
Counterfactual Policy Evaluation for Decision-Making in Autonomous
Driving

Patrick Hart1 and Alois Knoll2

©2020 IEEE. Accepted at IROS 2020 - Workshop PLC. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works

Abstract— Learning-based approaches, such as reinforcement
and imitation learning are gaining popularity in decision-
making for autonomous driving. However, learned policies often
fail to generalize and cannot handle novel situations well.
Asking and answering questions in the form of “Would a
policy perform well if the other agents had behaved differ-
ently?” can shed light on whether a policy has seen similar
situations during training and generalizes well. In this work, a
counterfactual policy evaluation is introduced that makes use
of counterfactual worlds — worlds in which the behaviors of
others are non-actual. If a policy can handle all counterfactual
worlds well, it either has seen similar situations during training
or it generalizes well and is deemed to be fit enough to
be executed in the actual world. Additionally, by performing
the counterfactual policy evaluation, causal relations and the
influence of changing vehicle’s behaviors on the surrounding
vehicles becomes evident. To validate the proposed method, we
learn a policy using reinforcement learning for a lane merging
scenario. In the application-phase, the policy is only executed
after the counterfactual policy evaluation has been performed
and if the policy is found to be safe enough. We show that
the proposed approach significantly decreases the collision-rate
whilst maintaining a high success-rate.

I. INTRODUCTION

Learning-based approaches become ever more prevalent
in the decision-making community for autonomous driving.
Often, deep neural networks (DNNs) are used in various
approaches to learn behaviors or to predict other traffic par-
ticipants. Popular approaches for learning behaviors include
reinforcement learning [1, 2], imitation learning [3–5], and
other methodologies [6, 7]. These approaches often share
one common characteristic — they use DNNs as function
approximators for their policy. However, DNNs often tend to
overfit [8, 9] or do not generalize well to novel situations [10,
11]. Executing learned policies in safety-critical applications,
such as autonomous driving without any estimate of their
performance poses significant threats. For example, would
the learned policies still perform well if the leading vehicle
would suddenly accelerate or decelerate?

In this work, a counterfactual policy evaluation (CPE)
is introduced that evaluates the performance of a learned
behavior policy π prior to its execution in the actual world
using counterfactual worlds. In a counterfactual world, the
behavior policy of at least one other vehicle is replaced
and, thus, non-actual behaviors are introduced. Using these
worlds, counterfactual reasoning can be performed to answer

1fortiss GmbH, An-Institut Technische Universität München, Munich,
Germany

2Alois Knoll is with Robotics, Artificial Intelligence and Real-time
Systems, Technische Universität München, Munich, Germany

πego

π2

π1

π0

Fig. 1: The behaviors π1:N of other traffic participants are not
observable by the ego vehicle (depicted in blue) resulting in an
uncertain environment. Vehicles can suddenly change their driving
behavior, such as braking or changing the lane. Would the policy
still perform well and be safe if the other vehicle changed their
behavior?

questions, such as: Would a policy perform well if the other
vehicles had behaved as in the counterfactual world? Per-
forming counterfactual reasoning is especially important in
applications, such as autonomous driving, where the behavior
of others is not directly observable and, thus, uncertain.

To perform CPE, counterfactual worlds are generated by
replacing the behavior policies of vehicles surrounding the
ego vehicle. To determine and better estimate the direct
effect of replacing behavior policies on the policy under test
(PUT), the replaced behaviors are chosen to be independent
of their surroundings — they do not interact with or react to
their surroundings. By simulating the counterfactual worlds
into the future and by evaluating the evolution of these,
we can obtain estimates on how the PUT would perform if
the other vehicles behave as in the counterfactual worlds. If
the PUT has seen similar situations as in the counterfactual
worlds during training or if it generalizes well, it should
be able to handle all counterfactual worlds sufficiently well.
Thus, in this work, the PUT is only deemed safe enough
to be executed if there are no or only a few collisions in
the counterfactual worlds. We define an upper collision-rate
threshold that defines whether the PUT shall be executed in
the actual world posterior to its CPE. Additionally, by using
CPE, we can extract causal relations and make the influence
of changing other vehicle’s behavior policies become evi-
dent. Especially when using black-box approaches, such as
DNNs, causal relations and how the PUT reacts to changes
in its surroundings are important to observe. For example,
if the PUT just had memorized certain situations during

ar
X

iv
:2

00
3.

11
91

9v
3 

 [
cs

.L
G

] 
 1

2 
N

ov
 2

02
0



training it would not react to changes in its environment and
most probably would fail to generalize to and handle novel
situations.

To validate the proposed approach and to empirically
show the merits of performing CPE, we use a lane merging
scenario. First, we learn a policy πego using an actor-critic
reinforcement learning algorithm. In the application-phase,
the learned policy πego becomes the PUT and is only being
executed after the CPE has been performed and is deemed
safe enough to be executed. Otherwise, the ego vehicle is
controlled by a conventional lane-following behavior policy.
We show that performing CPE prior to the execution in the
actual world of the learned policy significantly decreases the
collision-rate whilst maintaining high performance in terms
of reaching the vehicle’s goal.

This work is further structured as follows: Section II gives
an overview of related work in counterfactual reasoning.
Section III outlines the proposed approach in detail. In
Section IV, the results and findings are presented, and finally,
a conclusion is given.

II. RELATED WORK

In this section, we provide a brief overview of counterfac-
tual reasoning and counterfactual decision-making.

The term counterfactual reasoning has predominantly been
coined by Judea Pearl [12] who also introduced a mathe-
matical framework (do-calculus) for counterfactual reasoning
[13]. Do-calculus aims to describe the human capacity to rea-
son about counterfactual outcomes of past experiences with
the goal of “mining worlds that could have been”. In safety-
critical applications, such as autonomous driving do-calculus
often is the only option to obtain certain distributions. For
example, the probability distribution P (collision|πother =
π0) cannot directly be collected in the actual world. Having
a joint probability distribution, causal assumptions, and using
do-calculus this distribution can be inferred a-posteriori. In
this work, contrary to using a joint probability distribution
and causal assumptions, we can directly collect these prob-
ability distributions in simulation and do not have to infer
these.

Another approach in the literature is counterfactual ex-
planations where causal situations in the form of ”If X had
not occurred, Y would not have occurred” are formulated
and answered [14]. In the context of autonomous driving,
this is can be re-formulated as e.g. ”If the other vehicle had
not accelerated, a collision with the ego-vehicle would not
have occurred”. Using the in this work defined counterfactual
worlds, we can infer which event lead to a certain outcome
– e.g. if a collision could be avoided if the other vehicle had
decelerated or accelerated.

In literature, there exist various approaches that make use
of counterfactuals for decision-making. Buesing et al. [15]
propose a counterfactual guided-policy search reinforcement
learning algorithm. In their work, they leverage a model
to consider alternative outcomes and, thus, increase the
algorithms sample efficiency on required experiences. Isele
[16] consider counterfactual behaviors in the prediction by

Counterfactual world W (0)
0

Counterfactual world W (1)
M

Actual world W

π0

πego

π′0 π1

πego

π0 π′′1

πego

π1

Fig. 2: Counterfactual worlds W (·)
i are created by mirroring the

actual world W and by exchanging the vehicle’s policies. In the
counterfactual world W

(0)
0 the policy of vehicle v0 has been

exchanged and in counterfactual world W (1)
M the policy of vehicle

v1.

spanning an intention tree. Counterfactual regret minimiza-
tion (CRM) has been widely used for finding best response
strategies in multi-player games [17, 18]. In CRM, the choice
of future actions is based on the regret the agent accumulates
of not having chosen specific actions and self-play.

III. APPROACH

This section describes the counterfactual policy evaluation
(CPE) algorithm in detail. Using CPE, the performance of
executing a policy prior to execution in the actual world
is being evaluated using counterfactual reasoning. First, we
introduce all necessary tools and notation as a basis and then
outline the full structure of the algorithm.

In each world W , there is a set of vehicles V =
(v0, vj , . . . , vN ) with N being the number of vehicles. Each
vehicle vj has a policy πj that specifies its behavior. The full
parameterization of a world W is given by a set of vehicles
paired with their respective policies πj . A policy πj outputs
an action a for each world state W . A full world state is
given by W = ((v0, π0), (vego, πego), . . . , (vN , πN )) with
one of the N vehicles being the ego vehicle vego and that is
being controlled by the ego policy πego. The ego vehicle’s
policy πego is defined to be the policy under test (PUT). We
neglect the map and environment information in the notation
as these are assumed to be the same in all worlds.

In a counterfactual world, the policy of at least one vehicle
is replaced by an independent policy. To determine the direct
effect of replacing an individual policy on its surrounding,
the replaced behavior policies are independent – they do not
react to or interact with their surroundings. For example,
policies that accelerate or decelerate independent of changes
in their surroundings. The behavior policies of the K nearest
vehicles are being replaced as we assume that vehicles
far away do not have a large direct effect on the PUT.
These independent behavior policies are assigned from a
pre-defined policy pool π0, . . . , πM ∼ P to vehicles other
than the ego vehicle resulting in K × M counterfactual



worlds. A counterfactual world where the policy of vehi-
cle vj has been replaced by the independent policy πi is
denoted as W (j)

i . We introduce a short form notation W (j)
P

for the set of counterfactual worlds that are generated by
replacing the behavior policy of vehicle vj M times. These
worlds are called counterfactual worlds, as we assume non-
actual behavior policies for other vehicles. This allows us
to answer counterfactual questions, such as: How would the
PUT perform if the other vehicles had behaved as in the
counterfactual world?

To perform counterfactual reasoning, the set of coun-
terfactual worlds W

(j)
P is forward simulated for a pre-

defined time-horizon Tct starting at the current world time
tw. From the forward simulation trajectories τ (j)P of tuples
in the form of 〈observation, terminal, reward, info〉 are
collected within the time-range [tw, tw + Tct] where the
polilcy of vehicle’s vj has been replaced by the independent
behavior policy πi.

Using the recorded future trajectories τ (j)P of the coun-
terfactual worlds, conditional probabilities P (X|W (j)

P ) for
the PUT can be obtained. The conditional probability
P (X|W (j)

P ) for exchanging vehicle’s vj policy is given by

P (X|W (j)
P ) =

1

M

M∑
i=0

I (τ
(j)
i ) (1)

with a boolean indicator function I (x) returning whether
a pre-defined event, such as a colission has occured in the
trajectory τ (j)i .

In safety-critical applications, such as autonomous driv-
ing, we especially are interested in the average conditional
collisions probability over all counterfactual worlds denoted
as P (C|W (·)

P ). For convenience of notation, we define the
average conditional collision probability as

PC :=
1

K

K∑
j=0

P (C|W (j)
P ) (2)

with N being the number of vehicles.
We use the average conditional collision probability PC of

the counterfactual worlds as decision criterion on whether the
PUT should be executed in the actual world W . We define an
upper collision threshold ρmax up to which the PUT is being
executed. If PC is larger, the ego vehicle is controlled by
a lane-following model, such as the intelligent driver model
(IDM) instead [19]. We assume that the lane-following model
is collision-free when driving on a single lane. The full CPE
algorithm is outlined in Algorithm 1.

Additionally, due to the replaced behavior policies being
indepent of their surroundings, causal relations between the
vehicle’s policies can be extracted. In this work, we use the
mean average displacement (MAD) to measure the distance
of the vehicle’s states in the counterfactual worlds W (j)

P to
the actual world W . The greater the MAD in a counterfactual
world is compared to the actual world, the greater the
influence of changing the other vehicle’s policy is on the
PUT. This indicates how well and if the PUT reacts to its

Algorithm 1 Counterfactual Policy Evaluation (CPE)

function CPE(World W , PolicyPool P)
v0:K = NearbyVehicles(W)
trajectories = []
for v in v0:K do

W
(v)
P = GetCounterfactualWorlds(W, v, P)

τ
(v)
P = ForwardSimulate(W (v)

P , Tct)
trajectories.append(τ (v)P )

end for
return ToBeExecuted(trajectories, ρmax)

end function

surrounding and changes that occur in it. For example, if
the leading vehicle of the ego vehicle brakes rapidly and the
PUT does not react at all, this could be an indicator that the
policy does not generalize well and that it did not see similar
behaviors during training.

In the next section, we present results and an evaluation
showing that the CPE algorithm significantly descreases the
colllision-rate and increases the performance of executing a
learned policy in the actual world. Additionally, we conduct
studies on varying the maximum allowed collision-rate ρmax.

IV. EXPERIMENTS

In this section, experiments are performed and an evalu-
ation of the counterfactual policy evaluation (CPE) is pre-
sented using a highway merging senario. First, we introduce
the used simulation framework and the scenario. Next, we
outline the actor-critic reinforcement learning approach used
for learning lane merging policies. And finally, we apply the
CPE to the learned policy and present results and findings.

A. Simulation and Scenario

We use the semantic simulation framework BARK1 and its
machine learning extension BARK-ML2 for all simulations
and to learn the ego vehicle’s policy πego. To demonstrate
and evaluate the approach, we chose a lane merging scenario
where the ego vehicle’s goal is to merge onto the highway.
The scenarios are generated using a sampling strategy that
samples the initial conditions and the behavioral parameters
of the other vehicles according to a pre-defined distribution.
All other vehicles are controlled by the ruled-based Mobil
moddel. The other vehicles are controlled by a rule-based
model — the Mobil model [20]. Further simulation parame-
ters are outlined in the Appendix. The simulation is episodic
and ends either if the goal has been reached, a collision
has occurred, or the maximum number of steps has been
reached. The goal of the ego vehicle is defined on the left
lane using a polygonal area (depicted in blue in Figure 3)
and the vehicle has to reach this area within a velocity range
of [5m/s, 16m/s] and the vehicle angle θ in the range of
[−0.05rad, 0.05rad].

1https://github.com/bark-simulator/bark/
2https://github.com/bark-simulator/bark-ml/

https://github.com/bark-simulator/bark/
https://github.com/bark-simulator/bark-ml/


Fig. 3: Three counterfactual worlds W (0)
i are shown where the

policy of vehicle v0 has been replaced. Initially, all these worlds had
the same state but evolved differently over time. On the top, vehicle
v0 decelerates, in the middle, vehicle v0 drives with a constant
velocity, and, on the bottom, vehicle v0 accelerates. The ego vehicle
v3 (depicted in blue) is controlled by the learned policy πψ(a|s).
This figure shows the counterfactual world at time tw + 1s.

B. Learning Policies

We base learning our policy on [21] and use the soft
actor-critic (SAC) [22] algorithm to learn a stochastic policy
πχ(a|s) that is parameterized by the neural network param-
eters χ for changing lanes. The action space is comprised
of the acceleration a and the steering-rate δ. To generate
an observation for a single time-step, we use a nearest
state observer that concatenates the states of l = 5 nearest
vehicles (cartesian coordinates, velocity, and vehicle angle).
The ego vehicle’s state is always in the first position in the
observation and the other vehicles follow sorted based on
their distance to the ego vehicle. If there are less than five
objects the rest of the observation s is filled with zeros.
The reward signal rt for time t is composed of several
terms. Reaching the goal is rewarded with a positive reward
of 10 and a collision is penalized with a reward of −10.
To accelerate the learning process, we further introduce a
guiding reward signal that uses the L2 norm to the defined
goal state (distance, deviation of the vehicle angle, and the
deviation to the goal velocity). To achieve more smooth and
comfortable driving behaviors, we additionally put a sqared
penality term on the actions. All rewards besides the goal
and collision term are a factor of 10 smaller to prioritize
to have no collisions and reaching the goal state. In this
work, we output a normal distribution a ∼ N (µ, σ) for
the policy π with µ being the means and σ the standard
deviations for the actions. During training, this stochastic
policy is being sampled to explore the configuration space
and during application, the mean of each action is used. The
hyperparameters used for the SAC algorithm are outlined in
the Appendix.

After 250, 000 thousand training episodes, a success-rate
of 32% and a collision-rate of 48% is achieved. Even after

Fig. 4: The heatmap shows the mean average displacement of
the vehicle’s states over the counterfactual worlds W (j)

P . Vehicle
v3 is controlled by the learned policy and the heatmap shows it
being influenced by all surrounding vehicles. The other vehicles are
controlled by a lane-following model and, thus, are only influenced
by their leading vehicles on the same lane.

fine-tuning the hyperparameters and a longer training time,
collisions persist. Many machine learning approaches cannot
guarantee or achieve a collision-rate of zero. Therefore, they
are considered to be infeasible for safety-critical situations,
such as autonomous driving. To decrease the collision-rate
and to obtain better estimates on the performance of a policy
π, this work introduces a counterfactual policy evaluation.

C. Counterfactual Policy Evaluation (CPE)

For the CPE, we use a behavior policy pool P with
a constant acceleration policy B. In this work, we use
three different parameterizations for the constant acceleration
policy B having the accelerations of a = [−2, 0, 2] and
resulting in three behavior policies. Thus, resulting in three
counterfactual worlds (W

(j)
0 ,W

(j)
1 ,W

(j)
2 ) for each vehicle

vj , where the replaced vehicle decelerates, drives with con-
stant velocity, and accelerates. Further, we simulate each
counterfactual world for a pre-defined horizon Tct = 1s from
the current world time tw.

Figure 3 shows the evolution of the counterfactual worlds
W

(0)
i at the time t = tw + 1s where the policy of vehicle

v0 has been replaced. Initially, all worlds had the same
initial state but then evolved differently due to the policy of
vehicle v0 being replaced by the policies from the behavior
policy pool P . Vehicle v3 is controlled by the learned SAC
policy πχ(a|s) and is also the policy under test (PUT). In
Figure 3 on the top, in counterfactual world W (0)

0 vehicle v0
decelerates, in the middle, vehicle v0 drives with a constant
velocity, and on the bottom vehicle v0 accelerates. In each
counterfactual world, the evolution over time and the reaction
of the PUT to the environment differs significantly.

As can be seen, the learned policy πχ(a|s) is able to han-
dle all of the counterfactual worlds well and does not cause
any collisions. Thus, resulting in the conditional collision



Fig. 5: The collison- and success-rate of the actual world plotted
over the maximum collision-rate threshold ρmax. If the collision-
rate averaged over all counterfactual worlds is below the maximum
collision-rate ρmax, the learned policy is executed in the actual
world. Otherwise, the ego vehicle is controlled by a lane-following
model.

probability of PC = 0.
Figure 4 shows the influence heatmap for the scenario

shown in Figure 3 using the mean absolute displacement
(MAD) comparing the vehicle’s states of the counterfactual
worlds to the actual world. The x-axis represents the counter-
factual worlds W (·)

P in which policies have been exchanged
and the y-axis shows the deviation using the MAD of the
vehicle’s states to the actual world W . For example, the
second column in Figure 4 represents the counterfactual
world W

(1)
P and the second row shows the MAD for the

vehicle v1 over the counterfactual worlds W (j)
P . As can be

seen, replacing the policy of vehicle v1 has a large influence
on vehicle v0. This is expected, as vehicle v0 is controlled
by the IDM model and v1 is the leading vehicle. Vehicle v2
is the leading vehicle of v1 and, thus, has a large impact
on vehicle v1. Vehicle v3 is controlled by the learned policy
πχ(a|s). As can be seen, all other vehicles have an influence
on the learned policy of vehicle v3. This is an important
quantity to observe as this implies that the ego vehicle at
least takes all its surrounding vehicles into account. Vehicle
v4 is controlled by the IDM model and, thus, is not being
influenced by any other vehicles as there is not leading
vehicle in the lane.

Figure 5 shows the collision-, execution-, and success-
rate of the ego vehicle’s policy πego in the actual world W
plotted over the maximum allowed collision-rate ρmax of the
counterfactual worlds. If the average conditional collision-
rate PC is lower than the defined collision-threshold ρmax,
the learned policy πχ(a|s) of the ego vehicle is executed.
Otherwise, the ego vehicle is controlled by the Mobil model.
We evaluate each of the maximum allowed collision-rates
using 250 episodes. The success-rate is initially high as the
policy is only executed if ρmax is small and, thus, initially
no collisions are caused when executing the learned policy.

With a higher maximum allowed collision rate ρmax, the
execution-rate of the learned policy goes up and the number
of collisions increases in the actual world. This also leads to a
significant drop in the success-rate as the goal is not reached
as often. As can be seen, the best results are achieved using
a maximum allowed collision-rate ρmax = 0. At ρmax = 0,
the ego vehicle’s policy πego is executed 76% of the time, the
goal is reached with 99.8%, and the policy has a collision-
rate of 0%.

Using the counterfactual policy evaluation prior to the
execution of the policy in the actual world decreases the
collision-rate significantly. Even though the policy is not
as often executed, the goal is reached almost every single
time as can be seen in Figure 5. Especially for black-box
approaches, such as DNNs, the CPE algorithm provides
insights on the performance, generalization, and safety prior
to execution. Thus, increasing the applicability of these
approaches in safety-critical applications. It can be seen
whether a policy generalizes well judging on how well it
can handle the counterfactual worlds.

V. CONCLUSION

This work introduces a counterfactual policy evaluation
(CPE) algorithm that evaluates a policy prior to its exe-
cution in the real world. To perform such an evaluation,
counterfactual worlds are introduced that evolve differently
from the actual world due to exchanged behavior policies
of the other vehicles. Using the evolutions of these worlds,
we can reason on how well a policy performs and if it
generalizes well enough to handle all counterfactual worlds.
A maximum allowed collision-rate threshold is used that
defines if a policy should be executed in the actual world.
If the collision-rate is above the threshold, the policy is
not executed in the actual world and the ego vehicle uses
a lane-following model instead. Besides that, the CPE also
makes causal relations between the vehicle visible and the
influence of the vehicles of each other become evident.
Especially, when using deep neural network it is important
to see what and which vehicles the policy takes into account.
Overall, the proposed method increases the applicability and
understanding of policies in decision-making for autonomous
vehicles significantly. In future work, the policies of multiple
vehicles could be replaced to obtain even deeper insights on
the causal relations between the vehicles. And the field of
counterfactual explanations – also in the view of assurance
cases – could be investigated further.

ACKNOWLEDGMENT

This research was funded by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy, and
by the project Dependable AI.

APPENDIX

Parameters used for learning the ego vehicle’s behavior
policy and other parameters used in the simulation:



"BehaviorIDM": {
"MaxVelocity": 30.0,
"MinimumSpacing": 2.0,
"DesiredTimeHeadway": [1.0, 5.0],
"MaxAcceleration": 2.5,
"DesiredVelocity": 15.0,
"ComfortableBrakingAcceleration": 1.6,
"MinVelocity": 0.0,
"Exponent": 4

},
"BehaviorSACAgent": {

"ActorFcLayerParams": [512,256,256],
"CriticJointFcLayerParams": [512,256,2

56],
"ActorLearningRate": 0.0003,
"CriticLearningRate": 0.0003,
"AlphaLearningRate": 0.0003,
"TargetUpdateTau": 0.05,
"TargetUpdatePeriod": 3,
"Gamma": 0.995,
"RewardScaleFactor": 1.0,
"ReplayBufferCapacity": 10000,
"BatchSize": 512,

},
"step_time": 0.2

REFERENCES

[1] S. Shalev-Shwartz, S. Shammah, and A. Shashua, Safe,
multi-agent, reinforcement learning for autonomous driving,
2016.

[2] P. Hart and A. Knoll, Graph neural networks and rein-
forcement learning for behavior generation in semantic
environments, 2020.

[3] J. Ho and S. Ermon, “Generative adversarial imitation learn-
ing,” in Advances in neural information processing systems,
2016, pp. 4565–4573.

[4] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable im-
itation learning from visual demonstrations,” in Advances
in Neural Information Processing Systems, 2017, pp. 3812–
3822.

[5] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet:
Learning to drive by imitating the best and synthesizing the
worst,” arXiv preprint arXiv:1812.03079, 2018.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, et al.,
“End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[7] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Doso-
vitskiy, “End-to-end driving via conditional imitation learn-
ing,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2018, pp. 1–9.

[8] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, A study on
overfitting in deep reinforcement learning, 2018.

[9] X. Song, Y. Jiang, S. Tu, Y. Du, and B. Neyshabur, Obser-
vational overfitting in reinforcement learning, 2019.

[10] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “General-
ization in deep learning,” arXiv preprint arXiv:1710.05468,
2017.

[11] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman,
Quantifying generalization in reinforcement learning, 2018.

[12] J. Pearl and D. Mackenzie, The Book of Why: The New
Science of Cause and Effect. Basic Books, 2018.

[13] J. Pearl, The do-calculus revisited, 2012.
[14] C. Molnar, Interpretable Machine Learning. Lulu. com,

2020.
[15] L. Buesing, T. Weber, Y. Zwols, et al., “Woulda, coulda,

shoulda: Counterfactually-guided policy search,” 7th Inter-
national Conference on Learning Representations, ICLR
2019, pp. 1–15, 2019.

[16] D. Isele, “Interactive Decision Making for Autonomous
Vehicles in Dense Traffic,” 2019 IEEE Intelligent Trans-
portation Systems Conference, ITSC 2019, pp. 3981–3986,
2019.

[17] N. Brown, A. Lerer, S. Gross, and T. Sandholm, “Deep
counterfactual regret minimization,” in International confer-
ence on machine learning, 2019, pp. 793–802.

[18] T. W. Neller and M. Lanctot, “An introduction to coun-
terfactual regret minimization,” in Proceedings of Model
AI Assignments, The Fourth Symposium on Educational
Advances in Artificial Intelligence (EAAI-2013), vol. 11,
2013.

[19] M. Treiber, A. Hennecke, and D. Helbing, “Congested
Traffic States in Empirical Observations and Microscopic
Simulations,” Phys. Rev. E, vol. 62, no. 2, pp. 1805–1824,
2000.

[20] M. Treiber and D. Helbing, “Mobil: General lane-changing
model for car-following models,” Disponıvel Acesso Dezem-
bro, 2016.

[21] P. Hart, L. Rychly, and A. Knol, “Lane-Merging
Using Policy-based Reinforcement Learning and Post-
Optimization,” 2020.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor,” in Proceedings of
the 35th International Conference on Machine Learning,
{ICML} 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, J. G. Dy and A. Krause, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 80, PMLR, 2018,
pp. 1856–1865.


	I Introduction
	II Related Work
	III Approach
	IV Experiments
	IV-A Simulation and Scenario
	IV-B Learning Policies
	IV-C Counterfactual Policy Evaluation (CPE)

	V Conclusion

