
A Survey of Reinforcement Learning
with Temporal Logic Rewards

Hsuan-Cheng Liao
Technische Universität München

Email: brian.liao@tum.de

Abstract—This paper presents a survey of Reinforcement

Learning frameworks with Temporal Logic rewards. Reinforce-

ment Learning (RL) has emerged to be a powerful tool to

solve sequential decision-making problems and been successfully

applied to various fields, including classical control tasks, Atari

games, and robot simulations. However, it has found its path

rather challenging to domains involving high-level properties,

which are not easily captured by typical reward mechanisms. An

example is a robotic manipulator commanded to reach several

targets in a specific order while avoiding other obstacles. Such

problems, on the other hand, are shown possible to be handled by

Temporal Logics (TLs), one branch of Formal Methods. Thus,

this paper surveys the literature and presents a wide variety

of algorithms that aims at solving such high-level RL problems

with the aid of TLs. Specifically, the methods under investigation

cover from classical model-based approaches to modern actor-

critic techniques. Moreover, a few potential research directions

are suggested in the end of the paper.

I. INTRODUCTION

Over the past decade, Reinforcement Learning (RL) has
attracted unprecedented research focus and achieved outstand-
ing performance in a broad array of applications. However,
the breakthroughs reported so far are mostly limited to areas
where reward functions can be modeled heuristically in a
straightforward fashion. For example, in Atari games, the
agent purely aims at optimizing the accumulated game score,
which is a clear numeric objective. There is still a lack of
successful paradigms of RL approaches in the field of robotics
or control applications in which learning goals of the agents
are usually more complicated or even involve various tasks.
As an example, Fig. 1 depicts a task where a robotic arm is

Fig. 1. An example of a high-level task requirement to reach gr , gb, gg in
a row and avoid obstacle o0s [1].

supposed to reach three goals in succession, while avoiding
all obstacles [1]. Such a task is rather complicated for typical
real-valued reward functions, as it requires subtasks being ful-
filled with certain high-level properties. The task is, however,

possible to be modeled in formal specification languages such
as Temporal Logics (TLs), which has been proven capable
of incorporating high-level intentions, constraints, or domain
knowledge. For instance, (1) gives the TL formula for the
example described above.

� = (reach gr, then reach gg, then reach gb)

^ (
^

i=1,2,3

always avoid oi) (1)

Considering the potential of TLs, we examine related work
on formulating TLs as reward functions in RL frameworks.
Both topics are widely studied, with TLs originated from
model checking [2] and RL from optimal control and dynamic
programming [3]. Nonetheless, it is observed that research
applying the combination of the two to robotics, control, or
planning problems has not drawn attention until lately in the
past dacade. Therefore, we investigate papers from the early
stages of this line of research, identify the challenges and
improvements in the course, and propose promising directions
for future research. As an overviewing paper, we defer readers
to the original papers for detailed mathematical derivations
and adopt an introductory manner to accommodate all types
of related work in this paper.
The remaining of the paper is organized as follows: Section II
elaborates a background on the two primary subjects, namely
RL and TLs. The mass literature is reviewed in Section III,
followed by a discussion including future work suggestions in
Section IV. Finally, Section V gives the concluding remarks.

II. PRELIMINARIES

In this section, we introduce the background knowledge
for both Reinforcement Learning (RL) and Temporal Logics
(TLs). First, Subsection II-A formalizes RL frameworks into
Markov Decision Processes (MDPs). Then, Subsection II-B
introduces the syntax and semantics of TLs. Lastly, Subsection
II-C draws the technical problem statements with the provided
definitions.

A. Markov Decision Processes and Reinforcement Learning

MDPs prescribe a general formalism of systems comprising
sequences of state transitions and actions. Considering the use
of TLs later on, we present here the definition of a Labeled
MDP.



Definition II.1. (Labeled MDP) A Labeled MDP is a tuple
M = hS,A, P, s0, AP, L,R, �i, where S is a set of possible
states, A is a set of primitive actions, P is the transition
probability function defined as P : S ⇥ A ⇥ S ! [0, 1],
s0 2 S is the initial state, AP is a finite set of atomic
propositions, and L : S ! 2AP is a labeling function which
assigns each state a set of atomic prepositions that are valid in
that state. In the context of RL, an additional reward function
R : S ⇥ A ⇥ S ! R and a discount factor � for the reward
are usually emphasized and included in the tuple.

Given the Markov property in an MDP, both the transition
and reward function depend solely on the state and action in
the previous step. However, we shall later see how various
approaches circumvent this property, observing sequences of
states and actions to evaluate TL specifications. Now, from the
RL agents’ perspective, there are several terms to be defined.

Definition II.2. (Policy) A control policy ⇡ for the agent in a
Labeled MDP M is a function ⇡ : S ! A deterministically,
or ⇡ : S ⇥A ! [0, 1] stochastically.

Definition II.3. (Trajectory) Given a Labeled MDP M,
a state-action trajectory from time 0 to T is denoted as
⌧ = (s0, a0, s1, a1, ..., sT ) under a certain policy ⇡. In
case of a stochastic policy ⇡, p⇡(⌧) represents the trajectory
distribution.

For better generality, we do not restrict ourselves to finite
trajectories at this point, meaning that possibly T ! 1 in
Definition II.3.

Definition II.4. (Accumulated reward) Given a trajectory ⌧
in a Labeled MDP M, the accumulated reward is computed
as G(⌧) =

PT
t=0 �

trt where rt is obtained from the Markov
reward function R.

Normally, the objective of an RL algorithm is to obtain an
optimal policy that maximizes the cumulative reward over a
trajectory, formulated as follows:

⇡⇤ = argmax⇡ E⌧v⇡[G(⌧)]. (2)

B. Temporal Logics

Temporal Logics (TLs) provide an interface to
specify high-level system behaviors such as “safety”
(always A), “liveness” (infinitely often A),
“stability” (eventually always A), and “priority”
(first A, then B, then C) [4]. Throughout this paper,
three variants of TLs are mentioned, namely Linear Temporal
Logic (LTL), Signal Temporal Logic (STL), and Truncated
Linear Temporal Logic (TLTL). The basic syntaxes are
similar among these variants as all include (a) a set of atomic
prepositions, (b) Boolean operators: negation (¬), conjunction
(^), and (c) temporal operators: next (�), and until (U).
Other Boolean operators such as disjunction (_), implication
(!), equivalence ($), and exclusive or (⌦) can be solicited
from the basic ones. Likewise, further temporal modalities
including eventually (⌃) and always (⇤) can be derived from

next (�) and until (U). Due to the space constraint, we refer
interested readers to Chapter 5.1 in [2] for formal derivations
of the syntax of TL.
To evaluate a TL specification, two kinds of semantics are
noticed. First, qualitative semantics determines if a system
trajectory fulfills a specification, resulting in Boolean true or
false values. Second, quantitative semantics evaluates how
satisfyingly a system trajectory completes a specification,
endowing numeric results. The former is provided by all
three variants of TLs, whereas the latter is allowed by STL
and TLTL only. One advantage of quantitative semantics is
that it naturally serves as an indicator of how robust a state
trajectory is against a specification, and thus being also called
robustness degree. Definitions are detailed in the original
papers [1] [5] [6] and other surveys [7]. We simply stress
here the difference between TLTL and STL is that for the
former, there is no need to explicitly declare boundaries on
time modalities, such as “eventually before time t (⌃[0,t])” or
“globally always over time t to t+ k (⇤[t,t+k])”. This is later
shown allowing the agent to focus on the high-level tasks,
instead of the hard constraints regulating the time at which
they have to be finished.

C. Problem Statements
With the background given, two formal problem statements

extending the RL objective (2) into the domain of TLs are
listed [5]. The first one, which has been seen in most of the
work, maximizes the probability of satisfying an TL formula,
while the second takes into consideration the quantitative
semantics and maximizes the robustness degree.

Problem 1. Given a TL specification � and a state trajectory
⌧ under a labelled MDP M = hS,A, P, s0, AP, L,R, �i, find
the optimal control policy such that

⇡⇤
1 = argmax⇡ p⇡[⌧ |= �], (3)

where p⇡[⌧ |= �] is the probability of trajectory ⌧ satisfying
specification � under policy ⇡.

Problem 2. Given a TL specification � and a state trajectory
⌧ under a labelled MDP M = hS,A, P, s0, AP, L,R, �i, find
the optimal control policy such that

⇡⇤
2 = argmax⇡ E⌧v⇡[⇢(⌧,�)], (4)

where E⌧v⇡[⇢(⌧,�)] is the expected robustness degree of
trajectory ⌧ against specification � under policy ⇡.

Looking upon these TL-oriented problems, two major chal-
lenges are spotted due to the Markov property from RL. First,
for state transition, how should history-dependencies of TL
events be captured over the single-step transition probability
function? Second, for reward collection, how should a feed-
back be given immediately if the TL specification requires
several steps of states over iterations? We shall refer these as
Challenge 1 and Challenge 2, and emphasize how various
works resolve them in the upcoming sections.



III. LITERATURE REVIEW

The following main section of the paper surveys the re-
lated work, roughly aligned with the timeline of publications.
Specifically, model-based approaches (III-A) which evolve
from probabilistic model checking and control are revealed
earlier, and model-free approaches (III-B) including Value Iter-
ation, Policy Search, and Actor-Critic algorithms are attended
more lately. In addition, a very recent line of work focusing
on hierarchical RL and multitasking is illustrated in the last
Subsection III-C.

A. Model-Based Approaches
1) Given system model: With an origin from system mod-

eling and control, the early studies naturally assume given
system dynamics as the MDP transition probability, and solves
Problem 1 with dynamic programming algorithms. For exam-
ple, the work from Wolff et al. [4] is among these. To tackle
Challenge 1, they follow a two-step construction of a Product
MDP, first converting the LTL formula to a Deterministic
Rabin Automaton (DRA), and then integrating the DRA with
the system MDP. The succeeding definitions are unified from
[4] [8] [9], in which the notion of a reward function is not yet
explicitly found.

Definition III.1. (DRA) A DRA is a tuple A =
hQ,

P
, �, q0, Acci, where Q is a finite set of states,

P
is

an input alphabet, � : Q ⇥
P

! Q is the transition
function, q0 2 Q is the initial state, and Acc = (Ji,Ki) with
Ji,Ki ✓ Q for all i = 1, ..., N is the set of accepting state
pairs.

Generally, a run of a DRA � = q0, q1, q2, ... is accepted if
there exists at least one pair (Ji,Ki) 2 Acc such that Ji is
visited finitely often and Ki is visited infinitely often.

Definition III.2. (Product MDP) With a Labeled MDP M =
hS,A, P, s0, AP, Li and a DRA A = hQ,

P
, �, q0, Acci,

the Product MDP is given by Mp = M ⇥ A =
hSp, Ap, Pp, sp0 , Accp, Lpi, with Sp = S ⇥ Q, Ap inherited
from A, Pp : Sp ⇥ Ap ⇥ Sp ! [0, 1] being the transition
probability function equal to P (s, a, s0) if q0 = �(q, L(s0))
and 0 otherwise, sp0 = (s0, q) where q = �(q0, L(s0)). Lastly,
Accp and Lp are lifted similarly.

Having incorporated TL history-dependencies into a Product
MDP, it remains to deliver immediate rewards to the agent
at each time step. In [4] [8] [9], Accepting Maximal Ending
Components (AMECs) are proposed for such purpose.

Definition III.3. (AMEC) Given a Product MDP Mp, an End
Component C is a sub-MDP hSC , AC , PCi such that SC ✓ Sp

and the map AC : SC ! 2Ap ✓ Ap are not empty, and that
for any sC 2 SC and aC 2 AC(sC), if PC(sC , aC , s0C) > 0 then
s0C 2 SC and PC(sC , aC , s0C) = P (s, a, s0). An AMEC is the
largest such End Component, whose SC abides by Jpi /2 SC
and Kpi 2 SC for some (Jpi ,Kpi) in Accp.

With the set of AMECs found, an immediate reward takes
a value of 1 at the transition into AMECs, and 0 in all

other cases. During initialization, each state is assigned with
a value of 0, 1, or (0, 1) depending on whether it belongs
to the accepting set, the blocking set, or the rest. In essence,
the probability of entering the AMECs is equivalent to the
probability of satisfying the corresponding LTL specification,
so an optimal policy being extracted with the Product MDP
and AMECs reaching probability can be suitably mapped back
to one for the original system MDP and LTL specification
[4]. By such, Challenge 2 is also overcome. Remarkably, [4]
applies robust dynamic programming to consider uncertainties
in the given system MDP. For instance, Fig. 2 illustrates
learned results from the same LTL specification yet with two
ways of uncertainty modeling:

� = home ^ ⌃⇤home ^⇤¬unsafe
^⇤(R1 ^⇤(R2 ^⇤R3)). (5)

In English, this means “sequentially visit R1, R2, R3 while
always staying safe, and return to home once having visited
all three regions.”

Fig. 2. Sample trajectories from two ways of uncertainty modelling, both
successful in terms of task completion [4].

As a pioneering work, the paper [4] has set up a common
framework to approach Problem 1, yet there is indeed room
for improvement. First, the assumption of known system
transitions does not hold for general control tasks. Second,
the construction of AMECs requires that the graph model of
the Product MDP is known, and that the complete state space
can be explored [10].
Similar to [4], [8] establishes a Product MDP to encapsulate
the system MDP and the LTL formula. However, they find
that a policy maximizing the reaching probability of AMECs
might not generate a uniquely optimal policy for the corre-
sponding LTL formula. This is because a policy derived from
the reaching probability concerns only the transient system
behavior before entering the AMECs, whereas a policy to
satisfy an LTL formula should regard both the transient and
the long-term system behavior. Hence, inspired by the Average
Cost Per Stage problem, they further formulate an optimization
problem on the long-term system behavior while enforcing the
satisfaction of the LTL formula with the AMECs. It is shown
in their experiments that different criteria such as the expected
time between the TLs events or the total distance travelled by
a navigating robot optionally constitute the cost function in



the optimization problem. Although the improvement over [4]
is recognizable, the applicability of the framework to real-
world problems is still hindered by the strong assumption of
known system dynamics. Consequently, we turn our focus to
approaches without such assumption.

2) Learnt System Model: As the community has yet the ten-
dency of perceiving Problem 1 in the fashion of probabilistic
model checking, what immediately follow are the model-based
RL approaches. These include [9] and [10].
[9] confronts Challenge 1 and 2 similarly to the previous
work in [4] and [8], but maintains an estimated model for the
system MDP. By complementing model approximation and
policy optimization, it is claimed that the entire state space is
explored and the converging policy is sufficiently close to the
optimal one with high probability.
On the contrary, being the first work to exactly mention RL in
the literature, [10] defines no AMECs but a reward function
based on the Rabin accepting conditions Accp of the Product
MDP Mp to resolve Challenge 2. Precisely, a positive reward
is given if the updated product state s0p falls in Kpi , a negative
reward if Jpi , and 0 otherwise. An experiment of “liveness”
and “safety” properties is displayed in Fig. 3, where the agent
traverses between region A and B, and avoids all region C’s.

Fig. 3. An experiment demonstrating the accomplishment of “liveness” and
“safety” properties using learnt system models [10].

Despite several successful paradigms recording “priority” (Fig.
2), “liveness” (Fig. 3), and “safety” (both Fig. 2 and Fig.
3), a major drawback of these aforementioned methods lies
in the burden of constructing a Product MDP and forming
AMECs or a reward function from the accepting conditions.
In addition, these methods commonly answer only Problem 1
by considering sparse rewards such as the reaching probability
or discretized real values. This is presumably the reason why
the examples shown are rather simple in terms of system
complexity and TL requirement. Furthermore, it might be true
that maintaining a system model helps state exploration and
increase sample efficiency, but a poorly learned model with
biases is prone to bad performances too.

B. Model-Free Approaches

In the subsequent section, we shall see several pieces of
work dismissing a given or learnt model, yet handling neatly
Challenge 1 and 2.

1) Value Iteration: The first paper to our knowledge laying
down a milestone is [5], in which Aksaray et al. propose to
learn optimal policies using standard Q-learning with STL
instead of LTL. As pointed out, STL not only allows for
qualitative analysis but also robustness degree quantization
with respect to system specifications. Due to the time-bounded
characteristics of STL, the construction of a Product MDP
becomes rather difficult. Instead, ⌧ -MDP is used to resolve
state history-dependencies, i.e. Challenge 1. Essentially, orig-
inal states over ⌧ time steps are concatenated and regarded as
a single input to the ⌧ -MDP, where ⌧ depends on the time
horizon of the given STL specification. Then, as a solution
to Challenge 2, log-sum-exp approximation is performed to
calculate numerically the robustness degree. This serves as the
immediate reward at each iteration in standard Q-Learning for
Problem 2. As for the satisfying probability in Problem 1, a
further indicator function is prefixed, so that only 0 or 1 is
given as immediate rewards.
Thanks to such manipulation with the semantics of STL,
several experiments can be done to compare outcomes of
Problem 1 and 2, concerning the specification:

� = ⇤[0,12](⌃[0,2](regionA) ^ ⌃[0,2](regionB)). (6)

The above formula says, “Alternate between region A and B
every two seconds, globally over the period from time 0 to 12.”
Fig. 4 shows the distinctive results from the original paper. It
is obviously seen that the policy extracted with Problem 1 fails
the “liveness” task, whereas the one with Problem 2 succeeds.
The conclusion is then drawn that since robustness degree
delivers partial credits to actions approaching the formula’s
satisfaction, the agent attains more guidance in the course of
learning and hence the better performance.

Fig. 4. (a) Simulation state space. (b) Trajectory maximizing probability of
satisfaction. (c) Trajectory maximizing robustness degree [5].

Other prominent Value Iteration-related work include [11] [12]
[13]. Noticeably, in [11] [12], the authors translate LTL spec-
ifications into Limit-Deterministic Büchi Automata (LDBA)
instead of DRA. The difference of a LDBA and a DRA mainly
sits in the accepting conditions. Compared to Definition III.1,
a LDBA keeps only Ki for i = 1, ..., N in the accepting
conditions Acc and accepts a run � = q0, q1, q2, ... if there is
some Ki being visited infinitely. It is verified also in [14], that
a DRA may fail to generate a uniquely optimal policy, and that



using a LDBA decreases the size of the Product MDP, speeds
up the convergence rate, and permits easier reward assignment.
With a LDBA-composed Product MDP managing Challenge 1,
[11] collects rewards conventionally as [10] does (see III-A2),
while [12] conceives a novel discounting reward function.
By contrast, [13] adheres to translating LTL to DRA but
establishes no Product MDP. They instead examine the LTL
specification completeness by checking system MDP states
s against DRA states q with the labelling function L, and
then assign real-valued rewards of four classes accordingly.
Furthermore, they transform the common Double Deep Q-
Network (DDQN) into a finite-sum non-convex optimization
problem, arguing for a more stable performance. These papers
have demonstrated multiple degrees of success, but they are
all confined in discrete state and action spaces, urging us to
the next category of algorithms.

2) Policy Search: Regardless of the approving results in [5],
two disadvantages of STL are pointed out [1] [15]. First, as the
semantics indicates, STL specifications require boundaries on
time modalities. This might be useful for monitoring system
signals, but not for regulating robot behaviors. Looking at the
example in Fig. 1, the instructor cares more about whether the
goals are visited in the correct order and less about the exact
time at which each goal is visited. Second, together with time
boundaries, ⌧ -MDPs scale badly with respect to system states
and specification lengths.
Instead, Li et al. [1] [15] advocate Truncated Linear Temporal
Logic (TLTL), which modifies LTL to favor only state trajec-
tories of finite lengths. Such trajectories are conveniently taken
from the state sequences of the entire episodes in a learning
process. Now with an episodic trajectory, robustness degree
is naturally evaluated against the given TLTL specification, as
put in Problem 2 indeed. This induces the more principled
policy search algorithms, and solves candidly both Challenge
1 and 2. For instance, [1] leverages Relative Entropy Policy
Search, and [15] Gradient-Based Policy Search. Moreover,
with a parametrized policy, such as a linear Gaussian function,
continuous states and action spaces are enabled. The authors
have tested their framework on a real-world robot, and shown
unprecedentedly comparison studies against heuristic rewards.
For example, in Fig. 5, the robot is programmed to reach a
slot on the toaster and open the gripper when the slot is near
so as to place the toast successfully.
A comparable work [16] implements their Policy Search
algorithm using multiple neural networks (NNs). With each
NN tracking a subtask in their original specification-translated
Task Monitor, fundamentally an automaton, a certain form of
“memory” is said to be substantiated. In addition, a reward
shaping process is utilized to accumulate denser rewards
throughout the learning processes. Experiments are conducted
to indicate a better convergence over [1], yet only in sim-
pler simulations. It is questionable if the NN policies also
converge well on real-world robots since these challenging
scenarios usually exhibit severe non-convexity and demand
much more training data. Nonetheless, an online toolbox
(https://github.com/keyshor/spectrl tool) is made available for

Fig. 5. (Up) Photos taken during the real-world experiment showing a
successful trial. (Down) A comparison between TLTL-based and heuristic
rewards [1].

stipulating customized TL requirements and training an RL
agent.
To conclude Policy Search methods, in spite of the outstanding
result in [1], it is set back by the fact that a certain degree
of manually tuning has to be done to balance the weights
between events in the TLTL specification. To elaborate using
Fig. 5, the robustness values of avoiding obstacles and closing
the grippers have to be normalized through empirical trials.
Likewise, Policy Search methods are subject to convergences
to local optima and high variances of estimated episodic
rewards.

3) Actor-Critic: A very recent paper [17] has been noticed,
which avoids the two aforementioned issues, namely manual
normalization and high variance. Still considering the funda-
mental Challenge 1 and 2, a LDBA-based Product MDP is
constructed in a similar fashion to [11] [12], but a seminal
reward shaping technique is employed. In consequence, at each
time step a numeric value which requires no manual weighting
is delivered to the agent. Apart from handling Challenge 1 and
2 neatly, they apply the powerful Deep Deterministic Policy
Gradient (DDPG) algorithm, which no longer exhibits large
variance in results as [1] [15] [16] potentially do. Interested
readers are deferred to the original paper for formal definitions.
We show here an exceptional case study in Fig. 6, where the
following LTL specification is endeavored:

� = ⌃(a ^ ⌃d) _ ⌃(b ^ (¬cU d)). (7)

In plain texts, (7) triggers the robot to a or b first. If a is
reached first, then d is designated without other restrictions.



If b is reached first, then d has to be visited while avoiding c.

Fig. 6. (a) Initialized around b, the robot visits b first and then circumvents c
towards d. (b) Initialized around a, the robot visits a and then d. (c) Initialized
around b yet perceiving c is by no means avoidable after visiting b, it rather
visits a and then d [17].

Equipped with many plausible features, including an actor-
critic learning structure, continuous states and actions, and a
dense reward function, [17] has indeed attained a promising
performance. However, whether the reliance on constructing
a Product MDP and reward shaping allows for real-world
applications with more sophisticated dynamics remains a topic
to be inspected deeper.

C. Hierarchical Approaches

Thus far, we have seen papers mostly handling tasks
with one TL specification. In this last subsection, a group
of algorithms able to handle multiple TL formulas at once
is examined. Icarte et al. publish lately three papers along
this research line [18] [19] [20]. They take advantage of
Non-Markovian Reward Decision Processes (NMRDPs) and
propose the so-called Reward Machine (RM), essentially
a Mealy Machine, as a realization of the NMRDP. Unlike
MDPs, NMRDPs forgives the Markov property and formulates
the reward function with sequences of states, posing no longer
Challenge 2. In addition, as a Product MDP assists the system
MDP, an RM helps memorize the TL requirements for the
NMRDP and outputs an appropriate reward function at each
time step, thereby tackling Challenge 1. We denote here the
two-step construction of an RM from multiple specifications,
and keep the formal definitions within the original papers.
Step 1: (Translation to Deterministic Finite Automata (DFA))
Translate each specification �i into a DFA A(i), which is
similar to a DRA or a LDBA yet only accepting a run � if the
end state qn achieves K ✓ Q (compare III.1). As requiring
the run � to be finite, only safe and co-safe specifications are
considered here (see Section 3.1.4 in [18] for explanation).
Step 2: (Integration to RM) Compound all
DFA A(i) = hQ(i),

P
, �(i), q(i)0 ,K(i)i into an

RM MR = hQR,
P

, �R, qR0 , ⇣Ri with a state

space QR = Q(1) ⇥ ... ⇥ Q(N), an initial state
qR0 = (q(1)0 , ..., q(N)

0 ), the transition function
�R(qR,↵) = (�(1)(q(1),↵), ..., �(q(N),↵)), and the reward
assignment function ⇣R(qR,↵) =

PN
i=1 ⇣

(i)(q(i),↵), where
⇣(i)(q(i),↵)(s, a, s0) = ri · (�(i)(q(i),↵) 2 K(i)).
As seen, an RM has the capability to accommodate a number
of TL formulas and construct an overall product state space
across them. Utilizing the off-policy nature of Q-learning,
[20] builds an efficient experience buffer with learning tuples
not only across time steps, but also across TL tasks. Fig. 7
shows their experiment domain and marks a superior learning
outcome of Q-learning on RM. Please see [20] for a complete
list of 10 task specifications, which consists of various
operations such as fetching natural resources or building a
bridge in the Minecraft world.

Fig. 7. (Up) Minecraft world domain. (Down) Learning curves from standard
Q-learning, Q-learning on RM, and Q-learning on RM with reward shaping
[20].

It is noteworthy that with the aid of RM, skill decomposition
is learnt and multiple tasks are achieved, in comparison to
failures from standard Q-learning. Additionally, the effect
of reward shaping is again emphasized. An online toolbox
is provided at https://bitbucket.org/acamacho/fl2rm, offering
the functionality of translating TL formulas into DFAs, and
integrating them into a final RM for training. However, similar
to cases with Product MDPs, an RM might be cumbersome to
build. This limits the applications to simpler TL requirements,
and the Q-learning algorithm limits them to discrete state and
action spaces.



IV. DISCUSSION

Having overviewed a comprehensive literature, we first
present Table I as a summary of the strengths and weaknesses
from exemplary approaches, and then we suggest prospective
directions for future research.

TABLE I
STRENGTHS AND WEAKNESSES OF EXEMPLARY APPROACHES

Method Strengths Weaknesses
Model-Based
[4] [10]

· Pioneering paradims · AMEC preproccessing
· Sparse rewards

Value Iteration
[5]

· Qualitative vs. Quan-
titative

· ⌧ -MDP construction
· Discrete states and ac-
tions

Posicy Search
[1]

· Continuous states and
actions
· Robustness degree
· Real-world robot

· Manual normalization
· Credit assignment
problem

Actor-Critic
[17]

· Continuous states and
actions
· Reward shaping

· Product MDP con-
struction

Hierarchical
[20]

· Multitasking and de-
composition
· Reward shaping

· RM construction
· Discrete states and ac-
tions

From Table I, a few characteristics are clearly desirable and
thus advocated. These includes permitting continuous states
and actions, delivering dense reward, and avoiding heavy
construction of automata. All together, these characteristics
point towards a potential framework in which an actor-critic
mechanism serves as the RL backbone and a fitting model
is integrated for trajectory sampling as well as reward calcu-
lating. In particular, at each iteration, a system model is ap-
proximated and a state trajectory is predicted with the model.
The trajectory is in turn evaluated against the TL specification
as a critic feedback, and then an actor updates accordingly
in an off-policy manner. In spired by [20], we believe off-
policy learning is beneficial for subtask decomposition or even
multitasking with TL requirements. By such, both Challenge
1 and 2 are eliminated without the need of Product MDPs.
Additionally, both Problem 1 and 2 are feasible as computing
qualitative semantics with reward shaping and quantitative
semantics directly are both manageable. However, as seen in
the model-based frameworks, such method demands a strong
model function and possibly heavy computation to attain a
good learning and control performance, especially in a highly
dynamical environment such as motion planning at urban
intersections. Undoubtedly, the suggested framework requires
further inspection and is merely an attempt to stimulate further
discussion in the research community.

V. CONCLUSION

In this paper, we have presented principles of Reinforce-
ment Learning (RL) and Temporal Logics (TLs) including
LTL, STL, and TLTL. We have also investigated a broad
variety of methods that formulate TL specifications as re-
ward functions in RL frameworks. In specific, two technical
problems are addressed, respectively making use of qualitative

and quantitative semantics of TLs. Additionally, two notable
challenges are observed and emphasized across the paper to
identify several good solutions. These include model-based,
Value Iteration, Policy Search, Actor-Critic, and hierarchical
approaches. Lastly, a comparison of the presented solutions
and promising future directions are discussed. In conclusion,
we have seen TLs showing crucial advantages over typical
heuristic rewards for high-level properties such as “liveness”
and “priority.” Hence, as an encouraging remark, we prompt
the society for further work in this direction.

ACKNOWLEDGMENT

This work is done in a seminar course, Cyber-Physical Sys-
tems, at the Department of Informatics, Technical University
of Munich. The author thanks his advisor M.Sc. Xiao Wang
and the course coordinator Prof. Dr.-Ing. Matthias Althoff
gratefully. Their guidance throughout the course is very helpful
and greatly appreciated.

REFERENCES

[1] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017. 2, 3, 6, 8

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008. 2, 3

[3] L. Busoniu, Reinforcement learning and dynamic programming using
function approximators. CRC Press, 2010. 2

[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
markov decision processes with temporal logic specifications,” 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), 2012.
3, 4, 5, 8

[5] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” 2016
IEEE 55th Conference on Decision and Control (CDC), 2016. 3, 5,
6, 8

[6] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed Systems,
K. Chatterjee and T. A. Henzinger, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 92–106. 3

[7] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, Specification-Based Monitoring
of Cyber-Physical Systems: A Survey on Theory, Tools and Applications.
Cham: Springer International Publishing, 2018, pp. 135–175. 3

[8] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
markov decision processes with linear temporal logic constraints,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1244–1257, 2014.
4, 5

[9] J. Fu and U. Topcu, “Probably approximately correct mdp learning and
control with temporal logic constraints,” Robotics: Science and Systems
X, 2014. 4, 5

[10] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A
learning based approach to control synthesis of markov decision pro-
cesses for linear temporal logic specifications,” 53rd IEEE Conference
on Decision and Control, 2014. 4, 5, 6, 8

[11] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained
reinforcement learning,” arXiv: Learning, 2018. 5, 6

[12] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” 2019. 5, 6

[13] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Zavlanos,
“Reduced variance deep reinforcement learning with temporal logic
specifications,” in Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, 2019. 5, 6

[14] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak, “Omega-regular objectives in model-free reinforcement
learning,” Tools and Algorithms for the Construction and Analysis of
Systems Lecture Notes in Computer Science, p. 395–412, 2019. 5



[15] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” 2018 Annual American Control
Conference (ACC), 2018. 6

[16] K. Jothimurugan, R. Alur, and O. Bastani, “A composable specification
language for reinforcement learning tasks,” in Advances in Neural
Information Processing Systems 32, 2019. 6

[17] C. Wang, Y. Li, S. L. Smith, and J. Liu, “Continuous motion planning
with temporal logic specifications using deep neural networks,” 2020.
6, 7, 8

[18] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an rl agent using ltl,” in Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent
Systems AAMAS), 2018. 7

[19] ——, “Using reward machines for high-level task specification and
decomposition in reinforcement learning,” in Proceedings of the 35th
International Conference on Machine Learning (ICML), 2018, pp. 2112–
2121. 7

[20] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI), 2019,
pp. 6065–6073. 7, 8


