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Abstract

Controller synthesis based on the so-called State-Dependent-Riccati-Equation (SDRE)
offers a systematic technique for non-linear controller design also applicable to systems
of higher order with inherently fast dynamics. In the context of this paper, the SDRE-
method is employed to design a controller stabilizing a Two-Wheeled Inverted Pendulum
(TWIP) robot in its upright position and resulting controller performance as well as input
efficiency is investigated and subsequently compared to a LQR-controller based on the
system’s linearized dynamics.
Despite the numerous benefits of SDRE-based controller design, e.g. applicability to
a wide range of non-linear systems, efficient online computation, and the capability
to impose soft constraints on the input, an open issue remains in providing stability
margins of the regulated system as generally the closed-loop dynamics are not accessible
explicitly. Thus, in this paper additionally a novel technique to systematically analyse
closed-loop dynamics only defined for specific system states is introduced. As Lyapunov’s
direct method – the most established technique within non-linear stability analysis –
does not allow to infer global properties from local analysis, the proposed approach
instead employs the more recently developed contraction theory. Contraction analysis
permits the definition of attraction regions for closed-loop dynamics exclusively known
pointwisely which suggests its application to SDRE-controlled systems.
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Kurzfassung

Die sogenannte State-Dependent-Riccati-Equation (deutsch: Zustandsabhängige-Riccati-
Gleichung, kurz SDRE) bietet eine Möglichkeit zum systematischen Reglerentwurf für
nichtlineare dynamische Systeme. Anders als eine Vielzahl der etablierten nichtlinearen
Reglerentwurfsmethodiken ist der SDRE-basierte Reglerentwurf auch auf hochdimensio-
nale und hochdynamische Systeme anwendbar. Deshalb wurde im Rahmen dieser Arbeit
ein SDRE-basierter Regler entworfen, um ein zweirädriges inverses Pendel in seiner auf-
rechten Fahrhaltung zu stabilisieren. Der resultierende Regler wurde auf Regelleistung
sowie -effizienz untersucht und mit einem LQR-Regler verglichen, der auf Basis der li-
nearisierten Roboterdynamik entworfen wurde.
Trotz der zahlreichen Vorteile, die die SDRE-basierte Entwurfsmethodik bietet – wie
beispielsweise die weitläufige Anwendbarkeit, effiziente Onlineberechnung sowie die Be-
schränkung der Systemeingänge durch Soft Constraints – besteht ein offenes Problem
darin, den geschlossenen Regelkreis auf Stabilität zu untersuchen. Da die Lösung der
SDRE für Systeme höherer Ordnung meist nicht analytisch sondern nur punktweise für
bestimmte Systemzustände bestimmt werden kann, ist die Stabilitätsanalyse auf Basis
der weitverbreiteten Direkten Methode nach Lyapunov nicht möglich, da diese die De-
finition globaler Stabilitätscharakteristika auf Grundlage lokaler Analyse nicht zulässt.
Die im Laufe der 1990er Jahre entwickelte Contraction Analysis als „differentielle Er-
weiterung“ der Lyapunov Theorie erlaubt hingegen genau dies, was ihre Anwendung für
SDRE-geregelte Systeme nahelegt. Aus diesem Grund wird im Rahmen der vorliegen-
den Arbeit auf Basis der Contraction Analysis zusätzlich ein Ansatz vorgestellt, um ein
Einzugsgebiet der aufrechten Ruhelage des geregelten Systems zu ermitteln.
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Chapter 1

Preface

1.1 Introduction and Motivation

With its dynamics being non-linear, subject to non-holonomic constraints, and addi-
tionally inherently non-stable the Two-Wheeled Inverted Pendulum (TWIP) makes for
a captivating academic example and has received a lot of attention within the control
community [30]. Especially with the emerge of robotics during the last couple of years,
also more application-oriented investigations have been made, as the TWIP – despite
its postural instability – has a number of advantages compared to other mobile robots:
Wheeled robots with more than two wheels for instance lack the TWIP’s slimness and
manoeuvrability, as only the two-wheeled configuration has the ability to turn on the
spot. Whereas legged robots are even harder to control than the TWIP due to their more
complicated underlying dynamic models with a remarkably higher number of degrees of
freedom [6]. The 2001 introduced Segway marks the first widely-known commercial-
isation of a TWIP-based personal transporter and further companies have proceeded
development of similar transportation solutions [44, 34].
Any TWIP-based mean of transport will always rely on active stabilization through
feedback control and consequently a variety of controllers for TWIP-style robots has been
developed. Despite the multitude of proposed designs, the majority remains based on a
linearization of the TWIP’s dynamics around the upright equilibrium point. Those linear
controllers have proved themselves at maintaining postural stability for small deflections
from the equilibrium point, as the system’s behaviour is close to linear for small pitch
angles [6]. However, with the TWIP entering into non-linear system behaviour – whether
on purpose to execute a specific manoeuvre or caused by external disturbance – the
stabilization capacities of linear controllers are swiftly exceeded [26]. Namely, large pitch
distortions, fast yaw rotations, and abrupt driving accelerations made linear controllers
fail in experiments [30]. Yet, those system states can not be neglected as they are
probable to arise within a real-life traffic environment.
A controller fully taking into account the system’s non-linear behaviour promises the
ability to stabilize the robot for a larger state-space region and consequently also non-
linear controllers have been proposed of which an overview is given in [6]. However, many
of those controllers have not been sufficiently experimentally validated yet [6]. While
generally a range of systematic approaches for non-linear controller design has been in-
troduced and proven good performance in a variety of applications, they often remain
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2 Chapter 1. Preface

highly restrictive in terms of applicability. Techniques like feedback linearization or adap-
tive control are restricted to non-linear systems that exhibit special system structures or
properties [41] and approaches like sliding mode control or non-linear model predictive
control rely on exceptionally high gains or computational expenses [16]. In consequence,
many of these non-linear design techniques can only be applied to the TWIP if strong
assumptions and simplifications as in [38] are employed. As neuronal-network-based ap-
proaches continue to become more popular, it is additionally worth mentioning that these
kind of black-box methods have the disadvantage that no systematic stability analysis
of the closed-loop system can be executed and they therefore always rely on brute-force
simulations as a sole mean to validate closed-loop characteristics.
State-Dependent-Riccati-Equation (SDRE)-synthesis as popularized in the 1990s offers
a method technically applicable to a broad range of non-linear systems and additionally
comprising the capability to regulate required inputs [11]. Ever since its introduction,
an open issue with SDRE-based design however remains in providing stability margins
for the controlled system [16]. In general, the closed-loop dynamics of SDRE-controlled
systems are not accessible explicitly, but only known locally for certain system states
and Lyapunov-based stability analysis does not allow to directly draw global conclusions
from local properties. The more recently developed contraction theory however marks
a novel approach enabling the deduction of stability margins from local analysis which
suggests its application to SDRE-controlled systems.

1.2 Objectives

Accordingly, this work proposes a non-linear approach consisting of SDRE-based con-
troller-synthesis as well as an evaluation of the obtained closed-loop system’s stability by
employing contraction theory. The SDRE-method is further explained in sec. 4 and the
fundamentals of contraction theory are summarized in sec. 3. In [26] a SDRE-based con-
troller for the TWIP is introduced and its performance demonstrated to be superior com-
pared to a linear quadratic regulator (LQR)-controller for dynamically critical system
states. The obtained non-linear controller is validated experimentally by showcasing how
it manages to stabilize the robot in critical spinning modes the linear controller fails to
restabilize. However, in [26] no systematic stability analysis of the resulting closed-loop
system is executed but controller performance is exclusively validated experimentally for
specific scenarios.
This paper will therefore propose a slightly different parametrization of the TWIP’s
dynamics as a basis for SDRE-synthesis and evaluate it in terms of its controllability
and numerical properties in sec. 5.1. In the subsequent sec. 5.2, the influence of state-
dependent weighting matrices determining the performance index will be surveyed and
how they can be employed to achieve input efficiency and desirable state convergence.
Finally, a method based on contraction theory will be introduced that allows stabil-
ity analysis of the only pointwisely known closed-loop dynamics describing the SDRE-
controlled system. The proposed approach outlines how results from SDRE-synthesis
might be utilized for the construction of a contraction metric and subsequent defini-
tion of a region of exponential stability. In [7] a method employing contraction theory
to analyse closed-loop dynamics obtained from SDRE-based controller design has been
proposed before. However, the technique varies widely from the one introduced in the
context of this work and concrete differences will be highlighted and argued in sec. 6.3.
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1.3 The TWIP and Tools Employed

In the context of this paper, a TWIP is considered a robot with two coaxial wheels
mounted on either side of an intermediate pendulum body with its centre of mass above
the wheel axle [6]. A further distinction can be made between fat-body and slender-body
TWIPs depending on the distribution of the robot’s mass and the resulting moments
of inertia (MOIs) with respect to (w.r.t.) its body axes [26]. Although the TWIP’s
slenderness does affect its postural stability, the mathematical formulae to describe its
dynamics remain the same and therefore the models discussed in sec. 2 apply to any
TWIP. The robot subject to this paper was developed at the Chair of Automatic Control
at Technical University of Munich and a photograph of it is provided in fig. 1.1.

Figure 1.1: The TWIP developed at the Chair of Automatic Control at Technical Uni-
versity of Munich. Although – as demonstrated on the right-hand side – it has the ability
to also drive in a horizontal position, the aim of this work will be to stabilize it in its
upright position as pictured on the left-hand side.

Being a slim and lightweight robot, it can be considered a slender-body TWIP and
its exact parameters are given in the appendix (A.1). The robot is equipped with a
triaxial acceleration sensor and triaxial gyroscope such that full state feedback can be
provided for the state-space model introduced in sec. 2. The wheels of the examined
TWIP are each actuated individually through a two-stage gear connected to DC motors
which are powered by an integrated lithium-polymer rechargeable battery. For detailed
information on the TWIP’s configuration refer to [1, 15].
Similar to preceding works at the Chair of Automatic Control, within this paper all
coding for controller design and validating simulations was executed using MATLAB and
its toolboxes. The polynomial fitting approach to find a contraction metric in sec. 6 uses
the YALMIP toolbox which originated as a semi-definite programming (SDP)-toolbox
and nowadays offer the handling of a variety of optimization problems relevant to control
theory. As an external interior-point solver, the free MOSEK solver was employed [33].
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Chapter 2

Dynamic Models of the
Two-Wheeled Inverted Pendulum

The three most established methodologies for dynamic modelling are Newton’s, La-
grange’s, and the more recently developed Kane’s method [36, 25]. Both, Lagrange’s
and Kane’s method, can be considered an extensions of the original Newtonian ap-
proach by introducing generalized coordinates, applying the principal of virtual work
or power and providing individual ways to handle kinematic constraints [36]. As the
procedure for deriving dynamic models via Lagrange’s method is well-known and has
been widely discussed in the literature and Kane’s method – even though less established
– is presented for instance in [22, 25, 36], a detailed derivation will be omitted in this
paper. Instead, two established models from preceding publications will be reviewed
and demonstrated how they slightly differ. This immediate comparison should provide
further insight to the two models and ease the transfer of results based on one model to
the other. In conclusion, it will be presented what exact formulation was chosen for the
context of this paper and briefly showcased why this choice was made.
Several dynamic models of the TWIP have been introduced of which the most widely
recognised have been the ones derived by Pathak et al. in [38] and Kim and Kwon in [25].
While Pathak combines the model derivation, introduction of a frictionless state-space
model, and controller synthesis in one publication [38], Kim and Kwon first derive their
model in a separate paper [25] taking friction terms into consideration and then introduce
a frictionless state-space model and controller in another publication [26]. Pathak and
Kim both derive their models via Lagrange’s method, while Kim additionally reaffirms
his model by applying Kane’s method. Furthermore, in [25] a range of models that
had previously been published are discussed and certain mistakes made within those
models are highlighted. Accordingly, for this work only the resulting state-space models
neglecting friction terms of [38] and [26] will be considered and they will be referred to
as the Pathak-Model or Kim-Model respectively. Before the mathematical description
within each model will be discussed in sec. 2.2, a short comparison of the used notations
is given in sec. 2.1 to avoid any confusion due to differing variable names. The variable
names in either of the publications by Kim and Kwon, [25] and [26], are identical.

5



6 Chapter 2. Dynamic Models of the Two-Wheeled Inverted Pendulum

2.1 Generalized Coordinates and Notations within Differ-
ent Models

In the process of dynamic modelling, the TWIP can be considered a system of three rigid
bodies: the pendulum body and the two wheels. To fully describe the motion of these
three bodies, Kim introduces thirteen generalized coordinates. However, after applying
all holonomic constraints and the non-holonomic constraints due to no-slip assumption,
only three degrees of freedom remain [25]. Accordingly, the following set of states is
sufficient for a full system description: the position of the pendulum’s horizontal axle
that the wheels are mounted to, x, the robot’s pitch angle, θ, and its yaw angle, ψ.
Therefore, in [26] Kim introduces the state-space vector for describing the TWIP as:

xK =
[
x ẋ θ θ̇ ψ ψ̇

]T
. (2.1)

Pathak derives the same remaining degrees of freedom, but introduces his state-space
model as:

xP =
[
x0 y0 θ α α̇ v θ̇

]T
(2.2)

with the apparent difference being its higher system order. Pathak defines two position
variables, x0 and y0, as coordinates within an inertial reference frame, while Kim uses the
single position variable, x, describing the travelled path length of the TWIP. However,
Pathak’s coordinates, x0 and y0, can easily be reconstructed from the travelled path
length for any time step, i, given the initial position of the robot and the full state
history. One option to do so is provided in the following algorithm:

Algorithm 2.1 : Reconstructing Pathak’s Position Coordinates, x0 and y0,
from Travelled Path Length, x, and Yaw Angle, ψ.
1 x0(1) = x0,init + x(1) cos(ψ(1));
2 y0(1) = y0,init + x(1) sin(ψ(1));
3 for i = 2 : 1 : length(x)
4 x0(i) = x0(i− 1) + (x(i)− x(i− 1)) cos(ψ(i));
5 y0(i) = y0(i− 1) + (x(i)− x(i− 1)) sin(ψ(i));
6 end

As the robot’s current position additionally has no influence on the system’s dynamics,
in the context of this paper the reduced state vector introduced by Kim will be adopted.
Figure 2.1 illustrates the state variables used within this paper.
In order to avoid ambiguity and to ease comparison, another distinction to be pointed
out is the different choice of symbols to describe state variables within the two models.
Particular attention should be drawn to the fact that Pathak defines the yaw angle as
θ and the pitch angle as α, while Kim – and the remaining of this paper– denote the
yaw angle as ψ and the pitch angle as θ. Table 2.1 gives an overview of the different
state variables and in addition tab. 2.2 provides a comparison of the variables describing
the pendulum parameters within either model. For further evaluations, all mathematical
equations from the Kim- or Pathak-Paper are “transcribed” into the Used-Model variable
set listed in the provided tables.
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Figure 2.1: An overview of the state-space variables used in the context of this work.
While the Pathak-Model involves position variables with respect to some inertial 0frame,
x0 and y0, the Kim-Model instead defines a single position variable describing the so far
travelled path length, x. This was adopted due to the benefit of model reduction. The
yaw angle, ψ, describes a rotation of the 0frame about it 0z-axis defining the robot’s
current driving direction. The pitch angle, θ, represents the deviation of the TWIP
from its upright equilibrium point defined through a rotation of the 1frame about its
1y-axis. Note that the wheels’ rotational angles, Φl and Φr, are not contained in the set
of generalized coordinates as they are eliminated during the modelling procedure when
including the dynamic constraints as their concrete value is not of interest when trying
to achieve postural stability.

Table 2.1: Comparison of state variables used within the Pathak- and Kim-Model. In
the last column the variables chosen for the remaining of this work are provided which
are identical to the ones introduced by Kim.

State Pathak-Model Kim-Model Used-Model

Position x0, y0 x x

Driving velocity v ẋ ẋ

Pitch angle α θ θ

Pitch rate α̇ θ̇ θ̇

Yaw angle θ ψ ψ

Yaw rate θ̇ ψ̇ ψ̇
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l

mb

d/2
d

r

mw

Iw1

Iw2

Ib1
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Ib2

Figure 2.2: An overview of the TWIP’s parameters denoted with the variables chosen
within this paper as listed in tab. 2.2. All formulae discussed in the following will contain
these parameters instead of the ones introduced by Pathak and Kim respectively to ease
comparison of the two models.

Table 2.2: Comparison of variables used to describe the TWIP’s parameters within the
Pathak- and Kim-Model. The last column again provides the variables used for further
discussion within this paper. The lower indices, b and w, indicate whether a parameter
belongs to the pendulum’s body or wheels.

Model Parameter Pathak-Model Kim-Model Used-Model

Mass of the pendulum’s body Mb mB mb

Mass of either wheel Mw mW mw

MOI of the body w.r.t. its driving axis Ixx I1 Ib1

MOI of the body w.r.t. the TWIP’s axle Iyy I2 Ib2

MOI of the body w.r.t. its longitudinal axis Izz I3 Ib3

MOI of the wheels w.r.t. their axis Iwa J Iw1

MOI of the wheels w.r.t. to their diameter Iwd K Iw2

Height of the body’s centre of mass cz l l

Radius of either wheel R r r

Distance between the two wheels 2 b d d
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2.2 Comparison of Dynamic Models

In order to design a controller, Pathak in eq. (13-15) of [38] and Kim in eq. (2-3) of [26]
introduce an input-affine non-linear state-space representation of the form:

ẋ = f(x) + g(x)u, (2.3)

where the input vector, u =
[
τl τr

]T
, contains the torques applied to the left and right

wheel, respectively. For comparison, the two models were implemented and simulated for
certain initial states and small constant inputs without any control law applied. As the
TWIP can be considered to have “fallen over” for pitch deviations larger than approxi-
mately π/3, the simulations were stopped at this point. While the simulations resulted
in similar dynamics regarding the pitch rate and driving velocity, a large deviation could
be seen in the yaw dynamics. Consequently, the mathematical definitions within the
models were further investigated to understand where this discrepancy arises from.
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Figure 2.3: Comparison of the simulated dynamics of the Kim- and Pathak-Model.
While the driving velocities seem to be identical, a drastic mismatch can be detected in
the computed yaw rates.
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2.2.1 Yaw Motion of the TWIP

The terms describing the TWIP’s yaw motion within the two models were evaluated
by first comparing the input influence defined by the corresponding entries in the input
matrix, g(x). For the Kim-Model the input terms for the yaw motion are given in the
appendix of [26]:

ψ̈K = ...− b6(x)(τl − τr) = ...− d

rη2(θ)(τl − τr). (2.4)

However, when consulting the equations given in [25] the yaw motion due to the applied
input is describes as:

ψ̈K = ...− d

2 r a33(θ)(τl − τr). (2.5)

As the division by 2 in eq. 2.5 is a geometric necessity due to the fact that d describes
the full and not half-distance between the two wheels, this is assumed to be an error in
eq. 2.4 – taken for now that the pitch-dependent terms, a33(θ) of [25] and η2(θ) of [26],
are identical. Consequently, comparing a33(θ) and η2(θ) in detail displays that they are
in fact equivalent except for the factorization of one term:

a33(θ) = Ib3 + 2 Iw2 + d2

2 (mw + J/r2) + (Ib1 +mbl
2 − Ib3) sin2(θ) (2.6a)

η2(θ) = Ib3 + 2 Iw2 + 2 d2(mw + J/r2) + (Ib1 +mbl
2 − Ib3) sin2(θ). (2.6b)

This is again considered to be a typo in the state-space model introduced in [26] as the
corresponding terms of d2

2 can also be found in the course of the detailed derivation in
[25] eq. (27). Now, if in the state-space model of [26] in eq. 2.5 the η2(θ)-term of [26] is
corrected to be identical to a33(θ) of [25] and a division by two is added to the input
matrix entry, b6(x), the resulting yaw motion can be compared to the one defined in the
Pathak-Model:

ψ̈K,corr = sin(θ)
a33(θ)(−2 (Ib1 − Ib3 +mbl

2) cos(θ)θ̇ψ̇ −mblẋψ̇)

− d

2 r a33(θ)(τl − τr) (2.7a)

ψ̈P =r2 sin(θ)
Gα

(−2 (Ib1 − Ib3 +mbl
2) cos(θ)θ̇ψ̇ −mbl ẋψ̇)

− d r

2Gα
(τl − τr). (2.7b)
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This comparison yields that the Pathak- and the corrected Kim-Model are identical if
for the pitch-dependent factor, Gα, introduced by Pathak Gα

r2 = a33(θ) holds. Looking
up the detailed definitions of the Pathak-factor, reveals that this is the case:

Gα
r2 = (mbl

2 − Ib3 + Ib1) (1− cos2(θ)) + Ib3 + 2 Iw2 + d2

2 mw + d2

2 r2 Iw1

= (mbl
2 − Ib3 + Ib1) sin2(θ) + Ib3 + 2 Iw2 + d2

2 (mw + Iw1
r2 ) = a33(θ).

(2.8)

Repeating the simulation using the “corrected” Kim-Model underlines this outcome as
the resulting yaw motions in fig. 2.4 are identical.
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Figure 2.4: Comparison of the dynamics of the two models after the discussed corrections
were executed on the Kim-Model.

In conclusion, the yaw dynamics derived in [38] and [25] are equivalent, however the
state-space model introduced by Kim in [26] differs due to faulty factorizations. This
is considered a typo within the Kim-Model of [26] and consequently the yaw dynamics
of eq. 2.7 were implemented within this paper. While this correction explained the
discrepancy in the yaw rates in the preceding simulations, fig. 2.4 also reveals that now
the driving velocities are incompatible. In consequence, again the mathematical formulae
were further investigated to explain this discrepancy.
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2.2.2 Driving Velocity of the TWIP

Once again the two state-space models were at first evaluated in terms of how they
compute the input influence on the system’s forward acceleration:

ẍK = ...+ 1
η1(θ)

[
(Ib2 +mb l

2)/r +mb l cos(θ)
]

(τl + τr) (2.9)

ẍP = ...− r2

Dα

[
(Ib2 +mb l

2)/r +mb l cos(θ)
]

(τl + τr), (2.10)

which demonstrates that for the pitch-dependent factors, η1(θ) of [26] and Dα of [38],
η1(θ) = −Dα

r2 has to hold for the input influence to be identical. Consulting the definition
of Dα in the appendix of [38]:

Dα = r2m2
b l

2 (cos2(θ)− 1)− 2 r2mwmb l
2 − 2 r2 Ib2mw − Ib2mb r

2

− 2 Iw1mb l
2 − 2Ib2Iw1

= −r2
[
m2
b l

2 sin2(θ) +mb Ib2 + 2 (mw + Iw1/r
2)(Ib2 +mb l

2)
]

= −r2 η1(θ) (2.11)

shows this correlation proves true. Accordingly, the difference has to lie within the inter-
coupled state dynamics. Analysing the system state influence on the driving acceleration
for both models:

ẍK =sin(θ)
η1(θ)

[
−m2

b l
2g cos(θ) + (Ib2 +mbl

2)mblθ̇
2

+(Ib2 +mbl
2 + (Ib3 − Ib1 −mbl

2) cos2(θ) )mbl ψ̇
2
]

+ ... (2.12)

ẍP =r2 sin(θ)
−Dα

[
−m2

b l
2g cos(θ) + (Ib2 +mbl

2)mblθ̇
2

− Dα

r2 sin(θ)Kαψ̇
2
]

+ ... (2.13)

while recalling that η1(θ) = −Dα
r2 it remains to investigate whether η1(θ)Kα = [Ib2 +

mbl
2 + (Ib3− Ib1−mbl

2) cos2(θ)]mbl sin(θ) holds. Looking up the definition of Kα given
in the appendix of [38]:

Kα = r2mbl
[(
−4Ib2 − 3mbl

2 + Ib1 − Ib3
)
sin(θ) +

(
mbl

2 + Ib1 − Ib3
)
sin(3θ)

]
(2.14)

and making use of the trigonometric identity, sin(3θ) = 3sin(θ) − 4sin3(θ), as well as
further transformations yields:

η1(θ)Kα = −4η1(θ)r2
(
Ib2 +mbl

2 + (Ib3 − Ib1 −mbl
2) cos2(θ)

)
mbl sin(θ) (2.15)
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From eq. (2.15) it is apparent that the difference in the simulated velocities originates
from the fact that the Kα-factor defined by Pathak would have to be corrected through
an additional division by 4Dα to result in the same dynamics as those defined by Kim,
as:

Kα

−4η1(θ)r2 = Kα

4Dα
(2.16)

holds. This is assumed to be a mistake within the Pathak-Paper as there is no apparent
reason why the dynamic model received from the Euler-Lagrange-Equation in eq.(5) of
[38] should result in a different factorization of the yaw rate terms than the one applied
to the gravity and pitch rate terms.
After applying the correction of eq. (2.16) to the Pathak-Model, the simulations were
executed once more and as the trajectories given in fig. 2.5 illustrate no differences could
be detected any more. This leads to the assumption that the pitch dynamics defined
within the two models were identical to begin with. Lastly, comparing the pitch dynamics
in fact confirms this hypothesis:

θ̈K =sin(θ)
η1(θ)

[
(mb + 2mw + 2Iw1/r

2)mblg −m2
b l

2 cos(θ)θ̇2−(
m2
b l

2 + (Ib3 − Ib1 −mbl
2)(mb + 2mw + 2Iw1/r

2)
)
cos(θ)ψ̇2

]
+

−1
η1(θ)

[
mb + 2mw + 2Iw1/r

2 +mbl cos(θ)/r
]

(τl + τr) (2.17)

θ̈P =− sin(θ) r2

Dα

[
(m2

b l + 2mwmbl + 2mblIw1/r
2)g −m2

b l
2 cos(θ)θ̇2−

(mbIb3 + 2Ib3Iw1/r
2 − 2Ib1mw − 2Ib1Iw1/r

2−

− 2mbl
2mw − 2mbl

2Iw1/r
2 −mbIb1 + 2mwIb3) cos(θ)ψ̇2

]
+

r2

Dα

[
mb + 2mw + 2Iw1/r

2 +mbl cos(θ)/r
]

(τl + τr). (2.18)

In conclusion, the author considers the detailed derivation executed by Kim and Kwon
in [25] to be correct and the deviation in the computation of the yaw rate within the
deduced state-space model in [26] to be unintended. Pathak amounting to the same yaw
dynamics reaffirms this assumption. Besides from these minor corrections, the state-
space model introduced in [26] corresponds to the formulae derived in [25] and is taken
as accurate.
The Pathak-Model deduced and introduced in [38] is identical to the one of [25] besides
the minor deviation in the defined constant Kα. Again, this is assumed to be correct
within the Kim-Paper [25] as Pathak provides no explanation on why one term within
the computation of the driving acceleration should be factored differently. An overview
over the exact formulae that were consequently chosen to define the TWIP’s dynamics
for the remaining of this paper are provided in the appendix (A.3).
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Figure 2.5: Comparison of the dynamics of the two models after the discussed corrections
were applied to both models. The minor adaption of the Pathak-coefficient resulted in
the two models defining consistent dynamics.



Chapter 3

Non-linear Systems and Stability

Stability can be considered the most fundamental system property to achieve as a dy-
namically unstable system is most likely technically useless and in a worst case scenario
even dangerous [42]. Technically, not an entire system itself but only its equilibrium
points are evaluated in regards of stability – a simple pendulum with its upright and
downward equilibrium points gives an intuitive idea of the difference between stable
and unstable equilibria. Nonetheless, in the literature often an entire linear system is
justifiably referred to as stable or unstable which motivates sec. 3.2 giving an overview
on how stability analysis varies depending on whether a system’s dynamics are linear or
not. Whereas for linear time-invariant (LTI)-systems there exist methodologically sound
techniques for system analysis that can be applied using established linear algebra tools
and under reasonable computational expenses, non-linear system analysis remains very
restrictive [9] and can often result in non-feasible computational effort even for systems
of relatively low order.
Still, non-linear system analysis has remarkably evolved and today the most widely
known and applied approach to study stability in the context of non-linear control sys-
tems is the one developed by the Russian mathematician, Aleksandr Lyapunov [42]. The
more recently introduced contraction theory by Lohmiller and Slotine relies on a slightly
different notion of stability and is discussed in sec. 3.4. In the context of this paper, only
contraction analysis will be applied, however as its formulation was based on the fun-
damentals laid by Lyapunov’s work, in sec. 3.3 a quick introduction to Lyapunov theory
will be given first. Lastly, in sec. 3.5 controllability will be discussed as a system property
closely related to stability. First of all, an overview of some characteristics of dynamical
systems will be provided in sec. 3.1 to outline the TWIP’s dynamical characteristics and
how these affects the analysis tools applicable.

3.1 Classification of Dynamical Systems

Generally, a dynamical system can be described through:
ẋ(t) = f(x, t), x0 = x(t0), (3.1)

where x0 defines its initial state at initial time t0. The dimension of the vectors, ẋ and f ,
is referred to as the system order [42]. Assuming that the system vector, f , and its first
partial derivatives are continuous, a unique solutions, x(t), always exists [49]. Often,
this solution is called a system trajectory, state trajectory or simply trajectory.

15
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A special class of such dynamical systems are linear systems defined by:

ẋ(t) = A(t)x(t), x0 = x(t0), (3.2)

where the quadratic system matrix, A(t), completely defines the system’s dynamics.
Note that both definitions in eq. (3.1) and eq. (3.2) are equally valid to either represent
an unforced system or one subject to feedback control [42] as for:

ẋ(t) = f(x,u, t) subject to: u(t) = g(x, t) (3.3)

the closed-loop dynamics can always be transcribed to:

ẋ(t) = f(x,g(x, t), t) = f̃(x, t). (3.4)

And analogously in the linear case:

ẋ(t) = A(t)x(t) + B(t)u(t) subject to: u(t) = −K(t)x(t) (3.5)

can be reformulated to:

ẋ(t) = A(t)x(t)−B(t)K(t)x(t) = Ã(t)x(t). (3.6)

Consequently, all analysis tools based on state-space representations as defined in eq. (3.1)
and eq. (3.2) can likewise be applied to investigate unforced or closed-loop system dy-
namics.
The TWIP’s dynamics as introduced in sec. 2 define a so-called autonomous system, i.e.
a system with dynamics that do not depend on time, t, explicitly:

ẋ(t) = f(x), x0 = x(0), (3.7)

whereas system dynamics as defined in eq. (3.1) are called non-autonomous. In the linear
case, autonomous systems with a system matrix, A, independent of time:

ẋ(t) = Ax, x0 = x(0), (3.8)

are most commonly referred to as linear time-invariant (LTI)-systems and non-autonomous
systems as defined in eq. (3.2) as linear time-varying (LTV)-systems. In the non-linear
case however, Slotine suggests employing the terms “autonomous” and “non-autonomous”
[42] which will be adopted within this paper.
The fundamental difference between autonomous and non-autonomous systems, is that
trajectories of autonomous systems are independent of the initial time, t0, while this
generally does not apply to non-autonomous systems [42]. Naturally, this simplifies
system analysis and accordingly the methods as introduced in the following will be
restricted to autonomous systems. However the extension of Lyapunov theory to non-
autonomous systems is straight-forward, requires only minor adaptions, and detailed
definitions can be found in standard literature [42, 47, 49]. Contraction theory in its
definition is indifferent to whether a system is autonomous or not and consequently
the concepts introduced in sec. 3.4 apply to either. For easier readability, the time
dependency of state variables will no longer be noted from here on.
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3.2 Stability of Equilibria and Linear Stability Analysis

Although stability can be discussed in various contexts within control theory, most
commonly the stability of a system’s equilibrium is investigated [24]. An equilibrium
state or point, xeq, is defined as configuration satisfying:

f(xeq) = 0 (3.9)

for all times, t, and consequently describes a constant solution to eq. (3.1), where the
system trajectory corresponds of a single point in state-space. In simple terms, a stable
equilibrium point can be distinguished from an unstable one by the property that a
trajectory starting close to it remains close to it for all times [24]. While a pendulum
will naturally not remain in a position close to its unstable upright equilibrium, without
external forces applied it will rest in its stable downward equilibrium forever after.
Non-linear systems – like the pendulum example – can have an arbitrary number of
equilibrium points, whereas LTI-systems with a non-singular system matrix, A, naturally
only possess the trivial equilibrium point, xeq = 0 [42]. Thus, for LTI-systems no further
clarification regarding which equilibrium point is discussed needs to be provided, and
often an entire system is classified as stable or unstable depending on the stability of its
sole equilibrium, xeq = 01.
Due to this property, for LTI-systems stability can synonymously be defined in the
meaning that any initial condition, x0, excites an over all times, t, bounded system
response [8]. Any LTI-system contains the solution, x = x0 e

At, and for this solution
trajectory to remain bounded invariably, each entry of eAt must stay bounded. This
only holds if all eigenvalues of A have strictly negative real-parts [8] which provides a
necessary and sufficient condition for system stability in the LTI-case. This eigenvalue
method only consists of a single numerical matrix evaluation as the system matrix, A,
neither depends on time nor state. Consequently, with the help of a numerical computing
toolbox this technique is applicable even to systems of high order.
When on the other hand discussing an autonomous non-linear systems, remarkably
different considerations have to be made. First of all, a non-linear system can possess
an arbitrary number of isolated equilibria [42], such that clear reference needs to be
provided which equilibrium point is examined. Additionally, eigenvalue analysis is a
linear algebra tool and can not be applied to non-linear vector fields. Being familiar
with linear control theory though, an intuitive idea would be to simply approximate
the system’s non-linear dynamics by computing the first-order Taylor-series expansion
about some technically relevant equilibrium point:

ẋ ≈ ∂f
∂x

∣∣∣∣
x=xeq

(x− xeq) = Ā(x− xeq) (3.10)

where ∂f
∂xx

∣∣∣∣
x=xeq

denotes the system’s Jacobian evaluated at the linearization point,

xeq, consisting of the first-order partial derivatives of the non-linear system dynamics.
1LTI-systems with a singular system matrix, A, possess infinite many equilibria, which are defined

by the null-space of the system-matrix, A. As these kind of systems will however not be relevant for the
remaining of this work, they will not be further discussed.
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In fact, this is exactly what Lyapunov’s linearization method suggests with the only
restriction that first the equilibrium point of interest needs to be shifted to the origin as
all of Lyapunov theory is exclusively defined for xeq = 0.
Now, analogously to analysis of LTI-systems the eigenvalues of Ā can be evaluated. If
all of them posses strictly negative real-parts, the equilibrium point of the non-linear
system is locally stable. If however at least one eigenvalue lies on the imaginary axis,
no conclusions about the equilibrium point of the original non-linear system can be
drawn. In fact, examples of simple non-linear systems as provided in [42] can be given
that are globally asymptotically stable2 while their linearization has a zero eigenvalue.
Ultimately, Lyapunov’s linearization method provides a technique easily employed by
anyone familiar with linear system theory but very limited in its use to classify the
actual non-linear system of interest [47].
Additionally, this approach always relies on the key assumption of a small operating
range around this fixed equilibrium state [42]. For larger deviations, the linear model of
eq. (3.10) can no longer be assumed valid and consequently controllers based on linear
design techniques are expected to perform poorly or even become unstable – and have
been observed to do so [42]. In order to analyse non-linear dynamics within a considerable
operating range, one can not rely on plain linearization-based methods but instead has
to employ non-linear approaches as described in the following.

3.3 Non-linear Stability Analysis – Lyapunov Theory

In his doctoral thesis, Lyapunov presented two methods for stability analysis – the al-
ready discussed indirect or linearization method and the so-called direct method. As the
name already implies, the indirect method only allows to draw very limited conclusions
about local system behaviour. The direct method however, marked an utterly novel
approach that enables analysis of the non-linear system dynamics by constructing and
evaluating an “energy-like” scalar function, V (x) [42]. Before Lyapunov’s direct method
is introduced in sec. 3.3.2, first a mathematically precise definition of stability according
to Lyapunov is provided as so far the term “stability” was only defined quite loosely
in verbal form. Note that Lyapunov’s definitions of stability as provided in the follow-
ing always are stated with respect to the equilibrium point, xeq = 0, which however
results in no loss of generality as this can always be achieved through an appropriate
transformation of the state-space variables. The following definitions are adapted from
[42].

3.3.1 Stability According to Lyapunov

In his thesis, Lyapunov defines the stability of a system’s equilibrium point located in
the origin accordingly:

Definition 3.1 (Stability According to Lyapunov). The equilibrium point, xeq = 0, is
said to be stable if for any rε there exists an rδ such that if ‖x0‖ < rδ, then ‖x‖ < rε
for all t ≥ 0. Otherwise, xeq = 0 is said to be unstable. N

2To be defined in the next section.
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Figuratively speaking, there exists a sphere of radius, rδ, around the origin such that if
a trajectory starts within this sphere, it forever remains in another sphere of radius, rε,
which obviously implies that in this case the system will not diverge. However, Lyapunov
stability alone only guarantees for all trajectories starting within the rδ-sphere to stay
within some region nearby the origin, not that they ever reach it. This motivates the
definition of asymptotic stability as there often lies technical relevancy in a system to
actually converge to the origin [42].

Definition 3.2 (Asymptotic Stability According to Lyapunov). The equilibrium point,
xeq = 0, is said to be asymptotically stable if it is stable and additionally there exists
some rδ such that if ‖x0‖ < rδ, then x→ 0 as t→∞. N

Again employing the sphere-allegory, there exists some rδ-sphere around the origin such
that all trajectories starting from this region will not just stay nearby the origin but con-
tinuously tend towards it. In conclusion, asymptotic stability guarantees for a technical
system to always eventually return to its equilibrium state if not deviated too far from
it. However, no bounds can be provided on how long it takes for the system to restore
its equilibrium state. Lastly, the necessity of a technical system converging within finite
time can be met through the definition of exponential stability.

Definition 3.3 (Exponential Stability According to Lyapunov). The equilibrium point,
xeq = 0, is said to be exponentially stable if it is stable and if additionally there exist
two strictly positive numbers, βα and βλ, such that there exists some rδ such that if
‖x0‖ < rδ, then ‖x‖ ≤ βα‖x0‖ e−βλt for all t ≥ 0. N

If these inequalities hold, all trajectories of the system starting within some rδ-sphere
converge to the origin at an exponential rate. Here, βλ is often referred to as the conver-
gence rate. Figure 3.1 illustrates the different notions of stability using the example of a
scalar system and fig. 3.2 shows exemplary state-space trajectories for a two-dimensional
system.
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stable asymptotically stable exponentially stable

Figure 3.1: Lyapunov’s different notions of stability for a scalar system state plotted
over time. The plots were adapted from fig. 4.4 of [49].

All of the notions of stability provided only hold for trajectories starting within a certain
region close enough to the origin. Thus, they only describe local behaviour of the system
valid for a particular set of initial states. Finally, the notion of global stability will allow
classification of an entire dynamical system for all possible initial states.
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Definition 3.4 (Global Stability According to Lyapunov). If asymptotic or exponential
stability of an equilibrium point holds for any initial state, x0, the equilibrium point is
referred to as globally asymptotically or exponentially stable. N

If a system’s equilibrium point is found to be globally stable, this obviously implies that
it’s the only equilibrium point within the system. For LTI-systems to be asymptotically
stable, all eigenvalues have to lie strictly in the left-half complex plane. The exponential
function solution, x = x0 e

At, of any LTI-system, also illustrates that for LTI-systems
asymptotic stability is synonymous with exponential and global stability [42].
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Figure 3.2: Lyapunov’s different notions of stability for a two-dimensional system. The
first plot describes a stable system as the trajectory starting close to the origin, remains
close. The second plot defines asymptotic stability as the trajectory not only stays within
the rε-region for all times but eventually reaches the origin. The third plot describes
exponential stability where the trajectory takes a “direct” path to the origin. The plots
were adapted from fig. 4.3 of [49].

3.3.2 Lyapunov’s Direct Method

In contrast to his linearization method, with his direct method Lyapunov introduced
an approach completely independent of any approximation of the system’s dynamics.
Essentially, Lyapunov’s direct method can be considered a mathematical relaxation of a
fundamental physical observation: if a system’s energy is continuously dissipated, it will
eventually come to rest at some equilibrium point [42]. This is an observation that can
be made regardless of the system’s dynamics being linear or not. Accordingly, Lyapunov
generalized the idea of conservative mechanical systems to make it applicable to any
differential equation [47] and suggested to examine stability through scalar energy-like
functions, so-called Lyapunov-functions, V (x).

Stability through Lyapunov’s Direct Method

In his according theorems, Lyapunov stated that stability of the equilibrium point, xeq =
0, can be concluded, if within a rδ-sphere around this equilibrium point a scalar function,
V (x), with continuous first partial derivatives can be found such that:

• V (x) is positive-definite, meaning that V (x) ≥ 0 for all x and V (x) = 0 only holds
for xeq = 0
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• V̇ (x) = ∂V
∂x ẋ is negative-semi-definite, meaning that V̇ (x) ≤ 0 for all x.

Fulfilling these conditions, V (x) is called a Lyapunov-function of the system and often
a scalar function, V (x), that is positive-definite but V̇ (x) remains to be proven to be
negative-semi-definite is referred to as Lyapunov-function-candidate.

Asymptotic Stability through Lyapunov’s Direct Method

Further conditions on a Lyapunov-function, V (x), can be specified to also prove asymp-
totic stability:

• if additionally V̇ (x) is negative-definite or in other words V̇ (x) = 0 only holds for
xeq = 0, this local stability is asymptotic.

If the considered rδ-sphere is expanded to the entire state-space and

• if additionally V (x) is radially unbounded, meaning that V (x)→∞ as ‖x‖ → ∞,
this asymptotic stability is global.

While the physical interpretation of dissipating energy is straight-forward, to underline
the possible choice of not just the system’s total energy but any positive-definite scalar
function, V (x), a geometric interpretation as provided in fig. 3.3 can be handy to con-
sult. For a two-dimensional system, the properties postulated for the Lyapunov-function,
V (x), to guarantee global asymptotic stability result in it describing a cup-shaped sur-
face with its unique minimum located in the origin, xeq = 0. In order to assure asymp-
totic stability, the time derivative of the Lyapunov-function, V̇ (x), defined by the scalar
product of the Lyapunov-function’s gradient, ∂V

∂x , and the system’s velocity vector, ẋ,
must take negative values for all system states such that the angle between these two
vectors is constantly greater than π

2 . This yields a tangible image for all trajectories
converging to the origin when projected on this cup-plane. Thinking this visualization
further, these trajectories will still tend towards the origin, when retransformed to R2,
as the “bending-up” of the trajectories to the cup-shaped surface does not affect their
convergence. For higher-dimensional systems – as with many mathematical theories
– comprehensive visualizations are hard to fathom but instead general mathematical
proofs have to be trusted.

Exponential Stability through Lyapunov’s Direct Method

Although, Lyapunov’s direct method is mostly applied to determine asymptotic stability,
it can also be used to prove exponential stability by finding a Lyapunov-function, V (x),
for that within a rδ-sphere about the origin

• the inequalities, β1‖x‖k ≤ V (x) ≤ β2‖x‖k and V̇ (x) ≤ −β3 ‖x‖k, hold where
k, β1, β2, β3 all are positive constants.

The dynamical system it then proven to be exponentially stable and again if this in-
equalities are fulfilled in the entire state-space and not just within a certain rδ-sphere
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about the origin, global exponential stability can be shown [47]. The inequality con-
straints on the Lyapunov-function, V (x), and its time derivative, V̇ (x), already de-
manded positive-definiteness and negative-definiteness respectively, and consequently
assure stability. This condition for a Lyapunov-function to assure exponential stability
is no longer to be motivated geometrically but by the fact that if the stated inequalities
hold, this allows to conclude for that system’s dynamics to have solutions that are expo-
nentially bounded. For further explanations and insightful examples, the author refers
to the extensive literature on the field, e.g. [42, 47, 24].

x1

x2

V (x)

ẋ

∂V
∂x

x1

x2

α

∂V
∂x

ẋẋ

∂V
∂x

α > π
2

α > π
2

Figure 3.3: Geometrical interpretation of asymptotic stability through Lyapunov’s di-
rect method. The Lyapunov-function, V (x) defines a cup-shaped surface over the two-
dimensional state-space. The scalar product of its gradient, ∂V∂x , and the system’s velocity
vector, ẋ, is strictly negative and therefore the angle between these two vectors is always
greater than π

2 . Consequently, all trajectories on it continuously tend towards the origin.

3.3.3 Remarks on Lyapunov-based Stability Analysis

In conclusion, when given a certain Lyapunov-function-candidate one can systematically
determine whether through this scalar function the equilibrium’s point (asymptotic or
exponential) stability can be verified or not. However, if the prerequisites on its time
derivative are not met with this particular choice, no conclusions can be drawn at all
as the conditions given in the context of Lyapunov’s direct method have sufficient not
necessary character [42]. Interestingly enough, the converses of Lyapunov’s stability the-
orems do hold, meaning that if an equilibrium point is stable, there exist a corresponding
Lyapunov-function to prove so [47]. Still, the task remains to find one of those specific
functions and while often a sound understanding of the dynamics of the system evalu-
ated can ease the choice of a Lyapunov-function-candidate leading to success, in many
instances also very random adaptions without any particular physical interpretation have
to be made to end up with a suitable Lyapunov-function. In general, there exists no
universal technique that guarantees the successful construction of a Lyapunov-function
for arbitrary non-linear systems.
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3.4 Non-linear Stability Analysis – Contraction Theory

While Lyapunov postulated his stability theory in 1892 already, it did not receive much
attention in the Western academic world until the 1960s [47]. However, since Kalman
brought Lyapunov theory to the field of automatic control, it remains the most elemen-
tary tool in non-linear system analysis and has been the basis of a wide range of design
techniques. In the late 1990s, Lohmiller and Slotine developed an alternate approach
to non-linear stability analysis referred to as contraction theory which even though still
lesser-known has since been applied successfully in a number of non-linear applications.
While contraction theory can also be applied in filter- or controller-synthesis, in the
context of this paper it will only be used as an analysis tool. Hence, in the following a
quick introduction to the concepts of contraction theory is given with a focus on its use
for system classification.

3.4.1 Convergence to a Single Trajectory and Contracting Systems

While Lyapunov’s approach on defining and classifying stability can be interpreted as
a generalization inspired by Lagrangian mechanics for rigid bodies, contraction analysis
on the other hand can be considered to be motivated by fluid mechanics. Accordingly, in
his thesis Lohmiller introduces a slightly different concept of stability [32] – based on the
notion that a stable systems over time “forgets” its initial condition and any occurring
disturbances. Motivated by the notion of a non-linear system as defined in eq. (3.1) as
the dynamics of a multi-dimensional flow field, where ẋ describes the multi-dimensional
velocity field with initial condition, x0(t0) at initial time, t0, the basic idea of contraction
analysis is that if any two neighbouring trajectories of this flow field converge to each
other – in the meaning that the distance between them vanishes over time –, it can be
concluded that eventually all system trajectories will converge to a single system state.
This slightly different concept of stability is more precisely referred to as convergence
and the corresponding system behaviour as contracting [43]. Note that the dynamics
of eq. (3.1) might again also refer to a closed-loop system subject to state feedback
u(x), such that contraction analysis is applicable to unforced and closed-loop systems
likewise. While contraction theory as presented in its original form in [32, 43] allows
the evaluation of non-autonomous systems, for the context of this work it will only be
employed to analyse the TWIP’s autonomous dynamics and therefore only the slightly
reduced version as presented in [2] will be further discussed.
In order to provide a mathematical condition for a system to be contracting, the virtual
displacement, δx, – an infinitesimal displacement at fixed time – between two neighbour-
ing trajectories is introduced. For this virtual displacement the following differential
relation holds:

δẋ = ∂f
∂xδx. (3.11)

Defining the distance between two trajectories as the squared Euclidean displacement
vector allows to evaluate how this distance evolves over time:

d
dt(δx

Tδx) = 2 δxTδẋ = 2 δxT ∂f
∂xδx. (3.12)
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Denoting λf ,max as the largest eigenvalue of the symmetric part of the system’s Jacobian,
i.e. the largest eigenvalue of 1

2( ∂f
∂x + ∂f

∂x
T), permits the definition of an upper bound for

this correlation:

d
dt(δx

Tδx) ≤ 2λf ,max δxTδx. (3.13)

and the solution of this differential equation:

δxTδx ≤ (δx0
Tδx0)e

∫ t
0 λf ,maxdt (3.14)

yields the conclusion that if the largest eigenvalue of the system’s Jacobian, λf ,max,
is uniformly strictly negative any distance between two trajectories converges to zero
exponentially. This motivates the following definition according to [43]:

Definition 3.5 (Contraction Region). For a given system, ẋ = f(x), a region within the
state-space where the system’s Jacobian, ∂f

∂x , is uniformly negative-definite, is referred
to as a contraction region. N

Note that eq. (3.12) describes a quadratic form which is always equal to zero for the
skew-symmetric part of a square matrix [42] and in consequence only the symmetric
part of the Jacobian is relevant in this consideration. With the definition of contraction
regions and the introduction of a rδ-sphere – already familiar from Lyapunov theory–,
local system behaviour can be defined:

Definition 3.6 (Exponential Convergence to a Single Trajectory). Any trajectory, x,
starting in a sphere of constant radius, rδ, centred about a given trajectory, xd, and
for all times, t ≥ 0, contained in a contraction region, remains in that rδ-sphere and
converges to the given trajectory, xd, exponentially. N

xd xdxd

δx δx
δx

xd

x2

x1

1
2( ∂f
∂x + ∂f

∂x
T) < 0

rδ

Figure 3.4: The system contracts within the region of the state-space where its Jaco-
bian’s symmetric part is strictly negative-definite. As all differential lengths between
neighbouring trajectories vanish over time within this contraction region, convergence
to a single trajectory is assured.
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The expansion to global exponential contraction is straight-forward:

Definition 3.7 (Global Exponential Convergence to a Single Trajectory). If the entire
state-space is a contraction region, global exponential convergence to this given trajec-
tory, xd, is guaranteed. N

Notice that the notion of a system contracting can be considered a more general concep-
tion than stability in the sense of Lyapunov and does per se not imply convergence to
an equilibrium point. While the single trajectory, xd, the system is converging to might
be an equilibrium, xeq, it might as well describe a limit-cycle or likewise. As illustrated
in fig. 3.4 contraction only guarantees for all system trajectories to exponentially tend to
a single system state which is contained in the defined contraction region, however not
required to be defined a priori. If on the other hand it is known that a specific equilib-
rium point of interest, xeq, is contained in a contraction region, exponential converge
towards it can directly be concluded for all other trajectories within this region.

3.4.2 Generalization of Coordinates and Contraction Metrics

While the definition of contracting behaviour is straight-forward, for higher-dimensional
systems the conditions on the system’s Jacobian, ∂f

∂x , might be hard to prove to hold
for all x. The results from contraction analysis can however be vastly extended [32] by
introducing a differential state transformation, Θ(x), to so-called local coordinates, δz.
The virtual displacement in local coordinates, δz, is then defined through the following
differential relation:

δz = Θ(x)δx, (3.15)

where the state transformation, Θ(x), denotes a state-dependent square matrix. This
allows for the generalization of the squared distance between two trajectories:

δzTδz = δxTΘ(x)TΘ(x)δx = δxTM(x)δx, (3.16)

where the square matrix, M(x), represents a symmetric and continuously differentiable
metric. If the state transformation, Θ(x), is chosen such that this metric is strictly
positive-definite, exponential convergence of δz to 0 also guarantees convergence of δx
to 0. Additionally, the metric, M(x), is required to be initially bounded such that
an initially bounded virtual displacement, δx, guarantees for its representation in local
coordinates, δz, to be bounded, as well3.
Having introduced an alternate but equivalent way of describing the differential distance
between two trajectories in eq. (3.16), the evolution of this squared distance can now be
evaluated in local coordinates, δz, as well. Firstly, the time derivative in local coordinates
is defined as:

3Crucial to the concepts of contraction theory are the notions of Riemannian metrics and manifolds,
which is why they will be further discussed in sec. 6. Additionally, the introduction of this state transfor-
mation, Θ(x), requires the definition of distances between two points in local coordinates with respect
to the defined metric, M(x). This can be computed by finding the smallest path integral between those
two points and will also be addressed in the same section.
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d
dtδz = Θ̇(x)δx + Θ(x)δẋ = (Θ̇(x) + ∂f

∂xΘ(x))δx (3.17)

= (Θ̇(x) + ∂f
∂xΘ(x))Θ−1(x)δz

which by introducing the so-called generalized Jacobian, F, as:

F = (Θ̇(x) + ∂f
∂xΘ(x))Θ−1(x) (3.18)

yields the following definition of rate of change:

d
dt(δz

Tδz) = 2 δzT d
dtδz = 2 δzTFδz. (3.19)

Analogously to def. 3.6 a contraction region can be defined where the generalized Jaco-
bian, F, is strictly negative-definite. Alternatively, referring to the rate of change in the
original differential coordinates, δx, again:

d
dt(δz

Tδz) = d
dt(δx

TM(x)δx) = δxT
(
∂f
∂x

T
M(x) + M(x) ∂f

∂x + Ṁ(x)
)
δx (3.20)

yields the condition for a found metric, M(x), to be a contraction metric [2].

Definition 3.8 (Contraction Metrics for Autonomous Systems). For an autonomous sys-
tem, ẋ = f(x), of dimension n, a n-by-n matrix, M(x), is a contraction metric if it is uni-
formly positive-definite and additionally the expression,

(
∂f
∂x

TM(x) + M(x) ∂f
∂x + Ṁ(x)

)
,

is uniformly negative-definite. N

The contraction metric’s time derivative, Ṁ(x), is computed as:

Ṁ(x) =
(
∂M(x)
∂x

T
f(x)

)
(3.21)

and this condition can be extended to define exponential contraction:

Definition 3.9 (Contraction Metrics Assuring Exponential Convergence). If addition-
ally,

(
∂f
∂xM(x) + M(x) ∂f

∂x + Ṁ(x)
)
≤ −βcM(x) holds where βc is a strictly positive

constant, the system is contracting exponentially. N

Again, depending on whether these conditions on the metric, M(x), can be fulfilled
within some rδ-sphere or within the entire state-space the system is (exponentially)
contracting locally or globally. The remarks that can be drawn from a system contracting
in local coordinates are identical to the ones obtained from defining a contraction region
by evaluating the system’s Jacobian, ∂f

∂x , in def. 3.6 and def. 3.7.
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Figure 3.5: The extension of results through the introduction of local coordinates. If con-
traction can be proven in arbitrary local coordinates contracting behaviour and therefore
convergence to a single trajectory can also be concluded for the original system.

The introduction of local coordinates, δz, however allows a far less restrictive approach,
as now any generalized Jacobian, F, can be employed to prove system convergence. The
consideration of differential lengths within contraction theory permits the conclusion of
global system properties from local properties evaluated in local differential coordinates.
This is unique to contraction theory and only valid due to its differential approach as it
can be considered as taking into account “all possible directions” the system could evolve
to. On the contrary, note that proving global asymptotic stability through Lyapunov’s
direct method as discussed in sec. 3.3.2 required additional steps besides verifying that
the definiteness-conditions on the Lyapunov-function, V (x), hold in the entire state-
space. Consequently, proving local asymptotic stability in the sense of Lyapunov for
all possible system states is not sufficient to conclude global asymptotic stability as
Lyapunov theory only evaluates how the system evolves in the directions defined through
the Lyapunov-function-candidate.
While this marks a fundamental difference between Lyapunov theory and contraction
theory, still contraction analysis can be considered an extension of Lyapunov direct
method of proving exponential stability. In order to illustrate this connectedness, let us
reconsider the sufficient conditions according to Lyapunov: β1‖x‖k ≤ V (x) ≤ β2‖x‖k
and V̇ (x) ≤ −β3V (x).
Noticeably, this condition differs from the ones for local asymptotic stability in the way
that it not only demands the Lyapunov-function, V (x), to have certain definiteness prop-
erties but also to be bounded in relation to some k-vector-norm of the state trajectories.
This notion of bounded and decreasing trajectory lengths is unique and crucial to the
property of exponential stability – and consequently it also defines the basis of contrac-
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tion analysis. By defining some differential Lyapunov-like scalar function, δV (x), and
its time derivative, δV̇ (x), as:

δV (x) = δxTM(x)δx (3.22)

δV̇ (x) = δxT
(
∂f
∂x

T
M(x) + M(x) ∂f

∂x + Ṁ(x)
)
δx (3.23)

parallels between Lyapunov theory and contraction theory can further be highlighted.
Clearly, the differential Lyapunov-function-candidate, δV (x), is bounded through the
strictly positive eigenvalues of the contraction metric, M(x):

δxTλM,minδx ≤ δxTM(x)δx ≤ δxTλM,maxδx (3.24)
λM,min‖δx‖22 ≤ δV (x) ≤ λM,max‖δx‖22 (3.25)

where λM,min, λM,max > 0 holds for all system states, x, due to M(x) being a positive-
definite contraction metric. Additionally, the following inequality holds:

δxT
(
∂f
∂x

T
M(x) + M(x) ∂f

∂x + Ṁ(x)
)
δx ≤ −βc

(
δxTM(x)δx

)
(3.26)

δV̇ (x) ≤ −βc δV (x). (3.27)

This contemplation allows the interpretation of contraction theory as a differential form
of Lyapunov’s direct method through the introduction of generalized coordinates.

3.4.3 Remarks on Contraction Analysis

Concluding about non-linear stability analysis, Lyapunov theory and contraction theory
both provide tools that if applied successfully allow legitimate system classification and
powerful controller design. Contraction analysis is less restrictive as it does not require a
specific location of the equilibrium – or even the predefinition of some invariant solution
at all – which can be considered a major drawback of Lyapunov analysis when dealing
with systems with uncertainty [2]. Additionally, contraction theory permits the inference
of global properties within a defined contraction region from local analysis, while on
the contrary a system that is proven to be locally stable in the sense of Lyapunov
for all possible system states, is still not guaranteed to be globally stable. This makes
Lyapunov’s direct method non-applicable if a system’s dynamics are not explicitly known
– and consequently for most higher-order SDRE-controlled systems.
Also, if the finding of exponential stability over asymptotic stability is of relevancy, con-
traction theory might be the more natural approach. However, just as with Lyapunov’s
direct method an open quest remains in finding a suitable contraction metric fulfilling
the necessary conditions. While often for simple and especially scalar systems a solid
understanding of the system’s dynamics can yield in a successful evaluation, no general
rules to construct a corresponding metric exist. Especially for higher-order systems, a
trial-and-error approach will yield in a non-feasible computational effort and a systematic
approach is therefore highly relevant.



3.5. Controllability of Non-linear Systems 29

3.5 Controllability of Non-linear Systems

Closely related to the notion of stability is the controllability of a dynamical system
subject to the input, u. Figuratively speaking, controllability defines whether a certain
physical excitation of a system can drive it to any desired state within the state-space –
neglecting possible modelling errors, disturbances or other inconveniences arising from
dealing with real technical systems over mathematical models. More precisely, in [8]
controllability is defined in the following way:

Definition 3.10 (Controllability of Dynamical Systems). A dynamical system is said
to be controllable if for any initial state, x0, and any final state, xe, there exists an input
that transfers x0 to xe. Otherwise, the system is said to be uncontrollable. N

This definition of controllability only requires the existence of some input, u, allowing
any possible system transformations and does not make any further demands, like e.g.
for this input to be bounded. Obviously, if a system is fully controllable, in theory one
can assure for its states to stay bounded for all times and consequently assure stability.

Controllability of LTI-Systems

For an LTI-system of the form:

ẋ = Ax + Bu (3.28)

that some system input, u, is applied to, controllability can be determined systematically
by evaluating the system matrices, A and B. The most popular controllability-criterion
is the one formulated by Kalman [8]:

rank
([

B AB A2B ... An−1B
]) != n (3.29)

where, n is the dimension of the state-space vector of the evaluated system. If eq. (3.29)
holds, the system is fully controllable, otherwise the system is not fully controllable but
no notion of the extend to which the system is “uncontrollable” can be provided.
An alternate criterion is the one by Hautus which technically executes the same mathe-
matical evaluation as the Kalman-criterion but considers each eigenvalue of the system
matrix individually. According to Hautus, if for all eigenvalues, λi, of the system matrix,
A, the following condition:

rank
([

A− λiI B
]) != n (3.30)

holds, the system is fully controllable. The condition in eq. (3.30) checks whether any
left eigenvector of the system-matrix, A, corresponding to an eigenvalue, λ, is orthogonal
to the image of the input matrix, B. If the system matrix had one such eigenvector,
this eigenvalue could not possibly be influenced with any linear combination of the input
matrix’s basis vectors and consequently could not be controlled in this direction for the
given system input [45].
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Other than the Kalman-criterion, the application of the Hautus-criterion not only pro-
vides a binary classification of an entire system as controllable or not but instead allows
to specifically determine which eigenvalues of the system are controllable or not. Due to
its favourable capability, the Hautus-criterion additionally allows for classifying systems
as stabilizable: for a not fully controllable system, still a stabilizing control law can be
found as long as all its uncontrollable eigenvalues are stable, i.e. only have negative
real-parts.

Controllability of Non-linear Autonomous Systems

As the concept of eigenvalues and -vectors is exclusive to linear systems, the Kalman-
or Hautus-criterion clearly can not directly be applied to non-linear systems. However,
a generalization of the Kalman-criterion can be formulated, as derived in more detail in
[42, 49]. In order to state this controllability condition for non-linear systems, first the
Lie-bracket of two vector fields, f(x) and g(x), needs to be defined:

[f ,g] = ∂g
∂xf − ∂f

∂xg. (3.31)

The Lie-bracket-operator defines a third vector field which if the original vector fields,
f(x) and g(x), are interpreted as flow fields, can be understood as the directional deriva-
tive of the fields along each other’s flow [42]. This resulting vector field is commonly
referred to as adf g and can be defined recursively:

ad0
f g = g ad1

f g =
[
f , ad0

f g
]

adif g =
[
f , adi−1

f g
]
. (3.32)

With the help of this notation, a non-linear controllability condition can be formulated.
An autonomous non-linear system in input-affine form:

ẋ = f(x) + g(x)u (3.33)

can be considered fully controllable in the linear sense if the vector fields defined by:

{
g adf g ad2

f g ... adn−1
f g

}
(3.34)

are linearly independent for all x [49]. In order to make the duality with the Kalman-
criterion obvious, the condition could also be rephrased to claiming that a matrix with
the Lie-brackets given in eq. (3.34) as columns has full rank, n, for all system states, x.
In fact, for a linear system the following holds:

g = B ∂f
∂x = A ∂g

∂x = 0. (3.35)

Consequently, for any LTI-system the set of vector fields of eq. (3.34) reduces to the
columns of the Kalman-controllability-matrix of eq. (3.29):
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{
g adf g ad2

f g ... adn−1
f g

}
→

{
B AB A2B ... An−1B

}
(3.36)

and the demand for these columns to be linearly independent is equivalent to requiring
them to span a full-rank matrix.
So similarly as with stability, evaluating a system’s controllability results in strongly
differing tasks depending on whether its dynamics are linear or not. Though a generally
valid – and in this case necessary and sufficient – condition for a non-linear system to
be fully controllable can be formulated, it can only be proven through the evaluation
of a series of state-dependent terms. Showing that eq. (3.34) defines a set of linearly
independent vectors in the entire state-space or at least a relevant subset of it, defines
an arduous task. For higher order systems with more complex dynamics, this will in
most cases result in computationally non-feasible problems.
Reconsidering the TWIP’s dynamics of order six, the lie-brackets of eq. (3.34) require
derivatives of order up to five. With the many trigonometric terms included in the
dynamic model introduced in sec. 2 not vanishing through repeated derivation but re-
sulting in more and more complex trigonometric formulae, it is easily fathomed that
proving controllability for the non-linear system will denote a tremendous task. In [38] a
reduced version of the TWIP’s dynamics are evaluated in terms of controllability in the
non-linear sense. However, to make this analysis possible, strong assumptions about the
system dynamics, e.g. stability of internal dynamics, have to be made such that even if
this property can be determined, controller design based on the achieved results might
not yield in a robust control law.

3.6 Remarks on Non-linear System Analysis

Overall, the examples of stability and controllability analysis showcase two major diffi-
culties exemplary for non-linear system analysis in general: Firstly, the generally valid
conditions often are of sufficient kind and do not state whether they also have neces-
sary character [42, 24]. Secondly, theorems for non-linear systems generally result in
state-dependent formulations that additionally need to be proven to hold in relevant
regions of the defined state-space. This amounts to a drastically increased complexity
compared to a single evaluation of a numerical matrix as in for LTI-systems. Conse-
quently, making non-linear tools applicable often requires strong assumptions about the
system’s dynamics which in return can jeopardize controller robustness if these do not
hold to the presumed extend.
Alongside the mentioned eigenvalue analysis, a multitude of methods has been estab-
lished to characterize LTI-system, e.g. in regards of controllability or observability.
These linear tools have been applied successfully in analysis and design resulting in high-
performing controllers for a wide range of industrial applications [42]. Great progress
has been made in the field of non-linear control theory, as well, and a variety of powerful
design techniques, e.g. feedback linearization, backstepping, or sliding mode control,
have been introduced and applied successfully to specific technical problems. Neverthe-
less, most of these techniques remain only applicable to a very restricted class of systems
[9, 29], such that a range of considerations remains necessary in order to employ them
to control a specific non-linear system.
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These described complications of non-linear system analysis motivate the introduction of
a quasi-linear representation of the TWIP’s dynamics through so-called state-dependent
coefficient (SDC)-parametrization. This transformation to a quasi-linear system will
allow the pointwise application of linear system analysis tools. Before employing it
to the TWIP’s dynamics however, in the next section the concepts and properties of
SDC-parametrization will be introduced first.



Chapter 4

SDRE-based Controller Synthesis

Within control theory, a common approach to handle balancing problems, e.g. inverted
pendula, is to first design a controller to execute the swing-up motion and subsequently
a separate one stabilizing the linearized system about the desired balancing point [14].
In this work however, in order to find a single stabilizing state feedback controller
for the TWIP providing sufficient performance within a relevant range about its up-
right equilibrium, in sec. 5 a control law is defined by pointwisely solving the so-called
State-Dependent-Riccati-Equation (SDRE). The SDRE-based design technique can be
interpreted as a non-linear approach mimicking the popular linear quadratic regulator
(LQR)-design method [19] which is restricted to systems defined through linear dynam-
ics.
Before its application to the TWIP, the following chapter will give a quick overview
of the ideas behind SDRE-based synthesis. In addition, some conditions to be met for
successful application are listed in sec. 4.2.1 as well as guaranteed properties of the closed-
loop dynamics in sec. 4.3. While the closed-loop characteristics obtained from SDRE-
synthesis are not as strong as those from LQR-design, it nevertheless has shown sufficient
performance in a range of applications as for example listed in [9, 19, 11]. As SDRE-
based controller synthesis is closely related to LQR-design in its systematic approach,
first of all in sec. 4.1 the fundamentals of the LQR-technique and its generalization to
non-linear systems will be outlined.

4.1 The LQR-Problem and its Generalization to Non-linear
Systems

One of the most extensively applied techniques of controller synthesis for LTI-systems
is the LQR-method [12]. Instead of having to explicitly choose poles of the closed-loop
system and then placing these poles through some linear design methods, the LQR-
approach implicitly executes pole placement by minimizing some predefined performance
index [49]. When employing the LQR-method, a feedback control law:

u(x) = −Kx (4.1)

regulating the system to the origin, x = 0, is found such that the quadratic index:

J = 1
2

∫ ∞
0

xTQx + uTRu dt (4.2)

33
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is minimized. The optimization problem defined by the performance index of eq. (4.2)
constrained through the system dynamics, ẋ = Ax + Bu, is referred to as the infinite-
horizon LQR-problem. Within the performance index, the symmetric positive-semi-
definite matrix, Q, penalizes the state variables being different to zero and the symmetric
positive-definite matrix, R, weights the inputs applied to the system. Thus, the first
term of eq. (4.2) tries to keep the components of the state vector close to the origin, while
the second term tries to limit the input required to do so. Naturally, these define two
conflicting tasks [49], such that through adjustment of the weighting matrices, Q and
R, the designer can put quantitative emphasis on either effort and define a compromise
solution.
Once concrete weighting matrices have been chosen, applying optimality conditions to
the infinite-horizon LQR-problem yields the optimal feedback controller:

u(x) = −R−1BTPx (4.3)
being constructed through the symmetric positive-definite matrix, P, found by solving
the Algebraic Riccati Equation (ARE):

ATP + PA−PBR−1BTP + Q = 0. (4.4)

For a controllable (stabilizable) pair of system matrices, (A, B), the resulting control
law assures global asymptotic stability alongside robustness properties sufficient for most
applications [37]. The LQR-technique not only allows a rather intuitive approach to de-
fine desired closed-loop dynamics through the formulation of a weighted performance
index but additionally implicitly guarantees desirable closed-loop characteristics. In
conclusion, the LQR-synthesis makes up a methodologically sound technique also ap-
plicable to high-dimensional systems which paved the way for it becoming one of the
most popular design techniques since it has been introduced in today’s form in the 1960s
[23]. Although LQR-design as presented so far is restricted to LTI-systems, it can be
generalized to the infinite-horizon non-linear optimal controller problem.
For an autonomous input-affine non-linear system as defined in eq. (3.33), an optimal
feedback control law:

u(x) = −R−1(x)gT(x)
(
∂W

∂x

)
(4.5)

minimizing the performance index:

J = 1
2

∫ ∞
0

xTQ(x)x + uTR(x)u dt (4.6)

is obtained by solving the Hamilton-Jacobi-Equation (HJE):

1
2xTQ(x)x +

(
∂W

∂x

)T
f(x)− 1

2

(
∂W

∂x

)T
g(x)R−1(x)gT(x)

(
∂W

∂x

)
= 0 (4.7)

for the positive-definite scalar function W (x). The weighting matrices, Q(x) and R(x),
still are required to be positive-(semi-)definite but can now be chosen state-dependent.
Consequently, the performance index as defined in eq. (4.6) remains quadratic in the
input but not necessarily in the state vector [9]. Unfortunately, there exists no efficient
algorithm to solve the HJE for systems of order larger than one or two [21, 5], and
consequently – unlike the ARE – it is very restricted in its application for controller
design [37].
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4.2 Significance of SDC-Parametrization in SDRE-based
Controller Design

In an attempt to make the simplicity of optimal control techniques accessible to a variety
of non-linear systems [39], in 1962 Pearson first suggested to investigate what today is
called the State-Dependent-Riccati-Equation:

AT(x)P(x) + P(x)A(x)−P(x)B(x)R−1(x)BT(x)P(x) + Q(x) = 0. (4.8)

Within this approach, a state-dependent “version” of the ARE is solved for the positive-
definite matrix, P(x), instead of trying to find a solution to the HJE. Analogously to
the LQR-case, the obtained feedback control law is then defined by:

u(x) = −R−1(x)BT(x)P(x) x. (4.9)

Generally speaking, the SDRE-scheme “ignores” the condition on the solution, P(x) x,
to be the gradient of some scalar positive-definite function, W (x), and instead simply
chooses it to be a symmetric positive-definite matrix [9].

4.2.1 State-Dependent-Coefficient Form of Non-linear Systems

Obviously, the non-linear system dynamics as defined in eq. (3.33) do not contain any
matrices, A(x) and B(x), such that in order to execute SDRE-based controller syn-
thesis, first a quasi- or pseudo-linear representation needs to be found through SDC-
parametrization such that for all system states, x, the following relation holds:

ẋ = f(x) + g(x)u = A(x)x + B(x)u. (4.10)

A SDC-parametrization fulfilling this condition exists if and only if the non-linear system
vector, f(x), is continuously differentiable and the origin defines an equilibrium point,
f(0) = 0 [18]. For the state-dependent input matrix, B(x), the trivial choice lies in:

B(x) = g(x), (4.11)

for which g(x) 6= 0 has to hold for all system states, x. However, the system ma-
trix, A(x), is defined uniquely only in the scalar case and for systems of order larger
than one it can easily be shown that there always exist an infinite number of feasible
parametrizations [11] such that f(x) = A(x)x holds within the entire state-space.
The design step of finding a quasi-linear representation of the system’s dynamics marks
a fundamental difference to LQR-synthesis, as it denotes an additional degree of freedom
in the process of controller design. As a proper choice of the state-dependent system
matrix, A(x), plays a significant role in obtaining a well-performing controller [21, 30],
it will be discussed in more detail in the upcoming section.
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4.2.2 Uniqueness and Optimality

Clearly, a different choice of state-dependent system matrix, A(x), will yield a different
solution of the SDRE, P(x), and in consequence a control law found by solving the
SDRE will in general not be optimal in the sense that it minimizes the performance
index of eq. (4.6) [21, 18]. For the solution of the SDRE divided by the system state,
P(x)

x , to be optimal, it must coincide with the gradient of a solution of the HJE, ∂W∂x . In
general this will not hold, however in [21] the proof is illustrated that within the set of
feasible parametrizations for the state-dependent system matrices, the one yielding the
optimal solution is always contained.
Consequently, the solution of the SDRE is optimal in regards of the performance index
defined through the weighting matrices, Q(x) and R(x), only in the scalar case but
generally suboptimal in the multi-variable case [9]. However, in [12] it is demonstrated
that as the system state is driven to the origin, optimality is asymptotically satisfied at
an quadratic rate. This behaviour of SDRE-controlled systems has also been observed
in applications where the system trajectories converged to the optimal trajectories while
approaching the equilibrium state. Consequently, if the system states can be kept rea-
sonably small during usage, near optimal multi-variable feedback control can be achieved
through SDRE-synthesis.
Note that in the same paper [12], two approaches to exploit the additional degree of
freedom in choosing a SDC-parametrization to recover optimality in SDRE-design are
introduced. However, these are not easily applicable in general as one is dependent
on the initial condition and the other involves the computational expensive solving of
a partial differential equation (PDE). In consequence, optimality is a criterion that
may be considered when choosing a SDC-representation, however a variety of successful
applications of the SDRE-scheme have been executed with suboptimal solutions and
shown steady performance.

4.2.3 Controllability and Stabilizing Solutions

Similar as with the LQR-method for the SDRE-scheme to yield a stabilizing control law,
the chosen SDC-parametrization must be controllable (stabilizable). In consequence,
controllability can be considered a crucial property to take into account when choosing
a quasi-linear representation to execute SDRE-design. For this purpose, let us introduce
the following classifications as defined in [9, 12]:
Definition 4.1 (Controllable SDC-Parametrization). A valid SDC-representation as
defined in eq. (4.10) is said to be a controllable parametrization of the non-linear system
in the region, Ω ⊆ Rn, if the pair, (A(x), B(x)), is pointwise controllable in the linear
sense for all x ∈ Ω. N

Definition 4.2 (Strongly Controllable SDC-Parametrization). A valid SDC-representa-
tion as defined in eq. (4.10) is said to be a strongly controllable parametrization of the
non-linear system in the region, Ω ⊆ Rn, if there exists some κ > 0 such that σCO,min ≥ κ
for all x ∈ Ω, where σCO,min denotes the smallest singular value of a controllability matrix
based on the pair, (A(x), B(x)). N

Note that these notions allow no conclusions about the non-linear system itself, and
especially pointwise controllability of a chosen SDC-parametrization must not be misin-
terpreted as controllability of the non-linear system as introduced in sec. 3.5.
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Analogously to the ARE, in a region where the set of system matrices, (A(x), B(x)), is
controllable1, the closed-loop dynamics resulting from SDRE-based synthesis:

ẋ = (A(x)−B(x) K(x))x = Acl(x)x (4.12)

define a pointwise stabilizing solution [9, 10]. For every state, x 6= 0, a stabilizing solution
for the system “frozen” in its current state is found through solving the ARE that the
SDRE collapses to at this specific point. Additionally, under the assumption that all
entries of the state-dependent matrices are continuously differentiable with respect to x,
the SDRE-method produces closed-loop dynamics that are locally asymptotically stable
with respect to the origin [9].
Generally, global asymptotic stability can not be guaranteed through SDRE-design even
if all eigenvalues of the closed-loop system matrix, Acl(x), strictly lie in the left half
complex plane. Only for symmetric closed-loop system matrices, Acl(x) = AT

cl(x), a
Lyapunov-function can be constructed to proof global asymptotic stability as deduced
in [9]. However, as this is a rather restrictive condition and additionally global stability
can not hold for systems with several isolated equilibria like the TWIP, in the context
of this work an alternate approach relying on contraction analysis to determine stability
margins will be introduced in sec. 6.

4.2.4 Guideline on Defining a SDC-Representation

Overall, for non-scalar systems there exists no generally applicable approach to find a
proper SDC-parametrization of the non-linear dynamics. In [13] a number of examples
are provided illustrating how the chosen pseudo-linear representation influences result-
ing controller performance and feasibility of the SDRE. In the same paper, beneficial
properties for quasi-linear dynamics that still represent the state intercouplings of the
original non-linear system are underlined. In consequence, as a rule-of-thumb the state-
dependent coefficient matrix, A(x), can be demanded to contain a non-zero entry, aij(x),
if the ith state derivative depends on the jth state [11]. Note however that this is a de-
sign guideline exclusively based on empirical investigation and not on any mathematical
proofs.
Further complications, e.g. constant state-independent terms, can occur when the sys-
tem dynamics are not provided in input-affine form, however in many cases still a work-
around can be found to successfully define a feasible SDC-parametrization. Among
others this issue is addressed in [11], does however not apply to the TWIP’s dynamics
and will accordingly not be discussed in more detail.
In conclusion, choosing a suitable SDC-parametrization can be considered the designer’s
main task when employing SDRE-based synthesis. On one hand the introduction of
a SDC-representation marks an additional degree of freedom to be exploited by the
designer, while on the other hand one has to likewise assure to not yield in non-feasibility
of the SDRE due to deficient parametrization.

1Note that in addition to controllability, another essential condition for successful LQR- or SDRE-
based controller design likewise is for the system to be observable, as both design techniques rely on full
state feedback. As for the TWIP subject to this work all system states can be assumed measured through
appropriate sensors, observability will not be addressed in further discussions. If the proposed design
technique is however to be used on systems not providing full state feedback, pointwise observability in
the linear sense as defined in [45] needs to be assured for a stabilizing SDRE-based control law.
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4.3 Further Design Steps in SDRE-based Controller Syn-
thesis

After having found a favourable SDC-parametrization, few additional steps remain
within SDRE-based synthesis. First, the designer has to determine weighting matri-
ces to complete the non-linear regulator problem to be addressed through the SDRE.
Eventually, a method to solve the resulting SDRE needs to be found to obtain an explicit
control law.

4.3.1 Choosing Weighting Matrices, Q(x) and R(x)

While SDC-parametrization is an aspect of SDRE-based controller design broadly dis-
cussed in the literature, the choice of possibly state-dependent weighting matrices is
often only touched on or in many cases not addressed at all [26, 4, 3]. Even though the
concrete choice of penalty matrices is known to have great influence on system perfor-
mance and input effectiveness [28], within a variety of applications they are still chosen
as identity or constant matrices [17, 20, 30, 13]. Obviously, this will simplify computa-
tions and is consequently especially desirable if one intends to find an analytical solution
to the SDRE. However, in [28] examples are provided where a state-dependent choice of
penalty matrices significantly improved the resulting controller performance indicating
that if computationally possible the state-dependency of the penalty matrices should be
exploited.
Just as in LQR-synthesis, there exists no generally valid method to make this choice,
and most designers rely on a trial-and-error-approach to achieve desired closed-loop
behaviour [37, 27]. However, as most solvers used for solving the SDRE will rely on the
performance index to be convex, a rule-of-thumb as in [28] can be defined to choose:

Q(x) = Q0 + Q1(x) R(x) = R0 + R1(x). (4.13)

The suggestion is to compose the weighting matrices of a constant diagonal matrix:

Q0 = diag(c0, ... , cn), (4.14)

with strictly positive coefficients, ci > 0, and a state-dependent matrix:

Q1(x) = diag(q1(x1), ... , qn(xn)), (4.15)

where the entries, qi(xi), are chosen as exclusively even degree polynomials of the corre-
sponding system state:

qi(xi) = ki2 x
2
i + ki4 x

4
i + ki6 x

6
i + ... (4.16)

where again the coefficients, kim, are strictly positive. The construction of the input
weighting matrix, R(x), is executed analogously, however the state-dependent matrix,
R1(x), might be chosen as mixed even degree monomials of several system states.
Besides the matrices being positive-(semi)definite and defining a convex performance
index, there are no further restrictions and the concrete choice solely depends on the
desired closed-loop dynamics. Sec. 5.3.2 will demonstrate the influence of weighting
matrices and motivate the choice made with regards to the TWIP’s dynamics.
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4.3.2 Solving the SDRE

With all state-dependent matrices fixed, the SDRE is completely defined and the only
remaining task is solving it. The ideal method is to analytically solve the matrix equation
with the help of some symbolic software package offline to obtain some directly applicable
state-dependent control law. However, as this will only work for low order systems or
ones exhibiting specific structures, another approach is to pointwisely solve the SDRE
online at a relatively high Hertz-rate [10]. With the SDRE-approach – even though
the full non-linearities of the system are taken into account – the controller solely has
to solve the linear AREs obtained from evaluating the SDRE for the current system
state. As especially for higher-order systems linear equations are solved at a remarkably
lower computational effort than non-linear problems, this allows fast online computation.
Consequently, the SDRE-method can be – and mostly has been – applied to systems
with fast dynamics and significantly high system order [26, 3, 20]. A last option would
be to compute point solutions of the SDRE offline and then execute gain scheduling
during applications [10].

4.4 Remarks on SDRE-based Controller Synthesis

Finally, a couple of conclusions can be drawn about controller synthesis based on the
SDRE-technique. First of all, despite of its close relatedness to the LQR-technique,
generally the SDRE-method can neither guarantee global stability nor optimality in
regards of the predefined performance index. However, it has been showcased that both
of these properties are locally provided in some proximity to the origin. Nevertheless, for
a suitable SDC-parametrization the resulting suboptimal and locally stabilizing SDRE-
controller has proven sufficient performance in many applications.
The non-unique choice of a quasi-linear SDC-parametrization as well as possibly state-
dependent weighting matrices mark additional degrees of freedom within the process
of controller design. This might be considered an advantage if these flexibilities can
be exploited to achieve some further closed-loop qualities. Likewise, the necessity of
introducing a pseudo-linear representation can be interpreted as a restriction as certain
conditions have to be met by the SDC-parametrization to ensure a stabilizing controller.
Unlike many other approaches of exploiting linear tools for non-linear controller design,
SDRE-based controllers do not forcefully cancel out all of the system’s non-linearities.
As with these kind of controllers usually beneficial non-linear system properties are
eliminated as well, according design techniques often result in significantly increased
control efforts [12, 13]. Additionally, through appropriate choice of weighting matrices
within the SDRE, soft input bounds can be imposed by the designer.
A remarkable property of SDRE-based controller design is its applicability to a variety of
non-linear systems. The restrictions on the system’s dynamics to be provided in input-
affine form are mild when compared to other non-linear design methods like backstepping
or feedback linearization [16]. Additionally, in many cases work-arounds can be found
to also apply the SDRE-approach to systems that initially were not given in input-affine
form [11]. Even if no analytical solution to the SDRE can be found, it can nevertheless be
applied to higher-order systems with fast dynamics as the online computations required
are solely linear and can consequently be executed with high frequency.
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Lastly, another advantage of the SDRE-technique is the ability to benefit from the
extensive research already conducted on the field of linear optimal control by for instance
employing one of the many advanced algorithms for solving the ARE.



Chapter 5

Application of SDRE-based
Controller Synthesis to the TWIP

The SDRE-approach as presented in sec. 4 was used to design a non-linear controller
stabilizing the TWIP introduced in sec. 2 in its upright position. The design process and
resulting controller performance will be discussed in the following chapter which can be
considered split in two halves. The first half is dedicated to the procedure of finding a
suitable SDRE to use in controller synthesis for the TWIP and accordingly sec. 5.1 will
motivate the exact SDC-representation chosen within this work. Even though addressed
in the last section, optimality will not be of particular interest within this work, and
instead the focus will merely be set on controller performance. Likewise, as for the TWIP
discussed within this work all states are assumed to be measured, observability will not
be debated, either. Particular attention however was drawn to finding a controllable
and continuously differentiable parametrization to assure a stabilizing solution within
a relevant state-space region. Additionally, in sec. 5.2 the state-dependent weighting
matrices will be defined and physically motivated through the TWIP’s dynamics to
complete the employed SDRE.
The second half will focus on performance and input efficiency achieved by the controller
based on the resulting SDRE and how these are affected by certain design parameters.
The relevancy of a proper parametrization as well as the influence of state-dependent
penalty matrices will be further highlighted by direct comparison of different feasible
SDC-representations in sec. 5.3.1 and varying weighting matrices in sec. 5.3.2. Lastly, the
SDRE-based controller found within this paper will be compared to a LQR-controller
based on the linearized dynamics about the upright equilibrium point in sec. 5.4. The two
controllers will be investigated in various scenarios, e.g. subject to non-linear friction not
included in the dynamic model or arising disturbances, to also exhibit their robustness
properties.

5.1 SDC-Parametrization of the TWIP’s Non-linear Dy-
namics

As the first step of SDRE-design, the found SDC-parametrization is introduced and
quickly debated why this particular choice was made. No major issues arose when
parametrizing the TWIP’s dynamics as the way they are introduced in [25] already

41
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allows for sufficiently easy handling. Accordingly, within this paper a parametrization
was found that has similarities to the one used within [26], however it is not identical.
After the introduction of the chosen SDC-representation in sec. 5.1.1, it will be examined
in regards of controllability to assure stabilizing controller synthesis and a negative
example will be provided on how faulty parametrization can yield in an inherently non-
controllable SDC-representation in sec. 5.1.2.

5.1.1 Constructing a Continuously Differentiable System Matrix, A(x)

Applied Methods for Concrete Choice of SDCs

Generally, when trying to parametrize a system’s non-linear dynamics, the easiest case
imaginable are dynamics exclusively polynomial in the system states. In such a case,
the corresponding monomials can simply be lowered in their degree by one and written
to the according entry in the state-dependent system matrix, A(x). Mixed monomials
of two or more system states can be split up in equal parts and distributed over the
according matrix entries to represent the state intercoupling with a non-zero entry at
each index of the corresponding system states as proposed in [11]. For the most part,
this approach can be applied successfully, e.g. for damping terms, and it was broadly
executed within this paper.
However, this method no longer exclusively works if the system dynamics contain terms
that are not polynomial in the system states but instead trigonometric or constant –
which will often be the case, e.g. for gravity or centrifugal terms. Special attention has
to be drawn to trigonometric terms due to two reasons. First, if the dynamics contain
terms that exclusively include system variables in the context of some trigonometric
expression, the corresponding term needs to be divided by some system variable before
it is added to the state-dependent system matrix such that later when the system matrix
is multiplied with the state vector, A(x)x = f(x), still holds. However, this division
obviously amounts to a singularity for the divisor state being equal to zero such that this
case needs to be considered separately. Secondly, close attention needs to be drawn to
cosine terms as they do not vanish as the corresponding state approaches zero such that a
transformation needs to be found for f(0) = 0 to still hold. Usually this can be obtained
through employing some trigonometric identity to replace cosine expressions with a set
of constant and sine terms and subsequently treating constant terms as proposed in [10].
Fortunately, with the TWIP’s dynamics as derived in [25] there remain no merely con-
stant terms and only the a11(x))-coefficient of the inertia matrix of [25] contained an
isolated cosine term which however ends up as a mixed sine-cosine terms when eq. (28)
of [25] is solved for the second order derivatives. In conclusion, all trigonometric terms
contain some sine coefficient, such that no further transformation was necessary to assure
for f(0) = 0 to always hold.
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Resulting SDC-Parametrization

For the yaw acceleration, ψ̈, the pitch-dependent trigonometric expressions were treated
as parameters such that the approach of splitting-up and distributing monomials could
be applied, and the following parametrization was found:

ψ̈ = sin(θ)
ρ2(θ)

(
−2K2cos(θ)θ̇ψ̇ −K4ẋψ̇

)
= a62(x)ẋ+ a64(x)θ̇ + a66(x)ψ̇ (5.1)

where the state-dependent coefficients were chosen to:

a62(x) = sin(θ)
ρ2(θ)

(
−1

2K4ψ̇

)
(5.2)

a64(x) = sin(θ)
ρ2(θ)

(
−K2cos(θ)ψ̇

)
(5.3)

a66(x) = sin(θ)
ρ2(θ)

(
−1

2K4ẋ−K2cos(θ)θ̇
)
. (5.4)

For the the driving and pitch acceleration, ẍ and θ̈, however this method alone was
not sufficient, as they both contain a gravity term solely depending on a trigonometric
expression of the pitch angle. In consequence, those terms needed to be divided by some
system state and as they exclusively depend on the pitch angle it made sense to choose
this system state as a divisor, like also suggested in [26]. Consequently, the following
parametrizations resulted for the driving acceleration:

ẍ = sin(θ)
ρ1(θ) K4

(
−K4 gcos(θ) +K3θ̇

2 + (K3 −K2cos2(θ))ψ̇2
)

(5.5)

= a23(x)θ + a24(x)θ̇ + a26(x)ψ̇ (5.6)

where the state-dependent coefficients were chosen to:

a23(x) = sin(θ)
ρ1(θ)

1
θ

(
−K2

4 gcos(θ)
)

(5.7)

a24(x) = sin(θ)
ρ1(θ) K3K4θ̇ (5.8)

a26(x) = sin(θ)
ρ1(θ)

(
K3 −K2cos2(θ)

)
K4ψ̇ (5.9)

and the pitch acceleration:

θ̈ = sin(θ)
ρ1(θ)

(
K1K4g −K2

4cos(θ)θ̇2 + (K1K2 −K2
4 )cos(θ)ψ̇2

)
(5.10)

= a43(x)θ + a44(x)θ̇ + a64(x)ψ̇ (5.11)

with the state-dependent coefficients:

a43(x) = sin(θ)
ρ1(θ)

1
θ

(K1K4g) (5.12)

a44(x) = sin(θ)
ρ1(θ)

(
−K2

4cos(θ)
)
θ̇ (5.13)

a46(x) = sin(θ)
ρ1(θ)

(
K1K2 −K2

4
)
cos(θ)ψ̇ (5.14)
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This parametrization of trigonometric gravity terms is particularly preferable and has
been used in preceding works [26, 28] as the corresponding expression, sin(θ)

θ , tends to
one as the angle, θ, tends to zero such that no special attention needs to be drawn to
values of the divisor being numerically close to zero. In order to rule out numerical
problems, the according entries, a23(x) and a43(x), are set to 1

ρ1(0) as the value of the
pitch angle approaches the MATLAB machine precision1.
For the input matrix the trivial choice, B(x) = g(x), was made as it can easily be shown
that g(x) 6= 0 holds for all system states. The resulting SDC-representation chosen to
define a SDRE-based control law has the following structure:

ẋ =



0 1 0 0 0 0
0 0 a23(x) a24(x) 0 a26(x)
0 0 0 1 0 0
0 0 a43(x) a44(x) 0 a46(x)
0 0 0 0 0 1
0 a62(x) 0 a64(x) 0 a66(x)


x +



0 0
b2(x) b2(x)

0 0
b4(x) b4(x)

0 0
b6(x) −b6(x)


u (5.15)

where the exact matrix entries are once again listed in detail in the appendix (A.4).

Remarks on Found SDC-Parametrization

Note that the resulting system matrix, A(x), has two zero columns corresponding to
the states, x and ψ. This illustrates more prominently what could have already been
inferred from the non-linear state-space model – the TWIP’s dynamics are completely
independent of these two system states and they consequently do not play a role within
the task of stabilizing the TWIP in its upright position. Giving this observation some
further thought, it makes sense that the TWIP’s current position and orientation on the
ground do not influence its postural stability.
In [35] the subdivision of system states into so-called shape variables and external vari-
ables is proposed. While shape variables influence the system’s kinetic energy and there-
fore appear in the inertia matrix when executing Lagrangian dynamic modelling, external
variables do not. This differentiation is worth keeping in mind when executing SDC-
parametrization, as no inappropriate relevancy should be denoted to external variables
through the found quasi-linear representation. In sec. 5.3.1 an example will be provided
showcasing how overvaluing of external variables can negatively influence controller per-
formance.
Lastly, in order to demonstrate that the found parametrization defines dynamics identical
to the non-linear system’s, simulations were executed with a small constant inputs,
τi = 0.01 N m, on each wheel to allow the simulations to run longer for comparison.
Again at pitch angles, θ > π

3 , the simulations were stopped and the resulting trajectories
are provided in fig. 5.1.

1Note that the exact value the coefficient is set to for θ u 0 is not of great importance as the
matrix entry will be multiplied by θ during simulations and numerically vanish as θ reaches values below
machine precision. Setting the matrix entry itself to zero however has to be avoided as this would yield
in a non-controllable system matrix, A(0), with all state-dependent coefficients being equal to zero, and
consequently would be detected as non-feasible by the employed ARE-solver.
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Figure 5.1: Comparison of the simulated dynamics of the SDC-parametrization to the
non-linear state-space model. According simulations were executed for several initial
states and within none of them a deviation of the SDC-model from the original non-
linear one could be detected.

5.1.2 Pointwise Controllability of SDC-Parametrizations

Controllability of Chosen SDC-Parametrization

Once a quasi-linear representation is found that fulfills the preliminaries of being con-
tinuously differentiable and not containing any singularities, the next step to assure
successful SDRE-based design is to investigate the found SDC-representation for con-
trollability. The most desirable option is to analytically prove that the pair of system
matrices, (A(x), B(x)), is controllable in the linear sense for all possible system states.
Employing the Hautus-controllability-criterion as defined in eq. (3.30), for the chosen
SDC-parametrization yields in proving that:

rank
([

A(x)− λi(x) I B(x)
]) != 6 (5.16)

holds for all eigenvalues, λi(x), and states, x.
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In detail, the Hautus-controllability-matrix is defined as:



−λi(x) 1 0 0 0 0 0 0
0 −λi(x) a23(x) a24(x) 0 a26(x) b2(x) b2(x)
0 0 −λi(x) 1 0 0 0 0
0 0 a43(x) a44(x)− λi(x) 0 a46(x) b4(x) b4(x)
0 0 0 0 −λi(x) 1 0 0
0 a62(x) 0 a64(x) 0 a66(x)− λi(x) b6(x) −b6(x)


(5.17)

Even though the controllability matrix of eq. (5.16) does not seem immoderately complex
in its structure, proving that it has full rank for all state-dependent eigenvalues, λi(x),
results in complex equations no more analytically solvable.
In consequence, a pointwise approach of evaluating the state-dependent Hautus-control-
lability-matrix on a fine grid within a relevant region of the state-space was decided on.
For each grid point, xg, the SDC-parametrization was evaluated and the resulting pair
of constant matrices, (A(x = xg), B(x = xg)), examined for the Hautus-controllability-
criterion. The rank of the constant Hautus-controllability-matrix for the corresponding
grid points was determined through computing its singular values, σi, and checking
that for all of them σi � 0 holds, such that a margin for numerical robustness of the
controllability property could be provided.
For the shape variables of the TWIP used within this paper, the limits as listed in tab. 5.1
have been experimentally determined in preceding works. Accordingly, the pointwise
evaluation was executed within those limits and the chosen stepsizes are provided in
tab. 5.1, as well. Note that the defined grid is not equidistant, as the number of grid
points for the pitch angle and yaw rate was chosen higher as these two states can be
considered to have the most significant influence on the system’s non-linearities. Experi-
mental results reaffirm this assumption, as high spinning and large pitch deviations have
been observed to be most critical system states which often cause controllers to fail [26].

Table 5.1: The state limits, stepsizes, and number of grid points used for the pointwise
examination for controllability. Due to the nature of the TWIP’s dynamics all limits are
symmetric with respect to the origin.

State Lower Bound Upper Bound Stepsize Grid Points

ẋ −1m/s 1m/s 0.125m/s 17
θ −π

3
π
3

π
25 51

θ̇ −2π/s 2π/s 0.167π/s 25
ψ̇ −7.5π/s 7.5π/s 0.5π/s 31
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For the entire set of 671,925 evaluated points within state-space, none was found to be
non-controllable and all singular values determined within those computations remained
larger than σmin ≥ 0.946, such that numerical concerns can be put aside and the found
parametrization even be considered strongly controllable as defined in def. 4.2 within all
grid points.

Example of an Inherently Non-controllable SDC-Parametrization

Before further design steps will be discussed, at this point an example will be provided to
showcase how there exist feasible representations in the sense that they are continuously
differentiable and A(x)x = f(x) holds for all system states but nevertheless can not be
employed for SDRE-design due to their inherent uncontrollability. Consider for instance
the following parametrization:

Anc(x) =



0 1 0 0 0 0
0 anc,22(x) 0 anc,24(x) 0 anc,26(x)
0 0 0 1 0 0
0 anc,42(x) 0 anc,44(x) 0 anc,46(x)
0 0 0 0 0 1
0 0 0 0 0 anc,66(x)


(5.18)

where the matrix entries, anc,ij(x), are listed in the appendix (A.4). Transforming
Anc(x) to lower triangular form by exchanging columns and eliminating the a26(x)-
entry:

Anc(x) =



1 0 0 0 0 0
anc,22(x) anc,24(x) 0 0 0 0

0 1 −anc,26(x)
anc,24(x) 0 0 0

anc,42(x) anc,44(x) anc,46(x)− anc,44(x) anc,26(x)
anc,24(x) 0 0 0

0 0 1 0 0 0
0 0 anc,66(x) 0 0 0


(5.19)

illustrates that Anc(x) has three eigenvalues λnc,i = 0. Now, again examining the
Hautus-controllability-criterion:

rank
([

Anc(x)− λnc,i(x) I B(x)
]) != 6 (5.20)



48 Chapter 5. Application of SDRE-based Controller Synthesis to the TWIP

for the eigenvalues λnc,i = 0:

rank





0 1 0 0 0 0 0 0
0 anc,22(x) 0 anc,24(x) 0 anc,26(x) b2(x) b2(x)
0 0 0 1 0 0 0 0
0 anc,42(x) 0 anc,44(x) 0 anc,46(x) b4(x) b4(x)
0 0 0 0 0 1 0 0
0 0 0 0 0 anc,66(x) b6(x) −b6(x)




= 5 < 6

(5.21)

yields a rank deficient Hautus-controllability-matrix and in conclusion the system has
three non-controllable eigenvalues. As this is the case for arbitrary system states, the
SDC-parametrization through Anc(x) is not controllable for any state and consequently,
passing this SDC-parametrization evaluated at a specific state to an ARE-solver will
always throw an error.

5.2 Further Design Steps in SDRE Controller Synthesis

After having decided on a feasible and controllable quasi-linear SDC-representation, the
choice of weighting matrices remained in order to define desired controller properties
before solving the resulting SDRE and applying the found control law.

5.2.1 Choosing Weighting Matrices, Q(x) and R(x)

In this work, the author aimed to exploit the additional degree of freedom in the choice
of weighting matrices to achieve desired controller performance. Primary objective was
to adjust the performance index to impose some “soft constraints” on the input. The
maximum torque, τmax, that can be applied to the either wheel of the TWIP is limited
through its electrodynamics to about 0.6Nm [1], such that the controller was adapted
to remain within that range of required input even when recovering from critical states.
Secondarily, it was aimed to produce as little overshoot in the states as possible and
allow a preferably smooth transition to the origin.
Roughly the guideline discussed in sec. 4.3.1 was consulted, in the sense that each penalty
matrix was chosen as a superposition of a constant and a state-dependent diagonal
matrix. However to reflect the state intercouplings within the TWIP’s dynamics, the
state-dependent coefficients are dependent on several system states and not just the one
state to be weighted through the matrix entry. Still, the performance index is assured
to be convex as all state-dependent terms exclusively define polynomials of even degree.
After an initial configuration was chosen, it was adapted consecutively after executing
several simulations with predefined initial conditions that were set to represent certain
critical states to be stabilized. This process resulted in the following set of matrices:

Q(x) = diag(q1, q2(θ, ẋ, ψ̇), q3(θ), q4(θ, θ̇, ψ̇), q5, q6(θ, ẋ, θ̇, ψ̇)) (5.22)
R(x) = diag(r(θ̇, ψ̇), r(θ̇, ψ̇)) (5.23)
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where the coefficients were adapted to:

q1 = 4.5 (5.24)

q2(θ, ẋ, ψ̇) = 3 + θ2

π2 (200ẋ2 + 400ψ̇2) (5.25)

q3(θ) = 10 + 2000 θ
2

ψ2 (5.26)

q4(θ, θ̇, ψ̇) = 2 + θ2

π2 (1500θ̇2 + 500ψ̇2) (5.27)

q5 = 4 (5.28)

q6(θ, ẋ, θ̇, ψ̇) = 1 + θ2

π2 (100(ẋ2 + θ̇2) + 20ψ̇2) (5.29)

r(θ̇, ψ̇) = 0.5 + 150θ̇2 + 400ψ̇4. (5.30)

The coefficients, q1 and q5, corresponding to the external variables were chosen to not
contain any state-dependencies as they are completely decoupled and consequently do
not pose a threat for the system being destabilized. For the same reason, their values
were determined smaller compared to the state-dependent coefficients, while larger in
comparison to the constant factors of the remaining state weighting coefficients, qi, to
allow the controller to also drive the external variables to the origin whenever the system
is in an overall stable state.
The numerically largest coefficient, q3, corresponds to the pitch angle as it is the most
critical state when trying to stabilize the robot in its upright position. A too large pitch
deviation is a system state the controller will not be able to recover from such that there
lies importance in reacting fast and aggressively to significant pitch deviations. Also
the sine-terms appearing in all second-order derivatives demonstrate that the system’s
non-linearities emerge only for pitch angles larger than zero. In consequence, all re-
maining weights were chosen to be scaled with the current pitch angle, as well, as any
highly dynamic system state can be considered critical when coupled with a large pitch
deviation.
The entries, q2 and q4, were chosen dependent on the state they are penalizing on the
one hand and additionally on the current yaw rate as the TWIP’s driving and pitch
acceleration are strongly influenced by spinning motions. The q6-entry weighting the
yaw rate itself, reflects all intercouplings of the system’s dynamics. The exact numerical
values chosen within the matrix entries are the mere result of an approach of trying-out-
and-adjusting.
Concerning the input weighting matrix, identical terms, r, are chosen to penalize either
torque, as there is no apparent reason to make the input to one wheel more expensive
than to the other. The motivation behind choosing r only dependent on the pitch and
yaw rate, is to impose the aforementioned soft constraint on the input. As described
above, the detection of a high pitch or yaw rate alone is not to be considered a critical
state, as long as the TWIP remains reasonably close to its upright equilibrium. In order
to prevent the controller from overshooting, in such situations the input penalty is set
reasonably high compared to the state weightings. As soon as the robot experiences an
additional pitch deviation, the state weightings will however dominate again.
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5.2.2 Solving the SDRE

As for the higher-order dynamics of the TWIP an analytical closed-form solution was
not obtainable, in the context of this paper the approach of solving the “frozen” SDRE
online at a relatively high Hertz-rate was decided on. The preimplemented implicit
LQR-solver of MATLAB, icare, was used to solve the ARE resulting from evaluating
the SDRE at the present state and to determine the current gain matrix. Further infor-
mation about the MATLAB icare-solver can be found online, e.g. on the MathsWorks
documentation website. For the integration of the system states, a simple fixed-stepsize
Runge-Kutta-method was used that had been applied successfully on the TWIP for
online state integration in the context of previous works at the Chair of Automatic Con-
trol. The exact stepsizes used for the simulation runs varied and are therefore provided
individually for each of the following examples.

5.3 Significance of Design Flexibilities Within SDRE-based
Controller Synthesis

Before concluding about SDRE-based controller synthesis, the following examples will
showcase several issues within SDRE-based design discussed so far and demonstrate
how design flexibilities within the SDRE-method influence the resulting controller per-
formance. For easier comparison of the results, four initial states as provided in tab. 5.2
were determined to represent common “critical situations” of the TWIP in real-life sce-
narios and to later be used in simulations.

Table 5.2: The initial states used within simulations presented in the following. Each
state was chosen to represent some specific “dynamically critical” situation the TWIP
might face in applications.

Symbol x ẋ θ θ̇ ψ ψ̇

x0,m 0 m 0.25 m/s 0.2π rad 0.75π rad/s 0.25π rad π rad/s
x0,p 0 m 0.5 m/s 0.3π rad π rad/s 0 rad π rad/s
x0,y 0 m 1 m/s 0.1π rad 0.75π rad/s 0 rad 5.75π rad/s
x0,c 0 m 1 m/s 0.333π rad 2π rad/s 0.5π rad 5.75π rad/s

The initial state, x0,m, denotes an overall still moderately critical state, however the
TWIP is already subject to a pitch deviation and significant pitch and yaw rate at
the same time. The initial vector, x0,p, describes a state critical due to its high pitch
deviation, x0,y a critical high spinning state, and finally x0,c a most critical initial states
as all shape variables are almost chosen at their limits as defined in tab. 5.1. Clear
reference will be provided for each simulation run which initial state and stepsize was
used.
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5.3.1 Comparison of Different Feasible SDC-Parametrizations

First of all, the debated influence of a physically meaningful SDC-parametrization will
be highlighted. For this purpose, a quasi-linear representation hereafter referred to as
TP-SDC-parametrization was defined. The state-dependent system matrix of the TP-
SDC-parametrization was chosen to have the following structure:

Atp(x) =



0 1 0 0 0 0
0 0 0 0 atp,25(x) 0
0 0 0 1 0 0
0 0 0 0 atp,45(x) 0
0 0 0 0 0 1
0 0 0 0 atp,65(x) 0


(5.31)

where the individual matrix entries are again provided in the appendix (A.4). Obvi-
ously, this matrix does not represent any dynamical intercouplings as all state-dependent
coefficients were placed in the column representing the yaw angle which as an exter-
nal variable has no influence on the system’s remaining dynamics. Nevertheless, the
SDC-representation of eq. (5.31) is feasible as it defines a continuously differentiable
quasi-linear representation and A(x)x = f(x) holds for all system states. Additionally,
executing the pointwise controllability analysis as described in sec. 5.1.2 on the Atp(x)-
parametrization only yields in non-controllability for θ ≡ 02. The singularity arising
for ψ = 0 was handled by switching to another simple structured SDC-parametrization
introduced in [26] for ψ < 10−12:

AKim(x) =



0 1 0 0 0 0
0 0 aKim,23(x) 0 0 0
0 0 0 1 0 0
0 0 aKim,43(x) 0 0 0
0 0 0 0 0 1
0 0 aKim,63(x) 0 0 0


(5.32)

where again the property of sin(θ)
θ → 1 as θ → 0 is exploited and the matrix entries

are provided in the appendix (A.4), as well. The simulation results shown in fig. 5.2
correspond to the modest, x0,m, and critical, x0,c, initial states. As the TP-SDC-
parametrization was found to have weak numerical properties, all simulations were exe-
cuted at a small stepsize of ∆t =0.025ms to factor out instability due to numerical issues
as much as possible. The weighting matrices employed within the simulations were the
ones defined in sec. 5.2.1 and identical for either parametrization. The trajectories of the
corresponding inputs are provided in fig. 5.3.

2Note that this issue would need to be further addressed if one actually planed to use this repre-
sentation for controller synthesis and had to be handled by e.g. switching to another SDC-matrix for
non-controllable system states.
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ẋ
in

m
/s

Driving Velocity

SDC-Used-m
SDC-TP-m
SDC-Used-c
SDC-TP-c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−1.5

−1

−0.5

0

0.5

1

1.5

time in s

θ
in

ra
d

Pitch Angle

SDC-Used-m
SDC-TP-m
SDC-Used-c
SDC-TP-c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

time in s

θ̇
in

ra
d/

s

Pitch Rate

SDC-Used-m
SDC-TP-m
SDC-Used-c
SDC-TP-c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time in s

ψ
in

ra
d

Yaw Angle

SDC-Used-m
SDC-TP-m
SDC-Used-c
SDC-TP-c

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−20

−15

−10

−5

0

5

10

15

20

time in s

ψ̇
in

ra
d/

s

Yaw Rate

SDC-Used-m
SDC-TP-m
SDC-Used-c
SDC-TP-c

Figure 5.2: Comparison of the simulated dynamics of the SDC-parametrization chosen
for controller synthesis, Used-SDC, and an alternate feasible SDC-representation, TP-
SDC, that pays no attention to the TWIP’s dynamical intercouplings.

While the state trajectories qualitatively look similar, for all system states the overshoot
is drastically higher for the TP-SDC-parametrization and in consequence state conver-
gence achieved at a slower rate. Additionally, significantly noticeable in the pitch rate
the controller based on the TP-SDC-parametrization struggles with the dynamically
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critical initial state, x0,c, and experiences not only strong overshooting but also minor
oscillations at about t = 1.2 s despite the small stepsize which do not appear with the
Used-SDC-parametrization.
The TP-SDC-parametrization however manages to drive the yaw angle to the origin
faster than the Used-SDC-parametrization does. As this can be considered a non-crucial
task when stabilizing the TWIP in its upright equilibrium, it can be concluded that
the TP-SDC-Parametrization over-emphasizes on the yaw dynamics while producing
unwanted overshoot in more relevant states like the pitch angle which then causes the
controller to struggle when trying to restabilize the system dynamics.
The beneficial choice of the Used-SDC-Representation becomes even more prominent
when taking a closer look at the input trajectories of fig. 5.3. While the Used-SDC-
representation in the beginning also requires larger torques to stabilize the dynami-
cally critical initial state, x0,c, it still remains within the range of technical feasibil-
ity, while the TP-SDC-Parametrization not only by far exceeds the viable range but
also exhibits strong chattering when trying to restabilize the drastic pitch rate over-
shoot. For the dynamically modest initial state, x0,m, the inputs remain within a
non-problematic scale, however they experience shoot-ups from time to time while the
Used-SDC-parametrization provides a much smoother transition.
Another reason to favour the Used-SDC-Parametrization are its numerical properties.
The stepsize within these simulations had to be chosen significantly small to allow the
TP-SDC-Parametrization to run at all without exhibiting major numerical issues, while
the Used-SDC-Parametrization exhibits no complications even for stepsizes twenty times
as large of ∆t = 0.5 ms – which will be a remarkable advantage when having to solve
the SDRE online in future applications as a stepsize of ∆t =0.025ms would most likely
not be realisable in online computations.
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Figure 5.3: Comparison of the inputs of the SDC-parametrization, Used-SDC, chosen for
controller synthesis and an alternate feasible SDC-representation, TP-SDC, that pays
no attention to the TWIP’s dynamical intercouplings. Note that the inputs have been
plotted separately for each initial state and additionally the Used-SDC trajectories in
circles to allow better visible distinction. Also, the plots are truncated at t = 2 s as all
inputs remain in close proximity to the zero-axis from there on.

5.3.2 Comparison of State-Dependent and Constant Penalty Matrices

Also addressed within previous sections has been the possibility to influence state conver-
gence and input effectiveness through adapting the state-dependent weighting matrices,
Q(x) and R(x). Especially, the idea of limiting the torques required to stabilize the robot
was suggested. This capacity will now be demonstrated by comparing the controller per-
formance resulting from constant and state-dependent penalty matrices while using the
same Used-SDC-Representation as defined in sec. 5.1.1. The state-dependent matrices
are the ones introduced in sec. 5.2.1, while the constant matrices were chosen based on
the constant terms within the state-dependent matrices, however the coefficients, q1,
q5, and q6, were slightly adapted to not over- or underweight the corresponding system
states in the absence of the state-dependent terms of the original penalty matrices:

Q = diag(1 3 10 2 1 2.5) (5.33)
R = diag(0.5 0.5). (5.34)
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The simulation results included in fig. 5.4 correlate to the high pitch deviation, x0,p,
and high yaw rate, x0,y, initial states and were executed at a stepsize of ∆t = 0.1 ms.
Again, the input trajectories are provided separately to allow better distinction of the
individual plots and are listed in fig. 5.5. Investigating the state trajectories resulting
from the employment of constant weighting matrices reveals no evidently undesirable
behaviour. Quite the contrary, except for the pitch rate all states actually converge
faster and with less overshoot than the state trajectories corresponding to the SDRE-
based controller defined through state-dependent penalty matrices. Besides quite sharp
transitions in some system states, merely judging from the trajectories of fig. 5.4 there
are no apparent downsides to the simplifying choice of constant weighting matrices.
Examining however the input trajectories plotted in fig. 5.5, the disadvantage of constant
penalty matrices becomes obvious. While the state-dependent weighting matrices for the
most part rely on inputs within the feasible range of about 1Nm to stabilize the high
pitch initial state, x0,p, the constant weighting matrices produce inputs off that range
by a factor of ten. For the high yaw rate initial state, x0,y, this effect becomes even
more prominent as the required left-wheel torque shoots up to about 37Nm, while
the controller under the employment of state-dependent weighting matrices manages to
stabilize the TWIP by applying a maximum torque of about 1Nm.
Recalling the motivation behind choosing state-dependent coefficients of the weighting
matrices in sec. 5.2.1, for the high yaw initial state, x0,y, far superior efficiency can be
expected, as this is the exact situation that the performance index was adapted for. As
the TWIP experiences a high spinning rate but no severe pitch deviation, the controller
subject to the state-dependent penalty matrices detects the overall system state to not be
critical and consequently does not overreact. The minor shoot-up of the applied torque
leaving the feasible range, when employing the state-dependent weighting matrices-based
controller for the high pitch initial state can be argued as a result of having decided to
let the controller act most drastically on high pitch deviations.
The provided examples reaffirm that per se constant matrices do no imply worse con-
troller performance in terms of assuring smooth and fast convergence to the origin. How-
ever, these simulations underline the reasoning of the chosen state-dependent weighting
matrices in sec. 5.2.1 where the importance of making the inputs more expensive for
highly dynamical system states that nevertheless do not threaten postural stability was
highlighted. Especially the constant-weighted trajectory corresponding to the high yaw
rate initial state, x0,y, exhibits this kind of overreaction of the controller resulting in
required inputs far off the technically viable range.
In conclusions good performance can be obtained when executing SDRE-based design
with constant matrices – and many examples are provided in the literature where this
approach was applied successfully. When however the system’s input are subject to tech-
nical limitations, the state-dependencies of the penalty matrices make for an easy and
low-effort opportunity to guide the inputs to remain within a technical feasible range.
The choice of state-dependent weighting matrices allows to make inputs more expen-
sive in certain system states or “situations” of the plant where for example non-linear
intercouplings are less present and the overall system state can therefore be considered
non-critical.
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Figure 5.4: Comparison of the dynamics of the SDC-parametrization chosen for con-
troller synthesis when using state-dependent weighting matrices or constant ones. While
the constant weighting matrices result in fast state convergence and even less overshoot
in all states but the pitch rate, the required inputs to achieve stabilization as shown in
fig. 5.5 are off the feasible range.
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Figure 5.5: Comparison of the inputs required for stabilizing the system states depending
on whether constant or state-dependent weighting matrices are employed. While the
inputs for the state-dependent weighting remain within the technically viable range
except for a minor peak in the very beginning when stabilizing the high pitch initial
state, the required inputs for constant weighting shoot up to a technically non-realisable
range. The provided trajectories were truncated at t = 1.5 s, as all inputs remained close
to zero from there on.

5.4 Comparative Study of SDRE-based and LQR-based
Controllers for the TWIP

As the SDRE-method can be interpreted as the non-linear mimicry of LQR-synthesis, an
obvious choice for comparing it in regards of obtainable controller performance lies in a
LQR-controller based on the system’s linearized dynamics. Accordingly, the TWIP’s dy-
namics were linearized about their upright equilibrium point and the resulting constant
system matrices are provided in the appendix (A.5). Again the built-in MATLAB LQR-
solver was used to compute a now constant feedback gain matrix, K, for the linearized
dynamics subject to the performance index defined through the constant weighting ma-
trices as provided in eq. (5.33). The obtained linear controller was subsequently applied
to the TWIP and its closed-loop behaviour compared to the SDRE-controlled system.
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5.4.1 Controller Performance when Stabilizing Different Initial States

First of all, the two controllers will be compared in regards of state convergence and input
efficiency when stabilizing the dynamically moderate, x0,m, and critical, x0,c, initial
states without any additional configurations or perturbations applied. The computed
state trajectories for the two controllers are presented in fig. 5.6. The simulations were
executed with a fixed stepsize of ∆t = 0.1ms and the corresponding input trajectories
are provided in fig. 5.7. Qualitatively, the trajectories for the LQR-controlled system
resemble the ones given in fig. 5.4 obtained from the SDRE-controller subject to constant
weighting matrices and consequently similar conclusions can be drawn about the LQR-
controlled system.
While the LQR-controller manages to briefly drive the states to the origin while exhibit-
ing comparable or even less overshoot than the non-linear SDRE-controller, the shoot up
of the required inputs to do so is even more drastic than in the SDRE-case with constant
weighting matrices as the input trajectories of fig. 5.7 showcase. In order to stabilize the
highly dynamical initial state, x0,c, the linear controller relies on imposing torques of
almost up to 50Nm, while the non-linear controller manages to remain within the tech-
nical feasible range of 1Nm. After the simulation time of 5 s the SDRE-controller has
nevertheless been able to drive the system states similarly close to the origin while having
consumed a fraction of the energy the LQR-controller would have required.
This effect is common for linear controllers and repeatedly discussed in papers on SDRE-
based controller synthesis. As among others pointed out in [12, 13, 16], linear controllers
tend to try and brutally cancel out all non-linearities within the system’s dynamics which
often amounts to vast energy consumptions when trying to stabilize a non-linear system.
While the moderately dynamical initial state, x0,m, can already only be stabilized with
inputs ten times as large as feasible, for the critically dynamical state, x0,c, the linear
controller would demand inputs of up to fifty times of the viable maximum torque
applicable. In conclusion, as the robot would not be able to produce torques within that
scale the linear controller can be expected to likely fail in applications when subject to
dynamically critical conditions. The non-linear SDRE-based controller on the other hand
can exploit the systems “natural” dynamics and consequently restore postural stability
far less aggressively even in critical situations.
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Figure 5.6: Comparison of the obtained state trajectories when either a linear LQR-
controller or non-linear SDRE-controller is applied. Even though convergence can be
achieved marginally faster for most states when employing the LQR-controller, the inputs
required to do so as plotted in fig. 5.7 exceed the technical realisable scale.
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Figure 5.7: Comparison of the inputs required to stabilize the TWIP when using a
linear LQR-controller versus the proposed SDRE-controller. While the SDRE-controller
manages to restores a stable system state while not ever exceeding the technical viable
input range, the LQR-controller would rely on inputs off by a factor of up to fifty to
restabilize the dynamically critical initial state.

5.4.2 Controller Performance in the Presence of Disturbance

The remaining two examples are aimed to provide further insight on robustness prop-
erties of the LQR- and SDRE-controller respectively by evaluating how they can be
expected to perform in “unexpected” scenarios. For this purpose, first the controllers
were examined when subject to arising step-disturbances as for instance when driving
over a small obstacle. Similar experiments were executed in [26] and did not pose a
threat to destabilize the robot with the SDRE-controller applied – however the TWIP
used within this publication has strongly differing parameters such that for a slender-
body TWIP as employed within this work, the results might considerably deviate.
In order so simulate the step-disturbance, within the simulation time of t ∈ [0.5 s, 1.0 s]
a constant torque of τdis = 0.4 N m was added to the right wheel. The chosen time
frame describes the TWIP bending over at a large pitch distortion and can consequently
be considered a critical moment for an external disturbance to arise. The resulting
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trajectories as presented in fig. 5.8 again correspond to the dynamically modest, x0,m,
and critical initial states, x0,c, and were executed at a fixed stepsize of ∆t = 0.05 ms.
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Figure 5.8: The resulting state trajectories when a constant disturbance of 0.4Nm is
applied between simulation times, t = 0.5 s and t = 1.0 s. While the SDRE-based
controller manages to restabilize the system while experiencing some oscillations, the
LQR-controller hardly seems to be affected by the step-disturbance.
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The computed state trajectories of the LQR-controlled system are almost indistinguish-
able to the ones of fig. 5.6 corresponding to the system subject to no disturbance. The
same can be observed for the input trajectories provided in fig. 5.9 of the LQR-controlled
system – the occurring disturbance is compensated within a single timestep and conse-
quently no significantly increased control effort can be determined.
For the SDRE-controlled system remarkably different state convergence can be observed
when compared to the non-disturbed trajecotries of fig. 5.6. The disturbance occurs as
the system is deviated from the upright equilibrium by almost −π

3 and consequently
the system is experiencing strong non-linear state intercouplings. Therefore the system
experiences shoot-ups and some oscillation in the inputs when the disturbance is applied
and withdrawn as displayed in fig. 5.9. Nevertheless, the SDRE-controller restabilizes
the disturbed system and regulates the yaw dynamics and pitch rate to the origin within
the remaining simulation time, as well. While after the predefined simulation time of 5 s
the pitch deviation and driving velocity are still larger than zero, they are kept within a
non-critical range and can be expected to converge within short time. While the inputs
the SDRE-controller applies to maintain stability are higher than for the non-disturbed
examples of the last section, they still remain within the feasible range at all times
showcasing that the input efficiency determined through the chosen performance index
can also be preserved in unexpected situations.
The executed simulations reaffirm the excellent robustness properties of LQR-design
[37] and prove the SDRE-design to be inferior in this regard. However, as with the
examples provided in the last section, the LQR-controller relies on applying torques far
off the feasible range to stabilize the system. Even though the SDRE-controlled system
exhibits drastic overshooting, the controller still manages to restabilize the system in a
dynamically critical situation while maintaining the required inputs in the technically
viable range persistently.
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Figure 5.9: The corresponding inputs when the LQR- and SDRE-based controllers are
subject to a step-disturbance. While the inputs required by the SDRE-controller slightly
shoot-up when the disturbance is applied and withdrawn, they quickly converge back to
low effort stabilization afterwards while remaining in the feasible range at all times.
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5.4.3 Controller Performance on Model with Non-linear Friction

Lastly, in order to test the two controllers in terms of their robustness regarding mod-
elling inaccuracies, examples will be provided of how the LQR-based and SDRE-based
controllers perform on an extended dynamic model of the robot taking into account
non-linear friction effects. The model used within the following simulations incorporates
friction between the wheels and the ground as well as between individual components of
the TWIP. The resulting state trajectories after simulation at a stepsize of ∆t = 0.1ms
for the dynamically modest, x0,m, and fast spinning initial states, x0,y, are provided in
fig. 5.10.
While the SDRE-based controller still manages to drive the pitch deviation to the origin
smoothly without any significant overshoot and within reasonable time, the controller
struggles with regulating the driving velocity and yaw rate back to the equilibrium state.
While the yaw rate seems to converge to a constant spinning mode, the driving velocity
starts to diverge to non-physical values.
These results can be reasoned as the SDRE-controller as proposed within this work sets
a strong focus on reestablishing the TWIP in its upright zero-pitch deviation and explic-
itly demands to not react too drastically to high yaw rates or driving velocities alone.
Additionally, the friction terms directly influence the unstable system states while their
effect on the pitch deviation is only indirect through dynamical decoupling. However,
to achieve sufficient controller performances when subject to friction as implemented in
the presented model, the controller would most likely have to be redesigned based on a
non-linear model taking into account according effects.
Note that only trajectories corresponding to the SDRE-controlled system are plotted in
fig. 5.10, as the LQR-controlled system diverges within the first ms of simulation time as
indicated in the plots of fig. 5.11. This again highlights the LQR-controller’s alienness to
the system’s natural dynamics, while the SDRE-controller “being aware” of the system’s
inherent non-linearities can still stabilize some system states even in the presence of the
unknown effects of non-linear friction terms.
Additionally, notice that nevertheless the inputs required to partially stabilize the TWIP
also start to diverge to physically non-reasonable values after about 2 s of simulation
time when employing the SDRE-based controller, as well. For this reason, no input
trajectories are provided and the SDRE-controller can likely be expected to fail if friction
effects this strong were to be present. The examples nevertheless showcase how the
predefined performance index majorly affects resulting controller performance even if
subject to unfamiliar dynamics.



5.4. Comparative Study of SDRE-based and LQR-based Controllers for the TWIP 65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10

20

30

40

50

60

70

80

time in s

x
in

m

Path Length

SDRE-Fric-m
SDRE-Fric-y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

5

10

15

20

25

time in s

ẋ
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Figure 5.10: The resulting state trajectories when applying the SDRE-controller based
on a frictionless model to an extended model taking into account non-linear friction
effects. While the controller still manages to stabilize the TWIP’s pitch deviation, it
can no longer get hold of its driving velocity and spinning motion. In order to improve
controller performance, the performance index could be adjusted or a completely new
controller taking into account the friction effects designed.
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Figure 5.11: The state trajectories of the LQR-controlled system start to diverge within
the first couple of steps of simulation time. Here the simulated path length and pitch
deviation are provided as examples.

5.5 Remarks on SDRE-based Controller Synthesis for the
TWIP

Through the SDRE-approach, a controller was found that manages to stabilize the TWIP
in its upright position for a large region within the state-space. The additional degrees
of freedom arising from defining a quasi-linear SDC-representation and state-dependent
weighting matrices were exploited to allow predominantly smooth state convergence,
while keeping the applied inputs within a technically realisable scale of 1Nm even in
dynamically critical situations. Through more intensive studies, these parameters could
probably be adapted to further improve the corresponding closed-loop dynamics and
input efficiency.
The proposed SDRE-based controller taking into account the robot’s inherent non-
linearities proved superior energy efficiency when compared to a LQR-controller based
on the linearized dynamics and an alternate SDRE-controller based on a differing SDC-
parametrization. While the linear controller already exceeded the feasible input range
for non-critical states, it relies on tremendous input efforts to be able to stabilize the
system in highly dynamical situations, such that it reasonably can be expected to fail in
application.
Additionally, note that the proposed SDRE-controller allowed for the simple Runge-
Kutta-solver to run without numerical issues at a significantly larger stepsize compared
to the alternate SDRE-controller based on the TP-SDC-parametrization and the LQR-
controller. As stepsizes significantly smaller than 1 ms will be problematic to realize
when applying the controller to the actual robot, this will be a critical advantage of the
proposed SDRE-controller.
Subject to step-disturbances in the input, the SDRE-based controller – while not exhibit-
ing robustness properties as strong as the LQR-controller – still managed to restabilize
the system without exhibiting drastic oscillations. Additionally, the SDRE-controller
remained within in the viable input range at all times. Employing the found controller
on a model taking into account non-linear friction terms showed sufficient performance
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in stabilizing the pitch deviation but failed to regulate the driving velocity and yaw
rate to the origin. In order to achieve better performance on the friction model, the
state-dependent weighting matrices could be adjusted accordingly – as in its current
configuration the controller is defined to act aggressively only if large pitch deviations
arise. When trying to regulate the friction model with the LQR-controller, the system
diverged within a short time frame. Further real-life experiments would have to be
conducted to judge controller performance and robustness in application.
During simulations no non-controllable system state as well as no initial state was found
for that the proposed SDRE-controller failed to restore the equilibrium state within
reasonable time and effort – even when all system states are chosen at their physical
limits as defined in tab. 5.1. However, even though a significant number of simulations
was executed in the context of this work, these can not yet be considered technical proof
of closed-loop stability. For this reason, the next chapter will introduce an approach
to characterize the closed-loop dynamics in regards of stability based on contraction
analysis, while facilitating computations by using the results already obtained from
pointwisely solving the SDRE.



68 Chapter 5. Application of SDRE-based Controller Synthesis to the TWIP



Chapter 6

Contraction-based Stability
Analysis of SDRE-controlled
Systems

While the last chapter introduced a controller based on the SDRE-technique and em-
pirically analysed its performance through different simulation set-ups, in this chapter
a systematic approach will be proposed to evaluate the obtained closed-loop dynamics.
In order to determine stability properties of the closed-loop system, contraction theory
will be employed and a method introduced to fit a contraction metric, while making
use of the fact that during SDRE-synthesis pointwisely some positive-definite metric has
already been found in the solution of the SDRE.
First however, a short overview on the topic of stability margins and analysis for SDRE-
based controllers is provided in sec. 6.1. Hereinafter, the idea of exploiting the solution
of the SDRE to help guide the quest for a suitable contraction metric is first motivated
in sec. 6.2 and subsequently the resulting method introduced in sec. 6.3. Lastly, the
obtained contraction metric and corresponding contraction region will be showcased
and discussed in sec. 6.4. This concluding application of contraction analysis should
provide further insights on how the evaluation of local properties in local coordinates
allows characterization of the original system – which is unique for contraction theory
and therefore makes it an attractive tool to examine SDRE-controlled systems.

6.1 Stability Characteristics and Analysis for SDRE-con-
trolled Systems

A general drawback of SDRE-based controller design is that it does not implicitly guar-
antee stability margins of the closed-loop dynamics as other design techniques do. For
higher-order or in other regards complex systems, the solution to the SDRE and therefore
by implication also the closed-loop dynamics:

ẋ = (A(x)−B(x)K(x))x = Acl(x)x (6.1)

are generally not explicitly known [18] such that only local asymptotic stability about
the origin can be assured. As the solution of the ARE in x = 0 defines closed-loop

69
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dynamics, Acl(0), exclusively containing eigenvalues with strictly negative real-parts
[17], employing Lyapunov’s indirect method yields local asymptotic stability about the
equilibrium, xeq = 0. Additionally, the local solution of the SDRE in a certain system
state, x, is assured to define a locally stabilizing solution, however these solutions can
never assure global stability – even if the closed-loop dynamic matrix, Acl(x), is known
to only have eigenvalues in the left complex half-plane within the entire state-space1.
Consequently, stability analysis of SDRE-controlled systems can be considered a crucial
as well as challenging task in evaluating the obtained controller. Several publications
can be found addressing themselves to this task: Erdem and Alleyne propose an an-
alytical approach in [17] and one based on “overvaluing” vector norms in [18] solved
numerically, however both can be considered to only be feasible for low order systems.
Two further numerical approaches based on Lyapunov theory are the ones by Bracci in
[5] and by Seiler who employs sum-of-squares programming in [40]. However Seiler’s
method is quite restrictive as it for examples assumes all state-dependent system ma-
trices to be exclusively polynomial in the system states and Bracci’s approach again is
computationally expensive for higher-order systems.
Thus, as the investigated TWIP is a six-dimensional system and the solution of the
SDRE is only accessible pointwise, an alternate approach based on contraction theory
is presented in the context of this work. In [7] Chang first presented the idea of using
contraction theory to examine closed-loop stability properties of SDRE-controlled sys-
tems. Consequently, the procedure of [7] might at first appear similar to the method
proposed within this paper as it also seeks to define stability margins by evaluating the
contraction conditions as provided in def. 3.9. However, Chang does not explain how he
numerically approaches the problem and also exclusively discusses a system of order two
when applying his method. Additionally, in [7] the condition of def. 3.9 is relaxed to a
critical extend, which will be further discussed in sec. 6.3 where the applied method is
introduced in detail. Prior to this, some concepts of Riemannian geometry which are
essential within contraction theory will be quickly outlined in order to further motivate
the proposed method.

6.2 Motivation of Fitting a Contraction Metric Based on
Frozen SDRE-Solutions

When employing contraction theory for stability analysis, one tries to find a symmetric
positive-definite and generally state-dependent metric, M(x), defining a transformation
to local differential coordinates, δz. For the system dynamics described by these local
coordinates, δz, exponential convergence can be deduced to hold for all system states
in which the found metric fulfills the condition of def. 3.9 as within that entire region,
it can be concluded that all differential distances,

√
δzT δz =

√
δxTM(x)δx, between

neighbouring trajectories will vanish at an exponential rate. This observation then allows
the corollary that if the system is contracting in local coordinates, δz, the original system
represented by differential coordinates, δx, exhibits exponential convergence to a single
trajectory, as well.

1Recalling Lyapunov’s direct method as discussed in sec. 3.3.2, proving that local asymptotic stability
holds for the entire state-space is not sufficient to confirm global asymptotic stability. Within Lyapunov
theory matters like finite escape time and invariant sets do not allow such conclusions for non-linear
system by exclusively examining local properties [16]. For further information refer to [16, 42, 24].
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The open quest remains in finding some approach to determine a contraction metric,
M(x), suggesting to discuss the definition of a metric and the ideas linked to it in some
more detail. Contraction theory is based on two key concepts of Riemannian geometry:
Riemannian manifolds, Υ, described through Riemannian metrics, M(x), which is why
those notions will be minimalistically outlined in the upcoming section. Note that the
following explanations will only be to an extend necessary to motivate the proposed
method and have the mere purpose to ease understanding, however by no means claim
to be complete. The following definitions are adapted from [48] – for exact and more
detailed derivations the author refers to this material.
A tuple, (X, d), of a set, X, and a mapping, d, defined as

d : X ×X → K(x1,x2) x1,x2 ∈ X, K ∈ R, (6.2)

define a metric space if for the mapping certain criteria (positiveness, zero distance,
symmetry, and triangle inequality) hold. The mapping, d, is then referred to as the
corresponding distance function or metric [48].
Euclidean space defines a metric space where distances within the set of Rn are measured
through the mapping defined by the well-know Euclidean norm:

dist(x1,x2) =
√

(x1,1 − x2,1)2 + (x1,2 − x2,2)2 + ... + (x1,n − x2,n)2. (6.3)

The term manifold defines a metric space that locally resembles an open subset of Eu-
clidean space where however globally properties from Euclidean space no longer hold [48].
Examples of such characteristics that do not need to be satisfied on a manifold are the
shortest distance being defined through a straight line and triangles having an constant
angle sum of π. These kind of properties are also covered in the notion of “curvilinear”
coordinates contrary to Cartesian coordinates. Consequently, to put points on a mani-
fold into context, e.g. in terms of the distance separating them, tools from Euclidean
geometry are no longer sufficient.
A Riemannian metric, M(x), equips a continuously differentiable manifold, Υ, with
an inner product on each tangent space [29], providing a local concept of lengths:√
δxTM(x)δx. In order to allow such a definition of length, the Riemannian metric

must be symmetric positive-definite and continuously differentiable. Note that the Rie-
mannian metric per se is not a metric in the sense of metric spaces as it does not yet
define a global distance function. The Riemannian metric can however be employed
to measure distances between two points on the manifold, by first computing a curve
connecting them along the curvilinear coordinates of the manifold:

γ : [0, 1]→ Υ dγ(s)
ds

6= 0 ∀s ∈ [0, 1], (6.4)

where γ(s = 0) = x1 and γ(s = 1) = x2 define the two points on the manifold to be
connected. Hereinafter, the distance can be determined by integration along this curve
[29]:

distM(x1,x2) = l(γ(s)) =
∫ 1

0

√
dγ(s)
ds

T
M(γ(s))dγ(s)

ds
ds. (6.5)

Consequently the Riemannian metric can be understood as inducing a distance function
and the tuple of a Riemannian manifold, Υ, and metric, M(x), then interpreted as a
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metric space. The minimal-length connection of two points on the Riemannian mani-
fold can be described through so-called geodesics [48]. In [29] one possible approach is
presented to compute geodesics, however a variety of methods exist.
Reinterpreting Euclidean space considered in most engineering tasks as a Riemannian
manifold, the corresponding Riemannian metric is the identity matrix, I, and the dis-
tance function collapses to the Euclidean norm – the differentiation between local lengths
and global distance diffuses. The shortest distance between two points always yields a
straight line:

distI(x1,x2) =
√

(x1 − x2)T I(x1 − x2). (6.6)

Now, from optimal control theory it is known that the solution of the SDRE, P(x), de-
fines a continuously differentiable symmetric positive-definite matrix that when applied
as a control law, u(x) = −R−1(x)BT(x)P(x)x, guarantees local stability. Additionally,
one can determine that this solution in fact describes a Riemannian metric inducing the
local notion of length,

√
δxT P(x) δx.

In conclusion, stability analysis based on contraction theory implies the search for a
Riemannian metric locally assuring exponential convergence. When having solved the
SDRE, pointwise a positive-definite metric has been found that locally guarantees asymp-
totic convergence and is additionally known to locally have optimality properties in
regards of the system dynamics and the predefined performance index. This finding mo-
tivates the fitting method proposed in the context of this paper employing the gridded
solution of the SDRE to provide some local guidance in finding a contraction metric.

6.3 Introduction and Comparison of a Fitting Method for
Contraction Metrics

Proposed Method to Fit a Polynomial Contraction Metric

The proposed fitting method is based on the concepts of semi-definite programming
which encompasses optimization problems where decision variables are symmetric ma-
trices instead of vectors. Generally, so-called semi-definite programs (SDPs) define op-
timization problems involving semi-definite constraint, i.e. linear matrix inequalities
(LMIs) or bi-linear matrix inequalities (BMIs) [31]. A LMI demands some definiteness
properties for a given linear matrix expression and can always be denoted by:

L(x) = L0 +
m∑
i=1

yiLi > 0 (6.7)

where y defines an m-dimensional vector and Li n × n-symmetric matrices [31]. The
extension to BMIs is straight-forward and can for instance be found in [46]. Typical
SDPs usually define feasibility problems where a symmetric matrix fulfilling the given
constraints is searched for but can as well be extended by some objective, e.g. addition-
ally minimizing the matrix’s trace or likewise. For further information on SDPs as well
as examples and properties of LMIs, refer to [31, 46].
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Again recalling the contraction condition of def. 3.9, yields that applying contraction
analysis to the SDRE-controlled systems defined through closed-loop dynamics as in
eq. (6.1), results in finding some metric, M(x), such that:

M(x) > 0 (6.8)(
∂Acl(x) x

∂x

)T
M(x) + M(x)

(
∂Acl(x) x

∂x

)
+ Ṁ(x) ≤ −βM(x) (6.9)

holds for a as large as possible region of the state-space. These conditions define two
LMIs in the contraction metric, M(x), and consequently what at first seems like a simple
feasibility SDP. In fact for a constant metric, this feasibility problem could easily be
solved, however as the desired metric, M(x), is state-dependent and additionally the
closed-loop dynamics, Acl(x) x, are not known analytically known but only accessible
pointwise, a more advanced procedure as described in the following is required.
First of all to describe the state-dependency of the contraction metric, a polynomial
approach was chosen. Consequently, all metric entries were defined as polynomial in the
TWIP’s shape variables, [ẋ, θ, θ̇, ψ̇], with a maximum degree of m, meaning that any
metric entry:

Mpq(ẋ, θ, θ̇, ψ̇) =
m∑
i=0

m∑
j=0

m∑
k=0

m∑
l=0

cpq,ijkl ẋ
iθj θ̇kψ̇l i+ j + k + l ≤ m (6.10)

contains any possible products of system states defining monomials with a degree of
smaller than or equal to m. The set of decision variables is consequently made up of the
coefficients of the monomials, cpq,ijkl, of each metric entry, Mpq.
Additionally, as the contraction conditions can not be evaluated analytically, a gridding-
approach analogously to the controllability analysis of the found SDC-parameterization
in sec. 5.1.2 was decided on. Again, the shape variable limits as defined in tab. 5.1 were
used as a guideline and a grid equidistant within state-space was chosen - the exact
parameters of the grid used will be provided in sec. 6.4. Within these predefined grid
points, xg, ineq. (6.9) was evaluated and the resulting LMIs:

∂(Acl x)T

∂x

∣∣∣∣
x=xg

M(x = xg)+M(x = xg)∂(Acl x)
∂x

∣∣∣∣
x=xg

+Ṁ(x = xg) ≤ −βM(x = xg)

(6.11)

were added to the optimization problem individually to demand some local property
for the metric to be fitted. Due to the polynomial form of the metric, M(x), its time
derivative defined as:

Ṁ(x) =
(
∂M(x)
∂x

T
Acl(x)x

)
(6.12)

can easily be computed as the Jacobian of the metric, ∂M(x)
∂x , again is polynomial in x.

However, more difficultly lay in defining the Jacobian of the closed-loop system, ∂Acl(x) x
∂x .
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Considering the closed-loop dynamics in detail:

∂Acl(x) x
∂x = ∂ (A(x)−B(x) K(x)) x

∂x (6.13)

= A(x) + ∂A(x)
∂x x−B(x) K(x)− ∂ (B(x) K(x))

∂x x,

the addends defining the Jacobian can be addressed individually. While the first two
terms can be determined analytically by evaluating the state-dependent system matrix,
A(x), as defined in sec. 5.1.1, the third term was at least accessible pointwise as the
state-dependent gain-matrix for a certain grid-point, K(x = xg), can be obtained from
solving the corresponding ARE. However, for the last partial derivative:

∂ (B(x) K(x))
∂x x = ∂B(x)

∂x K(x)x + B(x)∂K(x)
∂x x (6.14)

the Jacobian of the gain matrix, ∂K(x)
∂x , had to be assumed to be reasonably small

compared to the Jacobians of the system’s dynamic matrices2 and consequently the
second addend was neglected. The first term was again computed by determining the
Jacobian of the input matrix, ∂B(x)

∂x , analytically and employing the pointwise solution
of the SDRE for K(x = xg).
With the Jacobian of the closed-loop dynamics determined, ineq (6.9) could be evaluated
for all grid-points and added to the optimization problem. However, in order to assure
contracting behaviour, additionally the positive-definiteness condition of ineq. (6.8) needs
to be fulfilled, as well. As already suggested in the last section, within this work an
attempt to benefit from the positive-definite metric already found in the solution of
the SDRE was applied. Consequently, it was not solely demanded for the metric to be
positive-definite within all predefined grid-points:

M(x = xg) > 0 (6.15)

but instead pointwise the following LMI:

M(x = xg) ≥ P(x = xg) (6.16)

was added to constrain the optimization problem. Additionally, in the upright equilib-
rium point:

M(xg = 0) = P(xg = 0) (6.17)

was defined to adapt desirable properties of the solution of the SDRE in the origin, P(0).
As the TWIP is subject to almost linear dynamics within close proximity to the upright
equilibrium point, and recalling that for LTI-systems asymptotic stability is synonymous
with exponential stability, it can be assumed for P(0) to not just guarantee asymptotic
but exponential convergence to the origin.

2Note that if for example a finer state-space grid was employed, this Jacobian could be determined
numerically e.g. through finite differences. As the proposed method gets computationally expensive for
a large amount of grid points, a more coarse grid was employed and consequently the term omitted.
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With ineq. (6.8) being addressed as well, on the defined state-space grid all conditions
on the metric to assure contracting behaviour were met, and the resulting optimization
problem could be handled by defining some optimistic constant contraction rate, β,
and testing if the resulting feasibility problem yields a solution. If the solver fails, the
contraction rate could be lowered and again the new feasibility problem tried to be solved.
Instead of executing this trial-and-error approach by hand however, the pre-implemented
bisection algorithm of YALMIP was employed. In order to do so, the contraction rate,
β, was added to the set of decision variables and the optimization problem extend by the
objective of −β to maximize the obtainable convergence rate. When approaching the
resulting SDP, the bisection algorithm starts out by checking if β = 0 yields a feasible
solution and then increases the convergence rate in quite large steps until a feasible
solution can no longer be obtained. This way having defined an upper and lower bound
for the convergence rate, subsequently the solution is ”fine-tuned“ through a common
bisection-approach.

Comparing the Proposed Method to the Approach Presented in [7]

Comparing this approach to Chang’s in [7] two major differences become obvious. Firstly,
Chang assumes the time derivative of the metric, Ṁ, to be negligible and accordingly sets
it to zero in ineq. (6.9). He argues this choice by stating that the velocity vector, ẋ, can
be assumed to be sufficiently small. This however does not necessarily seem reasonable
as many of the systems SDRE-controllers have been designed for – like e.g. missiles,
helicopters, or also the TWIP – inherently possess fast dynamics. Additionally, even if
assuming that the velocity vector vanishes as the system approaches the origin, in general
the designer would be interested in finding a contraction region as large as possible –
not only in some close proximity to the origin. For this reasons, within the proposed
method the time derivative of the contraction metric was included in the optimization
problem. Due to the polynomial approach, also taking into account the metric’s time
derivative yields in only minor additional computational expenses.
A further difference lies in Chang choosing the convergence rate to be state-dependent,
β(x), while within the proposed method the convergence rate is declared a constant
decision variable. Recalling the definition of a contraction metric in def. 3.9, such a
state-dependency is not included. Technically, a metric defining a contraction region
can only correspond to a single constant convergence rate, as it defines a unique upper
bound for the maximum time the system takes to converge on the contracting manifold.
Consequently, Chang does not find one metric identifying one interconnected and con-
tracting Riemannian manifold, but instead defines a different metric corresponding to a
different contracting region for each evaluated grid-point.
Note that the deduction of global contraction properties for the entire manifold from
properties examined in local coordinates is only feasible in the context of contraction
theory as the entire tangent space of that manifold is evaluated. This simultaneous
consideration of all differential directions allows to exclude phenomena like finite escape
times et cetera that prohibit inference of global properties within Lyapunov analysis. If
however no longer one interconnected set of a Riemannian manifold and metric is consid-
ered, an inference from local to global properties is no longer feasible. Chang’s approach
only showcases contracting behaviour of the system in some evaluated system state cor-
responding to a grid-point, xg. However as the origin is not assured to also be included
in the pointwise defined contracting manifold, convergences to the particular trajectory
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of the equilibrium located in the origin can not be concluded. In conclusion, the method
introduced in [7] can locally prove contracting behaviour, however not necessarily to the
equilibrium point of interest.
The proposed method on the other hand defines a single pair of corresponding contrac-
tion metric and region with a fixed convergence rate to be maximised. Therefore, the
introduced fitting method does not violate the conditions that enable the deduction of
global properties valid on the entire manifold from the evaluation in local coordinates.
On the other hand, with the presented technique, special attention need to be drawn to
the metric fulfilling the contraction conditions outside the chosen grid-points, as well.
Phrased differently, with the proposed method additional checks need to be provided to
assure for any point outside the chosen LMI-grid to be included on the manifold defined
by the found metric. Chang’s method however has the same issue of assuring contracting
behaviour in between grid-points.

6.4 Obtained Metric and Remarks on Fitting Method

The fitting technique as introduced in sec. 6.3 was applied to the TWIP’s dynamics for
different sets of parameters, like polynomial degree m, state-space limits, or number of
grid-point the LMIs are defined in. The best result was be obtained within the state-
space region of:

ẋ ∈ [−1.0, 1.0] θ ∈ [−π3 ,
π

3 ] θ̇ ∈ [−2π, 2π] ψ̇ ∈ [−6.0π, 6.0π], (6.18)

when defining an equidistant 7×7×7×7-grid for the LMIs to be set in and choosing the
maximum polynomial degree as two. The obtained metric defined a manifold contracting
at a rate of β = 0.7476. After the solver converged, the found metric was examined on
the predefined LMI-grid as well as on another 13×13×13×13-grid finer than the original
one, to also assure contracting behaviour outside the states where the LMIs had been
set. In those test-points, xt, the found metric was evaluated for positive-definiteness
and the left site of ineq. (6.9) was investigated for negative-definiteness. Within the
total of 28,561 evaluated test-states, no point was found where the chosen metric was not
positive-definite and only 728 points were determined where the contraction condition of
ineq. (6.9) was violated – these 728 points however only make up 2.54% of all test-points.
Note that the ψ̇-limit of the contraction region can be further expanded of up to ψ̇ =
6.325π and the solver does still converge, however the resulting contracting manifold
can only guarantee a convergence rate of β = 0.0596. However, if the task was to
solely find a region as large as possible, almost all of the relevant state-space could be
covered. For yaw rates larger than, ψ̇ = 6.325π, the solver no longer converges to a
positive convergence rate, such that with the proposed method exponential convergence
can not be proven for this region of the state-space. Note however, that only exponential
convergence – a far stronger characteristic than (asymptotic) stability – can not be shown
any more, however the remaining set of the state-space might still be asymptotically
stable.
The region of exponential stability being limited by the yaw rate, ψ̇, has a solid physical
interpretation as the TWIP’s non-linearities become most prominent in high spinning
states, such that stabilizing the system at an exponential rate might become impossible
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for the controller. However, reducing the limits in another relevant system state like the
pitch angle, did not yield in a manifold contracting at a faster rate. Consequently, it can
be concluded that the limitation of the region of exponential contraction by the system’s
yaw rate is due to the weighting matrices discussed in sec. 5.2.1. The performance index
was explicitly chosen such that the controller would not act too aggressively in high
spinning situations, in order to prevent the required inputs exceeding the viable range
– which marks a probable explanations for the SDRE-closed loop dynamics no longer
converging exponentially when stabilizing high yaw rates.
In conclusion, the proposed method allows successful stability analysis of the SDRE-
controlled system even though the closed-loop dynamics are only known pointwise. The
technique can be considered non-restrictive as it does not demand the evaluated system
to have a specific structure and additionally can be applied within reasonable compu-
tational effort to higher-order systems – like the six-dimensional example of the TWIP.
Also, only minor simplifications had to be incorporated to evaluate ineq. (6.9) by as-
suming one of the addends within the closed-loop system’s Jacobian to be negligible.
Additionally, note the proposed method will not only guarantee asymptotic but expo-
nential stability which shows far superior performance and robustness in the presence of
perturbations [7].
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Chapter 7

Conclusion and Perspective

7.1 Summary and Conclusion

In the context of this work, first in sec. 2 dynamic models for the TWIP have been
comparatively studied and in conclusion a non-linear input-affine model was found to
be used in controller design. After outlining the basis of non-linear stability analysis
in sec. 3 and the ideas behind SDRE-based controller synthesis in sec. 4, the SDRE-
method was applied to define a control law to stabilize the found non-linear dynamics
of the TWIP in its upright position in sec. 5. Hereinafter, exponential stability of the
closed-loop dynamics was investigated in sec. 6.
When defining the proposed non-linear controller, the focus was set on two tasks: first
parametrizing the system’s dynamics to obtain a quasi-linear SDC-representation as pre-
sented in sec. 5.1.1, and secondly adjusting the state-dependent weighting matrices to
construct a suitable performance index in sec. 5.2.1. The chosen SDC-parametrization
was motivated by the inherent non-linear intercouplings within the TWIP’s dynamics
and exhibited several favourable characteristics in regards of controllability and numer-
ical feasibility. The proposed SDC-representation was found to be strongly control-
lable in 671,925 evaluated system states with the smallest singular value of all investi-
gated controllability-matrices being equal to 0.945. Beneficial numerical properties of
the found SDC-representation could be reaffirmed during simulations where a signifi-
cantly larger integration stepsize could stably be used on the SDRE-controller compared
to the LQR-controller or an alternate SDRE-controller based on a less favourable SDC-
representation.
A specific choice of state-dependent weighting matrices allowed to differentiate between
“more or less critical” highly dynamical system states and through further adjustments
remarkable input efficiency could be achieved. The additional degree of freedom in
choosing state-dependent penalty matrices to impose soft constraints on the input was
successfully implemented in the context of this work. While the resulting non-linear
controller managed to restabilize all considered system states within physically relevant
limits under low energy consumption, it experienced minor oscillations and overshoot
when a constant disturbances was simulated in sec. 5.4.2 and consequently turned out to
have robustness properties inferior to the LQR-controller. When applied to a dynamic
model including non-linear friction terms in sec. 5.4.3, the SDRE-controller still managed
to partially stabilize the TWIP, while the LQR-controller diverged within short time.
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Finally, as first suggested by Chang in [7] with the employment of contraction theory, a
valid technique to systematically analyse stability of SDRE-controlled systems with the
closed-loop dynamics not explicitly known has been defined. However, several adjust-
ments on the method proposed by Chang had to be made in order to assure that the
mathematical requirements for defining a contraction region are not violated. Also, the
approach proposed in the context of this work introduced the idea of locally guiding the
fitting process of a contraction metric through the pointwise solution of the SDRE. Ap-
plication of the proposed method allowed to prove exponential stability for 97.46% of all
28,561 points evaluated within the relevant subset of the state-space. Additionally, the
proposed technique can be considered non-restrictive due to its reasonable computational
costs even when applied to higher-order systems.

7.2 Perspectives

In conclusion, the found SDRE-controller proved fast convergence in almost the entire
relevant subset of the state-space while maintaining input efficient behaviour by exploit-
ing the TWIP’s inherent dynamics instead of brutally cancelling out any non-linearities.
In the context of this work, a strong focus was set on stabilizing pitch deviations – in
order to enhance controller performance for certain alternating system states, e.g. high-
spinning modes or likewise, the chosen performance index could be further adapted and
reviewed through according simulation. While the chosen SDC-parametrization with its
focus on pitch stabilization proved sufficient controller performance within this paper, it
might however also be adapted for differing applications.
As with the proposed fitting method in theory unification of computed contraction re-
gions is possible, an extension to a multi-step fitting procedure could be implemented
in order to define even larger contraction regions. For instance, after the first metric
has been found and evaluated on a grid of test points, in a second computation round
all points of the test grid that were not included in the contracting manifold of the first
metric could be chosen as LMI-points such that the next metric is assured to include
these points. If this second round fails due to the fact that some states might define
a non-exponentially stable point within state-space, the set could be split in half and
a third search for two new metrics could be executed an so on. Obviously, in all steps
the equilibrium point of interest would have to be included in the set of LMIs to assure
convergence to this particular trajectory.
As an alternate approach, it could be tried to apply some polynomial fitting approach
to first determine a state-dependent expression for the solution of the SDRE and then
solving the finding of a contraction metric through sum-of-squares programming to assure
the contraction conditions to strictly be fulfilled – however in this case special attention
would have to be drawn to handling non-linear terms as sum-of-squares programming
only permits the usage of polynomial decision variables. However, trigonometric terms
for examples could be approximated by some k-th order Taylor-series expansion to make
this approach feasible.
Lastly, as all results found within this work are based on simulations exclusively, the
primarily remaining task lies in trying out the found controller on the actual robot to
see if the computed contraction region and observed input efficiency can be reaffirmed
in real-life experiments.
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Dynamic Models of the TWIP

A.1 Parameters of the Employed TWIP

Table A.1: The numerical values of parameters describing the TWIP as introduced in
sec. 2 and discussed in the remaining of this paper. The lower indices, b and w, indicate
whether a parameter belongs to the pendulum’s body or wheels. These parameters
define a small and slender robot which will influence the controller requirements.

Model Parameter Variable Value

Gravitational acceleration g 9.81m/s2

Mass of pendulum-body mb 0.277 kg
Mass of either wheel mw 0.028 kg
MOI of the body w.r.t its driving axis Ib1 0.543 · 10−3 kgm2

MOI of the body w.r.t the TWIP’s axle Ib2 0.481 · 10−3 kgm2

MOI of the body w.r.t its longitudinal axis Ib3 0.154 · 10−3 kgm2

MOI of the wheels w.r.t their axis Iw1 0.741 · 10−5 kgm2

MOI of the wheels w.r.t to their diameter Iw2 0.496 · 10−5 kgm2

Height of the body’s centre of mass l 0.049m
Radius of either wheel r 0.033m
Distance between the two wheels d 0.098m
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A.2 Constants and Auxiliary Variables

For easier readability, a set of auxiliary variables and constants was introduced:

K1 = mb + 2mw + 2 Iw1/r
2 (A.1)

K2 = Ib1 − Ib3 +mbl
2 (A.2)

K3 = Ib2 +mbl
2 (A.3)

K4 = mbl (A.4)
K5 = (mw + Iw1/r

2) (A.5)
ρ1(θ) = K2

4sin2(θ) +mbIb2 + 2K3K5 (A.6)

ρ2(θ) = K2sin2(θ) + Ib3 + 2 Iw2 + d2

2 K5 (A.7)

µ1 = K1K3 −K2
4 (A.8)

µ2 = Ib3 + 2 Iw2 + d2

2 K5. (A.9)

A.3 Non-linear State-Space Model

The following state-space model of the TWIP is used within this work:



ẋ

ẍ

θ̇

θ̈

ψ̇

ψ̈


=



f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)


+



0 0
g21(x) g22(x)

0 0
g41(x) g42(x)

0 0
g61(x) g62(x)



τl
τr

 (A.10)

where the individual vector entries are given in the following:

f1(x) = ẋ (A.11)

f2(x) = sin(θ)
ρ1(θ) K4

(
−K4 gcos(θ) +K3θ̇

2 + (K3 −K2cos2(θ))ψ̇2
)

(A.12)

f3(x) = θ̇ (A.13)

f4(x) = sin(θ)
ρ1(θ)

(
K1K4g −K2

4cos(θ)θ̇2 + (K1K2 −K2
4 )cos(θ)ψ̇2

)
(A.14)

f5(x) = ψ̇ (A.15)

f6(x) = sin(θ)
ρ2(θ)

(
−2K2cos(θ)θ̇ψ̇ −K4ẋψ̇

)
(A.16)
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g21(x) = 1
ρ1(θ) (K3/r +K4cos(θ)) (A.17)

g22(x) = g21(x) (A.18)

g41(x) = 1
ρ1(θ) (−K4cos(θ)/r −K1) (A.19)

g42(x) = g41(x) (A.20)

g61(x) = − d

2 rρ2(θ) (A.21)

g62(x) = −g61(x). (A.22)

A.4 SDC-Parametrizations of the Non-linear State-Space
Model

A.4.1 SDC-Parametrization Used for Controller Design

The pseudo-linear representation chosen for SDRE-based controller synthesis is defined
as:



ẋ

ẍ

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0
0 0 a23(x) a24(x) 0 a26(x)
0 0 0 1 0 0
0 0 a43(x) a44(x) 0 a46(x)
0 0 0 0 0 1
0 a62(x) 0 a64(x) 0 a66(x)





x

ẋ

θ

θ̇

ψ

ψ̇


+



0 0
b2(x) b2(x)

0 0
b4(x) b4(x)

0 0
b6(x) −b6(x)



τl
τr

 , (A.23)

where the matrix entries of the state-dependent system matrix, A(x), are:
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a23(x) = sin(θ)
ρ1(θ)

1
θ

(
−K2

4 gcos(θ)
)

(A.24)

a24(x) = sin(θ)
ρ1(θ) K3K4θ̇ (A.25)

a26(x) = sin(θ)
ρ1(θ)

(
K3 −K2cos2(θ)

)
K4ψ̇ (A.26)

a43(x) = sin(θ)
ρ1(θ)

1
θ

(K1K4g) (A.27)

a44(x) = sin(θ)
ρ1(θ)

(
−K2

4cos(θ)θ̇
)

(A.28)

a46(x) = sin(θ)
ρ1(θ)

(
K1K2 −K2

4
)
cos(θ)ψ̇ (A.29)

a62(x) = sin(θ)
ρ2(θ)

(
−1

2K4ψ̇

)
(A.30)

a64(x) = sin(θ)
ρ2(θ)

(
−K2cos(θ)ψ̇

)
(A.31)

a66(x) = sin(θ)
ρ2(θ)

(
−1

2K4ẋ−K2cos(θ)θ̇
)

(A.32)

and the input matrix entries are identical to the one of the non-linear system:

b2(x) = g21(x) = 1
ρ1(θ) (K3/rK4cos(θ)) (A.33)

b4(x) = g41(x) = 1
ρ1(θ) (K4cos(θ)/r +K1) (A.34)

b6(x) = g61(x) = − d

2 rρ2(θ) (A.35)

A.4.2 Inherently Non-Controllable SDC-Parametrization

The matrix entries of the non-controllable example parametrization are listed in detail
in the following:

anc,22(x) = sin(θ)
ρ1(θ)

1
ẋ

(
−K2

4 gcos(θ)
)

(A.36)

anc,24(x) = a24(x) (A.37)
anc,26(x) = a26(x) (A.38)

anc,42(x) = sin(θ)
ρ1(θ)

1
ẋ

(K1K4g) (A.39)

anc,44(x) = a44(x) (A.40)
anc,46(x) = a46(x) (A.41)

anc,66(x) = sin(θ)
ρ2(θ)

(
−2K2cos(θ)θ̇ −K4ẋ

)
(A.42)
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A.4.3 Physically Meaningless SDC-Parametrization

The matrix entries of the physically meaningless example parametrization are listed in
detail in the following:

atp,25(x) = sin(θ)
ρ1(θ)

K4
ψ

(
−K4 gcos(θ) +K3θ̇

2 + (K3 −K2cos2(θ))ψ̇2
)

(A.43)

atp,45(x) = sin(θ)
ρ1(θ)

1
ψ

(
K1K4g −K2

4cos(θ)θ̇2 + (K1K2 −K2
4 )cos(θ)ψ̇2

)
(A.44)

atp,65(x) = sin(θ)
ρ2(θ)

1
ψ

(
−2K2cos(θ)θ̇ψ̇ −K4ẋψ̇

)
. (A.45)

In order to avoid the singularity arising with ψ → 0 this model switched to the Kim2017-
parametrization for yaw angles of smaller than 10−12.

A.4.4 Kim2017 SDC-Parametrization

The matrix entries for the parametrization introduced in [26] are as follows:

aKim,23(x) = sin(θ)
ρ1(θ)

K4
θ

(
−K4 gcos(θ) +K3θ̇

2 + (K3 −K2cos2(θ))ψ̇2
)

(A.46)

aKim,43(x) = sin(θ)
ρ1(θ)

1
θ

(
K1K4g −K2

4cos(θ)θ̇2 + (K1K2 −K2
4 )cos(θ)ψ̇2

)
(A.47)

aKim,63(x) = sin(θ)
ρ2(θ)

1
θ

(
−2K2cos(θ)θ̇ψ̇ −K4ẋψ̇

)
. (A.48)

Note that the inconsistency with the model derived in [25] that was discussed in detail
in sec. 2 was corrected for this model, as well, such that it is not identical to the formulae
in [26]. However, as the structure is the exact same, it was nevertheless denoted as the
Kim2017-SDC-parametrization.

A.5 Dynamics Linearized about Uprigth Equilibrium

The linearization of the TWIP‘s non-linear dynamics about its upright equilibrium point
yields the following dynamics:



ẋ

ẍ

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0
0 0 alin,23 0 0 0
0 0 0 1 0 0
0 0 alin,43 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





x

ẋ

θ

θ̇

ψ

ψ̇


+



0 0
blin,2 blin,2

0 0
blin,4 blin,4

0 0
blin,6 −blin,6



τl
τr

 (A.49)
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where the constant matrix entries are defined as:

alin,23 = −K
2
4 g

µ1
(A.50)

alin,43 = K1K4 g

µ1
(A.51)

blin,2 = K3/r +K4
µ1

(A.52)

blin,4 = −K4/r +K1
µ1

(A.53)

blin,6 = − d

2 rµ2
. (A.54)
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