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Reinforcement Learning Based Manipulation SKkill Transferring for
Robot-assisted Minimally Invasive Surgery
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Abstract— The complexity of surgical operation can be re-
leased significantly if surgical robots can learn the manipulation
skills by imitation from complex tasks demonstrations such
as puncture, suturing, and knotting, etc.. This paper proposes
a reinforcement learning algorithm based manipulation skill
transferring technique for robot-assisted Minimally Invasive
Surgery by Teaching by Demonstration. It employed Gaussian
mixture model and Gaussian mixture Regression based dynamic
movement primitive to model the high-dimensional human-like
manipulation skill after multiple demonstrations. Furthermore,
this approach fascinates the learning and trial phase performed
offline, which reduces the risks and cost for the practical
surgical operation. Finally, it is demonstrated by transferring
manipulation skills for reaching and puncture using a KUKA
LWR4+ robot in a lab setup environment. The results show
the effectiveness of the proposed approach for modelling and
learning of human manipulation skill.

I. INTRODUCTION

Robotic surgery has been a compelling emerging tech-
nology that holds significant promise due to the benefits it
provides for surgeons, such as higher operational accuracy,
extended motion range, and augmented visualization [1], [2].
However, due to the kinematic constraints imposed by the
laparoscopic surgery, i.e., which are known as the remote
center of motion (RCM) constraints, the surgical operation
is performed in a limited space [3]. It turns the intuitive
manipulation in the conventional open surgery to time-
consuming tasks [4]. The complexity of surgical operation
can be released significantly if surgical robots can learn
the manipulation skills by imitation from complex tasks
demonstrations [5] such as puncture and knotting, etc..

With the development of technology in artificial intelli-
gence and cognition progress, increasing the autonomy of
surgical robots in performing some specific complex surgical
operations, like suturing or knotting, can potentially reduce
the length of surgical procedures and surgeon fatigue, as well
as improved accuracy [6]. Hence, the need for developing
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methodology and technology in surgical manipulation skill
transferring reinforces.

Teaching by demonstration (TbD) has drawn extensive
research attention in manipulation skill transferring from
human to robot during the past decades [7], [8]. Calinon
et al. [9], [10] investigated the methods to assign human
motion skills to the robot manipulators. Dynamic movement
primitive (DMP) proposed by Meier ef al. [11] is an efficient
approach to learn motor primitives for robot manipulation.
In the motion modeling paradigm, each manipulation proce-
dure features motion primitives and the corresponding goal
parameters. Kormushev et al. [12] studied comprehend the
trajectory generation for the spherical impediment by using
DMP modelling combined with the synthetic capacity dis-
cipline method using Gaussian mixture Regression (GMR).
For complex manipulations modelling, the reinforcement
learning algorithm is capable of adapting the goal parameters
with a high-dimension motion primitive [13], [14].

It is interesting to introduce GMR based motion primitives
modeling strategy to learn the surgical operation skills from
experienced surgeons [15]. Furthermore, it is proposed to
handle the RCM constraint as sub-goal by offline tasks learn-
ing and trials using reinforcement learning. In this paper, a
special reinforcement learning named Policy Improvement
with Path Integrals (PI2) is proposed to optimize the path
planing, which is derived from probability-based stochastic
optimal control theory [13], [16]. The reinforcement learning
method can optimize the trajectory with disturbance by
updating the parameters [17]. In addition, we can design
the cost function to explore the different learning tasks even
multi-tasks at a learning system. The PI? is suitable for
the high dimensions problem such as Cartesian space [18].
Therefore, it is convenient for robot learning problem.

It must be noticed that the proposed methodology rep-
resents an improvement with respect to the simple path
planning between the start and end-point introduced in [13],
[19], and combines an sub-goal task to respect the RCM
constraint [20], [21], [2] on the planned path. It means
the planned path should consider not only the shape but
also passing through the small incisions on the abdominal
wall. Furthermore, it fascinates the learning and trial phase
performed offline, which reduces the risks and cost for
the practical surgical operation. Finally, experiments have
been performed to demonstrate the proposed control method
on a 3-D printed patient phantom using a 7-DoF robot
manipulator KUKA LWR4+ .
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II. MOTIVATION AND PREVIOUS WORKS

In our previous works [2], [20], [21], we inserted the
surgical tool into the abdominal cavity passing through
the RCM constraint, by hands-on control. To reduce the
complexity of operation procedures, it is interesting to utilize
the TbD techniques to model and learning the surgeons’
manipulation skill and transfer it to the robot, increasing the
autonomy of surgical robots.

In our previous work, we utilized the reinforcement learn-
ing to learn the complex motion sequences in human-robot
environment such that the robots can adapt its motions for
manipulation and grasping of a mobile manipulator [19].
Nevertheless, the above algorithms considered only point to
point problems, which determine the trajectory between the
start and end-point of the movement, ignoring the other goals
in the sub-tasks [13], such as passing through a kinematic
constraint. In this paper, it is suggested to include the
RCM constraint as a new challenge for the manipulation
skill modelling and transferring. We therefore extend the
policy improvement with path integrals (PI?) algorithm to
simultaneously optimize shape and goal parameters.

III. CONTROL METHODOLOGY

The control methodology here proposed aims to provide
consistent and effective skill modelling and transferring tech-
niques for robot-assisted minimally invasive surgery, learning
the motion primitives of a specific task from demonstration
operations operated by a surgeon, and plan the path with
respect to the kinematic constraint (RCM constraint) between
the start and end-point. The robot model has been discussed
in [20], [2].

A. Dynamic Movement Primitive

Given the continuous stream of movements that biological
systems exhibit in their daily activities, dynamic movement
primitive [19] now is a general approach in artificial and
biological systems revolves around identifying movement
primitives for motor control in robotics and biology. Dy-
namic movement primitive is represented as a set of equa-
tions, and it can model different linear or nonlinear motions
which is convenient to imitate learning complex movement
fusion with reinforcement learning algorithm. The dynamic
movement primitive is expressed as:

Xi=K,(g— Xi) - K, X, + F(sy)
ét = (gSt (1)
)

N
Z i (St) St

hy (St) = 1:;]7’% (Sf) = exp (22(5:5 - 01)2)
:lei(st)t ’

where [Xt, X t X t} is the Cartesian space trajectory; Xy and
g present the initial position and goal position of the attractor
point in Cartesian space, respectively; K, and K, are the
stiffness matrix, damping term of DMP in 3D Cartesian

Human Demonstration

Offline Tasks Learning and
Trials

Reinforcement learning

Real-time Demonstration
using Robot Manipulator

Fig. 1. Experimental procedures.

space. w is the shape parameter of DMP; « is the scale
parameter of Canonical system, where s; asymptotically
decays from 1 to 0; o; and ¢; are bandwidth and center
of the i-th Gaussian kernels.

It should be noted that DMP is consist of two parts
including linear spring damper part K, (g — X;) — K, X
and nonlinear part F’ (s;) which can be applied to model the
trajectories from teaching by demonstrations even the non-
linear system. Therefore, DMP is convenient to imitate the
motions from human because of the feature of convergence
to the attract point g.

B. Gaussian Mixture Model

In this part, the Gaussian Mixture Model is presented
to encode the trajectories from teaching. Gaussian Mix-
ture Model is a probability-based statistical model which
can describe the probability density distribution of high-
dimensional dataset by the sum of different weights of
multiple Gaussian models [22]. In this paper, the GMM
is used to describe the position density in Cartesian space
and obtain nonlinear item in in DMP by regression from
each GMM. The DMP framework of multi-demonstrations
is reformulated as by K component Gaussian model,

K
X:th(Kg(ukX—X)—K,ZXJrF) )
k=1

The Cartesian space data point from demonstrations are
defined as: s; = (s¢,5,5x,;) (j =1,...,N), where N is the
length of dataset. Each datapoint include the time temporal
value s; ; and position value sx ;. To encode the dataset of
position distribution P(s, sx), the following GMM model
is defined as

K

p(s;) =Y p(k)p(s;lk) 3)

k=1

where K is the number of the Gaussian model; p (k)
denotes the prior probability, and p (s;|k) is the conditional
probability density function.
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The manipulator works in 3-D space, so the parameters in
(3) are denoted as

p(k) =g

1R — 1
ploglh) = b

We define the GMM parameters as © = { A, tr, Y _ps E}
where A, g, Zk,, E} are prior probability, mean vari-
able, covariance variable and cumulated posterior probability,
respectively. According to Bayes theorem, the cumulated
posterior probability E can be expressed as,

o(=3(si—m) T T i) (4)

N
B, = le(/f|5j)
j=
s )
p(k|s;) = Kp(k)p( 51k)
le(m)P(Sy‘\m)

m=

Then, the log-likelihood of GMM model O is defined,

1 N
Lo =+ > log (p(s))) (6)
j=1

K
where p (s;) = > p(k)P (s;]k). To estimate GMM param-

k=1
eters © = {\g, itg, Y, Ex }, the EM algorithm is proposed
to train the model parameters, and we will obtain the model

parameters after the parameters convergence. The iteration
(t+1)

finished step is set when LQT < 0.01.
L"(—)

C. Gaussian Mixture Regression

Actually, the aim of training is to get the regression
parameter F' from the dataset. After the multi-demonstrations
probability distributions is obtained by GMM, then the Gaus-
sian Mixture Regression (GMM) is proposed to reconstruct
the general form for the dataset.

To estimate the conditional expectation value, the observa-
tions parameters is defined as: s = {s;, sx } where sx is the
spatial variable at time step s;. So, the goal of regression is
to estimate the conditional expectation of sx when the time
step s; is fist given.

For multi-demonstrations from teaching, the GMM ©
encodes the set of trajectories from robot in Cartesian space.
The k component of Gaussian mixture model is defined as,

Ytk
Yxtk

Yix k

Yxx.k ) )

where pp and Xj are mean and covariance matrix of k
component GMM. When the time step s; is given, the
expected distribution sx ; of k-th component is expressed
as,

e = {pe e pxr} 5, Xk = (

p(sxkl|se, k) =N (SX,k;gX,kaiXX,k)

Sx.k = WXk + Z (Ett,k)_l (st —per)  (8)
Xtk

B 1
Yxxk=2xxk— Sxtk (St k)  DtX.k

where 5x j, and )y xx,% are mixed from probability. Accord-
ing to the GMM parameters © = {\g, iti, ), Ei}, the
condition probability density is obtained as,

K
p(sx|st) = Z hN (Sx; 5X ks 5]XX,19) )
k=1

o opR)p(selk) NN (85 e, See k)
= K : 7
Yoimai P@)p (selt) iy NN (65 pheis Beri)
From (8) and (9), the estimation of condition expectation
sx and covariance matrix are concluded as,

K
Sx = E hisx i
k=1

Therefore, the motion § = {8;,5x} can be generated by

K
. be
, Xxx = E hiXxx,k
k=1

(10)

estimating {§X, fJXX at time step s;.

D. Reinforcement Learning for Trajectories optimization

In this section, the reinforcement learning is proposed to
learning trajectories by learning the shape parameter w with
the noise added. The cost function of Reinforcement learning
is defined as,

tn 1
S(T;) = diy +/ (ry + inRw)dt (11)
ti
where T; denotes the trajectory. The cost function S is consist
of three parts: terminal cost ¢;,, immediate cost r;, and
immediate control fw” Rw.

If the noise is added to the shape parameter of DMP
(w + €), the trajectories would deviation from expectations
trajectories. Therefore, the reinforcement learning is applied
to learn the shape w parameter from random noise, and the
cost function is reformulated as,

tN 1
S(CT,L) — ¢tN—|—/ Tt+§(W+Mt€t)TR(UJ+Mt€t) (12)
t;

where M, indicates projection matrix onto the range space
of h; which is defined as,

- R™thhT
~ hIR-1h,
The learning system is aim at minimizing the cost function
S by learning the shape parameter w.

According to the stochastic optimal control theory [13],
the path integral of cost function is defined as,

M,

i = [ P (L) M, (13)

where p(T;) is the probability of trajectory 7; and it is
expressed as,

exp (*%S (E))
P(Ti) =
Jexp <—%S’ (7'1-)) dT;
Then, the change of dw can be concluded as,

Zi\igl(N - i)quti [50‘)251‘]]'

[dw]; = (14)
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where [0w]; denotes the j-th element of shape parameter w.

Finally, the new parameters can be obtained,
W™ = w + dw (15)

The update rule of reinforcement learning is shown in
Algorithm.1.

Algorithm 1 :Reinforcement Learning Update Rule
Initialization:
Tt, Gens f(St)s wo, initial state Xo.
While stop after cost convergence
1. For n = 1,...,Nk,
e sample from dataset with random noise.
€t,.n ™~ N(O, (722)
e compute the cost and probability.
STi,n = S(w + 6t,n)

_1
PTi " exp(

_ STi,n
I exp(—%STi,")dTi

2. Update mean:

Ny

5wt = Z PTi,nGt,n-
n=1

[0w]; =

Silo (N=d)wj e, [6wy,]
3. Update parameters: w™" = w + dw.

Sito" wh e, (N—i)

IV. EXPERIMENTAL DEMONSTRATION

The procedure of the demonstration divided into three
phases, shown in Fig. 1 , including demonstration phase,
reinforcement learning based offline tasks learning and trials,
and reinforcement learning based real-time demonstration.

A. Demonstration Phase

A 3-D printed patient phantom served as the abdomen
cavity are used for demonstration, shown in Fig. 2. The
surgeon uses hands-on control to insert the surgical tool into
the surgical cavity with a repetition of 7 times from different
initial point.

Then, dynamic movement primitive is applied to encode
the multi-demonstrations from human teaching. The regres-
sion results are shown in Figs. 3-5. Fig. 3 shows that all
the reproductions can pass through the original RCM and
converge to the goal point even from random initial position.

B. Offline Tasks Learning and Trials

Considering the disturbances (goal g and shape w noise)
in the environment, reinforcement learning is applied to
optimize the trajectory. The immediate cost is designed as,

re =m |ldx|| + 12 HXtH

where dy is the distance from the end-effector to the line
connecting start and end-point of the movement. The learning
results are shown in Fig. 6. As the number of iterations
increases, all the samples gradually converge to the original
trajectory with random noise which proves the effectiveness
of the proposed methods. Furthermore, RCM constraint is

Fig. 2. Demonstration of puncture procedure. The numbers (1-6) indicate
the puncture procedure by hands-on demonstration. The 1st picture shows
the start point of the tracking tasks, and the 6th picture represents the
corresponding end point. The “surgeon” use hands to hold on end-effector
and insert the tool tip into the abdominal cavity.

usually not fixed according the actual surgical scenario.
Therefore, we hope the manipulator also can learn how
to pass through the new RCM for the same tasks without
human demonstrations. Hence, the demand to respect the
new RCM constraint is treated as sub-goal. Reinforcement
learning based offline training and trials are implemented
to enable the manipulator to pass through the new rcm
constraint without clinical trial. The significance of offline
training and trials is to reduce machine wear and avoid
dangers in actual experiments.

The learning and trials results with new RCM constraint
are shown in Figs. 7-8, which prove that the reinforcement
learning enhanced PI? can adapt the motion skill to meet
the new task requirement without re-teaching.

It should be mentioned that in the new RCM task, the
immediate cost is re-designed as,

re = lldx | +ma [ Xe| + mall X - PRES

Prc v denotes the manipulator passing through RCM which
is set by user. The parameters K, = diag[1,1,1,1,1,1,1],
K, = 2K,; as = 0.01; the components of GMM
is set K = 10; ;; = 105 n, = 103, n3 = 100,
Preym = [—0.438;0.4349;0.2429]m, the new PRy, =
[—0.345; 0.4342; 0.2521]m.

C. Real-time Demonstration with Robot Manipulator

After the offline learning process, the learning results will
be applied to demonstrate in actual experiment. The robot
perform the insertion of the surgical tool into the abdominal
cavity autonomously. Fig. 10 shows one of the demonstrated
experiment using KUKA LWR4+ robot manipulator and
Fig. 11 shows its performed trajectory.
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Fig. 3. Reproduction from random initial position via RCM tasks by
multi-demonstrations using GMM-GMR. The black curves denote the multi-
demonstrations.
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Fig. 5. Regression result of nonlinear term of motion primitives using
GMM-GMR from multi-demonstrations.

V. CONCLUSION

This paper proposes a reinforcement learning algorithm
based manipulation skill transferring technique for robot-
assisted Minimally Invasive Surgery by Teaching by Demon-
stration. This approach fascinates the learning and trial phase
performed offline, which reduces the risks and cost for the

0.35 starting position
0.3 update-30th ——update-5th
. —update-35th ——update-10th
£025 —update-40th update-15th
N ——update-45th ——update-20th
0.2 update-50th — update-25th

—desired
RCM

Fig. 6. The learning process of trajectory via original RCM point.
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0.3
_ update-35th
S ;
N1 0.25 ——update-5th
0.2 ——update-10th
=
0151 —— update-25th | &5 New RCM :upga:e_gg::
0.55 | update-35th wesenml.
05 ,////{6/2 0
o =y.
0.45 —— 0.4
Y(m) 04 .06

X(m)

Fig. 7. The learning process of trajectory via new RCM point.

starting position

New RCM

Fig. 8. The last learning results of all samples via new RCM point.

practical surgical operation. Reinforce learning is adopted to
model the manipulation skill with trials offline until it can
handle the varying kinematic constraints. The results have
demonstrated the effectiveness of the proposed approach
for modelling and learning of human manipulation skill.
However, this work considers only kinematic constraints,
ignoring the force from physical interaction on the abdominal
wall [2]. Future works will involve physical interaction
analysis.

2207

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 13:29:22 UTC from IEEE Xplore. Restrictions apply.



Fig.

%107

0 . . n .
0 100 200 300 400

Number of roll outs

500

Fig. 9.

Cost function by iteration of new RCM tasks.

10.  Demonstration of autonomous puncture using reinforcement

learning. The numbers (1-6) indicate the puncture procedure.
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Fig. 11. Demonstrated trajectory curve.
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