer
bidirectional Long Short-Term Memory (LSTM) network following a two-path architecture, one
for the forward and the second for the backward pass, on an unsupervised task predicting the next
AA from the previously seen residues in the sequence. The performance of the embedder was
then evaluated on downstream tasks, such as secondary structure and subcellular localization
predictions. The results showed that the embeddings succeed to capture the biochemical and the
biophysical properties of a protein, but not achieving state-of-the-art performance. By merging
the idea of PSSMs with the concept of transfer-learning during pre-training, we are aiming to
deploy a new ELMo with a better embedding power than SeqVec by training a novel single branch
bidirectional language model (bi-LM), with four times less free parameters. This is the first time
that an ELMo is trained not only on predicting the next AA but also on the probability distribution
of the next AA derived from similar, yet different sequences as summarized in a PSSM
simultaneously (multi-task training), hence learning evolutionary information of protein
sequences as well. To train our novel embedder, we compiled the largest currently curated dataset
of sequences with their corresponding PSSMs of size 1.83 Million proteins (~0.8 billion amino
acids). The dataset of proteins is reduced to 40% sequence identity, with respect to the

validation/test sets, and contains sequences ranging between 18 and 9858 residues in length.
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Zusammenfassung

Informationen (ber den evolutiondren Hintergrund von Proteinen sind einer der zentralen
Bausteine fur die maschinengestiitzte Vorhersage von beispielsweise Struktur oder Funktion von
Proteinen in der Bioinformatik. Diese Informationen werden meist in Multiple-Sequence-
Alignments (MSAs) oder den daraus abgeleiteten positions-spezifischen Scoring-Matrizen
(PSSMs), wie beispielsweise von PSI-Blast generiert, codiert. Aufgrund der grolen Menge an
bekannten Proteinen ist die Erstellung dieser Informationen jedoch sehr Zeit- und Ressourcen-
aufwendig. Zusatzlich dazu steigt die Anzahl an bekannten Proteinen weiter und erhéht damit die
Laufzeit und Komplexitat der Erstellung um ein Vielfaches. Fir das Entwickeln und Testen
einfacher Maschine Learning Modellen kénnen monatelange Laufzeiten zur Erzeugung der
Trainingsdaten anfallen. Diesen Laufzeitflaschenhals wollen wir mit dieser Arbeit verbessern. Im
Allgemeinen ist es moglich Analogien zwischen Protein-Sequenzen und nattrlicher Sprache zu
finden. Dies erlaubt es uns die aktuellen Entwicklungen in Natural Language Processing (NLP)
auszunutzen und diese auf die Bioinformatik zu tbertragen. Wir verwenden dabei ein Modell
namens ELMo, welches bereits zuvor im Bereich von Sekundarstrukturvorhersage Erfolge erzielt
hat. In dieser Arbeit vereinen wir das Konzept von PSSMs und ELMo unter Verwendung
relevanter Techniken, wie beispielsweise Transfer Learning, um dadurch den Trainingsaufwand
deutlich zu reduzieren. Im Vergleich zu SeqVec, trainieren wir unser Modell nicht nur auf der
Vorhersage der ndchsten Aminoséuren, sondern auch auf deren Wahrscheinlichkeitsverteilung,
welche durch eine passende PSSM gegeben ist. Insgesamt ist unser Modell damit in der Lage die

evolutiondren Informationen eines Proteins zu erlernen.
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1- Introduction

Multiple sequence alignment methods, or MSAMs, are a set of algorithmic solutions for the
alignment of evolutionarily related sequences. They can be applied to DNA, RNA, or protein
sequences. Those algorithms are designed to take into account evolutionary events such as
mutations, insertions, deletions, and rearrangements under certain conditions [1]. In their recent
Nature publication, Van Noorden R. et al. [2] mentioned that in the field of biology, the most
widely adopted modeling approaches use multiple sequence alignment methods. This statement
is supported by Altschul et al. [3] in their published manuscript of the tool "Gapped BLAST and
PSI-BLAST," that is ranked the 11th most cited scientific paper of all times [2].

Indeed, the development of this vital modeling tool, MSA, necessitated the addressing of both
complex computational and biological problems. MSA has always been recognized as an NP-
complete problem. That is the reason behind the numerous alternative algorithms built, more than
100 variants, aiming at providing an accurate MSA over the last four decades [4]. Given the
various alternatives of MSAMs, they all share a core asset: their reliance on estimated and
typically greedy heuristics, enforced by the NP-complete nature of the problem. These heuristics
are, more or less, dependent on specific data properties, like the length, the relatedness, the type
of homology, and others.

The aim of MSA methods is to align any set of biological sequences, either RNA, DNA or
proteins, in such a way that will capture their evolutionary, functional, or structural relationships.
This is accomplished by adding gaps of different lengths within the sequences, enabling the
homologous regions to be aligned with one another, which is analogous to aligning beads of
similar colour in an Abacus. This is an interesting analogy simulated by the ancient counting
frame, the Abacus, which was used as a calculator in Europe, China and Russia, centuries prior
to the adoption of the written Arabic numerical scheme. From an evolutionary point of view, these
gaps reflect insertions and deletions within the genome that are hypothesized or believed to have

occurred during the evolution of sequences from a common ancestor [1].

Multiple sequence alignment methods can expose evolutionary restricted regions within a
sequence. The results of these methods represent an important input to several downstream
applications in the field of bioinformatics. Indeed, a large number of in silico studies and analyses

depend on MSA methods, and machine learning models are at the hype, nowadays.

In contemporary computational biology and, more specifically, in the area of proteins and the
prediction of their properties, sequence alignment forms the de-facto standard input to nearly all

machine learning methods [5]. The main functionality of these alignment techniques is to search
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for homologues of a query sequence in a database of protein sequences, as they tend to share
structure and function. For the past two decades, training machine learning models with
evolutionary information representations, generated by multiple sequence alignments, has
revolutionized the prediction power of Al inducers. Multiple aspects of protein function and
structure were studied and investigated following the same approach and achieved significant
results in the prediction performance. Such downstream specific tasks include protein secondary
structure [6, 7, 8, & 9], transmembrane protein regions [10, 11, & 12], inter-residue contacts [13],
and sub-cellular localization predictions [14, 15] as well as protein to protein interactions [16, 17,
& 18]. However, this increase in performance is becoming costly in recent years, with the
continuous exponential growth of bio-sequence data pools. UniProt is one example of such data
stores, in which the entries keep doubling every couple of years [19].

In an earlier project we conducted last year (2019), we suggested the combination of both PSI-
BLAST and MMseqgs2 in a single pipeline to quickly generate extensive protein sequence
alignments (PSI-BLAST vs MMseqs2 runtime analysis, pipeline construction, experiments and
results are discussed in supplementary material, Appendix A.1). Currently, MMseqs2 [20, 21]
appears to be the only MSA-based alternative solution out there coping with these enormous
datasets, but at the expense of substantial hardware requirements. Over time, even MMseqs2 will
soon become obsolete. To cope with such tremendous growth, alternative approaches are
researched among the community. One prominent solution that can compete with conventional
methods is the direction of Embedding Language Models (ELMo) [22], a state-of-the-art
technology borrowed from the NLP field.

In the NLP setting, pre-trained word representations are a central component to several natural
language comprehension models [23, 24]. However, learning high-quality representations is a
difficult task. Ideally, these representations have to model both the dynamic features of word
usage, like semantics and morphology, and how they differ across linguistic domains, like
polysemy modeling. Pre-trained word vectors [23, 24, & 25] learned from a large corpus of
unlabelled content have the ability to model these syntactic and semantic word representations.
They represent the core of many state-of-the-art NLP architectures out there, such as semantic
role labelling [26], question answering [27], and textual entailment [28]. One major limitation of
these conventional word vector learning approaches is their ability to encode a single context-
independent representation only for each word. The reason that has pushed other scholars to
suggest alternative approaches able to overcome some of these shortcomings. Such solutions
include enrichment of word vectors with sub-word extra knowledge [29, 30] or learning different
vector representations [31] for word sense. In modern word vector representations, sub-word
enrichment is achieved through character n-gram filters of a convolutional neural network (Char-
CNN) [32]. Furthermore, other researchers have concentrated their efforts on directly learning

context-dependent representations. In their paper Melamud et al. [33] presented a contextualized
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vector representation of a pivot word in a sentence through the training of bidirectional Long
Short-Term Memory (LSTM) [20]. The above concepts were combined, by Peters et al. [22], to
present a robust bidirectional embedding language model (ELMo) able to capture both context-
independent (via Char-CNN) and context-dependent (via Bi-LSTMSs) word representations taking

full advantage of a large monolingual corpus of 30 million sentences.

An embedding language model (ELMOo) is trained on a large corpus of unlabelled natural text,
Wikipedia as an example [22], to predict the next most probable word in a sentence given all the
previous seen tokens. However, in a bi-directional language model, during training we learn the
probability distribution of the next word in the sentence from both directions, i.e. predicting a
pivot word given all the previous tokens from a forward pass and from a backward pass of a
sentence. This bi-directional autoregressive [22, 35] paradigm has revolutionized NLP allowing
the model to develop a syntactic and a semantic self-learning of the word in a sentence, a.k.a. the
context. This means that, for a particular word, the model will provide different contextualized

embeddings, depending on the sentence it is used in.

Given the close nature of protein sequences to natural language sentences, the same approach was
adopted to train SeqVec by Heinzinger et al. [36] on UniRef50, a corpus of 9.5 billion amino
acids, which is around 10 folds larger than Wikipedia in terms of tokens(words). In their research
work, Heinzinger et al. [36] proposed a novel embedding tool of protein sequences that replaces
the explicit search for evolutionary related proteins in a database. The model was trained on
predicting the next amino acid in the sequence. The new approach can be described as an implicit
transfer of biophysical and biochemical information learned during the training of a bi-directional
language model embedder (ELMo) [22], inspired from NLP, on a large unlabelled set of
sequences. The predictive power of the embeddings was then tested on downstream tasks
categorized under two levels: per-residue and per-protein predictions. The results showed that the
models were able to reach a good performance, but did not outperform the state-of-the-art MSA-
based tools. Our idea was then to train a novel bi-language model on PSI-BLAST output with
transfer learning, which would eventually encode evolutionary information of the proteins within

its embedding representations, with the goal of boosting the final embedding power.
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Figure 1. Tools and Software used to translate a protein sequence into numerical representations encoding
evolutionary information of the protein. The graph displays the runtime (x-axis) vs the computational resources
consumption (y-axis) by each of the 3 tools, PSI-BLAST, MMseqs2, and the Language Model Embedder (model
presented in this manuscript and given the name of Seq_Evo_LM) to generate numerical representations encoding
evolutionary information.

Figure 1 shows a graphical representation where each of the tools stands when it comes to
computing resource consumption and the time needed to generate the output. PSI-BLAST proves
to take have a much longer running time, with or without the availability of more computing
resources (Figure A.1 in Appendix A), whereas, IsarPipeline, combining both MMsegs2 and PSI-
BLAST, proves to be faster given enough computing resources. Our aim in this research is to
present a proof-of-concept tool marrying both the evolutionary information and LMs to get the
best of both worlds, hence deploying a pre-trained model standing in the bottom left corner of the

figure, which achieves an optimal trade-off between time and resource consumption.

Four main aspects must be taken into consideration in the design and the modelling of the new

sequence embedder:

1. Corpus size: Our training dataset of 1.83 Million proteins (~0.8 billion amino acids) is
of a size as similar as the largest existing NLP corpus (1 billion words). Therefore, high
capacity models are required to capture the hidden representations of our input
sequences.

2. Vocabulary size: The English language vocabulary contains 100,000 more

tokens(words) compared to the proteins vocabulary, which counts 20 standard amino

acid characters. The residues® are used to uniquely represent a protein sequence. This

1 A residue is an amino acid



might be problematic if the complexity encoded in a natural language sentence is
comparable to the one encoded in a protein sequence but using a much smaller dictionary.

Sequence length: On average, the range of an English sentence is between 15 to 30

words [37], with some exceptional extreme cases in the literature, such as James Joyce’s
Ulysses, reaching up to 4000 words in a single sentence. Proteins, though, go beyond
that limit with a range between 30 and 33000 residues in a sequence. Longer proteins
might be problematic as they require larger GPU memory to be trained on without
mentioning the LSTMs limitations in remembering dependencies within long-range
settings.

Architecture: SeqVec/ELMo model already contains 93.6 Million free parameters,
meaning that the network capacity is large enough to capture biophysical and
biochemical information within the sequence. The architecture provides a per-residue
embedding of size (3 x 1024). The huge number of parameters is due to the two-parallel
paths architecture of the network. The first path provides per-residue contextualized
embeddings from a forward pass. While the second generates embeddings via a
backward traversal of the sequence. Our aim is to deploy an architecture that has a
smaller number of free parameters, a lower vector embedding dimensionality, and one
path processing both the forward and the backward traversal of a sequence while

maintaining a good, or maybe even better, predictive power on downstream tasks.






2- Background

2.1- PSI-BLAST

PSI-BLAST [38] stands for the Position-Specific Iterative Basic Local Alignment Search Tool.
It is a software that runs a multiple sequence alignment algorithm powered by the dynamic
programming optimization paradigm to search a given database of protein sequences. Given a
query sequence, the algorithm retrieves homologous sequences that pass a predefined threshold.
This threshold-based computational similarity method, which uses protein-protein BLAST [38,
39] to identify regions of local alignment, is used to construct a Position-Specific Scoring Matrix
(PSSM) from the retrieved family of sequences. The matrix is used as input to subsequent
iterations of the software to further search the database and retrieve more hits, which are then
used to update and improve the PSSM itself. PSI-BLAST was used in this research to generate

the PSSMs that serve as our data labels.

2.2- PSSM

A PSSM stands for the Position-Specific Scoring Matrix, which is also referred to as a profile
matrix. The PSSM profiles contain statistical representations of residues in a given sequence of a
protein with respect to all its relevant aligned protein sequences (i.e. homologs) in the database.
A profile captures the conservation pattern in an alignment and stores it as a matrix of scores for
each position in the alignment [38], where high scores are assigned to highly conserved positions
and lower scores to low conserved ones. Hence, the matrix representation includes what we call
the protein evolutionary information. PSSMs were used in this research as targets for training our

novel ELMo architecture.

2.3- MMseqs?2

MMseqs [20, 21] stands for Many-against-Many Sequence Searching. It is an extremely
optimized scalable software used to search and cluster very large protein sequence datasets. It is
an open source cross-platform tool developed in C++ using the full power of modern CPU
architectures, especially the SIMD optimized instruction set processing unit. The tool implements
a SIMD accelerated Smith-Waterman-alignment algorithm [40] to compute the alignment of
protein sequences. The owner of the software claims that it is extremely fast that it can run 1000
times faster than BLAST, especially when it comes to batch querying. MMseas2 was used in the
research to perform redundancy reduction of protein sequences at a cut-off of 40% sequence

identity.



2.4- Artificial Neural Network

Machine learning (ML) is the modern technology enabler behind achieving artificial intelligent
capabilities performed by computers. It is simply defined as the process of using algorithms and
statistical methods to analyze data and learn patterns within it to start then making decisions or
forecasts on future unseen observations. Technically, machine learning is about reducing

uncertainty by combining both the sample data and prior assumptions.

One popular machine learning algorithm is the artificial neural network (ANN), also called a
multi-layer perceptron (MLP) or a feed-forward network [41, 42]. It is a powerful algorithm that
has the ability to extract complex features andto perform hierarchical feature extraction. The
ultimate goal of using a Neural Network is to project input data points to a new dimensional space,
also called latent space, using non-linear basis functions to allow for better probabilistic decision
boundaries. This mechanism is achieved by fixing the number of basis functions in advance but
allowing them to be adaptive via the use of parametric forms of functions in which the parameter
values are adapted/learned during training time [43]. All those functions are represented as a
compute graph? in a network, and their parameters; also called weights, are adapted via the use of
a loss function that guides the training of all the network parameters during back-propagation.
For complex problems, neural networks may contain multiple layers, each with a predefined
number of hidden neurons, stacked on top of each other to increase the network's learning
capacity. A network of multiple stacked layers is referred to as a deep neural network or deep
learning (DL) within the Al community. We built a deep learning model to answer our research

question and deploy a novel embedding language model.

2.5- Long Short-Term Memory (LSTM)

Neural networks are powerful ML algorithms that perform exceptionally well in a verity of tasks,
such as computer vision and robotics. However, when it comes to the notion of “time” or
“sequence,” feed-forward networks perform poorly. To allow for context capturing and more

accurate inference, recurrent neural networks (RNN) are widely used for such type of tasks.

Vanilla RNNs are known to suffer from short-term memory. RNNs struggle to carry information
all the way from early time steps when it comes to long sequences. Technically, the primary cause
is the vanishing/exploding gradient problem. A recurrent neural network cell shares the same
weights for all the time steps in a sequence. Since weights in an RNN are multiplied over and

over while traversing the sequence, during backward propagation and in case of a long sequence,

2 A compute graph [44] is a directed graph where on each node we have an operation, and an operation
is a function of one or more variables and returns either a number, multiple numbers, or a tensor.
8



we face vanishing gradient when the weights are small and exploding gradient when weights are
large. For the exploding gradients, the issue can simply be resolved by gradient clipping to a norm
of 1. Concerning the vanishing gradient problem, a new architecture named “Long short-term
memory” has been introduced by Hochreiter and Schmidhuber [34], providing a solution to this
raised concern. An LSTM, Figure 2, consists of internal structures called gates used to regulate
the flow of information in the network [55], learning pieces of information to be dropped and
capturing important ones to be passed along. LSTMs are the main building blocks of our novel

bidirectional embedding language model.
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Figure 2. Unrolled Long Short-Term Memory cells

2.6- Dropout and Inverted Dropout

While training a fully connected network, any given layer in the architecture covers all the
parameters, which pushes the hidden nodes to build some kind of co-dependency with one
another. This behavior negatively affects the individual power of each hidden unit in the layer,
and hence, resulting in overfitting to the training dataset. Hinton et al. [45] were the first to present
dropout training as a method to combat overfitting in their paper "Improving neural networks by
preventing co-adaptation of feature detectors.” Dropout is simply defined as a random selection
of a given layer neurons on which it is applied, which are then ignored during training iterations
of the model. During each iteration, neurons to be dropped are randomly selected with a
probability of 1-p. Similarly, neurons to be kept are selected with a probability ofp, a
hyperparameter referred to as the “keep probability.” The discarded nodes, along with their
incoming and outgoing edges, are ignored in the forward and the backward pass during training.
Technically speaking, the paths in the network are ignored by setting a value of zero to the
corresponding weights. The process might be considered equivalent to model-averaging since the
approach simulates the training of several related network architectures on the same data. Figure

3 represents a visualization of the dropout concept applied on a 3-layer fully connected network.
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a) Standard Neural Net

Residual Block

(b) After applying dropout.

Figure 3. Concept of dropout in a neural network architecture [46]. (a) The figure on the left shows an example of a
standard fully connected network of 2 hidden layers and one output layer. (b) The figure on the right shows a reduced
network, the result of applying dropout on the original network on the left, where the crossed neurons represent the

dropped units.

In fact, training with dropout is a well-known technique falling under the bucket of learning
approaches that artificially distort training data to improve predictions, generalize better, and
make inference more stable [47, 48, 49, 50]. This artificial feature corruption is a common

technique used for regularization during training of Al inducers.

After applying dropout during training, in order to maintain the expected value of the hidden units
in our network, we have to scale up the weights during evaluation/testing phase. A variant of the
traditional dropout is the “Inverted dropout” technique. It applies the same principle of keeping a
subset of neurons according to the “keep probability” p. The only difference is that, during
training and in order to maintain the same expected value of the non-linear hidden units, we scale
the activations by the inverse of the probability 1-p. Therefore, we maintain the same weight
values during both training and evaluation, while preventing the activations of our network from
exploding while training. Inverted dropout was used in this research as a regularization technique

applied on the linear projection layer module within the customized 2 LSTM layers.

Neural networks are known as universal approximators, where the learned function accuracy
keeps increasing with the increasing network capacity. Simply said, the capacity of a network
increases with more hidden layers. In theory, ANNs should be able to learn any simplex or
complex function given a large enough network architecture. However, in practice, we notice a
degradation problem of the model accuracy with the increasing number of layers. It is definitely
not a representational problem, since with deeper architectures we end up with a larger capacity
capturing more complex mappings. It is also not an overfitting problem caused by the large
capacity of the network since the training error starts also getting higher. It turns out that with

larger networks training becomes harder, vanishing and exploding gradients start being noticed,
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and learning even a simple identity function gets difficult. To solve this problem, He et al. [51]
suggested an architectural design solution that will allow us to build larger networks without
degradation of our model accuracy. The idea is to add a direct path for information flow by short-
circuiting blocks of layers as shown in figure 4. The residual block will then learn a deviation
from the identity mapping, where F(x; w) = H(X) — x is the residual mapping. The identity is easier
for the residual block to learn and with a skip connection it is guaranteed that performance of the
network will not be hurt but only improve. To improve performance of our model, we built a skip

connection (residual block) in our final ELMo architecture from the first LSTM layer to the

second.
T activation
H(‘X) H(x) = F(x) + x
‘ activation F(x) [ activation ide)rftity
X X
“Plain” layers Residual block

Figure 4. Conceptualized architecture of the skip connection [51]. The sub-figure on the left shows an example of a
plain network of a 2-layer architecture, while the sub-figure on the right shows a residual block with two staked
layers and one skip connection.

2.8- Transfer learning

Insufficient training data is an unavoidable phenomenon in certain domains, such as
bioinformatics, medicine, and robaotics. In these contexts, data collection is a complex and costly
task, making it incredibly challenging to create massive and high-quality annotated datasets. Since
the independent and identically distributed (i.i.d) hypothesis between training and test data is
relaxed in transfer learning [52], the later has become an essential strategy in machine learning to
apply in order to solve the underlying problem of insufficient training data. The general idea of
transfer learning is to transfer the knowledge learned on a huge dataset, called the source domain,
to perform better on a new task with few data points, called the target domain. Therefore, the
target domain model does not have to be trained from scratch, which will significantly reduce
training time and the need for a more extensive training set. Our novel ELMo architecture was

trained with transfer learning, where SeqVec output embeddings served as input to our model.
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2.9- Data augmentation

When a network architecture behaves in such a way that it perfectly models the training data, we
say that it has learned a very high variance function. This behaviour is referred to as overfitting
and it is one of the major challenges while training deep learning models. In today's worldwide
deployed models, the high empirical performance of deep neural networks in various tasks was
extremely reliant on massive datasets to generalize better. Unfortunately, not all application areas

have access to a large volume of data.

There exist multiple techniques to fight overfitting while training a model. Data augmentation is
one of those strategies that addresses the problem from its root, which is the data itself, under the
hypothesis that additional information can be extracted from the original dataset via augmentation
[53]. Data augmentation is a generally used routine operating at the data-space level to tackle this
issue by enhancing the size and the quality of training datasets. Generally speaking, the process
artificially inflates the training dataset size by either data warping or oversampling. In image
processing, such applied technigues include rotation, noise injection, flipping, cropping, and
colour space transformations. In this research, we built a bi-LM that is trained by traversing the
sequence from both a forward and a backward pass. This is achieved by appending a second copy
of the protein sequence in the reverse order, which multiplies the training samples by a factor of

2. This plays the role of an implicit data augmentation, in this research project.
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3- Research question

Before jumping forward into our research question formulation, let us have a quick detour
and explain a basic probabilistic concept. This concept will allow us to mathematically formulate

the core of our research question.

In probabilistic machine learning, a probabilistic model is a joint distribution of hidden
variables, referred to as z, and observed variables, referred to as x. This statement can be written
in probabilistic notations as p(x, z).

In this setting, inference about the unknowns z is done through what we call the posterior
distribution. It is a conditional distribution of the hidden variables given the observations. This

statement is translated in probabilistic notations as p(z | x).

Our general goal is to go directly from the amino acid sequence of a given protein to a
Position-Specific Scoring Matrix, more specifically to the matrix of relative frequencies. In other
words, we want to translate a vector of characters of length L, here the protein sequence, to a
matrix of dimensions L x 20, which is the Position-Specific Scoring Matrix in our context. In this
PSSM map, each row represents the relative frequencies of a residue in the sequence with respect
to all the 20 known AAs. These row values represent a discrete probability distribution, where
the statistics in each row sum up to 1 or 100 depending on the scale. Our approach aims at learning
those representations directly from the sequence following the same paradigm applied in
autoregressive models [54]: From the observations of previous time steps given as an input, we

want to make predictions of the next time step.

Figure 5 visualizes the main problem statement in this research work, which aims to learn
protein evolutionary information. In a protein sequence of length L, given the embedding of a
residue x at position n as well as the previous residues information passed on, we want to predict
the probability distribution of the relative frequencies of the next residue n+1. In mathematical
notations, this is equivalent to a conditional probability distribution p(z | x), where z is an

overloaded set of parameters and latent variables of the distribution.

13
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Figure 5. Problem statement visualization of this research project on learning representations of protein evolutionary
information
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4- Data and methods

In this major chapter, we present the material used and the methodology followed during this
research project. The experiments we performed to answer our research question are described in

detail later in the manuscript.

As the project in hand is a Machine Learning task, we abided by the best practices of data
science to solve this research problem. Figure 6 [56] illustrates a graphical representation of the
model building procedure to develop the final optimal inducer, which will be then used as an
Embedding Language Model of protein sequences. Our methodology involves:

o Data gathering, cleaning, and pre-processing

e Splitting data into training, validation, and test sets

e Input features definition

¢ Model building and hyperparameter tuning to pick the optimal configuration

o Evaluation and benchmarking

Learning set

= —— - Model
- + - | == | Training set Biilléai

> +
Evaluate
Model Builder
l 1 Predictions
=]— -

Validation set

|
- N

Final Test Set Final Model

Final Evaluation

Figure 6. Graphical representation of the Data Science best practices to perform hyperparameter tuning and battle
overfitting
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4.1-  Data gathering, cleaning, and pre-processing

For every machine learning task, careful data preparation is a crucial requirement to build good
quality models. Another main requirement is the size of the development set. We wanted to use a
larger dataset so that we could deploy a robust model that generalizes better to unseen data. For
our training, we needed both a large set of protein sequences and their corresponding profile
matrices, i.e. PSSMs. The first approach is to collect a set of unigue proteins and run PSI-BLAST
on it to generate high quality PSSM matrices. As we planned to work with a large set from UniProt
[57] Reference Cluster with 50% sequence identity (uniref50 2019 12), ~38.8 Million proteins,
running PSI-BLAST on it will take several months. This is an unrealistic path to take. To

overcome this obstacle, we opted for a smart alternative.

Predict-Protein [58] is an Internet service for sequence analysis as well as prediction of protein
structure and function. It represents an interface to Rost Clusters where multiple prediction
models are deployed and huge amount of data are stored. Those clusters are used by internal
Rostlab members and run jobs submitted by external users through the Predict-Protein interface.
Since most deployed models and analysis tools make use of PSSM files as an input, running PSI-
BLAST each time makes the Web application very slow. To reduce the response time, a clever
mechanism was implemented. Whenever a new sequence is submitted by a user, the computed
PSSM file as well as the alignment profile are cached within Rost Clusters. Therefore, only the
initial submission of the protein sequence has the slow response time. For any upcoming requests,

the system just loads the pre-computed results from the cache.

The files in the Predict-Protein cache are stored according to a hash built from the protein
sequence. Also, it is always easier to go from a set of sequences to a set of hashes than randomly
crawling through the hashes and looking for a suitable set of sequences. The trick was, then, to
run a pipeline that would iterate over all the Uniref50 sequences and check whether the cache
already contains the PSSM file of a given protein. If the profile was already computed, the
pipeline retrieves it. The idea was to gather as many proteins and their PSSM files as possible
without the need to run PSI-BLAST on our set. At the same time, a second path in the retrieval
pipeline was executed in order to retrieve all stored sequence alignment profiles of proteins in our
set. We needed the second file to filter out profile matrices with not enough evolutionary

information. This procedure will be explained in more detail bellow.
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Script 0

Split UnirefS0 into
six random
subsets of protein
sequences

Script 7

Script 1

For each subset, iterate over
all sequences. If a sequence
alignment profile was
previously processed,
retrieve the corresponding
file.

For each subset, iterate over
all sequences. If a sequence
PSSM was previously
processed, retrieve the
corresponding file(S1.1). If
no hash value is found,
append the header to an

output file (S1.2).

Script 2 Script 8

Clean the retrieved set of
alignment files from any
file in binary format. Save
the list of headers.

Extract unique protein
headers and save them in
a dictionary.

Script 4

Clean the retrieved set of
PSSM files from any file in -
binary format. Save the Script 9
list of headers. Script 3 For each protein, compute
Filter out the subset from the number of aligned
Script 0, using output of sequences. Store the
step 2, to leave only header and number of
protein sequences with aligned sequences in a
retrieved PSSMs. dictionary.

Script 5

Randomly select proteins
and save the headers
along with sequences in
batches of 10K each.

Script 10

For each protein in the 10k
batches, if the number of
Script 6 aligned sequences (from S9
dictionary) is below a
predefined threshold, we
discard the protein from the

final development set.

For each protein in the 10k
batches, retrieve the relative
frequencies matrix from the PSSM
file and store the matrix as a
Numpy Array. Remove sequences
with corrupted files and relative
frequencies with no evolutionary
information.

Figure 7. Pipeline of scripts applied to retrieve, clean, and preprocess the final development set that will be used for
building the Sequence Embedding Language Model. The first module (Script 0) provides input to the pipeline, while
the last module (Script 10) generated the final output organized in batches of 10k sequences each.
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Figure 7 represents graphically the flow of the data and provides the description of every script
in the protein’s evolutionary information retrieval pipeline. The pipeline starts by splitting the
initial Uniref50 set of 38.8 Million proteins into 6 subsets, each of around 6.5 Million proteins.
The purpose of splitting the initial set is to leverage the availability of multiple nodes in the
Clusters in order to run multiple jobs in parallel, hence speeding up the retrieval process.
Additionally, we see from the figure that the pipeline branches to two independent paths, the first
starts with script 1 and the second starts with script 7. Each path of scripts was run in 6 different

copies for parallel processing, each in a separate node in the cluster.

The first path focuses on retrieving all the available PSSM files of corresponding protein
sequences from the cache. Script 1 traverses the list of proteins in the subset, and checks, for each
sequence, whether the hash code matches one in the cache. If a hit occurs, the corresponding
PSSM file is retrieved. Otherwise, the header is appended to an output file. The output file is then
parsed to extract all the unique headers, which then are organized in a dictionary data structure.
The dictionary helped decreasing the runtime tremendously, as it has a O(1), when it comes to
checking if a key/header exists in the set or not. It was used to filter out the original subset of
proteins to only keep the sequences of proteins for which a PSSM file was retrieved. Furthermore,
we realized that some of the PSSM files were fetched in binary format. Here comes the role of
Script 4, which goes over all the files one by one and checks the file content using the “file”
command from the list of GNU Core Utilities for Unix environments. Via Linux pipes
capabilities, the filtering task of binary files was performed by the

following bash script:

$ for i in * ; do file $i \
| grep -v ASCII \
| awk -F: '{print $1}'; done

Once all the protein sequences are filtered out along with a clean set of their corresponding PSSM
files, an additional pre-processing step was required. The pipeline of scripts was executed in
parallel for each of the six subsets. For each batch, a directory of corresponding PSSMs and a
second for alignment information files was generated. It was calculated that around 600 GB of
diskspace was required to store all of the 12 generated folders. Much of the information included
in those files was of no relevance to our problem. Additionally, keeping the evolutionary
information for each protein in a single file would heavily affect the performance of the system,

as it has to deal with millions of separate files in one folder. Each filesystem has a fixed maximum
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threshold of what is called inodes. It may occur that the hosting OS filesystem will runout of
inodes, and, hence, ending up with a huge set of overridden corrupted files. The performance hit
can also be very noticeable in accessing the files, removing files, or listing the set of files in the
folder, and will also impact badly the transfer of PSSM files via the network. To solve this issue,
we had to come up with an idea that would decrease both the storage and the huge number of files

needed.

As it is mentioned earlier, a PSSM is a matrix based on the nucleic acid (a.k.a. amino acid or
residue) frequencies at every position of a multiple sequence alignment. The calculation results
of those frequencies are then represented in a matrix that will assign superior scores to amino
acids appearing in a certain position more often than by chance. In our PSSM file, there are 2
main matrices both of size Lx20, where L is the length of the protein sequence. The first matrix,
the one to the left, is referred to as the substitution score matrix and consists of integer values that
might be either positive or negative. Whereas, the second matrix, the one to the right, is referred
to as the relative frequencies matrix and consists of values between 0 and 1 (probabilities). In fact,
both matrices are similar. It is easy to derive one matrix from the other. Our interest in this
research project is on the relative frequencies’ matrix. Script 5 parses each PSSM file to extract
the relative frequencies matrix for each protein sequence, stores the values in a Numpy Array,
and then cast all values from a float to an Integer datatype. During the extraction process, three

checks were performed before finally saving the relative frequencies matrix:

e The PSSM file is corrupted
e All values in the relative frequencies’ matrix are zeros (i.e. no evolutionary information)
e Avalue of 100 is assigned to the same amino acid in all the residues of the sequence (i.e.

no evolutionary information)

If one of the 3 conditions is met, the corresponding protein is discarded from our final
development set. Concerning the second path of the pipeline and following the same procedure,
we retrieved all the alignment files corresponding to our Uniref50 set of proteins, cleaned the
binary files, and then parsed each file to only keep the family size of the sequences aligned to
each protein in our set. The output was then stored in a dictionary, where the key was the protein

header and the value was the family size number.
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Figure 8. Venn diagram representing the number of retrieved files by each path in the pipeline. The green set is the
total number of proteins for which a readable alignment information file was retrieved. The pink set denotes the total
number of proteins for which a readable PSSM file with evolutionary in formation was retrieved. Whereas the brown

set in the middle is the intersection between them (both aligned family and the relative frequencies matrix are
available). The numbers indicate the number of proteins in each set.

Figure 8 shows the number of proteins for which relevant information to our task is retrieved from
Rost Clusters. Out of 38.8M proteins, 3M have precomputed relative frequencies matrices and
2.44M have alignment information. Additionally, among the proteins with retrieved relative
frequencies, only two-thirds (2/3) have their corresponding aligned family of sequences used to
build the PSSM matrices. That is the intersection between the two sets which counts around 2.1M

proteins, and that is our final development set.

To analyze our development set in terms of the amount of evolutionary information encoded in
the relative frequencies’ matrices, we visualized the distribution of protein sequences in terms of
the family size of the number of aligned proteins for each sequence in our development set. Figure
9 displays the results of our analysis. It is an extremely right skewed distribution showing that the
majority of our protein PSSM files are built on family sizes of more than 1000 aligned sequences

while some 200k PSSMs are built on families of size less than 10 aligned sequences.

To maintain a high-quality training set, we set a threshold of the family size for which proteins
will be either discarded or used in final training. To pick the threshold, we visualized the
percentage of proteins in our development set that will be preserved at each threshold value. We
call this percentage the cumulative distribution. In probability theory, the cumulative distribution
function (CDF) is simple the percentage/probability of a random variable taking a value less than
or equal to certain threshold x. In mathematical notations, this can be expressed for a discrete

distribution as:

F(x)=Pr[X<x]=a
. Eq. ()
SF@ =) f0)
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Distribution of the Number of Aligned Proteins per Sequence In the Dataset
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Figure 9. Bar chart representing the distribution of the number of aligned sequences (family size) for each protein in
our dataset

In figure 10, we computed and displayed the complement of the cumulative distribution at each
threshold value. Mathematically speaking, we visualized the distribution of 1 — F(x), where
F(x) is the CDF of the number of aligned proteins to each sequence in our development set. Our
analysis showed that 9% of the sequences have less than 10 aligned proteins, leaving us with 91%
of our total development set with significant encoded evolutionary information. The threshold of
10 led to a number around 1.9 Million cleaned proteins with corresponding position specific

scoring matrices. The exact number of sequences output by each script is detailed in table 1.

Cumulative Distribution with Respect to the Number of Aligned Proteins per Sequence
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Figure 10. Bar chart representing the complement cumulative distribution with respect to the number of aligned
proteins per sequence in our development set (~2.1 M proteins)
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Table 1. The numbers in this table represent the output of each retrieval/filtering script in the above
pipeline. Since the Uniref50 set was split into 6 batches for parallel processing, each column shows the
number of sequences falling in each of the clusters described on the left for each batch. The column in the

far right shows the total over the 6 batches.

Batch Batch Batch Batch Batch Batch Total

#1 #2 #3 #4 #5 #6

Proteins in the batch

5659495 6072076 6878058 6779562 6702723 6764747 38856661

All retrieved from Rost 1111829 883891 558726 594437 475116 146545 3770544
Clusters

Binary format retrieved 10578 2268 1985 4264 3447 1191 23733
files

Nonbinary format 1101251 881623 556741 590173 471669 145354 3746811
retrieved files

Corrupted files 90 8477 1813 7 6 13 10406
PSSMs with no 177692 163669 115558 123862 102267 24277 707325
evolutionary information

Clean set with 023559 709477 439970 466304 369402 121064 3029776
evolutionary information

Proteins with alignment 663449 437665 263310 267377 201989 84563 1918353

info and PSSMs with
significant evolutionary
information
(alignedProteins >= 10)

22




4.2-  Splitting data into training, validation, and test sets

Having gathered a high-quality development set, we must split it into training, validation and test
sets. For that purpose, we randomly selected from the full development set a kingdom of 2k
protein sequences, and further split it into two halves: one subset for validation and the second
for testing. Since the proteins in our original set are already reduced to 50% pairwise sequence
identity (PIDE), we wanted to further reduce our test/validation set to 40% PIDE.

Two options were considered, CD-HIT [59], which is a program for clustering and comparing
large sets of protein or nucleotide sequences, and MMseqs2, which is a fast tool for mining
massive sequence sets [20]. MMseqs2 utilities for clustering protein sequences that meet a certain
PIDE threshold are much faster than CD-HIT. MMseqs2 applies a greedy heuristic incremental
algorithm analogous to CD-HIT length-based clustering procedure as described in Figure 11.

:

Figure 11. Visual showing how the greedy heuristic incremental clustering algorithm takes the longest sequence,
depicted by a larger node within the graph, and places all the sequences that are connected to it in one cluster.
Repeatedly, the process is run over and over forming next clusters from the remaining set. This figure was reprinted
from [20]

We used MMses2 to perform a target coverage alignment-based clustering on our random subset

of 2k proteins. To perform this operation, we run the following two commands:

$mmseqs search --cov-mode 1 -c ©.4 queryDB targetDB resultDB

$mmseqs convertalis queryDB targetDB resultDB cluster.tuple --format-output \
"gheader, theader, tseq”

In our case, both the queryDB and the targetDB represent the same set of 2k proteins. After
running the commands, sequences are grouped in the same cluster if they satisfy at least 40%
length overlap coverage on the target sequence as shown in the figure 12 below. The procedure
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results in clusters of similar proteins meeting the predefined threshold, with the longest sequence
as the cluster representative. The set is then reduced by keeping only the protein sequence cluster

representative and discarding the rest.

query
HERRRRNRR
target

Figure 12. The figure shows that the aligned query sequence (yellow bar) covers at least 80% of the target sequence
(blue bar). This figure was thankfully taken from [20]

The redundancy reduction operation resulted in a reduced validation/test set of 1758 protein
sequences, which was split into two subsets one for validation and one for testing. The same
procedure was applied to reduce the training set to a 40% PIDE cut-off. In the second run, the
gueryDB was the reduced validation/test set and the targetDB was the training set. The process
reduced the training set to a final number of 1.83 Million proteins. Figure 13 visualizes the whole
preprocessing pipeline of our dataset starting from the initial Uniref50 to the final training
validation and test sets with the resulting filtered number of sequences after each step.

Uniref50: 38.8M

Retrieved from Predict Protein Cache
=> 3.77M

Remove binary files
=>3.74M

Remove corrupted files
=> 3.73M

Remove no Evolutionary Info
=> 3M

Remove Proteins with no Alignment Information Available
=> 2.1M

IAYAYAYAYAYA'

Remove no Significant Evolutionary Info
(alignedProteins < 10)

=> 1.9M

Validation Test
=> 879 => 879

Figure 13. Simplified visualization of the pre-processing pipeline of the whole Uniref50 dataset to obtain the final
training validation and test sets

Training (~100 GB)

=> 1.83M
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Figure 14. Proteins sequence length distribution in the final training set (~1.83 M protein sequences)

Since we are applying ML-based NLP algorithms to solve our task, it is crucial to know the size
of sequences (sentences in NLP terminology) we are dealing with. This knowledge is of great
importance as it will guide us in the model architecture design and the hyperparameters selection,
especially when it comes to the size of mini-batch training enforced by the GPU memory
constraint. For that purpose, we visualized the distribution of proteins in our final training set by
their sequence length, as seen in Figure 14. The graph displays the nature of length distribution
we are dealing with, and it characterizes a left-skewed distribution with a mean around 300
residues. Another important information is the distribution of vocabulary of our training set.
Figure 15 represents the amino acids composition of our dataset, which is a rather left-skewed
distribution than a uniform one. These statistics will be used to compute the cross-entropy (CE)

random baseline of predicting the next amino acid in the sequence.
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Figure 15. Distribution of the amino acid composition in the final training set (~0.8 billion amino acids)

26



4.3-  Input features definition

The ultimate goal of our project is to go directly from the amino acid sequence to a humerical
representation embedding the evolutionary information of the protein. For that purpose, we want
to train the model to predict the relative frequencies matrix given the protein sequence. The only
input we want to feed our model is the protein sequence. However, in order to reduce the training
time for a faster convergence, we opted for transfer learning. Leveraging SeqVec model to
generate contextualized and uncontextualized embeddings at the residue level to serve as input to
our novel ELMo architecture will definitely boost the performance and lead to faster training.
Figure 16 illustrates the processing performed by ELMo/SeqVec. It takes a protein sequence as
an input (blue tensor) and generates a per-residue one-hot encoding (purple tensor) of size 20 for
each amino acid. The one-hot encoding is fed to a Char-CNN to generate uncontextualized
representations (orange tensors), which are then passed to a two-layer bidirectional LSTMs for
context learning of a pivot residue (2 stacked yellow tensors for both forward and backward
passes). The final embeddings are represented as a concatenation of the 3 layers’ outputs, resulting

in a tensor of size 3xLx1024 (red tensor). Those embeddings will serve as an input to our model.

.’.:
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ELMao/SeqVec-
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ELMao/Seq Ve Embedding
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% 4
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ELMo/SeqVec-

Backward

Figure 16. Simplified visualization of ELMo/SeqVec embeddings

An important observation to make here concerns the structure of the embeddings. The tensor of
size 3xLx1024 is just a concatenation at the 3™ dimension of 2 tensors of size 3xL.x512, where
one represents the embeddings of the forward pass and the second the embeddings of the
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backward pass. Feeding the whole tensor as input to our model will lead to a disastrous data
leakage, and hence biasing the training loss. To support this claim, we built a simple model of
one linear layer plus a SoftMax layer to predict the next amino acid in the sequence from
ELMo/SeqVec last layer embedding. We conducted 3 experiments, each one with a different input
vector. The first experiment takes the whole vector “/:1024]” of the last layer as an input. The
second experiment takes the first half “/:512]” of this vector as an input, corresponding to the
forward pass embedding. The third experiment takes the second half “/-572:]” of this vector as
an input, corresponding to the backward pass embedding. Figure B.1, in appendix B, shows the
results of our experiments. Unsurprisingly, the backward embedding used as input in two of the
experiments provides much better performance (4 curves at the bottom) in predicting the next
amino acid as it, somehow, allows the model to cheat and learn from an input representation that

has already seen the token we are willing to predict.

Based on the above, the final input to our novel architecture was chosen to be half of the tensor.
Since we are building a bi-directional language model, the sequence is processed twice, once
from a forward pass using the first half of the tensor (3xLx512) as an input and once from a
backward traversal, by flipping the amino acid sequence, and using the second half of the tensor
(3xLx512) as an input. This procedure serves as an implicit data augmentation technique, as it
increases the number of training samples by a factor of 2, contributing in the model’s

regularization to build a robust inducer.
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4.4- Loss function definition

The last step before proceeding with building our ELMo architecture is to define the loss function
that will guide the training of the network’s adaptive basis functions during backpropagation. In
chapter 3, we formulated mathematically the problem as a posterior probability distribution that
we want to learn. The posterior is simply a conditional probability p(z|x) defined as follows:

p(z,x)
p(z|x) === Eqg. (2

Here, p(z, x) is the joint probability of the observed variable x, denoting all previously seen
residues information, and the hidden variable z, which is an overloaded set of parameters and
latent variables of the evolutionary information distribution of the next residue. p(x) is the model
evidence. Since the evolutionary information embedded within the relative frequencies matrix at
the residue level is a discrete probability distribution and the evidence can be written as the
marginalization of the joint distribution over z, our probabilistic model can be reformulated as
follows:

_ p@x)
p(zlx) =" Eq. (3)

For most interesting models, such as ours, the evidence is not tractable. The marginalization over
z, i.e. the sum, makes it hard to maximize. The nature of the distribution can be anything, even a
multimodal distribution with multiple maxima. This makes it even harder, even impossible, for
the integration to be solved analytically, in the case of a continuous PDF. For that reason, we

appeal to approximating our posterior inference. There exist different ways to solve this problem:

a) Metropolis-Hastings [60] is an approximation technique that is more accurate compared
to the other two methods and can provide an exact solution given enough iterations. It is
a type of method that is based on sampling and it is easy to understand. However, it takes
quite a long time to compute the final exact solution.

b) Laplace approximation [61] is the second approach that can be used to solve such
problems. It is defined as the simplest deterministic solution, easy to understand and takes
less time to compute compared to the other two methods. However, it is restricted to
continuous distributions, rather less accurate and gives a poor approximation to the
problem.

c) Variational inference (V1) [62] is the third methodology that can be adopted to solve our
problem. It is also characterised as a deterministic solution, takes less time to compute
compared to Metropolis-Hastings, but is hard to understand. Both Laplace and variational

inference provide less accurate approximations compared to Metropolis-Hastings;
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however, variational inference provides a much better approximation than its counterpart,
Laplace.

For performance objectives and better approximation, we opted for VI to solve our machine
learning problem and to approximate our inference. The main idea is to: (1) find a tractable
distribution q(z) that is similar to p(z|x), and then (2) use q(z) to answer the questions about
p(z|x) that we care about. Figure 17 shows visually the general approach of variational
inference where we have two distributions, q4(z) and q(z), each with known parameters,
and an unknown distribution, p(z|x). In this scenario, g is closer to p than g,. We can then
use the distribution g4 to answer our questions.
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Figure 17. Graphical visualization of variational inference general idea. The graph shows two distributions (orange
and red) with known parameters, and a third distribution (blue) with unknown parameters. From the plot, we see that
we can use g4 (red) as a distribution to answer related questions of p(z|x) (blue). This figure was reprinted from [63]

To apply variational inference, two main prerequisites must be satisfied:

1. A search space must have been defined: We have to choose a set of tractable candidate

distributions Q. In the context of variational inference, we call Q the variational family.
This variational family is simply a set of distributions that share some property.

2. The divergence D must have been chosen: We have to define a divergence D(p||q),

which measures how dissimilar distributions p and g are.

Once defined, the problem can be then formalized as finding the optimal distribution in the

variational family Q which minimizes the divergence D(p||q). In mathematical notations, this is
written as:

q* = argminD(p(z|x) || q(2)) Eq. (5)
qeqQ

The divergence D(p||q) is defined as D: P x P - R™*, and it simply measures the dissimilarity

between two probability distributions p, q € &2, Where 7 represents the set of probability
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distribution over a given space @, such as R®. In general, the divergence function has to satisfy

two conditions:

e It should be non-negative, meaning that D(p||q) = 0 forall p, q € 7
e And if the D(p||q) = 0, we say that p = q almost everywhere

One function of choice meeting the above conditions is the Kullback-Leibler divergence (KIL-

Div). It is defined as:
p(Z))
KIL = f z)log|—= ) dz
() p(z) g(q(z
= IE:z~p(z) [log(p(z)) —log (q(2))] Eq. (6)
Replacing the divergence function in Eq. 5 with the KIL divergence from Eqg. 6, defining the loss

function translates to finding the best distribution g in Q that minimizes the KIL divergence:

q* = argmin KL(p(z|x) ||q(2))
qeQ

= argmin By [log(p(z]x)) — log (q(2))]
argmin[} p(:)log(p(:1) ~ ) p(1x)log (4(2)]

Ea. (7)
If we choose Q to be some parametric family Q = {q(z| v) for all valid parameters v}, such as
Binomial, Normal, Poisson, or Gamma families, we simply have to find the optimal parameters
v* that minimize the KIL-divergence (Figure 18 [64]). Following the universal approximation
theorem [65], we opted for a deep neural network as a parametric complex function that can learn
any distribution given enough neurons in a two-layer network. Therefore, we converted our

inference to an optimization problem. The final loss function to minimize is:

V' = argmin[Y p(z|x)log(p(z|x)) — X p(z|x)log (q(z|v))] Eq. (8)

31



Figure 18. Graphical representation of how variational inference is turned to optimization, given a parametric
variational family

After gathering a high-quality training set, analysing it, defining the input, the labels, and the loss
function of our main problem we want to solve, we ran three different experiments using different
models. The design and the development of the 2" and 3™ model architectures were motivated
by the results obtained in previous experiments and related technologies published in the
literature. The next chapter will describe the models and discuss the experiments results in detail
followed by a benchmark with respect to downstream tasks.
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5- Experiments and results

5.1- Experiment 1 — Initial language model architecture

In this section, we experimented the learning performance of a simple 2-layer plain LSTM
embedding language model architecture, with KIL-Divergence as a loss function, on a tiny dataset.
The purpose of the experiment is to validate that the loss function is able to guide the network to

learn protein evolutionary information.

5.1.1. Model description

To build our new embedding language model, we opted for the LSTM technology, the same
machinery used in the bi-directional autoregressive approach presented by Peters et al. [22].
Additionally, since the input dimensions are already large enough, and we believe that it carries
significant biophysical and biochemical information, we wanted to keep the hidden and the output
size of the LSTM layers relatively small. Therefore, we suggested a simple 2-layer LSTM
architecture predicting the next PSSM column in a protein sequence, given all the previous
residues information (Figure 19). In this initial model design iteration, the network takes a
flattened representation, i.e. a concatenation at the 1% dimension, of the SeqVec/ELMo
embedding, making the input size=1536 units, for the first LSTM, and the hidden/output size of
both LSTMs=256 units. We want to point out here that the same path in the network processes
the sequence from both the forward and the backward pass, which corresponds to a bidirectional

language model.

As an initial proof of concept that a neural network architecture can learn a function mapping the
amino acid sequence to the evolutionary information representations, we randomly chose a set of
40 proteins, ranging between 123 and 389 residues, with corresponding PSSM files for this
experiment. The development set was split into a training set, of size 24 proteins, and a validation

set, of size 16 proteins. The goal here was to prove that the model can overfit to the training set.
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Figure 19. Conceptual visualization of the evolutionary information language model initial architecture consisting of
a 2-layer bidirectional LSTM. The network is trained using a KL -Divergence loss to predict the next PSSM column

5.1.2. Results and discussion

The training results reported in this section were conducted on a personal workstation. The
machine had a system memory size of 16GB, an Intel® Core™ i7-8750H 8th generation CPU
with 12 logical processors and a maximum speed of 3.5 GHz. The machine contained also an
NVIDIA GeForce GTX 1050 Ti Graphical Processing Unit with a dedicated memory of 4GB.
The GPU was used for deep learning hyperparameter tuning. The model was trained till

convergence with a mini batch size of 8 sequences processed per iteration.

L R — Training

g Validation . WWﬂ JHMA‘\/\/\”’\r’ﬁMW i \J\I\IW
ol ol Lo

(1]
9 0.8
S
=
g
206

0.4

0.2

b 4 o W Mepstap
0.0
0 50 100 150 200 250 300 350 400

Iterations

Figure 20. Training vs. validation losses of the initial LM
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Figure 20 visuals the training and the validation curves after half an hour of training. Both training
and validation KIL-Divergence losses start around 1.1. While the training loss keeps decreasing
with the increasing number of epochs, the generalization gap?® starts getting larger after 13 epochs
(~40 iterations). This obviously is a sign of overfitting. The training loss almost approached a
value of zero, showing that the network architecture perfectly learned the protein evolutionary

information mapping function of the training set.

In order to analyse the prediction performance of the trained model, we randomly picked a protein
sequence form the training data and generated the predicted relative frequencies directly from the
amino acid sequence. For better examination, we visualized the output distribution and compared
it to the ground truth values. Figure 21 compares the discrete probability distributions of both the

ground truth and the predicted relative frequencies from a forward pass of a sequence.
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Figure 21. Discrete probability distributions comparison between the ground truth relative frequencies and the
predicted ones of an amino acid at position 262 in the protein with PID: Q9H255. The relative frequencies in blue
correspond to the results of an MSA-based method aligning the protein against a database, whereas the relative
frequencies in orange correspond to the output of the model predicting the distribution of residue 262 from all
previously seen residues in a forward pass.

Even though we were able to predict the same distribution, and the model was able to learn the

representations, there are 3 major observations to mention:

3 Generalization gap is defined as the performance difference of a model between the one reported on
its training data and the one reported on the validation/unseen data, which is drawn from the same
distribution.
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e The training set used in the experiment is very tiny

e Though the set was extremely small, the model was struggling at the beginning of the
training. It took more than 14 epochs for the optimizer to start pointing towards an
optimum

e It took too much time and more than 50 epochs for the model to perfectly overfit to the
tiny training data. We needed about half an hour of training to come up with the histogram
in Figure 21.

Those observations clearly show the complexity of the task on hand. To draw more realistic
conclusions, we needed to scale up and train on a bigger dataset with a larger mini-batch size. For
that purpose, we obviously need more computing resources and even tuning the architecture to
help the model quickly converge.
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5.2- Experiment 2 — Multi-task language model architecture

In this section we investigated the effect of scaling up on the learning process of our ELMo
embedder. For that purpose, we selected a random subset, from our large training set (Figure 13),
of 200K protein sequences that will be used to train the model, and 879 sequences for validation
(Figure 13).

5.2.1. Model description

In order not to forget what was previously learned in SeqVec/ELMo embeddings and with the
goal to help the convergence be faster, we added a second path to the head of the network
architecture, predicting the next amino acid in the sequence as well. Those two paths are
represented in figure 22 as two parallel grey tensors, in the right side of the figure and before the

losses. This led our project to shift towards multi-task training.
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Figure 22. Conceptual visualization of the multi-task network architecture, predicting the next amino acid and the next
PSSM column simultaneously in a protein sequence via transfer learning. The model combines both the KIL-Divergence
and the cross-entropy losses in a single weighted sum loss.
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Using the network architecture visualized in figure 22, we trained the model on the 200K
sequences. Since we are training a bi-language model, this translates to an equivalent dataset of

400K sequences counting both the forward and backward traversals of each sequence.

Concerning the loss functions used in the architecture, we have both a cross-entropy loss assessing
the predictions of the next amino acid and a KIL-Divergence loss measuring the closeness of the
predicted discrete probability distribution to the ground truth relative frequencies of the next
PSSM column. This corresponds to an optimization problem with respect to multiple objective
functions. The commonly adopted approach to solve such multi-task problems computes a

weighted linear sum [66] combining all the objective losses:

Ltotal = Z aiLi Eq (9)
i
Where Y, a; = 1

Here, L; is the objective loss of the task i and a; is the corresponding weight given to that loss. In
our experiment, we assigned similar weights (a value of 1/,) to each loss in the final combined

objective.

Additionally, the sequences lengths ranged between 21 and 8914 residues. By randomly selecting
sequences for batch training, we will run out of memory while trying to allocate space for the
variant sizes of proteins. Like most deep neural networks, LSTMs are trained using gradient
descent. Such gradients are efficiently computed using a technique called backpropagation
through time (BPTT), which applies back propagation to the unrolled network [67]. For long
sequential records, such as our case, BPTT is both computational and memory intensive. This is
mainly a GPU memory constraint that forces us to look for alternatives for a better control over a
batch size that can entirely fit in the GPU dedicated RAM. A dominant approach applied in the
field of sequential data processing is to cut the sequence into chunks and process them separately.
This is what the approximation technique known as truncated BPTT (TBPTT) [68, 69] does.

There are several advantages of using this method:

e ltisa lot faster, as we do less work and computations.

e It throws away pieces that have many products of matrices that would eventually either
vanish or diverge.

e It hasaregularization effect, as it forces the model to focus on the changes that happened

recently than changes that would have been observed a very long time in the past.

Therefore, TBPTT trains a model that is more robust and does not suffer much from the butterfly
effect, which is also susceptible to overfit. With this technique we are somehow constraining the

model space. This adds an additional hyperparameter to our model, which is the step size of the
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truncation. With insights from figure 14, we set the fixed step size to the mean of the sequence

length distribution in our training data, which is ~300 residues.

5.2.2. Results and discussion

With a training set of 200K sequences, if we did train the model using the same workstation as in
the previous experiment, it would have taken months and might have ended up damaging the
machine. To train this enhanced architecture, we were granted exclusive usage of a remote Linux
machine with a system memory size (RAM) of 64GB, Intel® Xeon® 5600 series processors of
six-cores with 12MB of shared cache, and a maximum speed of 1.3 GHz. The machine also
contained an NVIDIA GeForce GTX TITAN X GPU with a dedicated memory of 12GB. This is
3-fold larger than the previous GPU’s dedicated RAM. With a model of 2.8 Million trainable
parameters, the training took one week of computation to go through the whole dataset once, i.e.

1 week for one epoch.

As a first step in analyzing the quality of learned representations of the model, we saved the
training and validation loss values to track the improvement of the learning over time. With the
above fixed maximum sequence length to be processed at a time and given the current hardware,
we were able to handle a mini batch of 16 protein sequences in each iteration. To avoid confusion,
the sequence processing is detailed as follows:

a. We select a random subset of 16 proteins, called the mini-batch size in this manuscript.

b. For each sequence in the mini-batch, we create a copy of the sequence in the reverse
order.

c. We append the new sequences to the mini-batch, resulting in an augmented mini-batch

of 32 sequences.

d. SeqVec/ELMo embeddings are generated for the 32 sequences.

e. Short sequences are zero-padded to match the length of the longest one in the batch.
f.  All sequences are packed in one big tensor.

g. The tensor is chunked equally to small tensors with a maximum length of 300.

h. Chunks are passed sequentially to the model to be processed.

The LSTMs cell and the hidden states are saved at the end of each processed chunk to be

passed on to the next chunk in the queue.
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Figure 23. Training and validation curves of the multi-task model with combined objective optimization. The curves
correspond to the training data history saved after every 30 iterations

Figure 23 shows how the weighted linear sum of the combined objective loss is improving with
increasing number of iterations. To avoid outliers from destroying the visualization and distorting
the analysis, the graph displays a smoothing of the original training and validation curves in darker
colours. A well-known approach used to tackle such scenarios is the Gaussian process regressor
[70]. In our case, we used a second and easy alternative named the Savitzky-Golay smoother
[71]. The method applies a filter, using a small window on the data stream and moving one
point at a time, to regress the original datapoints to a polynomial using least squares. The
polynomial is then used to compute an approximation of the middle point, or the average, in

the frame, which will later be used as a point in the smoothed curve.

The results of the above experiment were somehow disappointing as we were expecting the
learning curve to decrease more with the increasing number of iterations, especially that we used
a larger training set. The loss function started around 1.9, then it quickly dropped in the first
iterations to 1.82, to keep oscillating around 1.79 for the rest of the training.

Since our final objective function is combining both a CE and a KIL-Divergence loss, decoupling
both losses and analysing them separately may give better insights to assess the training quality
of the model and tuning our final combined loss function. Regarding the cross-entropy loss that
is gauging the predictions of the next amino acid, a better assessment would be to compare the
prediction performance with the random baseline and SeqVec reported performance. In the rest

of this subsection, we will derive the values of those two baselines.

In general, language models' primary purpose is to learn from the sample corpus a distribution,

named Q, that is as close as possible to the actual distribution, named P, of the corpus language.
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One widely used measure to compute how close two distributions are to each other is the cross-

entropy. In mathematical notations, the CE between the distribution Q and P is defined as follows:

H(P,Q) = Ep[—log (Q)] Eq. (10)

For discrete probability distributions, the cross entropy is defined as follows:

M
H(P,Q) = —Z P(x =c)log (Q(x = ©)) Eq. (11)
c=1

Where log is usually the logarithm base two but in most frameworks, it is replaced by the natural
logarithm for fast computation, c is a class label from the total number of classes M, P is usually
a binary indicator assigning a value/probability of 1 to the correct class and 0 to the wrong one,
and Q is the predicted probability of class c. For a uniform probability distribution of the class
labels in a dataset, the random CE value is computed as —Y¥_, log(*/,). In our case, the
distribution of amino acids is relatively left skewed, as shown in figure 15. Using the probability
frequencies of each of the 20 amino acids in our 0.8 billion residues corpus, the calculated random
CE baseline for our task is H(P, Q) = 3.12.

Concerning the performance of SeqVec/ELMo embedder, the authors reported the value in terms
of perplexity. Perplexity (PPL) is usually known as a measure of uncertainty. From a language
model perspective, it is seen as the level of perplexity/uncertainty when predicting the next token.
The measure is used more within the natural language processing community, though, it can easily

be converted to CE. In mathematical notation, it is defined as follows:

1
PPL(W) = P(Wyw, ...wy) N = 2¢7oss—entropy — 2H(P,Q) Ea. (12)
Using the inverse function:
H(P,Q) = Log(PPL(W)) Eq. (13)

Where W is the bag of the corpus vocabulary (in our case, it is the set of 20 amino acids), and the
log is the logarithm base two. For computation performance as explained previously, the log here
is the natural logarithm. PPL(W) = 10.5 is the reported perplexity by Heinzinger et al. [36].
Using equation 13, the calculated SeqVec/ELMo CE loss baseline is H(P,Q) = Log(10.5) =
2.35.
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Figure 24. Smoothed training and validation curves of the cross-entropy loss predicting the next residue in the
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sequence. The graph shows where our learned representations are standing compared to the random language model

baseline (Red line) and SeqVec (Green line) performance.

Plotting the two baselines, the training, and validation curves of our ELMo will give us a better

assessment of the network architecture and the hyperparameters used during training to predict a

distribution of the next amino acid in a sequence. From figure 24 and with a value of ~2.8, we

notice that our model is doing better than the random baseline. However, it is performing poorly

compared SeqVec/ELMo learned representations. Concerning the KIL-divergence loss predicting

the next PSSM column in the sequence, Figure 25 shows that the model is not learning much from

our dataset. The loss keeps oscillating around 0.8 with no improvement noticed over time.
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Figure 25. Smoothed training and validation curves of the KIL-Divergence loss predicting the next PSSM column in

the sequence.
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From the above results, we plainly see that the model performance is poor. Nevertheless, we
should not neglect that we are putting too much regularization on our training both architecture-
wise, learning forward and backward representations of a sequence using the same architecture,
and sequence lengthwise, by restricting the maximum sequence size to be processed to a
maximum of 300 residues. Additionally, the visuals give us a sign that the current network
architecture and its capacity are not enough to learn complex representations. Moreover, the batch
size used for training might also contribute in this observed performance, as it is a training
hyperparameter and it has been shown in many research projects [72-75] that batch size plays a
role in providing good/bad expectation estimations, hence affecting the training performance.
Table 2 displays all the losses reported in this section and offers an easy comparison of the
statistics. We notice from the table that the CE loss is almost 4 folds larger than the KIL-

Divergence loss. Hence, making the CE as the dominant loss in our final objective function.

Table 2. The table compares the performance of our suggested ELMo training a 2 bidirectional LSTM (2 bi-LSTM)
architecture via transfer learning (TL). The table shows the separate values of the CE and KIL-Divergence losses as
well as the joint final loss. Also, the table displays the values of the random and SeqVec reported baselines.

Cross-Entropy loss (AA) KL-Divergence Loss Joint loss
(PSSM) (AA + PSSM)
Random baseline 3.12 - -
SeqVec reported baseline 2.35 - -
TL+2 bi-LSTM 2.8 0.8 18
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5.3- Experiment 3 — Final language model architecture

In the experiment described in this section, we are increasing the capacity of our plain LSTM
layers by adding recurrent projection layers to each module, adding a skip connection to the
architecture, reducing the truncation step size to 100 residues, and training on the whole set of

1.83 Million proteins (~0.8 billion amino acids).

5.3.1. Model description

From the training/validation curve analysis, the network capacity appears to be limited as both
the training and validation losses in all 3 of the figures (figures 25, 26, and 27) look as if they are
struggling to improve with the increasing number of iterations. To boost the capacity of a network,
one can either go deeper by increasing the number of layers, go wider by increasing the number
of neurons, or both. A joint research work between a faculty member at the University of Toronto
and a scientist at Microsoft Research [76] has shown empirically that shallow feed-forward
networks can learn the complex functions formerly learned by deep neural networks and obtain
performances that were previously only possible with deep models. This conclusion pushed us to
drop the idea of going deeper, in terms of layers, but rather look towards the direction of

increasing the number of hidden units.

An LSTM architecture contains several components named memory blocks. Such blocks are
called gates controlling the information flow in a network, including the input, output and forget
gates. The LSTM structure is uniquely defined by the number of its input and output units. To
raise the capacity of an LSTM, one can just increase the hidden size units, hence increasing the
capacity of the cell state to carry more information along to the next time steps for complex tasks.
However, those numbers determine the computational complexity for training an LSTM network.
For a moderate number of hidden input units, dimensionality, i.e. the complexity of the network,
is largely dominated by the size of the output hidden units. Sak et al. [77] from Google labs
suggested an alternative approach that addresses the complexity of large capacity LSTMs. They
proposed the addition of a linear projection layer applied right after the output and before the
recurrent connection to the cell. Therefore, the recurrence is applied from a smaller projected
hidden state, which ultimately reduces the number of computations within the whole LSTM cell,
while maintaining the large capacity of the cell state. The later described module is referred to as
LSTM with recurrent projection layer (LSTMP) [77]. This technology has been adopted by
Jozefowicz et al. [78] in Google Brain labs to train different variations of language models on a
very large corpus of 0.8 billion words and a vocabulary size of 793471 words [79]. Jozefowicz et
al. [78] empirically proved that when trying to fit an LSTM network architecture on very large

and complex datasets, the size of the LSTM heavily matters.
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For the sake of improving our LM architecture, we customized the CUDA optimized Long-Short
Term Memory cell implemented with TorchScript* to include a recurrent linear projection layer.
For the hidden and projection sizes, we decided to go with half the dimensions used in [22 & 36],

i.e. 2048 units and 256-dimension projections.

Inspired by the original ELMo paper by Peters et al. [22], we have also added a residual skip
connection from the first to the second LSTM layer, with the goal of boosting the training
performance. To further increase the capacity of the network and have more control over the
memory size allocated by the LSTM layers for variable input sizes, we also added a fixed size
(1024 hidden unit) non-linear input layer, to the LSTM cell, with LeakyReLU as an activation
function. Concerning the weights initialization of the LSTM matrices, we initialized the input
projection layer with a Kaiming [80] uniform initialization, the biases of the LSTM gates to a
value of 1.0, as it was shown to perform well for long size dependencies [81], and the rest of the

matrices were initialized with a uniform distribution of a standard deviation ¢ =

6.0
hidden_size+projection_size '

Combining all the LM state-of-the-art technologies discussed in this subsection, we constructed
the complex network architecture visualized in figure 26. The model comprises 2 layers of
LSTMs, with projections, stacked one after the other. The first layer takes as input SeqVec
uncontextualized embeddings concatenated with a one-hot encoding vector of size 20, making it
a total input size of 512+20 = 532 units. The second LSTM layer takes as input contextual
representations concatenating the output of the first layer with the 2-layer context aware
embeddings from SeqVec, resulting in an input size of 512*2+256 = 1280 units. As for the
residual block, the two representations, of size 256, from both layers are then summed element-
wise to serve as input to the two parallel linear layers, one for predicting the next amino acid and

the second for inferring the next PSSM column distribution.

As mentioned earlier, the two losses are computed and summed according to eg. 9 to form the
final objective function to be minimized. As our primary goal is to learn evolutionary information
representations, we want to assign higher weight to the KIL-Divergence loss. In addition, we have
seen from table 2 that the CE loss is more dominant in the final objective function, being nearly
4 times larger than the KIL-divergence loss. Thus, we decided to bring both losses to the same
scale and give more weight to the KIL-divergence loss. Tuning the loss coefficients, our final

objective function is now defined as:

Lfinal = 025 * CElOSS + 075 * KLlOSS

4 https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/
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In addition, multiple previous research works have raised the concern that a too large sequence
length might disturb the learning process and negatively affect the performance. We suspected
that even a maximum sequence length of 300 residues might still be too large and therefore
decided to investigate how the maximum time step could be affecting our ELMo performance by
training two separate models, one with a maximum sequence length of 100 and the second of 300
residues. The ELMo performance was then evaluated on the secondary structure prediction

downstream task.

5.3.2. Results and discussion

After implementing the novel biLM architecture along with its data loader and the model solver®,
we trained it on the whole 1.83 Million proteins. In the second experiment and with a GPU of
12Gib dedicated RAM, the training took 1 week for just an epoch on 200k sequences. Using the
same machine in this experiment would have taken around 2 months to process the whole dataset
once. Therefore, large computing resources were heavily needed.

Luckily enough, during the same period, my direct thesis guide, Michael Heinzinger, received the
first phase of a $4.5 million grant from Google through the Covid-19 High-Performance
Computing (HPC) Consortium for a volunteer research project. | was granted part of this
considerable computing resource to train my final 24 Million parameters model, referred to as
Seq_Evo LM in the rest of this manuscript. | got approximately four weeks of exclusive usage
of a remote Linux VM with a system memory size (RAM) of 120GB and 32 Intel® Xeon® CPUs
with a maximum speed of 2.3 GHz. The machine also contained a cluster of 8 Tesla V100 SXM2
GPUs with a dedicated memory of 16GB each. For my training, | used 2 GPUs for each
experiment. With these resources, we were able to increase the training batch size and fit 64 and
128 sequences per iteration for a maximum of 300 and 100 time steps, respectively. For a
maximum time step of 100 residues, the training took one week, whereas it took a week and a

half for a maximum length of 300 residues.

For a given protein sequence of length L, Seq_Evo_LM generates a numerical representation
(embedding) of size 3xLx512. The first layer is just the SeqVec uncontextualized embedding
(512); while, the second and third layers are the output of the two LSTMPs of our final trained
model. Since the projections are of size 256 each, the output of the forward pass is concatenated

with the backward pass representations, making it a bidirectional context aware embedding from

5> https://github.com/issararab/Evol_Info_Prediction
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each of the two layers. After one epoch of training on the 1.83M sequences, we used the learned
representations as input to train two models one predicting the 3 and second the 8 states of proteins
secondary structure. Figures B.2 and B.3, in appendix B, show the results comparing input
embeddings generated from a model trained with a maximum sequence length of 300 residues
and a second of 100 residues. The performance was tested on three sets, where the CASP;, [82]
dataset being the most difficult. We see that Seq_Evo_LM/SeqLen=100 outperforms its rival by
almost an increase of ~10% and ~6.5% for the 3-state and 8-state secondary structure predictions
respectively, on all of the three test sets. We can conclude that a larger sequence length negatively
affects the learned representations. Therefore, we retained 100 time-steps as our best maximum

sequence length hyperparameter.
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CE + KL-Div Loss
L
H
<

1.0

0.9

0 200 400 600 800
Each step represents 16 iterations with 128 proteins processed in each iteration

(Seq_Evo_LM)_training_loss

Figure 27. Smoothed training curve of Seq_Evo_LM multi-task training on a dataset of 1.83 Million proteins using a
maximum time step of 100 residues.

For our best ELMo model, trained on a maximum sequence of 100 residues, we have displayed
the training curve of the joint final loss in figure 27. We see how the high capacity architecture as
well as the large batch size have allowed the model to learn representations from our 1.83 Million
training sequences. The visual shows that the loss function has made 3 improvement drops: The
first around 800 iterations after processing 100K sequences, the second around 8300 iterations
after processing 1 million sequences, and the third 12K iterations after processing 1.5 million
proteins. To assess how well each of the separate tasks, predicting either the next residue or the
next PSSM column, did contribute to the final loss, we are displaying the training curves of each

task separately and comparing it to the previous results and baselines.
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Figure 28. Seq_Evo_LM smoothed training curve predicting the next amino acid in the sequence. The model was
trained on a dataset of 1.83 Million proteins using a maximum time step of 100 residues. The training curve is
compared with three baselines.

Figure 28 shows the training curve (darker blue) of the final self-learning task predicting the next
amino acid in a sequence from all previously seen residues. Comparing the learning trend in both
figure 28 and 26, we see how the new architecture did improve the training significantly when
compared to a plain LSTM architecture. While the initial architecture’s training (figure 24)
maintained a constant rate (~2.8, orange for baseline) over time, the training loss of our last
implementation starts at a much lower value (~2.65), with a low range oscillation throughout the
whole training, and converged at a loss (~2.4) close to SeqVec reported performance (~2.35, green

for baseline).
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Figure 29. Seq_Evo_LM smoothed training curve predicting the next PSSM column in the sequence. The model was
trained on a dataset of 1.83 Million proteins with corresponding relative frequencies using a maximum time step of
100 residues. The training curve is compared with the vanilla LSTM architecture baseline.
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Similarly to the cross-entropy loss, the KIL-divergence showed a comparable behaviour for the
novel ELMo architecture. Figure 29 displays the next PSSM column smoothed training curve
where the model converged around 0.5, more than 1/3 lower than the plain LSTM architecture
(orange). Table 3 summarizes the performance improvement throughout this research project,
achieving a joint best loss of 1.0 with a cross-entropy converging around CE = 2.4 and a KIL-
Divergence loss value at KIL-Div.= 0.5. The best model architecture is defined with a hidden size
of 2048 and an output projection size of 256 units. The model, named Seq_Evo_LM, is now used

as a protein sequence embedder for downstream tasks.

Table 3. The table compares the performance of the final ELMo architecture training 2 stacked bidirectional LSTMs
with projection via transfer learning (TL). The architecture connects also the first LSTM with second via a skip
connection. The table shows the separate values of the CE and KIL-Divergence losses as well as the joint final loss.
Besides, the table displays the values of the random, initial architecture, and SeqVec reported baselines.

Cross-Entropy KIL-Divergence Joint loss Hidden size /
loss (AA) Loss (PSSM) (AA + PSSM) Output size
Random baseline 3.12 - - -
SeqVec reported baseline 2.35 - - 4096/512
TL+2 bi-LSTM 2.8 0.8 1.8 256/256
Seq_Evo LM 2.4 0.5 1.0 2048/256
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5.4- Evaluation of the best model on downstream tasks

After convergence, we evaluated our novel ELMo embedder, Seq_Evo_LM, in downstream tasks.
As a reminder, our ultimate goal was to deploy a tool that converts sequences into numerical
representations encoding the protein evolutionary information, hoping to improve the current
prediction power of SeqVVec embeddings. The embedding predictive power was evaluated on two
categories of downstream tasks: the first task involves secondary structure, which is a per-residue
type of predictions; the second comprises subcellular localization and soluble vs. membrane
proteins as a per-protein level of predictions.

Concerning the first evaluation, we trained a model using the new embeddings as input to predict
the three states of a protein secondary structure: helix (H), strand (E), and coil (C). We trained the

model until convergence and tested it on three test sets:

e TS, [83]: asetof 115 sequences derived from high-quality protein structures (i.e. <3 A)
with no more than 30% PIDE to any protein of known structure in the PDB [84] in 2015.

e (Bsq3 [85]: a set of 513 non-redundant sequences compiled after a Structure Integration
with Function, Taxonomy and Sequence (SIFTS) [86] mapping.

o (CASP;, [82]: a set of 21 protein sequences retrieved in 2018 from the CASP;, free-
modelling targets after a SIFTS mapping.
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Figure 30. 3-state secondary structure prediction comparison between MSA-based and ELMo-based inducers
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Figure 30 displays the performance results of Seq_Evo_LM embedder compared to SeqVec,
another ELMo-based model, and ReProf [87], an MSA-based model. ReProf is built on PSSM
matrices input generated by MSA methods. The latter is still considered as one of the state-of-
the-art methods on this task. From the histogram plot, we see that SeqVec is performing quite
well without the need of evolutionary information to make predictions. we also observe that
SeqVec and Seq_Evo_Lm are performing in a quite comparable way where SeqVec is still doing
better. However, we should mention that SeqVec is relying on embeddings of size 3x1024 for
each residue in the sequence to reach this performance, whereas Seq Evo LM requires
embeddings with only half the size of its rival (3x512). The same observation was drawn from

figure 31, visualizing two per-protein tasks.

The second evaluation was conducted on predicting the membrane-bound proteins from the
water-soluble ones. The two-state predictions were tested on a set of 846 proteins retrieved from
DeepLoc [88] published supplementary data set. DeepLoc is a state-of-the-art tool relying on
MSA profiles output to build its models. It also includes a model predicting the 10 states of
subcellular localization, corresponding to our third benchmarking evaluation. The same annotated
test set was used to evaluate and benchmark Seq Evo LM and SegVec embeddings with
DeepLoc. The orange bars correspond to the performance results of the @, membrane predictions.
We see that Seq_Evo_LM is lower by 10% and 4% compared to DeepLoc and SeqVec,
respectively.
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Figure 31. Subcellular localization and membrane vs soluble protein prediction comparison between MSA-based and
ELMo-based inducers

While DeepLoc is still outperforming both of the ELMo-based methods (@, = 93%), our

suggested embedding performance is still significantly high hitting an 83% with an embedding
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size of only 3x512 per residue. However, the Q,, localization predictions seem to have suffered
badly, with an overall accuracy of 50%, which is 28% lower than DeepLoc and 18% lower than
SeqVec.

For multi-task problems, it is always better to analyse the prediction results by displaying the
confusion matrix of all the classes. Figure 32 compares the precision performance of
Seq_Evo LM to SeqVec in terms of subcellular localization predictions. While SeqVec tends
towards a diagonal matrix (i.e. perfect classification in the best case scenario), Seq_Evo LM is
not. Both representations succeed to classify NC, EXT, and ER with quite a good performance,
where Seq_Evo LM NC score is surpassing the one of SeqVec by 14%. Also, with the new
embeddings, the model seems confusing most of the CYTO as NC, and with a very high
confidence of 87%. In fact, Seq Evo LM looks in general biased towards the NC class. An

observation that is worth investigating more in future work.
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Figure 32. Precision confusion matrix for Subcellular localization predictions comparing SeqVec predictions to

Seq_Evo_LM at the class level
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6- Conclusion

The current algorithms for generating evolutionarily related information of protein sequences is
largely dominated by multiple sequence alignment methods. Those algorithms that can be applied
to DNA, RNA, and protein sequences are designed to take into account evolutionary events such
as mutations, insertions, or deletions. We have seen that this technique is one of the most widely
used modeling approaches in biology. MSAMSs are used to expose those restricted evolutionary
regions within a sequence. The results of these methods represent an essential input to several
downstream applications in the field of bioinformatics. We have also seen that many of the
machine learning models used in the field of bioinformatics and computational biology to predict
either function or structure of proteins rely on the output of PSI-BLAST, an MSA-based tool. The
process is simply described as searching for homologs of a query sequence in a database of protein
sequences, capturing the conservation patterns in the alignment, and storing this information as a

matrix of numerical scores for each position in the alignment.

Indeed, the evolutionary information representations generated by MSA methods have
revolutionized the prediction power of Al methods for the past two decades. However, this
increase in performance has become costly in recent years, with the continuous exponential
growth of bio-sequence data pools. Thanks to the similarity of protein sequences to natural
language, researchers are now trying to exploit the recent advancements in the field of natural
language processing and therefore transferring NLP state-of-the-art algorithms to bioinformatics.
One prominent solution that can cope with such tremendous growth and compete with
conventional methods is the use of embedding language models (ELMo). This was the core of
this research project, where we aimed to leverage Al to learn representations of evolutionary

information of a protein.

Ultimately, at Rostlab, we wanted to deploy an ELMo tool incorporating evolutionary information
in its representations and offering a better trade-off between computing resources and runtime.
While pre-training is costly, inference is cheaper. So we trained a novel bidirectional language
model following the autoregressive approach. The model was trained on a set of 1.83 million
proteins (~0.8 billion residues), predicting both the next amino acid in a sequence and the
probability distribution of the next residue derived from similar, yet different, sequences, as
summarized in a PSSM. With 975MB required GPU memory to load the final pre-trained model,
the average inference time takes around 1.03 second to embed a human protein sequence segment
of size 512 residues. The embeddings' prediction power was evaluated on three downstream tasks:

secondary structure, subcellular localization, and membrane vs. soluble protein predictions.
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According to the experiments results, the embedder performance was comparable to SeqVec, for
the 3-state secondary structure predictions, but did not outperform it. The same trend was
observed for the 2-state membrane prediction, achieving a performance of 83%, and satisfactory
but relatively low in terms of the 10-state subcellular localization compared to DeepLoc. Even
though we did not succeed in reaching our initial goal of outperforming SeqVec, we did achieve
a performance close to SeqVec with half the embedding dimensions (i.e. 3 x 512). Additionally,
the results of the third experiment confirmed a finding by Jozefowicz et al. [78], who did
empirically prove that, when trying to fit an LSTM network architecture on very large and

complex datasets, the size of the LSTM matters.

In general and from downstream tasks perspective, we did not find any evidence that adding
PSSM input improved the knowledge that LMs could learn from a sequence. Different hypotheses
can be drawn here: SeqVec was able to learn certain patterns already without PSSMs, our dataset
was too small for training a LM, we should have trained the whole architecture from scratch, we

should have used larger capacity LSTMPs, or we should have simply trained longer.
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Supplementary Material

Appendix A

A.1 - Isar-Pipeline
In the Machine Learning arena of the bioinformatics field, PSI-BLAST output represents the main

input to many models out there. Therefore, ways to speed up this process are heavily needed.
During a previous study, we conducted an analysis of this tool in a research project that aimed at
combining state-of-the-art methods to quickly generate extensive protein sequence alignments. In
this research, we compared the computational resources and time needed to generate alignment
profiles of a set of query proteins against a similar database. The benchmarking was done with
another state-of-the-art algorithm, MMseqs2, that claims to speed up this process significantly.

A.1.1 - Experiment setting
To compare the runtime of each algorithm in retrieving relevant aligned sequences, we run

multiple experiments on the same dataset and using the same machine. Experiments were

conducted using variant numbers of proteins in each batch.

All the results presented in this section were conducted on a server granted by the University of
Luxembourg. The server system memory size had about 196Gib with an Intel Xeon E312xx CPU

of 4 cores supporting SSE4.1 instruction set.

Concerning the database of proteins used, we sampled a random set from UniProt Reference
Cluster with 90% sequence identity (uniref90 2019 02). The reason behind using only a sample
from uniref90 was the RAM size constraint. For full performance analysis, we needed the index
table of the database to fit entirely in the RAM. Since the whole uniref90 will generate an index
table of roughly 250Gib, we run our tests on a random sample of sequences (~ 68 million

proteins). This sample generated an index table of size 181Gib.

A.1.2 - Experiment results and discussion
The experiments were conducted on query sets of 10 different batch sizes, between 1 to 1000

sequences per batch. Each experiment with the same batch size was run 3 times using the same
algorithm, either MMseqs2 or PSI-BLAST. The final result is reported as the average sum of

values.
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Table A.1. The table shows the effect of random bulk sequences (number of seqs) as a single query on the runtime
of MMseqs2 and PSI-BLAST

Number of Sequences Runtime
in Batch
MMseqs2  PSI-BLAST
1 24m 48s 14m 05s
5 28m 52s 69m 39s
10 22m 11s 109m 22s
20 23m 02s 218m 565
30 26m 08s 340m 32s
50 28m 03s 605m 12s
100 29m 21s 1211m 15s
200 28m 42s -
500 25m 43s -
1000 32m 06s -

In table A.1, we clearly see that the increasing number of sequences in a single bulk query heavily
affects the runtime of PSI-BLAST. On the other hand, MMseqs?2 is barely affected by the batch
size (Figure 1). MMseqs2 runtime ranges between 22min and 32min with an average runtime of
~30min per batch. Whereas, PSI-BLAST runtime follows a linear trend (Figure 1). PSI-BLAST
processes the sequences in the batch in a sequential fashion. This runtime becomes even higher

when the algorithm is run against larger databases.

Bulk queries runtimes of MMseqs2 vs PSI-BLAST

1200 —— MMseqs2

—s— PS5/ - BLAST
1000
800

600

400

Runtime in Minutes

200

0 bk
0 200 400 600 800 1000
number of Sequences

Figure A.1. Runtime comparison between MMseqs2 and PSI-BLAST and how they scale up with the increasing

number of proteins in a single query batch size.

MMseqs2 scales much better in terms of batch query sequences compared to PSI-BLAST (Figure
1). This property was exploited to build a pipeline, called IsarPipeline, that combined both
MMseqs2 and PSI-BLAST. The need for combining both tools was due to the absence of a PSSM
output file directly generated from the result of MMseqs2. Therefore, MMseqs2 was used to run

batch queries in order to quickly generate the aligned family of sequences to each protein in the
62



query batch, and then PSI-BLAST is run afterwards to generate PSSM profiles. The general idea
of the pipeline was that MMseqs2 will take care of the massive search on the large database, then
it will provide PSI-BLAST with a list consisting only of the relevant sequences, a maximum of

1k, for each query protein.

After a thorough analysis of each module runtime in MMseqs2 search, we discovered that loading
the index table to perform the prefiltering procedure takes more than 90% of the whole runtime
reported. Therefore, a way to load the whole DB and the index table into RAM, then using it
directly whenever the search command is called will decrease the runtime tremendously. The
hack that we came up with was to load the whole database into RAM and lock the pages there,
using “vmtouch® . Later in the search, we map the sequences from the locked DB instead of
loading it again from the disk. This trick allowed us to reach almost an instant sequence alignment
search result, of about 53 secs via IsarPipeline, for an average length protein sequence (450

residues).

The instant sequence alignment is very impressive, but this huge gain in runtime is achieved at
the expense of enormous hardware resources. In the above-presented experiment results, we had
to allocate 190Gib of RAM for a database size of 68 million proteins. With a rough extrapolation
estimation of the results on hand, a set of 200 million proteins will require about 1/2TB of RAM
to allocate. This solution is not affordable to the general bioinformatics community. From here
came the idea of researching an optimal solution incorporating evolutionary information of a
protein sequence in a numerical representation with an optimal trade-off between computing
resources and runtime of the software. With the current revolution of Al and the advancements
achieved in the NLP field, we are aiming in this research project to transfer this knowledge in

order to learn representations of protein evolutionary information.

& Hoyte D. (2020, August 31), vmtouch - the Virtual Memory Toucher, source:
https://hoytech.com/vmtouch/
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Appendix B

B.1 —SeqVec/ELMo embeddings data leakage experiment results
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Figure B.1: Training and validation cross-entropy losses of a linear layer predicting the next amino acid in a
sequence from ELMo/SeqVec last layer. The visual shows a comparison of three experiments each using a different
input of SeqVec embeddings. The graph clearly presents the data leakage problem caused by including the backward

embedding as an input to the model.

B.2 —Training step size length effect on the 3-state secondary structure performance
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Figure B.2: Comparing the performance of Seq_Evo_LM trained with a maximum sequence length of 100 (left) to
300 (right) on the 3 State Secondary Structure.
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B.3 —Training step size length effect on the 8-state secondary structure performance
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Figure B.3: Comparing the performance of Seq_Evo_LM trained with a maximum sequence length of 100 (left) to
300 (right) on the 8 State Secondary Structure.
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