

Fakultät für Informatik, Informatik 26 - Data Analytics and Machine Learning

Specification Mining in High dimensional Heterogeneous Data Sets of Large-Scale

Distributed Systems

Artur Mrowca

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr. Uwe Baumgarten

Prüfende/-r der Dissertation:

1. Prof. Dr. Stephan Günnemann

2. Prof. Dr. Sebastian Steinhorst

Die Dissertation wurde am 04.12.2020 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 17.03.2021 angenommen.

Abstract

In an increasingly interconnected world, distributed systems power our everyday lives.
This includes multiple areas, ranging from automobiles and IoT to the domestic life and
medicine. However, with this a lot of trust is put in those systems and its functioning,
while unexpected behavior might lead to failures that cause serious damages.
Therefore, verification of distributed systems is essential, which includes the communi-
cation between devices, as well as its hardware and software.
In this work, the focus is on the verification of software. An increasingly important way
for verification of distributed systems is to use traces that are recorded from system
executions, which are used to detect, identify or explain errors. However, with growing
size of such distributed systems this is increasingly challenging, e.g. as massive amounts
of data are recorded, systems evolve, and the system is developed by multiple domains.
To ensure verification of such systems often model checking is used, which is able to
verify manifold nominal behaviors that were specified by respective domain experts.
However, at a larger scale the manual generation of specifications becomes in-feasible,
as functional variety is increasing and human cognition is limited. Therefore automated
methods for Specification Mining are required. This includes methods that allow to bet-
ter understand the system, as well as methods to automatically generate specifications
from recorded traces.
This work presents a novel Specification Mining approach, which is aimed to be applied
on traces of distributed systems.
Existing approaches for this, do not consider multi functionality, heterogeneity of data
or exploitation of dimensional information in combination. Further, often no domain
knowledge is included and specifications are limited in length or applicable to perfect
traces only.
This is overcome in this work by proposing an end-to-end Data Mining pipeline that al-
lows to extract specifications from raw traces. This is achieved by systematically break-
ing down complexity in dimension and procedure, as well as by modeling the recorded
data under uncertainty with an appropriate model.
This pipeline contains six stages which are enabling this. Each of those steps requires
dedicated characteristics. Therefore, in this work per stage multiple approaches are
compared, developed and extended, which are presented here. Lastly, the overall consis-
tency of the proposed approach is validated in an extensive case study of the automotive
industry.

iii

Zusammenfassung

In einer zunehmend vernetzten Welt gewinnen verteilte Systeme in zahlreichen Gebi-
eten unseres Lebens immer mehr an Bedeutung. Im Zuge dessen genießen derartiger
Systeme ein hohes Maß an Vertrauen. Dennoch kann ihr unerwartetes Verhaltens in
schwerwiegenden Konsequenzen resultieren. Auf Grund dessen kommt der Verifikation
von verteilten Systemen eine hohe Bedeutung zu. Dies beinhaltet die Korrektheit von
Kommunikationsverhalten zwischen einzelnen Geräten, sowie die Korrektheit der Hard-
ware und Software solcher Geräte.
Diese Arbeit behandelt den Softwareaspekt der Verifikation. Ein kosteneffizienter Weg
der dies ermöglicht liegt in der datenbasierten Verifikation von Tracedaten, die aus Sys-
temausführungen resultieren. Diese werden u.a. verwendet um Fehler zu entdecken, zu
identifizieren und zu erklären. Mit zunehmender Größe derartiger Systeme wird dies
jedoch stetig komplexer. Dies liegt zum Beispiel an der immensen Größe der Daten,
an der stetigen Evolution der Systeme, sowie an der Tatsache, dass eine Vielzahl an
Domänen bei der Entwicklung beteiligt sind.
Um dies zu lösen wird Model Checking verwendet, da diese Technologie in der Lage ist
eine große Bandbreite an nominalem Verhalten zu validieren. Hierzu werden manuell
Spezifikationen definiert, die unterschiedlichen Domänen entstammen können. Durch
die immense Komplexität verteilter Systeme wird jedoch eine manuelle Erstellung un-
verhältnismäßig schwierig. Dies liegt insbesondere an der Funktionsvielfalt und der
Beschränktheit der menschlichen Kognition. Aus diesem Grund werden automatisierte
Methoden hierfür entwickelt, die unter dem Begriff des Specification Mining in der Lit-
eratur zu finden sind. Derartige Verfahren erlauben es zum Einen automatisiert Spezi-
fikationen zu generieren und zum Anderen Systemverhalten besser zu verstehen.
Diese Arbeit beschreibt ein neuartiges Verfahren dieser Kategorie, dass die Extraktion
von Spezifikationen aus verteilten Systemen immenser Größe ermöglicht. Existierende
Ansätze beinhalten nicht alle notwendigen Charakteristika hierfür. Z.B. wird Multifunk-
tionalität der Systeme oder die Heterogenität der Daten nicht beachtet. Das präsentierte
Verfahren löst diese Herausforderungen, da es eine Ende-zu-Ende Lösung bietet, die den
Prozess von rohen Daten bis hin zu extrahierten Spezifikationen beschreibt. Insbeson-
dere wird die Komplexität der Daten heruntergebrochen. Basierend auf der reduzierten
Repräsentation werden probabilistische Modelle verwendet, um Spezifikationen zu ex-
trahieren.
Die Methode beinhaltet sechs Schritte, die dedizierte Charakteristika erfordern, um die
Herausforderungen solcher Systeme zu bewältigen. Deshalb, werden für jeden dieser
Schritte eine Vielzahl an Verfahren entwickelt, erweitert und verglichen. Zuletzt, wird
die Validität der präsentierten Methodik an Hand mehrerer Datensätze aus der Auto-
mobilindustrie bewiesen und bewertet.

v

Contents

Abstract iii

Zusammenfassung v

Contents vii

List of Figures xiii

List of Tables xix

Glossary xxi

1 Introduction 1
1.1 Diagnosis in Software of Large Scale Systems 1
1.2 Data-Driven Verification . 3
1.3 Contributions and Research Questions . 5

1.3.1 Contributions . 5
1.3.2 Research Questions . 5

1.4 Thesis Outline . 6
1.5 List of Publications . 7

2 Preliminaries 9
2.1 Terminology . 9

2.1.1 Verification . 9
2.1.2 Data Types . 10

2.2 System Definition . 10
2.2.1 Distributed Systems . 10
2.2.2 Simplified System State Perspective 12
2.2.3 Functional Perspective . 13

2.3 Analyzed Trace Data . 14
2.3.1 Trace Recordings . 14
2.3.2 Functional Procedures and Traces 15
2.3.3 Diagnosis and Fault Model . 17

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems 19
3.1 State of the Art . 20

3.1.1 Modeling Behavior for Diagnosis 21
3.1.2 Extraction of Specifications . 27

3.2 Research Demand . 29
3.3 System Work Flow . 32

3.3.1 Targets of Big Data Frameworks 34

vii

Contents

3.3.2 Systems Work Flow . 35
3.4 Data Mining Pipeline . 36

3.4.1 Assumptions . 36
3.4.2 Proposed Diagnosis Pipeline . 37
3.4.3 Input data . 38
3.4.4 Preprocessing . 39
3.4.5 Clustering Temporal Variables . 39
3.4.6 Segmentation Clustering . 40
3.4.7 Model - Structure Discovery and Parameter Estimation 41
3.4.8 Inference of Specification and Behavior 41
3.4.9 Evaluation of Framework . 42

3.5 Summary and Conclusion . 42

4 Automated Interpretation and Reduction of Traces at a Large Scale 43
4.1 Related Works . 44
4.2 Automated Interpretation and Reduction Pipeline 45

4.2.1 Overall Processing Pipeline . 45
4.2.2 Overview . 47
4.2.3 Interpretation Phase . 50
4.2.4 Sequence Reduction . 52
4.2.5 Final Representation . 57

4.3 Discussion . 57
4.4 Evaluation of Framework Performance . 59
4.5 Summary and Conclusion . 63

5 Clustering High-Dimensional Sequences 65
5.1 Related Works . 66

5.1.1 Temporal Clustering Approaches 66
5.1.2 Temporal Clustering Applications 68

5.2 Feature-based Clustering Approaches . 69
5.2.1 Background on Clustering Approaches 69
5.2.2 Overview . 73
5.2.3 Preprocessing . 74
5.2.4 Feature Extraction . 75
5.2.5 Feature Selection and Transformation 78
5.2.6 Formal Comparison of Clustering Approaches 80
5.2.7 Expert Input and Refinement . 81

5.3 Evaluation . 82
5.3.1 Setup . 82
5.3.2 Data Sets . 82
5.3.3 Clustering Criteria . 83
5.3.4 Feature Selection . 83
5.3.5 Window Size . 85
5.3.6 Clustering . 86

5.4 Case-Study . 87
5.5 Summary and Conclusion . 89

viii

Contents

6 Concurrent Segmentation and Clustering of Event Sequences 91
6.1 Related Works . 92
6.2 Formal Definition and Problem Statement 94

6.2.1 Formal Definition . 94
6.2.2 Problem Statement . 95

6.3 Extending Existing Approaches . 96
6.3.1 Window-based Approach . 96
6.3.2 Extending Local Trace Segmentation 97

6.4 Large-Scale Reduced Segment Clustering 98
6.4.1 Overview . 99
6.4.2 Range Segmentation . 99
6.4.3 Frequency Clustering . 100

6.5 Refinement Clustering . 101
6.6 Evaluation . 102

6.6.1 Setup . 102
6.6.2 Performance Comparison . 103

6.7 Summary and Conclusion . 106

7 Modeling Multivariate State Sequences 109
7.1 Background . 112

7.1.1 Bayesian Networks . 112
7.1.2 Conditional Independence . 113

7.2 State of the Art . 113
7.2.1 Temporal Probabilistic Models . 114
7.2.2 Structure Discovery Approaches 115
7.2.3 Bayesian Models for Temporal Data 117

7.3 Temporal State Change Bayesian Networks 120
7.3.1 Model . 120
7.3.2 Formal Definition . 120
7.3.3 Modeling State Sequences . 123
7.3.4 TrieDiscover . 126
7.3.5 Discussion of TrieDiscover . 131
7.3.6 Parameter Estimation . 132

7.4 Evaluation . 141
7.4.1 Experimental Setup . 141
7.4.2 Model . 143
7.4.3 Structure Discovery . 145
7.4.4 Parameter Estimation . 149

7.5 Summary and Conclusion . 151

8 Inference: Specification Mining and Dominant States 153
8.1 Preliminaries . 154

8.1.1 Inference in Bayesian Networks . 154
8.1.2 Model Checking . 155

8.2 Most Likely Behavior of MSSs . 162

ix

Contents

8.3 Automated Specification Mining using BaySpec 163
8.3.1 Overview . 164
8.3.2 Mining Graph Conversion . 164
8.3.3 Candidate Search . 166
8.3.4 Path Merging . 168

8.4 Evaluation . 175
8.4.1 Synthetic Evaluation of Performance and Expressiveness of BaySpec176
8.4.2 Case Study . 180

8.5 Summary and Conclusion . 187

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces 189
9.1 Implementation . 189
9.2 Background: Automotive Verification . 193
9.3 Data Sets . 194
9.4 Mining in-vehicle Network Traces for Specifications 195

9.4.1 Preprocessing . 195
9.4.2 Clustering . 197
9.4.3 Segmentation Clustering . 201
9.4.4 Structure Discovery . 208
9.4.5 Specification Mining . 210

9.5 Conclusion . 220

10 Conclusion and Outlook 223
10.1 Summary . 223
10.2 Lessons Learned . 224
10.3 Answers to Research Questions . 225
10.4 Future Work . 227

Bibliography 231

A Appendix A: Case Study Full Evaluation 251
A.1 ACC . 251

A.1.1 TV Clustering . 251
A.1.2 Reduced Clusters . 253
A.1.3 Segmentation Clustering: . 254
A.1.4 Specification Extraction . 254
A.1.5 TV Cluster 1 - Segment Group 0 254
A.1.6 TV Cluster 1 - Segment Group 1 256

A.2 Lights . 261
A.2.1 TV Clustering . 261
A.2.2 Segmentation Clustering . 264
A.2.3 Specification Extraction . 267
A.2.4 TV Cluster 1 - Segment Group 0 267
A.2.5 TV Cluster 1 - Segment Group 3 269
A.2.6 TV Cluster 2 - Segment Group 3 270

A.3 Wiper . 274
A.3.1 TV Clustering . 274

x

Contents

A.3.2 Segmentation Clustering . 276
A.3.3 Specification Extraction . 278
A.3.4 TV Cluster 1 - Segment Group 9 278
A.3.5 TV Cluster 1 - Segment Group 14 279

A.4 Startup . 283
A.4.1 TV Clustering . 283
A.4.2 Segmentation Clustering . 286
A.4.3 Specification Extraction . 289
A.4.4 TV Cluster 2 - Segment Group 1 289
A.4.5 TV Cluster 2 - Segment Group 8 290
A.4.6 TV Cluster 2 - Segment Group 15 292
A.4.7 TV Cluster 3 - Segment Group 0 294

A.5 Shutdown . 298
A.5.1 TV Clustering . 298
A.5.2 Segmentation Clustering . 301
A.5.3 Specification Extraction . 304
A.5.4 TV Cluster 1 - Segment Group 0 304
A.5.5 TV Cluster 2 - Segment Group 0 305

B Appendix B: Deriving Update Equation 309

xi

List of Figures

1.1 Fields of large-scale distributed systems 2

2.1 A formalization of a distributed system [1] is shown. 11
2.2 The simplified representation of a large-scale distributed system is shown,

which is referred to as DMS in the scope of this thesis. 12
2.3 Multiple occurrences of functional procedures fki are shown that each are

a part of a function Fk. Each Fk is represented with a different color here,
e.g. f11 and f13 are functional procedures of F1 (indicated in blue). 15

3.1 This image shows the product development cycle. In particular this in-
cludes recording and processing of data which is the focus of this work.
. 19

3.2 The procedure of Root Cause Analysis (RCA) as it was presented in [2]
is shown here. 23

3.3 An overview of models used in previous works is shown as it was defined
in [2]. In this work the TSCBN model is used (marked as *). 24

3.4 An example of a big data system with its components as it was presented
in [3]. 33

3.5 A modern system work flow for diagnosis is shown that includes multiple
sub procedures. 33

3.6 An overview of the proposed pipeline is shown. This approach consists
of six main steps. These are preprocessing (1), clustering of TVs (2),
segmentation and clustering (3), learning of model structure (4) and its
parameters (5) followed by inference of specifications and dominant be-
havior (6). 38

4.1 Kb is the recorded raw trace. Its payload li contains certain TV types
that are defined by midi and bidi. TV instances with same midi, bidi and
position li form one source of information, such as Ksid=vel

s , which is a
discrete time-series describing the vehicle speed or Ksid=err

s which is a
temporal sequence marking time-instances were a certain error was sent.
In this example the velocity TV instance sequence Ksid=vel

s is extracted
by taking the messages sent at t1 and t3 and interpreting their first value
to get e.g.ŝ11 = (10, vel) and ŝ31 = (12, vel) for speed 10 at time t1 and
speed 12 at time t2. E.g. in a BMW Series 7 2 million messages are
generated for Kb per minute. 45

4.2 Wiper function: Example of the formalization used. Assuming l′ to be
the first two bytes (=wpos) per message and l′′ the last two bytes (=wvel)
the rules for mapping between Kb onto Kn are v = 0.5 · l′ and v = l′′ [4]. 46

4.3 Overview of the flow of the preprocessing framework [4]. 48

xiii

List of Figures

4.4 Example of four Kred each consisting of TV instances of one TV type
with four different data types. Those TVs need to be processed based on
their data type [4]. 53

4.5 On the left the execution time after interpretation and removal of identical
consequent TV instances is depicted, when the number of initial examples
is varied. The right figure shows the size after each processing step when
the whole trace and all TVs are interpreted, reduced and symbolized [4]. . 60

4.6 On the left side the occurrence rate of values for the original TV values of
the angle of the acceleration pedal are shown. The occurrence rate after
symbolization is shown on the right. 61

5.1 Two sequences of TVs are shown. On the left a numerical TV time series
is shown and on the right two nominal TVs, with two states each, are
shown. 73

5.2 An overview of the overall TV clustering approach is shown [5]. 74
5.3 The extraction of features from overlapping windows is shown. Per win-

dow and TV a set of features is extracted. Per TV these features are
stacked to form the feature vector that represents the TV [5]. 78

5.4 The forward backward feature selection is shown. At each iteration a
feature is added or removed if accuracy improves [5]. 79

5.5 Relevance score determined as number of optimal feature subsets in which
a feature occurred [5]. 84

5.6 Clustering performance in terms of Silhouette index before and after the
generalized feature selection is applied [5]. 84

5.7 Comparison of centroid-based algorithms in terms of Silhouette index [5]. 85
5.8 Comparison of hierarchical algorithms in terms of Silhouette index [5]. . . 86
5.9 Silhouette index per data set and clustering algorithm [5]. 87
5.10 On the left the result of signal clustering with DBSCAN and ε = 10 and

on the right with ε = 0.5 are shown [5]. 88
5.11 The numerical TV ”Braking Momentum” and the nominal TV ”Brake

Light State” are grouped with the presented approach [5]. 88
5.12 Dendrogram illustrating hierarchical clustering at various granularities.

I.e. branches resemble possible groupings. E.g. one possible granularity
is shown in red and blue [5]. 89

6.1 Given a MES < x1, ...xN > an optimal approach finds patterns that are
consistent in state and time. In this case three clusters with representa-
tives ADBH, XF and CEG would be discovered. There, e.g., the cluster
XF occurs three times within the trace. 91

6.2 An observed sequence Xobs is shown. Here colors indicate cluster assign-
ments. pobs assigns each event an identifier, which defines the pattern it
belongs to. With cobs a cluster is assigned to each pattern. 96

6.3 The LTS approach is shown given an example trace as it was introduced
in [6]. 98

6.4 The F1 score of clustering and pattern assignments is presented, when
overlap is increased. 105

xiv

List of Figures

6.5 The F1 score of clustering and pattern assignments is presented, when
the length of the trace is increased. 105

6.6 The run times are shown, that result when the length of the trace is
increased. 106

7.1 An MSS with 3 Temporal Variables for the process of wetting grass, and
models to generate it, are shown. If the grass is dry the sprinkler turns
on, if it is not raining. Once it starts raining the sprinkler turns off. The
same model could produce a sequence where the rain is falling throughout
the process. Then, the sprinkler would never have turned on. Temporal
State Change Bayesian Networks provide a compact yet expressive repre-
sentation for such scenarios. 110

7.2 A DBN of order 3 is shown here. 118

7.3 Here an example of a CTBN structure is shown [7]. At each time step
a Markov Process that is conditioned according to this structure models
the temporal evolution of the data. 120

7.4 Two Temporal Variables (TVs) S1 and S2 are illustrated. The top part
shows a MSS that is generated by the Temporal State Change Bayesian
Network (TSCBN) shown in the lower part. X1 and X2 indicate the ob-
served sequence of state changes, which are generated by the true latent se-
quences 〈(v10,∆t10), (v11,∆t11), (v12,∆t12), (v13,∆t13)〉 and 〈 (v20,∆t20),
(v21,∆t21), (v22,∆t22)〉. Note that a temporal-causal dependency between
state change v11 of TV S1 and state change v21 of TV S2 is given in the
shown TSCBN [8]. 121

7.5 A Multivariate State Sequence (MSS) of the movement of a person is
shown, with four dependent TVs Smove, Slocation, Stemp, Sinjury. The
MSS is M =< (0, 4, Smove, sit), (0, 5, Stemp, cold), ... >. Also, the main
concept of TSCBNs is shown. Intervals are modeled by State Changes
(SCs). Causal dependence between intervals (here: Smove, Stemp and
Sinjury) is modeled as edges between SCs to respective intervals [8]. . . . 124

7.6 The compact representation of a TSCBN defines each node n as the state
a TV S changes to and its time of change [8]. 125

7.7 Allen’s temporal relations are shown on the left, between a TV Si that is
in state sir for a certain time interval and a TV Sk that is in time interval
skx. Each interval boundary is modeled by a node n of a TSCBN. On the
right the according temporal requirements for the absolute times (defined
by the respective ∆t) of each node n is illustrated [8]. 126

7.8 An example of the overlaps relationship, which shows the state of the door
and the key as TV. When the key is turned, the open door changes to a
closed state. The overlaps relationship is modeled as TSCBN, with v14 as
state change from open to closed and with v24 as start and v25 as end of
the key turning procedure [8]. 126

7.9 The basics step of the discovery approach are shown. Starting from a
long trace the input MSSs for TrieDiscover are deduced by segmentation.
With this TrieDiscover finds a BN structure to represent a set of MSSs [8]. 127

7.10 A Trie modeling the observation of four MSSs is shown [8]. 129

xv

List of Figures

7.11 The DAWG after minimizing the trie in Figure 7.10 is given [8]. 129

7.12 Results of structural complexity, as number of nodes nN and CPDs nC ,
for various numbers of TVs [8]. 144

7.13 Left: Various number of added and missing edges for sbTD in comparison
to ground truth, when structure and tth is varied, with 3 TVs assumed [8]. 146

7.14 Execution time when assuming nL = 3 for various numbers of TVs and
the two steps of TrieDiscover [8]. 147

7.15 Results in terms of run time and SHD for various sizes of the training set,
SC probabilities [8]. 147

7.16 Results in terms of run time and SHD for various sizes of the training set,
SC probabilities [8]. 147

7.17 Left and Mid : Abs. MLL and run time when varying probability of
state change and number of training samples using the EM algorithm for
estimation of TSCBN parameters. right: Run times for three approaches
including EM, VI and MLE random for two structure sizes [8]. 151

7.18 The KL divergence and temp. MLL when varying probability of state
change and number of training samples for three approaches including
EM, VI and MLE random for two structure sizes are shown [8]. 152

8.1 The basic model checking process is depicted and was taken from [9]. . . . 156

8.2 Various operators are shown. This example was taken from [9]. 160

8.3 A Bayesian Network with two states 0 and 1 per node is shown on the left
and the resulting Mining Graph after conversion is shown on the right.
This figure was taken from [10]. 165

8.4 The limitations of the Dijkstra Algorithm are illustrated [10]. 168

8.5 The syntax tree of the LTL formula G(x → XF y) is shown to exemplify
the notion of complexity. 176

8.6 Left: Number of mined specifications under various percentages of re-
moved cross-edges ξ between original and validation BN, under various
minimum average likelihoods pmin. Right: Comparison of metric based
and comparison based approach in terms of # Mined Specifications for
various minimum average likelihoods pmin for 2 different BN sizes [10]. . . 177

8.7 Run time of the approach under various average likelihoods pmin for 4
cross-edge deletion percentages ξ [10]. 178

8.8 Left: Height and number of unique events of found specifications for three
approaches, with circle size being frequency of occurrence. Right: Height
of Specifications against its frequency [10]. 179

8.9 Ratio of FPs mined by three approaches with traces of increasing number
of functions [10]. 179

8.10 Distribution of gaps between consecutive state changes in nanoseconds for
the high beam and indicator data set [10]. 182

8.11 Number of inter-edges after structure discovery for different values of k
and χth, with the high beam shown on the left and the indicator results
shown on the right [10]. 184

8.12 Original and validation BN for the indicator activation function [10]. . . . 185

xvi

List of Figures

8.13 This figure shows the network that was discovered with TrieDiscover for
the indicator on the left and for the high beam assistant on the right [10]. 185

8.14 Height and number of unique events of found specifications for three ap-
proaches, with circle size being frequency of occurrence [10]. 185

9.1 First part of the overview of the configuration used for the evaluation in
this chapter. 190

9.2 Second part of the overview of the configuration used for the evaluation
in this chapter. 191

9.3 An example of the times of transmission of Kb is shown. There each
dimension represents the type of transmitted frames and each data point
its point of occurrence. The right part shows a magnified version of the
left plot. It can be seen that both cyclic, as well as event based frames
are transmitted. 195

9.4 The distribution of TVs for Kcond is shown. Each color represents one
TV and its number of occurrences in the data set. 196

9.5 Here the statistics of all data sets are shown after preprocessing, i.e. Kn.
There the left pie chart shows the numbers of occurrences per TV, the
middle chart show the same distribution per data type and the right plot
illustrates the distribution of data types. 198

xvii

List of Tables

4.1 Example for Urel with relevant bytes to extract: Bytes 1 and 2 for wpos
in messages with id 3, Bytes 3 and 4 for wvel. From SOME/IP the wiper
status wstat and from K-Lin the wiper type wtype could be extracted
from messages with respective ids 11 and 212, i.e. the presented approach
allows to combine multiple protocols into this extraction [4]. 51

4.2 Extension: Gap between wpos TVs from sequence Ksid=wpos
s 55

4.3 Map TV instance sequences to data type and processing branch [4]. . . . 57
4.4 Exemplary state representation of TV instances of the function lights

combined with driving speed [4]. 58
4.5 Exemplary state representation of TV instances of the function lights

combined with driving speed. 58
4.6 Statistics of the three data sets used here. 60
4.7 TV extraction times for massive traces as introduced in [4]. 61

5.1 Comparison of algorithms in clustering of in-vehicle signals. I.e. handling
high-dim. data, detect clusters of any shape, allow multiple granularities
of clusters, visual representation and computational complexity, with t
iterations, maximal depth d, n examples and k classes. This table was
taken from [5]. 80

5.2 Statistics of the datasets: total number and proportions of numerical and
nominal signals, data points per set, recorded part of journey. Here, small
subsets are used for evaluation, while in practice thousands of signals are
considered. This table was taken from [5]. 82

5.3 Experimentally determined optimal window sizes per data set in seconds.
This table was taken from [5]. 85

8.1 Edit operation rules for regular expressions as introduced in [10]. 170
8.2 The Levenshtein matrix for two expressions abcd and acD is shown as

given in [10]. 171
8.3 Properties of the automotive datasets including results after model cre-

ation and parameter estimation [10]. 181
8.4 Excerpt of LTL Specification found with BaySpec. The upper part shows

the indicator and the lower half part shows the high beam results, with
likelihoods of found specifications L. 186

8.5 Metrics for the specifications that were extracted with BaySpec. 186

9.1 The statistics of each data set are shown. The type of data corresponds
to Kcond of the presented pipeline. 195

9.2 The statistics after preprocessing are shown, which corresponds to Kn. . . 197

xix

Glossary

BIC – Bayesian Information Criterion
BN – Bayesian Network

CAVI – Coordinate Ascent Variational Inference
CB – Constraint-Based
CI – Conditional Independence
CPD – Conditional Probability Distribution
CTBN – Continuous Time Bayesian Network
CTL – Computational Tree Logic

DAG – Directed Acyclic Graph
DBN – Discrete Bayesian Network
DBSCAN – Density Based Spatial Clustering of Applications with Noise
DM – Data Mining
DMS – Dynamical Multifunctional System

ELBO – Evidence Lower Bound
EM – Expectation Maximizations

FSA – Finite State Automaton

GHC – Greedy Hill Climbing

HBN – Hybrid Bayesian Network

IoT – Internet of Things

JPD – Joint Probability Distribution

LTL – Linear Temporal Logic
LTS – Local Trace Segmentation

MAP – Maximum A Posteriori
MES – Multivariate Event Sequence
MLE – Maximum Likelihood Estimation
MMHC – Max-Min Hill Climbing Algorithm
MPE – Most Probable Explanation
MSS – Multivariate State Sequence

xxi

Glossary

PGM – Probabilistic Graphical Model
PM – Process Mining

RCA – Root Cause Analysis
RV – Random Variable

SAX – Symbolic Aggregate approXimation
SB – Score-Based
SC – State Change
SD – Structure Discovery
SOM – Self Organizing Map

TSCBN – Temporal State Change Bayesian Network
TV – Temporal Variable

VI – Variational Inference

xxii

1 Introduction

Growing inter-connectivity of systems that are surrounding us is rapidly changing the
way we live. In the morning, a virtual assistant informs us on the weather, our appoint-
ments at work and the traffic situation, while, at the same time, the car heater activates
as it received a signal from our alarm clock that we woke up. Driving to work, the car
reads our emotions providing the right music to play and the best route to take, while
it informs other cars about hazards along the way.
The functionality that is underlying this comfort is enabled by computational devices
that are part of bigger systems that are surrounding us. Such devices are communicat-
ing either as part of a common infrastructure, such as the Internet of Things (IoT), or
within their own infrastructure, e.g. within automotive in-vehicle networks. Systems
that are combined in that sense are referred to as large-scale distributed systems within
this thesis. Here, large-scale refers to either a high number of executing processes (or
nodes) or applications processing vast amounts of data [11].
As presented in the introductory example such systems are highly beneficial for us mak-
ing it increasingly hard to refrain from their usage. However, our safety and even the
working of our society, depends on the well-functioning of those systems. As a conse-
quence, it needs to be ensured that those systems behave as expected in terms of their
hardware, software and communication.

1.1 Diagnosis in Software of Large Scale Systems

In this thesis the focus is on the software aspect of verification of such systems. This
aspect is getting increasingly important [2] due to several reasons.
First, sensors and processors are integrated in more and more products of different indus-
tries, including automotive, aerospace, medicine or the social sector as shown in Figure
1.1. Next, within complex internally-interconnected systems, such as cars or airplanes,
the number of control units that are running distributed software is increasing. Safety
and functionality are improved through redundancy and more powerful software and
hardware architectures. In addition to that, running those systems requires a high de-
gree of compatibility across functionality and communication behavior on both hardware
and software level. Thus, growing amounts of interrelated components and functionali-
ties aggravate their verification.
At the same time misbehavior of functions and execution failures in both individual
systems and within their interconnected cooperation might have severe consequences.
These can be outages or unexpected behavior, which cause high costs in terms of un-
planned down times [12], customer dissatisfaction or even loss of life [13]. Therefore, a
high effort needs to be put in the verification of such large-scale distributed systems.

1

1 Introduction

Figure 1.1: This image shows an overview of fields in which large-scale distributed systems are
applied1.

Software Verification: Two common ways for verification are fault injection and
fault diagnosis. While in fault injection faults are specifically injected into the system
in order to analyze resulting symptoms of the system, in diagnosis, faults are directly
inferred from observed symptoms [14]. This work addresses approaches in the context
of diagnosis. Diagnosis refers to tasks such as detection, localization, identification or
prediction of known and unknown errors, as well as the determination of their root cause
based on observations that are made from the system.
In diagnosis, multiple types of errors might be investigated. Among others, this includes
scale dependent, configurational, behavioral or communicational errors. For instance, in
automotive, bus overload might lead to functions remaining inactive, disabled compo-
nents hinder requested functionality and unexpected driver behavior needs to be handled.
Such errors are not always visible, e.g. due to the faults’ characteristics, fault tolerance
mechanisms that are built into the system or the lack of monitoring functionality in the
system [14], making diagnosis of such errors challenging. This effect is amplified with
the scale of the system, i.e. growing size yields more complex distributed systems with
more functions, sensors and actuators. The consequence of this is an increasing amount
of possible fault types with more and more complex patterns.
In particular, errors in software of large-scale distributed systems can manifest both
within components or across components [11]. This makes verification challenging, as
components are developed by distinct teams before being integrated to an overall sys-
tem.
Therefore, during development of a large-scale distributed system or its participants,
diagnosis is performed both before and after integration. The latter is particularly chal-
lenging, as a high degree of expertise across domains of the integrating parties is required,
error patterns are more complex and multiple combinations of systems might be given.

1Source: https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/

technology/new_field/iot/img/img_iot_01e.jpg

2

https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/technology/new_field/iot/img/img_iot_01e.jpg
https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/technology/new_field/iot/img/img_iot_01e.jpg

1.2 Data-Driven Verification

1.2 Data-Driven Verification

An increasingly important way to verify software behavior of integrated systems sys-
tematically is by recording and verifying traces from system executions. Using traces is
beneficial, as it is both cost-efficient and well-suited to systematize.
This type of verification can be done in multiple ways. First, those traces can be analyzed
manually for misbehavior in an exploratory manner based on an expert’s knowledge and
his experience [15]. However, this requires a lot of effort and is often only possible for
known errors.
Second, another common approach to verify correctness of integrated systems is by using
model checking, where nominal behavior is defined and used to verify observed behav-
ior. Definition of nominal behavior is done in a comprehensible manner using a set of
rules. Each rule (also referred to as specification) can be defined, e.g. by using model
checking languages which specify states the system is allowed to transition to. Those
specifications are ran on observed traces or systems. If the observed behavior violates
any specification, the respective erroneous part of the trace or system was identified.
This allows to check for specific behavior of a set of functionalities systematically on
large sets of traces. Especially for software of increased scale this is important, as man-
ual localization of errors becomes in-feasible and such methods are well able to guide
developers to the locations of faults with minimal human intervention [16]. A problem
with this type of approaches is that currently such rules are mostly defined manually.
However, with growing complexity of systems this becomes intractable as there are vast
numbers of possible execution branches, generation is time consuming, multiple domains
are involved in the process, high expertise is required and human cognition is limited.
Third, automated methods that operate directly on the data to diagnose known and un-
known errors are becoming increasingly important. A growing branch of such methods
are those that apply Machine Learning to infer knowledge for verification from recorded
data. On the one hand, this is done with black box models, such as Neural Networks.
Such approaches are helpful to use for tasks such as anomaly detection, error prediction
or classification of unspecific errors [16, 12, 17]. On the other hand, such knowledge
inference is done on the basis of white box models (e.g. using Bayesian Networks). This
type of approaches is preferable to use in tasks that require interpretable results, e.g.
during testing of functionalities.

Specification Mining: A field of research that combines both model checking and
data-driven learning approaches is referred to as Specification Mining. Instead of man-
ually defining nominal behavior as a set of rules (= specifications), such as in classical
model checking, in Specification Mining automated approaches are developed to learn
such rules from software code or execution traces. For instance, Machine Learning is
used to learn and model observed behavior and inference is used to identify rules that
most likely represent correct system behavior. Using such techniques allows to generate
a more complete set of rules, while manual effort is reduced.
Current approaches in the field of Specification Mining are not designed for large-scale
distributed systems. For instance, those methods do not assume combinations of mul-
tiple functional behaviors with high-dimensional, massive and heterogeneous data sets.
However, traces are expected to grow in size and complexity, making it essential to solve

3

1 Introduction

this task for such massive data sets. As described in [2], there will be nearly 26 billion
devices on the Internet of Things by 2020 and, as indicated in [4], in-vehicle network
complexity increased to up to 90 interacting components with traces that have grown
to massive amounts. In [16] this task was described as highly complex by stating that
”although the complete execution trace of a program is a valuable resource [...], the huge
volume of data makes it unwieldy for usage in practice”.
A promising direction to solve this is the usage of Specification Mining at a large scale.
Doing this becomes possible with the current advent of Big Data technology, such as
Apache Hadoop [18], in combination with Machine Learning. Less recent work dealt
with this topic, while applying this at scale might allow to perform systematic verifica-
tion of future distributed systems to ensure its safety and quality.
Therefore, in this work, those methods are combined to a systematic extraction approach
which addresses the above issues. The proposed method is a Data Mining (DM) pipeline
that systematically reduces, prepares and structures recorded traces. From the resulting
representation, the expert guides the extraction of dominant system states, that, first,
can be used as templates for specifications and, second, improve the expertise of the
expert and thus, supports the experts ability to generate specifications. The same rep-
resentation is further used in this pipeline to semi-automatically extract specifications
described in Linear Temporal Logic (LTL).

Challenges: Mining of specifications in large-scale distributed systems has multiple
challenges.
First, this includes the type of data that needs to be dealt with. Recorded traces are
often massive and in raw data format with a high degree of redundancy in the data.
Therefore, it needs to be interpreted and reduced meaningfully. Above that, this data is
temporal, high dimensional and heterogeneous. For an automated procedure those data
types need to be homogenized and further reduced in dimension.
Second, recorded data represents multiple functional behaviors. Different dimensions
and segments in the analyzed trace correspond to particular functional groups that are
relevant to experts of particular domains only. Such functional groups need to be found
(semi-) automatically. Especially, in massive traces, this requires to break down com-
plexity by identifying functional aspects.
Third, large systems are designed by multiple experts from different domains. As a con-
sequence, testing of those systems is aggravated as individual functional behaviors cover
multiple fields of knowledge, expertise is distributed, cross-functional system knowledge
is represented implicitly (i.e. experience) and hidden correlations of subsystems exist.
To overcome this, the lack of domain knowledge needs to be covered by guiding the
inspecting experts towards relevant functional procedures and dimensions for diagnosis.
This allows for identification of relevant functional entities and consequently, for extrac-
tion meaningful specifications.
Fourth, when given a set of observed temporal behaviors within a functional group, a
consequent step is to perform specification extraction. Challenges of this extraction in-
clude handling of imperfect traces and finding specifications of arbitrary length. This
is solved by appropriately representing traces, which is commonly done by using either
rule-sets or models. For the case of imperfect traces, probabilistic models are promising
to handle such data types for the given scenario. In case of the given type of system,

4

1.3 Contributions and Research Questions

this requires to represent multivariate temporal sequences in a way that dimensional
information is preserved while noise is handled.
Fifth, granularity of found functional groups is often subjective and depends on the an-
alyzing domain, e.g. it can be on a communication layer where messages are considered
events or on a system state layer, where changes in system state are analyzed. Thus,
again domain knowledge needs to be included in the process of specification mining.

1.3 Contributions and Research Questions

1.3.1 Contributions

This work deals with the task of extraction of specification as well as the determination
of dominant procedures in traces of large-scale distributed systems. In particular this
includes the following contributions.

• Design of a Data Mining Pipeline: Based on the shortcomings that were
identified for the existing approaches for specification mining and dominant behav-
ior extraction, a novel approach is presented to overcome those. It allows to extract
specifications per domain through a semi-automated procedure that involves ex-
pert input. By extracting functional groups and by reducing data meaningfully,
complexity of the inspected large scale system is broken down and traces are ana-
lyzed in terms of aspects relevant to the domain. Further, this approach is modular
which allows for variation of individual stages within this pipeline. Lastly, an end-
to-end solution is presented, that covers all stages from the raw trace to sets of
relevant specifications.

• Pipeline Stages: For each stage of the approach, multiple variations can be
used, which in general depend on the data used. In this work, each of those is
discussed and evaluated in order to allow for a good choice of methods per stage.

• Extensive Evaluation: To demonstrate its validity and effectiveness, the pro-
posed approach was evaluated on multiple data sets from the automotive industry.
There, all stages are evaluated in detail. This includes validation of each step,
discussion of hyper parameters in dependence of the data set and the discussion
of conclusions that are drawn from this. The evaluation shows that the proposed
DM pipeline allows for Specification Mining at large scale.

1.3.2 Research Questions

Within the above contributions multiple research questions arise that need to be an-
swered within the design of the DM pipeline. Those are the following.

1. How does a systematic Specification Mining approach need to be designed to be
integrable in current testing and verification procedures of large-scale distributed
systems?

2. How can temporal structure be exploited to allow for a more expressive Specifica-
tion Mining on MSSs?

5

1 Introduction

3. How can Specification Mining be performed on noisy and heterogeneous traces in
order to produce specifications that compare multiple data types?

4. How can domain-specific Specification Mining be performed and experts included
in the mining procedure?

5. How can the complexity of a multi-functional large-scale distributed system be
broken down, such that effective and efficient mining of relevant specifications is
enabled?

6. How can behavior of functional procedures of MSSs be represented under uncer-
tainty and specifications of arbitrary length extracted?

7. How can raw communication traces of large-scale distributed systems be processed
and functional procedures, as well as specifications identified from those?

8. How can functional procedures be identified in high-dimensional MSSs of large-
scale?

9. Which combination of approaches is suited to be used at each individual step of
the semi-automated processing pipeline?

After presenting the pipeline in the further course of this thesis, in Chapter 10 answers
to the above questions will be given based on the conclusions drawn from the individual
steps of the pipeline.

1.4 Thesis Outline

The focus of this thesis is on Specification Mining for the identification of functional er-
rors from traces of large-scale distributed systems. Such traces needs to be represented
in an appropriate data format. Also, an understanding of the formal connection be-
tween the system, its state over time, the functional perspective and the recorded trace
is required. Those preliminary aspects are introduced in Chapter 2. Based on those
assumptions in Chapter 3 the novel DM pipeline for Specification Mining is presented
and put into context of related work in the field. In the successive chapters the indi-
vidual steps of this pipeline are presented and approaches for those steps are evaluated
for suitability in the pipeline. An automated preprocessing approach for communication
traces is described in Chapter 4, a clustering approach for multivariate temporal data in
Chapter 5, a segmentation clustering approach to identify correlating MSSs in Chapter
6, a model for representation of MSSs under uncertainty in Chapter 7 and two inference
approaches to identify specifications from this model in Chapter 8. Based on the results
that are presented in those chapters an implementation of the DM pipeline is presented
and evaluated on multiple data sets of the automotive industry in Chapter 9. Lastly, a
conclusion is given, which summarizes the results of this work in Chapter 10

6

1.5 List of Publications

1.5 List of Publications

The following publications resulted from research performed during the time of this
doctoral thesis, while only publications [1-4] are referenced in this work.

1. Artur Mrowca, Florian Gyrock, Stephan Günnemann. Temporal State Change
Bayesian Networks: Modeling Multivariate State Sequences with evolving depen-
dencies. Under Review.

2. Artur Mrowca, Martin Nocker, Sebastian Steinhorst, Stephan Günnemann. Learn-
ing Temporal Specifications from Imperfect Traces Using Bayesian Inference. Pro-
ceedings of the 56th Design Automation Conference (DAC 2019).

3. Artur Mrowca, Barbara Moser, Stephan Günnemann. Discovering Groups of
Signals in In-Vehicle Network Traces for Redundancy Detection and Functional
Grouping. Proceedings of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases (ECMLPKDD 2018).

4. Artur Mrowca, Thomas Pramsohler, Sebastian Steinhorst, Uwe Baumgarten. Au-
tomated Interpretation and Reduction of In-Vehicle Network Traces at a Large
Scale. Proceedings of the 55th Design Automation Conference (DAC 2018).

5. Jan-Philipp Schulze, Artur Mrowca, Elizabeth Ren, Hans-Andrea Loeliger, Kon-
stantin Böttinger. Context by Proxy: Identifying Contextual Anomalies Using an
Output Proxy. Proceedings of the 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (SIGKDD 2019).

6. Peter Wolf, Artur Mrowca, Tam Nguyen, Bernard Bäker, Stephan Günnemann.
Pre-ignition Detection Using Deep Neural Networks: A Step towards Intelligent
Automotive Diagnostics. Proceedings of the Intelligent Transportation Systems
Conference 2018 (ITSC 2018).

7. Tam Nguyen, Artur Mrowca, Barbara Moser, Andreas Jossen. Analysing the load
on electric vehicles using unsupervised segmentation models as enabler to deter-
mine the time of battery replacement and assess driving mileage. Proceedings of
the 13th Conference on Ecological Vehicles and Renewable Energies (EVER 2018).

7

2 Preliminaries

First, multiple terms are introduced, which are used in the context of fault diagnosis in
the verification community. Second, the proposed approaches are aimed to analyze large-
scale distributed system. Therefore, those systems are introduced on a systematical and
a functional level together with the type of data that those produce. Lastly, in this work
the focus is on verifying behavioral errors in software of distributed systems, which is
why those are introduced in the last part of this chapter.

2.1 Terminology

2.1.1 Verification

Distributed System: According to [1] a distributed system is a set of components
that are located on different nodes, which coordinately perform an action by exchanging
communication messages. These components can be seen as a collection of computa-
tional devices that appear to its users as a single coherent system [1].

Diagnosis: Diagnosis is the identification of the nature of a problem by examination
of the observed symptoms [14]. Those are tasks such as fault localization, root cause
identification, fault prediction and fault detection.

Event: Events are exceptional conditions that occur when running the system. In the
scope of this thesis this includes all conditions of the system, e.g. its state changes.

Failure: A failure is a system state in which a service or an application deviates from
its correct behavior. It is an error that is observable from outside the system [16].

Error: An error is a certain condition within the system that may have led to a failure.
It is caused by one or more faults and is a discrepancy between a condition of the system
and its theoretically correct condition [16].

Fault (= bug): A fault is defined as the underlying cause of an error. Faults are events
that can cause other events but are not caused by other events. Faults can be permanent
if the fault persists until reparation, intermittent if those are discontinuous and transient
if those are temporary. [16].

Symptom: A symptom is a subset of observed system states that indicates a system’s
misbehavior. It is an external manifestation of failures and might be visible indicators
that a failure happened (e.g. anomaly) or the direct observation of a failure [14].

9

2 Preliminaries

Failure Mode: The failure mode is a possible way that a system can fail. A complex
system has multiple failure modes [16].

Root Cause: The root cause of a failure or of a fault obtains the symptoms that led
to the failure or fault [2].

Explanation: The explanation of a failure or fault explains how the root cause is linked
to the symptoms [2].

Bohrbug: A software bug which manifests reliably under a well-defined, but possibly
unknown set of conditions [16], as opposed to Mandelbugs. Mandelbugs are complex
and unpredictable. Those include performance bugs, memory leaks, software bloats and
security vulnerabilities [16].

2.1.2 Data Types

Temporal Variable (TV): A temporal variable S refers to a dimension of information

that is transmitted, with a value space of V̂ . Each TV S might be of numerical, binary,
ordinal or nominal type with events or states with value v̂ ∈ V̂ . That is for the numerical
case v̂ ∈ R, binary case v̂ ∈ {0, 1}, ordinal case v̂ ∈ N, nominal case v̂ ∈ S̄ = {s1, s2, ...}.

Multivariate Event Sequence (MES): A MES M̄ is defined as a series of events
Ēi = (t, Sk, sj) that each represent a state sj of a TV Sk at a defined time t. It is
ordered according to its times of occurrence:

M̄ =< Ē1, Ē2, ... > such that Ēi.t ≤ Ēi+1.t (2.1)

Multivariate State Sequence (MSS): Formally, a MSS M is a series of state intervals
Ei = (s, e, Sk, sj), defined by start times s, end times e and states sj they are in. It is
ordered according to their start times and each assigned a TV Sk:

M =< E1, ..., EI > such that Ei.s ≤ Ei+1.s, Ei.e = Ei+1.s (2.2)

In particular, in MSSs each TV is in a state at all times and only state changes are
observed. Moreover, MESs record states of TVs at defined points in time. In contrast
to that, MSSs store intervals of states that TVs are in. In this context, each MES can
be transformed to a MSS by filtering MESs such that two consecutive sequence elements
of the same TV, that have same value, are filtered out.

2.2 System Definition

2.2.1 Distributed Systems

The DM pipeline that is proposed in this thesis is aimed to support trace diagnosis of
large-scale distributed systems. Here, the term large scale refers to a system which has
a large number of applications running and consequently produces vast amounts of data
(as opposed to ingesting big amounts of data [11]). Such systems can be formalized

10

2.2 System Definition

Figure 2.1: A formalization of a distributed system [1] is shown.

as shown in Figure 2.1, which was taken from [1], and are introduced in detail in the
following.
A distributed system is surrounded by an environment and one or more users that are
interacting with it. Within the system, multiple computing nodes run distributed appli-
cations that might be executed on one or multiple nodes. Moreover, multiple applications
may run on one node. Each node is connected and interacting on a common network
and interacts with hardware components by receiving sensory input from those or by
transmitting actuatory input to those. Above that, components are connected to the
environment and to the users.
The goal of the proposed diagnosis is on learning behavioral patterns of such systems
in order to use the gained knowledge for verification of functional correctness. This is
done by inspecting data recorded from traces of system executions. It is assumed that
the system records the state of the environment, the state of the user interaction, as
well as calls of the applications that describe functional operations and the state of the
system. For example, in the distributed software system that runs in a car, the system
state might be the speed of the car or the state of the left front door. Each application
that is running on the system nodes is modifying the state of sub-components as well as
other nodes of the system, where both nodes and components are coupled.
Further, unlike in component tests, where the goal is to verify that individual parts of
the system behave as expected, here the focus is on integration tests. In those types of
tests the goal is to ensure that the overall integrated system behaves as expected. This
correctness can be verified using data-driven verification methods. For this, traces are
recorded which contain the states of the users, the environment and the overall system.
Those traces are analyzed for diagnosis of errors and failures.

11

2 Preliminaries

Figure 2.2: The simplified representation of a large-scale distributed system is shown, which is
referred to as DMS in the scope of this thesis.

2.2.2 Simplified System State Perspective

In the following, a black-box system formalization is deduced from the above definition.
This representation will allow to formalize and introduce the proposed DM pipeline, as
well as to define the scope of applicability of it. In particular, this includes the link-
age between the system states, its functions and its executions, which are presented here.

System representation: The simplified representation, which is called a Dynamical
Multifunctional System (DMS) in the scope of this work, is shown in Figure 2.2. There,
the system state R is abstracted into interconnected sub-component states Ri. In terms
of the above definition, sub-components Ri are either nodes or components, e.g. R1

could be the door and R2 the left rear wheel of a car. As specified above, the overall
system state R depends on the previous system states, user actions and the environ-
mental states. To verify the correctness of this system, it is executed under multiple test
scenarios. Those produce a trace which contains multiple variants of system executions,
which need to be analyzed using data-driven approaches for verification.

Dynamical Multifunctional System: In the scope of this work we define a DMS
R as the state of an integrated system that consists of K interrelated subsystems with
states Rk with k ∈ [1...K], that may or may not interact. A DMS has a system state
R(t) it is in at any point in time t and has a set of actions Q and a set of environment
variables W as input. Thus, recorded behavior of those variables is represented in an
trace Kb that is produced by the system.

Action: The set of actions Q defines the state of multiple temporal input variables,
which are external actions that interact with the system state. This variable has a de-
fined state Q(t) it is in at any time t.

Environment: The set W is the state of multiple TVs that define the environmen-
tal influence on the system. Those variables have a state W(t) those are in at any time t.

Total DMS State: The state X of the overall DMS is called the total state of the
system. It is comprised of the system states R, the actions Q and the environment
variables W, i.e. X = (Q,W,R). There, each dimension Xi of X is comprised of a TV

12

2.2 System Definition

Xtv with a defined state Xval, i.e. Xi = (Xi,tv, Xi,val).

Dynamics: From a generative perspective it is assumed that each system state is pro-
duced from its preceding states. Starting from an initial state R0, the consecutive state
Ri+1 is produced by a mapping function f , that uses its previous actions Qi, environ-
mental influences Wi and states Ri as input, i.e. Ri+1 = f (Qi,Wi,Ri) = f (Xi). Here,
the iteration index indicates a particular point in time, in terms of a discrete time of the
recording at that time of iteration.

From that perspective any trace Kb can be seen as the product of multiple iteration
steps performed on Ri+1 = f (Xi), when starting from a defined R0.

2.2.3 Functional Perspective

2.2.3.1 Functions

A modern distributed system is highly complex, as applications run on multiple compo-
nents and communicate on a common network, while components, applications and the
network communication are developed by different groups of developers. In particular,
this might result in bugs or hidden causalities.
Therefore, in data-driven integration tests the correct interplay of those components is
verified by inspecting that its functional flow during run time is correct. For this, subsets
of those components are tested. Further, it is assumed that if all functional flows of all
functions are correct, the integrated black-box DMS behaves according to its nominal
behavior and thus, is also correct.
The verification of such functional flows from recorded executions is the main intent
of this thesis. This requires to introduce the notions of functions and the concept of
functional procedures, which is done in the following.

Formal Definition: A function Fk of a DMS R is a defined group of processes of the
DMS, that realize a closed subset of tasks that logically belong together. Each function
Fk operates on a defined subset Rsub of subsystems Rk ∈ Rsub and thus, modifies the sys-
tem state of those subsystems. It depends on subsets of actions and of environment vari-
ables. Each function that operates on the system is denoted as Ri+1

k = Fk(Q
i,Wi,Ri

k),
which is a function that inputs the current state Ri

k of its subsystem and outputs its

consequent state Ri+1
k .

The totality of all functions Fk defines the procedural aspects of the overall DMS R
and thus, the complete behavior that is present within the DMS. For the purpose of
verification it, therefore, makes sense to define the system dynamics function f (Xi)
that links consecutive system states, in terms of such functions. For this the total-
ity of functions F = (F1, F2, F3, ...Fn) is assumed, that can either be active or inac-
tive at any iteration step, where the activeness of each function is defined by a vector
o(X) = (o1(X), o2(X), o3(X), ...on(X)), where oi(X)) = 0 if the corresponding function
is inactive and 1 other wise. With this f (Xi) can be written as

Ri+1 = f (Xi) = oi(Xi) · Fi(Xi) (2.3)

13

2 Preliminaries

where oi(Xi) defines the set of active and inactive functions at iteration i.

2.2.3.2 Functional Procedures

In a DMS functions Fk are not modifying the system state randomly, but rather allow
for a finite set of procedural patterns that modify the system state R (or rather its sub-
systems) within a defined time span in a defined manner. Such patterns, that a function
may cause, are called functional procedures.

Formal Definition: Depending on the state Xi , the start of the activity of function
Fk (i.e. ok(X

i) changes from 0 to 1) might trigger the execution of a defined procedure
of system states Q, W and Rsub. The number of possible procedures of function Fk
is finite and thus a set of functions fki is defined, that each produce a defined MES
depending on Xi. Those defined procedures are called functional procedures.

The set of all sub-functions of a function can be written as Fk(Q,W,Rsub) = (fk1, ..., fkm)
and its activation at step i denoted as ok(X) = (ok1(X), ...okm(X)). Here, ok(X) is ei-
ther a one-hot or a zero vector, as a functional procedure can be either currently active
within a time span or not active. Thus, by inserting this into equation 2.3 the overall
consecutive system state Ri+1 could be written in terms of all functional procedures.
In particular, any subsystem state R depends on all active functional procedures influ-
encing it. Notably, the system state at iteration i depends on inputs that might have
triggered functional executions, functional procedures of other active functions, actions
and environmental conditions. Apart from this, the amount of interaction between func-
tional procedures and other functions depends on the amount of overlapping subsystems
Rsub that are influenced by the respective function. This idea of functional procedures
is illustrated in Figure 2.3 for four functions Fk that each operate on different TVs of
subsystems Rsub producing different functional procedures fki.

2.3 Analyzed Trace Data

2.3.1 Trace Recordings

The DMS under test is ran under multiple test scenarios and the execution recorded for
verification. In the proposed DM pipeline this trace data is represented mainly in the
three following formats.

Raw Recording: The raw recording Kb captures a sequence of one or more en-
coded total states X(t) at defined times t. Its elements are defined as tuples of shape
(t, enc(X(t))), where enc is the encoding used for each state X(t).

Interpreted Recording: The interpreted recording Ks captures a MES that repre-
sents the total states X(t) at defined times t after being decoded and split according to
their TV dimension, where the TV has an identifier sid and a value v. Its elements are
defined as tuples of shape (t,Xi(t)) = (t, sid(t), v(t)) for components Xi ∈ X(t). Here,

14

2.3 Analyzed Trace Data

Figure 2.3: Multiple occurrences of functional procedures fki are shown that each are a part of
a function Fk. Each Fk is represented with a different color here, e.g. f11 and f13
are functional procedures of F1 (indicated in blue).

each dimension of X(t) refers to a TV.

Reduced Recording: The reduced recording Kn captures a MSS of the total states
X(t), where each dimension contains the state a TV is in at any time t and only changes
in state are observed. There, each element describes the start and end time of a state, as
well as the corresponding TV and its state as tuple (s, e, sid, v), where s are start and e
end times of intervals of a TV defined by sid. This representation is found by removing
consecutive duplicates per TV in Ks.

2.3.2 Functional Procedures and Traces

Functional procedures represent behavior of subsets of the system. These procedures
are observed on a subset of TVs in a trace, and thus, can be similarly represented as
either MESs or MSSs. Such procedures occur multiple times within the trace. Thus,
it is assumed that the total observed trace is the composition of multiple functional
procedures that are active or inactive across time and that might or might not interact
with each other within certain time spans.
Each functional procedure produces a MES (called instance), where dimensions are TVs
Si of the system, which can be actions Qi, environmental variables Wi or states of the
system Ri. In case of a DMS, each TV can have a different data type which could be
numerical, ordinal, binary or categorical. Apart from TVs with numerical data type all
TVs Si have a fixed set of states S̄ = {s1, s2, ...} which a TV can be in at any point
in time. For TVs with numerical data type the same can be achieved through quan-
tization of its values. Further, in both the MES and MSS representation of a trace it
is assumed that there are dynamically changing temporal-causal dependencies between
multiple TVs Sk at many points in time.
This definition of functional procedures is useful for multiple tasks. Depending on the
task any fki might capture procedures of different granularity. fki might capture an
exact variant of a functional execution (e.g. 30 observations of 〈 press button, left light
on 〉) or it could capture multiple branches of the execution both in state and time (e.g.

15

2 Preliminaries

10 observations of 〈 press button, left light on 〉, 20 observations of 〈 press button, power
down, left light off 〉). The former, might be useful for specification mining, while the
latter might be used for anomaly detection. Therefore, the right representation of fki
depends on the mining task.

Data Characteristics: The data that is recorded as a raw trace is characterized as
follows.

• Raw trace: The recorded data is raw in the sense that an encoded representation
is initially stored. Thus, data needs to be preprocessed into MESs or MSSs.

• Massive size: The considered data is massive in size, e.g. in an in-vehicle network
which resembles a DMS, this is in the range of about 10 million data points that
are recorded per minute from the DMS.

• High dimensional: The number of TVs that define each state X in the DMS is
high and potentially ranges from 1 000 to 10 000 dimensions.

• Heterogeneous: Multiple data types are present in the recordings which include
nominal, ordinal, binary and numerical types.

• Unstructured: Data of multiple functions is recorded within one common trace.
As the integrated system might contain hidden correlations data structure is not
clear and thus, needs to be found.

• Noisy and erroneous content: Data recorded from DMSs might be noisy or erro-
neous, e.g. resulting from bad measurement devices.

• Multifunctional: Multiple functions from multiple domains are recorded from the
integrated DMS. Those functions operate on common subsystems and thus, may
interfere. In addition to that, functional procedures per function need to be iden-
tified.

Example: An example of a DMS is a car which consists of multiple subsystems such as
the infotainment, the driving assistance or the light system, i.e. R = (Rinf ,Rda,Rlig).
In that system actions Q might be the activation of the blinker or the intervention of
the driving assistance when pressing the braking pedal, i.e. Q = (Qact,Qped)

T . Also en-
vironment variables, might be the outside brightness, which might influence if a driving
assistance system is on or off W = (Wbright)

T . The raw recording Kb might be oc-
currences of information captured throughout a 30 minute driving session, which could
give Kb = 〈(t = 1s, x5A x01), (t = 2.7s, x5C x01), , (t = 4.2s, x5C x02), ...〉, where x5A

might encode the brightness recorded from the environment and x01 might be the state
of the left blinker, which might be on or off. The interpreted recording could thus, be
Ks = 〈(t = 1s, brightness, 20%), (t = 1s, left blinker, on), (t = 2.7s, left blinker, on), (t =
2.7s, brightness, 40%), (t = 4.2s, left blinker, off), ...〉. The resulting reduced representa-
tion could then read as Kn = 〈(t = 1s, brightness, 20%), (t = 1s, left blinker, on), (t =
2.7s, brightness, 40%), (t = 4.2s, left blinker, off), ...〉.

16

2.3 Analyzed Trace Data

2.3.3 Diagnosis and Fault Model

Goal of Diagnosis: The aim is to do diagnosis in complex distributed systems in
a data-driven manner, i.e. identify problems in such systems by analyzing recorded
traces. In particular this includes identifying and finding errors in a trace, as well as
understanding errors of such systems to enable explanation of it. Failures are external
manifestations of a system misbehavior and thus, are observed when those occur. Fail-
ures are the result of underlying errors. While not all errors result in failures, errors
in a system might eventually lead to a failure. Therefore, it is crucial to locate errors,
identify the faults which are the root cause for the errors, understand the correlations
and explain the error. The focus of the investigation in this thesis is on finding and
explaining errors (rather than failures or faults).

Relevant Types of Errors: In a distributed system, errors can be categorized into
system-level or function-level errors. System-level errors include node-level errors, such
as excessive workloads or memory leaking, as well as inter-node errors, such as commu-
nication errors. Function-level errors manifest in the behavior of the system in terms of
its state X. In integrated systems, verification of systems on a functional level allows to
effectively analyze large-scale DMSs using data-driven testing methods. That is why, in
the scope of this thesis, the focus is on this type of error.
In those types of errors, the correct condition is defined by valid states X the system can
be in at any time. Here, static and dynamic (also called behavioral errors) function-level
errors are distinguished. The former refers to errors that manifest in a single bad system
state, e.g. a car might have the error state of an engine beings off and the rotational fre-
quency of the engine being high. The latter refers to errors that manifest in a sequence
of bad system states, e.g. a car might have the correct state of a sequence 〈 button
pressed, engine starts, engine running 〉, while a possible error state would be 〈 button
pressed, engine off, engine not running 〉. An extension to this are dynamic errors that
include the system state and procedural information at the same time, e.g. the sequence
〈 button pressed, engine starts, engine running 〉 is valid if the keys are in the car, while
an erroneous state would be that the keys are not in the car while the same sequence is
observed. For both latter cases, in the context of the term functional procedures, two
instances of the same functional procedure are observed. One with the correct behavior
and another one with a bad behavior. Notably, this functional procedure includes steady
system states, as described in the last case. Assuming all system states to be recorded in
a trace, symptoms are invalid dynamic states of functional procedures that are present
in the trace.
Multiple faults could have caused such errors, such as deadlocks in the code, hardware
failure or simultaneous access to hardware resources by multiple threads.
In this thesis, the focus is on both dynamic errors as well as on the extension that
includes the system state. This is done by building a model that is able to capture
corresponding relationships both in terms of procedures and steady states, which will
be presented in more detail in subsequent chapters. Additionally, it is assumed that
faults of the distributed software are Bohrbugs, i.e. it is assumed that under identical
conditions similar errors result.

17

2 Preliminaries

Verification of Behavioral Errors: Functional procedures can have different in-
stances. Those instances might correspond to correct or erroneous executions of the
function, where erroneous instances exhibit behavioral errors. It is assumed that any
data point in a trace corresponds to an instance f ′ki of a functional procedure fki. With
this, the system is assumed to be correct (in terms of behavior), if no instance f ′ki contains
behavioral errors. That is, if all observed executions of functions Fk are correct. If this
is the case, all corresponding subsystems Rk in an observed trace of a DMS are correct
in behavior. Thus, by considering each functional procedure separately for diagnosis, all
error types and failure modes that are caused by behavioral errors can be verified. If
correct functional procedures are known, those can be used to identify behavioral errors
of corresponding observed instances of functional procedures using approaches such as
model checking. This requires specifications that need to be generated per functional
procedure. A procedure to do this for DMSs is presented in this work.

Dominant behavior: In order to identify behavioral errors in this work, multiple
instances f ′ki of a functional procedure fki are observed. Those instances might vary in
behavior, while sub-sequences of the procedures are identical. We refer to the sequence of
sequence elements of fki that are shared most often among instances of f ′ki as dominant
behavior.

18

3 Data Mining Pipeline for Systematic
Diagnosis of Distributed Systems

In this chapter the DM pipeline is introduced and put into context of its application
and of existing works. For this, first, the testing procedure of integrated systems is
introduced, as this is a common scenario in which the proposed DM pipeline is used.

Integration Testing Cycle: The work flow during the development and testing phase
of a large-scale distributed system is shown in Figure 3.1. There, the system is repeatedly
tested to identify errors and potential for optimization, improved based on the gained
knowledge and either released or passed to the next test cycle.
Such verification is usually performed on components, subsystems and the integrated
system. In this thesis, the focus is on the integrated system which is formalized as a
DMS.
A cost-efficient way to allow for large-scale verification of such integrated systems is
to perform data-driven testing. For this, multiple test cases are performed on the inte-
grated DMS that simulate the usage of the system under realistic user and environmental
conditions. During those executions, trace data Kb is recorded and analyzed to verify
correct system functioning.
This is challenging due to the following reasons. (1) The demand for high quality prod-
ucts leads to an increase of functionality implemented in such systems. Complexity of
system interactions, as well as variability of system compositions grows. Those factors
lead to more variants of the system behavior that need to be observed and verified during
data-driven testing to allow for its verification. (2) This results in huge amounts of data
with hidden and complex dependencies that need to be analyzed. (3) At the same time,
the pressure of competitors requires to keep the time to market short, which is often
achieved by keeping release cycles brief. That is, the product is tested extensively and
iteratively within short periods of time. For example, within a period of a week, test

Figure 3.1: This image shows the product development cycle. In particular this includes record-
ing and processing of data which is the focus of this work.

19

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

data is recorded by the test team and subsequently analyzed for faults and optimizations.
Those are forwarded to the development team, which finds and corrects the errors or
implements optimizations. This yields the next iteration of the DMS development cycle,
which starts anew by recording data from the optimized system. With each iteration,
components, subsystems, functional dependencies or interactions of the system might
have changed, which makes data from previous iterations deprecated. Thus, next to the
requirements of systematically analyzing complex and large amounts of data, efficiency
of testing methods on fleets of objects is crucial.

Automated Diagnosis: To allow for this, (semi-) automated approaches are applied
to handle errors by supporting experts in two main ways. First, this is through direct
fault diagnosis, which includes finding, predicting, understanding and explaining errors.
Second, this is through the improvement of the expert’s understanding of the system,
e.g. by extracting relevant information or by using appropriate visualizations.
Existing approaches are not ideally suited for this tasks, as will be discussed in the next
section, which is why a novel DM pipeline is introduced here. This pipeline is intended
to successively reduce complexity within the trace by finding correlating TVs and func-
tional procedures. Those are modeled and used to infer specifications and dominant
variants of behavior.

Chapter Outline: The state of the art of data-driven testing is discussed in the first
part of this chapter. Foremost, this includes the field of failure diagnosis and existing
methods for Specification Mining. Based on drawbacks of those approaches, the demand
for a large-scale DM pipeline for DMSs is discussed.
Above that, the proposed approach operates within a data-driven testing work flow.
Thus, to put this work into context, in the second part of this chapter, a systematic
diagnosis work flow of modern large-scale data is presented. This flow provides an
overview of procedures for diagnosis, including techniques for fault localization, RCA,
anomaly detection and Specification Mining.
In the third part of this chapter, the proposed DM pipeline is introduced and discussed.
Approaches that are required at each stage of this pipeline are presented, discussed and
evaluated in successive chapters. Further, to validate the applicability and consistency
of this method, in Chapter 9 a case-study is presented that is performed on a DMS of
the automotive industry.

3.1 State of the Art

In this Section, the proposed Data Mining pipeline is put in context of existing research
in the respective fields.

Overview: Fault Diagnosis in software of distributed systems has been an active field
of research for many years. Approaches for diagnosis, of fields that are relevant to
this work, can be mainly categorized into two types. First, those are methods to find
and diagnose errors. Second, those are techniques that extract nominal behavior from
data or that model it. This is either done to generate specifications that are relevant
in model checking or for extraction of dominant behavior to improve understanding of

20

3.1 State of the Art

systems and data. The former includes, foremost, the fields of fault localization, root
cause identification and anomaly detection. The latter includes automated failure/error
diagnosis techniques for visualizing or modeling behavior and techniques for Specification
Mining.
The proposed DM pipeline is closely linked to the former, as its basic procedure partly
uses a well-established RCA procedure. However, unlike those approaches, the proposed
method is used to systematically extract specifications and aims for semi-automated
Specification Mining and extraction of dominant behavior from traces of a DMS. Thus,
it can be equally categorized as a Specification Mining approach.
Consequently, in the following, first, a categorization and comparison of the proposed
DM pipeline to approaches in diagnosis is performed and second, a comparison to other
Specification Mining approaches is given.
Notably, this chapter focuses on the overall pipeline and literature related to it only.
However, in further chapters, individual stages of this approach are discussed. There,
related work on these stages is given in the respective chapters.

3.1.1 Modeling Behavior for Diagnosis

Definition: The proposed approach aims to both extract specifications from observed
traces and to increase system understanding of complex DMSs by breaking down com-
plexity and modeling observed behavior of subsystems. In this work, the latter is re-
ferred to as the extraction of dominant behavior, which is used to support diagnosis
in three ways. First, by inspecting dominant variants of behavior that occurred before
an error, potential causes may be identified. Second, by representing dominant vari-
ants of functional procedures that led to a specific target state (e.g. the shutdown of
a car) system understanding is improved, e.g. the gained knowledge could be used to
semi-automatically construct specifications. Third, by representing dominant variants
of functional procedures across a trace, data understanding is improved, e.g. with there
identifying procedures that took place at specific time spans within a trace.

This extraction of functional procedures in terms of both dimensions, procedures and
dominant behavioral variants has been less researched in the past, while it has a high
potential to significantly support an expert during data-driven diagnosis.
The most comparable approaches for this were presented in the field of automated fail-
ure diagnosis. The main aim of those techniques is to localize the most likely source of
an error by performing RCAs [14]. Thus, in this section, the proposed method is put
into context of those works on automated failure diagnosis and RCA. Those fields target
to automatically identify root causes of failures, based on observed symptoms. Similar
to the proposed approach, there, models are used to represent dominant and intended
behavior for diagnosis to improve system understanding of the expert and to support
him or her during diagnosis.
According to [14], such techniques can be categorized as rule-based, model-based, statis-
tics based, Machine Learning-based, count-and-threshold based and visualization-based.
The proposed DM pipeline can be used for extraction of such dominant behavior by
aggregating functional procedures in models. Thus, it is categorized both as model-
based and Machine Learning-based. According to the categorization that is used here,

21

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

the proposed approach is categorized as model-based, which is why here the focus is on
literature on those types of approaches. Further, for the sake of completeness a short
definition of the categories is given.

1. Rule-based: Rule-based techniques use rules to identify errors in the system. For
instance, an expert might specify a directive that hints to the error, e.g. ”if the
car is faster than 10 km/h, while the engine is off”. Limitations of such approaches
include that unknown problems can not be detected and manual specification gen-
eration becomes in-feasible (as will be discussed further below) [14].

2. Count-and-threshold: Such techniques allow to discriminate between transient
and intermittent faults. The further, refers to an internal system error that can
be traced back to a system component, while the latter refers to an external error
that cannot be traced back to that [14].

3. Statistical: Such techniques aggregate data of the system empirically. By using
statistical tools such as correlations and histograms, experts can deduce potential
problems and causes of those. In a broader sense, the TSCBN model that is
introduced in Chapter 7 also models behavior of the data in terms of distributions.
However, this is performed within a defined procedural model, which is why it was
decided to categorize the proposed approach as model-based [14]. Here, statistics
refer to empirical indicators that aggregate the system states. This is limiting as
a more fine grained inspection in terms of procedures is not possible [14].

4. Machine Learning: The proposed DM pipeline is partly Machine Learning
based. However, within this categorization in the context of diagnosis, this mainly
refers to clustering approaches for anomaly detection or to identify odd behavior.
The proposed approach, however, intends to derive behavior from a learned model,
similar to the approaches categorized as model-based [14].

5. Visualization techniques: Visualization is a classical tool for the inspection of
a system. In the field of DMSs often time-series analyses are used for inspection
and to improve system and data understanding. Again with growing complexity
this might become intractable. Other visualizations may visualize paths within a
model. However, in contrast to the proposed approach, no automated extraction
of dominant behavior is possible [14].

6. Model-based: In this field, models are used to represent either the nominal
behavior of a system or a model of the observed behavior, which is similar to the
approach that is proposed. Models might be of various types, such as physical,
regression or graph-theoretic models. As part of the proposed DM pipeline in
this approach a graph-theoretic model (more specifically a PGM) is learned from
observed behavior.

Relevant model-based approaches in diagnosis
The proposed DM pipeline is composed of multiple steps, that ultimately yield a model
that can be used for inspection of dominant behavior and for the extraction of specifi-
cations. Thus, it uses a similar analysis procedure, consisting of modeling and inference

22

3.1 State of the Art

Figure 3.2: The procedure of RCA as it was presented in [2] is shown here.

steps, as it is common in RCA. However, in our approach we are focusing on DMSs and
MSSs, which requires to develop additional steps, as well as new modeling and inference
methods. In the following these three building blocks namely the analysis procedure,
the models and the inference approaches are discussed in the context of this work.

Analysis Procedure: The basic procedure for model-based RCA is shown in Figure 3.2.
There, a model of the problem is constructed using expert, system and observational
input, which is then used to make inference (also called abduction) either on a new
observation or on the modeled data. This yields an aggregated view on the data, which
ultimately allows to find the root cause and an explanation of the analyzed problem.
Such problems might be hardware or software based and are identified by analyses of
the source-code or of data [2]. This RCA procedure may be surrounded by further
preprocessing steps, such as the approaches of [19, 20, 21]. There, static or dynamic
instrumentation is used to first, automatically capture identical procedures or profiles
that occurred before an error and second, apply a RCA approach on those.
Depending on the target of diagnosis, different relations may be modeled. This includes,
models that capture relations between nodes or components in terms of their topology.
Also, this might be a set of symptoms, i.e. events, that indicate the error. The proposed
approach has a target similar to the latter, as procedures of events are modeled, e.g.
characteristic events before some target state (such as a failure). In that case, events
within the model in the pipeline might be seen as symptoms. Multiple models might be
used for that purpose, where each of those approaches is defined by a learning proce-
dure. On the learned model, inference algorithms are used to deduce dominant or rare
behavior [22].
The proposed approach consists of similar steps, i.e. a preprocessing, modeling and
an inference step that identifies dominant behavior. However, in contrast to existing
approaches it provides an end-to-end solution that is able to deal with peculiarities of
DMSs and MSSs. In particular a specialized preprocessing approach is proposed, that
allows to handle raw and large communication traces. Moreover, this method allows
to break down complexity by identifying clusters in time and dimension, as well as by

23

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

*TSCBN

Figure 3.3: An overview of models used in previous works is shown as it was defined in [2]. In
this work the TSCBN model is used (marked as *).

transforming traces to MSSs. With this, temporal behavior of subsystems of a DMS is
inspected using a novel model and inference approach that is optimized for MSSs.

Analysis Models: In the RCA setting, multiple models are used for modeling and in-
ference, none of which are used in the proposed pipeline, but rather, here, the TSCBN
model is used that is specifically designed for MSSs.
According to [2] analysis models are either deterministic or probabilistic. The former
does not capture uncertainty in the observed events or the inferences that are contained
in the model, while the latter does capture this uncertainty [2]. An overview of such
models is shown in Figure 3.3. The focus is on models that diagnose situations in which
time of observation is relevant, i.e. where a sequence of events is considered, rather than
static symptoms that indicate an error.
Multiple models were proposed for the representation of such dynamical behavior, the
deterministic side of which includes, most importantly, process models, such as Petri
Nets, or automata, such as Finite State Machines (FSM) [9]. This type of models cap-
tures each individual event as a node where succession of events is indicated by edges.
This allows to capture many branches of behavior, but at the same time makes those
models susceptible to quickly grow in size when learned from noisy data making it hard
for the expert to interpret the model. Modern Process Mining approaches [23] and tools
[24] allow to reduce this noise, e.g. by excluding rare events and performing diagnosis
interactively. However, due to an exploding size still such models are particularly badly
suited to be used for capturing behavior in large traces, as it is required in the given
context of DMS traces.
Further models include classifiers such as Neural Networks or Support Vector Machines.
This type of models is probabilistic in theory, while it is deterministic in the sense of
reliability where exact inputs are mapped to exact outputs. Such models can classify a
sequence in order to decide if it is erroneous or not, as well as parts within a sequence

24

3.1 State of the Art

to identify erroneous sequence elements. A problem with such models is its black box
nature, which does not allow for direct expert input (except for hyper parameter tuning)
or interpretability of internal procedures. Other classifiers such as Decision Trees allow
to do such classification while being interpretable. However, for complex and noisy input
data, this leads again to growth and highly complex structures making it less suitable
in the given setting.
Models that are relevant in the context of this work are probabilistic white-box models
which includes variants of dynamic Bayesian Networks, models relying on Markov Pro-
cesses and models designed for special tasks. Those models are well-suited to be used for
mining from complex traces, as those allow for compact representations, while capturing
the uncertainty of observed behavior. That is why this type of models is used in the
proposed DM pipeline. As the probabilistic modeling of MSSs of large-scale distributed
systems is one step of the proposed DM pipeline, the related works section of Chapter 7
gives a detailed overview and comparison of those models.

Inference/Abduction Approaches: Based on models that were learned from recorded
data, inference is performed to obtain the fault that generated the symptoms that indi-
cate an error. In RCA, this is done in many ways [14], e.g. by inferring how problems
propagate through the system [25, 26, 27, 28], by finding the error source or by rep-
resenting how successes propagate through the system [29, 30] to then compare failure
cases against success cases. Also, this is achieved through systems that capture expected
behavior and flag a problem whenever this behavior is violated. In contrast to this, in
the proposed DM pipeline the aim is different. The pipeline models the process of MSSs
that occurred within certain functional procedures using TSCBNs and infers its most
likely behaviors from it as dominant system states. Technically this is similar to model-
ing propagation through the system and analyzing symptoms.
Above that, techniques for inference vary with the type of model that is used for training.
In the proposed DM pipeline, Bayesian Networks (BNs) are used for this purpose, which
is why this is mainly discussed here. For BNs, techniques are marginals that are used to
find the state with highest likelihood that led to an error [31, 32], which is solved using
approaches such as Junction Trees [33], Node Elimination [34], Adaptive Inference [35],
Loopy Belief Propagation [36] or Markov Chain Monte Carlo approaches [32]. Further,
this includes the Most Probable Explanation (MPE) method that returns the most likely
constellation that was present in the error case using MPE bucket tree [37] or SLS [38].
For the case that a subset of values of RVs is given, the Maximum A Posteriori (MAP)
estimate is found using approaches such as stochastic sampling [39].
In the proposed pipeline, the modeling and inference part uses a similar approach. There,
a representation of a set of MSSs is learned as a variant of a BN and then, Gibbs Sam-
pling is used to determine the MPE. In that sense, this part of the proposed DM pipeline
differs mostly in the type of model that is used, which in contrast to existing approaches
captures a multidimensional snapshot of the temporal functional procedure in state and
time. This includes representation of symptoms to infer dominant states in order to
reveal constellations that are characterizing an error.
In other types of models, inference is done by using symptom vectors [40] and similarity
[41] to identify problems. Unlike our approach, this excludes temporal dependencies
making it less precise.

25

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Further methods are designed to extract most likely behavior or error locations in spe-
cific models and thus, its usability in the current setting is limited by the complexity
and model capacity of the model. In Petri Nets the most likely sequence are extracted,
e.g. using the Viterbi puzzle [42]. In Decision Trees, heuristic explanation methods [44]
or simplification methods are used, such as looking for locations where the most faults
occurred [45]. In Fault Trees approaches include tree search [46], while in Markov Logic
Networks those are Logic abduction [47, 48] or exploitation of marginals [49, 50]. Such
methods, again do not allow to infer behavior in terms of temporal dependencies be-
tween dimensions, making those less precise when applied in DMSs that are represented
as MSSs. In the case of classification, a learned classifier might be used to infer if a
test sample is erroneous or not [43]. Such approaches, unlike the proposed approach,
however, require known error cases for training.

Automated diagnosis approaches
As shown in Figure 3.2, RCA involves similar steps as the proposed pipeline, which is
modeling, and inference based on observations. However, those form only a subset of
the proposed approach, as the proposed method additionally includes systematic pre-
processing and identification of functional procedures, as well as a focus on inference of
specifications and dominant behavior. That is why, next, this work is put into context of
related automated mining procedures that are used in fault diagnosis. Categorization of
those approaches is not clearly possible as those consist of multiple steps. Nevertheless,
here a grouping based on the type of the main step in the respective pipelines is given.

Signature-based: This groups’ methods require known errors which are provided or
identified in a previous step. Those are the following. The approach in [51] collects
traces with static instrumentation and uses classifiers, which are trained on a set of
known problems, to determine the error type. As this type is known it corresponds to
the root cause. In [54], system logs are inspected by monitoring and collecting traces
of correct executions, which are, then, used to generate a FSM that generalizes the col-
lected traces and perform failure analysis on it. A method that requires to first identify
common behavior is described in [55], where signatures of system behaviors are extracted
and clustered based on a purity score. With this, error locations are identified and Tree
Augmented BNs are used to determine metrics that correlate with anomalous periods.

Similarity-based: Approaches of this type group similar sequences given a similarity
metric. In [19] anomalies are automatically detected by identifying identical procedures
of similar activities for fail-stop and non-fail-stop cases. This is done using a dynami-
cal instrumentation approach. These activities are compared using distance metrics to
identify segments that are substantially different from the others followed by a ranking.
Those segments are then inspected for their root cause by comparing segment elements.
The work of [20] similarly collects run time profiles, but uses static instrumentation.
Those profiles are clustered together to be presented to an expert for inspection of the
root cause. Pinpoint [52] records traces from applications and determines if an error
occurred using either known faults or by using probabilistic context-free grammars if
faults are unknown. Then, clustering and decision trees are used to identify erroneous

26

3.1 State of the Art

behavior. In particular by inspecting the decision tree, root causes are found.

Outlier Detection: Another type of automated approaches are those that find outliers
for the identification of errors. Magpie [21] collects traces of events which it clusters
together, identifies elements that are far from a cluster as outliers and models the event
sequences in a probabilistic manner. Event transitions of low probability are then, con-
sidered potential root causes. The method of [53] aims to identify node-level anomalies
in large-scale systems. For this it groups nodes and represents each of those as features,
which are then used to identify outliers. Those outliers are inspected by an expert to
identify faulty nodes. To automatically infer root causes in messages, the approach of
[15] applies a hybrid log analysis approach to identify and cluster similar parts of a
trace and to perform outlier detection using message flow graphs. Additionally, a model
checking approach is integrated in this flow that allows to identify known errors in traces.

Model-inference-based: Approaches that are similar to the proposed approach learn
models which are used for inference. The approach in [56] infers behavioral models from
observed legal executions and compares failing executions with the inferred models to
automatically identify the likely anomalous events that caused observed failures. In [57]
event correlation mining is presented. There, logs are analyzed by automatically prepro-
cessing events, mining events, extracting rules between events and extracting a graph
(called Event Correlation Graph), which are used for successive error inspection tasks.

Probing approaches: Another way to perform diagnosis is to probe or simulate a system
behavior to learn valid behavior. The method of [43] uses defined test cases to produce
a trace under intended scenarios. Those are clustered according to good and bad per-
formance. Classification approaches are used to identify rules that indicate causes with
this.

3.1.2 Extraction of Specifications

3.1.2.1 Specification Mining

Definition: Verification of program execution is done by defining specifications, which
are used to to find specific errors. Such specifications are formalized in multiple ways
including rules, state machines, automata or specification languages such as LTL or
Computational Tree Logic (CTL). However, a major drawback of this is the manual
formalization of such specifications. Therefore, in 2002 the field of Specification Min-
ing arose. This field deals with the automated learning of specifications using Machine
Learning, which was first introduced by Ammons et al. [58].
By leveraging automatically learned specifications, unknown errors are found and ver-
ification on fleets of complex systems, that contain similar functional procedures, is
performed. Those characteristics make such approaches especially useful for diagnosis
of integrated DMSs during their testing phase, as high complexity hinders manual defi-
nition of specifications, unknown and known bugs are hard to find manually and fleets
need to be tested efficiently, e.g. by checking learned specifications weekly.
Current algorithms for inference of specifications are categorized as static [59, 60, 61,
62, 63] or dynamic [58, 64, 65, 66, 67, 68, 69, 70, 71, 72]. As the proposed DM pipeline

27

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

is a dynamic mining approach, the focus of the following overview is on the latter type
of mining.

Static mining: Those approaches infer specifications from program code. As the pro-
gram’s ground truth is known such methods are very accurate. However, with increasing
program complexity, those algorithms do not scale, due to rising numbers of program
branches [73].

Dynamic mining: Such miners extract specifications from simulation or execution
traces, such as the ones extracted from the DMS. This is especially required if the pro-
gram code is not available or system complexity is too large. In a DMS, especially the
latter is the case, as multiple interacting components, many TVs and many functional
procedures are present.
Dynamic approaches have the advantage that coarseness of recording can be configured
to fit required needs and run time information (e.g. user inputs or run time data types,
are inherently available). Also, in contrast to static mining, dynamic methods do not
need to consider redundant or impossible implementation paths and can mine specifica-
tions from traces independent of the implementation’s programming language.
However, the quality of mined specifications depends on the quality of the input trace
set and completeness of specifications depends on the fraction of observed program paths
in a trace. In the testing phase of complex integrated DMSs this is less of a problem,
as various defined test cases are performed on the respective system to maximize the
fraction of observed paths.
Current dynamic miners extract specifications as finite state automata [58, 64, 65, 66],
invariants [67], temporal logic formulas [68, 69], timed regular expressions [70] or further
temporal properties [71, 72].
Dynamic miners can be mainly categorized into two types, which are model-based and
non-model-based approaches.

Model-based: Ammons et al. [58] first dealt with the inference of specifications from
program execution traces. In their work they mine probabilistic finite automata (PFSA)
representing temporal as well as data dependencies under the assumption that the sys-
tem under analysis is mostly correct. This approach was extended by Lo and Khoo [65]
by filtering out erroneous traces and clustering related traces. Per cluster a Finite State
Automaton (FSA) is inferred. These FSAs are then combined to a larger FSA that
embraces all cluster automata. FSAs that satisfy binary temporal properties of three
different types are found by the approach in [64], which improves precision through re-
finement and coarsening. Such approaches produce automata, that are hard to interpret
and whose complexity increases with growing functionality. This, in contrast to the
presented method, aggravates expert input.

Non-model-based: Yang et al. [71, 72] mine two-event temporal patterns from execution
traces. Their tool, Perracotta, infers instances of eight common two-event patterns, e.g.
the alternating pattern (xy)*. These properties can then be chained together to form
larger rules. However, Perracotta misses out some rules and thus delivers only partially
complete specifications [65]. Also, a single violation of a pattern prevents it from being

28

3.2 Research Demand

mined, thus, requiring Perracotta to have perfect traces. Javert [66] also uses chaining
rules to construct more complex specifications from simpler patterns. Perracotta is ex-
tended in [72] to find temporal properties for the analysis of digital hardware designs.
Their work mines four binary patterns and uses inference rules to produce more complex
properties. These approaches differ from the presented miner in this work, such that
the proposed approach mines temporal rules of arbitrary length and does not rely on
chaining to construct more complex specifications from simpler ones.
Response patterns between sequences of events are found using sequential pattern min-
ing in [69]. In [67] Daikon is presented, which mines invariants of values of program
variables, e.g. X0 denotes that the variable X is always positive. Lemieux et al. [68]
introduced Texada, which finds instances of user-provided LTL property templates of
arbitrary complexity. However, this only allows to find predefined patterns and misses
out properties of any other structure.
Lastly, in the related field of temporal assertion mining approaches were proposed for
verification of hardware designs [74, 75, 76]. Such approaches often exploit system de-
sign knowledge and tend to produce hard-to-read properties, as opposed to the more
structured representation of the proposed approach with TVs as dimensions and its
values.

3.2 Research Demand

Based on the given state of the art, this work has two main aims, which cannot be suffi-
ciently handled for large-scale distributed systems with existing methods. Those are the
identification of functional procedures, as well as the extraction of dominant behavior
and specifications from traces of large-scale distributed systems in a (semi-) automated
manner.

Identifying dominant behavior: As described in Section 3.1.1 frameworks for anomaly
detection and fault diagnosis group similar activities to successively use RCA approaches
including modeling and inference to perform diagnosis. This approach is similar to the
DM pipeline that is proposed in this work. Further, the pipeline performs offline anal-
yses on a large trace that consists of multiple functional procedures that occur within
it. Unlike existing approaches, here, one main part of this work deals with the scalable
identification and processing of functional procedures, while existing approaches assume
those to be given. This is challenging due to high dimensionality and length of traces.
In addition to that, other approaches aim to analyze symptoms to analyze errors, while
this work aims to identify dominant functional behavior for improved system under-
standing at a large-scale. This is important, as in modern working environments experts
might change frequently and hidden correlations make it impossible to manually identify
dimensions and functional procedures that are part of a function and thus, of interest
to the expert. Thus, a semi-automated way (as the one introduced here) of providing
insights into large multidimensional system data is of high importance and only less
considered in the context of diagnosis so far.
Moreover, large-scale distributed systems produce heterogeneous data on a system state
level, while existing approaches mostly assume homogeneous ones. Thus, to include all
types of data during the analysis the proposed DM pipeline performs a defined set of

29

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

data preprocessing steps to unify data formats automatically.
Another difference to those approaches is, that TSCBNs are used to capture system be-
havior. This model is especially well suited to represent functional procedures in terms
of MSSs. It inhibits the procedural structure and thus, provides a more expressive rep-
resentation, which allows to provides more accurate snapshots of dominant behavior in
the data yielding more precise specifications.
Also, as stated above MPE is used for inference, which is similar to existing approaches.
But in contrast to those approaches, rather than a snapshot of symptoms, multiple snap-
shots in time and state are extracted from functional procedures in the data.
Lastly, existing frameworks do not consider raw traces in large-scale distributed systems
and do not have to ensure scalability. The proposed DM pipeline includes this aspect
and provides an effective way of preprocessing to reduce the data at an early stage. This
reduction comes at the cost of losing event information, which however, is tackled by
providing a model that can handle the resulting MSS format. This format still contains
enough information to extract meaningful knowledge from it.

Specification Mining: In terms of Specification Mining existing approaches do not
address the following aspects.
First, those do not assume multiple functions, but rather assume data to be given from
a defined function.
Next, those are unable to find properties of arbitrary length, e.g. by relying on tech-
niques such as chaining of events. In contrast to that, the given approach constructs a
TSCBN per functional procedure, which is flexible in length as it solely depends on the
length of the given functional procedure.
Due to the lack of functional separation, especially in large-scale distributed systems ex-
isting approaches also tend to exhibit higher false positive rates as random cooccurrings
of different functions might be misinterpreted as part of the same functional procedure.
This effect is reduced here by identifying relevant functional procedures first.
In addition to that many miners assume perfect traces that are used to deduce nominal
behavior. This is especially difficult to obtain in the scenario considered here, where the
testing stage of a system is considered which may contain a high number of faulty com-
ponents. This makes them inapplicable for Specification Mining from imperfect traces
that contain multiple functions.
This is amplified in large-scale distributed systems, as heterogeneous traces of massive
size are produced. This is solved by including appropriate preprocessing of data in terms
of cleaning, homogenization and transformation.
Above that, in the considered DMS MSSs are modeled as TSCBN, which captures dimen-
sional dependencies and correlation between TVs in a procedural and compact manner.
This allows to reduce complexity, such that expert input can be included. Further, with
this specifications are found as a multidimensional snapshot of behavior (e.g. by using
MAP on TSCBNs), rather than a linear chain of events. With this, e.g. whole MSSs
could be verified in terms of likelihood rather than as series of events.

Proposed Solution: To address this research demand, a systematic DM pipeline is
developed, that allows for dynamic mining of specifications and identification of domi-

30

3.2 Research Demand

nant behavior in large-scale distributed systems. In particular, the following challenges
of existing approaches are addressed with this.

• Multi functionality: Existing approaches are extracting correlations within a
trace, based on all events that those contain. This is sufficient if the trace consists
of a single functional procedure. However, for the case of DMSs multiple func-
tional procedures might exist. Those need to be identified and separated both in
dimension and time and are not known a priori. To solve this, the first stages of
the pipeline deal with a dimensional and procedural segmentation and clustering
that identifies functional procedures within traces.

• End-to-end processing: Instead of starting from a trace of one function, the
designed pipeline is an end-to-end solution, that automates the process of Speci-
fication Mining from the recorded raw trace to a set of resulting specifications of
multiple functional procedures. In particular, this includes the steps of data reduc-
tion, interpretation and unification which are important to handle heterogeneous
and large traces.

• Semi-automated mining: An optimal approach would be able to learn specifica-
tions fully automatically. However, due to hidden correlations and a high amount
of meta knowledge that is hard to represent, this is currently not possible. Meta
knowledge includes e.g. steady states that influence a procedure, while those are
only rarely observed together with it. Also, this includes naming of entities or the
distinguishing between data points in a trace that relate to behavior rather than to
other aspects such as communication headers. To handle this missing information,
in this work a semi-automated process is proposed for this. There, expert input is
included both during grouping of TVs and functional procedures, as well as during
structure discovery of TSCBNs.

• Include structural information: Further, as opposed to other works informa-
tion about the temporal structure is included by modeling data as TSCBNs. Thus,
instead of deducing specifications from correlations between events, dedicated mul-
tidimensional functional procedures of MSSs are identified as a basis for this. This
allows, to both include expert knowledge and to exploit the inherent structure of a
DMS (i.e. state vector X). For example in the case of concurrent events the order
of events might alternate in the trace, making it hard to asses its correct ordering
on an event basis, while modeling the structure allows to handle this.

• Imperfect traces: Further, the proposed approach assumes systems that are po-
tentially in its development phase, i.e. extracted traces are imperfect, which means
that noise and erroneous behavior might be present. For example, permanent er-
rors might be in the trace, which make it hard to simply extract specifications
in terms of its most frequent behavior. This is handled at multiple stages in the
DM pipeline. First, it is assumed that multiple instances of DMSs are considered
of which a subset contains the correct behavior. Second, this approach applies
preprocessing on the trace, such that a clean, homogeneous and structured repre-
sentation is found. Third, the proposed TSCBN model models causality of MSSs
only between events of TVs, which do correlate. Fourth, by filtering for relevant

31

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

TVs and correlating functional procedures the pipeline allows to reduce the number
of possible false positive associations between unrelated TVs and its state changes.

• Arbitrary length: The proposed approach does allow for traces of arbitrary
length as functional procedures can be of arbitrary length. Thus, by representing
such procedures as TSCBNs resulting specification are restricted by the model’s
length only. As the length of functional procedures only depends on the length of
the segment set that is to be modeled and those segments might be of arbitrary
length, the proposed DM pipeline is able to mine specifications of arbitrary length.

• Computational Complexity: Further, large data sets are assumed here, which
are recorded from multiple instances of a DMS. Scalable approaches are required
and complexity needs to be broken down successively, which is solved here by
targeting the approach towards defined functional procedures instead of mining
specifications from the whole trace.

• Concurrency: DMSs are concurrent in nature, which requires to extract speci-
fications from multiple possibly interacting functional procedures. This is harder
than processing sequentially executed data. TSCBNs are used for this purpose, as
those allow to capture dimensional and procedural information in state and time.
This allows for an expressive representation of functional procedures, which in turn
results in expressive specifications.

3.3 System Work Flow

In this section a modern diagnosis work flow that is commonly used during the testing
phase of a large-scale distributed system is described. The proposed DM pipeline needs
to be designed such that first, it is applicable within this type of work flow and second,
challenges of those diagnosis frameworks are taken into account. That is, why in this
section those systems are introduced and discussed.

In order to perform diagnosis at a large-scale, automated methods are required to process
vast amounts of data, that are produced by many instances of systems. This needs to
be done within short time spans and with high test coverage. Therefore, in modern
diagnosis Big Data frameworks are used for this purpose. Such frameworks consist of
multiple components and are implemented on multiple machines with large memory
and high processing power. Figure 3.4 shows possible components that are used within
such systems [3]. There, incoming data is extracted, preprocessed, stored, analyzed and
knowledge inferred, which is then, visualized and provided to an analyst or a relevant
business unit.
Automated flows of diagnosis are implemented on such infrastructures. A modern flow,
that is commonly used in data-driven testing of modern systems is proposed here and
discussed in the following. Its basic building blocks are shown in Figure 3.5.

32

3.3 System Work Flow

Figure 3.4: An example of a big data system with its components as it was presented in [3].

Figure 3.5: A modern system work flow for diagnosis is shown that includes multiple sub pro-
cedures.

33

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

3.3.1 Targets of Big Data Frameworks

Typically diagnosis frameworks include systematic fault detection, fault localization,
root cause identification, as well as explanation of known and unknown errors. Solution
of those tasks necessitates the following requirements.

• Reduction, Redundancy and Missing Structure: Recorded data is often
provided in an encoded manner in order to reduce storage costs, e.g. as a sequence
of bytes. Such data needs to be interpreted and reduced towards aspects that are
relevant for diagnosis of the application under test. This becomes especially com-
plex with growing data size, which requires parallel interpretation and reduction
approaches. Further, the interpreted trace data might contain redundancies, which
need to be removed and is in general composed of TVs with heterogeneous data
types, which need to be structured to provide a uniform format.

• Data Understanding: Data is recorded in an unstructured manner, while struc-
ture in terms of functional procedures (see Chapter 2) is inherently present in the
data. This can be used to reduce the search space in which an expert needs to look
for errors. For the diagnosis of such functional procedures only a subset of data in
both dimension and time is relevant for analysis. Thus, to increase understanding
in such data, inspected data is structured and compacted. This is achieved by
identifying functional procedures with its corresponding TVs.

• System Understanding: In today’s verification ultimately, correctness of verifi-
cation depends on the experience of the experts, who need to be familiar with valid
variants of functional executions. This gets increasingly complex as subsystems are
evolving, growing in complexity and are designed by defined domains only. Espe-
cially, when added to an integrated system, hidden interactions and unexpected
paths of executions might occur. This requires a high amount of experience. Thus,
to allow experts to inspect and learn about behavioral variations from patterns,
automatic approaches to represent complex executions of relevant sub-functions
are used. For example, this might be white-box models that aggregate the data.

• Systematic Analyses: Data is ingested frequently and often becomes deprecated
once an iteration of optimization is finished. Therefore, analyses need to be per-
formable weekly in a standardized manner, such that no redundant processing on
the trace is run. This is solved by application of automated DM pipelines for sys-
tematic diagnoses. For example, for the application of error localization, diagnoses
could be classifiers that classify error types in the data or unsupervised approaches
that identify anomalous samples. Also, this might be the automated learning of
specifications which might consequent be applied on unknown traces which allows
to systematically test data from fleets.
In addition to that, redundant processing of data needs to be reduced in Big Data.
Thus, steps within the framework need to be modular. That is, those steps need
to provide results that can be used for multiple consequent approaches and that
allow for expert input at any stage of the process.

• Computational Tractability: The processing of data needs to be computation-
ally tractable. That is, scalability needs to be ensured, which includes reduction of

34

3.3 System Work Flow

memory consumption in storage and during computation, as well as efficient and
parallel implementations.

3.3.2 Systems Work Flow

The proposed modern automated diagnosis work flow of Figure 3.5 is defined as follows.

Preprocessing: First, in a systematic preprocessing step, recorded traces Kb are inter-
preted and reduced, e.g. by removing redundancies.

Data and System Understanding: Recorded data is used to support the expert in
better understanding the data and the system. This is achieved in multiple ways, such
as through identification of correlating dimensions, through identification of groups of
procedures or through aggregation of procedures in appropriate models.
To do so, similar functional procedures [19] are inspected at this stage. This is done with
anomaly detection methods [19] to identify odd data points (e.g. by highlighting those
in the trace), RCA techniques to identify correlations (e.g. by highlighting probable
paths in a model) or process mining approaches such as replay [23] (e.g. by replaying
data on a process model [23]).

Systematic Analyses: Various approaches are applied on the reduced data for the
purpose of diagnosis. Those are used to perform localization, explanation or detection
of unknown and known errors and are categorized as automated, semi-automated or
manual in the following.

• Automated methods: First, this includes systematic checking of specifications
on all incoming recorded traces, which allows to locate known errors. This is
especially useful in large-scale distributed systems, as it allows to identify many
known errors in an efficient manner. Classically those specifications are designed
manually by experts. However, with growing complexity of systems this becomes
intractable, which is why automated Specification Mining approaches are used to
learn specifications from data or program code.
Second, exceptions are printed to the debug output and thus, forms a part of the
recorded traces. Those entries contain the error information and thus, identify
known errors in the trace. This allows to directly deduce the cause of the error by
interpreting the type of exception that was recorded.
Third, this includes localization of unknown errors. For this, anomaly detection
methods are used which are able to extract candidate errors. Experts or ranking
approaches then, filter and classify those according to severance or add them to
the collection of known errors.

• Semi-automated methods: Such approaches require expert inputs during its
execution.
First, expert input can be included by extraction of system indicators that might
point towards spots of misbehavior in the system, e.g. the time it takes for a car
to shut down. When, this value is identified abnormal by an expert an error is
found. Further, this value might already yield the error type and an experienced

35

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

expert might be able to directly explain the error from this.
Second, the system might be broken down into relevant functional procedures of
the system. By analyzing those, e.g. using inference algorithms or methods from
Process Mining (PM), bottlenecks or rare behavior is identified. This again requires
active investigation of the resulting representation by the expert in order to make
conclusions about both error location, type and explanation.

• Manual methods: Those methods work on the raw information contained in
the data and rely solely on expert knowledge. That is, an experienced expert is
familiar with relevant indicators, expected system executions and potential hot
spots that might contain an error and its cause. Here, exploratory data analysis
tools are used for diagnosis. Those might be tools for visualization of time-series
or tools to investigate descriptive statistics of the data.

As discussed in Section 3.1, many exiting approaches target individual aspects within
this work flow. In this thesis the focus is on two particular paths of those. First, this
is the automated extraction of specifications and second, this is the increase of system
understanding by identifying functional procedures and extracting dominant behavior
from those. Existing methods do not allow to sufficiently solve this task in the context
of large-scale distributed systems as was pointed out in Section 3.1. That is why, in the
next section a novel semi-automated DM pipeline is presented for this.

3.4 Data Mining Pipeline

In this section an overview of the proposed DM pipeline is given.
First, the definitions of Chapter 2 are revised and put in the context of the analysis
intent of the DM pipeline. After this, an overview of the proposed approach is given,
before an overview of its individual stages is given in successive sections.

3.4.1 Assumptions

In Chapter 2 the concept of functions and functional procedures was introduced, which
represents the overall behavior of a DMS. All functions Fk input and modify the current
state Xi. In case that the function is correct any input constellation Xi yields the ex-
pected output constellation. In systems of low complexity, correct states of functional
procedures fki of function Fk are exactly known by the experts and thus, are used to
manually design specifications. In a DMS this would require to represent all possible
input output constellations of this function for any Xi. This is complex, as the dimen-
sionality of X is often high with multiple states per dimension, e.g. 1000 dimensions with
3 states already lead to 31000 possible input combinations for Fk that need to be mod-
eled. Therefore, it is essential to reduce complexity by performing diagnosis not on the
total state Xi, but rather per functional procedure and the subset of dimensions of Xi

that are relevant to it. This reduction is performed with the following two assumption.

• Decoupling: The consequent state of any subsystem Rx ∈ Rsub, depends on all
functions Fk that operate on Rx. Thus, functional procedures of the correspond-
ing functions that operate on common subsystems after integration are coupled,

36

3.4 Data Mining Pipeline

while in reality such functions are often developed and tested by separate experts.
In a correctly functioning system coupling of functions should not influence each
other and thus, correct functional procedures result. Therefore, it is assume that
when the functional procedure works mostly correct, all functions Fk can be inde-
pendently considered and bad behavior considered noise. Consequently, testing of
behavior of individual functions is done separately.

• Vertical Reduction: Further, for certain functions Fk only a subset of actions
Qsub and environmental influences Wsub are of relevance. In the correct case
similar Qsub and Wsub yield similar functional procedures. With this, complexity
is further broken down. Moreover, it is assume that there is a low number of
functional procedures fki that is active within any short time spans.

It is assumed that in the correct case all functional procedures result in similar behavior
in state and time when similar conditions are given. Further, in the error case variants
of that functional procedure might be possible. To capture the dominant correct and
the inferior erroneous behavior, it is proposed to assume each functional procedure fki
to be a distribution in state, time and procedure.
Each distribution of a functional procedure fki can be interpreted as a data generator,
that produces instances of a certain functional procedure depending on the currently
prevalent conditions (i.e. system states X). Also, each instance of a functional proce-
dure fki is a sample from the corresponding data generator.
Resulting from this, any observed trace can be seen as a result of sampling from a
collection of functions and from the corresponding functional procedure distributions,
resulting in functional procedures that are active at overlapping time spans.

System correctness: With those assumptions a DMS R is correct if all observed in-
stances of functional procedures fki of all functions Fk are correct.

Goals: As a result the two main tasks of a verification pipeline are to (1) identify samples
of functional procedures and to (2) learn its distributions (e.g. using a TSCBN). Based
on those distributions, it is expected that more likely behavior is observed more often
and the maximum a posteriori estimate of the according procedural distribution is likely
to correspond to nominal behavior.

3.4.2 Proposed Diagnosis Pipeline

An overview of the proposed DM pipeline for semi-automated Specification Mining and
deduction of dominant behavior is given. The main idea is to successively break down
complexity to identify functional procedures which are, then, analyzed to extract speci-
fications and dominant behavior. As illustrated in Figure 3.6 this can be achieved with
the following steps.

1. Preprocess traces to yield a reduced, interpreted and uniform MES. Traces of
multiple system executions are used as an input.

2. Identify correlating TVs of functional procedures.

37

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Figure 3.6: An overview of the proposed pipeline is shown. This approach consists of six main
steps. These are preprocessing (1), clustering of TVs (2), segmentation and cluster-
ing (3), learning of model structure (4) and its parameters (5) followed by inference
of specifications and dominant behavior (6).

3. Identify functional procedures and its correlating instances in time.

4. Learn the structure of each functional procedure from its observed instances.

5. Learn the corresponding distribution of each functional procedure.

6. Deduce specifications and dominant behavior per functional procedure by extract-
ing behavior of high likelihood from its distribution.

In the remainder of this chapter these stages are introduced. To allow for a consistent
application of the pipeline, methods at individual stages were extended and compared
to baseline approaches. This is also discussed here.

3.4.3 Input data

The input data of the framework is a raw trace Kb that is transformed to a MES with the
properties specified in Chapter 2. Further, depending on the task, data of the according
format might be ingested at any of the first three steps. Among others possible inputs
are the following:

• Erroneous traces: If the dominant behavior is error free such traces are modeled
as functional procedures under noise.

• Error-free traces: Those are modeled directly as functional procedures.

• Known target segments: To identify dominant behavior that occurred directly
before a failure or before a target state change, segments before each failure (or
target state) instance are modeled as functional procedures.

• Segments of similar execution: To increase understanding of variants of
procedures or to identify misbehavior in such variants, multiple executions of a
certain functional procedure are analyzed.

38

3.4 Data Mining Pipeline

Note that each output is systematically extracted from a fleet of objects and directly
used as input for the proposed DM pipeline.

3.4.4 Preprocessing

If required, the raw input trace Kb is converted to its MES format Ks and reshaped
to form a MSS Kn, that is used as an input for the consequent processing steps. As
described in Chapter 2 this trace might be unstructured, contain redundancy and have
heterogeneous data types.
Thus, at this stage good data quality needs to be established in terms of data complete-
ness (e.g. missing entries), accuracy (e.g. include vs. exclude noise) and consistency (e.g.
illogical entries). Notably, in diagnosis the degree of quality required, depends on the
task to be performed. For exact tasks such as fault detection, missing entries might be
errors and noise needs to be included. However, for tasks, such as Specification Mining,
such noise needs to be filtered out and a more consistent representation is desirable.
Here, data is transformed and cleaned, the trace format is unified and redundancy is
removed. In general Kb might be of any format that encodes MES.

Processing: The input to this step is a raw trace Kb, which is preprocessed to yield an
interpreted MES Ks and a reduced MSS Kn.

Kn,Ks = prep(Kb) (3.1)

Extension and Evaluation: An important group of traces Kb are encoded messages,
e.g. as found in network traces of communicating distributed systems. Such traces are
of large-scale and therefore, require an efficient approach for preprocessing. In [4] an
interpretation and reduction strategy was introduced, which is revised in Chapter 4.
Evaluation of this stage was performed on a set of in-vehicle network traces.

3.4.5 Clustering Temporal Variables

Traces in DMSs are high dimensional, while vertical correlations between TVs exist,
which is used to identify the vertical dimension of functional procedures. In general
these groupings are not known in advance. Also, it is intractable to identify these man-
ually as dimensionality may be large, the integrated system is developed by multiple
domains and a high degree of experience is required.
Also, functions Fk and its functional procedures fki operate on subsets of TVs of the
trace (Kn, Ks) only. During diagnosis domain experts need to focus on groups of TVs
that are relevant to them only, e.g. for the analysis of the active cruise control of a car
TVs such as the state of the wiper are irrelevant.
As part of this pipeline, unsupervised Machine Learning algorithms in combination with
expert input are used to identify correlating TVs that are part of common functions
Fk. This requires expert input, as clustering granularity (i.e. hyper parameters of the
clustering approaches) is dependent on the target of clustering.
Thus, this stage reduces complexity by adding structure to the data and by revealing
vertical correlations in it.

39

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Processing: The input to this step is an interpreted trace Ks, a clustering approach
C, and hyper parameters of the clustering approach PC . The output is an assignment
a(Si) of TVs Si to K defined clusters a(Si) ∈ {1, ...,K}. The operation performed is

a = sigcl(Ks, C, PC) (3.2)

Each cluster k ∈ {1, ...,K} together with the expert selection allows to reduce the trace

Ks in dimension, resulting in a trace Kk
s that has only TVs Ŝ that were chosen by the

expert, potentially as part of a certain cluster assignment â.

Kk
s = sel(Ks, Ŝ, â), where all Si ∈ Ŝ and a(Si) = â (3.3)

Kk
n = sel(Kn, Ŝ, â), where all Si ∈ Ŝ and a(Si) = â (3.4)

Notably K might be 1, i.e. one cluster with all signals could be chosen. Moreover, the
MSS Kk

n is further processed, as it provides a reduced and more meaningful representa-
tion of the functional procedures (e.g. no redundancies).

Extension and Evaluation: Clustering is used at this stage. As there is no clear
definition for the correlation of TVs, similarity metrics, that are used to identify groups
of TVs, need to be designed towards the target of grouping.
For this, in Chapter 5 a feature-based clustering approach is described that was first
introduced in [5]. There, occurrences in common time spans are used as a metric for
correlation of TVs.
This approach is evaluated on multiple traces Ks that were recorded from cars of a big
OEM.

3.4.6 Segmentation Clustering

Multiple instances of functional procedures fki occur in each trace Kk
n, which need to be

found at this stage. At the same time, segments in the trace that correspond to similar
functional procedures need to be identified. For this, an automated segmentation and
clustering approach is required.
The granularity of functional procedures depends on the target of diagnosis. Here, for
the target of Specification Mining, segments of high similarity are preferable, as the aim
is to identify dominant correct functional procedures.
With this stage data is horizontally structured and correlations in terms of similar func-
tional procedures are revealed.

Processing: The input to this step is a trace Kk
n with a reduced set of TVs, a seg-

mentation approach D and hyper parameters of the segmentation approach PD. The
output are multiple sets of MSSs M̂ , each representing a set of MSSs Mi of a functional
procedure. The operation performed is

M̂ = segcl(Kk
n, D, PD) (3.5)

Notably D might include a clustering approach that allows for expert input.

40

3.4 Data Mining Pipeline

Extension and Evaluation: To allow for discovery of MSSs, existing segmentation
approaches are extended in Chapter 6. Further, alternative segmentations are discussed.
Also, to allow for expert input in terms of granularity, at this stage clustering is used to
further subgroup segments.
These approaches are compared on a synthetic data set.

3.4.7 Model - Structure Discovery and Parameter Estimation

At this point M̂ contains segment sets Mi of instances of defined functional procedures.
Those segments might be of high dimensionality and complexity, which is why here
functional procedures are aggregated into appropriate models. In general those mod-
els depend on the focus of diagnosis and e.g., might be Process Models, Probabilistic
Graphical Models (PGMs) or supervised classification models (e.g. Decision Trees, Deep
Neural Networks (DNN)). With this step an aggregated representation of the data is ex-
tracted.

Processing: The input to this step is a set of MSSs Mi ∈ M̂ , a model type T , a learning
approach L and the hyper parameters for learning PL. The output is a learned model
Q. The operation that is performed is

Q = learn(Mi, T, L, PL) (3.6)

Extension and Evaluation: For the task of Specification Mining the model Q needs
to allow to represent the nominal behavior of a functional procedure. In particular this
includes capturing the temporal structure of MSSs under uncertainty in state, time and
procedure. In [8] a model was presented for this, which is described in Chapter 7.
The model, its structure discovery and parameter estimation approaches are evaluated
on a synthetic data set.

3.4.8 Inference of Specification and Behavior

Based on the learned models, inference is performed to get insights for diagnosis. For
the given goal of specification extraction, this includes the identification of likely states
of the learned distributions of functional procedure that are represented in TSCBNs.

Processing: The input to this step is a trained model Q, an inference approach I and
the hyper parameters for inference PI . The output is the gained knowledge W , which
depends on the inference performed, e.g. this could be a list of specifications or most
dominant states. The operation performed is

W = inf(Q, I, PI) (3.7)

Extensions and Evaluation: TSCBNs are used to extract LTL specifications that
resemble potential specifications. An approach to this was first presented in [10] and is
revised in Chapter 8.
This approach is evaluated both on a synthetic data set and in a real world example.

41

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Above that, the MPE is used to identify dominant behavior which is also discussed in
this chapter.

3.4.9 Evaluation of Framework

The evaluation of approaches at each individual stage is presented at the respective
chapter. Next to this, the overall pipeline is evaluated on five real world application
scenarios from the automotive industry.
This is done to evaluate the applicability of this approach in real-world scenarios, of hyper
parameters per stage, of consistency of the pipeline and of the quality of its outcomes.
The results of this are presented in Chapter 9.

3.5 Summary and Conclusion

In this chapter a DM pipeline for large-scale distributed systems is introduced. This
approach intends to systematically extract specifications and dominant behavior from
traces recorded from integrated systems. Existing approaches are not end-to-end, are
not capable of mining heterogeneous traces, do not handle multi-functionality, do ex-
clude structural information of the distributed system, do not include expert input, do
not sufficiently handle imperfect traces or cannot produce arbitrary length specifications.
The proposed approach tackles those challenges by introducing a five step procedure,
which systematically homogenizes and reduces the data, identifies functional procedures,
models those and performs inference on those. At the same time expert input is included
at multiple steps along the pipeline. For this, existing approaches are extended or com-
pared at each stage, in order to allow for a consistent flow through this pipeline. These
approaches are presented in the following chapters. Additionally, the evaluation of the
framework is presented in a case study in Chapter 9.

42

4 Automated Interpretation and Reduction
of Traces at a Large Scale

In this Chapter the focus is on the first step of the proposed DM pipeline, which is
the automated preprocessing of trace data Kb recorded from executions of large-scale
distributed systems. The input to this step is a raw trace Kb, which is preprocessed to
yield an interpreted trace Ks and a reduced trace MSSs Kn, by performing

Kn,Ks = prep(Kb) (4.1)

This preprocessing step depends on the input data format of such traces which could
have manifold shapes. This includes directly recorded system states X such as recordings
from simulations where all states are known at all times. Also, this might be the debug
log that is output on individual computational devices. Further, those are encoded state
sequences, which is a common type of data that is obtained from the system at a low
cost. This type of data is recorded in internal networks of automotive or IoT by record-
ing the internal messages that are transmitted for communication. Especially in the case
of automotive traces those messages transmit all relevant system state information as
well as sensory input that senses both interaction with the system and environmental
states.
This forms an important group of traces, which is why here the focus is on this type
of raw traces. Those traces are represented as an event sequence of encoded system
states and are used in systematic analysis work flows as the one presented in Chapter 3.
This is due to the fact that this representation allows to reduce the storage costs of
the recorded trace. However, as states are encoded the data is also hard to access for
analysis and thus, requires dedicated preprocessing approaches before being applicable
for further processing.
In particular, recorded raw trace data has several characteristics that need to be ad-
dressed during preprocessing. Those are the following.

Data Characteristics: The main characteristics of the input data include the fol-
lowing. Traces Kb are in a raw data format that is redundant, encoded, of massive size
(i.e. > 10 000 000 samples), of high dimension (i.e. > 3000 TVs of R, Q and W),
heterogeneous, unstructured, noisy and contains multiple functions.

Requirements: The task of Specification Mining requires the traces to only contain
the essence of what is relevant to represent the nominal behavior of a system. Further,
to be able to include expert input, the mining procedure is run per domain of an expert.
That is, only functions that are relevant to a domain need to be considered. To allow
for those two tasks, first, a reduced representation needs to be found that is targeted
towards the analyzing domain by extracting relevant TVs. Second, redundancies need

43

4 Automated Interpretation and Reduction of Traces at a Large Scale

to be removed and a homogeneous representation of the data needs to be found.
In addition to that, as part of the automated DM pipeline presented in Chapter 3, this
preprocessing needs to be deterministic and automated towards systematic extraction
of expert relevant output. Moreover, as data is of massive size and data is processed as
batch, a scalable reduction and interpretation approach needs to be integrated.
Thus, in terms of Specification Mining good data quality is achieved by homogenization
of TVs, reduction of noise per TV, reduction of trace size and by extraction of domain
specific aspects of the data that allow to be ingested in further mining steps. Thus, both
an accurate and consistent data set needs to be found at this stage.
Existing approaches do not allow for automated interpretation and reduction of encoded
large traces, which is why a framework for this is presented. This framework was first
introduced in [4] in the context of automotive and is used in this thesis as a preparation
step within the automated Specification Mining pipeline.

Chapter Outline: First, in Section 4.1 related works are presented and in Section 4.2
the framework of [4] is detailed. Next, in Section 4.3 benefits of this procedure in the
context of Specification Mining are discussed. Lastly, in Section 4.4 existing evaluation
results from [4] are presented together with additional experiments.

4.1 Related Works

As little comparable frameworks exist, related works include those on preprocessing of
similar types of data, which is in-vehicle networks, and those on user-aided trace analysis
frameworks.
A work similar to the framework of this chapter is introduced in [77], where vehicle
data is collected from test vehicles at a large scale and analyzed by experts for faults.
However, they focus on rule-based and visual error-diagnosis from data subsets, while
the focus here is on preprocessing of task-specific data from full-system traces.
Using in-vehicle network traces for Data Mining was part of several prior works. CAN
signals are used for predictive maintenance by mapping signal groups and finding rele-
vant signals using wrapper methods [78], by extracting signal characteristics at various
times, using histograms [79] or for fault detection, using condition indicators [80]. CAN
signals are used for road type classification [81] and driver workload monitoring [82]. In
[83] detection of driver distraction from signal features is presented. Detecting faults
with CAN signals was proposed early in [84] and in [85], where signals are partitioned
into segments and features extracted. In terms of preprocessing the authors of [86] in-
troduced a clustering approach for vehicular-sensor data to optimize it for Data Mining,
which unlike the preprocessing here, groups data for reduction. Similarly to the in-
troduced work, in [87], SAX [88] is used to symbolize numeric signal values for motifs
relevant for diagnosis. In [89], the authors aggregated vehicle signal data, such as av-
erage speed, to predict compressor faults in trucks and in [90] to model the remaining
useful life time in trucks. In contrast to the presented approach, signal preprocessing
in those works focuses on aggregated data or small subsets of numeric signals, which
does not raise the problem of interpreting massive traces. Others extract features to
either minimize computational cost for on-board applicability or to optimize it towards
a specific Data Mining task, resulting in loss of generality for other Data Mining tasks.

44

4.2 Automated Interpretation and Reduction Pipeline

Figure 4.1: Kb is the recorded raw trace. Its payload li contains certain TV types that are
defined by midi and bidi. TV instances with same midi, bidi and position li form one
source of information, such as Ksid=vel

s , which is a discrete time-series describing
the vehicle speed or Ksid=err

s which is a temporal sequence marking time-instances
were a certain error was sent. In this example the velocity TV instance sequence
Ksid=vel

s is extracted by taking the messages sent at t1 and t3 and interpreting their
first value to get e.g.ŝ11 = (10, vel) and ŝ31 = (12, vel) for speed 10 at time t1 and
speed 12 at time t2. E.g. in a BMW Series 7 2 million messages are generated for
Kb per minute.

However, the presented framework extracts a task-specific and general representation of
data without feature extraction, while determining features could be a subsequent part
to the presented process.
In the context of distributed systems, in [91], an approach to remove irrelevant events
from event traces in Web application logs based on constraints is presented and in [92],
user-based data simplification in a medical context was introduced. In [93], anomaly and
in [94], intrusion detection in large scale network traces is presented. In the software
context, users are involved for processing event traces with Data Mining [51] and in opti-
mizing software design [66]. To detect faults based on event traces, several user-involved
analysis frameworks are proposed. They include approaches for application failures [19],
for problem detection in internet services [52] and to examine execution reports for error
detection in clusters [20].
Those works focus on analyses aimed towards certain Data Mining tasks and with or
without user interactions for simplification. By contrast the framework used here is an
automated approach.

4.2 Automated Interpretation and Reduction Pipeline

4.2.1 Overall Processing Pipeline

The framework [4] aims to preprocess data that is initially encoded in messages of for-
mat Kb. Those are transformed to Kn and Ks, which can then be used to consider
the extracted data per TV with name Sid. These data types are formally introduced
according to 2 in the following and the concept of how those types correlate are shown in
Figure 4.1. Oftentimes devices communicate with each other, in order to transmit state
information of multiple TVs. With this functionality between those is established and
provided, e.g. in in-vehicle networks this might be messages exchanged for the wiper

45

4 Automated Interpretation and Reduction of Traces at a Large Scale

function. The transmitted information is encoded in messages, which have dedicated
state information sent in dedicated message types. Those messages might be sent on
different communication channels and thus, be of different protocols. Also, the transmit-
ted state information includes both sensory and actuator data of the distributed system.
Such traces are recorded directly from the communication channel, successively analyzed
offline and used for various diagnosis tasks, e.g. in this case for Specification Mining.
This raw trace forms Kb as presented in Chapter 2 in this scenario. As this data is
recorded from communication channels, additional formalizations to the ones given in
Chapter 2 are required to understand the overall proposed pipeline. This formalization
is introduced here.

Formal Definitions: The communication between devices is performed via messages
of type m, where each message has a unique identifier mid. Any message with mid

transmits the exact same type of information, i.e. the states of a defined set of TVs.
Further, a message instance m̂ is referred to as an occurrence of a message type m in
the trace. In the same way it is referred to the type of a TV S as s which is identified by
an identifier sid, which could be the unique name of a TV. The occurrence of this TV in
a message is declared as ŝ. The set of all types of TVs that may exist in a message are
Σ = {s1, s2, ..., sz}. Each instance m̂ of a message type m contains an exactly defined
set of TV types S̄ ⊆ Σ and the channel on which it occurs bid. Thus, the message type
can be written as

m = (S̄,mid, bid) (4.2)

, where the number of state types transmitted |S̄| can vary per message. Further the
TV instance consists of an identifier sid that defines the TV type and a value v it has

Figure 4.2: Wiper function: Example of the formalization used. Assuming l′ to be the
first two bytes (=wpos) per message and l′′ the last two bytes (=wvel) the
rules for mapping between Kb onto Kn are v = 0.5 · l′ and v = l′′ [4].

at that time, which corresponds to the state of the TV at that time. In the case of gen-
eral communication systems TVs might be concerning either a function (e.g. steering

46

4.2 Automated Interpretation and Reduction Pipeline

angle), a control unit (e.g. reset) or the network (e.g. frame qualifier). For the case of
Specification Mining the focus is on the functional TVs here.

Example: A good example that visualizes this concept is given in Figure 4.2. There
instances of all messages of type m′ identified by mid = 3 contain all TV types S̄′ ⊆ Σ
related to the wiper function, which is sent on a communication channel called FC, which
has an identifier bid = FC. The set of contained TVs is S̄′ = (swpos, swvel) has swpos which
include the TVs wiper position and swvel wiper velocity. Further, an particular instance
m̂′ of the message type m′ has the instances m̂′ = ((ŝwpos, ŝwvel), 3,FC) with ŝwpos =
(45◦, wpos), ŝwvel = (1 rad/min, wvel).
Further for this scenario the data format is declared as

Kb =< kb1, kb2, ..., kbw > (4.3)

with |Kb| = w, byte tuple kbj = (tj , lj , bidj ,midj ,minfoj) with l as message payload in
byte format, bid as channel identifier, mid as message identifier and minfo as protocol
specific message fields used for protocol specific translation. For instance in a CAN bus
mid is the CAN identifier.
Further the payload l can be translated to its TV instances it contains using its unique
identifier mid. Thus, after interpretation Kb can be written as:

Kn =< (t1, m̂1), (t2, m̂2), ...(tw, m̂w) >=

< (t1, (Ŝ1, m̂id1)), (t2, (Ŝ2, m̂id2), ...(tw, (Ŝw, m̂idw) >

By extracting individual instances ŝ from the set of TV instances, per time of occurrence,
this can be written as:

Ks =< (t1, ŝ11, bid1), (t1, ŝ12, bid1), ...(tw, ŝw1, bidw), ... >

Per TV, the identifier sid can be used to find all ŝij instances of the same TV from
its messages, which allows those to be grouped. That is each TV represents one state
information of the system. For instance to obtain the velocity of the wiper as infor-
mation it suffices to filter for the according identifier sid, which yields the temporal
state sequence of the according TV Ksid=wvel

s = σsid=wvel(Ks). With this formaliza-
tion the preprocessing approach allows to extract an interpreted and domain-specific
homogeneous representations from traces that are initially recorded from a large-scale
distributed systems. This step enables automated Specification Mining to be performed
based on this. The overall approach of [4] is shown in Algorithm 4 using relational
algebra and in Figure 4.3 as an overview that includes the main steps of the approach.

4.2.2 Overview

The automated framework yields a reduced, interpreted and domain-specific represen-
tation of traces from large distributed systems. Its main steps include structuring,
interpretation and reduction, as shown in Figure 4.2 and Algorithm 4.
For early reduction and minimal interpretation cost, in line 3 of Algorithm 4 task-
dependent TV types are preselected from Kb based on domain knowledge. In particular

47

4 Automated Interpretation and Reduction of Traces at a Large Scale

Figure 4.3: Overview of the flow of the preprocessing framework [4].

for the task of Specification Mining this is done by providing a list of TVs that might
be related to the specification to mined. That is, detailed clustering and extraction
of related TVs is done in the clustering step of the framework proposed in this thesis,
while here a selection of the expert is included. That is, for better efficiency experts
can exclude irrelevant TVs at this stage, which could have potentially yielded erroneous
or false positive specifications. Further, this exclusion is imperative as computational
complexity is reduced by this, which is important to handle massive trace sizes.
Kpre is interpreted by looking at payload bytes of Kpre’s elements that contain TV types
relevant for analysis (line 5) and map those bytes of payload l in Kb to a TV instance
ŝ (line 6) resulting in Ks. Knowledge of relevant bytes per TV type and their positions
are contained in the interpretation rules Urel. Also, only relevant message instances m̂
are inspected.
Next, as TV instances vary in type, each TV type s (e.g. with sid = vel) in Ks is pro-
cessed individually as a sequence Ksid

s . Per TV type, in lines 10 to 11, domain-specific
reduction rules are used to reduce data to relevant data points. To extend each data
point with meta-data or pre-calculated values in line 11 extension rules are defined. Also,
varying types of TVs require prior classification of TV data types and type-dependent
preprocessing (lines 13 to 28). They specified three classes (α, β, γ) of types. For each
class they aim to obtain a symbolic representation of the data that reduces size while
preserving outliers relevant for fault diagnoses. While this is useful in general diagno-
sis, for the case of Specification Mining outliers might be excluded at this step in order
to reduce noise. For numeric values they determine a representation in terms of trend
extracted using the SWAB approach presented in [95] and range found using SAX as

48

4.2 Automated Interpretation and Reduction Pipeline

Algorithm 1 Algorithm taken from [4]

Reduction, Interpretation and Homogenization of raw Byte sequences
Input: trace Kb, preselected interpretation rules Urel, reduction rules C, extension
rules E
Output: homogeneous, reduced, interpreted Sequence Rout

1: Rout = ∅ . Output
2: Ucomb ⊆ Urel . Preselection
3: Kpre = σ(mid,bid)∈Ucomb

(Kb)
4: Kjoin = Kpre ./Kpre.bid=Urel.bid∩Kpre.mid=Urel.mid

Urel . Interpretation
5: Kjoin2 = Fu1(Kjoin)
6: Ks = Fu2(Kjoin2)
7: for each s∗i ∈ Σ∗ do . TV Splitting

8: K
s∗i id
s = σKs.sid=s∗i id

(Ks)

9: (Ksepi ,K
s∗i id
scor) = e(K

s∗i id
s)

10: Kcondi = Ksepi ./Ksepi .sid=C.sid C . Reduction
11: Kredi = σKcondi

.e=true(Kcondi)
12: Wi = FE(Kredi) . Extension
13: τ = type(Kredi , Z) . Type-dependent processing
14: if τ is α then
15: (Knumi ,Knomi) = typeSplit(Kredi)
16: (Knumiout ,Knumirep) = outlier(Knumi)
17: Knumiclean

= m(Knumirep)
18: Kresi = Knumiout ∪Knumiclean

∪Knomi

19: end if
20: if τ is β then
21: (KFi ,KVi) = functionSplit(Kredi)
22: (KFiout ,KFiclean

) = outlier(KFi)
23: KFiclean

= addGradient(KFiclean
)

24: Kresi = KFiout ∪KFiclean
∪KVi

25: end if
26: if τ is γ then
27: Kresi = Kredi

28: end if
29: Rout = Rout ∪Kresi ∪Wi . Merge
30: end for

49

4 Automated Interpretation and Reduction of Traces at a Large Scale

described in [88] (line 17). This is a trade-off between reduced data size, that can be
handled during analyses, and loss of exact value information. However, by extracting
outliers (line 16) prior to symbolization important information for fault analysis is pre-
served. Lastly, the processed and symbolized data is merged together in line 29, forming
a state representation Rout that can be used for Specification Mining. These steps can
be split in a interpretation and a reduction phase, which are detailed separately in the
following sections.

4.2.3 Interpretation Phase

For efficient Specification Extraction functions need to be considered in a semi-supervised
manner by domain-specific experts that perform the extraction. For this step multiple
TVs are relevant, which need to be extracted. This is done with the presented approach
as it allows for an automated and parameterizable way for each domain to extract rep-
resentations with a defined reduced number of TVs. This TV extraction process is
presented here. There, this is done by per-domain, extracting a reduced trace Ks that
contains only a subset of specified TVs from the raw trace Kb. In particular this is done
on massive traces which requires processing on Big Data frameworks. However, such
approaches require to operate in a distributed manner, which requires the extraction
operations to be formulated in a tabular manner. TVs relevant for Specification Mining
are extracted by specifying relevant TVs once and then, running the defined framework
as batch for any incoming data set. Comparable tools [96] parse sequentially through all
messages of a trace and lookup each TV per message, while the approach discussed here
uses a distributed approach for this. This makes that approach fit well in the proposed
Data Mining work flow of Chapter 3, as it is designed to enable automated domain-
specific large-scale extraction of relevant aspects on large fleets of objects.
To achieve this first, relevant TVs to extract need to be specified as an input to that
framework. With this the approach is able to obtain a extracted and interpreted ver-
sion of relevant TVs, which is particularly efficient as interpretation cost is kept low by
filtering relevant messages at an early stage, i.e. prior to interpretation.

Structuring and Preselection
Experts of a function are usually aware of all subsystems and components that are in-
volved, which allows those to coarsely specify a subset of TVs that have to be included
in the mining process, although detailed interactions and particular TVs might be not
known. Extracting such hidden relations will be discussed in Chapter 5.
It is inefficient to translate all TV instances in all message instances. But, as this ap-
proach allows to provide a subset of TVs it is possible to only consider a relevant subset
of bytes per message. This allows to do the following.

Structuring: The relevant TVs are specified as a set Ucomb ⊆ Urel of translation tuples
urel, where the set Urel contains all tuples of possible TVs. This is used in the approach
for efficient retrieval of TV values ŝ from Kb. For instance if the function to be mined
is the Wiper, an expert might specify the position wpos and the velocity wvel of the
wiper as relevant TVs in Ucomb. Also, he might include action TVs such as pressing the
handle bar for wiper activation or environmental TVs such as the rain intensity. For

50

4.2 Automated Interpretation and Reduction Pipeline

this to work a set of meta information needs to be passed as translation tuple, which is

urel = (srel
id , bid,mid, uinfo) (4.4)

, where uinfo contains interpretation rules, that define how the encoded information is to
be translated, srel

id has the ids of TVs that are relevant to the mining process (e.g. wpos
and wvel), while bid and mid contain the according channel and message ids on which
the TV occurs.

Preselection: It is preferable to perform less operations directly on Kb. To do this,
in the first step the knowledge of relevant message ids, resulting from the expert speci-
fication of TVs, can be exploited to filter Kb for all mids and bids of TVs in Ucomb. For
instance one could select Ucomb as the TVs wpos and wvel in Figure 4.2, which reduces
the rows in Kb to only entries that have a mid ∈ (3) and bid ∈ (FC). WIth this, only a
byte sequence of relevant message types Kpre remains. A simple example was presented
in [4] for Urel and is given in Table 4.1. Notably, the tuple of relevant entries Urel has an
identical schema as Ucomb.

srelid bid mid uinfo

wpos FC 3 Int.rule: v = 0.5 · l; rel.B = l′ = (1,2)
wvel FC 3 Int.rule: v = l; rel.B = l′ = (3,4)
wtype K-LIN 11 Int.rule: v = l + 2; rel.B = l′ = (1)
wstat SOME/IP 212 Int.rule: v = l; rel.B = l′ = (10,22)

Table 4.1: Example for Urel with relevant bytes to extract: Bytes 1 and 2 for wpos
in messages with id 3, Bytes 3 and 4 for wvel. From SOME/IP the wiper
status wstat and from K-Lin the wiper type wtype could be extracted from
messages with respective ids 11 and 212, i.e. the presented approach allows
to combine multiple protocols into this extraction [4].

Information Interpretation
Interpretation is an expensive operation and needs to be performed on relevant bytes
only. Further, for scalability reasons it is required to state the problem in terms of
scalable database operations, as processing frameworks for Big Data, such as Apache
Hadoop [18] are optimized to work on those effectively. Moreover, the format should
enable row-wise extraction of TV instances with interpretation rules urel. This is solved
by doing the following.

Interpretation Rule: Mapping Kpre to Ks can be performed by applying a mapping
u on each element kb of Kpre for each urel that is associated to any kb. Extraction
information uinfo needs to contain the byte positions at which the TV value v can be
found in the payload l of kb (see Figure 4.1) and how it can be evaluated to the TV
value v. This includes the definition of condition based positions, i.e. rules where values
of preceding bytes define the presence of a TV type in succeeding bytes. Furthermore,
evaluation information need to be given, such as data types, coding, protocol based fields
and translation rules (e.g. intercept to add or mapping of a Hex to a categorical value).
After having specified relevant TVs in Ucomb the uninterpreted version of the trace Kpre

51

4 Automated Interpretation and Reduction of Traces at a Large Scale

can be mapped to an interpreted trace Ks which is done in the steps described in algo-
rithm lines 4 - 6. This includes the following.

1. The extraction instructions in Ucomb are joined on (mid, bid), with all its according
raw messages in Kpre. This results in a table Kjoin that contains entries of type
(t, l,minfo, s

rel
id , bid,mid, uinfo).

2. With this, all uinfo of all TVs that are to be extracted are contained with all entries
of messages that contain the uninterpreted value of that TV Kpre. Thus, now an
efficient row-wise translation of each row can be performed to extract the value of
each TV at each row by using the rules u specified in uinfo. For this, uinfo needs
to contain the byte positions at which the TV value v can be found, the payload l
with the content and the translation rule that describes how it maps to the value
v. Such evaluation information in particular requires to contain meta information
including data types, coding, protocol based fields and translation rules (e.g. Hex
to categorical value).

This is exemplified in Table 4.1. As shown there, first, the relevant payload bytes lrel are
extracted row-wise in Kjoin using u1 : (l, uinfo) 7→ lrel which gives Kjoin2 . With this, the
interpretation information is used to extract the TV values with u2 : (lrel,minfo, uinfo) 7→
ks = (t, s) = (t, (v, sid)) resulting in the interpreted trace in Ks . In the proposed DM
pipeline a large amount of traces is handled, which requires to extract relevant dimensions
on a large scale. The approach is well suited for that purpose, as it allows to process large
traces by providing tabular operations that let it be distributed in Big Data frameworks,
which allow for automated and systematic extraction on a regular basis. Scalability is
enhanced further by the memory efficiency of that approach. That is, traces are stored
in raw format Kb which is more efficient than translating all Kb to Ks. For instance
considering five messages with 10 bytes per message where per message only one byte is
relevant for TV extraction, would result in a Ks of 10 times the size as proposed here.
Moreover other existing tools [96] need to ingest and cache traces of multiple journeys
under inspection per analysis. However, once parameterized, the preprocessing allows to
automatically extract a trace of relevant TVs at this stage. This allows the consequent
semi-automated Specification Mining approach to start directly from the resulting trace,
without requiring prior expert intervention during preprocessing every time that a new
trace is ingested.

4.2.4 Sequence Reduction

After interpreting the data the method uses a defined reduction technique and type-
dependent processing of TVs to achieve a representation that captures the main essence
of the data. For this the data is reduced in two ways. First, extensions might be added
to the data. That is, by processing the states of TVs further meta information can be
extracted, which would be represented as a separate TV. This step is not required for
Specification Mining, as the goal is to capture the behavior of the system as is, rather
than in terms of meta information. Second, reduction of the data such that only the
essence of each TV remains, which is especially useful for Specification Mining as redun-
dancies lead to complex models and thus, overly complex specifications.

52

4.2 Automated Interpretation and Reduction Pipeline

Figure 4.4: Example of four Kred each consisting of TV instances of one TV type with
four different data types. Those TVs need to be processed based on their
data type [4].

The method provides a parameterizable, tabular approach that allows to perform those
steps in a distributed and automated manner. Further, at this stage the heterogene-
ity of the trace is resolved, by performing type-dependent processing that results in a
homogeneous data format, with this allowing to perform consequent semi-automated
Specification Mining.

4.2.4.1 Reduction

Multiple approaches for reduction of traces towards specific Data Mining tasks were
introduced, which are mostly instance [97] or feature [98] selection algorithms. Reduc-
tion of traces in the context of software and distributed networks includes reduction of
repeated data points [99], pattern-based approaches to map multiple trace segments on
a representative [100], sampling techniques [101], clustering approaches to select repre-
sentative clusters for traces [102] and compression [103]. Those are either restricted to
certain system types or tailored to a certain task. However, for a general task-specific
analysis of in-vehicle traces, a minimal parameterization for reduction is required. There-
fore, unlike in those approaches, in the approach of this chapter database operations are
used for reduction, which are performed according to a condition set that is specified
by the domain-expert. Also, traces of large distributed systems contain special charac-
teristics that can be well exploited for condition-based reduction. Those include defined
communication patterns and channels, routing of identical TV instances on multiple
channels, open or closed information flows, sending conditions, sender and receiver in-
formation or channel specific information. Such information is well-known and thus,
allows for a defined extraction of relevant parts of a trace. For instance, when consid-
ering specifications that concern behavior of specific components, only TV instances of
defined nodes in the distributed system could be extracted. This reduction is performed
in two steps, that include TV splitting with successive type-dependent processing and
using constraints. Further, the extension of the trace is performed as separate step. This
step is included here for the sake of completeness while it is excluded in the proposed
DM pipeline. Those three steps are described in the following.

53

4 Automated Interpretation and Reduction of Traces at a Large Scale

TV Splitting: The data type of a TV determines how it is processed. This is why
in, line 8 the trace Ks is split according to its data type. For this the TV types Σ∗ =
{s∗1, s∗2, ..., s∗r} that remain after the previous filtering steps are considered, where Σ∗ ⊆ Σ.
Thus, the trace is considered in terms of each TV individually, i.e. a sequence of the

trace that is filtered by a certain TV which is defined as K
s∗i id
s . For instance this could

be the TV MES that only contains the position of the wiper over time, which is declared
in that sense as Ksid=wpos

s . This is exemplified in Figure 4.2.
Next, in traces recorded on such systems identical TV instances might have been sent
and thus, recorded multiple times. As such entries contain the same information the
Specification Mining approach might learn correlations between those if kept in the data
set. Further, any redundant information increases computational costs. That is why,
TV instances of one of those entities is processed only. For this the algorithm checks
equality of TVs in line 9 by doing

e : K
s∗i id
s 7→ (K

s∗i id
srep ,K

s∗i id
scor) (4.5)

This gives a representative sequence K
s∗i id
srep and a set K

s∗i id
scor of the according sequences

K
s∗i id
scor . In the following the naming of this sequences is declared as Ksep := K

s∗i id
srep .

Constraint Reduction: The expert may specify a set of constraints in order to reduce
the trace systematically and specific to his data. Therefore, in this step elements of the
constraint set can be marked and filtered for relevant elements of Ksep. For instance,
for the task of Specification Mining at this stage communication information might be
excluded. That is, as a TV might contain information about errors during transmission
and thus, may contain values such as bad state or missing TV. Such constraints are
defined as a set C = {ci|0 < i < m, i,m ∈ N} with elements c = (sid, d, F), where sid

defines the TV for which c is to be applied. As a result, if d is true, all functions f ∈ F
are applied, where f can be a row-wise or an aggregation operation which are inherently
distributable in Big Data systems. Such functions might be filtering conditions, such as
the computation of the temporal gaps between subsequent rows using f . If that gap is
acceptable it the row will evaluate to true and will be false otherwise. Programmatically
those constraints are applied in line 10 by joining C with Ksep on their TV type, which
results in a reduced trace Kcond. With this, f ∈ F is computed if d holds yielding a
value e as follows:

f : kcond.e =

{
true if ∃fi ∈ F, with fi(ksep) = true

false otherwise
(4.6)

If any f is true, so is e. Thus, in line 11, Kred is found by filtering for f being false
leaving only elements that are potentially relevant to Specification Mining at this stage.
In particular this is, that only TVs with values that contain state information (R, W
or Q) are remaining.

Extension Rules: Extension rules are used to extract further meta-information that
is included in the trace. Such information can be declared as separate TV and systemat-
ically extracted from the trace. Such TVs are declared as W = {w1, w2, ...} when added

54

4.2 Automated Interpretation and Reduction Pipeline

to the trace. The meta information is obtained by applying defined functions on Kred,
which is described in line 12. Instances that are computed are added to the trace as new
instances of TVs ŵ. Those are defined similar to TV types as w = (v, wid) with v as
value and wid as an identifier associating w to its corresponding TV type. An instance
of this TV type is denoted as ŵ. An example of such meta-information is shown in Table
4.2, where the gap between two consecutive instances of the TV wpos are considered
as meta information. This type of rules is not of relevance in the Specification Mining
pipeline that is introduced in this thesis.

t ŵ = wposGap bid

2s (0.5, wposGap) FC
2.5s (0.4, wposGap) FC
2.9s (0.45, wposGap) FC
...

Table 4.2: Extension: Gap between wpos TVs from sequence Ksid=wpos
s .

4.2.4.2 Type-Dependent Processing

Next, TVs are processed depending on their type. The procedure for homogenization is
required in Specification Mining to allow for semi-automated preprocessing that directly
results from this step.
TV types of Kred are diverse in data type. However, it is cost-efficient for further analyses
to have data available homogeneously in a common representation, as then, inspection
can be performed instantly. Each interpreted sequence Kred is either nominal, ordinal,
binary, numeric or of mixed type. This includes sequences, where numeric values de-
scribing a system property (e.g. velocity of a car) are mixed with network specifics (e.g.
TV invalid). In those cases, it is not enough to filter out nominal data, as it could
resemble a fault occurrence. This also holds for outlier handling for similar reasons. E.g.
outliers need to be removed during symbolization, while being in the data set after the
processing procedure.
For homogenization, TV types are grouped in three classes that require different pro-
cessing approaches corresponding to criteria that were determined through inspection of
more than 1000 TV types. Those are presented in the following.

Data Types - Criteria: Each TV instance sequence needs to be classified in advance.
Therefore criteria are defined.

Z = (ztype, zrate, znum, zval). (4.7)

First, the data type
ztype ∈ {S,N} (4.8)

is either a String S or a Numeric N . The affiliation

zaff ∈ {F, V } (4.9)

55

4 Automated Interpretation and Reduction of Traces at a Large Scale

is used to distinguish between values that express a functional property F and the ones
that define validity V of either the sent message (e.g. message invalid), the TV instance
itself (e.g. TV invalid) or a functional component (e.g. object invalid). For numeric
values

zrate =

{
H if n

∆t > T

L otherwise
(4.10)

is used to differentiate between values changing at a high rate H, such as sensor TV
types and those changing at a slow rate L, using a threshold T , that is determined with
domain knowledge. zrate is the number of values n in active segments of duration ∆t.
Furthermore, the number of different values znum of a functional property information
is used. For ordinal values it needs to be specified if TV values of a type contain a
comparable valence:

zval ∈ {true, false}; znum ∈ N (4.11)

According to Z, each TV instance sequence Kred is assigned a processing branch accord-
ing to the mapping in Table 4.3.

Branch α: In general Kred contains at this point both elements that are numerical
and nominal. This is because, when transmitted, data is a value, erroneous or given
a meaning. Nevertheless, those nominal values are impeding the processing of numeric
values, e.g., during trend estimation. Thus, Kred is split in a sequence Knom of nominal
and a sequence Knum of numerical elements, which are processed separately as follows:

Kred 7→ (Knum,Knom) (4.12)

For Knum the data is split in a trend and range part as introduced in [104]. To exclude
outliers from this estimation, first a filtering for outliers is performed by windowing
the data and per window, removing all values that are further than three times the
standard deviation from the mean value. This results in Knum. However, as outliers are
potentially meaningful, those elements are marked and stored in Knumout . The mapping
can be written as

Knum 7→ (Knumout ,Knumrep) (4.13)

Next, for symbolization the mapping m on Knumrep is used. This mapping applies
exponential moving average smoothing to remove noise, uses SWAB [95] and linear
regression to determine the trend and SAX [88] for symbolic quantification. This, results
in a nominal tuple of trend and range for each element giving Knumclean

by using

m : Knumrep 7→ Knumclean
. (4.14)

To return outlier and nominal information, Knumclean
is merged with Knumout and Knom

giving the sequence
Kα = Knumclean

∪Knumout ∪Knom. (4.15)

, which is excluded from the DM pipeline that is propose here.

Branch β: For the same reasons, a similar approach is used for ordinal values. Those
are split by applying condition zaff on each element in Kred giving a nominal part KV

56

4.3 Discussion

ztype zrate znum zval Data Type Processing Branch
N H > 2 true numeric α
N L > 2 true ordinal β
S H ∪ L > 2 true ordinal β
S H ∪ L = 2 true binary γ
S H ∪ L > 2 false nominal γ
N H ∪ L = 2 true binary γ

Table 4.3: Map TV instance sequences to data type and processing branch [4].

where V holds and a functional part KF where F holds. This gives

Kred 7→ (KF,KV). (4.16)

Similar to α, KF is first translated into a numerical equivalent, analyzed for outliers
and the trend is determined using the gradient. This results in a tuple of gradient as
trend and the value of the element, giving sequence KFclean

. Outliers are again stored
to sequence KFout and can optionally be merged (which is not done in Specification
Mining), giving

Kβ = KFout ∪KFclean
∪KV. (4.17)

Branch γ: If a low amount of values is given no transformation is needed and all
values are treated as nominal values. Splitting similar to β in KV and KF is possible.
Also, similar to B, outliers can be removed optionally. This results in Kγ .
Notably, for the Specification Mining task that is following this procedure, outliers are
removed, as the aim is to reduce noise and to filter for the essence of the true behavior
of each domain-specific function and its functional procedures.

4.2.5 Final Representation

To obtain the final representation the resulting sub sequences of Kα, Kβ and Kγ are
merged, which yields a homogeneous representation of the trace Krep.

State Representation: Multiple representations can be extracted from Krep. For
instance, when vectorizing the state of the system for Machine Learning algorithms, such
as Recurrent Neural networks a good representation is to store all states at each time
step, while recording a time step each time a value changed. An example of this is shown
in Table 4.4.
Notably the resulting format decodes a MSS, e.g. if one column is considered only and
duplicates are removed a state sequence per TV is extracted. MSSs are used as an input
to the proposed Specification Mining approach. For this, it suffices to store the changing
TV only resulting in a format as shown in Table 4.5.

4.3 Discussion

For Specification Mining the result of Ks is further processed, which is extracted after
the Interpretation phase. Further, this preprocessing produces the MSS Krep, which is
referred to as Kn in the remainder of this work. The latter, is produced by removing

57

4 Automated Interpretation and Reduction of Traces at a Large Scale

t sheadlight slevercontrol sspeed sindicatorlight slightswitch

2 off default (high,increasing) off default
4 off pushed up (high,increasing) off default
4.25 off pushed up (high,increasing) left on default
7 off default (high,increasing) left on default
7.22 off default (high,increasing) off default
14 off default (high,steady) off default
20 off default (high,steady) off turned halfway
20.1 park light on default (high,steady) off turned halfway
22 park light on default outlier v = 800 off turned halfway
23 park light on default (high,steady) off turned full
23.5 headlight on default (high,steady) off turned full

Table 4.4: Exemplary state representation of TV instances of the function lights com-
bined with driving speed [4].

t sid v

2 sheadlight off
4 slevercontrol pushed up
4.25 sindicatorlight left on
7 slevercontrol default
7.22 sindicatorlight off
14 sspeed (high,steady)
20 slightswitch turned halfway
20.1 sheadlight park light on
23 slightswitch turned full
23.5 sheadlight headlight on

Table 4.5: Exemplary state representation of TV instances of the function lights
combined with driving speed.

58

4.4 Evaluation of Framework Performance

successive identical states. Once parameterized, those representations are automatically
generated and are used for the consequent steps of the proposed pipeline.
The presented approach is performed in a semi-automated manner and per domain.
This is well suited here, as the expert is usually responsible for a certain function, that
consists of a set of TVs that are relevant to it. Thus, at this stage an initial set of TVs
is specified in Urel. While the expert does not exactly know all relevant TVs at this
stage, he is able to provide a broad set of TVs which he expects to potentially influence
the inspected functional procedures. Additionally, reduction constraints C can be added
here by the expert. For Specification Mining this might be the removal of communication
information, e.g. the filtering for state information only.
Advantages of this approach include, that once parameterized, the resulting trace can
automatically be extracted on each ingested instance of a system. Then, from there
each expert can proceed with the further steps of the pipeline. This is further enhanced
by the fact that the trace can be reduced significantly towards the analyzing domain,
which will be shown in the evaluation section. This allows to save both computational
as well as memory costs. Moreover, this preprocessing results in a noise reduced and
homogeneous trace.
Due to those reasons this step is important to allow for a systematic and automated
mining of Specifications at a large-scale.

4.4 Evaluation of Framework Performance

Within the proposed pipeline the aim is to reduce the size of any incoming trace of a
massive data set such that the resulting format can be used by the domain specialist
for further Specification Mining. Two particularly important properties for this include
the time required for the transformation to take place and the reduction rate that is
achieved through this step. The time aspect was covered in comparison to existing
methods and is shortly revisited here. Next, to this the reduction rate of the approach is
discussed on the same data. This evaluation was first published in [4] and is revised here.

Setup: The evaluation is performed on lines 3 to 11 of Algorithm 4 using Apache
Spark on a cluster with 70 servers, Infiniband QSFP, 20 virtual CPUs, per node two
Intel R© Xeon R© processors E5-2680v2 with 256 GB DDR3 RAM using 5 virtual CPUs
and 10 servers with 3 GB RAM per executor and 4 GB RAM per driver node. The
remaining part of the algorithm is not considered, as methods used there are evaluated
in respective literature, e.g., SWAB Algorithm [95]. In the given data sets TV instances
are sent with constant cycle times and often, for subsystem inspection, only changes
of TV values are relevant. Thus, as constraint reduction the choice was to remove TV
instances where values did not change over time.

Data: Three representative data sets are inspected, which were recorded from one
modern premium vehicle during 20 hours of driving. Their statistics are described in
Table 4.6. From this trace, per data set only message instances are extracted that
contain any of the TV types of the chosen data set. Thus, all message instances in Kb

contain at least one TV instance of the corresponding data set. The first data set is the

Lights data set LIG with trace Klig
b and relevant TV types U lig

rel containing TV types

59

4 Automated Interpretation and Reduction of Traces at a Large Scale

SYN LIG STA
TV types 13 180 78
TV types - α 6 27 6
TV types - β 4 71 1
TV types - γ 3 82. 71
TV types 13,197,983 12,306,327 4,807,891
∅ TVs per message 1,47 5.11 3.66

Table 4.6: Statistics of the three data sets used here.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
·106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·106

Initial Examples in Dataset

E
xe

cu
ti

on
T

im
e

[m
s]

Interpretation Time State
Reduction Time State
Interpretation Time Synthetic
Reduction Time Synthetic
Interpretation Time Lights
Reduction Time Lights

SyntheticLights State

0

0.5

1
·108

N
u
m

b
er

of
E

x
am

p
le

s

raw
interpreted

repetitions-reduced
type-reduced

Figure 4.5: On the left the execution time after interpretation and removal of identical conse-
quent TV instances is depicted, when the number of initial examples is varied. The
right figure shows the size after each processing step when the whole trace and all
TVs are interpreted, reduced and symbolized [4].

exchanged within the light function and include e.g. the brightness or the state of front
lights. The State data set STA (with Ksta

b and U sta
rel) has TV types that describe the

cars State, e.g. its driving state (parking, driving, repair). The third set is synthetic
SYN (Ksyn

b and U syn
rel) and generated from 13 representative TV types from data sets of

different functions which are replicated 9 times. Per replicated TV type, a minimal time
shift is added and a unique mid is assigned yielding a data set with 130 TV types. The
interpretation rules per data set Urel are stored in a Hive table.

Execution performance: The approach was run with a constant number of TV types
and step-wise increase a subset of Kb. Also, per data set, all TV types are extracted
giving one Kred per TV type. I.e., in each data set, all entries are interpreted. The
results that were presented in [4] are shown in Figure 4.5.
Execution time increases with the number of additional examples in the data set. This
growth is linear as interpretation is performed per row, more examples are processed per
node and this processing has complexity O(n). Fluctuations result from communication
that is performed within the cluster and the distribution of types of TV instances among
nodes, as processing differs per data type. It was found that interpretation is expensive
in terms of execution time and, thus, early reduction shows to be advantageous here.
This approach has reasonable results for STA and LIG, as e.g. the interpretation of 2.6
million examples was processed in 1324 seconds and 7.4 million examples in 930 seconds.

60

4.4 Evaluation of Framework Performance

0 20 40 60 80 100

0

1

·104

O
cc

u
re

n
ce

R
at

e

Pedal Original

vlow low medium high vhigh

0

0.2

0.4

W
ei

gh
te

d
o
cc

u
re

n
ce

R
a
te Pedal Symbolized

Figure 4.6: On the left side the occurrence rate of values for the original TV values of the angle
of the acceleration pedal are shown. The occurrence rate after symbolization is
shown on the right.

Journeys
Trace

rows ·109
Extracted

rows ·106
Extracted

TVs
Extraction time
Proposed [min]

Extraction time
in-house [min]

1 0.481 12.751 9 9.58 41.66
1 0.481 79.466 89 168.05 41.66
7 4.286 94.013 9 62.00 372.88
7 4.286 586.124 89 183.25 372.88
12 5.901 133.619 9 87.62 504.27
12 5.901 833.066 89 269.65 504.27

Table 4.7: TV extraction times for massive traces as introduced in [4].

Here, computational power was restricted to 10 nodes, thus, on a bigger scale an increase
of the underlying resources can improve this performance.

Comparison: Further, this approach was compared to an OEM’s in-house tool [96]

(comparable to Wireshark), that was run on an HP
TM

Z-840 equipped with two Intel R©

Xeon R© E5-2640 v3 2.60GHz CPUs and 96GB of RAM. The approach of this chapter
was run on 10 nodes, 5 cores and 10 GB of RAM per executor and 20 GB of RAM per
driver. Here the extraction procedure was performed on massive traces of billions of
rows, with results as shown in Table 4.7.
For extraction this the in-house tool does the interpretation on ingest and in [4] the time
for ingest was measured as extraction time, while for the preprocessing in the framework
the time for interpretation until it is written to the database was measured. The same
amount of traces was ingested to both approaches with a fixed number of TVs, which
is the second column in Table 4.7. Based on this the execution times in both methods
for traces of various sizes was discussed. It was found that for 89 extracted TVs from
12 journeys a reasonable extraction time of 269.65 minutes was needed, that is nearly
twice as fast as the existing solution with a time of 504.27 min. For 9 TVs the tool
needs 87.62 min for 9 TVs while the existing tool requires 504.27 min which shows a
improvement of factor 5.7. The in-house tool loops through the data to extract relevant
TVs , which yields a linear scaling with data size. This extraction time does not change
with the number of extracted TVs as extraction is done within one loop. This existing
solution is sufficient if individual journeys are considered. However, when extracting

61

4 Automated Interpretation and Reduction of Traces at a Large Scale

TVs from massive traces (i.e. multiple journeys) this becomes inefficient and distributed
approaches become essential. Thus, the processing approach discussed in this chapter is
well suited to work as a basic preprocessing within the systematic DM pipeline proposed
here, as it can reduce the size to a trace relevant to a domain expert within a reasonable
time. This suitability is further given as the process is parameterized once and the re-
sults are automatically written to a database that is used for the further semi-automated
Specification Mining task.

Reduction performance: Just as for execution time the reduction rate r was mea-
sured and results are shown in Figures 4.5 (middle). r is measured as number of examples
that remain after interpretation nproc (and number of examples after reduction, respec-
tively) and the initial number of examples nb in each data set using r =

nproc

nb
.

In a separate experiment for each data set also type-dependent preprocessing is applied
for all extracted TV instances and types. The reduction results are shown in Figure 4.5
(right).
Results show (r > 1) that interpretation produces multiple TVs extracted per message,
because as Table 4.6 shows on average multiple TV types are present per message. The
values in Table 4.6 resemble the average number of TV types in the same message type.
For sets SYN 1.47, for LIG 5.11 and for STA 3.66 TVs should be extracted on average.
This is true for SYN. For the other sets, this value is bigger, as the distribution of occur-
rence of each message type is unknown. E.g. a message instance with 8 TV types could
be dominating. It can be seen that traditional approaches, which extract all available
TV types per message, would cause a massive data increase here, while with the given
algorithm increase in size due to interpretation is minimized.
After reduction, the percentages of TV instances were reduced to be below 34 %, which
shows that for functional analyses only a fraction of data is relevant. For SYN only
about 23 % (=0.34

1.46), for STA 6.5% (=0.34
5.2) and for LIG 3.65% (=0.34

7.3) of TV instances
are relevant (e.g. 5.2 as mean of interpreted size for STA). Similar to the execution
time, the curve showing the interpretation size fluctuates as added message instances
can contain different numbers of TVs.
Next, type-dependent preprocessing was performed on the whole trace, per TV type, re-
sulting in a symbolic trace. After symbolization, further reduction of data is performed
by removing repeating elements of the same content, as symbolization could have led to
similar repeating symbols. Results are shown in Figure 4.5 (right). When compared to
the number of interpreted values for SYN, data size are reduced to 0.35 % , for LIG to
2.6 % and for STA to 6.4 %. With this reduction performance, visual inspection and
further Data Mining become applicable.

Filter evaluation: As an example for the symbolization procedure the reduction qual-
ity of the TV type ”Acceleration Pedal Angle” is shown with its occurrence distribution
before and after symbolization for the whole trace. As the symbolic value is valid until
a state change occurred, we, per state, aggregate the relative time the Pedal angle had
a certain symbolized state and binned it. As original values are sent with high cycle
times, those were binned in 100 bins of equal range. Figure 4.6 shows that for the pedal
TV type symbolization yields a good approximation and that SAX is a valid approach
for symbolization as it keeps approximate characteristic while reducing the data.

62

4.5 Summary and Conclusion

4.5 Summary and Conclusion

In this chapter the focus was on preprocessing of raw communication traces in the con-
text of automated Specification Mining. For this, we revised the approach that was
presented in [4], which is used at the first step of the proposed DM pipeline. This ap-
proach is a fully parallelisable preprocessing framework that allows for systematic and
efficient interpretation, reduction and homogenization of communication traces. Using
its parametrization in terms of constraints, experts are able to specify both TVs and
constraints for automated extraction, which ultimately yield a domain-specific represen-
tation of the data that is used as an input for the further steps of the proposed pipeline.
The evaluation presented here and in [4] showed on three real world data sets, that this
framework is reasonable in run time, has low loss of information and can automatically
extract relevant aspects of the trace.
Here, the method is used as preprocessing for the scalable mining of specifications. Never-
theless, this approach has great potential to be extended towards further fault inspection
tasks. Thus, in the future the framework can be extended by systematic anomaly detec-
tion and ranking anomalies in terms of error potential. This information could then, be
automatically transformed in extension rules w, that detect similar anomalies in further
runs. Another interesting aspect would be to do this autonomously by detecting faults,
learning bad behavior and by using this to generate new reduction and extension rules or
to associate relevant meta-data. Moreover, for detected errors, data can be enriched with
counteractions that were undertaken. Using those as target variables for classification,
models for automated recommendations of counteractions can be generated.

63

5 Clustering High-Dimensional Sequences

At this stage it is assumed that a preprocessed MSS Kn and MES Ks was extracted
that represents the overall trace. This trace consists of multiple data points of an object
over a long period of time. In the second step of the proposed pipeline this trace is
used to identify correlating TVs. Starting from the MES Ks a clustering approach C
with hyper parameters PC is used to assign each TV Si a cluster k using a(Si), where
k ∈ {1, ...,K}.

a = sigcl(Ks, C, PC) (5.1)

Resulting from this, K clusters of TVs are found, which results in sub traces Kk
s that

only contain TVs Ŝ that were chosen by the expert and that are part of a certain cluster
assignment â. This gives the output

Kk
s = sel(Ks, Ŝ, â), where all Si ∈ Ŝ and a(Si) = â (5.2)

Kk
n = sel(Kn, Ŝ, â), where all Si ∈ Ŝ and a(Si) = â (5.3)

This step is essential, as the resulting MES Ks is of high dimension, while only a subset
of TVs are relevant to the functional procedures of the analyzing domain, e.g. for the
analysis of the active cruise control of a car TVs such as the state of the wiper are irrel-
evant. Further, both to identify all relevant dominant behaviors and specifications in a
trace, complexity is significantly reduced by considering subsets of TVs for this process
only.

In complex distributed systems the identification of TV groups is in general not possible
to be done manually, as dimensionality is too high, the integrated system is developed
by multiple domains, the system is incrementally evolving throughout the development
process, functionality of the system is growing, multiple disjunct functional procedures
might be present in the trace and a high degree of experience is required. Additionally,
the massive number and high complexity of TVs, that results from heterogeneous data
formats across multiple functions, aggravates this process. It becomes increasingly diffi-
cult to identify TVs that belong together and need to be considered for domain-specific
Specification Mining. Thus, by identifying correlating TVs automatically and refining
this selection with expert input, functional procedures are found on relevant subsets of
TVs only. This reduces both complexity of the consequent mining approach, as well as it
increases the relevance of the found functional procedure towards the analyzing domain.

Thus, in this chapter a method for sigcl is presented. For this a feature-based clustering
approach is combined with expert input on a trace Ks for grouping of correlated TVs.
Relevant features are determined and multiple clustering approaches C are compared.

65

5 Clustering High-Dimensional Sequences

Therefore, it is assumed that, TVs that change within similar periods of time are highly
likely to be part of a common functional procedure or at least a common function. The
more frequently a subset of TVs occurs together, the more likely it is that this occurrence
was not random, but due to correlation.
Moreover, expert input needs to be included, as this grouping may possibly not include
all relevant TVs. Oftentimes a subset of TVs remains in a steady state for a long time.
The value of this state is crucial to the respective functional procedure or if the proce-
dure occurs at all, e.g. being in the driving state as a car, it is more likely to observe a
braking procedure than in the parking state. Further, it might be the case, that separate
clusters of TVs are found that correspond to the same functional procedure, where e.g.
one cluster corresponds to the left and the other cluster to the right part of a procedure.
By using a simplified and grouped representation of TVs, that is extracted during this
step, experts are able to include relevant TVs in the further process. Above that, gran-
ularity of clustering, i.e. the hyper parameters of the clustering approaches, are hard to
assess automatically as the highest degree of similarity does not always correspond to
common functional procedures. Thus, at this step expert input is used in the proposed
semi-automated clustering approach.
A further challenge results from the high dimensionality, i.e. high number of samples,
of each TV. Due to the curse of dimensionality clustering gets increasingly imprecise as
the pairwise distance between vectors increases with the number of dimensions. [105].

Chapter Outline: First, related works in the field of temporal clustering are presented
in Section 5.1 before the clustering procedure of [5] is presented in Section 5.2. Lastly, in
Sections 5.3 and 5.4 the evaluation of this procedure is discussed. Notably, this chapter
is based on the paper presented in [5]. The findings of this work are used as part of the
proposed DM pipeline.

5.1 Related Works

Related Works include temporal clustering approaches that were presented in the past,
as well as its applications.

5.1.1 Temporal Clustering Approaches

Temporal Clustering can be mainly grouped in approaches working on raw data, clas-
sical feature-based approaches and novel clustering approaches that originate from the
field Representation Learning. All these approaches often use the same clustering ap-
proaches, while the main difference lies in the type of data that is processed and the way
of representing the input within these approaches.

Raw Data: This type of approaches is applied on raw time-series, which are clustered
according to its characteristics. Based on these various clustering approaches, such as K-
Means can be used [106]. For that, often a distance function is defined, which describes
the similarity between corresponding TVs. This includes classical distance measures
such as Euclidean or Mahalanobis distance, as well as measures such as Dynamic-Time
Warping [107]. Further, for short time-series the glsSTS - Distance was introduced in

66

5.1 Related Works

combination with a variation of the K-Means approach [108]. However, these works focus
on short time series, while these are not suited for longer sequences. In this chapter the
focus is on clustering of large sequences, which makes these approaches not applicable
here.

Feature-based: These methods extract features that represent characteristics of a
time-series or sequence and groups sequences according to these. This, is especially
useful for long sequences, as it allows to break down the sequence to its essence, which
enables a more computationally efficient processing. These approaches mainly differ in
the type of features that are chosen and the representation of the sequence. Further,
such approaches are less prone to noise as it is usually filtered out during preprocessing
and has less influence within the approach [109].
In [109] features were extracted per TV from control flow information using static fea-
tures including mean, standard deviation or skew. Here, a neural network was used for
clustering. In [110] time-series are clustered using the trend, seasonality, periodicity or
skew using Self Organizing Maps (SOM)s. The authors of [111] used Wavelet coefficients,
that, depending on their level, are able to capture both high frequent characteristic and
coarse tendencies of a sequence. In [112], the sum of differences between consecutive
elements is used.
For longer sequences it is useful to segment the overall trace and to extract features
within such segments, which can be done bottom-up, top-down or using sliding window
approaches [113]. This is for instance done in [114], where TVs are windowed and per
interval relevant features are computed, which is similar to the approach applied in this
chapter. Also, in [115] a time series of the electrical usage is segmented and features
extracted, that include variance, skew of energy.
Main advantages of such approaches include the possible reduction of dimensionality,
robustness against outliers and the ability to process time-series of different lengths. In
[116] Piece wise Linear Representation is used for that purpose, which uses a bottom up
approach that merges segments while keeping an approximation error per unit low.
Static window sizes might however, simplify away relevant characteristics for the case
of patterns of varying lengths or for patterns that are part of multiple windows, [117].
This is be solved by performing segmentation not statically but rather at Perceptually
Important Points [118], which cut sequences at points apart of trends, or by slicing win-
dows such that entropy is minimized [119]. Overlapping windows were used in [120] with
static features. Such approaches are mostly limited to time-series rather than MES of
heterogeneous data types as it is the case here.
Feature-based clustering approaches are mainly grouped in partitioning algorithms, such
as K-Means [121] or K-Medoids [122], hierarchical, such as agglomerative [123], density
based, such as DBSCAN [124], raster based, such as STING [125] or other approaches
such as Affinity Propagation [126] and Self Organizing Maps [127]. These approaches
will be discussed in Section 5.2.1.

Representation Learning: In representation learning features are not extracted
manually, but rather the approach is able to learn relevant features automatically. In re-
cent years this is mostly achieved by using Deep Learning approaches. Such approaches
include general clustering approaches and methods specified on temporal clustering.

67

5 Clustering High-Dimensional Sequences

According to [128] general clustering approaches are categorized according to its net-
work architecture to the following groups. First, this is Auto encoders that are trained
to reconstruct the original data, allowing these to represent its inherent features. This
includes algorithms such as Deep Clustering Networks [129], Deep Embedding Network
[130] or Deep Continuous Clustering [131]. Second, these are methods based on feed-
forward networks that are trained by specific clustering loss. Approaches for this are
Deep Embedded Clustering [132], Discriminatively Boosted Clustering [133] or Deep
Adaptive Image Clustering [134]. Third, approaches based on Generative Adversial
Networks which includes Categorical GAN [135] or Information Maximizing GAN [136]
and fourth, methods that use Variational Auto encoders, such as Variational Deep Em-
bedding [137], are used in this context.
Further, approaches that are specific to time series data introduced. This includes the
approach described in [138], which is called Deep Temporal Clustering, that uses a tem-
poral Auto encoder that is composed of convolutional and bi-directional long short-term
memory neural networks. This approach is mainly used on univariate time series. This
type of clustering showed to outperform feature-based approaches in terms of accuracy
and representational capacity. However, it is computationally expensive, as training
deep neural networks requires multiple iterative optimization steps.

5.1.2 Temporal Clustering Applications

Applications of clustering on temporal data are manifold, some of which are the follow-
ing. K-Means was used in [115] to group power usage based on the Davies-Bouldin-Index.
Shaw and King grouped speed measurements recorded in a wind channel [139] using ag-
glomerative clustering. Both approaches were used in [140] for stock market prediction,
in [141] to group functional magnetic resonance tomography measurements. SOMs were
used in [142] for clustering of power consumption.
In fault diagnosis in [84] features are extracted from multiple signals in order to classify
them as normal or abnormal. Also, in [85] the focus is on finding causal relations between
individual features of signals and fault types. Grouping of signals was performed in [78],
where supervised learning approaches were used to classify signals as internal (state of
vehicle) and external (state of environment). However, for massive numbers of signals a
supervised approach requires high labeling costs. Many Data Mining approaches where
applied to in-vehicle signals, most of which are focused on diagnostics. In [143] diagnos-
tic neural networks are trained for fault classification and in [144] induction motor drive
faults are detected using recurrent dynamic neural networks. More recently diagnosis
in in-vehicle signals was done for anomaly detection, e.g. by using condition indicators
[145]. CAN signals were used for predictive maintenance [12]. In [89] vehicle signals are
used to predict compressor faults, and in [146] to model the remaining useful life time
of batteries in trucks. Moreover, in-vehicle signals were used in applications, such as
detection of scenarios [147] or driver workload monitoring [148].

In this chapter the focus is on feature-based approaches, combined with overlapping win-
dowing and static features per window. Such methods are most promising to effectively
represent and group long sequences.

68

5.2 Feature-based Clustering Approaches

5.2 Feature-based Clustering Approaches

In general, clustering of temporal data is done either by variable or by sample. The
further refers to grouping TVs while the latter refers to grouping events of TVs. In this
chapter the focus is on grouping TVs that change at time steps of common neighborhood
[149] and present an approach to enable this.
This is done by reducing data to relevant features and transforming it to a more ex-
pressive space. Further, the influence of individual steps on this approach is discussed,
which includes the window size, the selected features and the clustering approach cho-
sen. Notably, the focus is on temporal data that is extracted from large-scale distributed
systems, which is characterized by multiple functional procedures that occur jointly with
common TVs, by its heterogeneous data types and by its massive size.

5.2.1 Background on Clustering Approaches

As described in Section 5.1 the focus is on feature-based clustering approaches, as these
are computationally well suited to represent TVs of large size. Existing approaches are
the following which are categorized as proposed in [150].
Formally, clustering refers to the task of separating a data set |X| = n into k ≤ n
partitions, i.e. in the current context it refers to the partitioning of n TVs into k
partitions, where

C = C1, ..., Ck;
k⋃
i=1

Ci = X, (5.4)

with Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k [123] (5.5)

5.2.1.1 Common Distance Metrics

Different distance metrics are used for this clustering most common of which are the
following.

• Minkowski - Norm: This norm is defined by a constant α for a p-dimensional
distance x between two points, where x(j) refers to the j-th element in x. That is

‖x‖α = α

√√√√ p∑
j=1

|x(j)|α (5.6)

• Manhattan - Distance: This distance is a Minkowki - Norm with α = 1, which
is

‖x‖α =

√√√√ p∑
j=1

|x(j)| (5.7)

69

5 Clustering High-Dimensional Sequences

• Euclidean - Distance: This distance is a Minkowki - Norm with α = 2, which
is

‖x‖α = 2

√√√√ p∑
j=1

|x(j)|2 (5.8)

• Chebyshev - Distance: This distance is a generalization of Minkowki - Norm
with α 7→ ∞, which is

‖x‖∞ = maxj=1,...,px
(j) (5.9)

5.2.1.2 Clustering Approaches

Partitioning Algorithms: This type of clustering separates all samples in the data
set in a given number k of groups [150]. Most important approaches include k-Means,
k-Medoids or Gaussian Mixture Models.

• k-Means: In this approach the clustering problem is defined as an optimization
problem that aims to minimize the error function

c̄i =
∑
Ci∈C

∑
x∈Ci

d(c̄i,x) (5.10)

with cluster ci, data set X, data set element x ∈ X and distance function d(ci,x).
A common algorithm that solves this optimization problem is Lloyd’s algorithm.
There each cluster i is defined by a prototype, which is the center of the cluster ci.
Each element of the data set x ∈ X is assigned a prototype ci, that has the closest
distance d(ci,x). Based on this assignment the cluster center is recomputed at
each iteration using

c̄i =
1

‖Ci‖
∑

xk∈Ci

xk (5.11)

Following this step the next iteration starts with the reassignment. On appropriate
initialization the cluster center converge towards a good separation. Complexity:
The complexity is O(nkt) where t is the number of iterations [151]

• k-Medoids: This approach is similar to k-means. However, in k-means the
computed result might be blurred by outliers that negatively affect the compu-
tation of the mean. That is why k-Medoids uses the median as a more robust
prototype at each iteration. A common implementation is called the Partitioning
Around Medoids, while more scalable implementations are Clustering Large Appli-
cations (CLARA) or Clustering Large Applications based on Randomized Search
(CLARANS) [150].

• Gaussian Mixture Models: This approach models each cluster as a Gaussian
distribution that best fits the data in each cluster. For this, it assumes the like-
lihood p(Cj |x) of a data point x to be part of cluster Cj and models the overall

70

5.2 Feature-based Clustering Approaches

likelihood of all data points as

L(X|C) =
∏
j=1:n

∑
j=1:k

τjp(xi|Cj) (5.12)

where τj is the likelihood of cluster Cj .
Clustering is achieved by fitting all distributions onto the data. Multiple algo-
rithms are used for this purpose. Common approaches include the Expectation
Maximization (EM) algorithm or Variational Inference. Complexity: The com-
plexity of EM is O(nk) [152]

Hierarchical Clusterings: These approaches perform a sequential decomposition
of objects to form clusters. This can be done bottom-up. That is, starting from fine
grained clusters per data point groupings coarser clusters are found by grouping such
clusters. Also, this can be done top down, where the opposite is the case, i.e. starting
from a coarse clustering finer clusters are successively found. This is usually done based
on a distance metric [123] that is computed between clusters, which can be

• Single Linkage:

d(Ca, Cb) = minx∈Ca,y∈Cb‖x− y‖ (5.13)

• Complete Linkage:

d(Ca, Cb) = maxx∈Ca,y∈Cb‖x− y‖ (5.14)

• Average Linkage:

d(Ca, Cb) =
1

‖Ca‖‖Cb‖
∑

x∈Ca,y∈Cb

‖x− y‖ (5.15)

• Center distances:

d(Ca, Cb) = ‖ 1

‖Ca‖
∑
x∈Ca

x− 1

‖Cb‖
∑
x∈Cb

x‖ (5.16)

• Ward method:

|Ca||Cb|
|Ca|+ |Cb|

‖ 1

‖Ca‖
∑
x∈Ca

x− 1

‖Cb‖
∑
x∈Cb

x‖ (5.17)

which corresponds to a minimization of the cluster variance [153]

Important approaches of this type are the following

• Agglomerative Hierarchical Nonoverlapping Clustering (SAHN): In this
approach initially each element corresponds to individual clusters. Then, recur-
sively clusters that are pairwise close to each other are merged.
Complexity: The complexity is O(n3) [123]

71

5 Clustering High-Dimensional Sequences

• Sequential Divisive Hierarchical Nonoverlapping Clustering (SDHN):
In this approach initially all elements correspond to one cluster. Then, clusters
are iteratively split until only one element per cluster remains. Splitting is done
using partitioning algorithms such as k-means. For this k-means is executed once
per split operation.
Complexity: The complexity is O(2dnkt) [154], where d is the maximal depth of
the clustering and t the maximum number of iterations of k-means.

• Divisive Analysis Clustering (DIANA): In this approach at each iteration
the cluster with biggest diameter is chosen. Within this cluster the element of
furthest distance is chosen and defined as a cluster center. Then, all data points
of the original cluster are assigned the cluster center that is closest at each split,
i.e. the newly assigned center or the original center [155].

Density-based Clusterings: While the above approaches are good in identifying
spherical clusters, density based approaches allow to find clusters of complex shapes.
For this elements that are close to each other form clouds that represent the cluster. As
basis for this a radius ε is assigned around each element [151]. Important approaches
are the following.

• Density Based Spatial Clustering of Applications with Noise (DB-
SCAN): In this approach initially core objects are defined that consist of MinPts
elements per cluster. These elements are then, connected if these are reachable
within their density region. That is the case if two objects p and q if p is in the ε
neighborhood of q. The connected regions form the final clustering.
Complexity: The complexity is O(n log n) [151]

Raster-based Clusterings: This type of approaches attempts to optimally place a
grid in the space of the elements to be clustered, where each element is part of a cell
resulting from that multidimensional grid. Important algorithms include the following.

• WaveCluster: This approach uses the wavelet transformation to separate clus-
ters. For this the space is divided in m regions, i.e. md cells. Per feature of a data
point according to its grid position a wavelet transformation is performed. In the
resulting coefficients high frequent regions represent edges of the cluster while low
frequent ones are cluster centers. By grouping connected areas in the transformed
space clusters are found, which can e.g. be done using graphs as proposed in [157].
Complexity: The complexity for clustering is O(n).

Other Clustering Approaches: Further important algorithms that do not fall in
above categories are the following.

• Affinity Propagation: In this approach messages are exchanged between data
points. The value of each message contains the affinity of a data point to choose
another data point as its cluster centroid. The algorithm then assesses how well
each data point is suited to be chosen as a cluster centroid. In multiple iterations
information are exchanged that define how high the likelihood of each data point
is to be a centroid. This is done until convergence [126].
Complexity: The complexity is O(n2) [126]

72

5.2 Feature-based Clustering Approaches

Brake Light

Brake

on

off

pushed

released
t

Figure 5.1: Two sequences of TVs are shown. On the left a numerical TV time series is shown
and on the right two nominal TVs, with two states each, are shown.

• Self-Organizing Maps (SOM): SOMs are q-dimensional regions of l nodes with
q ∈ {1, 2}. In two dimensions this might be rectangular or hexagonal nodes. Each
node i has a positional vector ri that defines its position on the map and a vector
mi as a reference vector which is a point of the data set. Training is performed by
iteratively determining for each element x ∈ X the node i whose reference vector
is closest to x. Clusters are found by grouping elements using similar reference
vectors [127].
Complexity: The complexity is O(ni), where i is the number of iterations [158].

5.2.2 Overview

In the following a feature-based approach is presented that is used to cluster TVs of het-
erogeneous data types and of massive size. The basic idea is to represent each TV using
overlapping windows that each contain a set of features. If a TV changes in a common
window with a related TV it is assumed that its features are closer to each other at the
corresponding points in time. That is, common TVs perform similar actions at similar
points in time. For instance, assuming two disjoint TVs, where one variable is always
active while the other is not, features at corresponding dimensions would never have
values and thus, would be further away and not clustered together.
Resulting from the preprocessing presented in Chapter 4, in the interpreted trace Ks

each TV is either of numerical, nominal, ordinal or binary type. The latter three types
are referred to as nominal, as these are treated identically during the clustering proce-
dure. Each numerical TV forms an regularly sampled time-series, while the other types
are seen as an event sequence, where only state changes are observed and identical con-
sequent values were filtered out in the preprocessing step. Further, all TVs operate on
the same time scale. These representations are used in the following to cluster similar
TVs. An example of these signal types is shown in Figure 5.1.

73

5 Clustering High-Dimensional Sequences

Figure 5.2: An overview of the overall TV clustering approach is shown [5].

Overview: The basic steps of the clustering approach are shown in Figure 5.2. Ob-
served temporal data is used to extract a feature representation per TV. There overlap-
ping windows are formed and features are extracted per window. In particular features
need to be identified that allow to group nominal and numerical TVs. These features
are stacked and form the representative of the TV. Next, feature selection and transfor-
mation is performed to reduce the dimensionality, before lastly, clustering is performed
together with the expert, who aims to determine the appropriate coarseness of clustering
as well as the selection of relevant signals that did not end up in identical clusters. This
is as clusters are formed based on common occurrence while steady TVs might be of
relevance for consequent Specification Mining as well. All steps are discussed in detail
in the following Sections. These steps were first presented in [5] and are explained here
in more breadth.

5.2.3 Preprocessing

In the preprocessing performed in Chapter 4 the goal was to minimize the loss of in-
formation during automated preprocessing, while reducing the trace and preserving the
TVs characteristics. For clustering of TVs however, loss of information is allowed, as
only the key characteristics need to be considered and comparability of TVs needs to be
ensured. For instance, considering TVs such as speed and braking, it is more likely for
these TVs to be clustered if these have a value range between 0 and 1, rather than its
original units. Therefore, in this step a set of filtering, cleaning and normalization steps
are performed to ensure that TVs that change together are clustered together.

Cleaning: Multiple data cleaning operations might be performed at this stage to en-
sure good data quality for clustering. First, this is the removal of invalid values, which
might be resulting from errors in the recordings. For instance if the state was recorded
from an automotive networks this might be invalid messages. This is done either through
an expert or rule based (e.g. regular expressions). Further, missing values might be re-
placed with its last value if required. For the case of numerical TVs filtering operations
are performed that allow to remove outliers. This is only performed if a sufficient num-
ber of distinct values for that TV is given. This can be done in multiple ways including
using Moving Average, Moving Median or Exponential filtering. It was found that the
latter performs best, as other approaches tend to add a time-shift to the data making it

74

5.2 Feature-based Clustering Approaches

unsuitable for grouping according to similar time steps.

Normalization: Further, the aim is to group TVs with similar curves, such as speed
and the wheel frequency, which have different ranges but similar shape. To make these
comparable each TV curve is normalized to a defined value range. Approaches for nor-
malization include Min-Max normalization, z-transformation or interquartile normaliza-
tion. It was found that in comparison to the further two approaches, the interquartile
normalization is less prone to outliers and thus, is best suited to normalize the given
numerical time series.

Symbolic Aggregate approXimation (SAX) Algorithm: Numerical time-series
are additionally symbolized using the SAX algorithm, which is shortly described here.
In this approach first a Piece wise Aggregate Approximation (PAA) is applied to a
time series. That is, a z-transformation is applied, segmentation is performed and per
segment a representative value of the time series is found, e.g. the mean of the values
in the segment [88]. SAX puts these values in buckets and assigns a nominal value per
bucket. The values defining the borders of the bucket are chosen such that it is equivalent
to a Gaussian distribution that is divided into chunks of equal size [88].

5.2.4 Feature Extraction

To capture temporal-causal dependence in a feature vector, a windowing approach is
applied on the preprocessed trace. This is challenging as no dominant signal is given
and thus, the segmentation points are not clear. Further, using PIPs for segmenta-
tion might yield windows where numerical TVs change while its corresponding nominal
type TVs that change at such points fall in the window before, thus, not clustering
such correlated TVs. Thus, to be able to not omit patterns at the borders of windows
a static window with overlap is chosen for this task. The size of the window depends
on the frequency of changes of the data set and thus, needs to be determined per data set.

Extraction Approach: As shown in Figure 5.3, at first TVs are segmented into
such overlapping windows. Next, for each window wi of each TV si a sub-feature vector
vi = f(wi, si) is extracted. This is done using the function f : (w, s) 7→ v which extracts
a set of features based on the data type type(si) of the TV. The numerical TVs are
referred to as type(si) = num and the nominal ones as type(si) = cat. Notably, nominal
signals do only contain state changes at this point and it is assumed that these state
changes only occur at areas of functional procedures, i.e. correlating TVs that are part
of the same functional procedure tend to change jointly.

Features: The data type defines the characteristics that are relevant for extraction to
suitably represent the value behavior of a TV si in state and time. Therefore different
sets of features are extracted for both types. These are the following.

If the data type is type(si) = num the dominant characteristic to capture is the shape of
the TV per window, which is the flow of the values and the type of change. To represent

75

5 Clustering High-Dimensional Sequences

this the following features are identified as candidate representatives for the temporal
data X of each TV.

• Mean: As data was normalized before this value resembles the height of a TV
[151], which is

µ(X) =

∑n
i=1 xn
n

(5.18)

• Variance: This defines the deviation from the mean and thus, the dispersion of
the TV sequence [151], which is

σ2(X) = V ar(X) =
1

n

n∑
i=1

(xn − µ(X))2 (5.19)

• Skew: The skew measures the lack of symmetry [109], which is

skew(X) =
E[(X − µ)3]

V ar(X)3/2
(5.20)

• Kurtosis: The kurtosis represents the relative flatness in relation to the normal
distribution [109], which is

kurt(X) =
E[(X − µ)4]

V ar(X)2
(5.21)

• Variance of Slope: This value measures the intensity of noise in the TV se-
quence, which is

σ2(X ′) = V ar(X ′) =
1

n

n∑
i=1

(x′n − µ(X ′))2 (5.22)

• Magnitude of Mean of Slope : This value indicates the intensity of a TV
trend, which is

|µ(X ′)| = |
∑n

i=1 x
′
n

n
| (5.23)

• Maximal Slope : This value indicates if a peak is found in the given window,
which is

max{|x||x ∈ X ′} (5.24)

• Wavelet Coefficients: k coefficients of a TV sequence resemble low and high
frequency representations of the TV. A good choice is to consider only a subset of
highest coefficients, as these are used to reconstruct the time-series and thus, have
less loss in information.

76

5.2 Feature-based Clustering Approaches

These numerical features were chosen as they were successfully applied in similar tasks
in [109] and [110].

If the data type is type(si) = cat the information about the occurrence and value of
a TV in each window is given and subsequent identical samples of the same TV are
dropped, i.e. TVs that are part of the same functional procedure share similarity of
occurrence behavior, which is captured as features. Further, the goal is to also be
able to group numerical TVs together with nominal ones. Thus, in order to do so,
numerical signals need to be discretized. This is done either manually according to expert
input that is familiar with relevant quantization steps or using automated approaches
such as Symbolic Aggregate approXimation (SAX) [88], which is the choice here. After
symbolization again elements with identical preceding symbols are removed and thus,
only relevant state changes remain after discretization. With this, the following set of
features is extracted from categorical and discretized numerical TV sequences:

• Value Change: This feature defines if a TV changed its value within the given
window. If this is the case the value is 1 and 0 otherwise.

• Change Ratio: This value is defined as the ratio between the number of changes
that occurred within a window and the total number of samples per window. Thus,
it measures the relevance of an interval for a certain TV in comparison to the
relevance of the interval for all TVs. It is defined as

ROC =
#changes

#samplesinwi
(5.25)

• Occurrence Frequency: This value measures the relevance of an interval for a
particular TV. It is defined as the ratio of the number of changes of a TV divided by
the temporal length of a window. In the given case the window length is constant,
which is why this value can be reduced to the enumerator. In general it is defined
as

OC =
#changes

#time− differenceofwi
(5.26)

• SAX Mean: Further, using all SAX values of a TV a distribution of the sym-
bolized values is formed, i.e. A=1, B=2,... . The mean value of this distribution
is used as additional features. This mean allows to represent the character of
numerical TVs more robustly.

OC =
#changes

#time− differenceofwi
(5.27)

Choosing these features allows to compare nominal and numerical signals, while com-
parison among numerical signals is done on a more fine grained level using its numerical
features.

77

5 Clustering High-Dimensional Sequences

Figure 5.3: The extraction of features from overlapping windows is shown. Per window and
TV a set of features is extracted. Per TV these features are stacked to form the
feature vector that represents the TV [5].

To now represent a signal si with identifier m, sliced in n windows, as a feature vector
vm, all sub-vectors vmi are stacked as

vm = (vm1vm2...vmi...vmn) (5.28)

The goal was to find vector representations that both capture the time and value of
a TV under heterogeneous data types. In the presented approach this is solved, as
the found representation captures temporal interrelation, as same dimensions represent
same windows and value behavior is represented by each value in a dimension. Also,
comparability between nominal and numerical TVs is enabled by discretization of the
numerical time series.

5.2.5 Feature Selection and Transformation

Each resulting vector vm contains a high-dimensional representation of a TV. To reduce
the effect of the curse of dimensionality and to improve computational complexity it is
common to reduce dimensionality by selecting relevant features and by transformation of
vm to another space, where less informative dimensions are dropped. This, is especially
suitable here, as functional procedures are assumed to occur within certain time spans
only, while there are periods of inactivity were no or only less information is transmitted.
These periods of inactivity further depend on the TVs that were extracted in Chapter 4,
e.g. considering the wheels of a car only information is only given once the car is driv-
ing. Reduction of dimensionality is thus, a crucial step. This is discussed in the following.

Feature Selection: Types of selection methods are filter and wrapper methods. Filter
methods extract meaningful features independently from the Machine Learning approach
that is underlying it. That is, it considers characteristics of the vectors only such as the
variance or the eigenvalues. In contrast to that, wrapper based methods do include
this information. Based on the performance measured on the learning task, features
are chosen, that yield the best metrics [159]. A common approach to determine most
important features is to use forward-backward search in a wrapper-based evaluation,
i.e. the quality of a subset of features is evaluated on a validation data set using the
clustering target (e.g. redundancy or function grouping) it is optimized for. In the

78

5.2 Feature-based Clustering Approaches

Figure 5.4: The forward backward feature selection is shown. At each iteration a feature is
added or removed if accuracy improves [5].

proposed Data Mining pipeline this includes either optimizing internal indices, such as
the Silhouette index, or using labeled data and external indices, such as a similar data
set with expected clustering. Also, by running the approach on data sets with various
characteristics a general set of good features is found. As Figure 5.5 shows the selection
approach that was chosen consists of two steps called forward and backward selection.

1. Forward Selection: Starting from a feature set F = ∅ and a set of available
features Fall iteratively features fi ∈ Fall are added to the set F if their addition
yields a better performance than without it [160].

2. Backward Selection: Here, a feature is removed from F if this improves the
accuracy.

Resulting from this a subset of relevant features is found per data set. The remaining
vector however, is still of high dimensionality, as for n windows and f features, the vector
has n · f dimensions, which is why a transformation is performed in the following.

Transformation: In Machine Learning it is common to transform data to another
representation that is better suited to represent the data. A large variety of approaches
for this was introduced in literature. This includes approaches from signal processing,
such as discrete Fourier transformations [123] and discrete Wavelet transformations [111]
or from Data Mining, such as Piece wise Aggregate Approximation [88], Principal Com-
ponent Analysis (PCA) or Independent Component Analysis [123].
A two step approach is used to reduce the dimension. In the first, step the variance
is computed per dimension. That is if no TV occurred within a window, the variance
of all features that correspond to this window will be small or even zero. Thus, low
variance dimensions are dropped here. In the second step, PCA is used to transform the
vectors to an information maximizing space. As PCA is a linear transformation, inher-
ent properties of each TV vector are conserved. Further, only dimensions with highest
information content are used and the remaining dimensions are dropped. With this a
significantly reduced vector is found that is used in the further process.

79

5 Clustering High-Dimensional Sequences

Approach High-dim. Complex-shapes Mult. Gran. Visualization Complexity
k-Means yes no yes no O(nkt)

k-Medoids no no yes no O(k(n− k)2 ∗ t)
EM no no yes no O(nk ∗ t)
DBSCAN yes yes yes no O(n logn)

Agglomerative yes yes yes dendrogram O(n3)

Top-Down no yes yes dendrogram O(2d ∗ nkt)
WaveCluster indirect yes yes no O(n)

Affinity Propagation no yes no no O(n2)
SOM indirect yes yes map O(n ∗ t)

Table 5.1: Comparison of algorithms in clustering of in-vehicle signals. I.e. handling high-dim.
data, detect clusters of any shape, allow multiple granularities of clusters, visual
representation and computational complexity, with t iterations, maximal depth d, n
examples and k classes. This table was taken from [5].

5.2.6 Formal Comparison of Clustering Approaches

The resulting feature vector might be still of high dimension due to highly complex
characteristics per TV. Further, the aim is not only to group TV sequences that occur
at exact same times and have exact same shapes. Rather, here the aim is to find TVs
that have similar shapes. For instance, lets assume that one dimension is the number of
times a signal occurred and another is the peak value of the TV. A spherical clustering
would only find peak values that are further apart if also the number of times the TV
occurred is further apart. However, it might be the case that the peak value is far away,
but still the number of occurrences is similar, which in this case is a good indicator that
the TVs correlate on a functional level. This would rather require an elliptical shape of
the clustering. Thus, complex shapes have to be supported by the clustering here. Apart
from that, complexity of involved TVs is still very high and thus, it is still required to in-
clude expert input to find clusters of appropriate granularity. Therefore, it is a desirable
property to be able to parameterize the approach towards clusters of certain levels of
granularity by adjusting hyper parameters. For instance, at a higher level of granularity
per wheel the four sensors of the rotational frequency would be grouped, while at a lower
level both left wheel (front and back) and both right wheel sensors could be assigned to
two separate groups. Additionally, the computational complexity needs to be kept low
and in order to allow for good expert feedback it is important to visualize the data.
Not all of the aforementioned clustering approaches are suited to fill these needs, as is
shown in Table 5.1.
Suitability is assessed in these terms as follows.

• Centroid-based: Granularity is settable as target clusters k. k-Means is in general
suited for high dimensional data as prototypes are found as mean of all clusters and
a separation is forced through k. But, only spherical clusters are possible which is
contrary to signal feature vectors which can be grouped in any shape. k-Medoids
and EM are less suited. In k-Medoids samples are part of the data set which shifts
the centroid on a data point and thus, imbalances the center.

• Hierarchical: Such approaches are independent of shape, as successive splitting
or joining is performed based on neighborhoods. But, top-down clustering tends
to split the biggest cluster more often. This results in many clusters of similar size

80

5.2 Feature-based Clustering Approaches

which is not the target grouping in the given scenario where cluster sizes may vary.
Granularity is parameterized on according splitting and joining rules.

• Density-based: These approaches allow for multiple granularity by setting the
radius per data point, while they are independent of shape as neighboring elements
are found using the radius. This radius can exist in any dimension leaving this
approach to be well suited for clustering of signals.

• Grid-based These approaches allow for multiple granularity by setting the raster
size and are independent of shape as the raster can be of any shape. Above that,
high dimensional clustering is possible with the limitation that dimensions need to
be restricted as e.g. in WaveCluster similar Wavelet coefficients will be too far away
to be assigned in one clusters (due to curse of dimensionality). With the reduction
to a sufficient number of dimensions and its low computational complexity these
approaches are well suited.

• Affinity Propagation: Here prototypes are data points themselves, leading to
similar imbalance as in k-Medoids. However, common grouping is not dependent
on cluster shape as the totality of points is considered for clustering.

• Self-Organizing Maps: Due to small numbers of signals each hexagon is sparsely
populated by data points making cluster detection difficult.

According to this formal evaluation WaveCluster and DBSCAN are most suited.

5.2.7 Expert Input and Refinement

The process of clustering can be performed in two ways. First, this can be done in a fully
automated manner, where hyper parameters are found automatically based on internal
indices that assess the quality of clustering. Second, this can be done in an iterative
procedure, where the expert is choosing hyper parameters based on a grouping of TVs
that is valid and relevant for Specification Mining in his opinion. As clustering itself can
be performed effectively once a representation per TV is given and as clusters can be
well visualized, this iterative procedure is not excessively time-consuming.
Within this iterative procedure an expert might have three intentions. First, parame-
ters may be adjusted such that a clustering with different goals of grouping are found.
Second, given a big cluster the expert might sub-cluster this cluster to get a more fine
grained representation. Third, an expert might merge found clusters to get a coarser
cluster.
With these clusterings found in a last step the expert is able to select TVs based on the
clustering that was found within this procedure. This is required as e.g. steady TVs
and active TVs are not clustered together while being still correlated. Also, TVs within
multiple clusters might correspond.
Consequently, to optimally leverage the potential of this approach expert input is re-
quired, while an automated execution that is based on hyper parameter optimization is
possible as well. In the further case, this approach can thus, be seen as a method to
structure the TVs and to work as a supporting tool to the expert to identify TVs of
common functional procedures that are used for Specification Mining.

81

5 Clustering High-Dimensional Sequences

Set Signals (tot[num/nom]) Datapoints (tot[num/nom]) Part of journey

body-id 38 [1/37] 2251 [89/2162] complete

chassis 53 [18/35] 9999 [9896/103] start

chassis-nom 35 [0/35] 9896 [0/9896] start

chassis-num 18 [18/0] 103 [103/0] start

chassis-ctr 12 [11/1] 10000 [9999/1] mid

most-freq-num 24 [24/0] 12508 [12508/0] start

most-freq-ctr 22 [19/3] 11773 [11765/8] mid

light 39 [6/33] 10055 [2941/7114] start

mixed 25 [12/13] 69402 [69339/63] start

mixed-nom 13 [0/13] 9509 [0/9509] start

Table 5.2: Statistics of the datasets: total number and proportions of numerical and nominal
signals, data points per set, recorded part of journey. Here, small subsets are used
for evaluation, while in practice thousands of signals are considered. This table was
taken from [5].

5.3 Evaluation

So far, a process for clustering of heterogeneous TVs was proposed and multiple methods
were compared in terms of suitability for clustering this type of data.
Next, the validity of the proposed approach is evaluated experimentally as it was first
presented by us in [5].

5.3.1 Setup

Both preprocessing and feature extraction were performed on a cluster with 70 servers
in Apache Spark. The reduced data set was used to perform all further steps including
selection, transformation and clustering operations. This was done on a 64-Bit Windows
7 PC with an Intel R© CoreTMi5-4300U processor and 8 GB of RAM using RapidMiner
Studio, Python’s Data Mining stack and R.

5.3.2 Data Sets

The statistics of the data sets are shown in Table 5.2. To cover most characteristics of
automotive in-vehicle network traces the approach is evaluated on 10 test data sets that
are different in terms of TV types (e.g. chassis-nom vs. chassis-num), data points per
type, TV number, association to one (e.g. chassis) or multiple (e.g. mixed) functions and
resemble different excerpts of a journey. The target of the evaluation is the grouping of
TVs in terms of their assignment to similar functions. All approaches were parameterized
per data set such that the true number of clusters is achieved and the best possible
grouping (according to the expert) within this clustering is reached.

82

5.3 Evaluation

5.3.3 Clustering Criteria

Indices for measuring clustering quality are divided into external and internal indices.
External indices use external information, such as a reference clustering. In this case the
goal is to ensure cluster homogeneity, i.e. each cluster should consist of elements of a
cluster within the reference clustering, and cluster-completeness, i.e. each cluster should
contain as many elements of its corresponding reference cluster. Important indices of this
group are the Jaccard-Index and the accuracy. Internal indices do not require a reference
clustering. According to [161] and [162] the best indices of this type include the Gamma-
Index, C-Index, the point based correlation coefficient and the Calinski-Harabasz-Index.
For validation the Silhouette-Index was found to be well suited according to [163].
In this evaluation the accuracy and the Silhouette-Index were used.

Accuracy: Accuracy is the number of samples ncorrect correctly clustered in relation to
the total number of samples in the data set ndataset given as

acc =
ncorrect
ndataset

(5.29)

Here, the assignment of reference cluster labels to each TV as a ground truth is done
manually by experts.

Silhouette index s(i): This index measures a clustering assignment per data point i
in terms of degree of affinity to its assigned cluster relatively to all other clusters. I.e.
a(i) as distance of i to all element within its cluster, b(i) as average distance to all data
points in all other clusters. It is optimal for s(i) = 1 and defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(5.30)

5.3.4 Feature Selection

Here, a good feature set for the grouping of TVs in of vehicle systems is sought. For
this, the forward-backward feature selection is run on all data sets with its various char-
acteristics (e.g. ratio of numeric to categorical TVs), yielding an optimal feature subset
per data set. Next, all features are ranked by counting subsets that contain this feature,
which ranks more general features that are valid for more data sets higher. The top
ranked features are used for further processing (e.g. top 50). To find features that gen-
eralize over all data sets, as a metric the number of times a feature was included in the
optimal feature subset, is measured. K-Means was again used for clustering. The results
are shown in Figure 5.5. The performance gain of the generalized feature selection was
measured before and after the ranking selection, with results shown in Figure 5.6.

Results: It can be seen that for the numerical characteristics best features are the mean,
skew, kurtosis, as well as the variance and magnitude of the gradient. This shows that
the fine granularity of numerical TV characteristics requires to capture noise, value and
shape characteristics. For nominal characteristics all nominal features were suited. This
shows that the frequency and type of a nominal/discretized numerical TV is captured.

83

5 Clustering High-Dimensional Sequences

M
ea

n

V
a
ri

a
n

ce

T
re

n
d

S
ea

so
n

al
it

y

S
ce

w

K
u

rt
o
si

s

A
rc

h

G
ra

d
-V

a
ri

an
ce

M
ea

n
-G

ra
d

M
ax

-G
ra

d
V

a
l-

C
h

an
g
es

C
h

a
n

g
e-

ra
ti

o

O
cc

-F
re

q

S
A

X
-M

ea
n

W
av

el
et

co
ef

0

2

4

6

R
el
ev
an

ce
S
co
re

Figure 5.5: Relevance score determined as number of optimal feature subsets in which a feature
occurred [5].

b
od

y-
id

ch
as

si
s

ch
as

si
s-

ct
r

ch
as

si
s-

n
om

ch
as

si
s-

nu
m

m
os

t-
fr

eq
-n

u
m

m
os

t-
fr

eq
-c

tr

lig
ht

m
ix

ed

m
ix

ed
-n

om

0

0.2

0.4

0.6

0.8

1

S
ilh

ou
et

te
In

d
ex

General Selected Features
No Selection

Figure 5.6: Clustering performance in terms of Silhouette index before and after the generalized
feature selection is applied [5].

84

5.3 Evaluation

body-id chassis chassis-ctr most-freq-ctr light mixed mixed-nom

128.8 3.5 79.8 1.8 533.6 1.5 2147.7

Table 5.3: Experimentally determined optimal window sizes per data set in seconds. This table
was taken from [5].

m
ix

ed
-n

om

ch
as

si
s-

n
om

m
o
st

-f
re

q

ch
a
ss

is
-c

tr

ch
a
ss

is
-n

u
m

ch
a
ss

is

m
os

t-
fr

eq
-c

tr

b
o
d
y
-i

d

m
ix

ed

li
gh

t

0

0.5

1

S
il

h
ou

et
te

In
d

ex

k-Medoids
k-Means

Figure 5.7: Comparison of centroid-based algorithms in terms of Silhouette index [5].

Further, this resembles the assumption that in-vehicle TVs are correlated, when they
occur and change their value together. As Figure 5.6 depicts a performance gain of up
to 20 % (e.g. at light data set) is achieved with this approach. Notably, all data sets
show an improvement after the generalized selection.

5.3.5 Window Size

Setup: After preprocessing each TV was split in windows with 50 % overlap. Based
on this all features are extracted, transformation is performed and clustering is applied.
Per data set the window size is increased successively from 0.1 seconds to 5000 seconds
and the performance is measured in terms of accuracy. From this, the window size with
highest accuracy is identified as optimal. Here, K-means was used for clustering, while
other approaches yielded similar results. The results are shown in Table 5.3.

Results: If the window is too small patterns relevant for features are overseen, while
for big windows feature details are simplified away. Also, as can be seen in table 5.3
less frequently changing TVs, e.g. with a higher number of nominal TVs, require bigger
windows , e.g. in body-id, light and mixed-nom, as these TVs do change less often. If
more frequently changing numerical TVs need to be clustered smaller windows appear
to be optimal which is the case in chassis, chassis-ctr, most-freq-ctr and mixed.

85

5 Clustering High-Dimensional Sequences

m
ix

ed
-n

o
m

ch
as

si
s-

n
om

m
o
st

-f
re

q

ch
a
ss

is
-c

tr

ch
a
ss

is
-n

u
m

ch
a
ss

is

m
o
st

-f
re

q
-c

tr

b
o
d

y
-i

d

m
ix

ed

li
gh

t

0

0.5

1

S
il

h
o
u

et
te

In
d

ex

Agglomerative
Top-Down

Figure 5.8: Comparison of hierarchical algorithms in terms of Silhouette index [5].

5.3.6 Clustering

The characteristics of in-vehicle TVs require clustering algorithms that can handle high-
dimensionality, different granularities and have low computational complexity.

Setup: To examine the suitability of different algorithms for grouping of in-vehicle
TVs, k-Means, k-Medoids, DBSCAN, Agglomerative, WaveCluster and SOM cluster-
ing approaches were evaluated on all data sets in terms of clustering quality. This is
done by using the optimal feature subset as selected by the feature selection approach,
parameterization with expert feedback and by consequent application of the clustering
approaches.
First, Agglomerative clustering was compared to Top-Down clustering and k-Means to
k-Medoids. This is done to evaluated the characteristics of these sub types in terms of
applicability to in-vehicle TVs. This is followed by a general experimental comparison
of all approaches.

Results - Sub types: As illustrated in Figure 5.7, among centroid-based approaches
k-means performs better than k-Medoids. This is, as taking the mean among TVs for
clustering avoids a shifting bias.

Results - Hierarchical: Among hierarchical approaches Agglomerative clustering re-
sults in better accuracy in 90 % and in better Silhouette index in 70 % of all cases
which is shown in Figure 5.8. The best centroid-based and hierarchical approaches are
evaluated with further clustering approaches giving results shown in Figure 5.9.

Results - Overall: As depicted in Figure 5.9, DBSCAN, Agglomerative clustering
and WaveCluster works best if a data set contains mixed characteristics (i.e. different
TV types, proportions of nominal to numerical, etc.) combined. Also, in these cases
centeroid-based approaches perform worse. This confirms the expectations and formal
analysis of the approaches. Further, as depicted in Figure 5.9, WaveCluster performs

86

5.4 Case-Study

m
ix

ed
-n

om

ch
as

si
s-

n
om

m
os

t-
fr

eq

ch
as

si
s-

ct
r

ch
as

si
s-

n
u
m

ch
as

si
s

m
os

t-
fr

eq
-c

tr

b
o
d
y
-i

d

m
ix

ed

li
gh

t

0

0.5

1

S
il
h
ou

et
te

In
d
ex

k-Means
DBSCAN

WaveCluster
SOM

Agglomerative

Figure 5.9: Silhouette index per data set and clustering algorithm [5].

best on 80 % of all data sets and shows solid results in the remaining 20 %. Thus,
this approach seems best suited for the given scenario. This is because extraction of
Wavelet coefficients enables to well capture both fine and coarse grained properties of
TVs equally. Also, as described before WaveCluster can well represent the shape and
the data’s high dimension.
Similarly, DBSCAN and Agglomerative Clustering are well suited to capture these prop-
erties. However, the latter approach is biased in that it tends to find clusters of nearly
similar sizes which is not given in all test sets.
As deduced before SOM and k-means perform slightly worse, as dimensions are reduced
in SOMs and k-means cannot capture varying cluster shapes.

Conclusion: All clustering approaches have solid results in terms of cluster qual-
ity. This shows that the proposed processing and clustering approach is well suited for
groupings of in-vehicle network TVs. WaveCluster and DBSCAN perform best due to
their ability to capture most of the heterogeneous characteristics included in such TVs.
As described an optimal window size depends on the structure of the processed data
and thus, needs to be determined. Further, feature subsets as discussed in the selection
allow for good generalization when clustering in-vehicle TVs.

5.4 Case-Study

In this section it is exemplary shown how the clustering approach can be used to deter-
mine TVs of common functions.

Setup: For this case study a realistic data set was used. After the preprocessing of
Chapter 4 this data set contains 419 TVs and (after reduction) 20 026 065 data points
recorded from one vehicle over eight days. This processing is implemented on a Hadoop
system, while the resulting reduced data is processed locally.

87

5 Clustering High-Dimensional Sequences

−6 −4 −2 0 2 4 6 8 10

−5

0

5

PCA Component 1

P
C

A
C

om
p

on
en

t
2

DBSCAN with ε = 10

Nominal Signals
Numerical Signals

−6 −4 −2 0 2 4 6 8 10

−5

0

5

PCA Component 1

P
C

A
C

om
p

on
en

t
2

DBSCAN with ε = 0.5

Light/locking

Brake light control/state
Ext. temperature
Wheels’ Rotational freq.

Figure 5.10: On the left the result of signal clustering with DBSCAN and ε = 10 and on the
right with ε = 0.5 are shown [5].

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25

·1011

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0

S
ig
n
al

V
al
u
e

Braking Momentum
Brake Light State

Figure 5.11: The numerical TV ”Braking Momentum” and the nominal TV ”Brake Light
State” are grouped with the presented approach [5].

Preparation: An optimal window size of 17.7 seconds was found with 7 477 windows
of 50 % overlap. Per window the features found in the above selection were used result-
ing in more than 10 000 dimensions per TV. Reduction to less dimensions is done by
filtering for dimensions with a variance bigger 0.3 and a successive PCA, resulting in 80
dimensions per TV which are used for local clustering. For clustering DBSCAN was used.

Granularity by cluster inspection: Depending on the parameterization of the clus-
tering, granularity of the target is set. This is illustrated in Figure 5.10 where a coarse
grouping separates TVs with different data types and finer clustering extracts TVs of
similar functions. Finding an appropriate granularity is done through expert feedback
as described above. The extracted clusters are inspected and successively parameterized
towards a good target clustering. Experts can then asses the grouping results, e.g. de-
cide whether a grouping signifies a good representation for Specification Mining.

88

5.5 Summary and Conclusion

0

20

40

60

W
ar

d
m

ea
su

re

Figure 5.12: Dendrogram illustrating hierarchical clustering at various granularities. I.e.
branches resemble possible groupings. E.g. one possible granularity is shown
in red and blue [5].

Results: With the presented approach multiple related TVs were found in the analyzed
data set. For instance in a fine clustering groupings of speed TVs and TVs representing
the time were found. The further were the speed TV for the speedometer, the state of
the speed in horizontal direction and the speed of the car’s mass center. These are all
identical as they measure the vehicle speed, however, for the mining of specifications it
could be useful to have these structured in order to decide which once are relevant.
A further example for detected groups of similar functions are TVs related to the brak-
ing function which were grouped (see Figure 5.12, red cluster). It shows that the brake
light state, state of the driver braking, braking momentum on the wheels and the target
braking momentum resulting from the driver pressing the pedal are grouped. In par-
ticular as Figure 5.11 shows, with the presented approach nominal TVs were grouped
together with related numerical TVs. Further examples of discovered functional groups
are TVs for automated parking (e.g. parking space, driver intervention), battery state
(e.g. battery capacity, state of charge) or constant TVs (e.g. air pressure, state of
the belt buckle). Thus, the proposed approach is well suited to find TVs of common
functionality, which in turn enables successive domain-specific Specification Mining of
relevant TVs.

5.5 Summary and Conclusion

In this chapter the approach for clustering of TVs is presented. It was shown how TVs of
both numerical and nominal type, that are extracted from large scale distributed systems,
can be grouped. By using a feature-based approach TV sequences of massive length are
broken down to a reduced representation. An optimal clustering is found interactively
through expert feedback or automatically through optimization based on internal indices.
An evaluation on 10 real world data sets and on a data set with 419 TVs showed that
this approach can be effectively applied for this task. Thus, by choosing the right TVs
at this stage, the expert is able to perform further semi-automated Specification Mining

89

5 Clustering High-Dimensional Sequences

based on the chosen TVs. By filtering the MSS Kn and MES Ks for this subset of TVs
the relevant subset trace for Specification Mining Kk

s and Kk
n is found. Notably, both

Kk
s and Kk

n can be based on the selection of a particular cluster, the merging of multiple
clusters, as well as the combination of clusters with manually chosen TVs.

90

6 Concurrent Segmentation and Clustering
of Event Sequences

In the previous chapter groups of TVs were identified that correlate in time and state
change. Within the trace of this subset of TVs multiple functional procedures might
be present, which are unknown a priori. Neither, it is known how many functional
procedures are present, nor, it is known to which of those any state change in the overall
MSS belongs.
Therefore, in this chapter multiple approaches for identification of functional procedures
are discussed, which is referred to as segmentation clustering in the scope of this work.
This task includes finding clusters of similar behavioral patterns and identifying segments
of MSSs that correspond to those patterns in the trace. With this, multiple subsets of
similar MSSs are identified from a trace.
Thus, this step uses a trace Kk

n that was previously reduced in dimension, a segmentation
approach D, and hyper parameters of the segmentation approach PD as inputs. With
this, it produces multiple sets of MSSs M̂ , each representing a set of MSSs Mi of a
certain functional procedure, which are formally described as

M̂ = segcl(Kk
n, D, PD) (6.1)

The input and output of those approaches are exemplified in Figure 6.1. Notably, in the
general case those approaches use MESs as an input. However, those approaches can be
used in the same way with MSSs, as the data format is identical when state changes are
seen as events.

Figure 6.1: Given a MES < x1, ...xN > an optimal approach finds patterns that are consistent
in state and time. In this case three clusters with representatives ADBH, XF and
CEG would be discovered. There, e.g., the cluster XF occurs three times within
the trace.

91

6 Concurrent Segmentation and Clustering of Event Sequences

Challenges: The task of segmentation clustering is challenging due to the following
reasons. First, if overlap between segments is present it needs to be handled, while for
the case of no overlap and sparse functional procedures consecutive segmentation and
clustering can be performed.
Second, as a result of this clustering segmentation step, resulting clusters might be of
bad granularity. This is, as variance within those clusters is dependent on the input
data.
Third, in some cases segmentation might inherently require expert input that needs to
be included in the designed approaches, e.g. if procedures before a target state are in-
spected.

Chapter Outline: First, existing approaches of clustering and segmentation and
related works are discussed in Section 6.1. In Section 6.2 the problem is formalized.
Next, in Section 6.3 extensions of two classical approaches are presented, which are
Local Trace Segmentation (LTS) [6] and a window-based approach. Following this, in
Section 6.4 a novel large-scale segmentation clustering method is introduced.
All of those approaches yield clusters of MSS sets, which can be further refined by an
expert using the method described in Section 6.5. Lastly, in Section 6.6 the discussed
methods are compared on a synthetic data set.

6.1 Related Works

Related approaches operate on temporal data, which are either given as time-series or
as assumed in this thesis, as sequences. Multiple related fields of research deal with
the extraction and grouping of patterns of temporal data. Those are pattern mining ap-
proaches, which aim to extract frequent or infrequent patterns, segmentation approaches
that cut a trace into segments, clustering approaches for temporal segments, as well as
approaches that perform simultaneous segmentation and clustering. In the following an
overview of those fields is presented.

Episode Mining: Episode Mining deals with the task of searching for patterns of in-
terest, that are covered within common windows [164]. In general this is similar to
segmentation clustering, as it also aims to discover dominant patterns. However, unlike
Episode Mining, segmentation clustering aims to assign all data points to a segment and
a cluster.
The first attempt to this type of mining was sequential mining [165]. There most fre-
quent patterns where mined from sets of sequences (rather than one sequence), if those
occurred a sufficient number of times. Later, this was extended to the discovery of all
interesting patterns. Those might be frequent patterns, which are extracted with ap-
proaches as presented in [166]. Also, this might be mining of closed sequential patterns
which was done in [167, 168].
In general such approaches yield a high number of output patterns, which need to be
assessed and reduced according to its interestingness. In [169], this is done by repre-
senting patterns using partial orders and in [170] by allowing users to specify regular
expressions for patterns of interest.
Discovery of episodes in one sequence was first done in [171], where discovered serial

92

6.1 Related Works

and parallel episodes are patterns that occurred in a window often enough. Other met-
rics of interestingness that were used in this context include the number of windows
that support a pattern [171] or the maximum number of non-overlapping occurrences of
an episode [172]. Next, to such window-based approaches, in [173] frequency of items
is counted from points in time rather than per window. Apart from the discovery of
dominant episodes, in further approaches higher interestingness of episodes is given if
deviations from nominal behavior are present, such as in the approaches proposed in
[174, 175, 176]. Also, in temporal data interestingness is considered higher if similar
durations of patterns are given [177, 178, 179].
Approaches for this type of mining, range from rule-based [180] to probabilistic [181]
approaches and aim to detect parallel, serial or composite patterns.
Similar to those techniques, in this chapter multiple approaches are used to identify seg-
ments. Those can be interpreted as patterns in the above context, where interestingness
is defined as frequent occurrences of patterns, which is referred to as clusters within the
scope of this thesis.

Segmentation: This type of method aims to identify segments within a trace that is
used for representation of temporal data.
This includes windowing approaches, which were extracted and used in various ways in
past research. First, those could be identified in a top-down manner, where long seg-
ments are successively broken down into shorter segments [113]. Similarly, this can be
done bottom-up where events and segments are successively grouped to larger segments
[113]. An example for the latter is Piece wise Linear Representation, where time series
of defined length are aggregate such that the variance of an approximation error per
unit is minimized [116]. Second, this includes sliding-windows, where fixed size windows
are shifted in fixed steps over the temporal data [113]. Third, this might be adjacent
or overlapping windows of fixed size. This is useful when grouping segments as overlap
allows to avoid errors around segment borders. Such windowing was for example suc-
cessfully applied in [120], where a feature based approach is used to perform detection
of situations in inertial sensor data. Fourth, in [117] it was shown, that fixed length
windows might miss out relevant patterns, e.g. if a pattern is spread across multiple
windows or patterns vary in length. One possible solution to this is proposed in [118],
where time series are cut at points of relevant changes, which are called Perceptually
Important Points and are chosen based on sought target patterns. Other solutions use
the entropy to solve this [119].
In general window-based approaches are equally suited for numerical, nominal or het-
erogeneous data types and are thus, are also used in this chapter.
Other approaches cannot be categorized clearly. For instance, this includes the follow-
ing. In [182] time series are segmented based on its trend, where a genetic optimization
algorithm is used to shift boundaries to ensure consistency. In [181] multigrams are used
to identify relevant chunks and in [183] characteristic signatures are identified and used
for segmentation.

Temporal Clustering: Another field that is relevant for this chapter is clustering of
temporal data. This was already discussed in Section 5.1 of Chapter 5. As discussed
there, main types of methods include those that operate on raw data, that use features

93

6 Concurrent Segmentation and Clustering of Event Sequences

for clustering and methods from the field of representation learning.

Segmentation and Clustering: This step includes approaches that use a combina-
tion of segmentation and clustering. Those might be also categorized in either of the
above categories (i.e. segmentation, temporal clustering).
This type of methods might be either approaches that run segmentation and clustering
consecutively or simultaneously.
The former type of methods includes the following. In [114] fixed length windows are
extracted from time series and the mean of features extracted from those. Based on
this patterns in time series are indexed. In a similar approach for indexing the sum
of differences between successive windows is used for characterization [112]. The work
of [115], extracts segments from time series of electricity consumption by using weekly
segments. Based on this multiple features such as variance or skew are used to cluster
those. 50 % overlapping windows were applied on inertial sensor data in [120] to identify
activities, which is done based on static features including mean, energy or entropy of
the segments. Other approaches assume underlying probabilistic processes, which are
learned from the data. This is done in [184], where time series are modeled as Markov
Chains and the parameters of those models that were learned from the data are used as
input for hierarchical clustering. Also, in [185] Markov Random Fields where used to
capture dependencies, when clustering and segmenting time-series.
Simultaneous segmentation and clustering of temporal event data was also previously
done in PM. There, LTS [6] was presented, which defines windows at each data point
and successively reduces those until non-conflicting segments are found. In another ap-
proach, called global trace segmentation fingerprints are extracted from segments, which
are clustered based on frequency [186]. Above that, in [187] an approach to mine longer
macro sequence groups from shorter micro sequences using Markov Models is presented.

The proposed DM pipeline uses the latter type of approaches. Thus, in order to provide
a good choice for this stage, multiple of those approaches are revised and compared in the
following. First, a window-based approach with consequent feature-based clustering is
used. Second, in the same way a simple but effective segmentation approach is presented,
that uses ranges around data points to identify segments and feature-based clustering
to group those. Third, LTS is used and extended for the given scenario.

6.2 Formal Definition and Problem Statement

In this section a formal description of the segmentation clustering problem is given.

6.2.1 Formal Definition

In the previous chapter MSSs were extracted which are now used to identify segments
and clusters from those. This is formalized as follows.

Observed sequence: As illustrated in Figure 6.2, an observed sequence of N sequen-
tial events is considered, i.e. Xobs =< x1, x2, ...xN >∈ R2×N , where each occurrence
xi = (si, ti)

T consists of a state of an event si ∈ Cat and a time-stamp ti ∈ R+. In

94

6.2 Formal Definition and Problem Statement

the context of the proposed DM pipeline, the observed sequence Xobs refers to the input
trace Kk

n, where the state si of each observation corresponds to the corresponding TV
with its outcome, i.e. si = (Ei.Sk = Ei.sj), and the time t, i.e. ti = Ei.t.

Clusters and Patterns: Xobs is assumed to be generated from K generators, i.e. func-
tional procedures, that each produce Ik instances Xj

k, j ∈ [1, Ik], k ∈ [1,K] of a sequence
pattern Xk.

This pattern is assumed as being exact or as approximately similar as in Section 6.4.
In the further case, Xk ∈ R2×Nk is defined by fixed states < sk1, sk2, ...skNk > and its

time stamps < tjk1, t
j
k2, ...t

j
kNk

>. For the latter case this fixed state sequence might be
varying in terms of noise and variations of functional procedures.

Further, temporal gaps ∆tjki = tjki − t
j
ki−1 are assumed to be each drawn from a set of

defined distributions of Σki(Θki) with parameters Θki. Such instances of Xk are called a
pattern, while the group of all sequences that are produced by the same generator Xk are
considered a cluster. For instance, in an automobile a cluster might be the characteristic
sequence of events occurring when the engine is started, while each occurrence of this
sequence is a pattern.

Cluster sequence: Assuming Ok such patterns of Xk the cluster’s sequence is defined
as Xk =< X1

k,X
2
k, ...X

Ok
k >.

Pattern Assignment: The observed sequence Xobs can thus, be seen as a superposi-
tion of all K cluster sequences Xk. In order to preserve the information of cluster and
pattern assignment, a pattern vector pobs of patterns pi ∈ P is introduced, that assigns
each event j in Xobs a globally unique pattern identifier pi from the set of all pattern
identifiers P by setting the entry pobs[j] = pi. The subset of events with the same iden-

tifier pi form the event set Xj
k.

Cluster assignment: The surjective mapping cobs : pi 7→ ci maps each pattern with
identifier pi ∈ P to the cluster ci ∈ [1,K] it is assigned to. Thus, pobs and cobs together
define the segmentation and clustering of Xobs into K Xk.

This is illustrated in Figure 6.2 where the shapes of the events resemble the clusters and
the separation in each line indicates patterns within that cluster. Note, that in order
to determine those patterns within one cluster the symbols of the other clusters need
to be blanked out. This is especially complex as initially it is not known which symbol
contributes to which pattern.

6.2.2 Problem Statement

In the observed sequence Xobs both the pattern assignment pobs and the cluster map-
ping cobs, as well as the length of each pattern Nk and the number of clusters K are
unknown.
Thus, as exemplified in Figure 6.1 the aim of the approaches introduced in this chapter

95

6 Concurrent Segmentation and Clustering of Event Sequences

Figure 6.2: An observed sequence Xobs is shown. Here colors indicate cluster assignments. pobs

assigns each event an identifier, which defines the pattern it belongs to. With cobs
a cluster is assigned to each pattern.

is to find an optimal pattern and cluster assignment. That is, in order to segment and
cluster the observed sequence, the task is to learn those parameters from the observed
sequence data. There, patterns might be either overlapping or non-overlapping.

6.3 Extending Existing Approaches

As discussed in Section 6.1 the task of segmentation clustering can be solved partly by
existing approaches. In this Section two of such approaches are discussed and extended
for the scenario of segmentation clustering. This includes a window-based approach and
LTS [6].

6.3.1 Window-based Approach

In this approach the event sequence Xobs is first segmented into non-overlapping windows
of size nw, which are consequently clustered based on its content. To automatically find
optimal window sizes the Silhouette index is used.
Initially a good window size is determined by applying the full approach to Xobs with
various window sizes nw ∈ Rw within a range Rw and by choosing the best nw based on
the Silhouette index. Given those input parameters the following approach is performed.

1. Segment the full trace into windows of size nw.

96

6.3 Extending Existing Approaches

2. Per window i compute a vector vi, where each dimension is the event symbol and
the value of each dimension is the number of times this symbol occurs within that
window. This yields a set of candidate segments Xc.

3. Next, all vectors vi are clustered using existing clustering approaches. In this work
K-Means, Spectral and Hierarchical clustering were used for this purpose. Based
on this grouping of vectors according windows Xi

k are clustered together, yielding
cluster sequences Xk.

6.3.2 Extending Local Trace Segmentation

Local Trace Segmentation was introduced in PM [6]. As Figure 6.3 exemplifies LTS
consists of the following steps.
First, per data point in Xobs all consecutive data points that are within a temporal
range of tpost are assumed to be candidate patterns (which might overlap). Then, iden-
tical candidate patterns are grouped into meta-clusters which aggregate all patterns of
the according cluster. Then, from the set of meta-clusters that hold overlapping pat-
terns one cluster has to be chosen for a unique assignment of data points to clusters.
For this, a score with parameter α is assigned to each meta-cluster. A larger α prefers
meta-cluster with longer patterns. This yields a result set of meta-clusters, which is used
to assign all corresponding data points a cluster index and a pattern index.
LTS is not directly applicable to the given scenario due to the following reasons. While
in its original version it allows to find most active clusters, it will potentially exclude
further clusters. With this not all data points in Xobs are assigned a pattern. Therefore,
LTS is extended by running it multiple times on subsets of data points that were not
yet assigned.
Furthermore, LTS yields multiple active clusters that might be of similar shape. There-
fore, to provide more distinctive cluster representatives another clustering run is used
on the set of active patterns.
The extensions yield the following LTS approach that is used here.

1. First, the LTS approach is applied on Xobs. This yields a set of active clusters and
a subset of pattern assignments p′obs.

2. Next, these found clusters group segments only if those are exactly similar. But
those clusters might differ in less symbols only and are thus, very fine grained.
Therefore, in this work each active cluster is represented as vector in the same way
as described in Section 6.3.1 and consequently clustered using K-means clustering.
This yields a cluster assignments c′obs for each pattern in p′obs.

3. In the next stage patterns are dropped and thus, not all data points in Xobs are
assigned a pattern and cluster. With this, multiple segments within the remaining
data sets might contain sub sequences of the found patterns and clusters c′obs.
Therefore, the LTS approach is reapplied on all data points in Xobs that were not
assigned. This yields further active clusters. Using the trained K-means model
those active clusters are assigned to the closets active cluster that was found in
the first step yielding further entries for p′obs and c′obs.

97

6 Concurrent Segmentation and Clustering of Event Sequences

Figure 6.3: The LTS approach is shown given an example trace as it was introduced in [6].

4. After the previous step still unassigned elements might result. Thus, step 3 is
repeated until all data points in Xobs are assigned.

This approach cannot perfectly handle overlapping patterns. However, when an ap-
propriate value for tpost is given overlapping patterns are found. This results, as such
patterns will treat the overlapping part of another pattern as noise. However, the ex-
tended LTS cannot find patterns of various lengths. That is, the length of the pattern
is limited by tpost.

6.4 Large-Scale Reduced Segment Clustering

Another approach for finding patterns from traces of high length is presented in this
section, where non-overlapping segments are assumed. This approach performs segmen-
tation and clustering separately as follows.

98

6.4 Large-Scale Reduced Segment Clustering

6.4.1 Overview

In the case of non-overlapping patterns, patterns with the same identifier pi are assumed
to be neighboring.
Therefore, here the task of segmentation clustering is split into identification of segments
pi followed by clustering of segments based on its characteristics. This is done in the
following manner.
During Range Segmentation, each observed occurrence xi is assigned a temporal area
of range rtemp around it. Then, all occurrences that have an overlapping temporal area
are assigned the same segment index pi. After that, during Frequency Clustering all
segments with same index are represented as a vector. Using clustering approaches
vectors of similar shape are grouped which results in a mapping cobs for each segment
index pi.
Those steps are detailed in the following.

6.4.2 Range Segmentation

In the first step potential segments need to be identified. As stated in Section 6.1 this
is done in multiple ways, e.g. by using windowing approaches or forward segmentation
as in LTS. For massive traces this needs to be performed in a scalable manner.
In the given scenario MSSs are assumed where functional procedures are sparsely dis-
tributed. Events belonging to the same functional procedure occur within a close prox-
imity with a gap of bigger length between segments of distinct functional procedures.
The following segmentation is applied.

1. Each event xi = (si, ti) of the observed sequence Xobs, is assigned a region ri =
(s = ti − rtemp, e = ti + rtemp).

2. Next, all neighboring events ri and rj whose regions are overlapping, i.e. rj .s ≤ ri.e
are assigned a unique segment index pi. Notably, with this multiple events that
are within a close proximity share the same segment index.

3. As each event represents a state change of a TV concatenation of all events with
the same segment index results in a set Mcand of MSSs Mi = 〈E1, ...El〉.

4. As the aim is the identification of dominant behavior and specifications, a minimum
length lmin of a MSS sequence needs to be given in order for the sequence to
contain meaningful procedural information. Thus, within Mcand all Mi of length
|Mi| ≤ lmin are dropped giving a reduced set M′cand.

With this, a set of segments M′cand results.

Discussion: Notably, as the previous step of the DM pipeline reduced the trace to
relevant dimensions, less spurious events are contained that could blur this segmentation.
Noisy events do rarely create bridges between two segments. Further, by defining the
range rtemp the coarseness of functional groupings can be adjusted based on expert input.
Two parameters ri and lmin are required in this approach.
Choosing a small range ri results in many fragmentary events, as no neighboring events

99

6 Concurrent Segmentation and Clustering of Event Sequences

are found for concatenation. As opposed to this, a too high value results in segments of
big size that potentially contains mixtures of multiple functional procedures and thus,
lacks quality of segmentation clustering. Consequently, a good value for ri lies in between
of those two extremes and needs to be chosen such that it provides a segmentation of
multiple comparable clusters.
lmin is meant to reduce noise during extraction, as a higher value for this parameter
reduces the candidate set. Also, often an appropriate ri still produces a number of
fragmentary segments. Thus, lmin helps to extract dominant behavior, while keeping an
ri that yields fine granularity of segments.

6.4.3 Frequency Clustering

The setM′cand contains segments of multiple functional procedures at this point. Thus,
in this step clusters need to be identified. For this the same clustering approaches as
described in Chapter 5 are used, where DBSCAN is chosen here, as it is well able to
capture complex structures and does not require to known the target number of clusters
a priori. This is done as follows.

1. Each segment Mi of M′cand is part of a functional procedure ci. To be able to
perform feature-based clustering on those segments, feature extraction is performed
per Mi. For this, it is assumed that segments with TVs that change its state
similarly often correspond to same functional procedures. With this, neither the
state value of each TV is included nor is the order of the events in Mi. The further
is required as the aim is to find variants of functional procedures that correspond
to multiple patterns of TVs, e.g. in a car pressing the TV brake might slow
down the TV speed while not pressing it might not slow it down. The latter can
be excluded due to similar reasons. However, it is assumed that including order
would improve clustering precision. Nevertheless, using order would introduce
additional computational and structural complexity that needs to be dealt with.
This is especially badly suited for the case of massive numbers of segments which
is why the focus is on capturing the behavior based on frequencies only.

2. The following feature extraction is performed per Mi. Assuming that in M′cand
a set S = {S1, ...Sn} of TVs Sk is present, a vector vi of dimension n is used
per segment, where each dimension corresponds to the number of times a TV is
observed in segment Mi. This results in a set of feature vectors Σ = {v1, ...vn} For
instance assuming a sequence 〈A = a,B = b, A = c, C = d,C = a〉 yields a vector
(2, 1, 2)T if the order of dimensions defined by its TVs is A, B, C.

3. For high dimensional spaces PCA might be used to optimize the clustering perfor-
mance. Further, by filtering according to variance per dimension TVs that remain
steady and thus, do not contribute to the characteristics of each segment can be
removed. This step is optional. Notably, if no PCA is applied prior to this step the
pairwise distance between vectors simply represents the absolute number of TVs
that differ in those segments.

100

6.5 Refinement Clustering

4. Using DBSCAN and its parameters εSC and MinPtsSC with this clusters are iden-
tified. Further, the Manhattan distance is used. If no PCA is used with this εSC

specifies the number of TVs that are maximally allowed to differ between segments
such that those are assumed part of the same functional procedure. Applying clus-
tering results in k clusters ci and assignments cobs of those ci to segments with pi
that identify sequences in the trace in pobs.

5. By grouping all MSSs of identical ci the output of this stage are multiple sets of
MSSs Mi that each can be seen as observed instances of functional procedures.

With this, sets of MSSs that can be used for Specification extraction are identified.

Discussion: As stated before, neither order, nor states of TVs are included at this
step. Instead, frequency of TVs and clustering are used to represent each segment.
While this might decrease clustering performance, it allows to perform segmentation
and clustering at a large scale. This is, as the extraction of features, as well as the
reduction of dimensions works well in parallel.
Granularity of this clustering is defined by the parameterization of εSC and MinPtsSC.
Bigger values for εSC result in functional procedures of higher diversity, while lower values
yield nearly identical procedures only. MinPtsSC is a filtering criterion that ensures only
most dominant clusters to be found.
In contrast to LTS, this approach cannot handle overlapping patterns as close data points
are grouped together. However, it is well able to find patterns of varying lengths. In
LTS the length of the learnable segment is determined and thus, limited by tpost, while
in range segmentation any length is possible as long as data points are within a range
rtemp.

6.5 Refinement Clustering

All of the presented approaches yield clusters of segment, which might potentially be too
coarse or too fine grained, as characteristics of input traces and pattern clusters might
vary. Also, similar to the case of clustering TVs, clustering for functional procedures has
no uniquely correct separation. Rather, an appropriate clustering granularity is within
the discretion of the expert, as, e.g., a useful granularity of clusters might be different
per cluster that was found.
Therefore, to refine the outcome clusters of the previous approaches, as an optional step,
expert-based refinement of segment clusters is performed. This postprocessing consists
of the following steps.

1. Aggregation: Given a set of K clusters of segments, experts can combine
multiple clusters yielding an aggregated cluster.

2. Segmentation: By performing successive subclustering, the clusters ci are further
subgrouped into more fine grained clusters.

Both steps can be performed visually, e.g., by inspection of cluster distributions. As an
alternative to expert input, refinement can also be done in an automated manner. For
this appropriate metrics need to be defined and automated sub clustering in a top down
manner needs to be performed until an implicit quality metric is improved.

101

6 Concurrent Segmentation and Clustering of Event Sequences

6.6 Evaluation

In this section an evaluation of the above approaches is presented. This is done synthet-
ically by evaluating the performance in terms of run time and assignment quality.

6.6.1 Setup

Implementation: All approaches are implemented in Python and the experiments

are conducted on an HP
TM

Z-840 equipped with two Intel R© Xeon R© E5-2640 v3 2.60GHz
CPUs and 96 GB of RAM.

Data Generation: A data generator is used to synthetically generate event sequences
of different patterns, which are used as input to all approaches. The generated event
sequence Xobs has the format described in Subsection 6.2.1 and is created as follows.

1. A defined set of distinct symbols ΞC of size |ΞC | is generated.

2. Generate K distinct template sequence patterns Xk, that each represent the char-
acteristic pattern of a cluster. Those are determined as follows.

a) Given a target symbol size |Ξk| find a set of candidate symbols Ξk ⊆ ΞC of
size |Ξk| for Xk. For this, first, determine rC percent of characters in ΞC
that will be common in all candidate sets Ξk and by second, drawing the
remaining candidates from ΞC to get candidate symbols of size |Ξk|. The
length |Ξk| is drawn from |round(N (µlen, σ

2
len))|.

b) Draw a target sequence length |Xk| per pattern from N (µseq, σ
2
seq), and se-

quentially choose symbols from Ξk at random (with repetition of symbols) to

form the pattern Xk. To find various temporal gaps ∆tjki, a mean distance
per cluster µk∆t is drawn from N (µ∆t, σ

2
∆t) and a fixed σ2

∆t is chosen. Then,

for each gap ∆tjki a gap is chosen from N (µ∆t, σ
2
∆t).

3. Given this set XT of template patterns Xk the observed sequence Xobs of length
|Xobs| is generated by concatenating template patterns that are randomly drawn
from its candidate set, where consecutive template patterns are not identical. The
length |Xobs| is determined by drawing K · ndat patterns from XT .
To simulate overlap between patterns an overlap ratio rO is defined. Each consec-
utive pattern then, starts at the time of the qth symbol of the previously drawn
pattern shifted by a random time. This random rime is chosen to be 20 % of the
average gap size between elements in |Xk|. q is defined as q = |Xk| − (rO · |Xk|).
Further, to simulate completely non-overlapping segments a negative overlap ra-
tio rO defines a temporal shift of |rO| times the average gap size as the distance
between two Xk in Xobs.

4. The resulting sequence Xobs is used for evaluation.

The ground truth of pattern assignments pobs and cluster assignments cobs for Xobs is
known with the above procedure and thus, is used for evaluation.

102

6.6 Evaluation

Metrics: To validate the quality of the approaches the true assignments of patterns
pobs and clusters cobs are compared to its estimates p∗obs and c∗obs.
In order to compare these assignments in a fair manner, pattern and cluster assignment
indexes are renamed to hold the assignment with biggest overlap with the ground truth,
e.g. a pattern p∗obs = (8884442) and pobs. = (1111222) is renamed to (1112223), as the
overlap between 8 and 1 is 75 % and between 4 and 2 is 66 %. Patterns that are present
in pobs or p∗obs but not in the respective counterpart (e.g. 3 here) are added as zero
occurrence to it in order to allow for computation of classification metrics. With this
Precision Pp, Recall Rp and the F1 Score Fp are computed between pobs and p∗obs. The
same values are computed for the clustering assignments cobs and c∗obs as Pc, Rc and Fc.
Lastly, computational complexity is measured using the run time.

Compared Approaches: The presented window-based approaches, LTS [6] and
the Large Scale Reduced Segment Clustering are compared here, where the following
parameterization is used.

• Window-based Segmentation Clustering: Three variants of this approach
are used here. Those vary only in the type of clustering that was chosen. These
are K-Means, Spectral and Hierarchical clustering. K is chosen to be the ground
truth number of clusters. The optimal window size is found by exhaustive search
within a range of the ground truth pattern length, where the size that maximizes
the Silhouette index [191] is used.

• Variant of LTS: Parameters of this approach include α, where a larger α prefers
meta-cluster with longer patterns. Further, K defines the target clusters for clus-
tering. For the given experiments α = 0.7 is chosen and K is set to the ground
truth. Further, tpost is chosen as µlen · (µ∆t + σ2

∆t), i.e. the expected duration of
the sequence.

• Large Scale Reduced Segment Clustering: To allow for clustering based on
TVs all data points are assigned a TV with the identical name as its symbol.
Thus, rather than TVs, here symbols are clustered. For DBSCAN ε = 2.5 is used
and no PCA is applied. Lastly, the temporal range is chosen such that the gap
between two elements is covered using the range rtemp of the algorithm. Thus,
rtemp = 0.55 · (µ∆t + σ2

∆t) was chosen.

6.6.2 Performance Comparison

In this subsection the results of performance evaluation in terms of classification perfor-
mance and run time of all approaches is presented. For this individual parameters of the
data generator where varied to show individual aspects of the performance. An optimal
approach is both able to handle overlap and to scale well.

Overlap Robustness: First, the overlap robustness of the given approaches is com-
pared by running these with different ranges of overlap of generated sequences. Starting
from small values which corresponds to a clear separation of sequences (rO ∈ [−10,−2]),
ranges are increased until those eventually yield overlapping sequences (rO ∈]0, 0.6]).

103

6 Concurrent Segmentation and Clustering of Event Sequences

The resulting F1 scores computed for clustering and pattern assignment are given in
Figure 6.4.
Parameters: K = 5, ndat = 75, rC = 0.2, (µlen = 10, σ2

len = 2), (µseq = 10, σ2
seq = 0.5)

and (µ∆t = 6, σ2
∆t = 0.5).

Results: For small values of rO the data has a clear gap. As the F1 score shows high
values in this region, it can be seen that for non-overlapping inputs, assignments of high
accuracy are estimated by all approaches. LTS performs best, which is due to the fact
that clear gaps allow LTS to identify the exact segments. Range segmentation is slightly
worse as closely neighboring elements might have been assigned the wrong pattern given
the chosen parameterization. For the window-based approaches most sequence elements
are grouped in the right window. Nevertheless, it might occur that the window is cut at
a point in time that falls within a pattern. As a result of this, elements of one pattern
end up in different windows, which decreases both pattern and clustering assignment
quality. This yields values that are slightly smaller than 1.0 for those methods.
For decreasing gap sizes rO, where sequences are not yet fully overlapping, the F1 score
decreases successively for all approaches. This is due to the fact that elements of pat-
terns become increasingly assigned wrong patterns, which creates segments that contain
patterns of different content than the ground truth patterns. In LTS this effect is very
drastic, as the initial run for determination of active regions already yields long clusters,
which are potentially combinations of multiple ground truth patterns. This results in
bad initial cluster and pattern assignments. For range segmentation shrinking gap sizes
increase the probability that multiple adjacent patterns are assigned the same pattern.
However, as in our experiment the range is chosen close to the ground truth, this effect
occurs late. Up until a ratio of rO = 0.2 it is well able to reconstruct the true patterns
and clusters. The window approaches show a similar effect, as a window size that is
close to the ground truth yields a good segmentation, where less pattern elements end
up in a wrong window. With increasing overlap, the number of such misassigned pattern
elements increases yielding worse accuracy.
For the case of fully overlapping ground truth patterns, all approaches are decreasing
significantly in performance. This results from the increasing dominance of the effects
that are discussed above. Moreover, a perfect overlap of rO = 1.0 makes it impossible
to distinguish patterns due to the following reasons. When assuming a high number
of observations all pairwise combinations of patterns occur subsequently in the data.
Such combined patterns again form patterns for themselves. Thus, apart from temporal
characteristics (i.e. time gaps between pattern elements), no indicator exists that sepa-
rates both patterns. In current approaches this type of temporal aspects is not included,
which needs to be improved in the future to solve this problem.

Effect of the Total Number of Samples / Scalability: The scalability of ap-
proaches is investigated by varying the parameter ndat, which yields increasingly large
test traces. Performance is measured in terms of assignment quality with results shown
in Figure 6.5 and in terms of run time with measurements shown in Figure 6.6.
Parameters: K = 10, rO = −1.5, rC = 0.2, (µlen = 10, σ2

len = 2), (µseq = 10,
σ2
seq = 0.5) and (µ∆t = 6, σ2

∆t = 0.5). In particular the overlap ratio was chosen such
that the gap is close enough that the transition between two consecutive sequences is
blurred.

104

6.6 Evaluation

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

0.25

0.5

0.75

1

Overlap Ratio

F
1

S
co

re
C

lu
st

er

LTS Range K-Means
Spectral Hierarchical

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0

0.25

0.5

0.75

1

Overlap Ratio

F
1

S
co

re
P

at
te

rn
LTS Range K-Means
Spectral Hierarchical

Figure 6.4: The F1 score of clustering and pattern assignments is presented, when overlap is
increased.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.25

0.5

0.75

1

Samples

F
1

S
co

re
C

lu
st

er

LTS Range K-Means
Spectral Hierarchical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.25

0.5

0.75

1

Samples

F
1

S
co

re
P

at
te

rn

LTS Range K-Means
Spectral Hierarchical

Figure 6.5: The F1 score of clustering and pattern assignments is presented, when the length
of the trace is increased.

105

6 Concurrent Segmentation and Clustering of Event Sequences

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

2,000

4,000

6,000

8,000

Samples
R

u
nt

im
e

[s
ec

]
LTS Range K-Means
Spectral Hierarchical

Figure 6.6: The run times are shown, that result when the length of the trace is increased.

Results: As Figure 6.5 shows the F1 score starts at different points. This is because
rO is chosen in a range were consecutive sequences are potentially overlapping which
decreases performance as was investigated above. Furthermore, for an increasing num-
ber of samples the F1 score remains constant for clustering and pattern assignment.
Thus, the number of samples does not have an influence on assignment quality. This
makes sense, as segmentation is identical, no matter how long the overall trace is. This
produces identical pattern candidates that are clustered (which in number are less for
shorter traces and more for longer ones).
In terms of run time, the number of samples does have an effect as Figure 6.6 shows.
It can be seen that range segmentation performs best among all approaches, as it is
the most lightweight method. At the same time it allows for good scalability as both
detection of ranges and vectorization can easily be parallelized. LTS shows good per-
formance as well, due to the following reason. After the initial cluster assignment the
complexity of the problem is broken down, as one only operates on active and meta
clusters. Above that, the complexity of merging and combining clusters is low in terms
of computational effort. In contrast to LTS and range segmentation, the window-based
approaches perform worse with increasing ndat. The problem is, that the initial search
for a suitable number of windows is computationally expensive. In the given case the
search space was within a range of 50 windows around the true size.

Further Evaluation: In this section a synthetic evaluation is performed to show the
characteristics and performance of the discussed approaches. Application of this seg-
mentation clustering in a real life scenario is extensively evaluated in the case study
given in Chapter 9.

6.7 Summary and Conclusion

Based on a subset of relevant TVs, segments and cluster assignments need to be discov-
ered from an inspected trace. In general in MSSs such segments might be overlapping.
However, within the scope of this work non-overlapping elements are assumed.
In this section several approaches were extended and compared in terms of suitability
to be used for this task. Those include window-based and range-based approaches as

106

6.7 Summary and Conclusion

well as an extended version of LTS. It was found that for clear gaps all approaches are
equally well suited if parameterized correctly. However, for decreasing gap sizes range
segmentation and window-based approaches work best. In particular, range segmenta-
tion scales best in terms of run time, which is why this approach is used within the
proposed DM pipeline.
Lastly, refinement clustering is discussed as an optional step within the DM pipeline,
which allows to include expert input to find clusters of appropriate granularity.

107

7 Modeling Multivariate State Sequences

In the previous chapters a procedure is presented that allows to identify functional
procedures and its relevant TVs, yielding multiple sets of MSSs that each represent
recordings from executions of a certain functional procedure. Thus, each set contains
one relevant aspect of system behavior which can be used to understand the system
functioning and that can be used to extract specifications from it. However, for this the
functional procedure has to be characterized and represented in state and time, for each
set of MSSs, such that knowledge is extracted from those.
In this chapter suitable probabilistic models for this are presented and assessed in terms
of applicability for mining of specifications and for representation of MSSs.
This forms the penultimate step of the proposed DM pipeline. Formally in this step an
input MSS Mi ∈ M̂ , a model type T , a learning approach L and the hyper parameters for
learning PL are given. In particular T is a probabilistic model and the learning approach
L can be split into a structure discovery and a parameter estimation approach. A learned
model Q is output. The operation performed is

Q = learn(Mi, T, L, PL) (7.1)

Both potential models and its learning approaches are discussed in this chapter. In par-
ticular this includes TSCBNs which are optimized for the representation of MSSs.

Modeling MSSs: Functional procedures consist of MSSs at this point. As presented
in Chapter 2 such MSSs are represented in terms of TVs and state sequences of TVs.
Also, three important models can be used in different ways for its representation as it
is shown in Figure 7.1. As described in [8] three TVs - grass, sprinkler and rain - are
shown. Dynamic evolution of those TVs is modeled as state sequences that capture the
state of a TV at any point in time, e.g. in Figure 7.1 the TV rain starts in the no
and changes to the yes state. Thus, the state sequence of this TV can be described as
〈no, yes〉. State sequences of multiple TVs are called MSSs. In MSSs states of TVs may
be causally dependent on each other, e.g. if the TV grass is in the dry state, the TV
sprinkler being at state yes, will change the TV grass’ state into wet. Thus, the grass’
state depends on the sprinkler’s state in this stage of the process.

Challenges and Comparison: Modeling such MSSs is challenging due to multiple
reasons

• Latent State Changes: In real world data per TV only state changes are observed.
That is, for the case where an interval with a certain state is followed by an interval
with the same state, the transition between those intervals is not observed, while
it still might have a causal influence on other states. In the example of Figure 7.1
the TV grass has the true (but unobserved) state sequence 〈dry, wet, wet〉, as once

109

7 Modeling Multivariate State Sequences

Figure 7.1: An MSS with 3 Temporal Variables for the process of wetting grass, and models to
generate it, are shown. If the grass is dry the sprinkler turns on, if it is not raining.
Once it starts raining the sprinkler turns off. The same model could produce a
sequence where the rain is falling throughout the process. Then, the sprinkler
would never have turned on. Temporal State Change Bayesian Networks provide a
compact yet expressive representation for such scenarios.

110

the rain starts falling it has a causal influence on the TV grass’ state by making
it wet. However, what is actually observed in this case are only the state changes
〈dry, wet〉. Thus, the actual sequence 〈dry, wet, wet〉 is latent. Estimating this
latent sequence from what was observed is challenging as multiple valid sequences
could have been produced (e.g. 〈dry, dry, wet〉). Both, Discrete Bayesian Networks
(DBNs) and Continuous Time Bayesian Networks (CTBNs) do not explicitly model
such state changes, but contain this information implicitly. In contrast to that
TSCBNs do explicitly model such state changes and approximate those at locations
where latency is observed only.

• Parameter Complexity: Another challenge lies in the number of parameters that
are required for modeling MSSs. With growing width and height (i.e. number of
TVs) of the network an increasing number of parameters is required to expres-
sively represent the MSS. CTBNs store the transition matrix of the network and
intensity matrices per condition of its structure for this purpose, with this, keep-
ing parameter complexity low. DBNs need to repeatedly store the causal structure
across discrete time steps introducing parameters at each discretization step. With
growing number of steps (i.e. with growing precision) this results in an exploding
parameter space for such networks. TSCBNs model events or state changes only
at points in time where those occur, which keeps the parameter space low, when
modeling MSSs.

• Interpretability: To allow expert input and understand system behavior it is es-
sential to provide a representation that is interpretable. In general this means that
the structure captures behavior in an understandable manner and no overhead in
network complexity is present, i.e. network complexity is reduced to the essential
core of the modeled behavior. DBNs are interpretable in the sense that the static
structure within and across time-slices allows to understand correlations between
TVs and which TVs influence which over time. However, this structure is static
and thus, does not model the full functional procedure in an interpretable way.
CTBNs represent the total behavior in matrix representations. This allows to in-
terpret consequent behavior of certain TVs based on a set of conditions of other
TVs. The complex interplay of those matrices however, does not directly allow
to interpret the functional procedure underlying the set of MSSs. TSCBNs model
procedures in terms of events at its points in time where a state change is possible.
Although such events might be latent it allows to understand the set of possible
interval structures in an intuitive manner and the causal influences between those
in an interpretable manner.

• Expressiveness: While CTBNs require less parameters, this comes at the cost
of reduced expressiveness when modeling processes of MSSs. That is, as CTBNs
generalize over the process by using identical matrices throughout the process,
which does not distinguish causal correlations that might change over time. DBNs
discretize behavior over time. With this, changing dependencies are also not rep-
resented explicitly but need to be modeled in terms of an extended inter time slice
structure. This introduces an increased degree of data fragmentation throughout
each time slice, which again requires a high degree of approximation at each step

111

7 Modeling Multivariate State Sequences

with this making it less expressive. TSCBNs model each state change explicitly
which allows to capture defined functional procedures of MSSs in the way they
are correlated. With this data fragmentation is kept low and correlating edges are
reduced to relevant ones only making those models well express such procedures.

• Finiteness of Processes: CTBNs store matrices of intensities that are used to
determine the consequent state based on a current state of TVs. This can be
repeated arbitrarily often, which allows to represent procedures of infinite length.
In contrast to that, both DBNs and TSCBNs define finite processes, as when
trained procedures of finite length result in structures of finite length. However,
infinite procedures could be theoretically modeled when chaining multiple models,
such that the output state of a finite model forms the input model of another
model.

Chapter Outline: First, as TSCBNs are based on BNs and its theory, background on
this topic is given in Section 7.1. Next, TSCBNs and a novel structure discovery approach
are presented. To put those into context the state of the art in those fields is described
in Section 7.2. In this Section also an overview of the three models is given, before
in Section 7.3 TSCBNs, its structure discovery approaches and parameter estimation
methods are presented as introduced in [8]. Lastly, in Section 7.4 the evaluation is
given, in order to show the applicability of TSCBNs for the modeling of MSSs in the
context of Specification Mining. The overall chapter is based on [8].

7.1 Background

7.1.1 Bayesian Networks

BNs are Directed Acyclic Graphs (DAGs) that represent causal relationships between
Random Variables (RVs) Xi as nodes and their dependencies as edges. Such networks
define a Joint Probability Distribution (JPD) P (X1, X2, ..., Xn) over all n RVs in the
graph, which allows for various types of probabilistic inference tasks, including diagnosis
or prediction. JPDs are computed from Conditional Probability Distributions (CPDs)
P (Xi|Pa(Xi)) which are defined per RV Xi in the network conditioned on its respective
parents Pa(Xi). For a set of variables X1, X2, ..., Xn the JPD is computed with

P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi|Pa(Xi)). (7.2)

To infer probability distributions along the network under given evidence, exact ap-
proaches, such as marginalization of JPDs or Bayes’ theorem can be used.
Mostly, for ease of computation of JPDs, RVs are assumed to be either all of discrete or
all of continuous type. If both types occur in the network simultaneously, the graph is
called a Hybrid Bayesian Network (HBN). In HBNs the set of RVs X is divided into two
sets X = Y ∪ Z, where Y represents discrete and Z continuous RVs. In this work the
notion of HBNs is restricted to the case, where continuous RVs can only be conditioned
on discrete ones and the inverted case is not allowed. A common way for inference in
such cases is to assume fixed distributions (e.g. Gaussian or Exponential) defined with

112

7.2 State of the Art

parameters Θ per continuous node Z and to condition each Θ on Z’s discrete parents,
e.g. assuming one discrete parent Y , each parent outcome y gives a distribution Σ for
the respective node. That is,

Z|Y = y 7→ Σ(Θ(y)). (7.3)

7.1.2 Conditional Independence

Independence: With X and Y as RVs with value spaces Val(X) and Val(Y). Given a
Probability distribution P , X and Y are independent if

P (X = x, Y = x) = P (X = x) · P (Y = y) (7.4)

for all x ∈Val(X) and y ∈Val(Y). Independence between RVs is denoted as X⊥Y .

Conditional Independence: Given are a set of additional RVs Z with values Val(Z
with values z ∈Val(Z. With this, X is conditionally independent of Y given Z if

P (X = x, Y = x|Z = z) = P (X = x|Z = z) · P (Y = y|Z = z) (7.5)

for all x ∈Val(X), y ∈Val(Y) and z ∈Val(Z). Conditional independence between RVs is
denoted as (X⊥Y)|Z.

Conditional Independence in BNs: The BN G and the set NonDescendantsG(Xi)
of nodes that are not descendants of Xi in G is assumed, i.e. there is no path in G from
Xi to any node in NonDescendantsG(Xi). With this, BNs are defined such that G,
for each node Xi and all nodes Xj ∈ NonDescendantsG(Xi), encodes the conditional
independences

(Xi⊥Xj)|PaG(Xi) (7.6)

That is, any RV in the network is conditionally independent of its non-descendants given
its parents.

Markov Blanket: The Markov Blanket B(Xi) ⊂ Xn{Xi} is the minimal set of nodes,
that for all of its nodes Xj /∈ B(Xi) satisfies the conditional independence

(Xi⊥Xj)|B(Xi) (7.7)

In a BN this includes all parents, children and Co parents of Xi.

7.2 State of the Art

As this work proposes both a model and a dynamic Structure Discovery (SD) algorithm
related works in those fields are presented. Related work on parameter estimation is
omitted as, no novel estimation approach is presented, but rather extensions to the

113

7 Modeling Multivariate State Sequences

classical approaches Expectation Maximization (EM), Variational Inference (VI) and
Maximum Likelihood Estimation (MLE) are discussed.

7.2.1 Temporal Probabilistic Models

In past research several models for temporal reasoning under uncertainty were intro-
duced.

Time-sliced BNs: The first group of models includes time-sliced BNs such as dis-
crete time nets [192] with static structures and its dynamically adjusting extensions
[194, 195, 196, 197] and DBNs, that break the Markovian assumption [198] or the sta-
tionarity assumption [199]. Main caveats of such networks include its static structure
and its high overhead due to repetition of structures.

Interval-based BNs: The group of interval-based BNs models temporal events or in-
tervals as states of nodes. A subgroup of those BNs defines the type of event as state,
and the interval in which the event occurred as outcome, in a node. There nodes repre-
sent irreversible events whose outcomes are a cross product of discretized intervals and
state outcomes of events [200, 201]. But, for higher precision this leads to huge outcome
spaces and events are irreversible. Other models represent a certain event only, with
times of occurrence as outcome [202]. Temporal Bayesian Network of Events (TBNE)
that were introduced in [203] are comparable to TSCBNs. Similar to TSCBNs, there,
intervals are modeled as tuples of time of occurrence of a state change and states of
the next interval including the option of remaining in the same state. However, TBNEs
omit the following aspects, which are solved in TSCBNs. First, interval lengths are dis-
cretized which allows for less temporal precision. Second, no notion for representation
of dynamic causal relations between states of different TVs is defined. Third, the model
does not allow to model causal dependence of state transitions that remain in the same
state, which is solved in TSCBNs using latent sequences. Networks, such as Modifiable
Temporal Belief Networks (MTBN) [204] allow to model intervals in terms of nodes for
start, end and duration of an interval. There again each node represents the time and
duration of one event only. In [205] the modeling of temporal information is accom-
plished by using HBNs consisting of discrete nodes for the values and continuous nodes
for the time delays. However, rather than modeling dynamics of a process as TSCBNs
do, those model dependence between time and state statically.

Markov Process based models: To model continuous time under uncertainty Markov
Processes and Continuous-Time Markov Processes are used. In [193], Nodelmann intro-
duced CTBNs. This model stores a generalized parameter set over all TVs under defined
conditions, while TSCBNs use one parameter set per temporal occurrence of an event.
In [206] Tawfik considered events as distributions over time. This approach unlike us
does not model defined processes of intervals, but rather static causal dependencies of
continuously evolving processes.

General Probabilistic Networks: Apart from BNs in Causal Probabilistic Networks
[207] event occurrence and its times of occurrences are modeled separately. That means,

114

7.2 State of the Art

dynamic causal influence of states on duration of intervals of TVs is not included. In
[208] Probabilistic Temporal Interval Networks nodes are temporal intervals and edges
are uncertain interval relations modeled in terms of Allen’s relations. Thus, intervals are
considered rather qualitatively (e.g. as duration, before) than quantitatively.

Specialized Models: Further, in many domains specialized models were proposed.
In reliability engineering object oriented BNs [209, 210], Markov Chains, Boolean Logic
Driven Markov Processes [211], Dynamic Fault Trees [212] and Event Sequence Diagrams
[213] were applied for temporal modeling under uncertainty. Those approaches focus on
object interactions and fault detection without general extensibility and applicability
to interval modeling. Models of temporally evolving dependencies further include the
approach proposed in [185], where evolving Markov Random Field based models are
used for time-series clustering or in [214] and [215], where temporal evolution in social
networks is modeled. However, the further is optimized for time-series, while the latter
is focused on graph data rather than MSSs.
Consequently, existing solutions for modeling MSSs, result in complex representations
both in terms structure and parameter size.

7.2.2 Structure Discovery Approaches

SD approaches in BNs are typically categorized in score-based, constraint-based and
hybrid approaches. When it comes to discovery of dynamic structures, further the cate-
gories of learning of temporal BNs and PM are used, which is a related field for learning
process models from sets of sequences.
The learning of structures of BNs is a challenging problem due to the exponential increase
of the space of potential network structures with the number of nodes. Most approaches
reduce complexity by constraining the space of allowed structures, specifying orders of
variables, applying temporal conditions, including prior knowledge or limiting the net-
work size.

Score-based: Such approaches start with an initial graph, evaluate the graph using a
score function and try to ultimately optimize the structure to maximize the function’s
score. Performance of those methods depends on the choice of reasonable scoring func-
tions, well constraining the space of allowed structures, by designing an appropriate
optimizer and by encoding of the networks. Common scores include the Bayesian Infor-
mation Criterion (BIC) [216] or the Minimum Description Length (MDL) [217]. Classical
approaches include the K2 algorithm [218] or Greedy Hill Climbing (GHC). Those ap-
proaches do not guarantee to converge to the global optimum. For global optimization
this was solved in several ways. Those include among many others formulating a linear
optimization problem and solving it with branch and cut [219], by using shortest-path
search [220], constraint programming [221], genetic algorithms [222], simulated anneal-
ing [223] or particle swarm optimization [224]. Score-based approaches work well for
less data, but suffer from bad computational performance for growing data. In addition
to that, directions of edges are not clear, which is especially relevant when modeling
temporal data.

115

7 Modeling Multivariate State Sequences

Constraint-based: Such approaches constrain potential edges and use Conditional
Independence (CI) tests to find the network structure. Typical CI tests include e.g.
the χ2 or G tests. Traditional approaches include the SGS approach [225] or the PC
algorithm [226], which use CI tests on subsets of RVs to discover structures. Possible
constraints include structural constraints given by properties of the specific objective
network [227] (e.g. Markovian assumption in DBNs) or heuristics to limit potential par-
ents of nodes [228, 229]. This type of methods tends to find hidden common causes,
handle selection bias and work well with sparse graphs [230].

Hybrid: Other works connect score and constraint-based approaches to combine their
best properties. This was done by CI tests to find initial ordering of RVs or initial graph
skeletons, which are used as input for consequent optimization [231, 232, 233].

Temporal BN learning: When learning static DBNs the Markovian assumption is
assumed and the discovery is decomposed into learning edges within a time slice and
between subsequent time-slices. In [234] the further is done with above approaches
as in the static case, while the latter reduces to a feature selection problem where
each node chooses one or more parents from the previous time-slices. In further works,
SD approaches for DBNs with no Markovian assumption [198] or stationarity assump-
tion [235, 199], were presented. Further approaches use event sequences as input and
Process Discovery algorithms to create the network. The approach described in [236],
extracts a DAG from event sequences by adding edges to the BN if two events directly
follow each other in multiple event sequences. Then, in case of cycles in the model dedi-
cated edges are removed. However, this approach is not applicable to the given scenario,
as here the aim is to model different events of the same TV using more than one node.
This strategy was improved by the authors in [237]. There, a unique label is assigned
to each of the events to prevent the formation of cycles in the BN and the labeling of
events is done in a naive way. That is, all the i-th occurrences of an event of TV X are
labeled Xi. The algorithm that is presented in this chapter finds an advanced solution to
this problem of uniquely labeling events, in that it allows to handle optionally occurring
events. That is, e.g. in sequences 〈 B, A, A, B 〉 and 〈 B, A, B 〉, in the first sequence
labeling of A might be A1 or A2. The approach in [238] uses the Heuristic Miner [23]
to create a BN, which is a Process Discovery algorithm that creates a dependency graph
between events based on the frequencies of specific observations. There, cycles in the
dependency graph are resolved by using dummy nodes.
All the algorithms in this section so far assumed dependencies between events if the
events directly follow each other in the event sequences. No statistical tests or score
optimization is used to check for independencies. In [239] the authors use a score-based
procedure to filter the edges in the dependency graph of the Heuristic Miner using a
mutual information score. Nevertheless, there still remains the problem that edges in
the TSCBNs are allowed that connect events that do not directly follow each other in the
event sequences. The algorithm that is presented in this chapter drops this restriction.

Process Discovery: In the PM community multiple algorithms were proposed for
mining a process model from event logs (usually extracted from business processes).
The algorithms proposed in this field are related to the discovery of BNs, when time is

116

7.2 State of the Art

included. However, those approaches do not model multiple dimensions and TV struc-
ture but rather event sequences. Important algorithms of this type include the Alpha
Miner [240] for discovery of Petri nets, which does not allow for silent transitions (i.e.
optionally occurring events in sequences are not represented). This was extended in the
Heuristic Miner [241] that includes support of edges in terms of occurrence frequencies,
but cannot handle the concept of parallel events. This was improved in the Inductive
Miner [242] and Inductive Miner infrequent [242], where sequences and its representa-
tions are decomposed according to defined rules that allow to extract multiple temporal
concepts (e.g. parallel, subsequent).
All of the aforementioned approaches are not optimally suited for the effective SD of
TSCBNs from observed MSSs. This is, first, as the concept of dimensions of TVs with
interactions between TVs in state and time is not inherently represented, which however
can be exploited to reduce the amount of candidate structures. That is, edges between
subsequent nodes of the same TV are implicitly given in TSCBNs and only edges between
state changes of two different TVs within defined time ranges are relevant. Moreover,
optional occurrences of state changes are not handled and the event-to-node assign-
ment is not solved in an optimal manner, as stated above. Therefore, in Section 7.3.4
TrieDiscover is introduced that solves those challenges for learning TSCBNs from sets
of MSSs. This approach can be categorized as hybrid, as it uses temporal and struc-
tural constraints extracted from control and time flow information extracted from event
sequences. This reduces the space of allowed structures to a subspace of temporally
meaningful structures and allows to define directions of edges between RVs in the di-
rection of correct order time flow. By consequently applying Constraint-Based (CB) or
Score-Based (SB) approaches on the remaining candidates, valid BNs of good precision
are discovered with a reasonable performance, which will be shown in Section 7.4.

7.2.3 Bayesian Models for Temporal Data

7.2.3.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks were introduced in [192] and are in its core regular BNs,
but with a defined structure. Those networks model stochastic processes in state and
time by slicing the temporal space into slices. Per time-slice a static BN is used to define
correlations between RVs within each slice, i.e. at certain times. Each RV in a time-slice
corresponds to the state of a TV at that time. To model dynamics, RVs between time-
slices are connected with edges in the direction of time flow, where RVs that correspond
to the same TV have the same symbol indexed with the number corresponding to the
according time-slice. Each time-slice has a fixed structure that links it to one of the d
next time-slices. The maximum forward reach of an edge to a successive time-slice is
referred to the order of the DBN. Formally, this is defined as follows.

Given a set of RVs X = {X1, ...Xn}, with observation Xτ
1 at time slice τ all observations

of RVs at that time are written as X = {Xτ
1 , ...X

τ
n}. A DBN of order d = 1 can be

divided into two BNs (B0, B7→), where B0 defines the initial probability distributions
P (X0) and B7→ is a temporal BN that includes two time-slices defining the probability

117

7 Modeling Multivariate State Sequences

Figure 7.2: A DBN of order 3 is shown here.

distribution P (Xt|Xt−1). In this case the JPD of the DBN is expressed as

P (X0:T) =
T∏
t=0

n∏
i=1

P (Xt
i |Pa(Xt

i)) (7.8)

, where X0:T = {X0,X1, ...,XT }. For the general case of a DBN of order d B0 is defined
identically to the above case, while B7→ is defined with d + 1 time slices t − d, ...t with
probability distribution P (Xt

i |Pa(Xt
i)) per time slice t, where the parent set Pa(Xt

i) can
contain nodes Xτ

i , i 6= j for τ ∈ {t−d, ..., t−1, t}, nodes Xτ
i for τ ∈ {t−d, ..., t−2, t−1}

or may be empty.
That is, as can be seen in Figure 7.2, in B 7→ nodes in time slice t have only incoming
edges that originate from a RV of the same TV in time slices of [t − d, t − 1] or from a
RV of a different TV in time slices of [t− d, t].
Within the scope of this work DBNs of first order are considered only.

7.2.3.2 Continuous Time Bayesian Networks

In [193] Nodelman introduced CTBNs which are essentially a combination of Markov
Processes, whose interactions are defined in a BN. All relevant terms are introduced in
the following.

Markov Processes of TVs: According to [193] such processes are defined as matrices
of transition intensities. Each entry (i, j) gives the intensity for transitioning from state
i to state j. Here, homogeneous Markov Processes are used as a basis, i.e. processes
where the transition intensities do not depend on time.
The TV X has the domain V al(X) = {x1, x2, ...xn} which gives the homogeneous

118

7.2 State of the Art

Markov Process X(t) for this TV which is defined via its intensity matrix

QX =


−qx1 qx12 . . . qx1n
qx21 −qx2 . . . qx2n
.
qxn1 qxn2 . . . −qxn

 (7.9)

where qxi =
∑

i 6=j q
x
ij . The intensity qxi is the probability of leaving state xi and the

intensity qxij the probability of transitioning from xi to xj .
Starting from a state X(0) = xi the TV stays in that state for a fixed amount of
time defined by an exponential distribution of parameter qxi which gives a PDF for xi
remaining in state xi as

f(t) = qxi exp(−qxi t)0 ≤ t (7.10)

When transitioning X changes to state xj with probability qxij / qxi .

Conditional Markov Processes of TVs: According to [193] this is a type of in
homogeneous Markov Process where intensities vary over time, but not as a function
of time, but rather the intensities are a function of the current values of a set of other
TVs. For a TV (=RV) Y that is conditioned on a set V of TVs (=RVs) the conditional
intensity matrix (CIM) are defined as.

QY |V =


−qy1(V) qy12(V) . . . qy1m(V)
qy21(V) −qy2(V) . . . qy2m(V)
.

qym1(V) qym2(V) . . . −qym(V)

 (7.11)

Example: For a TV E(t) that defines over time if a person is eating or not is expressed
with TV hungry H(t) which can be in states h1 = not hungry or h1 = hungry. Intensity
matrices

QE|h1
=

[
−0.01 0.01

10 −10

]
QE|h2

=

[
−2 2
0.01 −0.01

]
(7.12)

imply that if a person is hungry he will begin eating in 1/2 hour, while a person who is
not hungry and eating to stop eating in 1/10 hour.

Continuous Time Bayesian Networks: According to [7] a CTBN models a stochas-
tic process over a structured state space consisting of assignments to a set of local vari-
ables (i.e. TVs in the context of this work X = {X1, X2, ...Xk}. Dynamics of those
variables is modeled per TV as a Markov Process that is conditioned on a set of other
variables U. With this as defined in [7], a CTBN N over X consists of two components,
an initial distribution P0

X specified as a BN B over X and a continuous transition model,
specified as

• a directed graph G whose nodes are X1, . . . , Xk, where PaG(Xi) = Ui denotes the
parents of Xi in G.

119

7 Modeling Multivariate State Sequences

Figure 7.3: Here an example of a CTBN structure is shown [7]. At each time step a Markov Pro-
cess that is conditioned according to this structure models the temporal evolution
of the data.

• a conditional intensity matrix QXi|Ui for each variable Xi ∈ X

Example: The example used in [7] is shown in Figure 7.3. It describes the process of
taking a drug to alleviate pain, e.g. the concentration of the drug in the blood depends
on how full the stomach of the patient is. Also, it shows that whether a person is hungry
depends on how full the stomach is and how it is affected after eating. Thus, it stores
the transition structure (i.e. the network) as well as the intensity matrices.

7.3 Temporal State Change Bayesian Networks

7.3.1 Model

In [8], the TSCBN model was formally and descriptively introduced. Here the formal-
ization is used in Section 7.3.2. Also, the explanation of the model is used to define the
state structure in Section 7.3.3, the temporal structure of TSCBNs in Section 7.3.3.1
and the compact representation of the model in Section 7.3.3.2.

7.3.2 Formal Definition

7.3.2.1 Model

Let’s assume a set S of TVs Si that each temporally evolves over a set of states Ξi =
{si1, si2, ...}, which can be dynamically interdependent.

Definition 7.3.1. TSCBN A TSCBN is a HBN B = (G,Θ) that consists of a param-
eter set Θ and a DAG G = (N,E) of nodes N connected via directed edges E.

Definition 7.3.2. Nodes In B, N forms the set of nodes N = V ∪ T which each
represent an occurrence of a state change ∗ 7→ sij of a TV Si from its previous state ∗

120

7.3 Temporal State Change Bayesian Networks

Figure 7.4: Two TVs S1 and S2 are illustrated. The top part shows a MSS that is
generated by the TSCBN shown in the lower part. X1 and X2 indicate
the observed sequence of state changes, which are generated by the true la-
tent sequences 〈(v10,∆t10), (v11,∆t11), (v12,∆t12), (v13,∆t13)〉 and 〈 (v20,∆t20),
(v21,∆t21), (v22,∆t22)〉. Note that a temporal-causal dependency between state
change v11 of TV S1 and state change v21 of TV S2 is given in the shown TSCBN
[8].

121

7 Modeling Multivariate State Sequences

to its next state sij . This occurrence is defined by state nodes vik ∈ V and temporal
∆tik ∈ T .

Definition 7.3.3. State Nodes All state nodes vik are discrete RVs that indicate the
state sij a TV changes to. V forms the set of all state change nodes in the network.

Definition 7.3.4. Temporal Nodes Each temporal node ∆tik is a continuous RV that
defines the relative temporal distance to its latest occurring predecessor. T forms the
set of all temporal nodes in the network.

Definition 7.3.5. Initial nodes All temporal nodes Si have an initial node ni0 =
(vi0,∆ti0) = (sidef , 0) at time ti0abs = 0 in a default state sidef ∈ Ξi.

Definition 7.3.6. Edges An edge in E indicates a causal dependency between con-
nected state changes. Edges between nodes of the same TV (intra-variable) and edges
that define dependencies among TVs (inter-variable) are distinguished here.

Definition 7.3.7. Intra-variable edges It is assumed that each consecutive state
change depends on its preceding state. The corresponding edges are defined as intra-
variable edges. That is, for m TVs the following holds:

(vi(k−1), vik) ∈ E,∀i ∈ [1,m],∀k > 0 (7.13)

(vi(k−1),∆tik) ∈ E,∀i ∈ [1,m],∀k > 0 (7.14)

Further, the temporal behavior ∆tik depends on the state vik a TV changes to, which is
implied by the edge

(vik,∆tik) ∈ E,∀i ∈ [1,m], ∀k ≤ 0 (7.15)

Definition 7.3.8. Inter-variable edges If a state change niq = (viq,∆tiq) of TV Si
causally depends on a change nkr of another TV Sk an edge defined as inter-variable
edge results with

(viq, vkr) ∈ E, i 6= k (7.16)

(viq,∆tkr) ∈ E, i 6= k (7.17)

Definition 7.3.9. State model The set of all state nodes and its edges forms the state
model of a TSCBN. According to the defined HBN structure, those state nodes v of a
TSCBNs are a network of discrete RVs.

This definition allows inference algorithms of standard BNs to be applied on the state
structure of a TSCBN. This is done regardless of the states’ times of occurrence as
temporal nodes are leaf nodes, e.g. the Most Probable Explanation (MPE) could be
determined to identify dominant system behavior. Also, the JPD for the state part of a
TSCBN with m temporal values, with n states per node could be simply computed with

P (v10, v11, ...vmn) =

m∏
i=1

n∏
k=0

P (vik|Pa(vik)). (7.18)

122

7.3 Temporal State Change Bayesian Networks

Definition 7.3.10. Temporal model The set of all temporal nodes and its edges
forms the temporal model of a TSCBN. There, each node ∆t is a continuous RV, with
a distribution Σ, defined by parameters Θ. All ∆tij are conditionally dependent on the
same parents Pa(vij) of states vij and the state vij of the node itself. As all ∆t are
conditioned solely on discrete parents, the temporal part of each state change can be
written as

∆tij |Pa(vij) ∪ {vij} 7→ Σ(Θ(Pa(vij) ∪ {vij})). (7.19)

Definition 7.3.11. Absolute time TSCBNs represent time relatively. Thus, the ab-
solute time tabs of a state change event needs to be determined from its latest parent’s
absolute time. If the event of state change was not observed at a parent node, the time
of a state node is measured relatively to its last occurring TV state change P̄ a. This
can be expressed as

tikabs = max
r,s

(P̄ a(nrs).tabs) + ∆t (7.20)

where P̄ a(nrs) are all parents of vrs, that did occur, max
r,s

(P̄ a(nrs).tabs) indicates the

latest occurring TV node and ∆t is the temporal gap from this parent node to the
absolute time of the current node.

7.3.3 Modeling State Sequences

Univariate State Sequence First, let’s only consider the state sequence of TV S1

in Figure 7.4, which is modeled by the upper part of the TSCBN (i.e. nodes v1k). In
MSSs only state changes are observed and a TV has a sequence of states it is in at
any point in time. If a state change occurs, this state change is observed in the data,
e.g. X1 = 〈A,B,A〉 is observed, where each sequence element indicates the state a TV
changes to at a certain point in time. However, if a TV has two consequent intervals with
identical states, this change is not measured and thus, cannot be observed in the data,
e.g. in S1 the actual latent state sequence is 〈A,B,B,A〉. But, as the second occurrence
of B is not observed multiple latent sequences could be assumed from this observation,
e.g. the latent sequence also could have been 〈A,A,B,A〉 or 〈A,B,A,A〉. As causal
dependencies in MSSs actually depend on the true latent occurrences, TSCBNs model
each (potentially latent) state change of the latent sequence as state node vij . Those
vij are modeled as discrete RVs, e.g. the example sequence of S1 shown in Figure 7.4
corresponds to the outcomes (v10 = A, v11 = B, v12 = B, v13 = A) of the TSCBN. These
latent outcomes produce the observed sequence X1 = 〈A,B,A〉.
When estimating the latent parameters vij of a TSCBN from observed sequence ex-
amples of Xi, only valid latent sequences (i.e. the ones that can produce an observed
sequence) should be considered. An estimation approach to this is presented in Section
7.3.6.
Further, each consecutive state change depends on its preceding state. Thus, in TSCBNs
an edge between all consecutive state nodes of the same TV (e.g. v10 to v11) is defined,
e.g. for the TV Smove in Figure 7.5, the state change to run, is less likely when the
person was sitting than when it is already walking.

123

7 Modeling Multivariate State Sequences

Figure 7.5: A MSS of the movement of a person is shown, with four depen-
dent TVs Smove, Slocation, Stemp, Sinjury. The MSS is M =<
(0, 4, Smove, sit), (0, 5, Stemp, cold), ... >. Also, the main concept of TSCBNs is
shown. Intervals are modeled by SCs. Causal dependence between intervals (here:
Smove, Stemp and Sinjury) is modeled as edges between SCs to respective intervals
[8].

Multivariate State Sequence So far only one TV was considered. If multiple TVs are
given, states of TVs may causally depend on states of other TVs. Such causal depen-
dence is defined with an edge between the corresponding states’ changes, e.g. in Figure
7.4 the state of v21 the TV S2 changes to, not only depends on its previous state (as
defined above), but also on the state change v11 of TV S1. Also, in Figure 7.5, if the TV
Stemp changes its state to being cold, this may more likely cause the consequent state
injured of the TV Sinjury (together with the previous state of the same TV, which is fit).

7.3.3.1 Modeling Times of Sequences

While the state nodes vij capture the state a TV changes to, those nodes do not capture
the time at which this state change occurs. To solve this, in TSCBNs each state node
vij is connected to a temporal node ∆tij that defines its time. This node is modeled as
a continuous RV. The outcome of this RV is the relative time gap to its last predecessor.
That is, if a state node has exactly one predecessor node, this gap is computed relatively
to the absolute time of this predecessor nodes’ state change, e.g. if v12 occurred at time
17 and the outcome of its consequent state change v13 is ∆t13 = 3, the time at which
the state change v13 occurred is 20 (= 17 + 3).
Further, temporal nodes ∆tij are conditionally dependent on the same parents Pa(vij)
as its corresponding state nodes vij and on the node vij itself, e.g. in Figure 7.5, the
time it takes to get injured depends on when the person started running and when it
got cold.
Consequently, if a state node has two or more predecessor nodes (i.e. parent nodes)
the absolute time of this node’s state change is determined relatively to the time of the
parent nodes’ state change that occurred last, e.g. in Figure 7.4 the absolute time of
the state change v21 is determined relatively to the absolute time of its parents v11 and
v20. If change v11 occurred at time 7, v20 at time 0 and ∆t21 = 4, the time of v21 is
determined relatively to v11 (as 7 > 0). The resulting absolute time of the state change
v21 would be 11 (= 7 + 4) in this example.
As all times of state changes are defined relatively to their parents, all TVs Si require a

124

7.3 Temporal State Change Bayesian Networks

Figure 7.6: The compact representation of a TSCBN defines each node n as the state a TV S
changes to and its time of change [8].

reference point at an initial default state at absolute time ti0abs = 0, i.e. ∆ti0 = 0.

Absolute time in latent sequences: As stated above in a latent sequence nodes may
not be observed and thus, may have no absolute time, e.g. in S1 the time of transition
from B to B is not observed. Thus, using this point as reference for succeeding nodes’
time of occurrence ∆t is not possible. In this case the relative time is measured from
the point of the last observed state change. If for a node in a TV no parent occurred,
the last observed state change of the corresponding TV is used as reference point, which
is at worst the initial state. This initial state is well defined at time ti0abs = 0 for each
TV. For instance, let’s assume the outcome 〈B,A,B,A〉 for sequence S1 with observed
absolute times of state change 〈0, 5, 8, 10〉 and 〈D,D,F 〉 for sequence S2 with observed
times 〈0, 7〉. Then, the time of v21 = D is not observed. Thus, no absolute time of this
nodes is known from observation. That is, the absolute time of the state change v22 = F
cannot be found relatively to v21. Instead this hidden node v21 is skipped and the next
observed parent v20 is used as reference in a TSCBN. Thus, in this example ∆t22 = 7
(under the given condition of state changes) defines the absolute time of v22 to be 7
(= 0 + 7).
Moreover, in this TSCBN structure it is assumed that the duration of a state does not
influence the consequent state and the duration of a TV, i.e. all ∆t are leaf nodes in
the HBN structure, which enables tractable inference as the discrete state structure is
independent of continuous nodes. Instead continuous nodes are conditioned on discrete
states, which can easily be expressed as distribution parameters, which are conditioned
on the parent outcomes.

7.3.3.2 Compact Representation

In practice it is often required to discuss such models with experts (e.g. for specification
mining as described in Section 8.4.2). For this and for the purpose of a simpler visualiza-
tion the TSCBN can be written in a more compact manner. Each state change vik and
its time of change ∆tik can be condensed to one node nik = (vik,∆tik). Also, connecting
edges between two nodes v transform to connecting edges between the corresponding
nodes n. The corresponding edges to temporal nodes ∆t are implicitly assumed, e.g.
the model of Figure 7.4 can be condensed to the model shown in Figure 7.6.

125

7 Modeling Multivariate State Sequences

Figure 7.7: Allen’s temporal relations are shown on the left, between a TV Si that is in state
sir for a certain time interval and a TV Sk that is in time interval skx. Each interval
boundary is modeled by a node n of a TSCBN. On the right the according temporal
requirements for the absolute times (defined by the respective ∆t) of each node n
is illustrated [8].

Figure 7.8: An example of the overlaps relationship, which shows the state of the door and the
key as TV. When the key is turned, the open door changes to a closed state. The
overlaps relationship is modeled as TSCBN, with v14 as state change from open to
closed and with v24 as start and v25 as end of the key turning procedure [8].

7.3.3.3 Properties

TSCBNs have multiple properties that make it well suited for modeling MSSs, which is
revised here shortly. First, TSCBNs compactly represent temporal-causal behavior with
JPDs and due to its structure allow for straight forward application of BN inference
algorithms. Second, nodes can be defined as intervals of infinitesimally small length (i.e.
∆t close to zero). This allows to model dependence between events and intervals by
using TSCBNs. Third, TSCBNs allow to model all basic temporal interval concepts as
proposed by Allen, which is shown in Figure 7.7 and Figure 7.8. Fourth, as time nodes
are leaf nodes, they can each be modeled with different distributions which allows to
model realistic variations in the temporal behavior. Lastly, all states are defined in time
as they are recursively computed from its predecessors.

7.3.4 TrieDiscover

To allow for inference, the structure of TSCBNs needs to be discovered from a set of
observed MSSs. For this in [8] TrieDiscover was introduced, which allows to learn an

126

7.3 Temporal State Change Bayesian Networks

Figure 7.9: The basics step of the discovery approach are shown. Starting from a long trace the
input MSSs for TrieDiscover are deduced by segmentation. With this TrieDiscover
finds a BN structure to represent a set of MSSs [8].

interpretable structure which is used for Specification Mining. As this approach is used
in the proposed DM pipeline its basic steps are introduced in the following.

Challenges: Learning TSCBNs from MSSs is challenging due to many reasons, First,
as with increasing numbers of TVs and lengths of MSSs, the number of network struc-
tures grows. Further, due to data fragmentation a high number of observed examples is
needed. Outliers need to be filtered to reduce noise which is often present in real world
and values might be missing, i.e. MSSs do not necessarily contain values for all nodes
of a TV in the TSCBN. Lastly, to precisely infer the network structure all events of an
observed MSS need to be assigned to a node of a TV sequence in the TSCBN. This is
not trivial. Especially, for the case where the number of observed events per RV in a
MSS succeeds the number of nodes for that RV in the TSCBN. For example given three
nodes for TV B and a sequence 〈A,B,A〉 the observed B might be mapped on either
B0, B1 or B2. A naive assignment would assign the i-th occurrence of B to the i-th node
Bi. However, possibly this event could have been influenced by the preceding event A1.
For that case an event-assignment to B2 could have been more suitable.
Those challenges are solved in TrieDiscover as the number of structures and the number
of samples is restricted by aggregating paths in tries, outliers are filtered out by defin-
ing suitable thresholds, missing values are averaged and events are assigned appropriate
nodes by using a defined merging strategy on branches of the trie. With this TrieDis-
cover is well suited for learning of functional procedures from MSSs.

As exemplified in Figure 7.9 this approach takes multiple MSSs as an input and pro-
duces a TSCBN structure, that represents the variations of functional procedures, as
output. Notably, input sequences are segmented such that an initial state at time zero
is contained. If that state is not given a default state is defined per TV. It consists of
six steps, which are presented in the following.

Assumptions: To be able to reconstruct the structure as TSCBN a sufficient numbers
of occurrences of correlating events need to be observed. Further, correlation is assumed

127

7 Modeling Multivariate State Sequences

if two TVs are dependent. With this, it is assumed that sufficiently identical variations
of functional procedure executions are observed, i.e. the set of MSSs contains sufficient
observations of correlating state changes of TVs. Especially for the case of Specification
Mining this needs to be given, as then, dominant states are preserved, noise is filtered
out and interpretability of the structure is given.
For the case of functional procedures of high diversity a TSCBN can still be discovered
with TrieDiscover, but will result in more edges and dependence on the given states of
TVs at each stage. This is, as the model capacity of TSCBNs is higher with increasing
number of edges, while in this case neither dominant states nor Specifications are ex-
tracted. This is due to the Markov assumption which per definition allows BNs to only
represent conditions one step after and before each node. However, if it is assumed that
functional procedures are sufficiently similar, as described in the first case, each path
can be seen as recorded under a defined set of conditions per node, thus, being unique
per path that a functional procedure can take. With this, the dominant system behavior
as well as the extraction of Specification in terms of paths is assumed. Thus, within the
scope of the proposed DM pipeline it is assumed that both clustering and segmentation
resulted in MSS sets of sufficient similarity and thus, all learned models each represent
a corresponding functional procedure and its variations.

7.3.4.1 TrieDiscover Steps

In the following all of the above steps are presented using the running example of [8].
This input sequence could have been produced by any of the segmentations presented in
Chapter 6 and thus, can be seen as MSSs of multiple executions of a functional procedure
that is to be modeled.

Input set of MSSs: The example MSSs consist of sequences of TVs and its state
changes. As described above at first only a sequence of the TVs without its states
are considered. Those sequences are recorded from a functional procedure with less
variations. Thus, a set of TVs S = {A,B,C,D,E, F,G} is assumed that produced the
following executions.

Mobs = {〈A,B,A,D,A,E,G〉, 〈A,C,A,D,A, F,G〉,
〈A,B,D,A,E,G〉, 〈A,C,D,A, F,G〉}

At first in steps 1 to 5, i.e. during Parent Set identification, per node temporal informa-
tion is exploited to determine a set of candidate parents per node.

1. Trie Creation: In this step the set of TV sequences Mobs is compressed into a
trie by merging similar prefixes, such that any path through the trie corresponds to an
observed one dimensional sequence of TVs. For the example this gives the following.

128

7.3 Temporal State Change Bayesian Networks

A

B

C

A

D

A

D

D

D

A

A

A

A

E

E

F

F

G

G

G

G

Figure 7.10: A Trie modeling the observation of four MSSs is shown [8].

2. Filtering: At each edge within the trie the occurrence frequency of the according
transition is observed in Mobs. Based on a threshold infrequent transitions are con-
sidered as noise and dropped. For this in TrieDiscover the parameter k is defined. It
defines that if an outgoing edge e of a node X occurs less than k times the total number
of observations of node X, i.e. frequency(e) < k · frequency(X), then it is filtered.

3. Subtree Merging: To join identical sequences, sub-paths within the network are
merged as shown in Figure 7.11. Based on theory from automata theory. For this
TrieDiscover converts the graph into an automata equivalent, by translating edges in a
trie to states and nodes to state transitions that were triggered by an event. By using
the minimization approach of [243], which has linear complexity O(n), the structure is
compressed further. Basically, this approach assigns a sub-tree code to each node in the
structure and stores it in a hash map that maps the sub-tree code to a hash value. If two
nodes are assigned the same sub-tree code, the nodes are merged, which yields maximal
lossless compression. For the example sequence this gives the following.

A

B

C

A

A

D A E

D A F

G

Figure 7.11: The DAWG after minimizing the trie in Figure 7.10 is given [8].

4. Event-to-Node Assignment: At this point the structure contains variants of
observed sequences. However, this does not include the assignment of events to nodes,
i.e. each node in the graph needs to be assigned an index in the TSCBN. TrieDiscover
does this in two steps, by traversing the graph once in topological (= Event Assignment)
and once in reversed (= Event Refinement) topological order.

• Event Assignment: In an initial assignment round starting from the root node all
preceding nodes in the TSCBN are passed to each node in the graph by traversing
it. For instance, this parent set at the root node is { A0, B0, C0, D0, E0, F0, G0 }.

129

7 Modeling Multivariate State Sequences

At each node the index of the node’s TV is increased by one and assigned to the
graphs node. In case of multiple parent nodes (e.g. node G in Figure 7.11) the
parent set that is passed from either parent is merged. For the above graph this
yields

〈A1, B1, A2, D1, A3, E1, G1〉
〈A1, C1, A2, D1, A3, F1, G1〉
〈A1, B1, D1, A3, E1, G1〉
〈A1, C1, D1, A3, F1, G1〉.

• Event Refinement: This assignment might be ambiguous, as there might be an
event gap between two events on a path in the graph such as in the following.

A1

B1

C1

C1 B2

B?

D1

F1

E1

B3

Here the lower path contains one B as opposed to two in the upper path. Thus,
both B1 or B2 are valid assignments. By backwards passing the parent set to its
nodes per node missing elements (e.g. B2 on the lower path) are identified. To
determine which assignment to use, the number of strongly connected components
(SCC) is compared. An SCC results when event nodes in the DAWG that are
assigned to the same TSCBN node, are merged. Assigning B to B1 results in

A1

B1

C1

B2 D1

F1

E1

B3

, where the number of SCCs is seven here, as B1 and C1 form one SCC. Assigning
C1 to B2 gives 8 SCCs and thus, is preferred resulting in this structure.

A1

B1

C1 B2

D1

E1

F1 B3

In case of a change in assignment the potential parents of the successor nodes need
to be updated.

5. Parent Candidate Identification: So far each node was assigned a parent set,
while merged nodes might have different parent sets before merging, e.g. D which had
A1 and B1 or A1 and C1 as parents. As both scenarios are possible, both C1 and B1 are
kept in the parent candidate set of D1.

130

7.3 Temporal State Change Bayesian Networks

Further, two events Xi and Yj might occur in parallel (i.e. sometimes event Xi precedes
Yj and sometimes Yj precedes Xi) resulting in both nodes containing one another in its
parent set. If this is the case, it is assumed that the two events do not influences each
other, i.e. are independent, and thus, are removed from both sets. Those events are
identified at points where the graph contains SCCs with more than one node (e.g. as
above in the cycle between B1 and C1).
Lastly, the parent set is further reduced by including a temporal threshold tth. Per edge
a average time delay between corresponding events is computed and for edges where the
time delay exceeds a threshold tth, the preceding node is removed from the potential
parents of the succeeding node.

6. Structure Optimization: To determine parents within the graph that are corre-
lating and thus, form an edge in the TSCBN, structure discovery approaches of static
BNs are used to reduce the set of candidate parents per node. This is done either using
score optimization procedures or using CI tests as described in Section 7.2. TrieDiscover
was introduced in three variants, that differ in this step.

1. Score-based (SB) TrieDiscover uses a decomposable score (e.g. BIC, AIC, K2,
BDeu) for optimization [220].

2. Constraint-based (CB) TrieDiscover uses CI tests to find the optimal parent set
by removing edges with a significance level lower than a threshold α.

3. Extended constraint-based (CBv) TrieDiscover performs a χ2 test to filter out con-
nections between RVs (i.e. nodes of TVs) that are below a correlation threshold
χth and successively applies CI tests similar to CB TrieDiscover.

In our implementations sbTD used the exact score optimization approach parent graph
introduced in [220] for Structure Optimization. This approach works as follows. Parent
graph calculates the score for small parent sets first. If a parent set is non-optimal, also
parent sets that include the non-optimal parent set are non-optimal. A heuristic is used
to decide for which parent set the next score is calculated.

Conversion to TSCBN: The resulting structure can now be transformed to a TSCBN.
Intra-edges are defined inherently by connecting nodes that correspond to the same TV,
e.g. B0, B1 and B2. Inter-edges for each node of a TV are defined by the parent set of
that node that remains after the structure optimization step.

7.3.5 Discussion of TrieDiscover

As the trie representation allows to capture a large part of structural variations and
filtering can be adjusted, a structure with high information content can be generated
even for paths that are observed less frequently. Correlation tests require a sufficient
amount of observations to assess correlation. With this, rules need to be defined for the
case of subsequent events that rarely occur. In this case it is possible to either consider
such transitions as noise, to include those or to let an expert assess it. Especially
for the case of Specification Mining the latter two scenarios are preferred as even rare
occurrences, but with a high likelihood might indicate nominal behavior. Further, the

131

7 Modeling Multivariate State Sequences

granularity of the approach can be well adjusted by defining temporal, as well as score-
and CI test thresholds. With this, the degree of information loss can be controlled as a
hyper parameter.
With this, TrieDiscover yields a both interpretable, lossless and expressive structure that
captures correlations of the functional procedures among multiple TVs in state and time.

7.3.6 Parameter Estimation

With the structure learned, parameterization of a TSCBN needs to be performed based
on a set of given MSSs. In [8] it was introduced that for fully observed MSSs (i.e. if
all state changes are observed are if state changes are events) classical approaches for
parameter estimation in BNs can be used, which is Maximum Likelihood Estimation or
Bayesian Inference. For the general latent case where MSSs are not fully observed three
approaches where presented. Those are a sampling based MLE approach, Expectation
Maximization and Variational Inference. In the following those approaches are revised,
as those are used in the proposed DM pipeline for parameter estimation of TSCBNs.
For this the same input MSSs as in the case of SD are used.

7.3.6.1 Assumptions

Latency: Per TV, observations are never fully observed, which requires to approx-
imate each observation along multiple nodes, e.g. in Figure 7.9 for TV S1, 〈A,B〉 of
one TV correlates to a subset of nodes n11, n12, n13 in the TSCBN, where nodes of
subsets might be interdependent via inter-edges. Further, the mapping per observation
to possible latent estimates is constrained in time, i.e. temporal order of events needs
to conform with nodes and directions of edges in the TSCBN, and in state, i.e. per TV
only a combinatorial subset of outcomes is possible.

Formalization: Each latent sequence of a TV Si is defined as a latent variable
Zi = (vi1, vi2, ...) and the observed sequence as Xi. The set of all latent variables
for observation k is Zk = {Zk1 , Zk2 , ..., Zkm} and the set of all observed sequences is
Xk = {Xk

1 , X
k
2 , ..., X

k
m}. X = {X1, X2, ...} are all observations and Z = {Z1, Z2, ...}

the according latent sequences. For the latent case all Zk are assumed missing at ran-
dom and the empirical distribution, that results from the observations Z are denoted as
q(vij |Pa(vij)).

Challenges: Challenges include first, to guarantee consistency of partially observed
MSSs with the TSCBN. That is, temporal consistency and valid combinatorial map-
pings of state sequences need to be ensured. Second, ambiguity of nodes needs to be
handled, i.e. the structure of a TSCBN may require more nodes per TV than were
observed. In this case the problem occurs that assigning k observed state changes to n
nodes is ambiguous, e.g. for n = 5 and an observed sequence 〈A, B, A, C〉 the actual
state changes could be 〈A, A, B, A, C〉, 〈A, B, B, A, C〉, 〈A, B, A, A, C〉 or 〈A, B, A,
C, C〉.

Discussion: For the task of specification mining exact approaches are preferable if fully
observed MSSs are given. With this high likelihood is only given if it was observed.

132

7.3 Temporal State Change Bayesian Networks

However, in practice, especially in the testing and development phase that is assumed
here, often data is noisy and incomplete. In this case approximate approaches are
required. This results in approximates of the estimated likelihoods. Such approaches
tend to still maximize the likelihood of the part of the data that was observed, i.e. if
partial aspects of a MSS are fully observed, that part in the data is still more likely than
its approximates. With this assumption even the approximate approaches are still valid
to use in the proposed DM pipeline for learning of TSCBNs for specification mining.

7.3.6.2 Non-latent Estimation: MLE and Bayesian Inference

In this case it is assumed that all state changes of the input sequence were observed. In
this case MLE or Bayesian Inference can be used, which is revised in the following based
on [244] .

Counting and MLE: The goal of MLE is to set the parameters Θ such that those
maximize the likelihood of the data. These ML estimates Θ∗ of the state structure of a
TSCBN can be computed independently under the i.i.d. assumption. For this, according
to [244] it is possible to decompose the network structure, such that per node vij and
parent outcome set Pa(vij) = t the following holds for each CPD

p(vij = s|Pa(vij) = t) ∝
N∑
n=0

I[vnij = s|Pa(vnij) = t]. (7.21)

This corresponds to the fact, that the CPD entry p(vij = s|Pa(vij) = t) can be set by
counting the number of times {vij = s|Pa(vij) = t]} was seen in the data set Z for fixed
joint parental state t [244]. In this scenario counting and MLE is identical.
For bigger networks data fragmentation becomes problematic as for higher numbers of
parameters more samples need to be observed. This also means that few samples for
parameter estimation tend to overfit the data [245]. Unobserved CPDs are set to be
uniform in the given scenario to allow for inference. Further, fragmentation decreases
with less parent nodes and discrete parent values. TSCBNs are designed to minimize
the further, while the latter needs to be restricted.

Bayesian Approach: According to [244] in this approach each node is governed by a
parameter which is assumed to have a distribution itself, with the JPD of the network
as p(z1, z2, ...), which can be represented with its parameters as

p(z1, z2, ...) = p(z1|Pa∗(z1); Θz1)p(z2|Pa∗(z2); Θz2)... (7.22)

= Θ
Pa∗(z1)
z1 Θ

Pa∗(z2)
z2 ... (7.23)

, where zi are all nodes vij of the TSCBN and Pa∗(zi) is a defined conditional set of zi’s
parents. Assuming global parameter independence and observations X the posterior is
represented as

p(Θz1,Θz2, ...|X) ∝ p(Θz1|x∗1)p(Θz2|x∗2)... (7.24)

133

7 Modeling Multivariate State Sequences

, where Θzi is the product of all CPDs of its node Θ
Pa∗(zi)
zi and x∗i the observation at

node i. This allows to learn parameter posteriors separately. As each parameter Θzi

is still multidimensional it is common to further assume local parameter independence,

which is that Θzi is the product of all CPDs of its node Θ
Pa∗(zi)
zi . With this the posterior

both factorizes over parental states and the local parameters, which means that

p(Θzi|x∗i) ∝ p(x∗i |Θzi)p(Θ
Pa∗(zi)1

zi)p(Θ
Pa∗(zi)2

zi)... (7.25)

By assuming i.i.d. data and the local and global parameter prior independencies, Dirich-
let priors can be used to now determine the parameters. This is explained in more detail
in according literature [244].

Temporal Nodes: Temporal nodes are simply estimated by fitting Gaussian distri-
butions over each node under the respective conditions.

7.3.6.3 Approximate Maximum Likelihood Estimation via Randomization

As latent parts of a set of MSSs are never observed, estimates need to be found to
approximate the parameters of the TSCBN. In [8] we introduced a standard sampling
based approximate MLE approach (MLE-R) for this. There continuous temporal nodes
are estimated separately from state nodes, which can be done as those are leaf nodes.

Temporal Node Estimation: As temporal nodes depend on its corresponding state
node, as well as on this nodes’ parents, one distribution needs to be found per condition
combination. For this, first, per node ∆t and per condition, a distribution is defined
(e.g. Gaussian). Second, during the MCMC sampling procedure all nsamp gaps for ∆t
are recorded and stored under its respective parent conditions. Then, per condition set
at each node ∆t, the recorded gaps are used to fit a distribution over the observed gaps
and the corresponding distribution parameters are used in the temporal nodes.

State Node Estimation: Latency is handled by imputing missing values [246] at
each observation and then applying non-latent approaches (e.g. MLE) for parameter
estimation.
In TSCBNs the structure is well known and all possible mappings from short observed
sequences to long latent sequences are known. Thus, in this approach for each observed
TV sequence Xk

i a valid mapping to the full sequence Zki is found through randomly
sampling from a parameterized TSCBN. With this parameter estimation of the TSCBN
is performed as follows.

1. Per input sequence Xk
i draw a valid random mapping from the current TSCBN to

get Zki . This results in a list of full observations Z (in state and time).

2. Use Z to perform MLE as described in Section 7.3.6.2 to find parameters of the
TSCBN.

3. Repeat step 1) and 2) until convergence, with the newly updated parameters that
were found in 2).

134

7.3 Temporal State Change Bayesian Networks

7.3.6.4 Expectation Maximization

The following EM approach is proposed in [8].

EM Formalization: In EM the goal is to maximize the likelihood L(Θ|X,Z) of
the TSCBN given the observed data. This means, it maximizes the expectation of (i)
the TSCBN with parameters Θ to produce all latent sequences Z and (ii) Z and Θ to
produce the observed sequences X. Formally, this means EM maximizes

Θ = arg maxEZ∼p(Z|X,Θ)[log p(X,Z|Θ)]. (7.26)

Temporal Constraints: To improve accuracy of the EM algorithm (when estimating
the latent Zks from its Xk) it was proposed to exclude latent sequence combinations
from Xk to Zk which are not possible according to the given temporal structure of the
TSCBN. Any drawn MSSs Zk is valid if the following is given:

• If a sequence element vik has an identical state as its previous intra-dependent

node (vik = vi(k−1)), the end-time t
i(k+1)
abs of its interval needs to happen after all

its parents’ vrt start times trtabs: t
i(k+1)
abs > trtabs.

• For all parents vrt with vrt = vr(t−1) of a sequence element vik with vik 6= vi(k−1),

vrt’s start times need to occur before vik ends. That is, t
i(k+1)
abs > trtabs.

• For all parents vrt with vrt 6= vr(t−1) of nodes vik with vik 6= vi(k−1), vrt it is

required that tikabs < trtabs.

EM State node estimation: To compute the expectation per TV exactly all com-
binations of mappings from Xi to Zi would need to be computed. Thus, efficient exact
computation of EZ∼p(Z|X,Θ)[log p(X,Z|Θ)] is not possible. To solve this, a Monte Carlo
sampling approximation is used to determine approximate distributions at each step.
Using K observations and M sequences (i.e. TVs) EM is performed as follows. Per
observation k and sequence i a local estimate q(Zki) of the latent sequence that can be
mapped from the corresponding observed sequence Xk

i is assumed (e.g. given Xk
i =

ABC and 4 nodes for TV Si, Z
k
i may be ABBC, AABC or ABCC), where Θ holds the

parameters of the model at the current iteration.
At first both q(Zki) and all Θ are assumed uniformly distributed, before being updated
on each iteration. For this, per observation MCMC sampling from all M q(Zki)s is used
to draw nsamp samples from the whole TSCBN. This gives nsamp (or less, as samples not
satisfying temporal constraints are dropped) valid outcomes per local latent sequence
Zki . With this the following update steps are performed.

Update q(Zki): To maximize the likelihood of the local estimate, the updated estimate
q∗(Zki) is computed as q∗(Zki) =

∑nsamp
t=1 p(Zkit|Θ), where Zkit is the t-th sample drawn

(e.g. 〈A, A, B, C〉) and p(Zkit|Θ) is the likelihood of this sequence to occur.

Update Θ: To update Θ, E[log p(X,Z|Θ)] is found by simply counting all occurrences
of all nsamp drawn samples under the respective conditioning observed in the sample.
With this the likelihood is iteratively maximized.

135

7 Modeling Multivariate State Sequences

7.3.6.5 Variational Inference

A further approach, that we proposed in [8], is Variational Inference (VI).
There the framework of [247] was extended to introduce a VI approach for TSCBN. VI
tries to estimate the posterior latent distribution and the posterior observed distribution.
In VI this is achieved by approximating the global latent posterior distribution p(Z|Θ)
with tractable local distribution estimates q(Z). This is done through maximization
of the Evidence Lower Bound (ELBO). Further, using the Mean field assumption the
local estimates are considered as conditionally independent, which allows to compute
individual latent variables separately. In VI the latent nodes vij and ∆tij are considered
together.

Structure and mapping of latency: For the VI approach the probabilistic structure
shown in Figure 7.4 is assumed, but with inverted edges reaching from vij to Xi for all
TVs. From this representation, update equations for all RVs vij and ∆tij where deduced.
Notably, in this representation observations are mapped to latent state node values.
It thus, is assumed that each observation Xo only allows for a subset of valid latent
outcomes, which are represented in each vij of each Xi. Thus, per observation Xo =
(xo1, xo2, ...) only a subset of mappings from vij to Xi are possible, e.g. for an observed
Xi = 〈A,B〉 Zi might only be (vi1 = A, vi2 = A, vi3 = B) or (vi1 = A, vi2 = B, vi3 = B).
All such valid mappings from an observed Xi = Xo to its latent Zi were defined as

p(Xi = Xo|Zi) =

{
1 if Zi 7→ Xo valid

0 else
(7.27)

With this, invalid MSSs combinations (that are formed by all Zi combined) have a like-
lihood of 0 in the TSCBN.

ELBO derivation: In VI the goal is to find the variational distribution q(Z) that
approximates the true posterior p(Z|X) of the TSCBN.
According to [247] the likelihood of a general latent BN can be written as

p(Z,X) =
∏
n

p(wn|Pa(wn)) (7.28)

, with wn being all n nodes in the network, i.e. in TSCBNs either state nodes v or
temporal nodes ∆t.
Further, the probability P (X) of any observation can be written in terms of the ELBO
L and the KL divergence between the real and variational distribution as

ln(P (X)) = L(q) + KL(q||p) (7.29)

L(q) =
∑
Z

q(Z|X) · ln(
p(Z,X)

q(Z|X)
) (7.30)

KL(q||p) = −
∑
Z

q(Z|X)ln(
p(Z|X)

q(Z|X)
) (7.31)

136

7.3 Temporal State Change Bayesian Networks

, where
∑
Z

is the sum over all network outcomes of Z [247]. With this, minimization of

KL is equal to maximizing the ELBO which can be written as expectation

L(q) = Eq(Z)[log p(X,Z)− log q(Z)] (7.32)

Mean Field Approximation: The variational JPD q(Z) is factorized to allow for
local computations around nodes as

q(Z) =

M∏
i=0

Mi∏
j=0

q(zij) (7.33)

where zij can be a discrete state node vij or a continuous temporal node ∆tij .
With this, maximizing the overall ELBO (i.e. finding good approximations of param-
eters per node) is similar to maximization of the ELBO of the factorized distributions
q(zij).

Coordinate Ascent Variational Inference in TSCBNs In [8] it was proposed to use,
Coordinate Ascent Variational Inference (CAVI), for the maximization of the factorized
distributions q(zij). This approach uses iterative updates to maximize the ELBO. By
inserting the factorization of equation 7.33 in equation 7.29, it is found that the updated
variational distribution q∗(zij) is

q∗(zij) ∝ exp (Eq−ij [log p(Z,X)]) (7.34)

Computation of Expectation: Any parameter of a node in the network (v or ∆t)
are updated by computing this exponential expectation iteratively until convergence. To
compute this expectations efficiently the following assumptions are made:

• E is both computed over K observations and as stated above for all valid latent
mappings from Xi 7→ Zi. Mathematically this results from equations 7.27, while
computationally this means to compute E over valid combinations only. This
reduces computational costs.

• The computational costs are further optimized by enabling local computations per
node. This is, as according to [247] the expectation needs to only be computed
over the Markov Blanket around the updated node zij .

Using those assumptions update equations for q∗(zkij) of state nodes vij and for temporal
nodes ∆tij were found. This is done by iteratively alternating between updating net-
work parameters p(Z|X) from all q∗(zij) and updating q∗(zij) from the current network
parameters p(Z|X). This is done as follows.

137

7 Modeling Multivariate State Sequences

Update State Nodes vij: With above assumptions and the definition of the TSCBN
structure the update equation of any state node vij is given as

q∗(vij) ∝ exp (Eq−ij [log p(Z,X)]) (7.35)

q∗(vij) ∝ exp (Eq−ij [log (Ψ(vij) · Γ(vij) · Ξ(vij))]) (7.36)

with Ψ as the factor with all parents of vij , Γ as all factors that contain co-parents of
vij and Ξ as factor with children of vij , which is

Ψ(vij) = p(vij |Pa(vij)) (7.37)

Γ(vij) =
∏

γ∈CoPa(vij)
ξ∈Ch(vij)

p(ξ|γ) (7.38)

Ξ(vij) =
∏

ξ∈Ch(vij)

p(ξ|vij ∪ CoPa(ξ)) (7.39)

Here, Ξ(vij) includes the observed sequence Xi with factor p(Xi|vij ∪CoPa(vij)), which
was defined in equation 7.27 to be zero for invalid mappings. Thus, invalid mappings
can be ignored in this equation when computing the expectation.
Computation of E: In this update equation all expectations are composed of terms that
are solely discrete and terms that are of mixed type (i.e. continuous and discrete). This
is, as all nodes in a TSCBN also have a temporal node that needs to be included in this
step. For the purpose of clarity the expectation was split in a mixed Ec and a discrete
part Ed which gives the typical shape of the update equation

E[log p(Z,X)] = E[log(p(∆tij |vij , ...) + log(p(∆tkr|vij , ...) + ... (7.40)

+ log(p(vij |vkr, ...)] + log(p(vxy|vqs, ...)] (7.41)

= E[log(p(∆tij |vij , ...) + log(p(∆tkr|vij , ...) + ...] (7.42)

+E[log(p(vij |vkr, ...)] + log(p(vxy|vqs, ...)] = Ec + Ed (7.43)

Ed can be simply computed by iteration of outcome combinations, while Ec is computed
as follows. As all ∆t are root nodes in TSCBNs, Ec is made up of components of the
shape E[∆t|Pa(∆t)], with discrete nodes Pa(∆t). Those components are computed as

E[∆t|Pa(∆t)] =
∑
V

(

∫ ∞
−∞

∆t · log p(∆t|Pa(∆t))d ∆ t) · q(Pa(∆t)) = (7.44)∑
V

χ(∆t, Pa(∆t)) · q(Pa(∆t)) (7.45)

where V are all outcome combinations of the discrete parents of ∆t, i.e. Pa(∆t), and
q(Pa(∆t)) its local probabilities. Notably, in CAVI the expectations are computed with
respect to the update node, i.e. Eq−ij is excluding q(vij).

138

7.3 Temporal State Change Bayesian Networks

Updating network parameters of vij: With the local updated estimates the network
parameters can be found with

p(vij |Pa(vij)) ≈ mean(
∏

τ∈{vij}∪Pa(vij)

q(τ)) (7.46)

Here, mean is the mean over all K observations. This is possible according to the mean
field assumption where it is assumed that all nodes q(vij) are pairwise independent.

Update temporal nodes ∆tij: Here, for nodes ∆tij still the structure in Figure
7.4 is considered and a Gaussian distribution per temporal node was assumed. The
update equation for the local estimate of ∆tij , governed by its parameters µ and σ per
observation are presented.

q∗(∆tij ;µ
∗
ij , σ

∗
ij

2) ∝ exp (E∆t−ij [log p(Z,X)]) (7.47)

For this case again the structure of TSCBNs is assumed and only the Markov Blanket
is considered per node, i.e. as ∆tij are leaf nodes only one term with its parents is of
relevance. Also, the valid mappings assumption in equation 7.27 holds. That gives the
non constant part to compute the expectation over as

p(Z,X) = p(∆tij ;µij , σij
2|Pa(∆tij))) (7.48)

, where the remaining term captures the distribution given its parents. This yields

q∗(∆tij ;µ
∗
ij , σ

∗
ij

2) ∝ exp (E∆t−ij [log p(∆tij ;µij , σij
2|Pa(∆tij)))]) (7.49)

Estimating latent outcomes from observations: It is assumed that the variances σij
2 are

fixed and only update each µij per outcome combination ω that Pa(∆tij) can take.
Also, for the computation of the expectation per outcome combination and observation
the absolute times of observed state changes to latent observed values are mapped for
each node ∆tij by using the method described above. This allows to get a full sample
estimate of the network (with values for all ∆t) for each outcome combination ω which is
based on the current observation. With this latency in mappings from observed vectors
Xi to its latent node outcomes is handled.
Per such estimated observation ∆tijobs|ω a Gaussian N (µij|ω = ∆tijobs|ω, σ

2) is assumed.
The idea is to compute the expectation around the observed absolute times by inter-
polating them and by resolving latency via computation of the CAVI update around
relevant parent outcomes.

Estimation of local node estimate q∗(∆tij ;µ
∗, σ∗2): From the interpolated observations

µij|ω and the current estimates of the outcomes q(vr = ωr) a local estimate per node is

139

7 Modeling Multivariate State Sequences

found with equation 7.47. For this the expectation can be written as

E∆t−ij [log p(Z,X)] (7.50)

=
∑

ω∈Pa(∆tij)

log p(∆tij ;µij , σij
2|Pa(∆tij) = ω) ·

∏
ωr∈ω

q(vr = ωr) (7.51)

=
∑

ω∈Pa(∆tij)

logN (µij|ω, σ
2) ·

∏
ωr∈ω

q(vr = ωr) (7.52)

, where vr are all nodes of Pa(∆tij) with a specific outcome ωr, e.g. for a node ∆t12 vr
might correspond to nodes v12 and v11. Also the Gaussian distribution is fixed with a
mean of the given interpolated observation µij|ω = ∆tijobs|ω.
When, inserting equation B (provided in the appendix) into equation 7.47 it is found
that for the local estimate µ∗ij of the temporal node ∆tij it holds that

µ∗ij =

∑
ω∈Pa(∆tij)

µij|ω ·
∏
ωr∈ω q(vr = ωr)∑

ω∈Pa(∆tij)

·
∏
ωr∈ω q(vr = ωr)

(7.53)

This makes intuitively sense, as the µij governing ∆tij is a weighted average over its
outcomes depending on its likelihoods. A full derivation of this update can be found in
Appendix B.

Updating network parameters of ∆t: Finally the estimate p(∆tij ;µij|ω, σ
2
ij |Pa(∆tij) of

each CPD of each temporal node can be found as the weighted average

µ∗ij|ω =

∑
ω∈Pa(∆tij)

µ∗ij ·
∏
ωr∈ω q(vr = ωr)∑

ω∈Pa(∆tij)

·
∏
ωr∈ω q(vr = ωr)

(7.54)

Estimation Algorithm: With the given update equations the VI algorithm in Alg.
7.3.6.6 was deduced. Notably, the observations X are included in the way described in
this section at lines 3 and 6. ω resembles all possible parent outcome combinations.

7.3.6.6 Computing ∆t

When computing any ∆tij in a latent sequence (e.g. 〈A,A,B,B〉) from a full observation
Xi (e.g. 〈A,B〉), in order to be usable in the computation of the expectations in CAVI
each latent node requires a defined absolute time at which it occurs. The following
interpolation strategy is used for this.

• Times between two elements are interpolated linearly within known parts, e.g.
given A at t = 1 and B at t = 2 would result in times and values 〈(A, 1), (A, 1.33),
(A, 1.66), (B, 2.0)〉 for a latent sequence 〈A,A,A,B〉.

140

7.4 Evaluation

Algorithm 2 CAVI Approach for parameter estimation in TSCBNs [8]

Input: V : State Nodes, T : Temporal nodes, X: observations
Output: µ∗ij|ω: Estimated parameters of temporal nodes, p∗(vij |Pa(vij)) : Estimated
Parameters of state nodes

1: q(vij |ω) = U();∀vij ∈ V . Initialization
2: while ¬ (L(q) converged) do
3: q∗(vij) = exp (Eq−ij [log (Ψ(vij) · Γ(vij) · Ξ(vij))]);∀vij ∈ V . State Node Updates
4: p∗(vij |Pa(vij)) = mean(

∏
τ∈{vij}∪Pa(vij)

q∗(τ));∀vij ∈ V . State Network

Updates
5:

6: µ∗ij =

∑
ω∈Pa(∆tij)

µij|ω ·
∏
ωr∈ω q(vr=ωr)∑

ω∈Pa(∆tij)

·
∏
ωr∈ω q(vr=ωr)

;∀∆tij ∈ T . Temporal Node Updates

7: µ∗ij|ω =

∑
ω∈Pa(∆tij)

µ∗ij ·
∏
ωr∈ω q(vr=ωr)∑

ω∈Pa(∆tij)

·
∏
ωr∈ω q(vr=ωr)

; ∀∆tij ∈ T . Temporal Network Updates

8: end while
9: return µ∗ij|ω∀∆tij ∈ T , p∗(vij |Pa(vij));∀vij ∈ V

• If the last observed element is followed by further elements in the latent sequence,
its preceding element’s distance is used for interpolation, e.g. having seen A
at t = 1 and B at t = 2 that is extended to 〈A,A,B,B,B〉 would result in
〈(A, 1), (A, 1.5), (B, 2), (B, 2.5), (B, 3.0)〉. This extension time is determined by
subtracting the last observed time by its predecessors interpolated time. If no
predecessor is available the distance is computed by dividing the total time of the
current sequence by its number of nodes. While this interpolation may potentially
lead to temporal inconsistency, it produces a reasonable approximation that tends
to decrease deviation from the true mean when enough sequences were observed.

7.4 Evaluation

Lastly, a comparison of models, parameter estimation methods and structure discovery
approaches was presented. In this work the results of this evaluation are revised to
show the suitability of TSCBNs to be used for representation of MSSs in the proposed
DM pipeline. Further, the comparison of parameter estimation and structure discovery
approaches is revised for the same purpose. The following is thus, taken from [8].

7.4.1 Experimental Setup

All experiments were conducted on an HP
TM

Z-840 equipped with Intel R© Xeon R© E5-2640
v3 2.60GHz CPUs and 96 GB of RAM. To compare the models, a synthetic evaluation
was performed, where ground truth MSSs are generated and then, are used for training
and evaluating the models.

141

7 Modeling Multivariate State Sequences

Data Generator: The following data generator was used to generate MSSs for this
purpose. This generator is a TSCBN, with defined structure that models evolving de-
pendencies between TVs. Sampling from such a defined TSCBN gives a set of MSSs
that is used as input for training of all models. Also, for the comparison of the models
the generator TSCBN is used as a ground-truth. The state lengths are sampled from a
Gaussian distribution. Additionally, the generator allows to set a defined probability of
state change per node.
From this model defined numbers of samples were drawn which are then, used for eval-
uation. Those samples are latent sequences per TV (e.g. 〈S0 = 0, S0 = 0, S0 = 1〉) when
drawn, which are reduced to true observations (e.g. 〈S0 = 0, S0 = 1〉).
The parameters that define the MSSs are set by defining the TSCBN structure. This
includes the following parameters.

• Structure of TSCBN: number of TVs nTV , number of nodes per TV nn, i.e.
length of sequence per TV

• Connections in TSCBN: number of TVs that have a connection with other TVs
nTV int, number of edges ninter that nodes have if a connection is present.

• Parameterization of TSCBN: number of states per state node nc and settings
for µ and σ per temporal node, state change probability pSC , which is the proba-
bility with which a node remains in the state it previously was in.

Further, to allow for comparison, the structure of DBNs and CTBNs is deduced from
the true structure of the TSCBN. With this the following experiment were performed.

1. A TSCBN with nTV TVs and nn nodes per TV is created. A DBN with nTV nodes
per time slice and a CTBN with a fixed structure with nTV nodes are generated.

2. Per TV, nTV int connecting TVs are randomly chosen. Then, ninter connections to
nodes of this TV are randomly set. In CTBNs and DBNs those edges form the
static network structure. This structure is assumed given for DBNs, CTBNs and
TSCBNs when performing parameter estimation. In DBNs further the structure
is defined by its resolution, which is the breadth of each time slice.

3. Next, nc states are created per node and a CPD is randomly generated per node
and condition. In TSCBNs, this CPD forms the ground truth and is used for
sampling MSSs. Each CPD is created such that all probabilities of a intra-node to
remain in its same state are set fixed to pSC , while a random distribution is drawn
for the remaining CPD entries. Further, a Gaussian distribution with µ′ and σ′ is
used to draw values µ, that are set to the temporal nodes under given conditions.
With this, per node different µs are provided and state sequences of equal lengths
are avoided. In the experiments σ′2 was set to 0.1.

With this, a structure for all three network types is given, while for TSCBNs an addi-
tional parameterization is given. The TSCBN is used for sampling sequences as described
in the beginning of this section. Next, a copy of the TSCBN is made, where parameters
are deleted. This TSCBN is used for parameter estimation, while the original is kept as
ground truth.

142

7.4 Evaluation

The generated samples are split 90:10 into a training and a test set which are randomly
chosen from the data. Then, for all three network types parameter estimation is per-
formed by using the sampled MSSs from the training data set.
For the implementation of DBNs [192] the implementation of python’s libpgm package
was used and for the implementation of CTBNs [193] a python wrapper for the R pack-
age CTBN-RLE [248] was written and used. In DBNs static edges between related TVs
are defined and the the structure is repeated in discrete time, with outcomes at each
slice. The maximum distance of a time-slice to a state change to capture is defined
as DBN tolerance, which defines the resolution of the structure repetition. Parameter
Estimation is done with a Maximum Likelihood Estimator. For CTBNs the same static
edges between TVs are used for both the transition and intensity matrices as provided
by the ground truth TSCBN. Then, CTBN-RLE’s parameter learning engine is used to
estimate parameters of the CTBN.

Parameters used: For all models parameters are 5 nodes per TV (i.e. 4 intervals), 4
states per node, per TV 2 edges to two other TVs. For the DBN a resolution of 0.02 was
used and the length of all intervals is drawn from a Gaussian with µ = 0.5 and σ2 = 0.1.
The number of TVs nTV , the number of samples for training and test nsamp, and the
probability of a state change occurring pSC were varied. For parameter estimation per
sequence during MCMC sampling 1000 samples are drawn per iteration, 5 iterations
were performed for EM and VI. Per iteration a CPD smoothing of ε = 0.1 is used.

7.4.2 Model

With the above experiments the structure of TSCBNs was evaluated. For the proposed
DM pipeline TSCBNs are used as it provides a compact yet expressive representation to
represent MSSs under uncertainty. This model requires a little more parameters than
CTBNs, but is higher in expressiveness. This was shown in [8] and relevant experiments
for comparison of structures for the three models are discussed in this context in the
following.

7.4.2.1 Setup

Evaluation Criteria: The model structure is compared in terms of the number of
edges nE , nodes nN , states nS and parameters nC . The structure of the models is quan-
tified with the number of components required to model a MSS. For a given model this
includes the number of edges nE , number of nodes nN , total number of states nS and
the total number of entries required in all CPD tables of all nodes nC (i.e. the number
of parameters).

Experiments: To evaluate the model structure, the number of intervals and TVs is
varied and an according TSCBN and DBN found to represent this MSS. The structures
are evaluated in terms of number of nodes, edges, states and conditional probability
entries (=parameters).

143

7 Modeling Multivariate State Sequences

0 5 10 15 20 25 30 35 40 45 50

101
102
103
104
105
106

Number of Intervals

T
ot

al
N

u
m

b
er

nC : TSCBN nTV = 5
nC : DBN nTV = 5
nC : CTBN nTV = 5
nC : TSCBN nTV = 10
nC : DBN nTV = 10
nC : CTBN nTV = 10
nN : TSCBN nTV = 5
nN : DBN nTV = 5
nN : CTBN nTV = 5
nN : TSCBN nTV = 10
nN : DBN nTV = 10
nN : CTBN nTV = 10

Figure 7.12: Results of structural complexity, as number of nodes nN and CPDs nC , for various
numbers of TVs [8].

7.4.2.2 Results

Figure 7.12 shows the results of the experiments. It can be seen that CTBNs and
TSCBNs are both light in terms of parameters required for representation. Thus, in
terms of parameter complexity both equally suited to represent MSSs. In contrast to
that, DBNs quickly explode in complexity and are thus, less suited to be used in the
proposed DM pipeline.
This comparison of structural complexity was explained per model.
DBNs require additional nodes nN per interval. Also, DBNs add multiple nodes per
state change (depending on its resolution). With growing precision this results in in-
crease of parameters. CTBNs have a fixed number of nodes, i.e. only the TVs and its
dependencies. In terms of parameters nC intensity matrices are stored per condition,
which increases in complexity with more parents per TV. In TSCBNs per additional in-
terval an additional node is required. However, in contrast to DBNs only state changes
are modeled, making it compact in representation.
Thus, CTBNs are similarly light as TSCBNs in terms of parameter size, if no evolving
dependencies are given, while TSCBNs show to be lighter when evolving dependencies
are modeled in MSSs. Especially, when assuming evolving dependencies, TSCBN require
edges only at nodes within the process where actual dependence is given. With this less
edges and states per node are required to model MSSs, as less conditional combinations
are possible per node. In contrast to that both, in DBNs and CTBNs all dependencies
between TVs need to be directly given, which results in state explosions in those cases.
For the case of Specification Mining it is required to model functional procedures, which
are of a defined structure with changing dependencies. This evaluation shows that
TSCBNs are well suited for those tasks as the number of TVs, parameters and nodes is
low. As CTBNs are similarly light weight those are equally well suited. However, due
to its lack of expressiveness for the proposed DM pipeline TSCBNs are preferred.

144

7.4 Evaluation

7.4.3 Structure Discovery

Multiple structure discovery approaches can be used for discovery of TSCBNs. Some
prominent representatives where compared against TrieDiscover. It was shown that
TrieDiscover is best suited among those approaches for learning TSCBNs from MSSs.
Results of [8] that justify this are discussed here.

7.4.3.1 Setup

The described generator is used for verification with the generated models as ground
truth.

Compared Approaches: Six approaches were compared.

• TrieDiscover: All three variants cbTD, cbvTD and sbTD are used.

• Greedy Hill Climbing (GHC): An optimization-based approach.

• PC Algorithm: A classical constraint-based approach.

• Max-Min Hill Climbing Algorithm (MMHC): A hybrid max-min hill climb-
ing algorithm.

To make GHC, PC and MMHC applicable to learning of TSCBNs the assignment of
state changes to temporal nodes in the TSCBN has to be done prior to execution. For
this a naive assignment (i-th event of signal X is assigned to node Xi) is used and it was
shown that the advanced event assignment of TrieDiscover gave indeed better results in
expressiveness. Also, edges in non-TD approaches are oriented using the index number
of the sequential nodes per TV (from smaller index number to the larger one).

Parameterization: The following parameters were used. The temporal gap between
subsequent events of a signal is randomly drawn between 0.5 and 1.0 from a uniform
distribution. The state change probability is set to 0.95, the number of states per TV
to 3, number of TVs to nTV = 5 and length per TV to nL = 4 and 0.5 · nL · nTV
random inter-edges and 5000 MSSs sampled for learning. The structure learned by
each algorithm was compared to the structure of the original network. TrieDiscover
is parameterized with k = 0.1 to be able to filter the noisy parts, tth to 1.0 as gaps
between intra nodes are drawn from Gaussians with mean 0.5. In the sbTD BIC is used
as score, in cbTD and cbvTD α = 0.01 and χthr = 1.0. The significance level in the
constraint-based and hybrid approaches was chosen from the values α = 0.01, α = 0.05,
and α = 0.1. Good results were achieved when using α = 0.01 in the PC, MMHC, cbTD
and cbvTD algorithms. Also, a maximal condition set size of two nodes turned out to be
a good trade off between precision and performance when executing the cbTD and PC
algorithm. All algorithms were implemented in Python, while GHC, PC, and MMHC
were taken from the Python package pgmpy1.

1http://pgmpy.org/

145

http://pgmpy.org/

7 Modeling Multivariate State Sequences

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

2

4

6

8

10

12

nL

#
ad

d
ed

ed
ge

s

Added Edges

tth = 0.0
tth = 0.5
tth = 1.0
tth = 1.5
tth = 2.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0
2
4
6
8

10
12
14
16
18

nL

#
m

is
si

n
g

ed
ge

s

Missing Edges

tth = 0.0
tth = 0.5
tth = 1.0
tth = 1.5
tth = 2.0

Figure 7.13: Left: Various number of added and missing edges for sbTD in comparison to
ground truth, when structure and tth is varied, with 3 TVs assumed [8].

Evaluation Criteria: For the evaluation the following criteria were used.

• Run time: To measure computational efficiency the run time is measured.

• Additional Edges: This is the number of edges that are present in the discovered
structure, but cannot be found in the original network.

• Missing Edges: This is the number of edges that are missing in the discovered
structure, but are found in the original network.

• Structural Hamming Distance (SHD): Introduced in [233], this metric is
used to compare the discovered to the original network structure. It is given by
the sum of the number of missing edges, the number of additional edges and the
number of wrongly oriented edges. Thus, a small SHD indicates a higher similarity
between networks.

Experiments: The following experiments were performed. At first parameterization of
TrieDiscover was inspected. That is, in the first experiments in Figure 7.13 the influence
of tth on the structure and the run times of the individual steps shown in Figure 7.14.
All approaches were compared against each other for different numbers of samples and
different SC probabilities, with results shown in Figure 7.15 and 7.16.

7.4.3.2 Results

Varying Parameters of TrieDiscover: As Figure 7.13 shows tth is a main factor
for the number of edges in the learned structure. This is, as the parent candidate set
for final structure optimization is dependent on it. It can be seen that small values (e.g.
tth = 0.0) lead to less edges (many missing edges), as this set is empty, while a higher tth
reduces the number of missing edges. Also, a bigger tth leads to an increase of added
edges, as the structure optimization step yields a large number of edges that are spurious
dependencies, e.g. given an edge A2 → B2, strong dependencies exist between A2 and
preceding events. This may lead to spurious dependence between A1 and B2. A good

146

7.4 Evaluation

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

20

40

60

80

100

120

140

nTV

E
xe

cu
ti

on
ti

m
e

PS Identification

sbTD
cbTD

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

1

2

3

4

nTV

E
xe

cu
ti

on
ti

m
e

Structure Optimization

sbTD
cbTD

Figure 7.14: Execution time when assuming nL = 3 for various numbers of TVs and the two
steps of TrieDiscover [8].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·104

100

101

102

Sample Size

E
xe

cu
ti

on
ti

m
e

sbTD cbTD cbvTD
PC GHC MMHC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·104

5
10
15
20
25
30
35
40

Sample Size

S
H

D

sbTD cbTD cbvTD
PC GHC MMHC

Figure 7.15: Results in terms of run time and SHD for various sizes of the training set, SC
probabilities [8].

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

100

200

300

400

SC Probability

E
xe

cu
ti

on
ti

m
e sbTD

cbTD
cbvTD
PC
GHC
MMHC

0.50.550.60.650.70.750.80.850.90.95 1

5
10
15
20
25
30
35
40
45

SC Probability

S
H

D

sbTD cbTD cbvTD
PC GHC MMHC

Figure 7.16: Results in terms of run time and SHD for various sizes of the training set, SC
probabilities [8].

147

7 Modeling Multivariate State Sequences

way to find appropriate values for tth is by empirically evaluating gaps between state
changes, which will be shown in Chapter 9.

Varying Number of TVs: As Figure 7.14 illustrates, the run time increases with
more TVs that are considered. However, in the given experiments no parallelization was
used for PS identification, while many steps such as merging are done in parallel which
allows to scale TrieDiscover. For instance, assuming that 7 TVs require 20 seconds when
using one core, then, in theory 40 CPUs might handle 280 TVs within a similar time
range. However, this is yet to be shown in future work. Still for the prototype of the
DM pipeline the given sequential implementation is sufficient. In general the execution
time is mainly influenced by the number of TVs, length of the sequences and the choice
of the parameters. In particular, parent set identification becomes increasingly complex
and makes up around 95 % of run time. The shown run time assumes all TVs to have 4
nodes. In real world procedures however, the interval number varies across TVs. Thus,
it is assumed, that more TVs with various interval numbers are handled in similar run
time.
Nevertheless, as can be seen in this evaluation reducing the number of TVs as it is done
here in the TV clustering step of the proposed DM pipeline is an essential step to provide
reasonable execution times. In practice finding specifications among 10 TVs is already
meaningful, while with parallelization and improvement of this step more TVs could be
handled in the future.

Varying Sample Size: The size of the training set does not meaningfully improve
precision as Figure 7.15 shows. This is due to the fact that TrieDiscover, is lossless and
less samples suffice to discover the according structure. By including expert input for
cases of too less samples for correlation detection meaningful structures are found for
such critical edges.

Varying SC Probability: The SC probability sets the noise in the data during learn-
ing. As Figure 7.16 shows the SHD curve shows that TrieDiscover performs worse for
smaller SC probabilities, i.e. if more latency is present. However, overall all three vari-
ants of TrieDiscover yield the best results here. Especially if a higher degree of latency is
present, TrieDiscover still yields good results. This is as the trie is built up exactly, i.e.
even if paths are seen rarely, those are present as candidates for structure optimization.

Comparing approaches: Among the compared approaches as can be seen in Figure
7.15 and 7.16, Trie Discover performs best. MMHC and PC improve with more samples.
In terms of run time the GHC and MMHC perform best, while all other approaches
yield higher run times with more latency. This is as more latency also means more
variation in possible paths represented in the data set. Further, TrieDiscover is about
10 times faster than the constraint-based baselines and also good in precision even for
less samples given.
In terms of handling noise, TrieDiscover yield the best results here as it is using a com-
pression with an advanced event to node assignment, as described above. The naive
event-to node assignment used in the baselines results in unclear relations between two
events, e.g. for a sequence 〈A,A,B,A〉, the second A is latent thus, the third A will be

148

7.4 Evaluation

assumed A2. Thus, for the case of no latency the static approaches improve significantly
performing similar to TrieDiscover.
Further, unlike the Baseline approaches TrieDiscover does not suffer from wrongly ori-
ented edges as it includes temporal information. Thus, in the general case where latency
is given it is preferable to use the TrieDiscover approach for the structure learning of
TSCBNs within the proposed DM pipeline.
Among the variants of TrieDiscover constraint-based approaches outperform score-based
approaches in terms of additional edges as the latter tend to contain spurious dependen-
cies. The further, use CI tests that are performed conditioned on a set of other nodes,
which allows to find and remove edges with spurious dependencies. This is also why
cbTD works better than sbTD and should be preferred in the DM pipeline.

7.4.4 Parameter Estimation

Lastly, multiple parameter estimation approaches for TSCBNs were introduced. It was
shown that all three estimation approaches perform similar in expressiveness, while
run time of VI becomes significantly worse for higher structural complexity. Also, the
CTBNs, DBNs and TSCBNs were compared in expressiveness and it can be seen that
TSCBNs are best suited for representation of MSSs. In this section the experiments of
[8] are revised to underline this.

7.4.4.1 Setup

Evaluation Criteria: Expressiveness was measured using the mean log-likelihood and
temporal mean log-likelihood, while the performance was evaluated using the run time.
Those were defined as follows.

• Mean Log-Likelihood: The mean log-likelihood resembles the state expres-
siveness of a model computed from N given outcomes with M nodes per outcome.
Values closer to zero indicate better expressiveness. It is normalized by the total
number of nodes M in the model to allow for fair comparison between TSCBNs,
DBNs and CTBN. It is defined as

lmean(Θ|X) =
1

N ·M
∑N

i=0

∑M

j=0
logP (xji |Pa(xji)) (7.55)

where xji is the j-th outcome and the i-th node of the model. This metric is

computed for all discrete nodes xji (i.e. in TSCBNs all nodes v and in DBNs all
nodes). The magnitude of this metric is called the Absolute Mean Log-likelihood.
In CTBNs this metric is computed by walking through each sample in a sequence
and by storing all previous values of the outcomes of TVs as conditions. Then,
per sample the transition matrix per TV is used to find the log-likelihood of the
TV transitioning into the observed state under the given previous condition. All
computed log-likelihoods are then summed up and normalized by the number of
summands yielding the Mean Log-Likelihood. This metric resembles how likely a
CTBN would have produced the observed sequence.

149

7 Modeling Multivariate State Sequences

• Temporal Mean Log-Likelihood: If xji is a temporal node (xji = ∆tji),

P (xji |Pa(xji)) in lmean(Θ|X) is the Gaussian of the according temporal node in
the TSCBN. It measures the temporal expressiveness of a TSCBN. This criterion
is called the temporal log-likelihood in the following.

• Run time: The execution time required for the parameter estimation is measured.

Experiments: With this the following experiments were performed. The parameter
estimation is evaluated by training a model with 90 percent of the data and testing it
with 10 percent. During testing the mean log-likelihood of the test sequences are used
for evaluation of the trained model. Further, for the TSCBN the temporal log-likelihood
and run time of the parameter estimation is measured. This is done once with fixed
pSC = 0.8 and increasing nsamp and once with fixed nsamp = 2000 and increasing pSC .

7.4.4.2 Results

Here first the performance of TSCBNs and its parameter estimation approaches are dis-
cussed and then, the models are compared.

Varying Number of State Changes: As depicted in Figure 7.17 an increasing num-
ber of state changes improves the expressiveness of TSCBNs, as less latency is present.
With this, less marginalization during estimation is required making it more precise.
For less TVs and more expected state-changes that occur run time of all estimation ap-
proaches improves as shown in the right plot. That is as, less latency in EM and MLE-R
requires less MCMC sampling and in VI less computation of expectations.

Varying Number of Samples: In Figure 7.18 it can be seen that in TSCBNs more
samples improve precision, which is as more samples contain more observed behavior.
With this it allows to better handle data fragmentation and reduce the degree of ap-
proximation required.
Further, the same effect is seen when estimating the CPDs of temporal nodes of TSCBNs.
For a small number of samples the temporal log-likelihood does improve significantly if
more samples are added, while it stagnates later. Also, that less TVs yield more expres-
sive results, as in this case it is more likely that unknown samples are similar to observed
samples in training.

Comparing model expressiveness: As Figure 7.17 shows DBNs and CTBNs are
worse in expressiveness than TSCBNs for modeling MSSs, which does not change for
more samples and when changing the probability of state changes. In DBNs this is as the
structure is independent of state changes as learning is done across discretized time-slices.
CTBNs generalize over state changes by learning generalized intensity matrices that are
independent of the change in dependency of the procedure. TSCBNs, model changes
only at state changes where those actually occur making this model more expressive.
Even for a SC probability of 0.55 TSCBNs are still about 2 times more expressive than
CTBNs and about 8 times more expressive than DBNs. Thus, TSCBNs are preferable
to express functional procedures with evolving dependencies based on MSSs.

150

7.5 Summary and Conclusion

0.5 0.6 0.7 0.8 0.9 1

10−0.2

100

100.2

100.4

100.6

100.8

Probability of State-Change

A
b

s.
M

L
L

TSCBN: nTV = 3 DBN: nTV = 3 CTBN: nTV = 3
TSCBN: nTV = 5 DBN: nTV = 5 CTBN: nTV = 5
TSCBN: nTV = 10 DBN: nTV = 10 CTBN: nTV = 10

0 0.25 0.5 0.75 1 1.25 1.5

·104

10−0.2

100

100.2

100.4

100.6

100.8

Number of Samples

A
b

s.
M

L
L

0.5 0.6 0.7 0.8 0.9 1

102

103

Probability of State-Change

R
u

nt
im

e

EM: nTV = 3 EM: nTV = 5
VI: nTV = 3 VI: nTV = 5
MLE-R: nTV = 3 MLE-R: nTV = 5

Figure 7.17: Left and Mid : Abs. MLL and run time when varying probability of state change
and number of training samples using the EM algorithm for estimation of TSCBN
parameters. right: Run times for three approaches including EM, VI and MLE
random for two structure sizes [8].

Comparing Estimation Approaches: Further a comparison of estimation ap-
proaches was given, which showed that VI performs best in expressiveness in both state
and time, while in run time it is best for a small degree of latency. For increased latency
the other approaches perform best. This was shown as follows.
As Figure 7.17 (right) shows, for less latency VI requires less time as in this case com-
putation of expectations is efficiently possible, while MCMC sampling is required in the
other approaches. With increased structure and latency more combinations need to be
iterated in VI, leading to longer run times. However, in EM and MLE-R bigger struc-
tures only increase the time required for sampling and computation of global estimates,
which does increase less than the effect of growth in combinations in VI.
Expressiveness in state of all approaches is similar as Figure 7.18 (left) shows. MLE-R
seems to perform slightly better than EM and VI. Further, all approaches improve with
less latency, as less approximations are required in that case. Also, as Figure 7.18 (mid)
depicts with more samples more information is given and thus, improved expressiveness
results are found for all approaches.
As VI includes temporal nodes in its computation the temporal expressiveness is best in
VI as Figure 7.18 (right) shows. For EM and MLE-R the fitting of a Gaussian curve using
the observed samples per condition seems to contain a higher degree of approximation,
yielding less expressiveness in time.

7.5 Summary and Conclusion

To be able to extract Specifications and dominant behavior from a set of MSSs an ex-
pressive, compact and interpretable model is required. For this three models including
DBNs, CTBNs and TSCBNs were compared and described in this chapter. TSCBNs
outperform its competitors for this task and thus, show to be best suited for this sce-
nario as a compact structure is given that models functional procedures in terms of state
changes at their state and time of occurrence only.
To be able to learn such networks structure discovery and parameter estimation ap-
proaches were introduced and compared. For structure discovery three variants of

151

7 Modeling Multivariate State Sequences

0.5 0.6 0.7 0.8 0.9 1

0.5

0.55

0.6

0.65

0.7

Probability of State-Change

A
b

s.
M

L
L

EM: nTV = 3 EM: nTV = 5
VI: nTV = 3 VI: nTV = 5
MLE-R: nTV = 3 MLE-R: nTV = 5

0 0.25 0.5 0.75 1 1.25 1.5

·104

0.6

0.7

Number of Samples

A
b

s.
M

L
L

EM: nTV = 3 EM: nTV = 5
VI: nTV = 3 VI: nTV = 5
MLE-R: nTV = 3 MLE-R: nTV = 5

0 0.25 0.5 0.75 1 1.25 1.5

·104

0

5

10

15

20

25

30

Number of Samples

T
em

p
.

M
L

L

EM: nTV = 3 EM: nTV = 5
VI: nTV = 3 VI: nTV = 5
MLE-R: nTV = 3 MLE-R: nTV = 5

Figure 7.18: The KL divergence and temp. MLL when varying probability of state change
and number of training samples for three approaches including EM, VI and MLE
random for two structure sizes are shown [8].

TrieDiscover were introduced and compared against MMHC, GHC and PC, showing
that TrieDiscover is suited best for this task. In particular its constraint based versions
yield better results than the score based ones. For parameter estimation EM, VI and
MLE-R were presented. In this chapter the result were revised to show, that all three
approaches are similarly well suited to capture the behavior of a set of MSSs. In terms
of run time however, VI is preferable for small structures with less latency, while the
other approaches are well applicable for bigger structures and more latency.
Consequently, for the penultimate step of the proposed DM pipeline TSCBNs learned
with cbTD and EM or VI are preferable. It is well suited to interplay with the other
components within this DM pipeline as will be shown in Chapter 9.

152

8 Inference: Specification Mining and
Dominant States

With the steps performed so far complexity was broken down, as a subset of relevant TVs
was found and within those subsets functional procedures were identified. Per procedure
the distribution of functional procedures is represented in state and time using TCSBNs.
Those models represent the observed behavior of a subset of MSSs in a compact and
aggregated manner. TSCBNs do this by effectively capturing MSSs. Notably, per group
of functional procedures one TSCBN is learned.
Based on those representations it is now possible to extract both dominant behavior and
specifications W using the trained model Q which is a TSCBN and an inference I with
hyper parameters PI .

W = inf(Q, I, PI) (8.1)

The extracted models represent functional procedures, where irrelevant information such
as noise, outliers or TVs were removed in previous steps. Thus, the resulting models
contain a clean essence of the observed system behavior of a trace that is of relevance
to the expert. As the last step of the proposed pipeline, the main goal of this chapter is
to extract dominant behavior and to extract specifications from those models. For this
the following two methods are used.

• BaySpec on TSCBNs: This approach, that we first introduced in [10], is able
to extract a list of LTL specifications from TSCBNs. This list resembles a set of
specifications that allow to perform Model Checking on further incoming traces
Ks.

• MPE on TSCBNs: The Most Probable Explanation (MPE) allows to identify
the most likely MSS state that was captured by a TSCBN. That is, the MSSs that
were observed most in the functional procedure are most likely to be produced
by the network. This allows to identify dominating system states which helps to
improve system and data understanding of an expert.

In TSCBNs the model capacity is often higher than can be covered by the number of
observed samples. However, as the aim is the extraction of specifications and dominant
states in that case, it is assumed that unobserved state constellations of the TSCBNs
are less likely than the once that are observed. Thus, by considering most likely behav-
ior in the TSCBNs the inference approach mainly operates on information gained from
observations.
In BNs generally the Markovian Assumption holds and so it does in TSCBNs. That is,
each RV is conditionally independent of its non-descendants given its parents. Thus, in
theory no temporal chains of events longer than three RVs should be possible to be cap-
tured. However, in the given case it is assumed that similar mostly complete MSSs are

153

8 Inference: Specification Mining and Dominant States

used for training (as it is trained within a defined functional procedure) and thus, over-
all likely state constellations correspond to variants that were observed. Consequently,
paths and likely constellations within the TSCBN can be seen as capturing full observed
chains of events.

In order to extract knowledge from such models MPE or BaySpec can be used. These
approaches allow to break down a complex high dimensional trace into a set of dominant
system behaviors and to semi-automatically produce specifications that are of relevance
to the expert. Both approaches are presented in the further scope of this chapter.
Existing approaches for extraction of dominant behavior and for Specification Mining
were presented in Chapter 3. As discussed there, those approaches do not allow for multi-
functionality, do not find specifications of arbitrary length, are less robust to noise, do
not include structural information by not representing MSSs but rather chains of events
and do not allow to extract snapshots of dominant behavior of MSSs. This is solved
with the proposed approaches.

Chapter Outline: First, preliminaries are discussed in Section 8.1. Next, methods for
extraction of dominant behavior are presented in Section 8.2 and in Section 8.3 BaySpec
as an approach for Mining of Temporal Specifications from TSCBNs is presented. Lastly,
the three approaches are evaluated in Section 8.4. Notably, this chapter is based on the
paper that we presented in [10].

8.1 Preliminaries

First, the aim is to identify the most probable behavior that was captured in the TSCBN,
which is done with existing approaches that are presented here. Second, in order to
understand the proposed Specification Mining procedure a short overview on Model
Checking is given.

8.1.1 Inference in Bayesian Networks

It is crucial in Bayesian reasoning to identify and communicate relevant state constel-
lations of a learned BN to allow for meaningful conclusions. A major field that allows
to do this both with and without evidence is Bayesian inference of the most probable
explanation of a set of hypothesis [22]. There, the task is to identify a most probable
joint value assignment of RVs to its values [22].

Explanation: The term explanation depends on the task to be performed and is cate-
gorized according to content (what is to be explained), communication (how is the result
communicated) and adaption (To whom is the explanation addressed). In the case of
TSCBNs the explanation refers to the dominating system state of a set of MSSs, which
is the most likely MSS, which is the constellation of the TSCBN with highest likelihood.
The process of obtaining this type of explanation is called abduction [249, 250]. Thus,
in the given case content is the dominating system state, communication is done by
outputting a list of k most probable states and the adaption refers to a domain-specific
expert who is familiar with the underlying system behavior that is represented in the

154

8.1 Preliminaries

TSCBN.

MPE-problem: Finding the most probable explanation for a set of RVs in a BN
is in general an NP-hard problem and was studied in literature under different names
(e.g. Most Probable Explanation [251], Maximum Probability Assignment [252], Be-
lief Revision [253], Scenario-Based Explanation [254], Abductive Inference, Maximum
A Posteriori Hypothesis [255]) and variants (e.g. with full or partial evidence) [22]. In
more recent works, if all RVs are included the most common term is MPE and for partial
evidence the term Partial MAP. In this work the focus is on finding the MPE for the
given TSCBN. While finding an optimal estimate for this is intractable, the aim is to
find a locally optimal solution for this. According to [22], the formal definition of the
term MPE is the following.

MPE: Assumes a probabilistic network B = (G,Θ), where RVs V are partitioned into
a set of evidence nodes E with a joint value assignment e, and an explanation set M.
The output of this problem is the most probable joint value assignment m to the nodes
in M and evidence e, or ⊥ if Pr(m, e) = 0 for every joint value assignment m to M.
That is, it seeks to find

arg maxmPr(m, e) (8.2)

Here, explanation set refers to the set of variables to be explained.

Basic Approaches: A multitude of methods were presented for this task in previous
research, which include the following. The first work was presented in [253], where it
was assumed that for each value x of a RV X a best explanation exists for all other RVs.
Given this information the MPE is identified for x of X by finding the best explana-
tion for the remaining TVs and then choosing the best value of X. This however, only
allowed to find two MPEs [256], which is why further approaches, such as Linear restric-
tion systems [257] were introduced to extend this. Others interpreted the problem by
transforming the BN to a different representation, such as Weighted Boolean Function
Acyclic Directed Graphs, and using best-fit algorithms to determine best assignments.
To obtain approximate solutions for this, some approaches use sampling to determine
an estimate of the MPE [258].

8.1.2 Model Checking

The ultimate goal of this work is to provide a supporting tool to system verification
in the design phase. In recent years a promising approach to system verification is by
application of the model checking process, which mainly consists of a representative
model (in the given case a model of a certain functional procedure) and specifications
that define nominal behavior and are used to verify the representation. The basics of
Model Checking are introduced in the following based on [9].

155

8 Inference: Specification Mining and Dominant States

Figure 8.1: The basic model checking process is depicted and was taken from [9].

8.1.2.1 System Verification

System verification is used to verify that a system under inspection possesses certain
properties, e.g. a system should never reach a deadlock. Such properties are obtained
from system specifications. A system is correct if all properties, i.e. specifications, are
satisfied. If any behavior, e.g. within a trace, violates a property, analysis of the mal-
functioning part of the trace allows to identify locations and shape of errors.
Formal methods allow for a formalization of the system verification procedure and can
according to [9] be seen as ”the applied mathematics for modeling and analyzing systems,
with the aim to establish system correctness with mathematical rigor”. For this multiple
verification techniques were developed, while the focus is on model-based verification in
the following.

Model-based Verification: Such techniques use models to represent the possible
system behavior. In the given case behavior corresponds to functional procedures, while
models are assumed to be any model type that could have generated the observations of
those procedures, which includes models such as automata or TSCBNs.
Model Checking explores all possible system states and with this checks if all properties
are satisfied in the system. In general properties allow to check various behaviors includ-
ing deadlocks, temporal conditions or illegal system execution. If the system encounters
a violation of any property the model checker (i.e. the tool that tests properties on
a model) describes an execution path that leads from initial state to a state that vi-
olates the property, which is referred to as counterexample. This counterexample can
be replayed in the model to identify the malfunctioning behavior. A schematic illustra-
tion of this general verification procedure is shown in Figure 8.1. In the given case the
left branch is generated with specification mining approaches. or by an expert. Fur-
ther, model checking is performed by investigation of observations that are produced
by the system model, as will be detailed below. In general model checkers allow to
perform checking directly on traces of the system model with this verifying correctness
of a trace. Hence, the right branch in the given case can be seen as the observed trace

156

8.1 Preliminaries

which is input to the model checking stage, which allows to identify illegal transitions in
the trace. In particular the specifications extracted with BaySpec consist of a premise
and a conclusion, where the premise guarantees to only check specifications at locations
where the corresponding aspect of the property and the relevant functional procedure is
present. With this counterexamples refer to locations at which a certain behavior of a
functional procedure was expected, but not satisfied. By knowing which property was
not satisfied behavioral errors are identified.

8.1.2.2 Model Checking Process

The process of model checking in general involves a modeling, running and an analysis
phase.

Modeling phase: At this stage the an accurate model of the system behavior is de-
fined that is used as an input to the model checker. At the same time specifications
are formalized using a property specification language, such as Linear Temporal Logic
(LTL). in general such properties allow to check multiple types of behavior, including
functional correctness, reachability, safety or liveness. In the case of BaySpec properties
for functional correctness are identified only.

Running phase: In this phase the model checker is run on the system model - or in the
given case on the observations of functional procedures - to check if all defined properties
are valid on this model.

Analysis phase: In general, if a property is satisfied no action is required. If it is
validated the counterexample is analyzed. Based on this the system model and design is
refined and the property adjusted. If all properties are satisfied the system is assumed
correct according to the defined properties.

8.1.2.3 Transition Systems and Traces

In general the behavior of a system under consideration (i.e. functional procedures) is
modeled. For this purpose multiple models can be used, the most common of which are
Transition systems TS. In the given case the observations of a trace are seen as being
generated from a TS and hence, are represented as such. With this, verification of the
TS is similar to verification of the trace.

Transition System: A TS is a tuple (S,Act,→, I, AP,L), with the following elements.

• S is a set of states. For functional procedures this corresponds to each state after
a state change in the TSCBN.

• Act is a set of actions, which corresponds to either temporal conditions (i.e. after
0.5 seconds change state) or the direct transition τ .

• → is a transition relation from one state to another state given an action.

• I ⊆ S is a set of initial states.

157

8 Inference: Specification Mining and Dominant States

• L : S → 2AP is a labeling function that assigns a set of atomic propositions to any
state s, i.e. at each state L(s) ∈ 2AP. In the given case the atomic propositions
correspond to the observed state changes in the trace that are checked.

The TS starts in a initial state s0 ∈ I and evolves according to its transition relation →
until no further outgoing transition is present.
Verification is now performed using the labels of states. That is, given a propositional
logic formula Φ that defines a property, the state s satisfies this formula if the evaluation
induced by L(s) makes the formula Φ true, which is

s |= Φ iff L(s) |= Φ (8.3)

A simple choice is to use state names as atomic propositions, which is what is done in
the given case where state names are state changes of RVs with its outcome, e.g. A = a.

Execution Fragment: A finite execution fragment ρ of a TS is an alternating sequence
of states and actions ending with a state

ρ = s0α1s1α2 . . . αnsn (8.4)

where n is the length of the execution fragment. Thus, the execution fragment is the
progression of states of the system based on actions. In the given scenario this can be
seen as MSS variants of a functional procedure that are possible in the system. Trace:
Execution fragments are system states a function may be in over time. Each of those
system state has a set of atomic propositions as was introduced above. Thus, each
execution fragment can be also expressed in terms of atomic propositions that were
observed. For instance an execution fragment ρ = s0α1s1α2 . . . αnsn results in a trace
sequence of form L(s0)L(s1) Such sequences are called traces. As in the given
scenario states and atomic propositions are assumed to be similar, a trace refers to the
state changes that are observed for any functional procedure. This is formally defined
as follows.
The trace of a finite path fragment π̂ = s0s1 . . . is defined as

trace(π̂) = L(s0)L(s1) . . . L(sn) (8.5)

and thus, it the induced finite word over the alphabet 2AP.

8.1.2.4 Linear-Time properties

”Linear time properties specify the traces that a transition system should exhibit” [9],
i.e. defines which traces are allowed and thus, which behavior of a system is admissible.

LT Property: A LT property over the set of atomic propositions AP is a subset of
(2AP)ω, where (2AP)ω is the set of words that arises from the concatenation of words in
2AP. In the given context this is all traces - in terms of state changes - that a functional
procedure might produce. [9]

158

8.1 Preliminaries

Satisfaction of LT Properties: Let P be an LT property over AP in a TS without
terminal state. Then, TS satisfies P , denoted as TS |= P iff Traces(TS) ⊆ P . State
s ∈ S satisfies P , denoted as s |= P whenever Traces(s) ⊆ P . Hence, a TS satisfies an
LT property if all its traces respect P . [9] In the given scenario, often only a subset of
the Traces Ξ ⊆ Traces(TS) are observed. Thus, verification is performed on Ξ.
Two ways to define LT properties and that are used within this chapter are regular
expressions and linear temporal logic.

8.1.2.5 Regular Expressions

Regular expressions express a formal language to define LT properties by expressing the
set of traces that are accepted. Those are introduced based on [259] in the following.
For this definition three operations union, concatenation and closure are defined. The
union of two languages L and M is denoted as L ∪M , e.g. if L = {001, 10, 111} and
M = {ε, 001}, then L ∪M = {ε, 001, 10, 111}.
The concatenation of L and M is the set of strings that can formed by taking any string
in L and concatenating it with any string in M . For above example the concatenation
is LM = {001, 10, 111, 001001, 10001, 111001}.
The closure of L is denoted as L∗ and represents the set of strings that is formed by
taking any number of strings from L, i.e. including repetitions and concatenations of
those.
Each regular expression E consists of the following components and represents a language
L

• Constants ε and ∅ are regular expressions denoting the languages L(ε) = {ε} and
L(∅) = {∅}.

• If a is any symbol, then a is a regular expression. This expression denotes the
language L(a) = {a}.

With this the following regular expressions is formed

• If E and F are regular expressions, then E + F is a regular expression denoting
the union of L(E) and L(F) which is L(E + F) = L(E) ∪ L(F).

• EF is a regular expression denoting the concatenation of L(E) and L(F), i.e.
L(EF) = L(E)L(F).

• E∗ is a regular expression denoting the closure of L(E), which is L(E∗) = (L(E))∗

• (E) is also a regular expression, denoting the same language as E. Formally,
L((E)) = L(E).

8.1.2.6 Linear Temporal Logic

Another, more expressive way to represent properties, i.e. specifications, is by using
LTL, which is defined in [9] in the following way. In general temporal logic can be lin-
ear, i.e. each moment in time has a single successor, or branching, i.e. each moment

159

8 Inference: Specification Mining and Dominant States

Figure 8.2: Various operators are shown. This example was taken from [9].

might have alternative successors. LTL is linear in that sense. Notably, LTL describes
specifications in terms of order of events, but not exact timing of events.

LTL Syntax: LTL formulae over the set AP are formed according to

φ == true|a|φ1 ∧ φ2|¬φ|Xφ|φ1Uφ2

where a ∈ AP. Further, operators can be derived from this, which are

φ1 ∨ φ2 = ¬(¬φ1 ∧ φ2)

φ1 → φ2 = ¬φ1 ∨ φ2

φ1 ↔ φ2 = (φ1 → φ2) ∧ (φ2 → φ1)

Fφ = true U φ

Gφ = ¬F¬φ

, where F (= eventually or finally) defines that the event has to happen sometime in
the future and G (= globally or always) defines that a property has to always hold, i.e.
from now on forever. Those operators are exemplified in Figure 8.2.

8.1.2.7 Verification in MSSs

To clarify how this notation maps to the given scenario, in the following the notation is
exemplified here.
The goal of verification is to check a set of specifications, i.e. properties, on a system to
verify its behavior. As was stated in Chapter 2 the system behavior can be broken down
into multiple functional procedures, each of which has a nominal behavior. Moreover,
variants of a functional procedure are observed yielding a trace.

160

8.1 Preliminaries

• TS: Each functional procedure corresponds to a TS. It has internal actions Act
that transit it from a state to another state, defined with transitions →. Initial
states I is any state starting a functional procedure. Further, atomic propositions
are state changes in the functional procedure, which is defined as a TV and its
state change, e.g. for a TV A with state x an AP might be A = x ∈ AP.

• Execution Fragment: An execution fragment is any variant of a functional
procedure that the system might go through. For instance, when pressing a handle
bar downwards the right indicator might be turned on, while pressing it upwards
starts the left indicator. In this case an execution fragment might be

ρ = (handle bar = default) user presses up (8.6)

(handle bar = up) τ (8.7)

(left indicator control = on) controller activates light (8.8)

(left indicator light = on) (8.9)

, with Act = {user presses up, controller activates light } TVs handle bar, left
indicator control and left indicator light with its according TV states default,
up or on. In the TS this corresponds to states S = { handle bar = default,
handle bar = up, left indicator control = on, left indicator light = on }.

• Trace: Each state in S that is observable has an AP. In the given scenario
each state has the AP that describes its state, i.e. L(s) = s. With this a trace
corresponds to an execution fragment without actions. For the above example the
trace of ρ with path π̂ is

π̂ = (handle bar = default) (handle bar = up) (left indicator control = on)
(8.10)

(left indicator light = on) (8.11)

trace(π̂) = π̂ = (handle bar = default) (handle bar = up) (8.12)

(left indicator control = on) (8.13)

(left indicator light = on) (8.14)

• Verification: In the given scenario verification is performed on real traces. Thus,
the exact TS is not known, but rather a subset of traces trace(π̂ ∈ T are considered,
where T is the set of ll possible states that a system can exhibit. With this system
malfunctioning is found if any observed trace has an inadmissible trace. This
is verified in two ways. First, the input trace can be segmented according to
functional procedures. With this, any specification that was defined for a certain
functional procedure can be tested in its context. Second, if a general trace is
verified, a premise can be used. With this only parts of the trace are verified
where a premise, that is unique across a trace, is satisfied. The general latter case
is introduced in BaySpec, while if the further is performed no premise is required.

• Regular Expressions: For the above example one might define that any
time the handle bar changes to the up state the indicator should turn on. This

161

8 Inference: Specification Mining and Dominant States

can be defined as any trace of a functional procedure that satisfies the regex
(handle bar = default) ? (handle bar = up) (left indicator control = on) ?
(left indicator light = on) , where optional intermediate states are allowed.

• LTL Properties: The above regular expression is more expressively defined by
stating that once the handle bar changes to the up state eventually the left light
should turn on, which has to always hold across the whole trace. This is defined
by specifying a property

G((handle bar = up) ∧ F(left indicator light = on)) (8.15)

The proposed approach BaySpec is used to extract specifications of this type.

8.2 Most Likely Behavior of MSSs

The focus is on two approaches that aim to identify the dominant states and its most
important variants in a trained TSCBN. For this existing approaches of MPE are dis-
cussed. Next, TSCBNs capture multiple variants of a functional procedure and thus,
allows to compare observed cases of MSSs to find Specifications of appropriate strictness.
The approach BaySpec is presented here in the following, as it is used as a method for
the final building block of the DM Pipeline for Specification Mining.

Most Probable Explanation in TSCBNs TSCBN model distributions of functional
procedures in both state and time. Further, the model is overfitted intentionally on
the observed data. Thus, obtaining the k most probable constellations of a TSCBNs
is similar to obtaining the MSSs that were predominantly observed. In the context of
diagnosis this can be seen twofold. First, assuming that the training data contained
mainly correct data and little noise this behavior is the nominal behavior. Second,
assuming that the training data is faulty data the observed behavior is faulty. In the
further case, experts can use the information to improve system knowledge and to design
specifications based on the template given by the dominant MPE MSS. In the latter case,
the symptoms of the error are represented within the functional procedure, which allows
to learn a knowledge base of errors. This base could be used to detect such then, known
errors and to initiate fixes.
As discussed in Section 8.2 multiple methods for MPE estimation exist. However, a
simple and effective solution for this is found by sampling from the TSCBN. That is,
assuming to have drawn sufficiently many constellations of the TSCBN the resulting
distribution indicates the dominant states. For this the following is done.

1. From the targeted TSCBN remove all temporal nodes T and edges leading to those.

2. Sample Nsam of times from the remaining State model of the TSCBN, e.g. using
Gibbs sampling. For the i-th sampling an outcome v̄i, consisting of values for all
RVs of the network, is found. The set of all Nsam outcomes v̄i is V̄ .

3. The frequency of all unique outcomes in V̄ is counted resulting in a distribution
that maps a unique outcome combination v̂ to its frequency f(v̂).

162

8.3 Automated Specification Mining using BaySpec

4. Next, by exploiting the TSCBN structure (i.e. that temporal nodes are leaf nodes)
and assuming Gaussian distributions per temporal node, for each defined condi-
tioning on any temporal node ∆tij a parameter µ and V ar is given after parameter
estimation. This value of ∆tij (under the corresponding conditions) is used as es-
timate of the temporal behavior. With this, a full MPE estimate is found in state
and in time.

It is assumed that the k most frequently observed combinations v̂ are the k MPEs of
the TSCBN in state and time. Those entries are used by the expert within the further
process.

8.3 Automated Specification Mining using BaySpec

Next to the extraction of dominant behavior the main focus of this work is on extracting
specifications from large-scale distributed systems. By performing the previous steps of
the proposed DM pipeline a representation of relevant TVs and functional procedures
was identified. With this, a TSCBN model is found per functional procedure that con-
tains potentially nominal behavior. However, this nominal behavior cannot directly be
used as specification as it would be to strict and would indicate an error for any model
constellation that is not exactly as defined by the model. Thus, a strategy needs to be
found that allows to find meaningful Specifications of appropriate strictness. An ap-
proach to this was presented by us in [10] and is summarized in the following. Notably,
this approach focuses on the state model of the TSCBN only and thus, is able to deduce
specifications in terms of symbol order rather than including timing of the specifications.

Challenges: Main challenges for the extraction of specifications from a TSCBN include
the following.

• Valid LTL: TSCBNs represent probabilistic representations of MSSs as a multidi-
mensional system, rather than as a sequence of events, as it is the case in automata
for example. This requires to identify path representations from the network to
enable identification of specifications in LTL semantics.

• Strictness: On the one hand specifications that do represent the exact observed
behavior are often overfitted on the observed data, i.e. define the specification such
that it is violated as soon as only a single literal is different than the observation.
Thus, for any tested data set noise or correct alternations would be identified as
potential error, yielding a big result set of found violations. This makes it mean-
ingless for an expert, as a manual post processing would be required. On the other
hand learned Specifications might be also defined too blurry, which leads to those
specifications never firing, making those again meaningless. Thus, the challenge is
to find specifications of right strictness. BaySpec solves this by performing merging
operations.

• Complexity: Growing sizes of TSCBNs result in multiple variants of paths that
have to be inspected. This increasing search space requires efficient methods for
inspection of those paths.

163

8 Inference: Specification Mining and Dominant States

• Noise: Multiple variants of MSS behavior are represented in a TSCBN, while only
a subset of those represents nominal behavior rather than noise. Further, in case
noise was learned as having high likelihood in the TSCBN, comparable TSCBNs
that do not contain noise or softening strategies within a TSCBN can be used to
still find valid LTL specifications that compensate for this noise, e.g. by making it
optional.

8.3.1 Overview

The overall procedure consists of the following main steps.

1. Network Pruning: From the targeted TSCBN remove all temporal nodes T and
edges leading to those.

2. Mining Graph Conversion: Convert the resulting state model into a Mining
Graph that represents connections in terms of RVs with its values rather than in
terms of the RVs only. Then, assign weights within the Mining Graph based on
the conditional probability distributions of the state RVs in the TSCBN.

3. Candidate Search: Use a shortest path search to find paths of highest likelihood
as potential Specification candidates. Those candidates are in general too strict
and thus, meaningless.

4. Path Merging: Merge similar Specification candidates until appropriate strict-
ness is found or discard if those are meaningless. This results in a set of specifi-
cations which are represented as regex. This step can be done in two ways either
based on metrics or by using a validation TSCBN.

5. LTL Conversion: Convert all regex expressions to LTL Specifications that are
used for verification of incoming traces.

Per functional procedure LTL Specifications result, which were found in a semi-automated
manner by including expert input during model generation. This concludes the DM
pipeline. In the following the main steps are described.

8.3.2 Mining Graph Conversion

A TSCBN captures a functional procedure in terms of temporal and causal dependen-
cies. At this stage only the state model of the network is considered, as it is enough
to capture the observed MSS behavior in terms of order. Thus, with causality between
state changes represented as edges, any likely path through the state model represents
a behavior that was dominantly observed. For this it is assumed that this behavior
corresponds to nominal behavior, while noise was observed less and thus, noisy behavior
corresponds to less likely paths. With this, a likely path with strong causal dependencies
(i.e. high conditional probabilities) among its nodes is likely to represent one variant
or aspect of a functional procedure which is interpreted as a candidate specification for
this functional procedure. In contrast to process models, which allow to extract paths of
sequential behavior as the MSSs are considered as event sequence, this allows to exploit

164

8.3 Automated Specification Mining using BaySpec

a0 a1

b0 b1

s

a0 :0

a0 :1

b0 :0

b0 :1

a1 :0

a1 :1

b1 :0

b1 :1

t

Figure 8.3: A Bayesian Network with two states 0 and 1 per node is shown on the left and
the resulting Mining Graph after conversion is shown on the right. This figure was
taken from [10].

temporal causality and structure that is represented in the model. This makes it less
prone to find false positive specifications and to be more expressive.

Path Search Inference in TSCBNs: Existing inference algorithms of BNs aim to
find the MPE or the partial MAP as described above. That is, those try to identify the
configuration of the TSCBN with best explanation. Other algorithms for finding most
likely paths, e.g. the Viterbi algorithm [260], are defined for one parent per node only
and hence cannot find paths in BNs with multiple parents.
However, the aim is to identify sequential paths in this multidimensional MSS repre-
sentation of a TSCBN. To solve this, the state model of the TSCBN is transformed
into a weighted graph that is denoted as a Mining Graph (MG) (see Figure 8.3). This
representation is obtained by marginalizing out parent-nodes per candidate path. This
path is searched for likely paths, which form candidate specifications, which is solved by
BaySpec as presented in this section.

Definition of Mining Graph: A Mining Graph is defined as follows. Given a BN
(G,Θ), with graph G and parameters Θ over RVs X, a Mining Graph is a DAG (V̄ , Ē),
with

V̄ =

 |X|⋃
i=1

|ΩXi |⋃
j=1

ϑij

 ∪ {s, t}
E(X) =

{
(ϑim, ϑjn) | ϑim, ϑjn ∈ V̄ ∧ (Xi, Xj) ∈ E

}
E(s) =

{
(s, ϑim)

∣∣ ϑim ∈ V̄ , Xi is the first instance of a RV
}

E(t) =
{

(s, ϑim)
∣∣ ϑim ∈ V̄ , Xi is the last (not first) instance of a RV

}
Ē = E(X) ∪ E(s) ∪ E(t)

The set of vertices V̄ consists of a vertex for each discrete value a RV Xi ∈ X can take
and two additional vertices s and t representing an artificial start and terminal vertex,
respectively. s and t are required as those define the start and target nodes for the
shortest path search. The set of edges Ē contains an edge between two vertices from V̄

165

8 Inference: Specification Mining and Dominant States

if their corresponding RVs Xi and Xj are connected in the BN. Vertex s is connected
to all vertices of initial RVs per TV (i.e. RVs with index 0). Vertex t is connected with
all vertices whose RVs is the last instance per TV. To avoid paths with a single vertex,
vertices of a single-instance RV are not connected to t, prohibiting paths of length one,
such as (s, ϑij , t).

Edge weights and Marginalization: As can be seen in Figure 8.3, per edge in
the MG a unique weight value is defined that represents the likelihood of to subsequent
state changes of the TSCBN to occur. In TSCBNs however, those weights are implicitly
given in terms of conditional probability distributions of a state node given by multiple
parents. To thus, be able to perform a meaningful search on the MG appropriate weights
need to be found. This is done by marginalization of parent RVs at each vertex in the
TSCBN in order to find edge weights to this vertex. Formally this is described as follows.
For a target node Xj of an edge (Xi, Xj), let
Y (e = (ϑim, ϑjn)) = {Y1, . . . , Yk} := Par(Xj)\{Xi} be the set of all parent RVs without
source node’s RV Xi. The conditional probability P (Xj | Xi) is defined as

P (Xj |Xi)=
∑
Y1
···

∑
Yk

(
P (Xj |Xi,Y1,...,Yk)·P (Y1)·...·P (Yk)

)
. (8.16)

Let Par(Xi) := {R1, . . . , Rp}. The marginal probability of P (Xi) is defined by

P (Xi)=
∑
R1
···

∑
Rp

(
P (Xi|R1,...,Rp)·P (R1)·...·P (Rp)

)
. (8.17)

The function w assigns a weight to each edge and is defined by

w(e=(ϑim,ϑjn))=


0 if ϑjn = t

0 if ϑim = s

1− P (Xj = xjn | Xi = xim) otherwise

(8.18)

With this, the edge weight between a node ϑim (denoting RV Xi = xim ∈ ΩXi) and
a node ϑjn is 1 − P (Xj = xjn | Xi = xim). If Xj has further parents besides Xi, the
probability P (Xj = xjn | Xi = xim) is calculated by marginalization using (8.16) which
uses (8.17) to calculate the marginal probability. Edges to t and from s have weight 0.
With this, a full representation of a TSCBN as a weighted MG is found, which is used
in the following to extract meaningful LTL specifications.

8.3.3 Candidate Search

The goal of this step is to find paths of highest likelihood as potential Specification can-
didates. This is achieved in the following manner. It is assumed that most likely paths
in the BN are desired and corresponds to potential specifications. Those likely paths are
found in terms of maximum products or averages. In the given case, the aim is to find
all most probable paths in the MG that exhibit a maximum average likelihood pmin (i.e.
a minimum average edge weight wmax = 1− pmin).
Existing k-shortest path search algorithms look for paths with minimum length by con-
sidering summation or products of edge weights. In case of BNs using summations would

166

8.3 Automated Specification Mining using BaySpec

Algorithm 3
Minimum Average Edge Weight Path (modified Dijkstra) from [10]
Input: graph G, start node ϑs, target node ϑt, root path πr
Output: minimum average edge weight path from ϑs to ϑt given πr

1: V ∗ = reachable(G,start)
2: V ∗.topologicalSort()
3: for each vertex v in V ∗ do
4: distance[v] = new map(default = infinity)
5: previous[v] = new map(default = undefined)
6: end for
7: distance[ϑs][πr.edges] = πr.probability
8: while not V ∗.isEmpty() do
9: u = V ∗.pop(0)

10: for each neighbor v of u do
11: for each edges, avg in distance[u] do
12: if u is s or v is t then
13: newAverage = distance[u][edges]
14: edges = edges−1
15: else
16: newAverage = (edges · avg + weight(u, v)) / (edges+1)
17: end if
18: if distance[v][edges+1] > newAverage then
19: distance[v][edges+1] = newAverage
20: previous[v][edges+1] = u
21: end if
22: end for
23: end for
24: end while
25: return previousToPath(previous, ϑs, ϑt)

prefer shorter paths, as those include less weights and are thus smaller. The same holds
when using products, as shorter paths are multiplied less often than longer ones and
weights are between 0 and 1. This would limit the length of the candidate specifications,
which is not intended here as the aim is to support mining of specifications of arbitrary
lengths. Using averages however, does treat paths of different lengths equally, especially
when the constraint of a minimum path length is defined.
However, no existing approach supported finding paths of minimum average weights but
rather shortest paths.

Extended Yen Search: Therefore, an algorithm is introduced to solve this using an
extension of Yen’s search [261]. The extension consists of two main improvements. First,
path search is stopped if a metric of a path falls below a given threshold. Second, in
its kernel, Yen uses the modified Dijkstra algorithm (listed in Alg. 3) to find paths with
minimum average weights for a given start and end node. This modification is required,
as when searching minimum average paths, greedy algorithms, e.g. Dijkstra’s algorithm,
can result in non-optimal solutions, e.g. in Figure 8.4 taking a local optimum would not
lead to an optimal solution. For b the path with minimum average path weight is (a, b).
But, the globally best path depends on the number of edges taken so far and the edge
weights to come, so that the path with minimum average edge weight is (a, x, b, c). This
is solved in the algorithm by remembering for each vertex the best path for every number
of edges reaching that vertex (initialization in lines 4-7). A further loop is added that not
only iterates over all neighbors of a vertex u but also over all best paths with a different

167

8 Inference: Specification Mining and Dominant States

a x

b

c

0.4

0.
50.4

0.9

0.450.40

0.600.65

Figure 8.4: The limitations of the Dijkstra Algorithm are illustrated [10].

number of edges reaching u (line 11). The new average path weight is computed in
lines 12-17 where edges including vertices s and t have to be handled separately as those
nodes are neglected.
This results in a candidate set of likely paths in the TSCBN, which resemble a set of
strict temporal properties of the system. Those properties are initially represented as
regular expressions (regex), as this representation is well suited to allow for both merging
and for measuring of strictness at the right level of abstraction required here. For this
any path π = (ϑ1, ϑ2 . . . , ϑn) is represented as a regex ϑ1 ϑ2 . . . ϑn of n single literals.
In case of TSCBNs each literal resembles a RV and its value (e.g. A0 = 1). However,
within the further scope such path elements are denote as a single symbol for better
readability. This translation operation of a path to its regex is done in line 4.
Further, for the purpose of merging the full representational capacity of the regex is
not required, as here only finite paths occur. Thus, a reduced syntax is used, which
only includes the ?-quantifier and the alternative notation, where e.g. (a — b)c, matches
either a path ac or bc.

8.3.4 Path Merging

The resulting candidates extracted during path search express likely behavior of the
observed functional procedure. However, those specifications are meaningless as those
are too strict. That is why loosening of those specifications needs to be performed.
This is basically done by merging similar candidate specifications. For this two merging
approaches were proposed, that successively loosens candidate specifications until good
strictness is reached, i.e. the resulting specification is strict enough and not too trivial or
a tautology. This is, a metric based approach and a comparison based approach which
are introduced in the following.

8.3.4.1 Metric Based Merging

The first approach is based on metrics only and is shown in Alg. 4. There, the basic idea
is to find most similar paths (from the set of found paths) and iteratively merge those
until looser specifications are obtained. After each merging metrics such as literal ratio,
combination count and conformity are used to measure how strict a merged specifica-
tion is. This is repeated until specifications are found that lie within a defined strictness

168

8.3 Automated Specification Mining using BaySpec

Algorithm 4
Metric based approach from [10]
Input: paths P , target range
Output: specifications s

1: D = editDistances(P)
2: s = []
3: for each path pi ∈ P do
4: r = pi.toRegex()
5: for each path q ∈ P sorted by Di− do
6: r.merge(q)
7: if r.isRedundant(s) then
8: break
9: end if

10: if metrics in target range then
11: s.removeRedundantRules(r)
12: s.add(r)
13: break
14: else if any metric surpasses target range then
15: break
16: end if
17: end for
18: end for
19: return s

range. This is described in more detail in the following.

Basics: Within a set of candidate specifications it is important to merge related, i.e.
similar, candidates only, as merging completely distinct properties results in tautologies
making those meaningless. To be able to determine such similarity a measure is required.
Common measures for the distance of two candidate specifications are edit distances,
that measure the distance in terms of modifications between two sequences. A common
edit distance is the Levenshtein distance and a representation for comparing paths is the
Levenshtein matrix. Those terms are defined in the following.

Levenshtein matrix [188]: The Levenshtein matrix Mπa,πb ∈ Nm×n for two paths πa =
(a1, . . . , am) and πb = (b1, . . . , bn) is recursively defined by

Mπa,πb
i0 =

∑i
k=1wdel , Mπa,πb

0j =
∑j

k=1wins ,

Mπa,πb
ij =


Mπa,πb
i−1j−1 if ai = bj ,

min


Mπa,πb
i−1j + wdel

Mπa,πb
ij−1 + wins

Mπa,πb
i−1j−1 + wsub

otherwise ,

where wdel, wins and wsub are weighted costs for deleting, inserting and substituting a
symbol. In the investigated approach wdel = wins = wsub = 1.

Levenshtein distance [188]: The Levenshtein distance L (πa, πb) between two paths
πa = (a1, . . . , am) and πb = (b1, . . . , bn) is given by Mπa,πb

mn where Mπa,πb is the Leven-

169

8 Inference: Specification Mining and Dominant States

literal ?-quantifier alternation
a a? (a — b)

delete a? a? (a | b)?
substitute with c (a | c) (a | c)? (a | b | c)
insert c (at end) a c? a? c? (a | b) c?

Table 8.1: Edit operation rules for regular expressions as introduced in [10].

shtein matrix for πa and πb.

i) Calculating edit distances between paths: To ensure more similar paths to be
merged first, similarity between paths is computed in line 1 of Alg. 4. The order in which
paths q are merged with a starting path p is determined by the Levenshtein distance
between them. If two paths have the same distance to a starting path, the path with the
higher average probability is merged first. All pairwise computed Levenshtein distances
are stored in a symmetrical matrix D.
For a set of paths P = {π1, . . . , πm} the edit distance matrix D ∈ Nm×m is defined by
its elements

(Dij)0≤i,j≤m = L(πi, πj) (8.19)

Also, the minimal number of editing operations (insertion, deletion, substitution) that
are required to transform one path into the other is called the minimum edit distance.

ii) Merging paths: So far specifications are defined as regex. Those are merged by the
edit operations delete, substitute and insert to give new regex s matching at least both
input expressions (line 6). With this successively softer expressions are found, which are
gradually decreasing in strictness as only similar specifications are repeatedly merged.
With this, it is possible to stop merging if good strictness is reached.
Merging is done according to a defined list of rules which loosens the expression, that is
shown in Table 8.1. By comparing the Levenshtein matrix of the two expressions those
rules are successively applied to the expressions such that both input expressions are
represented in the resulting merged expression.

• Merging operations: As shown in Table 8.1 merging of expressions includes the
following operations. That is, deletion and insertion each modify the expression
due to the fact that a literal is present in one but not in the other input expression.
Thus, the missing or additional literal is added as optional, e.g. in the table this
is a? for deletion and c? for insertion. Substitution means that at a point where
previously one literal was observed (e.g. a) in the expression another literal is
present in the compared expression (e.g. c). Thus, the literal might be either the
one or the other after loosening, e.g. in the table a|c. With this, deleting any literal
a gives the optional literal a?, a? gives a? and (a|b) gives (a|b)?. Substitution of a
with c yields (a|c), of a? yields (a|c)? and of (a|b) gives (a|b|c). Lastly, insertion of
c to a gives ac?, to a? gives a?c? and to (a|b) gives (a|b)c?.

170

8.3 Automated Specification Mining using BaySpec

a c D

0 1 2 3

a 1 0 1 2

b 2 1 1 2

c 3 2 1 2

d 4 3 2 2

Table 8.2: The Levenshtein matrix for two expressions abcd and acD is shown as given in [10].

• Order of merging: The order of edit operations is derived using the Levenshtein
matrix of the two expressions. For this the order in which to execute the edit
operations is precomputed using a backtracking algorithm, which searches a non-
increasing path within the Levenshtein matrix M from Mmn to M00. This is
performed during merging in line 6. Thus, the edit operation list for two paths π1

and π2 is computed as follows. Given the algorithm is currently at Mij , for a step
to the left an insertion of symbol π2j at position i is added, for a step upwards a
deletion at position i is is added and for a diagonal step to the upper left, where
the value at the upper left is lower, a substitution with symbol π2j at position i is
added to the list. The operation positions refer to positions in the path π1. For a
diagonal step to the upper left, where the value at the upper left is not lower, no
entry is added to the operation list, as then symbols are equal.

After computing the edit operations, the two expressions are merged by executing the
corresponding merge operations defined in Table 8.1, e.g., the paths π1 = (a, b, c, d) and
π2 = (a, c,D) are transformed into the regex s abcd and acD respectively. Merging them
results in the new regex a b? c (d |D) by applying the rules for delete and substitute from
Table 8.1. Table 8.2 shows the Levenshtein matrix for those expressions with the high-
lighted backtracking path.

iii) Metrics: As mentioned before, in the metric based approach the merging of ii)
is performed until the resulting expression is within a strictness range defined by the
following three parameters.

• Literal Ratio: This measure rL is defined as the ration between the number of
single literal characters ns and the total number of symbols nt in the expression.
That is,

rL =
ns
nt

(8.20)

There a single literal refers to a literal that has neither a ? nor a | quantifier. For
instance in an expression ab?c(d|e), two single literals are given with a and c, while
all symbols include a, b?, c and (d|e). This gives values ns = 2 and nt = 4 resulting
in the literal ratio rL = 2

4 = 0.5. A high value for rL indicates many single literals
and thus, a very high degree of strictness as anything violating this exact order
of single literals violates the specification. In contrast to that, a low value of rL

171

8 Inference: Specification Mining and Dominant States

yields many alternating and ? quantifiers, which results in very low strictness, as
for the extreme case where only ? quantifiers are given any input is allowed and
thus, the specification is always satisfied. Consequently, a balanced value needs to
be found here.

• Combination Count: The combination count rC is the total number of paths
in the TSCBN that match the current specification. For instance in a regex
a b? c (d |D), matching paths include abcd, abcD, acd and acD. This results in
a combination count rC = 4. A rC that is high in relation to the total number
of possible paths in the TSCBN indicates blurriness, while a very low number in-
dicates high strictness. Consequently, a balanced value needs to be found here,
too.

Merging is done iteratively for all found candidate paths that are pairwise merged with
its most similar paths. Per iteration, if both metrics fall within defined target thresh-
olds, the merging operation is stopped and the loosened regex is added to the result set
(line 10). If the acceptance window is not reached the merged candidate specification is
dropped (line 14).
Lastly, BaySpec removes trailing and leading symbols with a ?-quantifier, as those do
not add relevant information to the expression. With this, for instance the expression
x? a (b |B) c (y |Y)? will be reduced to the expression a (b |B) c.

iv) Conversion to LTL: regex s can be well used as representation to perform merging
operations for softening, but have some practical limitations which is why a conversion
to an LTL specification is performed at this step. LTL has the following advantages over
regex. First, LTL allows to define premises which are applicable when the specification
is to be tested on the trace. If this was not the case a lot of false positive violations of
any LTL specification would occur. Second, LTL is more expressive as it allows to define
chains in more detail, e.g. by distinguishing operators such as next, until and finally.
Third, LTL is more commonly used in model checking tools.
That is why, all extracted regex s are converted to LTL formulas of events, premises and
conclusions. This formula has the following format.

formula := G(premise)
premise := event→XG(premise) — event→X(conclusion)

— event→XF(conclusion)
conclusion := event — event ∧X(conclusion)

— event ∧XF(conclusion) — event U (conclusion)

As described above, this formula specifies that if the premise is found in the trace, the
conclusion must follow. With this, unique occurrences of a premise are found such that
the specification only fires if the shortest unique premise is found. With this the above
symbols are defined as follows.

• Event: Any single literals and alternations that are represented in the regex are
translated to an event in LTL. An event represents a symbol of the regex. Any
single literal of the regex is translated to a single event, while for an alternation the

172

8.3 Automated Specification Mining using BaySpec

event is the disjunction of the alternation’s literals. For instance a regex (a | b | c)
would be converted to the event (a ∨ b ∨ c).

• Premise: Expressions in LTL should only match at locations where the expected
behavior is present. To ensure this a premise is used, that consists of a prefix of
symbols from the regex that is unique within all combinations. With this, when
applying an LTL specification to a trace the LTL check is only performed if the
premise is given.

• Conclusion: As the premise already contains a subset of behavior that is to be
tested, the conclusion is comprised of all remaining symbols of the regex that are
not part of the premise.

As LTL is more expressive than regex additional information is required for the conver-
sion process. That is, in order to convert parts of the LTL formula to a representation
of appropriate strictness an according symbol needs to be found between two symbols of
the regex, i.e. between two path elements. For this optionally statistical information is
recorded, e.g. during learning of the BN a histogram of numbers of events that occurred
between two nodes is counted and stored per edge. More precisely, it is stored how many
times in the training trace the two events (= RV and its states) occurred directly one
after the other, with distance two, distance three and so on. Based on this histogram
any edge within a path can be assessed, e.g. if event A was always followed directly by
another event B or if it sometimes occurred after two and sometimes after three events
defines if a next or a finally operator is required between the two symbols of the regex.
The following rules are used by BaySpec for this.

• Sub sequence: As stated before events in a regex (e.g. ab) can either result in a
”next” X, implying b to appear immediately next, or in a ”finally” XF operator,
which implies b to appear eventually in the future (XF is used to allow two identical
successive events which is not possible by using F only.). To distinguish those two
cases the histogram is used. The conversion ”next” X is used if the number of
intermediate traces makes up a higher percentage than a threshold, i.e. if the
majority of events supporting this expression has these events directly follow each
other. If this is not the case the events are not directly consecutive, which is called
intermediate noise between the events. That is, for events with intermediate noise
the conversion to the ”finally” XF operator is performed.

• ?-Quantifier: Symbols with this quantifier are optional, e.g. a?b. Those elements
can either occur or not occur. BaySpec translates those elements into the ”until”
U operator (e.g. aU b), which is used if always an a occurs until a b occurs. That
is, in the histogram between any two symbols, the number of intermediate noise
events between all as until a b occurs have to be zero. If any intermediate noise is
seen, the ?-quantified symbol is omitted during conversion, e.g. resulting in b for
the expression a?b.

• Multiple ?-Quantifiers: Multiple consecutive ?-quantified symbols, e.g. a? b? c? d,
are translated recursively using the rule defined for the ?-quantifier. That is, start-
ing from the last symbol (here d) it is recursively tested if the preceding ?-quantified

173

8 Inference: Specification Mining and Dominant States

symbol has intermediate noise. If no noise is present, the corresponding symbol
is translated to the ”until” operator U. Else, all ?-quantified symbols left to the
current symbol are dropped, e.g., given (a?, b?) as the only pair with intermediate
noise in a? b? c? d results in the LTL formula b U cU d.

v) Removal of redundant specifications: To reduce the number of redundant spec-
ifications post processing is performed. That is, after any merging operation resulting
expressions might be either meaningless or already satisfied by an already mined spec-
ification. To prevent the further, measures are used to drop the specification. For the
latter, it is defined, that as soon as the current specification is the result of merging paths
that already made up another found specification, the current iteration is terminated
and the specification discarded (lines 7 and 11).

8.3.4.2 Comparison Based Merging

Using only metrics of strictness includes a measure of how blurry a found expression is.
However, in the context of multiple involved instances that are observed well strictness
is also defined as validity of an expression among all instances producing the observa-
tions. Such information is excluded in the metric based approach and is overcome in the
comparison based approach which is revised here.
Excluding information gained among instances results in the algorithm merging longer
than required. However, when considering multiple instances that produce the same
functional procedure a valid specification is found that holds for both instances. For
example, such differences might result from system modifications during development,
different environmental conditions during recording or instances of different type (e.g.
two models of cars). To include the variations among functional procedures between the
two instances, similar functional procedures are used to learn a TSCBN per instance.
Based on structural variations among those networks the strictness of the resulting spec-
ification is extracted.
That is, BaySpec performs the same steps as in the metric based approach. However, in
addition to using metrics as stopping criterion, the second model, that is called validation
model, is used to decide when to stop merging paths. It is assumed that specifications
that are correct should be likely in both TSCBNs, as those should represent the intended
behavior of both instances. With this, structural noise is filtered during merging, result-
ing in specifications of good strictness in both TSCBNs. For this, during merging, each
path is checked on the validation model and accepted if a minimum average likelihood
is found on it. With this, the resulting algorithm is identical to Alg. 4, except that after
line 2 Kval = Aval.toKripke() is inserted and lines 5 to 17 are replaced by the following
code, with validation BN Aval as additional parameter.

1: for each path q ∈ P sorted by Di− do
2: r.merge(q)
3: if r.isRedundant(s) then
4: break
5: end if
6: if any metric surpasses threshold then
7: break
8: end if

174

8.4 Evaluation

9: if ModelCheck(r,Kval) then
10: s.removeRedundantRules(r)
11: s.add(r)
12: break
13: end if
14: end for

Comparison-based stop: After each merging model checking is used on the validation
model to decide if it is valid or not. If validation is positive, merging continues, while
if this is not the case the algorithm stops. To perform this checking operation of regex
of merged paths on the validation model, model checking tools can be used. To allow
for this, the TSCBN structure is converted in any automaton required and the regex
represented in the according language.

Implementation details: Within the scope of this work the following implemen-
tations are used for this step. In the implementation in [10], the validation model is
transformed into a Kripke structure. This is done similar as in the LTL conversion,
where the ?-quantified symbols in front and at the end of the regex are removed before
translation resulting in the following shape:

formula := event ∧EX(tail)
tail := event — event ∧EX(tail) — E(event U (tail))

The formula specifies a chain of events that should hold in the validation model and
Events are defined similar to the LTL case. Unlike before, no ?-quantified symbol is
dismissed but rather translated into an until operator as explained in the LTL case.
E.g., abc is translated into a ∧ EX(b ∧ EX c).
The Mining Graph of the validation model is transformed into a Kripke structure
(S, S0, R, L), where vertices become states in S and edges become elements in the tran-
sition relation R ⊆ S × S. Additionally, a loop (t, t) at the terminal node is added as
the transition relation is required to be left-total, i.e. ∀s ∈ S∃s′s.t.(s, s′) ∈ R. The set
S0 of initial states contains the artificial start node s. The labeling function L defines a
label X = ω for each state, indicating the random variable X has the value ω.
As a model checker the pyModelChecking package1 is used which in written in Python.
The model checker returns all states of the Kripke structure which satisfy the CTL
formula. If the returned set is non-empty the merging loop is stopped as the mined
specification is not valid in both BNs. The found specification is only accepted if at
least one path in the validation model matches the regex formula and exhibits the same
minimum likelihood. Lastly, besides structural checks a metric based check is performed
as well. If the literal ratio falls below or the combination count is above a threshold,
merging is stopped to avoid specifications that are too soft.

8.4 Evaluation

The aim of this work is to perform Specification Mining on traces of large scale dis-
tributed systems. For this a TSCBN representation for each functional procedure is

1https://github.com/albertocasagrande/pyModelChecking

175

https://github.com/albertocasagrande/pyModelChecking

8 Inference: Specification Mining and Dominant States

found. In [10] it was shown that BaySpec is well suited to extract meaningful specifi-
cations from such representations, as it is able to generate less False Positives, as well
as more expressive specifications. This was presented in a synthetic evaluation, which is
recapitulated in the first part of this section. Further, it was shown that BaySpec can
do this also for real world models, which will be revised here as well. With this, it is
validated that BaySpec is well suited as the last step of the DM pipeline.
In addition to that, in a case study in [8] it was shown how the process of TSCBN learn-
ing together with MPE and BaySpec is used to extract meaningful information from
automotive trace data. This work will be recapitulated in the last part of this section
and shows how the last two steps of the proposed pipeline perform in combination with
the two investigated inference methods.

8.4.1 Synthetic Evaluation of Performance and Expressiveness of BaySpec

8.4.1.1 Setup

Environment: Experiments are conducted on a LenovoTM T480s equipped with two
Intel R© Core R© i5-8350U 1.70GHz CPUs with 16 GB of RAM. Further, BaySpec is run
without the full statistical refinement of the histograms, but rather only distinguishes
next and finally, as well as it includes the until.

G

→
x X

F

y

Figure 8.5: The syntax tree of the LTL formula G(x→ XF y) is shown to exemplify the notion
of complexity.

Metrics: Expressiveness is measured in terms of Complexity of learned specifications,
while the False Positive (FP) rate defines the precision, which were defined as follows.

• Complexity: This value is measured in terms of the height and unique event count
of the resulting LTL formula’s syntax tree. The height is the number of nodes be-
tween the root and the deepest leaf. The unique event count is the number of leaves
with different events. An example of this is shown in Figure 8.5. The frequency
of specifications of certain complexity is measured. More frequent specifications of
higher complexity are desired, as this corresponds to better expressiveness.

• FP Rate: The False-Positive (FP) Rate is the percentage of specifications that
are falsely learned. In the given scenario this corresponds to specifications that

176

8.4 Evaluation

0 20 40 60
0

10

20

30

40

Removed Cross Edges ξ [%]

#
M

in
ed

S
p

ec
.

pmin = 0.84 pmin = 0.86
pmin = 0.88 pmin = 0.90

0.8 0.85 0.9 0.95 1
0

50

100

150

200

Minimum average likelihood pmin

#
M

in
ed

S
p

ec
.

metric(4, 4) comp.(4, 4)

metric(5, 5) comp.(5, 5)

Figure 8.6: Left: Number of mined specifications under various percentages of removed cross-
edges ξ between original and validation BN, under various minimum average like-
lihoods pmin. Right: Comparison of metric based and comparison based approach
in terms of # Mined Specifications for various minimum average likelihoods pmin

for 2 different BN sizes [10].

contain events from more than one functional process (i.e. from RVs of different
BNs). Lastly, the run time of the approaches is measured.

8.4.1.2 Data Set

In the evaluation of [10] synthetic MSSs are generated with the same generator as the
one introduced in Chapter 7. This is done by sampling from multiple TSCBNs that
each represent one functional procedure that is to be modeled. Random MSSs that are
sampled from each TSCBN are shifted randomly in time and concatenate forming a trace
of events of the shape (time, RV, value). To be able to distinguish between functional
procedures in the result set and for easier measuring of false positives RVs per TSCBN
are unique across all TSCBNs. To simulate dominant behavior of functions, the CPD
of a randomly picked state per RV is set between 0.6 and 1.0. The generated TSCBNs
have between 4 and 5 TVs, 4 to 5 nodes per TV, 2 states and 0.8 ·#nodes inter-edges
to 3 other TVs per TV.
The minimum literal ratio and maximum combination count is set to 0.5 and 2.5n/2

respectively, where n is the regex ’ number of symbols.

8.4.1.3 Results

In [10] three experiments were presented, that underline the expressiveness and good
false positive rate of the approach. This was shown in the following three cases.

Evaluating structural variation in the comparison based approach: Strict-
ness of specification depends on the similarity of the models in the comparison based
approach and pmin can be used as a parameter to filter for expressive specifications.

177

8 Inference: Specification Mining and Dominant States

0.8 0.85 0.9 0.95 1
0

1

2

3

Minimum average likelihood pmin

R
u

n
ti

m
e

[s
]

ξ = 10% ξ = 30%

ξ = 50% ξ = 90%

Figure 8.7: Run time of the approach under various average likelihoods pmin for 4 cross-edge
deletion percentages ξ [10].

There, Figure 8.6 were produced by running the comparison based approach on 50 it-
erations produced by one TSCBN and its validation TSCBN. Here, in Figure 8.6 (left)
it was shown how the quality of the resulting specification varies when the number of
cross-edges is modified. There the validation BN’s structure was modified by randomly
removing 0 to 75 % of cross-edges from the original BN for several minimum average
weight thresholds pmin.
The results show that less specifications are found if more edges are removed. This is,
as with less overlapping edges more potential specifications violate the validation model
and thus, more candidate specifications are dismissed. Further, the merging blurs the
candidate specification until the threshold strictness metric is violated. This shows that
stricter specifications are found from more similar TSCBNs without merging those po-
tentially too often based on the metrics.
Further, in Figure 8.6 (right) it is seen that curves with higher pmin produce less spec-
ifications. This is as higher values require more expressive specifications to be mined
only while unlikely ones are dropped. With this, pmin allows to parameterize the level
of strictness of BaySpec.

Evaluating specifications for both approaches: The metric based approach, is
less strict than the comparison based approach, with this finding more potentially less
expressive specifications. For this, both approaches were tested for 2 model sizes with
(TV, nodes per TV) of (4,4) and (5,5), each sampled 50 times randomly. Also, in
both approaches literal ratio is set to the range [0.5, 0.8] and the combination count to
[2n/5, 2n/2], where n is the regex ’ number of symbols. The experiment shows, as can be
seen in Figure 8.8, that the metric based approach finds more specifications as it is only
limited by its metrics, while additional restriction of the structure of the validation model
(here 20% removed cross-edges) yield less but more meaningful specifications. Also, in
Figure 8.9 it was shown that for both approaches pmin defines the meaningfulness of
the found specifications, with too low values yielding many but meaningless expressions,
while too high values yield the opposite.

178

8.4 Evaluation

0 10 20

0

20

40

Spec Height

#
M

in
ed

S
p

ec
.

Figure 8.8: Left: Height and number of unique events of found specifications for three ap-
proaches, with circle size being frequency of occurrence. Right: Height of Specifi-
cations against its frequency [10].

2 3 4 5

0

20

40

60

80

Distinct BNs

F
P

s
[%

] Synoptic
Perracotta
BaySpec

Figure 8.9: Ratio of FPs mined by three approaches with traces of increasing number of func-
tions [10].

179

8 Inference: Specification Mining and Dominant States

Evaluating runtime of approaches: Both approaches yield a reasonable runtime
and are thus, well applicable to be used on TSCBNs in the proposed DM pipeline. This
was demonstrated by measuring the runtime of the comparison based approach and all
its steps, which include Mining Graph extraction and path computation, measured and
averaged over 50 models of above structure, where pmin is increased at various removed
cross-edge ratios ξ. It is found and shown in Figure 8.7, that higher run times are re-
sulting for lower values of pmin. This is as such values produce more paths that require
more merging and model checking operations to be performed.

Evaluation against existing approaches: It was also shown, that comparable
approaches such as Perracotta [71] and Synoptic [64] were outperformed in terms of
expressiveness and false positive rate. This was done as follows.
To make it comparable to BaySpec, Synoptic is extended such that it is able to find
specifications with a confidence below 1, with this being able to handle imperfect traces.
Complexity was compared by randomly sampling from TSCBNs to get trace sets of
various complexities, i.e. the number of traces is varied per trace set and the number of
sampling repetitions within one trace, both between 2 and 5. These trace sets are used
as inputs for all three the tools. In the validation BNs, 20 % of cross-edges are removed
and pmin is set to 0.85. Resulting complexities are illustrated in Figure 8.8 (left and
mid), with bigger circles indicating more frequent occurrence of complexities. As it is
shown BaySpec’s extraction produces more variable arbitrary length patterns of higher
complexity, which results from capturing longer sequences of event correlations.
In a second experiment, shown in Figure 8.9 the false positive rate was evaluated. Here
each functional procedure is represented by one TSCBN and a pool of 50 TSCBNs,
each representing one functional procedure, is randomly generated. Then, an increasing
number of TSCBNs were used to produce trace sets of multiple functional procedures,
that occurred multiple times. On the resulting trace, Synoptic and Perracotta were run
and the FP ratio measured. Further, it is assumed that BaySpec learned the ground truth
models and a validation model. That is, to simulate structural loss during training, in
the validation model 30% of cross-edges are removed and pmin is set to 0.8. On those two
models BaySpec is run. To now estimate FPs from BaySpec the following was assumed.
In BaySpec, mined specifications might match paths that were not used during merging.
That is, during merging regex s are found that match paths that did not contribute to the
merging process. Thus, for BaySpec properties with a combination count bigger than
the number of merged paths are considered as FPs, i.e. the number of such possible
paths that did not contribute to the merging process. This is the worst case estimate.
It was shown that the other approaches tend to mix functional behaviors and, thus,
produce high numbers of FPs. However, if prior segmentation is used that generates one
TSCBN per functional procedure this results in specifications with less FPs. This shows
BaySpec to be well suited to be used as the last step of the proposed DM pipeline.

8.4.2 Case Study

Based on [10], in this section it is demonstrated how the TSCBNs are used for the
effective extraction of specifications from MSSs. For this two real world datasets are
analyzed that were recorded from a fleet of test vehicles of a big automobile company.

180

8.4 Evaluation

Data set # Samples
Temp.
Variables

States /
Nodes

latent
sequences

mean log-
likelihood

temporal
log-likelihood

High Beam 80 5 2.00 0.0 % -0.18 -19.59
Indicator 104 5 3.67 28.6 % -0.23 -44.78

Table 8.3: Properties of the automotive datasets including results after model creation and
parameter estimation [10].

This is done with TrieDiscover and EM Estimation to learn the TSCBN followed by
BaySpec and MPE estimation for Specification Extraction. Both Case studies were
executed in the context of the large scale distributed system which is the in-vehicle
network in a car, similarly as presented in Chapter 5. That is MSSs of different functional
procedures of a car are produced by the system and analyzed here.

8.4.2.1 Data Sets

Two data sets were considered.

High Beam Assistant: The functional procedure of the high beam assistant is de-
fined as follows. On approaching traffic the high beam lights are automatically switched
off, while those are switched on if no traffic is present. But only, if the assistant is active,
else this functional procedure is not observed. The according MSS contains five TVs.
Those include the light state SstaHB, which defines if the light is on or off. The lights
control signal SctrHB turns the light on or off if enforced by the system. Further, the
control of the assistant has the following TVs. That is, the control button SctrAS which
can turn the assistant on or off, as well as the current state of the assistant SstaAS which
can also be on or off. Lastly, the TV Sdet defines if approaching traffic was found, i.e. it
can take on the states detected if traffic was detected and not detected if this is not the
case.
With this, if the assistant is off the beam state is not changed on approaching cars
whose detection is indicated as detected in Sdet. However, if the assistant is turned on,
each detection causes SctrHB to turn on SstaHB. Multiple MSSs of activations and de-
activations were observed of the high beam and of the assistant.

Indicator: The functional procedure of the indicator is described in [8] in the following
way. The indicator light is switched on by a driver using the handle bar, when turning
left or right. This indicator function is comprised of five TVs. It consists of a handle Sbar
that (de-)activates the indicator either in steady mode or for 3 seconds. Which of those
two types was chosen is represented in the TV Stype. Depending on the state of the han-
dle bar the indicator Sstate changes its state, e.g. if it was turned on it might yield right
indicator on. If this activation was performed in steady mode, synchronization Ssync
is started and a new indication cycle Scycle begins. Once Sbar1 changes back to its de-
fault state from the 3 second state, depending on this state synchronization is stopped. If
it is in steady mode it is only stopped at Sbar2, when being returned to default by the user.

181

8 Inference: Specification Mining and Dominant States

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

·1013

0

200

400

600

Temporal Gaps

F
re

qu
en

cy

High Beam

0.150.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

·1010

0

200

400

600

Temporal Gaps

F
re

qu
en

cy

Indicator

Figure 8.10: Distribution of gaps between consecutive state changes in nanoseconds for the
high beam and indicator data set [10].

This was done for two different cars. In the first case, 223 MSSs were extracted, where
Ssync was omitted for a more comprehensive representation of the results. In the latter
case, all TVs and 104 MSSs are considered giving the results of [8]. Further in [8]
properties of the data set are provided and given in Table 8.3. Two structures are
learned (each from an equal split of the data set) with TrieDiscover and EM, where a
pessimistic and naive choice on edges was chosen resulting in more inter-edges. In [8]
the choice of parameters was evaluated in more detail, which resulted in a more suitable
choice of parameters and thus, in a reduced representation of the extracted TSCBN.
For this case, the learning and parameter estimation of the network is discussed in more
detail. On all three data sets BaySpec was applied and on the two data sets of [8] also
MPE is applied.

8.4.2.2 Experiment

In [8] the process of finding appropriate parameters for TrieDiscover is described. This
process was used to determine good parameters for the results of [8] and is revised in
the following.

Metrics: As defined in [8], the found LTL specifications are evaluated in terms of com-
plexity. Also in the case of [8] an expert manually labeled found specifications as either
fully right or only partly right. The latter implies that at least one literal is placed badly,
such that malicious firing of the specification might occur. The accuracy resembles the
ratio of specifications that are fully right. Further, from the accurate traces the found
specifications are labeled as either trivial, i.e. specifications that always fire, or relevant,
i.e. specifications that fire in a critical case which might reveal an anomalous spot in
the trace.

Parameterization of Model: In this case TrieDiscover was used with PC structure
optimization which has parameters tth , k and χth. Those were found as follows.

• Choosing tth: tth defines the temporal threshold which indicates how far back
each state change in the TSCBN can exhibit correlation from another state change.
By inspecting the distribution of gaps between consecutive state changes in the

182

8.4 Evaluation

data sets an estimate for this value van be found. For the two data sets of [8]
this distribution is shown in Figure 8.10. tth of TrieDiscover is chosen based on
this as follows. To avoid ignorance of potentially relevant temporal dependencies a
pessimistic estimate for tth is to include the last two preceding state changes (i.e.
twice the highest gap size). That is, for the high beam data set tth = 2 · 2 · 1013

and for the indicator data set tth = 2 · 4 · 109.

• Choosing k and χth: With the found tth TrieDiscover is run with different
values of k and χth and the number of inter-edges is measured. If a reasonably
high correlation between state changes is found, a higher number of inter-edges is
preferred over a low number as more information is included in that case. To thus,
evaluate the number of inter-edges for those parameters, the approach was run for
values of k between 0.05 and 1.00 and for χth between 0.05 and 100.00 resulting
in inter-edges as shown in Figure 8.11. For the high beam this gave k = 0.05 and
χth = 5.00, while for the indicator this gave k = 0.2 and χth = 0.25.

With this, the structure of Figure 8.13 was found for the data sets in [8]. This struc-
ture was shown to be meaningful according to the discussion in [8]. For the data set
of [10] the resulting structure is shown in Figure 8.12. With those structures, for all
data sets parameter estimation is performed using the EM Algorithm with 5 iterations.
Also, overfitting is a desired property in this scenario, as the approaches do not aim for
generalization but rather for model fitness.

Parameterization of BaySpec: pmin = 0.8 was chosen and BaySpec was run with
the comparison based approach on the learned TSCBN. In [8] BaySpec was run on its
TSCBN with the metric-based approach that used pmin = 0.6 as value. Here a smaller
value was chosen as less inter-edges are present, which gives a bigger result set for merg-
ing.

Parameterization of MPE The 500 most likely MPE estimates in state and time are
found sampling 100 000 times from the trained TSCBNs. Most likely drawn combina-
tions are then, ranked according to its occurrence frequencies and assigned a time as
described in Section 8.2.

Execution of Approaches: BaySpec produced specifications of complexities shown
in Figure 8.14. Excerpts of the most likely discovered LTL specifications of [8] are shown
in Table 8.4. Here, metrics of the found specifications are provided in Table 8.5. The
MPE estimates found in [8] are revised in the results section here.

8.4.2.3 Results

BaySpec: As can be seen in Figure 8.14 similar to the synthetic case, multiple spec-
ifications were found for all three approaches. However, in the case of BaySpec again
found specifications are expressive and of various length as circles are on the top right.
In contrast to that, Perracotta and Synoptic produce lower complexity specifications.
This shows that even in a noisy real world scenario BaySpec is well suited to produce

183

8 Inference: Specification Mining and Dominant States

Figure 8.11: Number of inter-edges after structure discovery for different values of k and χth,
with the high beam shown on the left and the indicator results shown on the right
[10].

expressive specifications with the comparison based approach.

BaySpec Indicator [8]: A more detailed inspection of found real-world specifications
was given in [8]. There the LTL specifications are discussed with the list given in Table
8.4. BaySpec found 28 specification from the indicator TSCBN, There, the first LTL
formula suggests that if the handle bar was tipped up and the synchronization started a
new cycle, the synchronization has to continue, before then, a new cycle is started. This
was a dominating MSS in the training set. The second formula implies that a movement
of the handle bar needs to return to its default state, while the last formula says that
the synchronization sequence that is described in the first formula is started once the
handle bar was triggered by the user.

BaySpec High Beam [8]: BaySpec found 17 specification from the high beam TSCBN.
The first formula in Table 8.4 implies that if the high beam was turned on before and a
detection is noted the control will turn the high beam off which consequently turns the
stat off the high beam off. In the second formula , if the high beam is controlled on it has
to change its state to be on or it has to eventually turn off. In the third formula, similar to
the first case, if detection was noted the control has to turn eventually off the high beam.

According to Table 8.5 it was further shown that a good accuracy is reached for both data
sets. The discrepancy to 100 % was explained in [8] with an imbalance in both data sets,
as follows. That is, in the indicator data sets, as users tend to use the short indication
far more often then, the permanent indication. Therefore, the non permanent case is
well represented while the permanent case yields CPDs that are mostly approximated
during the EM approach. Similarly in the high beam assistant the relation between the
assistant being on or off and the high beam activating automatically is not represented
in the TSCBN. This, can be adjusted in future applications by either including balancing
or including expert input at this stage. The complexity and expressiveness of the found

184

8.4 Evaluation

Figure 8.12: Original and validation BN for the indicator activation function [10].

Figure 8.13: This figure shows the network that was discovered with TrieDiscover for the indi-
cator on the left and for the high beam assistant on the right [10].

specifications yields a good quality, with a high percentage of relevant specifications
and specifications of heights around 5 and 3 to 4 symbols included per specification.
This shows, that TSCBNs can be used to automatically learn LTL specifications from
observed system behavior if a TSCBN is given. With this, it is well suited as the last
step of the proposed DM pipeline.

MPE High Beam [8]: After sampling in the high beam TSCBN the most frequent
MPE estimates appeared in 5.5 % cases and the least frequent in 0.009 %, where the
two most likely estimates of the high beam are with 5.5 % frequency

Figure 8.14: Height and number of unique events of found specifications for three approaches,
with circle size being frequency of occurrence [10].

185

8 Inference: Specification Mining and Dominant States

L [%] Discovered LTL - Specifications

87.37 G((Sbar: tip up ∨ Ssync:cyc. continues) 7→ XG((Ssync:new cyc. 7→ X((Ssync:sync ∧ X(Ssync:cyc. continues))))))
86.90 G((Sbar:overtip down ∨ Sbar:tip up) 7→ X(F(Sbar:no action)))
86.36 G((Sbar:tip down ∨ Sbar:tip up) 7→ X(F((Ssync:new cyc. ∧ X(Ssync:sync ∧ X(Ssync:cyc. continues))))))

84.57 G(SctrHB:on 7→ X(F(Sdetect:detection U (SctrHB:off ∧ X(F(SstaHB:off))))))
82.91 G(SctrHB:on 7→ X(F((SstaHB:on ∨ SctrHB:off))))
73.28 G((SctrHB:off ∨ Sdetect:detection) 7→ XG(Sdetect:detection 7→ X(SctrHB:off ∧ X(F(SstaHB:off)))))

Table 8.4: Excerpt of LTL Specification found with BaySpec. The upper part shows the indi-
cator and the lower half part shows the high beam results, with likelihoods of found
specifications L.

dataset # LTL Spec. ∅height ∅width accuracy [%] relevant [%]

High beam 17 5.29 3.35 76.47 61.05

Indicator 28 5.75 4.03 67.85 84.22

Table 8.5: Metrics for the specifications that were extracted with BaySpec.

• SctrHB = (on,∆t = 0.0s), (off,∆t = 0.743s)

• SctrAS = (no action,∆t = 0.0s) , (no action,∆t = 0.0s), (no action,∆t = 0.0s)

• SstaHB = (off,∆t = 0.0s), (off,∆t = 0.006s)

• SstaAS = (on,∆t = 0.0s), (on,∆t = 0.017s), (on,∆t = 1.682s)

• Sdetect = (detection,∆t = 0.0s), (detection,∆t = 0.0s), (detection,∆t = 0.0s)

and with 4.3 % frequency

• SctrHB = (off,∆t = 0.0s), (on,∆t = 0.836s)

• SctrAS = (no action,∆t = 0.0s), (no action,∆t = 0.0s), (action,∆t = 0.0s)

• SstaHB = (off,∆t = 0.0s) , (on,∆t = 0.048s)

• SstaAS = (on,∆t = 0.0s) , (on,∆t = 0.017s), (on,∆t = 1.682s)

• Sdetect = (no detection,∆t = 0.0s), (no detection,∆t = 0.0s), (no detection,∆t = 0.0s)

As described in [8], it can be well seen that the upper estimate capture the actions of both
the high beam controller and the assistant. More precisely, the detection has triggered
to change SctrHB from on to off, and the variable SstaHB when already off to remain
off. Moreover, the assistant performed an action at the last step of his process. Notably,
although disjoint the dominant state further tells that the assistant was on when the
detection activated the high beam.Above that, temporal gaps ∆t for TVs without state
change are not meaningful as the TVs do not change its state. The second estimate
shows in state and time the inverse case where the non-detection of traffic caused the
high beam to change from off to on, which in turn changed the state from off to on,
while the assistant process is identical to the preceding case. This shows how TSCBNs
capture interval and state change relations of a process in an interpretable manner.

186

8.5 Summary and Conclusion

MPE Estimations - Indicator: For the indicator frequencies are within 11.99 % and
0.017%. The two most likely estimates are with 11.99 % frequency

• Sbar = (tip up,∆t = 0.0s) , (no action,∆t = 0.513s)

• Ssync = (cyc. cont.,∆t = 0.0s) , (new cyc.,∆t = 0.017s), (sync,∆t = 0.639s), (cyc. cont.,
∆t = 2.052s)

• Stype = (non permanent,∆t = 0.0s), (non permanent,∆t = 0.0s)

• Sstate = (both off,∆t = 0.0s), (right on,∆t = 0.017s), (both off,∆t = 1.682s)

• Scycle = (no ind.,∆t = 0.0s), (normal,∆t = 0.0s), (no ind.,∆t = 2.660s)

and with 4.4 % frequency

• Sbar = (tip down,∆t = 0.0), (no action,∆t = 0.572s)

• Ssync = (cyc. cont.,∆t = 0.0), (new cyc.,∆t = 0.020s), (sync,∆t = 0.639s), (cyc. cont.,
∆t = 2.052s)

• Stype = (non permanent,∆t = 0.0s), (non permanent,∆t = 0.0s)

• Sstate = (both off,∆t = 0.0s), (left on,∆t = 0.0204s), (both off,∆t = 1.675s)

• Scycle = (no ind.,∆t = 0.0s), (normal,∆t = 0.181s), (no ind.,∆t = 2.660s)

For this case the indicator learned both the activation of the right indicator after the
handle bar was tipped up and the left activation when tipping down. Both caused a
new indication cycle to start. Notably, here the timing was learned nearly exact, e.g.
it is plausible that after tipping up the indicator starts 0.017 seconds later and stops
indication after around 1.7 seconds (Sstate 2) and confirms this at around 2.6 seconds
in Scycle 2 with the no indication signal. In practice, this approach allows an expert to
first, directly understand the prevalent system behaviors (e.g. for fault diagnosis) and to
second, deduce potential specifications in state and time in a fully automated manner.
This is, as snapshots of functional procedure variants of MSSs are compactly represented
as outcomes of learned TSCBNs.

8.5 Summary and Conclusion

In this chapter two approaches for the extraction of specifications and dominant behavior
are described (as first introduced in [10, 8]). Given a TSCBN that represents behavior of
observed MSSs both approaches assume that most likely constellations resemble specified
behavior of functional procedures in a trace. Assuming that unlikely behavior is not
observed significantly often, noise is handled here.
BaySpec extracts LTL specifications by identifying most probable paths and merging
those until specifications of appropriate strictness are found. The resulting specifications
are assumed to represent specifications that are relevant to the analyzing domain, as
both segmentation and TV clustering was already performed in a supervised manner.
A major limitation of BaySpec is that it does not include temporal information and

187

8 Inference: Specification Mining and Dominant States

resulting specifications do not directly allow to understand the dominant behavior that
is present in the set of MSSs. This is solved with MPE. By sampling from the TSCBN
MPE allows to identify most probable constellations of the MSSs that were observed
in state and time. Based on this experts are able to better understand the prevalent
behaviors of the procedure. This in turn, can be used as a basis for generation of
specifications either by using the dominant state model as a template or by extending
the expert’s knowledge.

188

9 Case-Study: Specification Mining in
Automotive In-Vehicle Network Traces

In the previous chapters all steps of the DM pipeline were evaluated individually. Next,
in this chapter the pipeline is evaluated all together. That is, its consistency and effec-
tiveness is demonstrated on several real world data sets from the automotive industry.
The pipeline consists of multiple stages each of which might use different approaches, has
multiple parameters and is evaluated in terms of different metrics. Therefore, in Section
9.1 an overview on the configuration that is used in this implementation is given. Next,
the motivation and background in the automotive domain is introduced in Section 9.2.
Five data sets, that each contain multiple functional procedures of a certain domain,
were used in this evaluation and are described in Section 9.3. Based on the implemen-
tation the results of the specification extraction procedure are presented and discussed
in Section 9.4.

9.1 Implementation

At each step multiple approaches can be applied, while not all are equally well suited for
the task of Specification Mining. Based on the evaluations given in the previous chapters
of each stage, a defined implementation is used at each stage, which is introduced in this
section and shown in Figures 9.1 and 9.2. Based on this overview, a more detailed
discussion of each step is presented in the respective section of this chapter.

1. Preprocessing:

• Goal: Given a raw trace, as introduced in Chapter 4, an interpreted trace
that contains a subset of relevant TVs is extracted. For this, the expert
defines a coarse subset of relevant TVs which is related to his domain.

• Input / Output: A raw trace Kb is input. Based on a set of selected TVs
Urel a reduced trace Kcond is extracted, which is processed per type, which
yields the MES Ks.

• Approach: The approach of Chapter 4 is used here, where Preselection, In-
terpretation, TV splitting and Constraint-based reduction is done on a cluster
using Apache Spark. During type-dependent processing numerical TVs are
discretized using SAX and ordinal TVs are treated as nominal. Further out-
liers are removed automatically as described in Chapter 4 and manually by
flagging irrelevant values of TVs. Also, TVs that do not change its value at
least ones are dropped.

• Parameters: Preprocessing has parameters Urel, C and E. In this evalu-
ation we do not extract extensions and thus, E = ∅. Per data set that is

189

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

Figure 9.1: First part of the overview of the configuration used for the evaluation in this chapter.

investigated a list of TVs, that correspond to a domains function, is given in
Urel. C is defined such that only changes of TV values are kept.

• Section: The results for this stage are presented in Section 9.4.1.

2. TV Clustering:

• Goal: Per data set groups of TVs are identified.

• Input / Output: The MES Ks and expert knowledge is input here. The
results of this step are multiple relevant groups of TVs that correspond to
common functions. The resulting groups yield a MES Kk

s and a MSS Kk
n of

TVs which is taken as a basis for selection of TVs that are used for further
processing.

• Approach: The approach in Chapter 5 is used with DBSCAN, which is
well suited to find groups of TVs as was shown there. Based on the found
clustering, experts choose TVs that are of relevance for further inspection.

• Parameters: Parameters include the window size and DBSCAN’s ε and
MinPts. The window size is set fixed to 400 overlapping windows, while
optimal values for ε and MinPts are found using a grid search.

• Metrics: To evaluate clustering performance and to find good hyper param-
eters the Silhouette index was chosen as a metric.

• Section: The results of hyper parameter estimation and the insights of this
stage are presented in Section 9.4.2.

190

9.1 Implementation

Figure 9.2: Second part of the overview of the configuration used for the evaluation in this
chapter.

3. Segmentation:

• Goal: Each sequence of TVs contains multiple functional procedures. In
order to extract those, segmentation and clustering is used in the way it was
introduced in Chapter 6.

• Input / Output: The input at this step is an MSS Kk
n, which was chosen

in the previous step, as well as expert knowledge to interactively refine the
clusterings. This results in multiple sets Mi of MSSs, that each correspond
to one functional procedure.

• Approach: Here, two approaches are used to find Mi. First, this is the
approach presented in Chapter 6 and Section 6.4, which showed to scale best
while yielding solid accuracy. Here, DBSCAN is used for clustering. Second,
for some data sets a target state is known and the behavior before that
target state is investigated. In this case a simple segmentation is used, where
a window tprev before the target state change is used to extract one set of
MSSs Mi. Given those clusterings the expert might visually sub clustering
those in a hierarchical manner.

• Parameters: For the further approach the temporal range rtemp around each
data point is used. Also, the DBSCAN clustering of segments has parameters
εSC and MinPtsSC . For the latter approach the window size tprev defines
segmentation quality.
It is assumed, that optimal MSS sets Mi have a similar number of state
changes per TV, with temporal gaps of similar lengths. Thus, optimal pa-
rameters that optimize this are found by using a grid search on below metrics.

• Metrics: Two metrics are used here. First, that is the mean of the standard
deviations of the number of state changes per TV. If this standard deviation
is low a similar number of TVs is given. Second, as optimization of the
standard deviation might prefer short (i.e. non-informative) sequences, as a
second metric the mean number of state changes per TV is used here as well.

191

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

• Section: The results of hyper parameter estimation and the insights of this
stage are presented in Section 9.4.3.

4. Structure Discovery:

• Goal: Each MSS set Mi represents a functional procedure. At this step the
structure of a TSCBN is learned from Mi to represent the procedure under
uncertainty.

• Input / Output: The input of this step is a MSS set Mi and the parameters for
TrieDiscover. Those are the type type, a temporal threshold tth the filtering
parameter k, score type score, as well as thresholds α and χth. The output
is the structure of the TSCBN.

• Approach: TrieDiscover, which was introduced in Chapter 7 is used to learn
the structure. All three variants of TrieDiscover are considered here during
evaluation.

• Parameters: Those depend on the variant of TrieDiscover, which is indi-
cated as type in Figure 9.2. A parameter that is required in all variants is
the temporal threshold tth and the filtering parameter k. sbTD further uses
the score type score which is chosen to be BIC here. Also, cbTD and cbvTD
both have α as parameter and cbvTD has χth.
An optimal structure contains all important inter-edges as well as a represen-
tative number of nodes per TV. For Specification Mining an optimistic choice
is preferable, i.e. it is better to represent too many inter-edges than choosing
to less. That is, as parameter estimation will make CPDs that correspond
to dominant observed sequences (rather than approximated parts of those)
more likely. Also, even if a path was observed less often and thus, the corre-
lation for the corresponding sequence can not be tested with high confidence,
this path might still represent a specification. In particular, paths that are
not present can not be used for specification extraction, while notably, the
structure learned by TrieDiscover is loss less. That is, the candidate set of
parents does only result in inter-edges that are plausible according to the
data. Thus, using too many edges always results in logical paths that are
likely to correspond to at least one observation.
tth is found by inspecting the distribution of gaps between consecutive state
changes as done in the case study of Chapter 8. α, χth and k are found by
using grid search.

• Metrics: The metric used for optimization is the number of inter-edges. As
argued above a high number of inter-edges is preferable.

• Section: The results of hyper parameter estimation and the insights of this
stage are presented in Section 9.4.4.

5. Parameter Estimation:

• Goal: Given the structure parameters of the TSCBN are learned from Mi.

• Input / Output: The input is the structure of the TSCBN, the estimation
approach with its parameters and the setMi. The output is a trained TSCBN
Q that represents the dynamic behavior of the MSS set.

192

9.2 Background: Automotive Verification

• Approach: As was shown in Chapter 7, the three approaches MLE-R, VI
and EM gave comparable results and thus, are equally suited to be used here.
In this evaluation EM and MPE-R are used.

• Parameters: EM has mainly two parameters which is the number of samples
nsamp drawn for estimation of expectations and the number of iterations until
convergence niter. To keep computational complexity low nsamp = 1000 and
niter = 5 were chosen.

6. Specification Extraction:

• Goal: Based on the learned TSCBN the most likely behavior is extracted
and processed in order to determine specifications or dominant behavior of
the system.

• Input / Output: The input of this step are a learned TSCBN Q that repre-
sents a functional procedure of the system, as well as the parameters for the
approaches. The output is a list of LTL specifications when running BaySpec
and a list of most likely system states when performing MPE.

• Approach: For Specification Mining the metric-based approach of BaySpec
and the MPE approach of Chapter 8 are used.

• Parameters: BaySpec has the parameters rL, rC and pth. Optimal param-
eters produce specifications of higher complexity and high likelihood, as it is
assumed that this corresponds to more informative content.

• Metrics: The height and width of specifications, which were presented in
Chapter 8, indicate the complexity and thus, the information content of
the specifications. Notably, BaySpec produces specifications of appropriate
strictness as this is limited by rL and rC .
The plausibility of specifications is hard to be represented in terms of metrics.
Thus, it is assessed manually based on an expert.

• Section: The results of hyper parameter estimation and the insights of this
stage are presented in Section 9.4.5.

9.2 Background: Automotive Verification

In-vehicle networks of a car are an example of large-scale distributed system, as those
run distributed software across multiple Electronic Control Units (ECU). Their func-
tionality is implemented by multiple domains in terms of hardware, communication and
software, before being integrated into the overall system of a car. To verify functionality
within such vehicles data-driven testing is used. For this, multiple cars are taken on test
journeys, where a set of test cases are applied on those systems to ensure that multiple
functionalities were covered by execution. Those executions are recorded as traces that
are used for both verification with existing specifications and for mining of those.
In 2015 a modern vehicle ran over 100 million lines of source code on-board, with up to
15 ECUs communicating per function, while transmitting 2 million messages per minute.
Resulting traces are massive in size (e.g. at BMW Group 500 cars produce 1.5 TB per

193

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

day) and thus, require automated methods for verification. In particular manual gener-
ation of specifications on the integrated system is in-feasible, which is why automated
methods such as the one proposed in this thesis could be used in the future to ensure
meeting the high quality requirements of such systems.
The recorded execution logs are in raw format and are comprised of messages that are
transmitted between ECUs. Data encoded in such messages is highly redundant and
massive in size. Thus, direct application of Specification Mining approaches is not pos-
sible. However, by applying the overall DM pipeline of this work, this is made possible
and allows to find specifications of the vehicles’ system states.

9.3 Data Sets

Five data sets are extracted from journeys of different cars. For each of those data sets
an expert defined a coarse subset of relevant TVs, that categorizes those for evaluation.
Notably, those sets only capture a subset of the behavior of those functions. This is due
to the fact that only system states that are sent on the bus are observed. However, this
suffices for the verification of this methodology. The following data sets are used.

Active Cruise Control (ACC): This data set contains TVs that are relevant to
the activation and deactivation of the ACC functionality. It contains a set of manually
preselected TVs that are known to affect those target state changes. In this data set the
aim of the case study is to identify which state combinations and state changes resulted
in the target changes of activation or deactivation.

Lights: This set contains TVs that affect the light functionality. It contains state
changes that relate to the functioning of the lights, which among others includes front
lights, blinker and high beam transitions that are manually or automatically changed.
Here functional procedures are extracted with the overall approach. This data set is
especially well suited, as it contains multiple functional procedures that relate clearly to
different system behaviors.

Start up Procedure: In this data set a preselected set of TVs is contained that relate
to both the starting and the ending of the car, such as engine behavior. Here functional
procedures are extracted with the overall approach.

Shut Down Procedure: In this data set another set of TVs, that is related to both
the starting and the ending of the car, is contained. However, here the set of TVs
is chosen more coarsely. Further, this set was already pre-processed by experts such
that discretizations of some numerical TVs was performed already based on suitable
thresholds. Here again functional procedures, specifications and dominant behavior is
extracted with the overall approach. Naming of the latter two data sets was chosen such
that those are clearly distinguished.

Wiper: This data set has a set of preselected TVs that relate to the wiper in the car.
This includes manual and automatic activations and deactivations of it, as well as its

194

9.4 Mining in-vehicle Network Traces for Specifications

Figure 9.3: An example of the times of transmission of Kb is shown. There each dimension rep-
resents the type of transmitted frames and each data point its point of occurrence.
The right part shows a magnified version of the left plot. It can be seen that both
cyclic, as well as event based frames are transmitted.

ACC Light Wiper Startup Shutdown
TVs 26 78 32 41 441
samples
[min/max/avg]

44268
1725447
[2/110418/8584]

387462
[2/105828/3761]

1372079
[2/112070/5991]

49950
[2/7064/2378]

journeys 1 9 12 9 1
Duration
s [min/max/avg]

5106,508
0,49/28540,26
/3070,18

0,02 / 19322,75
/ 2698,95

0,07 / 28540,26
/ 2351,68

10,74/4007,32
/1431,77

mean gap s 0,115 3,554 2,643 11,721 1,71
std gap s 0,622 7,796 9,221 14,517 7,14

Table 9.1: The statistics of each data set are shown. The type of data corresponds to Kcond of
the presented pipeline.

behavior during the wiping procedure.

As presented in Chapter 4 initial traces Kb are frames that are transmitted between
ECUs over time. There, each frame contains a set of TV information. An example of
such a trace at this stage is shown in Figure 9.3.

9.4 Mining in-vehicle Network Traces for Specifications

In this section the results of the case study are presented. Please refer to the full
evaluation results given in the appendix, where results of all data sets of all steps are
given. In this chapter only a relevant subset of results is shown and discussed to illustrate
all relevant aspects of the DM pipeline.

9.4.1 Preprocessing

After preprocessing the frames Kb result in MESs Kcond and MSSs Kn. The statistics
of each data set for Kcond is shown in Table 9.1 and Figure 9.4. Statistics of Kn are
provided in Table 9.2 and Figure 9.5. The data sets were chosen to be of different shape

195

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

ACC Lights Wiper Start Up Shutdown

Figure 9.4: The distribution of TVs for Kcond is shown. Each color represents one TV and its
number of occurrences in the data set.

in terms of TV distribution, number of samples and gap distributions as can be seen
in Table 9.1, where ACC, Wiper and Start up have less TVs, Light a medium number
and shutdown a high number of TVs. Also, the number of samples and the duration
vary across those data sets. While ACC and shutdown are smaller with around 50 000
samples, a medium number of samples of around 400 000 samples is found in Wiper and
a high number of samples with around 1.5 million samples is given in the other data sets.
Further, in Figure 9.4 it can be seen that there are some TVs that are dominating the
data set before preprocessing, which are often numerical samples as those are changing
in value more often. The preprocessing introduced in Chapter 4 is applied.

Effect of Preprocessing: The result of preprocessing is a more homogeneous data set
which is preferable for Specification Mining. This is due to the fact that otherwise more
frequent TVs are preferred as those are present in more segments even if less correlation
is given. This would blur precision of learned specifications. Homogeneity is improved
as the number of numerical TVs is reduced. As Figure 9.5 illustrates this yields more
uniformly distributed TVs. For sets with more numerical TVs, such as the Lights set,
this is more evident, while it changes less for less numerical TVs, such as in the ACC
case.
Similarly, for the same reason the reduction in sample number is stronger in the further
case, with reduction rates of 80 % for Light, 74 % for Wiper, 55 % for Start up but only
2 % for ACC and 3 % for Shutdown. This reduction is highly desirable and consequently
allows to apply the further steps of the DM pipeline, with the biggest data set size being
around 600 000 samples after preprocessing.
Above that the preprocessing on average increases gap sizes between consequent sam-
ples, e.g. in lights the gap size grows from 3.5 to 7.8 seconds. That is, samples that are
correlated are still within close proximity, but numerical samples that often changed in
value before reduction (resulting in false positive correlations) are only in proximity if
those change significantly. This is especially important, as with this the range segmen-
tation approach is able to separate functional procedures more easily as bigger gaps are
present between such procedures and the range per sample determines separation.

Resulting distribution per TV: The preprocessed data sets, that are used as input
for the further steps, vary in shape as Figure 9.5 shows. ACC has mostly nominal TVs
where 5 nominal TVs are dominant. Numerical and ordinal TVs occur equally often.
Lights has mostly nominal TVs (ca. 70 %), with less numerical TVs (ca. 20 %) and TVs
of remaining types (ca. 10 %). There, for all types a subset of TVs is more dominant.

196

9.4 Mining in-vehicle Network Traces for Specifications

ACC Light Wiper Startup Shutdown
TVs [num
/nom/bin/ord]

26 [4
/20/0/2]

78 [14
/38/21/5]

32 [8
/19/2/3]

41 [3
/35/3/0]

441 [14
/301/79/47]

samples [num
/nom/bin/ord]

43098 [1553
/ 41533/ 0/2]

344948 [75581
/ 231132/ 24497
/13738]

98109
[75347 / 12799/
6481/ 3482]

616661
[477796
/ 134958/3907/0]

48604
[2202 / 257
44/8801/11856]

mean gap s 0,118 7,826 25,11 12,488 1,725
std gap s 0,646 16,374 34,644 17,087 7,252

Table 9.2: The statistics after preprocessing are shown, which corresponds to Kn.

For the Wiper case, numerical TVs (ca. 77 %) are dominant, with less values of nominal
(ca. 13 %), ordinal (ca. 3 %) and binary type (ca. 7 %). Here, for each case one
TV dominates per type. A similar distribution is given for the Start up set with 77
% numeric, 21 % nominal and 2 % binary TVs. The Shutdown set has a more evenly
distributed set of TV types, with 52 % being nominal, 25 % ordinal, 18 % binary and 5 %
numerical. Here, nominal TVs have many TVs that occur equally often while some are
transmitted only little, while in the other cases again some TVs are dominantly present.

Conclusion: For all data sets a homogenization and reduction of data was achieved by
applying the automated preprocessing approach. This was demonstrated here for big
data set sizes of up to 1.8 million samples. Also, the given data set contains dominant
TVs, which are often either numerical or nominal and resemble dominant dimensions of
functional procedures. Less occurring samples often transmit less frequent state changes
of the car (such as driving or parking) that are not directly part of functional procedures.
However, in most cases such TVs are still relevant to be considered in those procedures.
But, in some cases those TVs only transmit information ones (e.g. type of the car)
which is mostly done by TVs that are not relevant for functional procedures. In the
following those data sets are used to show the working of the proposed DM pipeline for
Specification Mining and dominant behavior identification.

9.4.2 Clustering

Next, clustering of TVs is performed on each data. This includes a hyper parameter
estimation which allows to choose the best parameters per data set. For the optimal
parameters the resulting clustering is characterized. Notably, clusters of size one are
considered noise here and are assigned to one noise cluster. Further, the MES trace
Kcond is ingested here.

Results of hyper parameter estimation: For each data set a grid of ε = [0.1; 7.0],
MinSamples = [2; 9] and number of PCA components nPCA ∈ {5, 10, 15, 20, ∅}, where
∅ corresponds to no PCA, is evaluated based on the Silhouette index. The resulting
values of the metrics are shown in Figure 9.6 for the ACC, in Figure 9.7 for the Lights
data set and in the Appendix for the further data sets.
The heat map in those figures shows the results for different ε, MinSamples and
nPCA. It can be seen that with nPCA = 5 for the lights data set larger ε and smaller
MinSamples improves the index. That is as too small ε tend to form clusters of size one,
while bigger clusters grow with bigger values. Also, a higher number of MinSamples

197

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

ACC

Lights

Wiper

Start Up

Shutdown

Figure 9.5: Here the statistics of all data sets are shown after preprocessing, i.e. Kn. There
the left pie chart shows the numbers of occurrences per TV, the middle chart show
the same distribution per data type and the right plot illustrates the distribution
of data types.

198

9.4 Mining in-vehicle Network Traces for Specifications

m = 2 m = 3 m = 4

Figure 9.6: Results of hyper parameter estimation for TV clustering of ACC. The color indicates
the value of the Silhouette index for various number of PCA components and for
various ε values, for different values of MinSamples m.

creates more TVs that are considered noise, which excludes possibly consistent clusters
of smaller size resulting in worse values for the Silhouette index. Further, the heat maps
show white spots. Those occur if all data points are considered noise, e.g. if no cluster
bigger than MinSamples is found.
The effect of increasing ε and MinSamples is shown in Figures 9.8 and 9.9 for the lights
data set if the respective other values are set to its optimal choice.
An optimal parameter has a maximal Silhouette index, excludes as few data points as
possible and results in more clusters of sufficiently large size. Here, clusters smaller than
three are assumed meaningless, i.e. MinSamples > 2. Hence, nPCA = 5, ε = 1.5 and
MinSamples = 3 give the best results for the Lights data set in that case.

Choice of parameters: Similarly, for the other data sets best parameters are the
following. For ACC that is MinSamples = 3. nPCA = 5 and ε = 1.5 giving an index
of around 0.5, for Lights that is MinSamples = 3. nPCA = 5 and ε = 1.5 giving an
index of around 0.5, for Wiper that is MinSamples = 3, nPCA = 5 and ε = 1.5 giving
an index of around 0.6, for Start up that is MinSamples = 3. nPCA = 5 and ε = 1.0
giving an index of around 0.4 and for Shutdown that is MinSamples = 3. nPCA = 5
and ε = 0.8 giving an index of around 0.7.
Thus, according to the index, best separation is given in the Shutdown case. This might
be as this set has the highest number of TVs, making the results statistically more sig-
nificant. Also, the shutdown case contains many TVs of different functional procedures
as it was not preselected at all, while in the other four cases a preselection was performed
leaving a set of various functional procedures that are less strongly correlated than in
the Shutdown case. Another reason is that for a smaller window size (here 400) a better
separation is found if less samples are given as common occurrences are found on a finer
granularity. In particular, as durations are in a similar range (1500 to 3000 seconds per
journey), this granularity is characterized by the mean and standard deviations of gap
size between consequent elements. That is, a higher standard deviation to mean ratio is
expected to yield a bigger spread of data points and thus, better separability. However,
if this spread is too high the data points are expected to be less frequently found in
common windows and thus, to give worse separation. This ratio is 4.2 for shutdown

199

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

m = 2 m = 3 m = 4

Figure 9.7: Results of hyper parameter estimation for TV clustering of Lights. The color indi-
cates the value of the Silhouette index for various number of PCA components and
for various ε values, for different values of MinSamples m.

(index ca. 0.7), 24.3 for Wiper (index ca. 0.6), 5.4 for ACC (index ca. 0.5), 2.2 for
lights (index ca. 0.5), 1.2 for Start up (index ca. 0.4). The Start up set has the lowest
ratio which confirms the expected outcome. When excluding the Shutdown set this is
also valid for the other data sets. Shutdown does not follow this pattern. This is as
in comparison to the other data sets it has significantly more TVs, while having less
samples.
However, still for all cases 400 windows per journey and an ε value between 0.8 and
1.5 results in clusterings with good Silhouette index between 0.4 and 0.7, as well as a
clustering that is meaningful, which is discussed next.

Found TV clusters: For ACC three clusters were found which were named by ana-
lyzing the grouped instances. These are named as (1) display information (e.g. TVs
display active, etc.), (2) car state information (e.g. TVs brake state, speed, etc.) and a
fragmentary cluster. Clusters of the lights data set could be named as (1) light behavior
including states of the indicator or front lights (e.g. TVs handle bar state, left indicator
state, etc.), (2) detection of traffic (e.g. TVs traffic detected, etc.) (3) engine movement
(4) environment values and a fragmentary cluster. Clusters of the Wiper data set could
be named as (1) rain sensor and wiper control (e.g. TVs wiper activation, wiper speed,
etc.), (2) wiper position and a fragmentary cluster which includes (3) environmental
information. Clusters of the Start up data set could be named as (1) engine and energy
activation (e.g. TVs engine running, etc.), (2) car state and energy (e.g. TVs subsystem
control, engine state, etc.) and two clusters (3) and (4) with 3 TVs each with no mean-
ingful description. In the Shutdown data set most dominant clusters could be named as
(1) car state information before shut down (e.g. TVs engine state, engine component,
etc.), (2) state information after shutdown (e.g. TVs start button state, engine state,
etc.) or (3) key information.

Conclusion: As already discussed in chapter 5 TVs can be clustered based on common
occurrences yielding smaller subgroups of TVs that typically relate to common functional
procedures. However, this excludes TVs that change rarely, but might be relevant to
a functional procedures. That is why in the following, instead of using the discovered

200

9.4 Mining in-vehicle Network Traces for Specifications

m = 2 m = 3 m = 5

m = 6 m = 8 m = 9

Figure 9.8: Results of increasing MinSamples m when clustering TVs in the Lights data set,
when considering the first two PCA components, where nPCA = 5 and ε = 1.5.

clusters directly an expert used the resulting clustering to determine a subset of TVs
which is relevant per data set. The chosen data sets which are used in the following are
characterized in the appendix. For ACC one such cluster is determined, for Lights two
clusters are determined, for wiper one cluster is determined, for Start up two clusters
are determined and for Shutdown one cluster is determined. Those are named as TV
Cluster i where i is the TV cluster index.
Further, all data sets have a similar average duration of around 1500 to 3000 seconds
per journey. We chose 400 overlapping windows for clustering, which was sufficient to
discover correlations. Best separation is achieved, if a significant number of TVs is
present, the spread of data points is in a good range and TVs differ stronger in terms of
times of occurrence, as exemplified with the Shutdown case.

9.4.3 Segmentation Clustering

Based on the reduced clusters that were created by experts, the range segmentation is
used to identify segments.
For the ACC data set all TVs are used and clusters include the activation and deactiva-
tion of the ACC function, which is found by segmenting the trace at a fixed time range
before those states (referred to as targeted method here). In the following it is distin-
guished between the ACC data set which uses this targeted method and all other data
sets which use range segmentation. As described in chapter 6 in this method segments
are found by specifying a temporal range around each state change and by grouping close
state changes. Hence, for the ACC case hyper parameters are the temporal threshold
before the state change tprev, while for range segmentation parameters are the range

201

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

ε = 0.1 ε = 0.2 ε = 0.4

ε = 0.8 ε = 1.5 ε = 3.0

Figure 9.9: Results of increasing ε when clustering TVs in the Lights data set, when considering
the first two PCA components, where nPCA = 5 and MinSamples = 3.

around each data point rtemp, as well as ε for clustering.

Metrics: Here, four metrics are considered for evaluation. First, the mean sequence
length. Clusters of short length tend to be more consistent, while those are meaningless
to consider as functional procedures. Therefore, larger values of this metric are preferred.
Second, the standard deviation of the mean sequence lengths is considered. That is, if all
sequence lengths across all extracted segments are of identical length per TV, it is very
likely that a consistent segment set is found, which in turn results in a low value for this
metric. In contrast to that, if sequences vary in length per TV this value is high. Third,
the number of found clusters is considered here. This value indicates the granularity
of clustering, i.e. if multiple fragmentary clusters are found or one big cluster is found.
Both extremes are not desired. Rather a reasonable number of clusters that depends
on the number of samples is to be chosen. Lastly, the Silhouette Index is considered as
it indicates the separation of clusters in terms of variation in TV occurrences. Here, a
higher value is preferable. To evaluate the influence of parameters in those segmentation
approaches for the given scenarios, those given hyper parameters were varied for each
data set.
To cover both approaches hyper parameter performance is discussed for the ACC set
and both for the Lights and Start up data set, as similar conclusions can be drawn for
the remaining data sets.

Results of hyper parameter estimation: First, the results for the ACC data set
are discussed, which are presented in Figure 9.10. Here the activation is considered only,

202

9.4 Mining in-vehicle Network Traces for Specifications

as the deactivation results in similar conclusions. Looking at the left chart in Figure
9.10 it can be seen that for lower ranges the standard deviation is low. In this area
only less state changes are given, which is non-informative when considering functional
procedures. With increasing values the deviation grows up to 1.5 seconds before it drops
significantly. The increase results from noisy state changes that are added, while the
drop comes when a further set of state changes is found that is common in all segments,
which seems to be the case here. Thus, at this drop point meaningful functional proce-
dures are likely to be found. Also, the mean length of sequences per TVs grows and is
at its highest point at the drop point. The number of clusters is one, as all activations
form one cluster.
Second, the results of the Lights data set when choosing TV Cluster 1 are discussed.
Those are illustrated in Figures 9.11 and 9.12. It can be seen that for small rtemp = 0.01
and rtemp = 0.05 no meaningful sequences are found (indicated by dark blue in the stan-
dard deviation plot, white in the means plot and white in the number of clusters plot).
That is, no found segment group contains the minimum required number of sequence
elements to form a valid cluster. That is, as at each point’s neighborhood no overlapping
data point ranges are given. However, with increasing range size more and more segment
groups fall within a valid area of length, giving a growing number of clusters. At the
same time, the length of sequences per TV grows as it becomes more likely for state
changes of a certain TV to be contained within the same segment group.
ε defines the distance (in terms of similar numbers of TVs per group) at which multiple
segments are clustered together. With increasing value more segments fall in the same
cluster. With this, the composition of segments within the clusters changes, yielding a
change in value of mean sequence lengths. Also, the number of clusters becomes smaller
as close groups are fused with growing ε. As the Silhouette index shows, there is no
improved separation for rtemp > 0.1, while this index becomes worse when choosing a
too high value for ε. For similar number of clusters and Silhouette indices it is preferable
to chose sequences that are longer on average, which is why for TV Cluster 1 in the
lights data set a value of ε = 0.5 and rtemp = 0.5 are chosen.
Third, the results of the Start up data set when choosing TV Cluster 2 are discussed.
This is as here an effect that is different to the Lights data set is observed. As Figures
9.13 and 9.14 show, in the first part the number of clusters grows with increasing rtemp
and decreases then. The increase is again due to more segments with minimum length,
while the decrease results from more data points that are overlapping forming longer
sequences that are fused to one cluster. This can be seen as in those cases the standard
deviation and mean sequence lengths grows, and the Silhouette index decreases. Increase
of ε behaves similar to the Lights case. We chose an ε = 0.01 and rtemp = 0.1 here to
keep the mean lengths of TVs in a reasonable range (note that lengths of up to 40 state
changes per TV were found).

Choice of parameters: Based on above discussion the following parameters are chosen
for the given data sets. Those are for ACC TV Cluster 1 segment group 1 tprev = 2.0,
for ACC TV Cluster 1 segment group 2 tprev = 2.0, for Lights TV Cluster 1 ε = 0.5 and
rtemp = 0.5, for Lights TV Cluster 2 ε = 1.0 and rtemp = 0.01, for Wiper TV Cluster 1
ε = 0.8 and rtemp = 0.1, for Start up TV Cluster 1 ε = 0.01 and rtemp = 0.1, for Start
up TV Cluster 2 ε = 0.01 and rtemp = 0.5, for Shutdown TV Cluster 1 ε = 1.0 and

203

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

Mean Std. of Seq. Lengths Mean Seq. Lengths Number of Clusters

Figure 9.10: Hyper parameters for ACC, when varying tprev in terms of various metrics.

Mean of Std. of Sequence lengths per TV Mean of Sequence lengths per TV

Figure 9.11: Hyper parameters for Lights, when varying rtemp and ε in terms of various metrics.

Number of Clusters found Silhouette index

Figure 9.12: Hyper parameters for Lights, when varying rtemp and ε in terms of various metrics.

204

9.4 Mining in-vehicle Network Traces for Specifications

Mean of Std. of Sequence lengths per TV Mean of Sequence lengths per TV

Figure 9.13: Hyper parameters for Start up, when varying rtemp and ε in terms of various
metrics.

Number of Clusters found Silhouette index

Figure 9.14: Hyper parameters for Start up, when varying rtemp and ε in terms of various
metrics.

205

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

rtemp = 0.25 and for Shutdown TV Cluster 2 ε = 0.01 and rtemp = 0.1. Further, the
clustering was performed with 10 PCA components.

Found segment clusters: With those parameters meaningful MSS sets are found. In
particular the range segmentation excludes both MSS groups of too short length as well
as of to small number. Depending on the parameterization multiple MSS groups might
resemble similar behavior, that was not grouped together due to different types of noise
that was present. In the future such clusters might be grouped together by applying
post processing. Further, the choice of parameters resulted in a rather fine grained clus-
tering as ε was mostly chosen as low as possible. With this, less variation in segments
is present, which on the one hand is desirable in Specification Mining but on the other
hand results in correlations that are hard to compute during structure discovery. This
will be discussed further below.
Some of the found MSSs might be described as follows, where the following argumen-
tation is based on the statistics of those sets. For TV Cluster 1 of the Lights data set
those statistics are shown in Figure 9.15, while for the remaining sets those can be found
in the Appendix. The same hold for examples of found clusters which are depicted in
Figure 9.16 and 9.17 for the lights data set.

• ACC: Here, two MSS groups with mainly 11 involved TVs are found which is
the functional procedure before activation and the behavior before deactivation of
the ACC.

• Lights: For TV Cluster 1, 32 MSS groups with up to 7 TVs were found, where
3 groups are dominant with more than 500 MSSs and further 3 groups with more
than 100 MSSs. Those groups include the activation of the indicator for 3 seconds,
the permanent activation of the indicator and the starting of the indicator in one
direction and changing it directly to the other. Other clusters are variants of this.
Further, it can be seen that the number of MSSs tends to decrease with the length
of MSSs. This is as MSS groups with longer sequences TVs have a higher risk
of noise occurring in between. This noise consequently results in MSSs that are
grouped in different clusters. For TV Cluster 2 28 MSS groups with up to 10 TVs
were found, where 2 are dominant with more than 500 MSSs. Those groups include
the movement of lights on occurring traffic, the automated activation of the high
beam, the light state depending on the driving mode, the variation of brightness,
the detection of traffic or combinations of those.

• Wiper: Here 68 MSS groups with up to 9 TVs are found. The dominant
group contains more than 1000 MSSs and resembles the cyclic movement of the
wiper. Notably, with this the range segmentation was able to detect MSSs with
cyclic movement. Further groups include the manual and automated activation
and deactivation of the wiper. Further, as this data set has many discretized
continuous values multiple clusters with variations of those values are found, such
as the rain intensity or brightness. Thus, in comparison to all other data sets
lengths of sequences per TV are up to 60 with many in a range around 10.

• Start up: For TV Cluster 2, 41 MSS groups with up to 8 TVs were found, where
3 groups are dominant with more than 500 MSSs and further 5 groups of above

206

9.4 Mining in-vehicle Network Traces for Specifications

Sequence lengths per TV Number of MSSs

Figure 9.15: Statistics of TV Cluster 1 of the lights data set are shown here. Including the
distribution of sequence lengths per TV, the number of MSSs per cluster and the
number of TVs per sequence.

100 MSSs. Here, 20 of all found groups include only one TV. Those are again
variations of continuous TVs that are grouped, which also can be seen as those
clusters are longer. Such groups are meaningless and are excluded in the further
process. Other clusters range from 2 to 8 TVs. Those found clusters include
activations and deactivations of subsystems and the power supply, as well as the
successive activation and deactivation of the engine. For TV Cluster 3, 17 MSS
groups with up to 7 TVs were found, which all occur less than 80 times. Here no
continuous TV is present and thus, all MSS groups resemble meaningful behavior.
Found clusters include similar activations and deactivations as in TV Cluster 2,
but with a different set of TVs considered.

• Shutdown: For both TV Cluster 1 and for TV Cluster 2 2 MSS groups were
found. That is, as here an explicit filtering of the trace that contains such shutdown
procedures was performed beforehand. Thus, the resulting behaviors are similar.
Up to 5 TVs are present here. Found segments are similar to the Start up case
and include similar activations and deactivations, but with a different set of TVs
considered.

Conclusion: The above discussion shows that both range and targeted segmenta-
tion are capable to automatically find meaningful MSS groups when using suitable
hyper parameters. Based on this, subsequent analyses are performed per functional

207

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 2

0 1 2 3 4 5
1e8

0

25

50

75

100

125

150

175

Cluster 3

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

20

40

60

80

100

120

140

Cluster 4

Figure 9.16: MSS groups 0 to 4 are shown for the lights data set.

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

20

40

60

80

100

120

Cluster 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

10

20

30

40

50

60

70

80

Cluster 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

10

20

30

40

50

Cluster 7

0 1 2 3 4 5 6
1e8

0

5

10

15

20

25

30

35

40

Cluster 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e9

0

5

10

15

20

25

30

35

40

Cluster 9

Figure 9.17: MSS groups 5 to 9 are shown for the lights data set.

procedure that allow to extract specifications for defined scenarios. Further, for the in-
spected data sets suitable parameters seem to be within a range of rtemp = [0.01, 0.5] and
ε = [0.01, 1.0]. Data sets with more continuous TVs tend to find longer MSS groups,
which however, often are restricted to less TVs. Such groups might require different
specification extraction approaches that focus on cyclic behavior. Above that, groups
with longer MSSs are smaller due to variation in noise, as parameters where chosen to
find groups of high segment consistency. In the following, a subset of found clusters is
used to demonstrate how specifications are extracted from those MSS groups.

9.4.4 Structure Discovery

Multiple MSS groups, that resemble distinct behaviors, were evaluated in terms of the
influence of parameters on the discovered structures. For this the number of inter edges
was considered as metric as it best resembles the complexity of the learned structure.
A low number indicates no edges and thus, a low model capacity. Less potential paths
through the model exist, that are passed with BaySpec. At worst this leads to specifi-
cations that include a single TV. In the opposite case of a high number of edges a high
number of redundant paths is given in the network. However, this is preferable here,
because still parameter estimation will parameterize the network such that the actual
observed behavior is more likely in the network. The same holds for the extraction of
dominant behavior using MPE, as during sampling observed constellations will be more
likely. Here, structure learning of the activation in ACC, the indicator activation of the
Lights and the first MSS group of the Start up set is discussed. Again the remaining
results are found in the appendix.

Results of hyper parameter estimation: For the following discussion it is impor-
tant to note, that two types of MSS groups were created with the previous approaches.
Using range segmentation the goal was to find consistent MSS groups. In contrast to
that using the targeted approach no consistency is guaranteed and noise might be in-
cluded. Further, k defines the level of filtering of inconsistent MSSs and both χth and α
measure correlation between two state changes.
First, when looking at the ACC case in Figure 9.18 it can be seen that with a higher
k the number of inter-edges decreases. This is as a growth of this parameter, results in

208

9.4 Mining in-vehicle Network Traces for Specifications

k = 0.00 k = 0.05 k = 0.15

Figure 9.18: Number of inter edges for different parameters k, χth and α for the ACC data set
(activation)

k = 0.00 k = 0.15 k = 0.35

Figure 9.19: Number of inter edges for different parameters k, χth and α for the Lights data
set (TV Cluster 1, MSS group 0)

more filtering and thus, less distinct MSSs. Further, it can be seen that the highest num-
ber of inter-edges is given if less correlation is required (i.e. χth is small and α = 1.0).
With increasing χth and decreasing α less inter-edges are given as edges with lighter
correlation are dropped. However, for the ACC case still up to around 10 inter-edges
are found if α is chosen low.
For the Lights and Start up set in Figures 9.19 and 9.20 this effect becomes more evi-
dent. For both cases an α < 0.9 significantly reduces the number of inter edges as those
data sets are high in consistency and thus, barely usable for computation of correlations.
Nevertheless, TrieDiscover bases the learned structure on the temporal occurrences of
state changes, which leads to consistent structures even if no correlation computation is
possible. This is desirable as with this BaySpec and MPE are able to perform inference
from the structure even if redundant connections are present.

Choice of parameters: As stated before, a higher number of inter-edges is preferable.
Thus, parameters were chosen accordingly. For all data sets k was set to 0. For the three
above cases the following parameters were chosen: the activation case of ACC χth = 0.2
and α = 1.0, for Lights TV Cluster 1 group 0 χth = 0.2 and α = 1.0, for Start up TV
Cluster 2 group 1 χth = 0.0 and α = 1.0.

209

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

k = 0.00 k = 0.15 k = 0.35

Figure 9.20: Number of inter edges for different parameters k, χth and α for the Start data set
(TV Cluster 2, MSS group 1)

Found structures: The structures found for the three cases above are shown in Figures
9.21, 9.22 and 9.23. As shown in Figures 9.21 ACC has less nodes, i.e. state changes,
occurring prior to activation. Rather often a single state change or a constellation of state
changes that is represented in the initial nodes forces the deactivation. Consequently,
MPE is expected to be more insightful when inferring the activation behavior. The
structure learned for the lights indicator also seems plausible, as multiple state changes
in change of handle bar and activation of indicators occur per activation as Figure 9.22
shows. The segment plot also shows that there are variants of this behavior including
defect activations, as well as right and left activation.
An example for a structure of higher complexity is given in the Start up case in Figure
9.23. In this case occurring MSSs mostly vary in their initial state: However, after any
initial state combination, a similar set of actions occurs, as the segments plot shows.

Conclusion: While correlation is hard to compute if samples of MSSs are too consis-
tent, TrieDiscover is still able to extract meaningful structures. However, those struc-
tures tend to have a too optimistic number of inter-edges. This is not a problem for the
scenario of specification extraction within the proposed pipeline since the subsequently
executed methods BaySpec and MPE are able to extract the dominant behavior, which
is prevalent when learned from observed samples.
In the future, this number of inter-edges could be reduced by making correlations more
evident or by developing different correlation metrics. This could be achieved by merg-
ing MSS groups that resemble similar (but not identical) behavior with more variations.

Parameter Estimation: As was shown in Chapter 7 all parameter estimation ap-
proaches for TSCBNs perform similar. Thus, for all given cases EM or MPE-R were
used. With this, the parameters were learned and a fully parameterized structure per
MSS group is extracted.

9.4.5 Specification Mining

Given the parameterized models, BaySpec and MPE were applied to extract specifica-
tions and dominant behavior. As metrics the width and height is used as defined in
Chapter 8. Further, the metric-based approach is used. There the literal ratio and com-

210

9.4 Mining in-vehicle Network Traces for Specifications

0 200000 400000 600000 800000 1000000 1200000 1400000
0

100

200

300

400

500

Cluster 0

Figure 9.21: Flow of extraction for the ACC data set (TV Cluster 1, Group 0). On the left
the MSS segments used for training are given. The right shows the learned struc-
ture and the lower part shows the complexity of found specifications. Size of
circles indicates the number of found specifications with this complexity that have
likelihood bigger than pmin.

211

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 0

Figure 9.22: Flow of extraction for the Lights data set (TV Cluster 1, Group 0)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e8

0

50

100

150

200

250

300

Cluster 1

Figure 9.23: Flow of extraction for the Start Up data set (TV Cluster 2, Group 1).

212

9.4 Mining in-vehicle Network Traces for Specifications

bination count was chosen such that at least 20 % and at most 50 % of the symbols in
an expressions are softened.

9.4.5.1 Results of BaySpec

Found Specifications: The numbers of specifications, that were found with BaySpec
and a threshold pmin > 0.6 are 24 for ACC (TV Cluster 1, MSS group 0), 224 for ACC
(1, 1) , 104 for Lights (1, 0), 84 for Lights (1, 3), 12 for Lights (2, 3), 53 for Wiper (1,
9), 328 for Wiper (1, 14), 1048 for Start up (2, 1), 36 for Start up (2, 8), 4 for Start up
(2, 15), 88 for Start up (3, 0), 209 for Shutdown (1, 0) and 503 for Shutdown (2, 0). The
distribution of those specifications in terms of complexity is shown in Figures 9.21, 9.22
and 9.23 for the three examples presented during structure discovery. Further, results
are again given in the appendix.
Overall specifications with a high likelihood are supported in the data and thus, correctly
learned. Results and main observations for some of the found specifications are discussed
in the following.

• ACC (1, 1): Here, some non-informative specifications were found, which resem-
ble system states that were present during activation. While those specifications
are not wrong they are considered irrelevant. Examples are the state defining that
the display has to show or to not show a warning before the state ”no preceding
car detection”. In particular the TV of the warning does not have an influence
and is not the cause of an activation. That is,
G(warnings:none → X(F(preceding:none and X(F(ACC:activated)))))
G(warnings:showing → X(F(preceding:none and X(F(ACC:activated)))))
Further, here a main pattern was the preceding car information that occurred in
most specifications, which is triggered in two cases. First, if the brake was released,
i.e. G(brake:deactivated → X(F(preceding:none and X(F(ACC:activated))))) and
second, if certain buttons were pressed, which includes different combinations, in-
cluding the resume button as
G(resumeButton:pressed → X(F(preceding:none and X(F(ACC:activated)))))
and the Set button as
G(setButton:pressed → X(F(preceding:none and X(F(ACC:activated)))))
Lastly, various combinations before activation are checked. Those include multiple
braking states that are allowed, which are checked similar to the first case.
G(brake-state:1 → X(F(preceding:none and X(F(ACC:activated)))))
G(brake-state:3 → X(F(preceding:none and X(F(ACC:activated)))))

• Lights (1, 0): Here, three dominant observations are found, which are the
activations of the left and right indicator, as well as the synchronization information
sent, followed by a deactivation (which has to occur after 3 seconds). The right
activation is found as
G((bar:tip up or state:both off) → X(G(state:right on → X(state:both off)))), the
left activation as
G((bar:tip down or state:both off)→ X(G(state:left on→ X(state:both off)))) and
the synchronization as
G(sync:indicator continues → X(G(sync:start cycle → X(F(sync:initialize or sync:

213

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

indicator continues))))).
Further specifications include the handle bar variation, from pressed to not pressed
or the variant of a indicator changing to the defect state.

• Start up (2, 1): Here, the dominant specifications are the shutdowns of various
system components, where combinations of shutdowns are represented as states in
less TVs. That is, one TV might contain multiple variants of system information,
which vary little across observations. Thus, the resulting specifications are similar
mostly varying at one literal. Further, within this procedure a series of gates are
deactivated. An example shutdown procedure of system states is
G((((system-A:a off, b off, c on, d off, e on or power-supply:a) or power-supply:b)
or gate-A:hold) → X(F(system-A:a off, b off, c off, d off, e off and X(F(driver:not
present and X(F(system-B:f off, g on, h off, i off, j on, k off))))))).
Those combinations vary in its initial state nodes, while the consequent procedure
is similar in many MSSs. BaySpec captures such intermediate procedures as well,
e.g. as
G(power-supply:a → X(F(state-request:transmitted)))

Those examples show that the proposed pipeline is able to discover useful specifications
in MSSs using BaySpec.

Complexity: In Figures 9.21, 9.22 and 9.23 it can be seen that most specifications are
found in Start up, followed by ACC and Lights. Also, Start up produces specifications
with highest likelihoods, width and height.
For all sets an increased pmin results in less specifications as less paths with sufficiently
high likelihood are found. Further, height decreases as less paths are found and less
merging is performed.
Moreover, the structure influences the resulting specifications. That is, depending on
the number of TVs, its states and the length of each model, the width and height varies.
More TVs and states result in a increased width, as after merging more constellations of
TVs with states are possible. Longer models yield longer paths, which yields increased
height. Such paths also allow for more merging possibilities and thus, an possibly in-
creased width. ACC and Light have a similar dominant width and height area, which is
as ACC has more TVs and states with short procedures, while Lights has less TVs with
many states and long procedures. In contrast to that, Start up has many TVs, most
states and longest procedures yielding the highest complexity among those data sets.
Further, in ACC and Lights a threshold of χth = 0.2 was set for the structure discovery
yielding a structure with light minimum correlation, while in Start up the maximum
structure is represented. This yields more redundant paths in Start up giving more
specifications. This effect is amplified by the fact that Start up has many states that
resemble identical behavior in a single TV, yielding results for the same specification
with multiple combinations.

Quality: The quality of specifications that are found with BaySpec are discussed in the
following.

214

9.4 Mining in-vehicle Network Traces for Specifications

• Meaning: First, with decreasing likelihood of specifications, found specifications
may become redundant, non-informative or false positives. First, two types of
redundancy might occur. That is, found specifications might be a sub-formula of
other specifications or specifications in the final set or might vary in one redundant
literal only. Such specifications need to be merged in further post processing.
Second, specifications might be non-informative (while not wrong). That is, one
literal might contain all states of a TV, i.e. it does not matter which state a
TV has, making this part of the formula non-informative. The same effect is
achieved, if specifications in the result set differ in one literal such that this lit-
eral covers all possible states. For instance if the TV warning has two states, the
following two formulas might make the first literal irrelevant in terms of its value.
First: G(warnings:none→ X(F(preceding:none and X(F(ACC:active))))). Second:
G(warnings:showing→ X(F(preceding:none and X(F(ACC:active))))). In the gen-
eral case this formula thus, is non-informative. Nevertheless, in the particular case
of automotive traces, this formula has a well defined meaning, as it implies that
the message of the warnings has to be transmitted before an activation. Another
type of non-informative specifications are those that contain no information. Such
information is hard to filter based on content as explicit domain knowledge is re-
quired. For example in G(detection:traffic in front detected or detection:traffic in
back detected) → X(detection:nothing detected), the validity cannot be explicitly
tested, as in the general case the state of no detection is legit to never occur, e.g.
if a car drives on the motorway for several hours.
Third, false positive specifications may be found as edge redundancy and estima-
tion errors might lead to paths that were not actually present in the trace. After
inspecting the results of above experiments, it was found that the risk of this effect
increases for specifications of lower likelihood. In addition to that, false positives
might result from the merging operation in BaySpec. For instance in G(bar: tip
up → X(F((state:left on or state:Blinker right on) and X(state:both off)))), tip-
ping up should not activate the right indicator, which however, is represented here.
Above that, especially for the continuous case formulas might be merged in a way
that yields illogical constellations. For example in G((position:d or position:a) →
X(G((position:a or position:c)→ X(position:b and X(position:a and X((position:b
and X(position:c)))))))) it might occur that position a follows position d which is
not possible as it needs to pass b and c first.

• Parallelism: BaySpec is also able to represent parallel behavior through merging of
literals. In the current implementation this parallelism is resembled by connecting
multiple possible symbols per literal using an or operator. However, this implies
that both constellations are allowed. By changing this operator to an and operator
it can be forced that both states are required together. This problem also occurs
in general in found specifications. For instance when merging the set of states of
initial TV nodes an or allows the consequent procedure if any of the initial states
is given. But, often it is rather required that multiple initial states are required at
the same time, which are modeled by an and operator. This could be a possible
extension of BaySpec.

215

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

Limitations: First, when applying model checking, with the learned specifications,
the data set needs to be filtered to the subset of TVs that are contained in each specifi-
cation. Else intermediate elements of other TVs could violate the formula.
Further, often the premise found by BaySpec is not sufficient to find the specification
within the whole trace, as the formula was learned from one MSS group only (rather
than the whole trace). Thus, in the current implementation prior segmentation is re-
quired and checking needs to be performed on MSSs that are expected to contain the
modeled behavior.
Above that, BaySpec might yield specifications that are valid in a reverse order. For
instance G(brake-state:1 → X(F(preceding:none and X(F(ACC:deactivated))))) implies
that any time a person brakes and no car is preceding the deactivation needs to occur.
However, this should only be tested if segments are considered that end with a deac-
tivation. Else this formula is violated anytime that the ACC is not activated. Thus,
either prior segmentation or an extended premise needs to be added, that in this example
would additionally specify that ACC has to be active.
In addition to that the structure of the trained model defines the TVs that are contained
in specifications. Thus, the quality of the discovered structure has a direct influence on
the quality of specifications. For instance, in contrast to the Start up case, in the Lights
data set less redundant specifications are found, as the Lights data set has a clearer
structure with clearer correlations.
Also, it was found that BaySpec performs better for functional procedures with more
paths, longer paths and with clearer behavioral correlation (e.g. in Lights), as opposed
to short paths with multiple initial states (e.g. in ACC). In the former case likely paths
are longer and thus, more meaningful when merged. For the latter case, often multiple
states need to be given at the same time to trigger the target state. In the future this
can be achieved for instance, by merging resulting specifications with an and operator.
Alternatively, this can be well achieved with the MPE approach, which is able to capture
a snapshot of all allowed states.

Benefits: While, some specifications are redundant, specifications of higher likelihood
are well supported by the observations. Hence, the resulting expressions can be well
applied on test data. In that case redundant specifications might never be violated and
consequently, yields a slight overhead during execution. Nevertheless, this is compen-
sated by the effectiveness of non-redundant expressions, which are able to verify relevant
behavior. In practice specifications might be generated automatically and redundant
ones filtered if those were not violated within a minimum amount of test data.
Another advantage is the automatic generation of specifications, as manual generation is
highly time-consuming. For instance as given in the Start up case, specifications might
have multiple states of shape a on, b on, c on, ... per TV, which might contain different
constellations. Finding valid transitions among such constellations is easy to automate
why it reduces manual effort significantly.

Continuous TVs: BaySpec seems to be applicable to discretized continuous TVs as
well. For example, in the Wiper data set rain intensity triggers the wiper engine to
start, which is given for various intensities of b, c or d as exemplified in G((position:c or
intensity:b) → X(F((position:b and X(F(position:a)))))).

216

9.4 Mining in-vehicle Network Traces for Specifications

In the same way BaySpec was able to identify cyclic specifications of the Wiper moving
back and forth e.g. in G((position:d or position:a) → X(G((position:c) → X(position:b
and X(position:a and X(position:b and X(position:c))))))), where the first part (premise)
is redundant, while the second part contains the cyclic movement to test.

9.4.5.2 Results of MPE

Per data set the MPE approach of Chapter 7 was used, where 100 000 samples are
drawn and the 100 most likely results of this MPE method are investigated. The results
of applying MPE to the cases above are presented here, while for all remaining cases
those are described in the appendix.
For the ACC case both for activation and deactivation multiple constellations of equal
likelihood were found. Here, the term likelihood represents the proportional frequency
of a certain constellation to be drawn relative to the absolute number of drawn samples.
For all other data sets a clear drop in likelihood is present, e.g. from 1 % to 0.3 %.
Constellations above this drop showed to mostly represent dominant observed behavior
of the data set. Thus, in practice this boundary is used to determine all dominant
behaviors.
In the following some examples of found dominant MPE estimates are given.

• ACC: For the activation case, two dominating MPEs, that resemble two types
of activations, are given in the following. Here, dt (= ∆t) is specified in micro
seconds and a subset of TVs is named. Notably, here three nodes for ACC are
given as in the training data often a deactivation occurred shortly before activation.

Example 1: The most likely constellation captures a deactivation through brak-
ing, which is followed by an activation. In this case the ACC deactivates shortly
and automatically resumes when not disabled by a button.
ACC - dt=0.0 - activated - dt=0.0 - deactivated - dt=1373978 - activated
preceding - dt=0.0 - close - dt=20001 - none
TV-1 - dt=0.0 - state A
TV-2 - dt=0.0 - state A
TV-3 - dt=0.0 - state A
setButton - dt=0.3 - not pressed
TV-4 - dt=0.0 - state A
speed - dt=0.2 - a
brake-intensity - dt=0.0 - d
brake-state - dt=0.0 - 1
warnings - dt=0.0 - none

Example 2: Here an activation is shown, that results from pressing the Set button.
ACC - dt=0.0 - activated - dt=0.0 - activated - dt=0.0 - activated
preceding - dt=0.0 - close - dt=0.0 - none
TV-1 - dt=0.0 - state A
TV-2 - dt=0.0 - state A
TV-3 - dt=0.0 - state A

217

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

setButton - dt=0.4 - pressed
TV-4 - dt=0.0 - state A
speed - dt=0.0 - b
brake-intensity - dt=0.0 - d
brake-state - dt=0.0 - not pressed
warnings - dt=0.0 - none

• Lights: The dominating MPEs are given in the following where dt is specified in
nano seconds and a subset of TVs is named.

Example 1: The first most likely found structures captures the activation of the
right indicator, which turns on and off again. The same is found for the left indi-
cator.
bar - dt=0.0 - tip up - dt=0.0 - tip up - dt=716707958 - not pressed
sync - dt=0.0 - indicator continues - dt=22022086 - start cycle - dt=0.0 - initialize
state - dt=0.0 - both off - dt=15745713 - right on - dt=1740429348 - right off
sync2 - dt=0.0 - not indicating - dt=17029405 - indicating - dt=1586328954 - not
indicating

Example 2: Here, the defect case is shown.
bar - dt=0.0 - tip up - dt=0.0 - tip down - dt=555459463 - not pressed
sync - dt=0.0 - indicator continues - dt=11216975 - start cycle - dt=479977508 -
indicator continues
state - dt=0.0 - both off - dt=16188873 - left on - dt=1749651319 - both off
sync2 - dt=0.0 - not indicating - dt=3574150 - indicating - dt=640113760 - indi-
cation defect

• Start Up: The dominating MPEs are given in the following where dt is specified
in nano seconds and a subset of TVs is named. Here the system deactivation is
shown.

Example 1:
power-supply - dt=0.0 - a - dt=136483490 - d
state-request - dt=0.0 - none - dt=118302256 - transmitted
gate-A - dt=0.0 - hold - dt=114115405 - off
driver - dt=0.0 - offline - dt=5504711 - not present
system-A - dt=0.0 - a off, b off, c on, d off, e on - dt=21312576 - a off, b off, c on,
d off, e off
system-B - dt=0.0 - f off, g on, h off, i off, j on, k off - dt=0.3 - f off, g on, h off, i
off, j off, k off
system C - dt=0.0 - a off, b off, c off , d off, e on, f on - dt=6327829 - a off, b off,
c off , d off, e off, f off

In all three cases the dominant states of the observations were found and thus, yield
plausible results. In the first example of the ACC case a deactivation occurs, which is
due to braking at time 0. After, 1.3 seconds without any preceding car a reactivation

218

9.4 Mining in-vehicle Network Traces for Specifications

occurs, turning the system back on again. The second case of ACC shows that pressing
the Set Button leads to an activation of the ACC. Here, latent state changes are present,
i.e. ACC was active throughout the segment. Thus, temporal gaps between events are
mostly zero. In the Lights case both examples yield the exact expected behavior. That
is, a series of synchronization sequences as well as the right and left indicator activation.
Notably, the indicators are both deactivated after some seconds, as here short indication
is modeled, as opposed to the long indication which is shown in the appendix. Lastly,
in the Start Up example it can be seen that several components are turned off, which is
transmitted per system in a single TV. Further, the driver left the car, which indicates
that here, the car was closed by the driver from outside of the car in this functional
procedure.

Discussion: In comparison to BaySpec MPE allows to include temporal information.
Further, specifications that are found with MPE are independent of paths and thus,
likely constellations are more likely to represent dominant behavior. Again, here the
optimistic choice of edges seems to not influence MPEs performance as it results in
mostly plausible constellations.
A drawback of MPE is its lack of direct usability as specification. The reason for this
is that it is very specific and hence, does not include strictness information. However,
in order to enable this in the future, an approach that is similar to BaySpec might be
designed. This method might merge found likely constellations on a model level rather
than a path level. Further, in some cases, such as in the ACC case, the first MPE
constellations that were drawn in MPE contain very similar or even the same triggering
behavior. In ACC among the first 10 entries the brake being at state d causes the
analyzed procedure. Those entries varied across redundant variations of other TVs,
which have no effect on this procedure. In the ACC case that includes e.g. the speed
being at a, b, c or d. However, the intensity or occurrence of this effect depends on the
data set. In other data sets, such as the Lights set the two most likely constellations
resemble ones right and ones left indication.
Lastly, in case of a target state change (e.g. ACC), another limitation of the MPE
approach is that it is not clear what triggered the state (e.g. activation). This is
because MPE gives a snapshot of all TVs instead of a relevant subset as in BaySpec.
However, it would be more preferable to have an importance score at each node, which
could indicate the likelihood of a subset of nodes being the cause of the target state
change. This could be solved in the future by merging results of likely MPEs, e.g. in
order to identify states that caused a target state change.

9.4.5.3 Conclusion

Both BaySpec and MPE were successfully applied to extract relevant behavior from the
investigated functional procedures. BaySpec was able to directly represent specifications
as LTL formulas which are used for verification. In particular, along with specifications
that are able to verify relevant behavior, BaySpec produces non-informative or redundant
specifications, which could be improved in the future. Nevertheless, all resulting LTL
formulas can directly be applied on traces that contain similar behavior, i.e. it needs
to be ensured that segments under test contain the functional procedure that is to be

219

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces

tested. This is the case here as the premise that is derived in BaySpec does not include
all TVs.
Further, MPE finds a set of dominant states which include temporal information that
is represented based on the structure of TSCBNs. With this, likely constellations that
are prevalent in the data set are represented. This is especially useful when multiple
conditions cause a functional procedure to occur, as it is given in the ACC case, or when
better understanding of certain functional procedures is required.

9.5 Conclusion

In this chapter the proposed DM pipeline was used to extract specifications and dom-
inant behavior from five automotive data sets. It was shown that the approach allows
to systematically break down complexity of heterogeneous temporal data sets, by pre-
processing traces, clustering TVs, clustering and segmenting MSSs, learning TSCBNs
to represent functional procedure as well as by applying either BaySpec or MPE to ex-
tract the main behavior. This makes systematic automatic extraction of specifications
possible.
Above that, an appropriate set of approaches was presented for each stage of the pipeline
and its suitability was shown. In addition to that, the influence of individual hyper
parameter on the performance of each stage were discussed based on an extensive eval-
uation.
Moreover, some limitations of those approaches were discussed. In particular this in-
cludes extraction of MSSs that vary in behavior. In the given scenario segmentation
clustering was targeted to extract a consistent set of MSSs. This raised the problem
of computing correlations during structure discovery with TrieDiscover. However, it
was shown that by choosing an optimistic number of edges, this problem is omitted
yielding meaningful results. In the future either a more diverse set of MSSs needs to
be ingested, as is the case in the Lights data set, or a correlation metric needs to be
used that computes correlation in terms of steady behavior. This is expected to both
reduce complexity of the further processing, as well as the precision of resulting models
and specifications. Furthermore, BaySpec works best if multiple paths are given in the
structure and thus, performs best if more inter-edges are present across TVs. If this is
not the case MPE is preferable to use.
Further, it was shown that by breaking down the complexity into small segments of
fewer TVs, TSCBNs are well able to be used to produce specifications. That is, as the
DM pipeline produces a high number of models that each yield a set of specifications,
rather than mining specifications from the overall trace.
Lastly, in practice, run time performance worsens with higher complexity of the prob-
lem. This can however be omitted by choosing the right parameters at each stage. This
includes the following. First, during preprocessing less SAX values are chosen, which
reduces the number of discretized continuous state changes. Further, after TV cluster-
ing smaller sets of TVs are used. In segmentation clustering sub grouping or fusion
of segments are used to generate segments of appropriate behavioral variance. Before
structure discovery, states of individual TVs might be fused (e.g. different variants of
braking), to reduce the number of states per TV. During structure discovery higher cor-
relation thresholds yield less edges, making estimation more efficient. Also, in BaySpec

220

9.5 Conclusion

the minimum probability threshold during path search can be increased, which results
in less candidate paths and thus, less computations.

221

10 Conclusion and Outlook

10.1 Summary

In this work a semi-automated end-to-end pipeline is presented, that allows to extract
specifications and dominant behavior from traces of large-scale distributed systems.
First, given a raw trace, a set of relevant dimensions, as well as reduction rules are de-
fined. Those are used within a parallel preprocessing approach to automatically extract
a homogeneous trace representation. First, preselection yields a reduced representation
that is based on meta-information. This representation is interpreted and reduced using
the specified rules, before type-dependent processing is performed on the trace. This
ultimately yields a trace in the shape of an interpreted representation of relevant subsets
of TVs.
Next, functional procedures need to be identified that are associated with certain do-
mains. This is done in two steps. In the first part, relevant TVs are grouped. This is
done based on events that occur in similar intervals and by including expert input. By
extracting features for each TV and appropriately reducing those, clustering approaches
are used to find correlated clusters. DBSCAN and WaveCluster worked best for the
investigated data sets of an automotive trace. In the second part, segments of common
functionality are sought. This requires concurrent segmentation and clustering, which in
general needs to uncover overlapping functional procedures. Three approaches to solve
this were compared, which include a window-based clustering, an extension of LTS and
a range segmentation approach. It was found that for non-overlapping procedures those
approaches perform equally well. However, LTS and window-based clustering are not
well suited to handle functional procedures of varying length, while range segmentation
allows for grouping of procedures with flexible lengths. Also, range segmentation showed
to be the most scalable among those methods.
The previous steps result in a set of MSSs, which are used to extract specifications. This
can be done with existing approaches. However, those exclude structural information,
are not well able to handle imperfect traces and cannot find specifications of arbitrary
length. Therefore, next, a model is learned as a structured representation of the data
which is used as the basis to infer specifications and dominant behavior from it. As MSSs
are given, TSCBNs were used for representation. Using TrieDiscover both temporal and
multidimensional information is preserved which allows to represent behavioral correla-
tions from the model. If TVs in traces contain sufficient variance in system states, this
approach allows to find structures of low complexity. However, if no variance is present
an optimistic choice of parameters needs to be used to find structures with redundant
edges. That is, as less complex structures tend to miss out potential paths, although
those might have been present in actual observations, while in redundant structures
BaySpec and MPE are still able to extract dominant behavior. In terms of parame-
ter estimation three approaches EM, VI and MLE-R were compared and show to work

223

10 Conclusion and Outlook

equally well.
Lastly, BaySpec is applied on the resulting structures to extract LTL specifications.
Here, found specifications tend to be more meaningful if supported by a higher average
likelihood. Less likely specifications get increasingly meaningless or even false. That is,
those might form sub-formulas of more likely formulas or contain redundant informa-
tion. As an alternative approach MPE is used to extract most probable snapshots of
the MSSs, which enables to identify dominant behavior. Similarly as in BaySpec here
more likely constellations are more likely to represent true behavior that is present in
the data, while constellations of lower likelihood might yield false positives.
In a final case study on an automotive data set it was shown that the overall pipeline
is consistent and allows to systematically extract specifications. Further, the effect of
choosing different hyper parameters at each step is extensively studied. All in all, this
allows to use a good parameterization that can be used to apply the designed pipeline
for an semi-automated extraction of specifications.

10.2 Lessons Learned

First, with the proposed pipeline it was shown that Specification Mining at large-scale
is possible through successive reduction of trace size. This reduction is achieved by
extracting functional behavior and by aggregating MSSs into a compact model. In con-
trast to this, the usage of the raw trace as an input for rule-based or automaton-based
mining would yield exploding complexity. However, with the proposed pipeline this is
overcome, as it is able to extract multiple branches of TVs and functional segments, that
each result in a set of specifications.
By including the expert during preselection, reduction, TV grouping and segmentation,
domain relevant functional behavior is found. Doing this in a fully automated manner
is currently hardly possible, as it cannot be clearly measured which TVs and MSSs cor-
relate and as meta-data, such as naming of TVs, needs to be considered. Hence, the
inclusion of domain knowledge in Specification Mining is essential.
Further, parameterization of the approach depends on the characteristics of the data
set. This includes finding an appropriate granularity for groupings of TVs, which is
dependent on the behavior that is to be investigated. For instance, height and width of
functional procedures does vary based on the distribution of data types in the set. Also,
during temporal segmentation different approaches might be required, that depend on
the shape of the functional procedures. For instance, this might depend on whether
procedures are overlapping or variations of procedure lengths are possible.
Above that, for MSSs with higher variance per state change cbTD with strict correlation
thresholds works best. In particular if this variance is low, this threshold needs to be
lower, which yields a structure that is determined predominantly based on the order of
state changes in the MSSs.
Moreover, an optimal set of input MSSs needs to be found, such that a clear correla-
tion between state changes is present. However, the determination of an appropriate
parameterization for segmentation clustering that achieves this is challenging. This is
due to the fact, that the question arises, which segment groups might correlate and what
variants of segment groups need to be combined.
Lastly, for MSSs with low variance an optimistic number of edges needs to be used in

224

10.3 Answers to Research Questions

order to make it applicable for inference of specifications. This is valid, as state changes
that occurred consecutively, are connected via conditional dependencies and hence, tran-
sitions of actually observed sequences are learned as more likely. With this, inference is
possible by focusing on likely constellations only.
The scalability of the current implementation is dependent on the size of the trained
model. However, as complexity is broken down by learning multiple small models (as
opposed to one big model with all behaviors), with the proposed approach good scala-
bility is achieved, which makes it well usable in practice. Nevertheless, this work is the
first step towards scalable Specification Mining, while in the future an extensions to this
work might improve performance.

10.3 Answers to Research Questions

1. How does a systematic Specification Mining approach need to be designed to be
integrable in current testing and verification procedures of large-scale distributed
systems?

Answer: In such systems many domains are involved and thus, domain specific
knowledge needs to be included. That is, the approach needs to be semi-automated.
This is given at multiple stages of the proposed DM pipeline including preprocess-
ing, TV clustering and functional segmentation.
Above that, due to large data sets recorded, a systematic design with multiple
steps is required that targets mining towards the analyzing domain, reuses results
and reduces redundant computations. This is solved with the pipeline, as each
step produces results that are reusable and once parameterized by the expert (in
an initial semi-automated run) the overall DM pipeline can be run automatically
on similar configurations. The approach can be integrated in an automated design,
as the one described in Chapter 3.
Further, the product is evolving quickly during development, which requires speci-
fications to be adjustable in order to perform well at each iteration of the product.
For this, the proposed approach can be both used to design new specifications,
as well as to merge new specifications with existing ones such that appropriate
strictness of specifications is found. Also, by applying those on many data sets,
specifications that are violated too often might be inspected by an expert and
removed if deprecated.

2. How can temporal structure be exploited to allow for a more expressive Specifica-
tion Mining on MSSs?

Answer: Most existing Specification Mining approaches directly operate on
symbols rather than TVs with its states. This excludes inherently present temporal
information. In the proposed approach this is overcome by modeling MSSs using
a TSCBN, where edges represent only paths that are temporally possible. This
allows for optimized representation of both sequentiality and parallelism, which
ultimately yields more expressive specifications.

225

10 Conclusion and Outlook

3. How can Specification Mining be performed on noisy and heterogeneous traces in
order to produce specifications that compare multiple data types?

Answer: This is solved by using a preprocessing approach that includes homoge-
nization and reduction. That is, by appropriately quantifying numerical sequences
and filtering those for meaningful state changes across all data types, traces are
homogenized and noise reduced. In particular removing redundant repeating state
changes of discretized numerical values enables comparability of data types.

4. How can domain specific Specification Mining be performed and expert included
in the mining procedure?

Answer: Existing mining approaches do not allow for interactions during spec-
ification mining, while this allows for more expressive and relevant specifications.
The proposed approach solves this, by including the expert at multiple stages of
the pipeline, i.e. during the decisions of which TVs are relevant, how functional
procedures are formed and which temporal correlations exist.

5. How can the complexity of a multi-functional large-scale distributed system be
broken down, such that effective and efficient mining of relevant specification is
enabled?

Answer: In such systems the system state can be formulated as a set of functional
procedures as introduced in Chapter 2. With this assumption it is possible to
isolate functional procedures. In the proposed approach it was shown that this
isolation can be performed by applying TV clustering and segmentation clustering.

6. How can behavior of functional procedures of MSSs be represented under uncer-
tainty and specifications of arbitrary length extracted?

Answer: To represent MSSs under uncertainty it is required to represent both
the sequential, as well as the parallel behavior of those. This can be done with
TSCBNs. The length of specifications is directly associated with the length of the
TSCBN, which in turn depends on the length of MSSs used for training. Thus,
to achieve specifications of arbitrary length, an appropriate segmentation of MSSs
needs to be found. In this work, range segmentation showed, that it can be suc-
cessfully applied for this task.

7. How can raw communication traces of large-scale distributed systems be processed
and functional procedures, as well as specifications identified from those?

Answer: To enable an end-to-end processing of raw traces, an interpretation
approach is required. For massive traces this approach needs to reduce traces early,
such that interpretation is performed on relevant subsets only. By then, structuring
the interpreted representation as MESs and transforming those to MSSs with the
presented approach relevant system states can be extracted.

226

10.4 Future Work

8. How can functional procedures be identified in high dimensional MSSs of large-
scale?

Answer: In general functional procedures depend on the aspect under analysis,
e.g. it might include communication or system state behavior. Therefore, first,
identification of those requires to include expert input. Second, from a technical
point of view a TV clustering approach is required that can be run on parallelized
processing frameworks such as Apace Hadoop. This was presented in Chapter
5. Subsequent segmentation allows to extract functional procedures. The best
approach to use for this depends on the composition of functional procedures in a
trace (e.g. overlapping vs. non-overlapping).

9. Which combination of approaches is suited to be used at each individual step of
the semi-automated processing pipeline?

Answer: The approaches to use at each step depend on the analysis intent
and the shape of the data. For preprocessing a representation needs to be found
that results in MSSs of state behavior of the system. In Chapter 4 a raw trace
was assumed, that performs early reduction, interpretation and type-dependent
reduction to solve this. For TV clustering groups of TVs need to be identified that
are correlating, which in the inspected method of Chapter 5 included TVs that are
changing in common time spans. This however, excludes TVs that correlate while
changing less frequent (e.g. system activations) or missing occurrences that are
expected (e.g. no button pressed before activation). In segmentation clustering
the type of functional procedure determines the approach to choose. Here range
segmentation performed well as active phases in the data were assumed that are
sparsely distributed and procedures are of varying lengths. Lastly, for modeling of
MSSs TSCBNs in combination with BaySpec and MPE allow to extract meaningful
specifications.

10.4 Future Work

Future work includes extension of the pipeline itself, improvement of its steps, variation
of its steps, improving its support for other data types and enabling future applications
with this approach.

DM pipeline: Future Specification Mining approaches should be able to fully auto-
mate extraction and optimization of specifications at a large scale. The current imple-
mentation allows for semi-automated mining, which could be improved in the future.
That is, artificial intelligence might be used, where an agent creates and optimizes spec-
ifications based on a set of rules or based on results from this pipeline. A particular
challenge lies in identifying which granularities are reasonable at each step. Above that,
the approach could be integrated in an overall testing cycle as it was shown in Chapter
3, where expert feedback that is investigating results of applied specifications, could be
used to improve specifications. Moreover, this approach might identify anomalies, when

227

10 Conclusion and Outlook

specifications that are automatically learned from one set of MSSs are applied to another
set of MSSs that is expected to contain similar behavior.

Improve Steps: The methods that were introduced at each step of the pipeline may
be further improved in terms of performance and capabilities. That is, preprocessing of
traces might be generalized to ingest and prepare multiple raw data formats. This is
important, as in real-life scenarios different devices that record traces of different shape
are involved. TV clustering currently groups TVs that occur together, while it might
be interesting to include further TVs that are correlated, such as steady dependencies
(e.g. device is active). In segmentation clustering the challenge of overlapping segments
needs to be solved. Above that, for modeling of MSSs as TSCBNs more efficient and
scalable approaches need to be invented that, e.g., might include specialized hardware
designs. Lastly, BaySpec and MPE could be extended to improve their limitations which
where described in Chapter 8. Those include aspects such as the presence of mandatory
or optional parallelism in expressions. Further, both approaches could be combined in
the future. MPE yields a set of most probable constellation that each represent a strict
specification of the system. By merging such constellations a multidimensional specifi-
cation could be defined.

Exchange Steps: Another option is to modify the framework by exchanging its steps
with other approaches. This is useful as the ultimate goal of the presented pipeline is to
be an inherent part of the testing cycle, that systematically learns specifications and is
able to improve itself iteratively.
In preprocessing other representations of MSSs might be used, such as one-hot encod-
ings of state changes. Based on this Machine Learning models could be directly trained
on the resulting representations. Such models could classify unspecific errors or detect
anomalies, e.g., as it was done in [17].
Furthermore, in this work TSCBNs were used for modeling. However, multiple other
types of models, such as automata or process models could be used as part of this
pipeline in the future. With this, novel inference algorithms could be designed that
yield improved extractions of specifications.
Alternatively, existing Specification Mining approaches could be applied directly, which
become applicable as data is reduced within the first pipeline steps that are presented
in this work.

Applications: The proposed DM pipeline can be used for different application sce-
narios, that go beyond Specification Mining.
First, it could be extended to allow for improved data understanding. This can be done
by highlighting clusters of functional procedures that were found in the trace with the
current pipeline. With this, experts can focus on relevant aspects of the trace and in-
vestigate interactions between functional procedures.
Further, functional procedures can be used as an indicator of situations, e.g. a driver
opening the door.
Above that, behavior among different instances of a system might be investigated by
comparing specifications that were learned from different system instance. Then, dif-
ferences in behavior might indicate optimization potential for one of the two system

228

10.4 Future Work

instances.
Furthermore, anomaly detection can be performed with this pipeline. This can be
achieved by clustering functional procedures such that both correct and abnormal be-
havior is present. Based on this, models can be used to identify anomalies. For example,
Process Mining methods can be used to identify abnormal procedures as branches in a
process model. Also, functional procedure distributions could be learned and behavior
deviating from it marked as anomaly. Moreover, specifications that were learned from
one MSS set, could be applied on another trace under test to reveal discrepancies be-
tween both traces as an anomaly. Such anomalies might be used by experts as input to
finding similar errors (e.g. by using supervised Machine Learning), to understand the
error better or to systematically improve learned specifications based on feedback.

229

Bibliography

[1] A. S. Tanenbaum and M. Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[2] M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada. Survey on models and
techniques for root-cause analysis. arXiv preprint arXiv:1701.08546, 2017.

[3] A. Fernández, S. del Ŕıo, V. López, A. Bawakid, M. J. del Jesus, J. M. Beńıtez,
and F. Herrera. Big data with cloud computing: an insight on the computing
environment, mapreduce, and programming frameworks. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 4(5):380–409, 2014.

[4] A. Mrowca, T. Pramsohler, S. Steinhorst, and U. Baumgarten. Automated in-
terpretation and reduction of in-vehicle network traces at a large scale. In
Proceedings of the 55th Annual Design Automation Conference on - DAC 18.
ACM Press, 2018. URL: https://doi.org/10.1145%2F3195970.3196000, doi:
10.1145/3195970.3196000.

[5] A. Mrowca, B. Moser, and S. Günnemann. Discovering groups of signals in
in-vehicle network traces for redundancy detection and functional grouping. In
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 86–102. Springer, 2018.

[6] C. W. Günther and W. M. van der Aalst. Mining activity clusters from low-level
event logs. Beta, Research School for Operations Management and Logistics, 2006.

[7] U. Nodelman, C. R. Shelton, and D. Koller. Learning continuous time bayesian
networks. In Proceedings of the Nineteenth conference on Uncertainty in Artificial
Intelligence, pages 451–458. Morgan Kaufmann Publishers Inc., 2002.

[8] A. Mrowca, F. Gyrock, and S. Günnemann. Temporal state change bayesian
networks for modeling of evolving multivariate state sequences. Under Review.,
2020.

[9] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[10] A. Mrowca, M. Nocker, S. Steinhorst, and S. Günnemann. Learning temporal spec-
ifications from imperfect traces using bayesian inference. In 2019 56th ACM/ES-
DA/IEEE Design Automation Conference (DAC). IEEE, 2019.

[11] B. Zhou, J. Too, M. Kulkarni, and S. Bagchi. Wukong: automatically detecting
and localizing bugs that manifest at large system scales. In Proceedings of the 22nd
international symposium on High-performance parallel and distributed computing,
pages 131–142. ACM, 2013.

231

https://doi.org/10.1145%2F3195970.3196000
http://dx.doi.org/10.1145/3195970.3196000
http://dx.doi.org/10.1145/3195970.3196000

Bibliography

[12] P. Wolf, A. Mrowca, T. T. Nguyen, B. Bäker, and S. Günnemann. Pre-ignition
detection using deep neural networks: A step towards data-driven automotive
diagnostics. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 176–183. IEEE, 2018.

[13] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F. Siok. Recent catas-
trophic accidents: Investigating how software was responsible. In 2010 Fourth
International Conference on Secure Software Integration and Reliability Improve-
ment, pages 14–22. IEEE, 2010.

[14] S. P. Kavulya, K. Joshi, F. Di Giandomenico, and P. Narasimhan. Failure diagnosis
of complex systems. In Resilience assessment and evaluation of computing systems,
pages 239–261. Springer, 2012.

[15] K. Kc and X. Gu. Elt: Efficient log-based troubleshooting system for cloud com-
puting infrastructures. In 2011 IEEE 30th International Symposium on Reliable
Distributed Systems, pages 11–20. IEEE, 2011.

[16] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016.

[17] J.-P. Schulze, A. Mrowca, E. Ren, H.-A. Loeliger, and K. Böttinger. Context by
proxy: Identifying contextual anomalies using an output proxy. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2059–2068. ACM, 2019.

[18] A. Hadoop. Hadoop, 2009.

[19] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Problem diagnosis in large-
scale computing environments. In Proc. of SC 2006, 2006.

[20] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis of
execution profiles. In Proceedings of the 23rd international conference on Software
engineering, pages 339–348. IEEE Computer Society, 2001.

[21] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request
extraction and workload modelling. In OSDI, volume 4, pages 18–18, 2004.

[22] J. Kwisthout. Most probable explanations in bayesian networks: Complexity and
tractability. International Journal of Approximate Reasoning, 52(9):1452–1469,
2011.

[23] W. Van der Aalst. Data science in action. In Process Mining, pages 3–23. Springer,
2016.

[24] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and W. M.
Van Der Aalst. The prom framework: A new era in process mining tool support.
In International conference on application and theory of petri nets, pages 444–454.
Springer, 2005.

232

Bibliography

[25] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang.
Towards highly reliable enterprise network services via inference of multi-level de-
pendencies. ACM SIGCOMM Computer Communication Review, 37(4):13–24,
2007.

[26] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for failure diagnosis in
ip networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Mining
network data, pages 173–178. ACM, 2005.

[27] G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi. Distributed diagnosis of
failures in a three tier e-commerce system. In 2007 26th IEEE International Sym-
posium on Reliable Distributed Systems (SRDS 2007), pages 185–198. IEEE, 2007.

[28] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Fault localization via
risk modeling. IEEE Transactions on Dependable and Secure Computing, 7(4):396–
409, 2009.

[29] N. Joshi, B. Wilburn, V. Vaish, M. L. Levoy, and M. A. Horowitz. Automatic
color calibration for large camera arrays. [Department of Computer Science and
Engineering], University of California . . . , 2005.

[30] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik. Real-time problem
determination in distributed systems using active probing. In 2004 IEEE/IFIP
Network Operations and Management Symposium (IEEE Cat. No. 04CH37507),
volume 1, pages 133–146. IEEE, 2004.

[31] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial intel-
ligence, 29(3):241–288, 1986.

[32] W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in
practice. Chapman and Hall/CRC, 1995.

[33] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society: Series B (Methodological), 50(2):157–194, 1988.

[34] R. D. Shachter. Intelligent probabilistic inference, 2013. arXiv:1304.3446.

[35] Ö. Sümer, U. A. Acar, A. T. Ihler, and R. R. Mettu. Adaptive exact inference
in graphical models. Journal of Machine Learning Research, 12(Nov):3147–3186,
2011.

[36] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approxi-
mate inference: An empirical study. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann Publishers
Inc., 1999.

[37] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference.
In Learning in graphical models, pages 75–104. Springer, 1998.

233

http://arxiv.org/abs/1304.3446

Bibliography

[38] K. Kask and R. Dechter. Stochastic local search for bayesian network. In AISTATS,
1999.

[39] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and ma-
chine intelligence, (6):721–741, 1984.

[40] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust
event correlation. IEEE communications Magazine, 34(5):82–90, 1996.

[41] L. Monacelli and G. Reali. Evolution of the codebook technique for automatic
fault localization. IEEE Communications Letters, 15(4):464–466, 2011.

[42] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard. Fault detection
and diagnosis in distributed systems: an approach by partially stochastic petri
nets. Discrete event dynamic systems, 8(2):203–231, 1998.

[43] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk. Forepost: Finding perfor-
mance problems automatically with feedback-directed learning software testing.
Empirical Software Engineering, 22(1):6–56, 2017.

[44] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure diagnosis
using decision trees. In International Conference on Autonomic Computing, 2004.
Proceedings., pages 36–43. IEEE, 2004.

[45] Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and E. A.
Brewer. Path-based failure and evolution management. University of California,
Berkeley, 2004.

[46] X. Xu, L. Zhu, I. Weber, L. Bass, and D. Sun. Pod-diagnosis: Error diagnosis
of sporadic operations on cloud applications. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 252–263.
IEEE, 2014.

[47] R. J. Kate and R. J. Mooney. Rj: Probabilistic abduction using markov logic
networks. In In: IJCAI-09 Workshop on Plan, Activity, and Intent Recognition.
Citeseer, 2009.

[48] P. Singla and R. J. Mooney. Abductive markov logic for plan recognition. In
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[49] G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt. Lifted
probabilistic inference by first-order knowledge compilation. In Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence, pages
2178–2185. AAAI Press/International Joint Conferences on Artificial Intelligence;
Menlo . . . , 2011.

[50] S. M. Kazemi and D. Poole. Knowledge compilation for lifted probabilistic infer-
ence: Compiling to a low-level language. In Fifteenth International Conference on
the Principles of Knowledge Representation and Reasoning, 2016.

234

Bibliography

[51] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma. Au-
tomated known problem diagnosis with event traces. In ACM SIGOPS Operating
Systems Review, volume 40, pages 375–388. ACM, 2006.

[52] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
determination in large, dynamic internet services. In Proc. of DSN 2002, 2002.

[53] Z. Lan, Z. Zheng, and Y. Li. Toward automated anomaly identification in large-
scale systems. IEEE Transactions on Parallel and Distributed Systems, 21(2):174–
187, 2009.

[54] L. Mariani and F. Pastore. Automated identification of failure causes in system
logs. In 2008 19th International Symposium on Software Reliability Engineering
(ISSRE), pages 117–126. IEEE, 2008.

[55] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Capturing,
indexing, clustering, and retrieving system history. In ACM SIGOPS Operating
Systems Review, volume 39, pages 105–118. ACM, 2005.

[56] A. Babenko, L. Mariani, and F. Pastore. Ava: automated interpretation of dynam-
ically detected anomalies. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 237–248. Citeseer, 2009.

[57] R. Ren, X. Fu, J. Zhan, and W. Zhou. Logmaster: Mining event correlations in
logs of large scale cluster systems. arXiv preprint arXiv:1003.0951, 2010.

[58] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. ACM Sigplan
Notices, 37(1):4–16, 2002.

[59] A. Wasylkowski and A. Zeller. Mining temporal specifications from object us-
age. Automated Software Engineering, 18(3-4):263–292, 2011. doi:10.1007/

s10515-011-0084-1.

[60] M. K. Ramanathan, A. Grama, and S. Jagannathan. Static specification inference
using predicate mining. In ACM SIGPLAN Notices, volume 42, pages 123–134.
ACM, 2007.

[61] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining
using automata-based abstractions. IEEE Transactions on Software Engineering,
34(5):651–666, 2008. doi:10.1109/TSE.2008.63.

[62] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In ACM SIGOPS Operating
Systems Review, volume 35, pages 57–72. ACM, 2001.

[63] R. Alur, P. Černỳ, P. Madhusudan, and W. Nam. Synthesis of interface spec-
ifications for java classes. ACM SIGPLAN Notices, 40(1):98–109, 2005. doi:

10.1145/1047659.1040314.

235

http://dx.doi.org/10.1007/s10515-011-0084-1
http://dx.doi.org/10.1007/s10515-011-0084-1
http://dx.doi.org/10.1109/TSE.2008.63
http://dx.doi.org/10.1145/1047659.1040314
http://dx.doi.org/10.1145/1047659.1040314

Bibliography

[64] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst. Leveraging
existing instrumentation to automatically infer invariant-constrained models. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European con-
ference on Foundations of software engineering, pages 267–277. ACM, 2011.

[65] D. Lo and S.-C. Khoo. Smartic: towards building an accurate, robust and scal-
able specification miner. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 265–275. ACM, 2006.

[66] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal properties
from dynamic traces. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 339–349. ACM, 2008.

[67] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE transactions on
software engineering, 27(2):99–123, 2001.

[68] C. Lemieux, D. Park, and I. Beschastnikh. General ltl specification mining (t).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 81–92. IEEE, 2015.

[69] D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules for software mainte-
nance. Journal of Software Maintenance and Evolution: Research and Practice,
20(4):227–247, 2008.

[70] G. Cutulenco, Y. Joshi, A. Narayan, and S. Fischmeister. Mining timed regular
expressions from system traces. In Proceedings of the 5th International Workshop
on Software Mining, pages 3–10. ACM, 2016.

[71] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining
temporal api rules from imperfect traces. In Proceedings of the 28th international
conference on Software engineering, pages 282–291. ACM, 2006.

[72] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification and
diagnosis. In Proceedings of the 47th design automation conference, pages 755–760.
ACM, 2010.

[73] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering, 39(5):613–637, 2013.

[74] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson.
Goldmine: Automatic assertion generation using data mining and static analysis.
In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), pages 626–629. IEEE, 2010.

[75] M. Bonato, G. Di Guglielmo, M. Fujita, F. Fummi, and G. Pravadelli. Dy-
namic property mining for embedded software. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 187–196. ACM, 2012.

236

Bibliography

[76] A. Danese, T. Ghasempouri, and G. Pravadelli. Automatic extraction of assertions
from execution traces of behavioural models. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 67–72. IEEE, 2015.

[77] Y. Zhang, G. Gantt, M. Rychlinski, R. Edwards, J. Correia, and C. Wolf. Con-
nected vehicle diagnostics and prognostics, concept, and initial practice. IEEE
Trans. on Reliability, 58(2), 2009.

[78] R. Prytz, S. Nowaczyk, and S. Byttner. Towards relation discovery for diagnostics.
In Proceedings of the First International Workshop on Data Mining for Service and
Maintenance - KDD4Service 11. ACM Press, 2011. URL: https://doi.org/10.
1145%2F2018673.2018678, doi:10.1145/2018673.2018678.

[79] S. Nowaczyk, R. Prytz, and S. Byttner. Ideas for fault detection using relation
discovery. In The 27th annual workshop of the Swedish Artificial Intelligence Soci-
ety (SAIS); 14-15 May 2012; Örebro; Sweden, number 071, pages 1–6. Linköping
University Electronic Press, 2012.

[80] I. A. Raptis, C. Sconyers, R. Martin, R. Mah, N. Oza, D. Mavris, and G. J.
Vachtsevanos. A particle filtering-based framework for real-time fault diagnosis of
autonomous vehicles. In Annual Conference of the Prognostics and Health Man-
agement Society, 2013.

[81] P. Taylor, F. Adamu-Fika, S. S. Anand, A. Dunoyer, N. Griffiths, and T. Popham.
Road type classification through data mining. In Proceedings of the 4th Interna-
tional Conference on Automotive User Interfaces and Interactive Vehicular Appli-
cations - AutomotiveUI 12. ACM Press, 2012. URL: https://doi.org/10.1145%
2F2390256.2390295, doi:10.1145/2390256.2390295.

[82] P. Taylor, N. Griffiths, A. Bhalerao, A. Dunoyer, T. Popham, and Z. Xu. Fea-
ture selection in highly redundant signal data: A case study in vehicle telemetry
data and driver monitoring. In International Workshop Autonomous Intelligent
Systems: Multi-Agents and Data Mining. Springer, pages 25–36. Citeseer, 2013.

[83] A. Sathyanarayana, S. Nageswaren, H. Ghasemzadeh, R. Jafari, and J. H. Hansen.
Body sensor networks for driver distraction identification. In Vehicular Electronics
and Safety, 2008. ICVES 2008. IEEE International Conference on, pages 120–125.
IEEE, 2008.

[84] H. Guo, J. A. Crossman, Y. L. Murphey, and M. Coleman. Automotive signal
diagnostics using wavelets and machine learning. IEEE transactions on vehicular
technology, 49(5):1650–1662, 2000.

[85] J. A. Crossman, H. Guo, Y. L. Murphey, and J. Cardillo. Automotive signal fault
diagnostics-part i: signal fault analysis, signal segmentation, feature extraction
and quasi-optimal feature selection. IEEE Transactions on Vehicular Technology,
52(4):1063–1075, 2003.

[86] P. Agarwal, G. Shroff, S. Saikia, and Z. Khan. Efficiently discovering frequent
motifs in large-scale sensor data. In Proc. IKDD CODS 2015, 2015.

237

https://doi.org/10.1145%2F2018673.2018678
https://doi.org/10.1145%2F2018673.2018678
http://dx.doi.org/10.1145/2018673.2018678
https://doi.org/10.1145%2F2390256.2390295
https://doi.org/10.1145%2F2390256.2390295
http://dx.doi.org/10.1145/2390256.2390295

Bibliography

[87] R. Kruse, M. Steinbrecher, and C. Moewes. Data mining applications in the au-
tomotive industry. In 4th International Workshop on Reliable Engineering Com-
puting, 2010.

[88] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery
- DMKD 03. ACM Press, 2003. URL: https://doi.org/10.1145%2F882082.

882086, doi:10.1145/882082.882086.

[89] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, and S. Byttner. Predicting the need
for vehicle compressor repairs using maintenance records and logged vehicle data.
Engineering applications of artificial intelligence, 41:139–150, 2015.

[90] E. Frisk, M. Krysander, and E. Larsson. Data-driven lead-acid battery prognostics
using random survival forests. In Proceedings of the annual conference of the
prognostics and health management society. Fort Worth, Texas, USA, 2014.

[91] J. Wang. Constraint-based event trace reduction. In Proc. of SIGSOFT 2016,
pages 1106–1108. ACM, 2016.

[92] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal event
sequence simplification. IEEE Trans. on visualization and computer graphics,
19(12):2227–2236, 2013.

[93] Y. Li and L. Guo. An efficient network anomaly detection scheme based on tcm-
knn algorithm and data reduction mechanism. In IAW 2007, pages 221–227. IEEE,
2007.

[94] J. J. Davis and A. J. Clark. Data preprocessing for anomaly based network intru-
sion detection: A review. Computers & Security, 30(6):353–375, 2011.

[95] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting
time series. In Proc. of ICDM 2001, 2001.

[96] C. GmbH. Carmen analyzer. Web page:
https://codemanufaktur.com/projekte/bmw- car-measurement-environment/,
last modified: 2017.

[97] A. de Haro-Garćıa and N. Garćıa-Pedrajas. A divide-and-conquer recursive ap-
proach for scaling up instance selection algorithms. Data Mining and Knowledge
Discovery, 18(3):392–418, 2009.

[98] B. Schlegel and B. Sick. Design and optimization of an autonomous feature selec-
tion pipeline for high dimensional, heterogeneous feature spaces. In Computational
Intelligence (SSCI), 2016 IEEE Symposium Series on, pages 1–9. IEEE, 2016.

[99] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu. Mpi performance analysis tools
on blue gene/l. In Proc. of SC 2006, pages 16–16. ACM/IEEE, 2006.

238

https://doi.org/10.1145%2F882082.882086
https://doi.org/10.1145%2F882082.882086
http://dx.doi.org/10.1145/882082.882086

Bibliography

[100] K. Mohror and K. L. Karavanic. Evaluating similarity-based trace reduction tech-
niques for scalable performance analysis. In Proc. of SC 2009, page 55. ACM,
2009.

[101] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance prediction
framework for scientific applications. Proc. of ICCS 2003, pages 701–701, 2003.

[102] G. Aguilera, P. J. Teller, M. Taufer, and F. Wolf. A systematic multi-step method-
ology for performance analysis of communication traces of distributed applications
based on hierarchical clustering. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 8–pp. IEEE, 2006.

[103] B. Mihajlović, Ž. Žilić, and W. J. Gross. Architecture-aware real-time compression
of execution traces. ACM Transactions on Embedded Computing Systems (TECS),
14(4):75, 2015.

[104] I. Batal, G. F. Cooper, D. Fradkin, J. Harrison Jr, F. Moerchen, and
M. Hauskrecht. An efficient pattern mining approach for event detection in multi-
variate temporal data. Knowledge and information systems, 46(1):115–150, 2016.

[105] P. Chaovalit, A. Gangopadhyay, G. Karabatis, and Z. Chen. Discrete wavelet
transform-based time series analysis and mining. ACM Computing Surveys
(CSUR), 43(2):6, 2011.

[106] T.-c. Fu. A review on time series data mining. Engineering Applications of Arti-
ficial Intelligence, 24(1):164–181, 2011.

[107] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time
series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[108] C. S. Möller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer. Fuzzy clus-
tering of short time-series and unevenly distributed sampling points. In Ad-
vances in Intelligent Data Analysis V, pages 330–340. Springer Berlin Heidel-
berg, 2003. URL: https://doi.org/10.1007%2F978-3-540-45231-7_31, doi:

10.1007/978-3-540-45231-7_31.

[109] A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of
time-series data. International Journal of Computer Research, 10(3):49–61, 2001.

[110] X. Wang, K. A. Smith, and R. J. Hyndman. Dimension reduction for clustering
time series using global characteristics. In Lecture Notes in Computer Science,
pages 792–795. Springer Berlin Heidelberg, 2005. URL: https://doi.org/10.

1007%2F11428862_108, doi:10.1007/11428862_108.

[111] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based anytime al-
gorithm for k-means clustering of time series. In In proc. workshop on clustering
high dimensionality data and its applications. Citeseer, 2003.

[112] S. Lee, D. Kwon, and S. Lee. Dimensionality reduction for indexing time series
based on the minimum distance. Journal of Information Science and Engineering,
19(4):697–711, 2003.

239

https://doi.org/10.1007%2F978-3-540-45231-7_31
http://dx.doi.org/10.1007/978-3-540-45231-7_31
http://dx.doi.org/10.1007/978-3-540-45231-7_31
https://doi.org/10.1007%2F11428862_108
https://doi.org/10.1007%2F11428862_108
http://dx.doi.org/10.1007/11428862_108

Bibliography

[113] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A survey
and novel approach. In Data mining in time series databases, pages 1–21. World
Scientific, 2004.

[114] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In
VLDB, volume 385, page 99, 2000.

[115] T. Räsänen and M. Kolehmainen. Feature-based clustering for electricity use time
series data. In International Conference on Adaptive and Natural Computing Al-
gorithms, pages 401–412. Springer, 2009.

[116] E. Keogh. Fast similarity search in the presence of longitudinal scaling in time
series databases. In Proceedings Ninth IEEE International Conference on Tools
with Artificial Intelligence, pages 578–584. IEEE, 1997.

[117] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. In KDD, volume 98, pages 16–22, 1998.

[118] T.-c. Fu, F.-l. Chung, V. Ng, and R. Luk. Pattern discovery from stock time
series using self-organizing maps. In Workshop Notes of KDD2001 Workshop on
Temporal Data Mining, pages 26–29, 2001.

[119] J. Catlett. On changing continuous attributes into ordered discrete attributes. In
European working session on learning, pages 164–178. Springer, 1991.

[120] L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration
data. In International conference on pervasive computing, pages 1–17. Springer,
2004.

[121] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

[122] L. Kaufman, P. Rousseeuw, and Y. Dodge. Clustering by means of medoids in
statistical data analysis based on the, 1987.

[123] T. A. Runkler. Data analytics. Wiesbaden: Springer. doi, 10:978–3, 2012.

[124] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages
226–231, 1996.

[125] W. Wang, J. Yang, R. Muntz, et al. Sting: A statistical information grid approach
to spatial data mining. In VLDB, volume 97, pages 186–195, 1997.

[126] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

[127] T. Kohonen. Clustering, taxonomy, and topological maps of patterns. In Proc. of
6th Int’l. Conf. Pattern Recognition IEEE Computer Society Press, pages 114–128.
Silver Spring, 1988.

240

Bibliography

[128] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE Access,
6:39501–39514, 2018.

[129] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly
spaces: Simultaneous deep learning and clustering. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70, pages 3861–3870. JMLR.
org, 2017.

[130] P. Huang, Y. Huang, W. Wang, and L. Wang. Deep embedding network for
clustering. In 2014 22nd International Conference on Pattern Recognition, pages
1532–1537. IEEE, 2014.

[131] S. A. Shah and V. Koltun. Deep continuous clustering. arXiv preprint
arXiv:1803.01449, 2018.

[132] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487, 2016.

[133] F. Li, H. Qiao, and B. Zhang. Discriminatively boosted image clustering with fully
convolutional auto-encoders. Pattern Recognition, 83:161–173, 2018.

[134] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pages 1189–1197,
2010.

[135] J. T. Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[136] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In Advances in neural information processing systems, pages
2172–2180, 2016.

[137] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embed-
ding: An unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148, 2016.

[138] N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi. Deep temporal
clustering: Fully unsupervised learning of time-domain features. arXiv preprint
arXiv:1802.01059, 2018.

[139] C. Shaw and G. King. Using cluster analysis to classify time series. Physica D:
Nonlinear Phenomena, 58(1-4):288–298, 1992.

[140] A. J. Lee, M.-C. Lin, R.-T. Kao, and K.-T. Chen. An effective clustering approach
to stock market prediction. In PACIS, page 54, 2010.

[141] C. Goutte, P. Toft, E. Rostrup, F. Å. Nielsen, and L. K. Hansen. On clustering
fmri time series. NeuroImage, 9(3):298–310, 1999.

241

Bibliography

[142] A. Debrégeas and G. Hébrail. Interactive interpretation of kohonen maps applied
to curves. In KDD, volume 1998, pages 179–183, 1998.

[143] Y. L. Murphey, M. Masrur, Z. Chen, and B. Zhang. Model-based fault diagnosis in
electric drives using machine learning. IEEE/ASME Transactions on Mechatron-
ics, 11(3):290–303, jun 2006. URL: https://doi.org/10.1109%2Ftmech.2006.
875568, doi:10.1109/tmech.2006.875568.

[144] K. Kim and A. Parlos. Induction motor fault diagnosis based on neuropredic-
tors and wavelet signal processing. IEEE/ASME Transactions on Mechatron-
ics, 7(2):201–219, jun 2002. URL: https://doi.org/10.1109%2Ftmech.2002.

1011258, doi:10.1109/tmech.2002.1011258.

[145] M. E. Orchard. A particle filtering-based framework for on-line fault diagnosis and
failure prognosis. PhD thesis, Georgia Institute of Technology, 2007.

[146] S. Voronov, D. Jung, and E. Frisk. Heavy-duty truck battery failure prognostics
using random survival forests. IFAC-PapersOnLine, 49(11):562–569, 2016.

[147] H. Zheng, H. Zhang, H. Meng, and X. Wang. Qualitative modeling of vehicle be-
havior for scenario parsing. In 2006 IEEE Intelligent Transportation Systems Con-
ference. IEEE, 2006. URL: https://doi.org/10.1109%2Fitsc.2006.1706813,
doi:10.1109/itsc.2006.1706813.

[148] P. Taylor, N. Griffths, A. Bhalerao, T. Popham, X. Zhou, and A. Dunoyer. Redun-
dant feature selection for telemetry data. In International Workshop on Agents
and Data Mining Interaction, pages 53–65. Springer, 2013.

[149] P. Chaovalit. Clustering transient data streams by example and by variable. PhD
thesis, University of Maryland, Baltimore County, 2009.

[150] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation tech-
niques. Journal of intelligent information systems, 17(2-3):107–145, 2001.

[151] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,
2011.

[152] T. K. Moon. The expectation-maximization algorithm. IEEE Signal processing
magazine, 13(6):47–60, 1996.

[153] J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301):236–244, 1963.

[154] P. Berkhin. A survey of clustering data mining techniques. In Grouping multidi-
mensional data, pages 25–71. Springer, 2006.

[155] P. J. Rousseeuw and L. Kaufman. Finding groups in data. Hoboken: Wiley Online
Library, 1990.

[156] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications, volume 27. ACM,
1998.

242

https://doi.org/10.1109%2Ftmech.2006.875568
https://doi.org/10.1109%2Ftmech.2006.875568
http://dx.doi.org/10.1109/tmech.2006.875568
https://doi.org/10.1109%2Ftmech.2002.1011258
https://doi.org/10.1109%2Ftmech.2002.1011258
http://dx.doi.org/10.1109/tmech.2002.1011258
https://doi.org/10.1109%2Fitsc.2006.1706813
http://dx.doi.org/10.1109/itsc.2006.1706813

Bibliography

[157] B. Horn, B. Klaus, and P. Horn. Robot vision. MIT press, 1986.

[158] D. G. Roussinov and H. Chen. A scalable self-organizing map algorithm for textual
classification: A neural network approach to thesaurus generation. 1998.

[159] S. Beniwal and J. Arora. Classification and feature selection techniques in data
mining. International Journal of Engineering Research & Technology, 1(6):1–6,
2012.

[160] M. Dash and H. Liu. Feature selection for classification. Intelligent data analysis,
1(1-4):131–156, 1997.

[161] G. W. Milligan. A monte carlo study of thirty internal criterion measures for
cluster analysis. Psychometrika, 46(2):187–199, 1981.

[162] G. W. Milligan and M. C. Cooper. An examination of procedures for determining
the number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

[163] L. Vendramin, R. J. Campello, and E. R. Hruschka. Relative clustering validity
criteria: A comparative overview. Statistical analysis and data mining: the ASA
data science journal, 3(4):209–235, 2010.

[164] A. Zimmermann. Understanding episode mining techniques: Benchmarking on
diverse, realistic, artificial data. Intelligent Data Analysis, 18(5):761–791, 2014.

[165] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
ACM SIGMOD Record, volume 23, pages 115–125. ACM, 1994.

[166] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In
Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499,
1994.

[167] X. Yan, J. Han, and R. Afshar. Clospan: Mining: Closed sequential patterns in
large datasets. In Proceedings of the 2003 SIAM international conference on data
mining, pages 166–177. SIAM, 2003.

[168] P. T. X. Y. J. Han, P. Tzvetkov, and X. Yan. Tsp: Mining top-k closed sequential
patterns. National Science Foundation under Grant, (02-09199), 2003.

[169] G. Casas-Garriga. Summarizing sequential data with closed partial orders. In
Proceedings of the 2005 SIAM International Conference on Data Mining, pages
380–391. SIAM, 2005.

[170] M. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with regular
expression constraints. IEEE Transactions on knowledge and data engineering,
14(3):530–552, 2002.

[171] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data mining and knowledge discovery, 1(3):259–289, 1997.

243

Bibliography

[172] S. Laxman, P. Sastry, and K. Unnikrishnan. A fast algorithm for finding frequent
episodes in event streams. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 410–419. ACM, 2007.

[173] T. Calders, N. Dexters, and B. Goethals. Mining frequent itemsets in a stream.
In Seventh IEEE International Conference on Data Mining (ICDM 2007), pages
83–92. IEEE, 2007.

[174] N. Tatti. Significance of episodes based on minimal windows. In 2009 Ninth IEEE
International Conference on Data Mining, pages 513–522. IEEE, 2009.

[175] R. Gwadera, M. J. Atallah, and W. Szpankowski. Reliable detection of episodes
in event sequences. Knowledge and Information Systems, 7(4):415–437, 2005.

[176] R. Gwadera, M. Atallah, and W. Szpankowski. Markov models for identification
of significant episodes. In Proceedings of the 2005 SIAM International Conference
on Data Mining, pages 404–414. SIAM, 2005.

[177] D. Patel, W. Hsu, and M. L. Lee. Mining relationships among interval-based
events for classification. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 393–404. ACM, 2008.

[178] K.-Y. Chen, B. P. Jaysawal, J.-W. Huang, and Y.-B. Wu. Mining frequent time
interval-based event with duration patterns from temporal database. In 2014 in-
ternational conference on data science and advanced analytics (DSAA), pages 548–
554. IEEE, 2014.

[179] Y.-C. Chen, J.-C. Jiang, W.-C. Peng, and S.-Y. Lee. An efficient algorithm for
mining time interval-based patterns in large database. In Proceedings of the 19th
ACM international conference on Information and knowledge management, pages
49–58. ACM, 2010.

[180] N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal
window sizes. In European Conference on Principles of Data Mining and Knowl-
edge Discovery, pages 313–324. Springer, 2004.

[181] G. Shani, C. Meek, and A. Gunawardana. Hierarchical probabilistic segmentation
of discrete events. In Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on, pages 974–979. IEEE, 2009.

[182] D. Graves and W. Pedrycz. Multivariate segmentation of time series with differ-
ential evolution. In IFSA/EUSFLAT Conf., pages 1108–1113. Citeseer, 2009.

[183] P. Cohen, N. Adams, and B. Heeringa. Voting experts: An unsupervised algorithm
for segmenting sequences. Intelligent Data Analysis, 11(6):607–625, 2007.

[184] M. Ramoni, P. Sebastiani, and P. Cohen. Bayesian clustering by dynamics. Ma-
chine learning, 47(1):91–121, 2002.

244

Bibliography

[185] D. Hallac, S. Vare, S. Boyd, and J. Leskovec. Toeplitz inverse covariance-based
clustering of multivariate time series data. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 215–223. ACM, 2017.

[186] C. W. Günther, A. Rozinat, and W. M. Van Der Aalst. Activity mining by global
trace segmentation. In International Conference on Business Process Management,
pages 128–139. Springer, 2009.

[187] D. R. Ferreira, F. Szimanski, and C. G. Ralha. A hierarchical markov model
to understand the behaviour of agents in business processes. In International
Conference on Business Process Management, pages 150–161. Springer, 2012.

[188] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[189] V. Niennattrakul and C. A. Ratanamahatana. On clustering multimedia time series
data using k-means and dynamic time warping. In 2007 International Conference
on Multimedia and Ubiquitous Engineering (MUE07). IEEE, 2007. URL: https:
//doi.org/10.1109%2Fmue.2007.165, doi:10.1109/mue.2007.165.

[190] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In icccn, page 0215. IEEE, 2001.

[191] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[192] T. Dean et al. A model for reasoning about persistence and causation. Computa-
tional intelligence, 5(2), 1989.

[193] U. Nodelman et al. Continuous time bayesian networks. In Proc. of UAI. Morgan
Kaufmann Publishers Inc., 2002.

[194] U. Kjærulff. dhugin: A computational system for dynamic time-sliced bayesian
networks. International journal of forecasting, 11(1), 1995.

[195] K. G. Olesen et al. Diagnosing lyme disease-tailoring patient specific bayesian
networks for temporal reasoning. In Probabilistic Graphical Models, 2006.

[196] H. Boudali et al. A discrete-time bayesian network reliability modeling and analysis
framework. Reliability Engineering & System Safety, 87(3), 2005.

[197] E. Santos Jr et al. Probabilistic temporal networks: A unified framework for
reasoning with time and uncertainty. International Journal of Approximate Rea-
soning, 20(3), 1999.

[198] A. Tucker. The Automatic Explanation of Multivariate Time Series. PhD thesis,
Ph. D. thesis, Birkbeck College, University of London, United Kingdom, 2001.

245

https://doi.org/10.1109%2Fmue.2007.165
https://doi.org/10.1109%2Fmue.2007.165
http://dx.doi.org/10.1109/mue.2007.165

Bibliography

[199] L. Song, M. Kolar, and E. P. Xing. Time-varying dynamic bayesian networks. In
Advances in neural information processing systems, pages 1732–1740, 2009.

[200] G. Arroyo-Figueroa et al. A temporal bayesian network for diagnosis and predic-
tion. In Proc. of UAI. Morgan Kaufmann Publishers Inc., 1999.

[201] S. F. Galán et al. Modeling dynamic causal interaction with bayesian networks:
temporal noisy gates. In Proc. 2nd Inter. Workshop on Causal Networks, 2000.

[202] S. F. Galán et al. Networks of probabilistic events in discrete time. International
Journal of Approximate Reasoning, 30(3):181–202, 2002.

[203] G. Arroyo-Figueroa et al. Temporal bayesian network of events for diagnosis and
prediction in dynamic domains. Applied Intelligence, 23(2), 2005.

[204] C. F. Aliferis et al. A structurally and temporally extended bayesian belief network
model: definitions, properties, and modeling techniques. In Proc. of UAI. Morgan
Kaufmann Publishers Inc., 1996.

[205] W. Y. Kwon and I. H. Suh. A temporal bayesian network with application to
design of a proactive robotic assistant. In 2012 IEEE International Conference on
Robotics and Automation, pages 3685–3690. IEEE, 2012.

[206] A. Y. Tawfik et al. Temporal reasoning and bayesian networks. Computational
Intelligence, 16(3), 2000.

[207] C. Berzuini. Representing time in causal probabilistic networks. In Machine In-
telligence and Pattern Recognition, volume 10. Elsevier, 1990.

[208] V. Ryabov et al. Probabilistic temporal interval networks. In Proc. of TIME 2004.
IEEE, 2004.

[209] P. Weber and L. Jouffe. Complex system reliability modelling with dynamic object
oriented bayesian networks (doobn). Reliability Engineering & System Safety,
91(2):149–162, 2006.

[210] F. De Carlo, O. Borgia, and M. Tucci. Imperfect maintenance modelling by dy-
namic object oriented bayesian networks. International Journal of Engineering
and Technology, 5(5):4282–4295, 2013.

[211] M. Bouissou et al. A new formalism that combines advantages of fault-trees and
markov models: Boolean logic driven markov processes. Reliability Engineering &
System Safety, 82(2), 2003.

[212] J. B. Dugan et al. Dynamic fault-tree models for fault-tolerant computer systems.
IEEE Transactions on reliability, 41(3), 1992.

[213] S. Swaminathan et a. The event sequence diagram framework for dynamic proba-
bilistic risk assessment. Reliability Engineering & System Safety, 63(1), 1999.

246

Bibliography

[214] Y. Gu, Y. Sun, and J. Gao. The co-evolution model for social network evolving
and opinion migration. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 175–184. ACM, 2017.

[215] M. Corneli, P. Latouche, and F. Rossi. Modelling time evolving interactions in
networks through a non stationary extension of stochastic block models. In Ad-
vances in Social Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM
International Conference on, pages 1590–1591. IEEE, 2015.

[216] G. Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[217] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
1978.

[218] G. F. Cooper and E. Herskovits. A bayesian method for the induction of proba-
bilistic networks from data. Machine learning, 9(4):309–347, 1992.

[219] M. Bartlett and J. Cussens. Advances in bayesian network learning using integer
programming. arXiv preprint arXiv:1309.6825, 2013.

[220] C. Yuan and B. Malone. Learning optimal bayesian networks: A shortest path
perspective. Journal of Artificial Intelligence Research, 48:23–65, 2013.

[221] P. Van Beek and H.-F. Hoffmann. Machine learning of bayesian networks using
constraint programming. In International Conference on Principles and Practice
of Constraint Programming, pages 429–445. Springer, 2015.

[222] A. Tucker, X. Liu, and A. Ogden-Swift. Evolutionary learning of dynamic proba-
bilistic models with large time lags. International Journal of Intelligent Systems,
16(5):621–645, 2001.

[223] L. M. de Campos and J. F. Huete. Approximating causal orderings for bayesian
networks using genetic algorithms and simulated annealing. In Proceedings of the
Eighth IPMU Conference, volume 1, pages 333–340, 2000.

[224] H. Xing-Chen, Q. Zheng, T. Lei, and S. Li-Ping. Learning bayesian network
structures with discrete particle swarm optimization algorithm. In 2007 IEEE
Symposium on Foundations of Computational Intelligence, pages 47–52. IEEE,
2007.

[225] P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. adap-
tive computation and machine learning, 2000.

[226] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs.
Social science computer review, 9(1):62–72, 1991.

[227] L. M. De Campos, J. M. Fernández-Luna, and J. M. Puerta. An iterated local
search algorithm for learning bayesian networks with restarts based on conditional
independence tests. International Journal of Intelligent Systems, 18(2):221–235,
2003.

247

Bibliography

[228] X. Fan, B. M. Malone, and C. Yuan. Finding optimal bayesian network structures
with constraints learned from data. In UAI, pages 200–209, 2014.

[229] M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon. Learning bayesian
networks with thousands of variables. In Advances in neural information processing
systems, pages 1864–1872, 2015.

[230] R. Daly, Q. Shen, and S. Aitken. Learning bayesian networks: approaches and
issues. The knowledge engineering review, 26(2):99–157, 2011.

[231] M. Singh and M. Valtorta. Construction of bayesian network structures from data:
a brief survey and an efficient algorithm. International journal of approximate
reasoning, 12(2):111–131, 1995.

[232] D. Dash and M. J. Druzdzel. A hybrid anytime algorithm for the construction
of causal models from sparse data. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence, pages 142–149. Morgan Kaufmann Publishers
Inc., 1999.

[233] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65(1):31–78,
2006.

[234] K. P. Murphy and S. Russell. Dynamic bayesian networks: representation, infer-
ence and learning. 2002.

[235] J. W. Robinson and A. J. Hartemink. Learning non-stationary dynamic bayesian
networks. Journal of Machine Learning Research, 11(Dec):3647–3680, 2010.

[236] T. Savickas and O. Vasilecas. Business process event log transformation into
bayesian belief network. 2014.

[237] T. Savickas and O. Vasilecas. Decision support using belief network constructed
from business process event log. Informatica, 28(4):687–701, 2017.

[238] R. A. Sutrisnowati, H. Bae, and M. Song. Bayesian network construction from
event log for lateness analysis in port logistics. Computers & Industrial Engineer-
ing, 89:53–66, 2015.

[239] R. A. Sutrisnowati, H. Bae, J. Park, and B.-H. Ha. Learning bayesian network from
event logs using mutual information test. In 2013 IEEE 6th International Con-
ference on Service-Oriented Computing and Applications, pages 356–360. IEEE,
2013.

[240] W. Van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004.

[241] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP,
166:1–34, 2006.

248

Bibliography

[242] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Discovering block-structured
process models from event logs containing infrequent behaviour. In International
conference on business process management, pages 66–78. Springer, 2013.

[243] J. Bubenzer. Minimization of acyclic dfas. In Stringology, pages 132–146, 2011.

[244] D. Barber. Bayesian reasoning and machine learning. Cambridge University Press,
2012.

[245] K. R. Karkera. Building probabilistic graphical models with Python. Packt Pub-
lishing Ltd, 2014.

[246] G. Van den Broeck, K. Mohan, A. Choi, A. Darwiche, and J. Pearl. Efficient
algorithms for bayesian network parameter learning from incomplete data. Meila,
Marina, 2015.

[247] C. M. Bishop, D. Spiegelhalter, and J. Winn. Vibes: A variational inference engine
for bayesian networks. In Advances in neural information processing systems, pages
793–800, 2003.

[248] C. R. Shelton, Y. Fan, W. Lam, J. Lee, and J. Xu. Continuous time bayesian
network reasoning and learning engine. Journal of Machine Learning Research,
11(Mar):1137–1140, 2010.

[249] S. E. Shimony. A probabilistic framework for explanation. 1992.

[250] E. Charniak and S. E. Shimony. Cost-based abduction and map explanation.
Artificial Intelligence, 66(2):345–374, 1994.

[251] B. K. Sy. Reasoning mpe to multiply connected belief networks using message
passing. In AAAI, pages 570–576, 1992.

[252] H. L. Bodlaender, F. van den Eijkhof, and L. C. van der Gaag. On the complexity
of the mpa problem in probabilistic networks. In ECAI, pages 675–679, 2002.

[253] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Elsevier, 2014.

[254] M. Henrion and M. J. Druzdzel. Qualtitative propagation and scenario-based
scheme for exploiting probabilistic reasoning. In Proceedings of the Sixth Annual
Conference on Uncertainty in Artificial Intelligence, pages 17–32. Elsevier Science
Inc., 1990.

[255] R. E. Neapolitan. Probabilistic reasoning in expert systems: theory and algorithms.
CreateSpace Independent Publishing Platform, 2012.

[256] C. Lacave and F. J. Dı́ez. A review of explanation methods for bayesian networks.
The Knowledge Engineering Review, 17(2):107–127, 2002.

[257] E. Santos Jr. On the generation of alternative explanations with implications for
belief revision. In Proceedings of the Seventh conference on Uncertainty in Artificial
Intelligence, pages 339–347. Morgan Kaufmann Publishers Inc., 1991.

249

Bibliography

[258] J. Kwisthout. Most frugal explanations in bayesian networks. Artificial Intelli-
gence, 218:56–73, 2015.

[259] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Automata theory, languages, and
computation. International Edition, 24:19, 2006.

[260] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269,
1967.

[261] J. Y. Yen. Finding the k shortest loopless paths in a network. management Science,
17(11):712–716, 1971.

250

A Appendix A: Case Study Full Evaluation

In the following all results of the case study are shown. The discussion of this data set
was already introduced on a subset of the following material in Chapter 9. The full
results are presented here

A.1 ACC

A.1.1 TV Clustering

At first, TV clustering is performed with various parameters.

A.1.1.1 Hyperparameter Estimation

Silhouette Index, for various numbers of PCA components and various ε:
Each plot has a fixed number set for MinSamples = m, when using DBSCAN

m = 2 m = 3 m = 4

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 6

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.1

0.2

0.3

0.4

0.5

m = 7

251

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.1

0.2

0.3

0.4

0.5

m = 8

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.1

0.2

0.3

0.4

0.5

m = 9

Silhouette Index, for various MinSamples and various ε: Each plot has a fixed
number set for nPCA, when using DBSCAN

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.08

0.16

0.24

0.32

0.40

0.48

No PCA

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.1

0.2

0.3

0.4

0.5

0.6

nPCA = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.4

0.2

0.0

0.2

0.4

nPCA = 10

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.08

0.12

0.16

0.20

0.24

0.28

nPCA = 15

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.12

0.06

0.00

0.06

0.12

nPCA = 20

Effect of increasing MinSamples: Each plot shows the two most important PCA
components. Further it has the optimal values for number of PCA and ε fixed, which is
nPCA = 5 and ε = 1.0.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 2 with eps 1.0 and minsamp 2.0

MinSamples = 2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 2 with eps 1.0 and minsamp 3.0

MinSamples = 3

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 1.0 and minsamp 5.0

MinSamples = 5

252

A.1 ACC

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 1.0 and minsamp 6.0

MinSamples = 6

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 1.0 and minsamp 8.0

MinSamples = 8

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 1.0 and minsamp 9.0

MinSamples = 9

Effect of increasing ε: Each plot shows the two most important PCA components.
Further it has the values for MinSamples and ε fixed, which is MinSamples = 3 and
nPCA = 5.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 2 with eps 0.1 and minsamp 3.0

ε = 0.1

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 2 with eps 0.2 and minsamp 3.0

ε = 0.2

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 2 with eps 0.8 and minsamp 3.0

ε = 0.8

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 3.0 and minsamp 3.0

ε = 3.0

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 4.0 and minsamp 3.0

ε = 4.0

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1

2

Estimated number of clusters: 1 with eps 6.0 and minsamp 3.0

ε = 6.0

A.1.1.2 Found clusters

The algorithm found 3 clusters, including one cluster that we refer to as fragmentary
which contains all TVS that were considered noise during clustering. Those clusters
could be named as (1) display information, (2) car state information and a fragmentary
cluster with (3) movement information.

A.1.2 Reduced Clusters

The found clustering are given as an example in this case. The selected reduced TVs
used for further inspection are a subset of those TVs that were chosen based on this
clustering and were carefully selected by an expert. Thus, here there is only one TV

253

A Appendix A: Case Study Full Evaluation

cluster called TV Cluster 1.
Statistics of chosen clusters:
TV Cluster 1:

• Number of TVs [num / nom / bin / ord]: 18 [0/2/16/0]

• Number of samples [num / nom / bin / ord]: 16663 [699/15964/0/0]

• Mean gap: 0.306 s

• Std. gap: 2.748 s

A.1.3 Segmentation Clustering:

A.1.3.1 Hyperparameter Estimation

For this data set the targeted approach was used once for the activation and for the
deactivation. Thus, we assume that two clusters are found. Those are Cluster 1 as ACC
deactivation and cluster 2 as ACC activation. Per data set hyperparameters are found
as described in the next section.

A.1.4 Specification Extraction

On a subset of the segments found during Segmentation Clustering Specification Mining
with BaySpec and MPE is used to find specifications.

A.1.5 TV Cluster 1 - Segment Group 0

A.1.5.1 Segmentation Clustering

50
00

0.
0

10
00

00
.0

15
00

00
.0

20
00

00
.0

25
00

00
.0

30
00

00
.0

35
00

00
.0

40
00

00
.0

45
00

00
.0

50
00

00
.0

75
00

00
.0

10
00

00
0.

0

12
50

00
0.

0

15
00

00
0.

0

17
50

00
0.

0

20
00

00
0.

0

22
50

00
0.

0

25
00

00
0.

0

27
50

00
0.

0

30
00

00
0.

0

32
50

00
0.

0

35
00

00
0.

0

37
50

00
0.

0

40
00

00
0.

0

tprev

0.00

0.05

0.10

0.15

0.20

0.25

M
ea
n
of
S
td
.L
en
gt
h
s

Mean of all Std of Seq. Lengths

Mean Std. of Seq. Lengths

50
00

0.
0

10
00

00
.0

15
00

00
.0

20
00

00
.0

25
00

00
.0

30
00

00
.0

35
00

00
.0

40
00

00
.0

45
00

00
.0

50
00

00
.0

75
00

00
.0

10
00

00
0.

0

12
50

00
0.

0

15
00

00
0.

0

17
50

00
0.

0

20
00

00
0.

0

22
50

00
0.

0

25
00

00
0.

0

27
50

00
0.

0

30
00

00
0.

0

32
50

00
0.

0

35
00

00
0.

0

37
50

00
0.

0

40
00

00
0.

0

tprev

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea
n
of
M
ea
n
L
en
gt
h
s

Mean of all Seq. Lengths

Mean Seq. Lengths

50
00

0.
0

10
00

00
.0

15
00

00
.0

20
00

00
.0

25
00

00
.0

30
00

00
.0

35
00

00
.0

40
00

00
.0

45
00

00
.0

50
00

00
.0

75
00

00
.0

10
00

00
0.

0

12
50

00
0.

0

15
00

00
0.

0

17
50

00
0.

0

20
00

00
0.

0

22
50

00
0.

0

25
00

00
0.

0

27
50

00
0.

0

30
00

00
0.

0

32
50

00
0.

0

35
00

00
0.

0

37
50

00
0.

0

40
00

00
0.

0

tprev

0.0

0.2

0.4

0.6

0.8

1.0

C

lu
st

er
s

Number of Clusters

Number of Clusters

Best parameters maximize the length of found sequences while having a small Std.
deviation of sequence lengths, which indicates consistency. This is given at the drop
point at around tprev = 2 seconds. The number of segment clusters is one here as we
are considering all segments before the target change as one cluster. Those parameters
result in clusters with the following statistics.

• Number of MSSs: 3808

• Mean of Means of Timespans per TV: 0.015 s

• Mean of Std. of Timespans per TV: 0.0005 s

254

A.1 ACC

0 2500 5000 7500 10000 12500 15000 17500 20000
0

100

200

300

400

500

Cluster 0

Figure A.29: Example of segment groups of MSSs.

• Number of TVs: 11

• Mean Sequence Lengths per TV: 1.09

• Mean of Std. of Sequence Lengths per TV: 0.01

Examples of resulting segment groups are given in Figure A.29, where each color indicates
a TV with a certain value at a given time and each dimension along the y axis corresponds
to one observed MSS.

A.1.5.2 Model Training

As the episodes contain less variation in the sequences we choose parameters that lead
to a structure of maximal size, but reduced by temporal logic as part of TrieDiscover.
Thus, k = 0.00, α = 1.0 and χth = 0.2 are used, which gives the structure given in
Figure A.30.
For parameter estimation EM is used with 1000 MCMC samples and 5 iterations.

A.1.5.3 Specification Extraction

With this BaySpec is used to produce specifications as shown in Figure A.30. 24 spec-
ifications with a threshold pmin > 0.6 were found. The found specifications cannot be
exactly published here as those are proprietary.
MPE is used to extract snapshots of MSSs that represent dominant and thus, specifi-
cation behavior. Sorted by likelihood the following specifications were found (the exact
names of TVs were altered):

• Deactivation, if the driver was braking given a certain speed:
G(((speed:b or brake-intensity:d) → X(F(ACC:deactivated))))
This specification occurred multiple times with varying brake levels of a, b, c and
d and for various speeds. The same specification occurred for various other TVs
where in the first part, i.e. (speed:b or brake-intensity:d), speed got replaced by
other initial TVs, e.g. (button1:not pressed or brake-intensity:d). This seemed to
be the dominating reason for deactivation.

255

A Appendix A: Case Study Full Evaluation

The two dominating MPEs are given in the following where dt is specified in micro sec-
onds and a subset of TVs is named.
Example 1: The first most likely found structures vary in speed (a,b,c,d), while deacti-
vation occurs because of braking. This makes sense as deactivation occurs at any speed.
ACC - dt=0.0 - activated - dt=20000 - deactivated
preceding - dt=0.01 - close
TV-1 - dt=0.1 - state A
TV-2 - dt=0.10 - state A
TV-3 - dt=0.09 - state A
setButton - dt=0.04 - not pressed
TV-4 - dt=0.26 - state A
speed - dt=0.05 - a
brake-intensity - dt=0.0 - d
brake-state - dt=0.0 - 1
warnings - dt=0.0 – none

Example 2: Manual deactivation.
ACC - dt=0.0 - activated - dt=20001 - deactivated
preceding - dt=0.0 - close
TV-1 - dt=0.09 - state A
TV-2 - dt=0.0 - state A
TV-3 - dt=0.0 - state A
setButton - dt=0.0 - pressed
TV-4 - dt=0.0 - state A
speed - dt=0.0 - b
brake-intensity - dt=0.29 - d
brake-state - dt=0.0 - 1
warnings - dt=0.14 – none

A.1.6 TV Cluster 1 - Segment Group 1

Here the same argumentation holds as in the previous subsection.

A.1.6.1 Segmentation Clustering

Mean Std. of Seq. Lengths Mean Seq. Lengths Number of Clusters

Best parameters are tprev = 2, which result in clusters with the following statistics.

256

A.1 ACC

0 2500 5000 7500 10000 12500 15000 17500 20000
0

100

200

300

400

500

Cluster 0

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Height

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

W
id

th

Specification Count

pmin = 0.4

pmin = 0.5

pmin = 0.6

pmin = 0.7

Figure A.30: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifications
with this complexity that have likelihood bigger than pmin.

257

A Appendix A: Case Study Full Evaluation

0 200000 400000 600000 800000 1000000 1200000 1400000
0

100

200

300

400

500

Cluster 0

Figure A.34: Example of segment groups of MSSs.

• Number of MSSs: 3808

• Mean of Means of Timespans per TV: 0.504 s

• Mean of Std. of Timespans per TV: 0.313 s

• Number of TVs: 11

• Mean Sequence Lengths per TV: 1.12

• Mean of Std. of Sequence Lengths per TV: 0.14

Examples of resulting segment groups are given in Figure A.34.

A.1.6.2 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

k = 0.00 k = 0.05 k = 0.15

k = 0.00, α = 1.0 and χth = 0.2 are used, which gives the structure given in Figure A.38.

A.1.6.3 Specification Extraction

With this BaySpec is used to produce specifications as shown in Figure A.38. 224 spec-
ifications with a threshold pmin > 0.6 were found. The found specifications cannot be
exactly published here as those are proprietary.

258

A.1 ACC

MPE is used to extract snapshots of MSSs that represent dominant and thus, specifi-
cation behavior. Sorted by likelihood the following specifications were found (the exact
names of TVs were altered):

• Some meaningless specifications were found, which resemble system states that
were present during activation. While those specifications are not wrong they can
be considered irrelevant. Examples are the state of fact that the display shows
ones a warning ones no warning before a no preceding car detection is shown and
ACC activates. Thus, the warning does not have an influence and is not the cause
of an activation.
G((warnings:none → X(F((preceding:none and X(F(ACC:activated)))))))
G((warnings:showing → X(F((preceding:none and X(F(ACC:activated)))))))

• Further, a main pattern was the preceding car information that occurred in most
specifications, which is triggered in two cases. First, if the brake was released
G((brake:deactivated → X(F((preceding:none and X(F(ACC:activated)))))))

• Second, if a button was pressed, which can be different combinations, including
the resume button
G((resumeButton:pressed → X(F((preceding:none and X(F(ACC:activated)))))))
and the Set button
G((setButton:pressed → X(F((preceding:none and X(F(ACC:activated)))))))

• Also, various combinations before activation are checked. Those include multiple
braking states that are allowed, which are checked similar to the first case.
G((brake-state:1 → X(F((preceding:none and X(F(ACC:activated)))))))
G((brake-state:3 → X(F((preceding:none and X(F(ACC:activated)))))))
In those cases an activation is only allowed if any of those states are given. This
is not directly checkable with this formula, as it is a reverse action that needs
to be checked once an activation occurred instead of the inverted case. Thus,
for this case either an adaption of specifications needs to be performed or prior
filtering for activations needs to be performed and checking needs to be performed
on activation MSSs only.

In higher likelihood specifications there are little false positives. However, often redun-
dancy is present as was given in the case of above warning case.

The dominating MPEs are given in the following where dt is specified in micro seconds
and a subset of TVs is named.
Example 1: The first most likely found structures captures an deactivation by braking
followed by an activation.
ACC - dt=0.0 - activated - dt=0.0 - deactivated - dt=1373978 - activated
preceding - dt=0.0 - close - dt=20001 - none
TV-1 - dt=0.0 - state A
TV-2 - dt=0.0 - state A
TV-3 - dt=0.0 - state A
setButton - dt=0.3 - not pressed
TV-4 - dt=0.0 - state A

259

A Appendix A: Case Study Full Evaluation

0 200000 400000 600000 800000 1000000 1200000 1400000
0

100

200

300

400

500

Cluster 0

Figure A.38: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifications
with this complexity that have likelihood bigger than pmin.

speed - dt=0.2 - a
brake-intensity - dt=0.4 - d
brake-state - dt=0.0 - 1
warnings - dt=0.0 - none

Example 2: Here an activation is shown, that results from pressing the Set button.
ACC - dt=0.1 - activated - dt=0.0 - activated - dt=0.0 - activated
preceding - dt=0.0 - close - dt=0.0 - none
TV-1 - dt=0.1 - state A
TV-2 - dt=0.0 - state A
TV-3 - dt=0.0 - state A
setButton - dt=0.4 - pressed
TV-4 - dt=0.0 - state A
speed - dt=0.0 - b
brake-intensity - dt=0.0 - d
brake-state - dt=0.0 - not pressed
warnings - dt=0.0 - none

260

A.2 Lights

A.2 Lights

A.2.1 TV Clustering

At first, TV clustering is performed with various parameters.

A.2.1.1 Hyperparameter Estimation

Silhouette Index, for various numbers of PCA components and various ε:
Each plot has a fixed number set for MinSamples = m, when using DBSCAN

m = 2 m = 3 m = 4

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 6

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 7

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 8

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.4

0.2

0.0

0.2

0.4

m = 9

Silhouette Index, for various MinSamples and various ε: Each plot has a fixed
number set for nPCA, when using DBSCAN

261

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.16

0.08

0.00

0.08

0.16

No PCA

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.4

0.2

0.0

0.2

0.4

nPCA = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.4

0.2

0.0

0.2

0.4

nPCA = 10

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.4

0.2

0.0

0.2

0.4

nPCA = 15

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

nPCA = 20

Effect of increasing MinSamples: Each plot shows the two most important PCA
components. Further it has the optimal values for number of PCA and ε fixed, which is
nPCA = 5 and ε = 1.5.

MinSamples = 2 MinSamples = 3 MinSamples = 5

MinSamples = 6 MinSamples = 8 MinSamples = 9

Effect of increasing ε: Each plot shows the two most important PCA components.
Further it has the values for MinSamples and ε fixed, which is MinSamples = 3 and
nPCA = 5.

262

A.2 Lights

ε = 0.1 ε = 0.2 ε = 0.4

ε = 0.8 ε = 1.5 ε = 3.0

A.2.1.2 Found clusters

The algorithm found 5 clusters, including one cluster that we refer to as fragmentary
which contains all TVS that were considered noise during clustering. Those clusters
could be named as (1) light behavior including states of the indicator or front lights,
(2) detection of traffic (3) engine movement (4) environment values and a fragmentary
cluster with (5) steady behavior.

A.2.1.3 Reduced Clusters

Based on the found clustering a subset of TVs was selected by experts for further inves-
tigation.
Statistics of chosen clusters:
TV Cluster 1:

• Number of TVs [num / nom / bin / ord]: 14 [0/10/4/0]

• Number of samples [num / nom / bin / ord]: 54839 [0/43533/11306/0]

• Mean gap: 16.102 s

• Std. gap: 23.940 s

TV Cluster 2:

• Number of TVs [num / nom / bin / ord]: 32 [5/17/9/1]

• Number of samples [num / nom / bin / ord]: 168339 [37326/115308/3281/12424]

263

A Appendix A: Case Study Full Evaluation

binary nominal
0.0

0.2

0.4

0.6

0.8

1.0

Proportions of TV frequencies per data type

Figure A.64: TV Cluster 1: Proportions
of TVs

nominal numeric binary ordinal
0.00

0.25

0.50

0.75

1.00
Proportions of TV frequencies per data type

Figure A.65: TV Cluster 2: Proportions
of TVs

Figure A.66: Proportion of TVs per Cluster

• Mean gap: 10.122 s

• Std. gap: 19.527 s

The proportion of occurrence frequencies per TV and data type is shown in Figure A.66.

A.2.2 Segmentation Clustering

For this data set the range segmentation clustering is used. Per data set and cluster of
TVs hyperparameters are found as described in this section, with statistics shown in the
following.

A.2.2.1 Hyperparameters

When varying the parameters of range segmentation, the mean of all sequence lengths
per TV, the mean of standard deviations of all sequence lengths per TV, the number
of found clusters and the silhouette index is measured. The results of this evaluation is
shown in the following, for each TV cluster.
TV Cluster 1:

Mean of Std. of Sequence lengths per TV Mean of Sequence lengths per TV

264

A.2 Lights

Number of Clusters found Silhouette index

TV Cluster 2:

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Std of Seq. Lengths

0.4

0.8

1.2

1.6

2.0

2.4

Mean of Std. of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Seq. Lengths

1.5

2.0

2.5

3.0

3.5

Mean of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Number of Clusters

0

10

20

30

40

50

Number of Clusters found

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Silhouette

0.6

0.3

0.0

0.3

0.6

Silhouette index

The goal is to find parameters producing many clusters and are as long as possible, while
keeping the standard deviation low between MSSs. Thus, for TV cluster 1 ε = 0.5 and
rtemp = 0.5 and for TV cluster 2 ε = 1.0 and rtemp = 0.01 were chosen.

265

A Appendix A: Case Study Full Evaluation

A.2.2.2 Statistics

For each sequence the length of a sequence of a TV was measured per cluster and
resembles one data point in the first statistics plot. For better readability a jitter was
added. E.g. In MSSs of cluster 0 there are only TVs that have sequence lengths of
length 2 and 3. The second plot shows the number of MSSs per cluster. The third plot
shows the number of TVs per MSS in the group of segments as one data point, again
with jitter added. Lastly, examples of found MSSs are shown, where the color of a data
point indicates the occurrence of a TV with a certain outcome.
TV Cluster 1:

Sequence lengths per TV Number of MSSs

Number of TVs per sequence

First 10 clusters:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 2

0 1 2 3 4 5
1e8

0

25

50

75

100

125

150

175

Cluster 3

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

20

40

60

80

100

120

140

Cluster 4

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

20

40

60

80

100

120

Cluster 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

10

20

30

40

50

60

70

80

Cluster 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

10

20

30

40

50

Cluster 7

0 1 2 3 4 5 6
1e8

0

5

10

15

20

25

30

35

40

Cluster 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e9

0

5

10

15

20

25

30

35

40

Cluster 9

TV Cluster 2:

266

A.2 Lights

0 5 10 15 20 25
Cluster Index

1

2

3

4

5

6

7

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0 5 10 15 20 25
Cluster Index

0

100

200

300

400

500

600

700

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

0 5 10 15 20 25
Cluster Index

2

4

6

8

10

N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

First 10 clusters:

0.0 0.5 1.0 1.5 2.0
1e9

0

50

100

150

200

250

300

Cluster 0

0.0 0.5 1.0 1.5 2.0
1e9

0

50

100

150

200

250

300

Cluster 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e9

0

5

10

15

20

25

30

35

Cluster 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0

5

10

15

20

25

30

35

Cluster 3

0.0 0.5 1.0 1.5 2.0 2.5
1e8

0

5

10

15

20

25

30

Cluster 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e9

0

5

10

15

20

25

Cluster 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cluster 6

0 1 2 3 4 5
1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Cluster 7

A.2.3 Specification Extraction

Next, on a subset of the segments found during Segmentation Clustering Specification
Mining with BaySpec and MPE is used to find specifications. Here, only a subset of
clusters and segments is considered.

A.2.4 TV Cluster 1 - Segment Group 0

A.2.4.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

267

A Appendix A: Case Study Full Evaluation

k = 0.00 k = 0.15 k = 0.35

Chosen parameters are k = 0.00, α = 1.0 and χth = 0.2, which gives the structure given
in Figure A.84.

A.2.4.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure A.84.
104 specifications with a threshold pmin > 0.6 were found.
This segment resembles the short activation of the indicators for three seconds. Sorted by
likelihood the following specifications were found (the exact names of TVs were altered).
The three dominant observations are the activations of left and right indicator as well
as the synchronization information sent, followed by a deactivation (which of course has
to occur after 3 seconds).

• The right activation is
G(((bar:tip up or state:both off) → X(G((state:right on → X(state:both off))))))

• The left activation is
G(((bar:tip down or state:both off)→ X(G((state:left on→ X(state:both off))))))

• The synchronization is
G((sync:indicator continues → X(G((sync:start cycle → X(F((sync:initialize or
sync:indicator continues))))))))

• Further specifications include the handle bar variation, from pressed to not pressed
or the variant of a indicator changing to the defect state.

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1: The first most likely found structures captures the activation of the right
indicator, which turns on and off again. The same is found for the left indicator.
bar - dt=0.0 - tip up - dt=0.0 - tip up - dt=716707958 - not pressed
sync - dt=0.0 - indicator continues - dt=22022086 - start cycle - dt=0.0 - initialize
state - dt=0.0 - both off - dt=15745713 - right on - dt=1740429348 - right off
sync2 - dt=0.0 - not indicating - dt=17029405 - indicating - dt=1586328954 - not indi-
cating

Example 2: Here, the defect case is shown.
bar - dt=0.0 - tip up - dt=0.0 - tip down - dt=555459463 - not pressed

268

A.2 Lights

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

50

100

150

200

250

300

Cluster 0

Figure A.84: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifications
with this complexity that have likelihood bigger than pmin.

sync - dt=0.0 - indicator continues - dt=11216975 - start cycle - dt=479977508 - indicator
continues
state - dt=0.0 - both off - dt=16188873 - left on - dt=1749651319 - both off
sync2 - dt=0.0 - not indicating - dt=3574150 - indicating - dt=640113760 - indication
defect

A.2.5 TV Cluster 1 - Segment Group 3

A.2.5.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

4

6

8

10

12

14

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

2.0

2.4

2.8

3.2

3.6

4.0

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

2.0

2.4

2.8

3.2

3.6

4.0

k = 0.35

269

A Appendix A: Case Study Full Evaluation

Chosen parameters are k = 0.00, α = 1.0 and χth = 0.2, which gives the structure given
in Figure A.88.

A.2.5.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure A.88.
84 specifications with a threshold pmin > 0.6 were found.
This segment resembles the permanent activation of the indicators. Sorted by likelihood
the following specifications were found (the exact names of TVs were altered). The
dominant specifications include on the one hand the over tipping of the handle bar
which starts another synchronization and activates the indicator, and on the other hand
the allowed states of the vehicle during activation.

• The vehicle state case include
G(((state:both off or vehicle:parking-idle)) → X(vehicle:indicating)))
G(((vehicle:parking-idle or sync:indicator continues) → X(G((sync:new cycle →
X(sync:indicator continues))))))

• The activation synchronization
G(((type:not permanent or sync:new cycle) → X(F(type:permanent))))

• The upper over pressing of the handle bar
G(((sync:new cycle or bar:tip up) → X(F((state:right on and X(F(bar:over press
up)))))))

• The lower over pressing of the handle bar
G(((sync:new cycle or bar:tip down) → X(F((state:left on and X(F(bar:over press
down)))))))

• Further specifications include variants of those activations, such as combinations
of synchronizations, bar activity and indicator state.

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1: The long indication of the left indicator is shown. The right indicator was
discovered as second most likely.
bar - dt=0.3 - tip down - dt=0.0 - tip down - dt=110532311 - overpress down
sync - dt=0.0 - indicator continues - dt=13123695 - start cycle - dt=329742908 - indicator
continues
type - dt=0.2 - not permanent - dt=332681727 - permanent
state - dt=0.1 - both off - dt=15977380 - left on
sync2 - dt=0.0 - not indicating - dt=16465218 - indicating
Other likely MPEs are variations of this.

A.2.6 TV Cluster 2 - Segment Group 3

A.2.6.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

270

A.2 Lights

0 1 2 3 4 5
1e8

0

25

50

75

100

125

150

175

Cluster 3

2 4 6 8 10
Height

2.0

2.5

3.0

3.5

4.0

4.5

5.0

W
id

th

Specification Count

pmin = 0.4

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

pmin = 0.9

pmin = 1.0

Figure A.88: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifications
with this complexity that have likelihood bigger than pmin.

271

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

15

30

45

60

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

15

30

45

60

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

10

20

30

40

50

k = 0.35

Chosen parameters are k = 0.00, α = 1.0 and χth = 0.2, which gives the structure given
in Figure A.92.

A.2.6.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure A.92.
12 specifications with a threshold pmin > 0.6 were found.
This segment resembles the movement of the lights on approaching traffic. Sorted by
likelihood the following specifications were found (the exact names of TVs were altered).
The dominant specifications are the horizontal and vertical movement and combinations
of vehicle states during movement.

• Light movement activates and deactivates on approaching traffic. For instance if
it was already on it will remain on while it will turn on otherwise.
G(((light-vertical-right:on or light-vertical-right:off)→X(G((light-vertical-right:off
→ X(light-vertical-right:on))))))
Similar specifications are found for the left case and vertical movement.

• The allowed vehicle state when a movement of the light occurs is captured.
G(((light-vertical:inactive or light-vertical:on) → X(F(driver:present))))

• Further specifications include the order of light activation and state information
transmitted.

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1: The dominant state is resembling the driver being present while driving
and approaching traffic.
driver - dt=0.1 - driving - dt=869378104 - present - dt=0.1 - present
light-hor-left - dt=0.1 - inactive - dt=424301578 - active - dt=637636444 - inactive
light-hor-right - dt=0.0 - inactive - dt=77739177 - active
light-vertical-left - dt=0.0 - active - dt=0.0 - inactive - dt=378360691 - active
light-vertical-right - dt=0.0 - active - dt=1229578915 - inactive - dt=378968005 - active
Other likely MPEs are variations of this.

272

A.2 Lights

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0

5

10

15

20

25

30

35

Cluster 3

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Height

2.0

2.5

3.0

3.5

4.0

W
id

th

Specification Count

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

pmin = 0.9

Figure A.92: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifications
with this complexity that have likelihood bigger than pmin.

273

A Appendix A: Case Study Full Evaluation

A.3 Wiper

A.3.1 TV Clustering

At first, TV clustering is performed with various parameters.

A.3.1.1 Hyperparameter Estimation

Silhouette Index, for various numbers of PCA components and various ε:
Each plot has a fixed number set for MinSamples = m, when using DBSCAN

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 2

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 3

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 4

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.15

0.30

0.45

0.60

m = 6

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 7

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.50

0.25

0.00

0.25

0.50

m = 8

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.1

0.2

0.3

0.4

0.5

0.6

m = 9

Silhouette Index, for various MinSamples and various ε: Each plot has a fixed
number set for nPCA, when using DBSCAN

274

A.3 Wiper

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

No PCA

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.2

0.3

0.4

0.5

0.6

0.7

nPCA = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.2

0.3

0.4

0.5

0.6

nPCA = 10

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.4

0.2

0.0

0.2

0.4

nPCA = 15

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.12

0.06

0.00

0.06

0.12

nPCA = 20

Effect of increasing MinSamples: Each plot shows the two most important PCA
components. Further it has the optimal values for number of PCA and ε fixed, which is
nPCA = 5 and ε = 1.5.

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 4 with eps 1.0 and minsamp 2.0

MinSamples = 2

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 2 with eps 1.0 and minsamp 3.0

MinSamples = 3

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 1.0 and minsamp 5.0

MinSamples = 5

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 1.0 and minsamp 6.0

MinSamples = 6

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 1.0 and minsamp 8.0

MinSamples = 8

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 1.0 and minsamp 9.0

MinSamples = 9

Effect of increasing ε: Each plot shows the two most important PCA components.
Further it has the values for MinSamples and ε fixed, which is MinSamples = 3 and
nPCA = 5.

275

A Appendix A: Case Study Full Evaluation

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 0.1 and minsamp 3.0

ε = 0.1

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 0.2 and minsamp 3.0

ε = 0.2

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 0.4 and minsamp 3.0

ε = 0.4

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 0.8 and minsamp 3.0

ε = 0.8

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 2 with eps 1.5 and minsamp 3.0

ε = 1.5

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

Estimated number of clusters: 1 with eps 3.0 and minsamp 3.0

ε = 3.0

A.3.1.2 Found clusters

The algorithm found 3 clusters, including one cluster that we refer to as fragmentary
which contains all TVS that were considered noise during clustering. Those clusters could
be named as (1) rain sensor and wiper control, (2) wiper position and a fragmentary
cluster which include (3) environmental information.

A.3.1.3 Reduced Clusters

Based on the found clustering a subset of TVs was selected by experts for further inves-
tigation. In the Wiper data set this does not apply, as a preselected set of relevant TVs
was considered here only. Thus, there is only one cluster here which has same statistics
as the total data set.

A.3.2 Segmentation Clustering

For this data set the range segmentation clustering is used. Per data set and cluster of
TVs hyperparameters are found as described in this section, with statistics shown in the
following.

A.3.2.1 Hyperparameters

TV Cluster 1:

276

A.3 Wiper

0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
epsilon

1.
5

1.
0

0.
5

0.
25

0.
1

M
ea

n
St

d
of

 S
eq

. L
en

gt
hs

Mean of all Std of Seq. Lengths

1.5

3.0

4.5

6.0

Mean of Std. of Sequence lengths per TV

0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
1

M
ea

n
of

 S
eq

. L
en

gt
hs

Mean of all Seq. Lengths

2

3

4

5

6

7

Mean of Sequence lengths per TV

0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
1

C

lu
st

er
s

Number of Clusters

15

30

45

60

Number of Clusters found

0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
1

r t
em

p

Silhouette

0.6

0.3

0.0

0.3

0.6

Silhouette index

The goal is to find parameters producing many clusters and are as long as possible, while
keeping the standard deviation low between MSSs. Thus, for TV cluster 1 ε = 0.8 and
rtemp = 0.1 was chosen.

A.3.2.2 Statistics

TV Cluster 1:

0 10 20 30 40 50 60 70
Cluster Index

0

10

20

30

40

50

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0 10 20 30 40 50 60 70
Cluster Index

0

200

400

600

800

1000

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

277

A Appendix A: Case Study Full Evaluation

0 10 20 30 40 50 60 70
Cluster Index

2

4

6

8

N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

First 10 clusters:

0 1 2 3 4
1e9

0

50

100

150

200

250

300

Cluster 0

0 1 2 3 4
1e8

0

20

40

60

80

100

120

140

Cluster 1

0 1 2 3 4 5
1e8

0

20

40

60

80

100

Cluster 2

0 1 2 3 4 5 6
1e8

0

20

40

60

80

100

Cluster 3

0 1 2 3 4 5
1e8

0

10

20

30

40

50

60

70

80

Cluster 4

0 1 2 3 4 5 6 7
1e8

0

10

20

30

40

50

60

70

Cluster 5

0 1 2 3 4 5 6
1e8

0

10

20

30

40

50

60

Cluster 6

0 1 2 3 4 5 6
1e8

0

10

20

30

40

50

60

Cluster 7

0 1 2 3 4 5 6 7
1e8

0

10

20

30

40

50

Cluster 8

0 1 2 3 4 5
1e8

0

10

20

30

40

50

Cluster 9

A.3.3 Specification Extraction

Next, on a subset of the segments found during Segmentation Clustering Specification
Mining with BaySpec and MPE is used to find specifications. Here, only a subset of
clusters and segments is considered.

A.3.4 TV Cluster 1 - Segment Group 9

A.3.4.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

5

10

15

20

25

30

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

5

10

15

20

25

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

4

8

12

16

20

24

k = 0.35

Chosen parameters are k = 0.00, α = 1.10 and χth = 2.5, which gives the structure
given in Figure A.128.

278

A.3 Wiper

A.3.4.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.128. 53 specifications with a threshold pmin > 0.6 were found.
This segment resembles the automated activation of the wiper when rain is present.
Sorted by likelihood the following specifications were found (the exact names of TVs
were altered). The dominant specifications are the changing of the wiper position on
rain intensities of b, c or d, as well as the state changes of the wiper.

• The first case includes the position going from c to b to a, on intensity of rain
G(((position:c or rain:b) → X(F((position:b and X(F(position:a)))))))
similar behavior occurs on intensities c and d.

• The second case includes the change of states
G(((movement:leaving default position or state:wiper out of parking)→X(F(state:wiper
in parking))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1: Wiper activates on rain. Other likely MPEs vary mostly accros rain in-
tensity values.
rain - dt=0.0 - c - dt=359624500 - b
position - dt=0.1 - c - dt=70248060 - b - dt=139869520 - a
movement - dt=0.0 - leaving default position - dt=224367702 - entering default position
state - dt=0.2 - wiper out of parking - dt=176201800 - wiper in parking

A.3.5 TV Cluster 1 - Segment Group 14

A.3.5.1 Model Training

Chosen parameters are k = 0.00, α = 1.0 and χth = 0.2, which gives the structure given
in Figure A.129.

A.3.5.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.129. 328 specifications with a threshold pmin > 0.6 were found.
This segment resembles the manual deactivation of the wiper. Sorted by likelihood the
following specifications were found (the exact names of TVs were altered). The dominant
specifications are the speed of the wiper before deactivation, the deactivation trigger as
well as the change of positions.

• The first case includes the final change of speed from low to high to low.
G(((speed:a or speed:b) → X(G((speed:b → X(speed:a))))))

• The second case includes the deactivation.
G(((control:deactivate wiper or speed:b)→X(G((speed:b→X(F(control:deactivate
wiper)))))))

279

A Appendix A: Case Study Full Evaluation

0 1 2 3 4 5
1e8

0

10

20

30

40

50

Cluster 9

2 3 4 5 6 7
Height

3.0

3.2

3.4

3.6

3.8

4.0

W
id

th

Specification Count

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

pmin = 0.9

Figure A.128: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

280

A.3 Wiper

• The third case includes cyclic movement,
G(((position:d or position:a) → X(G(((position:a or position:c) → X((position:b
and X((position:a and X((position:b and X(position:c)))))))))))). Here it can be
seen that merging might lead to mix up of specification that makes the formula
illogical, as the above specification would allow a change from d to a or from a
to c in position which is not possible as the intermediate positions c, b or b are
missing.

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1: Wiper deactivates on user input.
speed - dt=0.0 - a - dt=141885919 - b - dt=710126295 - a TV-1 - dt=0.2 - c - dt=50097298
- d - dt=396964592 - c - dt=0.1 - c
rain - dt=0.0 - a - dt=40014638 - c - dt=114881670 - d - dt=510029596 - c
position - dt=0.0 - d - dt=46358179 - c - dt=116502348 - b - dt=114224624 - a -
dt=471793609 - b - dt=114515360 - c
movement - dt=0.0 - entering default position - dt=540259555 - leaving default position
state - dt=0.0 - wiper in parking - dt=406886829 - wiper out of parking
control - dt=0.0 - deactivate wiper - dt=188515223 - b - dt=688402788 - deactivate
wiper

281

A Appendix A: Case Study Full Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

5

10

15

20

25

30

35

Cluster 14

2 4 6 8 10 12 14
Height

2

4

6

8

10

W
id

th

Specification Count

pmin = 0.4

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

Figure A.129: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

282

A.4 Startup

A.4 Startup

A.4.1 TV Clustering

At first, TV clustering is performed with various parameters.

A.4.1.1 Hyperparameter Estimation

Silhouette Index, for various numbers of PCA components and various ε:
Each plot has a fixed number set for MinSamples = m, when using DBSCAN

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 2

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 3

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 4

0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 5

0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 6

0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 7

1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.30

0.15

0.00

0.15

0.30

m = 8

1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.12

0.18

0.24

0.30

0.36

0.42

m = 9

Silhouette Index, for various MinSamples and various ε: Each plot has a fixed
number set for nPCA, when using DBSCAN

283

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

No PCA

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

nPCA = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

nPCA = 10

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.30

0.15

0.00

0.15

0.30

nPCA = 15

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.2

0.1

0.0

0.1

0.2

nPCA = 20

Effect of increasing MinSamples: Each plot shows the two most important PCA
components. Further it has the optimal values for number of PCA and ε fixed, which is
nPCA = 5 and ε = 1.0.

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 5 with eps 1.0 and minsamp 2.0

MinSamples = 2

0.5 0.0 0.5 1.0 1.5
2

1

0

1

2

Estimated number of clusters: 4 with eps 1.0 and minsamp 3.0

MinSamples = 3

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 2 with eps 1.0 and minsamp 5.0

MinSamples = 5

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 1 with eps 1.0 and minsamp 6.0

MinSamples = 6

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 0 with eps 1.0 and minsamp 8.0

MinSamples = 8

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 0 with eps 1.0 and minsamp 9.0

MinSamples = 9

Effect of increasing ε: Each plot shows the two most important PCA components.
Further it has the values for MinSamples and ε fixed, which is MinSamples = 3 and
nPCA = 5.

284

A.4 Startup

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 2 with eps 0.1 and minsamp 3.0

ε = 0.1

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 2 with eps 0.2 and minsamp 3.0

ε = 0.2

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 2 with eps 0.4 and minsamp 3.0

ε = 0.4

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 4 with eps 0.8 and minsamp 3.0

ε = 0.8

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 3 with eps 1.5 and minsamp 3.0

ε = 1.5

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Estimated number of clusters: 1 with eps 3.0 and minsamp 3.0

ε = 3.0

A.4.1.2 Found clusters

The algorithm found 5 clusters, including one cluster that we refer to as fragmentary
which contains all TVS that were considered noise during clustering. Those clusters
could be named as (1) engine and energy activation, (2) car state and energy and two
clusters (3) and (4) with 3 TVs each with no meaningful description. A fragmentary
cluster with (5) is also not directly nameable.

A.4.1.3 Reduced Clusters

Based on the found clustering a subset of TVs was selected by experts for further inves-
tigation.
Statistics of chosen clusters:
TV Cluster 2:

• Number of TVs [num / nom / bin / ord]: 32 [2/28/2/0]

• Number of samples [num / nom / bin / ord]: 595262 [477789/117435/38/13542]

• Mean gap: 10.872 s

• Std. gap: 12.765 s

TV Cluster 3:

• Number of TVs [num / nom / bin / ord]: 14 [0/13/1/0]

• Number of samples [num / nom / bin / ord]: 72621 [0/72592/29/0]

285

A Appendix A: Case Study Full Evaluation

binary numeric nominal
0.0

0.2

0.4

0.6

0.8

1.0
Proportions of TV frequencies per data type

Figure A.155: TV Cluster 2: Proportions
of TVs

nominal binary
0.0

0.2

0.4

0.6

0.8

1.0

Proportions of TV frequencies per data type

Figure A.156: TV Cluster 3: Proportions
of TVs

Figure A.157: Proportion of TVs per Cluster

• Mean gap: 19.125 s

• Std. gap: 19.911 s

The proportion of occurrence frequencies per TV and data type is shown in Figure A.157.

A.4.2 Segmentation Clustering

For this data set the range segmentation clustering is used. Per data set and cluster of
TVs hyperparameters are found as described in this section, with statistics shown in the
following.

A.4.2.1 Hyperparameters

TV Cluster 2:

Mean of Std. of Sequence lengths per TV Mean of Sequence lengths per TV

286

A.4 Startup

Number of Clusters found Silhouette index

TV Cluster 3:

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Std of Seq. Lengths

0.15

0.30

0.45

0.60

0.75

Mean of Std. of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p
Mean of all Seq. Lengths

1.50

1.75

2.00

2.25

2.50

2.75

Mean of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Number of Clusters

4

8

12

16

20

24

Number of Clusters found

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Silhouette

0.15

0.30

0.45

0.60

0.75

0.90

Silhouette index

For TV cluster 1 ε = 0.01 and rtemp = 0.1 and for TV cluster 2 ε = 0.01 and rtemp = 0.5
were chosen.

A.4.2.2 Statistics

TV Cluster 2:

287

A Appendix A: Case Study Full Evaluation

0 10 20 30 40
Cluster Index

0

5

10

15

20

25

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0 10 20 30 40
Cluster Index

0

100

200

300

400

500

600

700

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

0 10 20 30 40
Cluster Index

1

2

3

4

5

6

7

8
N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

First 10 clusters:

0.0 0.2 0.4 0.6 0.8
1e9

0

50

100

150

200

250

300

Cluster 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e8

0

50

100

150

200

250

300

Cluster 1

0 1 2 3 4 5 6 7 8
1e8

0

50

100

150

200

250

300

Cluster 2

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

50

100

150

200

250

300

Cluster 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

50

100

150

200

250

Cluster 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0

20

40

60

80

100

120

140

Cluster 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e9

0

20

40

60

80

100

120

Cluster 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

20

40

60

80

Cluster 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

10

20

30

40

50

60

Cluster 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e9

0

10

20

30

40

50

60

Cluster 9

TV Cluster 3:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cluster Index

1.0

1.5

2.0

2.5

3.0

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cluster Index

10

20

30

40

50

60

70

80

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

288

A.4 Startup

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cluster Index

4.0

4.5

5.0

5.5

6.0

6.5

7.0

N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

First 10 clusters:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e9

0

50

100

150

200

250

300

Cluster 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0

20

40

60

80

100

Cluster 1

0.0 0.5 1.0 1.5 2.0
1e9

0

20

40

60

80

100

Cluster 2

0.0 0.5 1.0 1.5 2.0 2.5
1e9

0

10

20

30

40

50

60

70

Cluster 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0

10

20

30

40

50

Cluster 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e9

0

10

20

30

40

Cluster 5

0 1 2 3 4 5 6 7
1e9

0

5

10

15

20

25

30

35

40

Cluster 6

0.0 0.5 1.0 1.5 2.0
1e9

0

5

10

15

20

Cluster 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cluster 8

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Cluster 9

A.4.3 Specification Extraction

Next, on a subset of the segments found during Segmentation Clustering Specification
Mining with BaySpec and MPE is used to find specifications. Here, only a subset of
clusters and segments is considered.

A.4.4 TV Cluster 2 - Segment Group 1

A.4.4.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

k = 0.00 k = 0.15 k = 0.35

Chosen parameters are k = 0.00, α = 1.0 and χth = 0, which gives the structure given
in Figure A.175.

289

A Appendix A: Case Study Full Evaluation

A.4.4.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.175. 1048 specifications with a threshold pmin > 0.6 were found.
This segment resembles the shutdown of multiple systems. Sorted by likelihood the
following specifications were found (the exact names of TVs were altered). The dominant
specifications are the shutdowns of various system components. Here, each combination
of shutdowns is represented as one state of a TV. Thus, the resulting specifications,
include multiple such combinations and thus, similar specifications that vary at one
literal. Also, a series of gates needs to be deactivated which are named as gates within
this thesis.

• An example shutdown procedure of system states is
G(((((system-A:a off, b off, c on, d off, e on or power-supply:a) or power-supply:b)
or gate-A:hold)→ X(F((system-A:a off, b off, c off, d off, e off and X(F((driver:not
present and X(F((system-B:f off, g on, h off, i off, j on, k off))))))))))))),
where states were renamed.

• Those combinations vary in its initial state nodes, while the consequent procedure
is similar in many MSSs. BaySpec captures such intermediate procedures as well
as
G((power-supply:a → X(F(state-request:transmitted))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1:
power-supply - dt=0.1 - a - dt=136483490 - d
state-request - dt=0.0 - none - dt=118302256 - transmitted
gate-A - dt=0.0 - hold - dt=114115405 - off
driver - dt=0.1 - offline - dt=5504711 - not present
system-A - dt=0.0 - a off, b off, c on, d off, e on - dt=21312576 - a off, b off, c on, d off,
e off
system-B - dt=0.1 - f off, g on, h off, i off, j on, k off - dt=0.3 - f off, g on, h off, i off, j
off, k off
system C - dt=0.2 - a off, b off, c off , d off, e on, f on - dt=6327829 - a off, b off, c off ,
d off, e off, f off

A.4.5 TV Cluster 2 - Segment Group 8

A.4.5.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

290

A.4 Startup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e8

0

50

100

150

200

250

300

Cluster 1

Figure A.175: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

291

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

8

16

24

32

40

48

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

6

12

18

24

30

36

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

6

12

18

24

30

36

k = 0.35

Chosen parameters are k = 0.00, α = 1.0 and χth = 0.2, which gives the structure given
in Figure A.179.

A.4.5.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.179. 36 specifications with a threshold pmin > 0.6 were found. Here, the shutdown
procedure in terms of subsystems is resembled. Similar to the case of TV Cluster 1 and
group 1, the specifications capture variations of initial TV nodes.

• The dominant pattern is of shape G(((subsystem-A:offline or system-A:a off, b off,
c of, d off, e off) → X(F((system-B:f off, g off, h off, i off, j off and X(F(subsystem
control:system x off, system y off, system z off)))))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named. The three dominant state changes include, the process
of the user leaving the car, the deactivation of systems and deactivation of the infras-
tructure.
Example 1:
state-request - dt=0.0 - transmitted - dt=29902476 - transmitted
driver - dt=0.0 - not present - dt=13647222 - offline
subsystem control - dt=0.0 - system x off, system y on, system z off - dt=13229846 -
system x off, system y off, system z off
system-A - dt=0.0 - a on, b off, c on, d off, e on - dt=18276993 - a off, b off, c off, d off,
e on
system-B - dt=0.0 - f off, g on, h off, i off, j off, k off - dt=0.2 - f off, g on, h off, i off, j
off, k off
system-C - dt=0.0 - a off, b off, c off , d off, e on, f on - dt=285766 - a off, b off, c off ,
d off, e off, f off

A.4.6 TV Cluster 2 - Segment Group 15

A.4.6.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

292

A.4 Startup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e7

0

10

20

30

40

50

60

Cluster 8

2 3 4 5 6 7
Height

3.0

3.2

3.4

3.6

3.8

4.0

W
id

th

Specification Count

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

Figure A.179: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

293

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

5

10

15

20

25

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

4

8

12

16

20

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

4

8

12

16

20

k = 0.35

Chosen parameters are k = 0.00, α = 0.9 and χth = 0.0, which gives the structure given
in Figure A.183.

A.4.6.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.183. 4 specifications with a threshold pmin > 0.6 were found.
Here, the start procedure in terms of engine activation is represented. Found specifica-
tions are short and restricted to two TVs here, which results from a structure with less
connections.

• The dominant pattern is the start of the engine when connected to the system
state activations.
G(((system-A:a on, b on, c on, d on, e on or engine:started) → X(F(system-B:f
on, g on, h on, i on))))

Here, only four variations of this patter were found.

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named. Dominant states are the engine activation here.
Example 1:
state - dt=0.1 - initialize - dt=683683 - driving initialized
engine - dt=0.0 - starting - dt=0.2 - on
driver - dt=0.0 - starting - dt=4141373 - driving
subsystem-A - dt=0.0 - initialize - dt=21320401 - driving initialized
system-A - dt=0.0 - a on, b on, c on, d on, e on

A.4.7 TV Cluster 3 - Segment Group 0

A.4.7.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

294

A.4 Startup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e8

0

5

10

15

20

25

30

35

Cluster 15

2.990 2.995 3.000 3.005 3.010
Height

2.985

2.990

2.995

3.000

3.005

3.010

3.015

W
id

th

Specification Count

pmin = 1.0

Figure A.183: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

295

A Appendix A: Case Study Full Evaluation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

15

30

45

60

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

10

20

30

40

50

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

10

20

30

40

50

k = 0.35

Chosen parameters are k = 0.00, α = 0.9 and χth = 0.0, which gives the structure given
in Figure A.187.

A.4.7.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure A.187.
88 specifications with a threshold pmin > 0.6 were found. Here, the shutdown procedure
in terms of engine activation, subsystems and system activations is represented.

• First, this includes the subsystem deactivation and vehicle states such as
G((subsystem-A:deactivating→X(F((subsystem-A:offline or driver:not present)))))

• Second, this includes combinations of system deactivation and subsystems.
G(((subsystem control:system x off, system y off, system z off, w off or subsystem-
A:deactivating) → X(F(subsystem control:system x off, system y on, system z off,
w off))))

• Third, similar to the above case the main sequence is found that is followed by the
initial variations.
G((subsystem-A:deactivating→X(F((subsystem-A:offline or driver:not present)))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named. .
Example 1:
gate-A - dt=0.3 - hold - dt=55011845 - hold
driver - dt=0.0 - offline - dt=8075831 - not present
subsystem control - dt=0.0 - system x off, system y off, system z off dt=115710907 -
system x off, system y off, system z off
system-A - dt=0.0 - a off, b off, c off, d off, e on - dt=11980516 - a on, b off, c off, d off,
e on
system-B - dt=0.1 - f off, g on, h off, i off, j off, k off - dt=81573110. - f off, g on, h on,
i on, j off, k off
system-C - dt=0.2 - a off, b off, c off , d off, e off, f off - dt=0.0 - a on, b on, c on , d off,
e on, f on - dt=47271014 - a on, b on, c on , d off, e on, f on

296

A.4 Startup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1e9

0

50

100

150

200

250

300

Cluster 0

2 3 4 5 6 7
Height

2.0

2.5

3.0

3.5

4.0

W
id

th

Specification Count

pmin = 0.7

pmin = 0.8

pmin = 0.9

pmin = 1.0

Figure A.187: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

297

A Appendix A: Case Study Full Evaluation

A.5 Shutdown

A.5.1 TV Clustering

At first, TV clustering is performed with various parameters.

A.5.1.1 Hyperparameter Estimation

Silhouette Index, for various numbers of PCA components and various ε:
Each plot has a fixed number set for MinSamples = m, when using DBSCAN

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.36

0.42

0.48

0.54

0.60

m = 2

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.36

0.42

0.48

0.54

0.60

m = 3

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.40

0.45

0.50

0.55

0.60

m = 4

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.40

0.45

0.50

0.55

0.60

m = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.40

0.45

0.50

0.55

0.60

m = 6

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.35

0.40

0.45

0.50

0.55

0.60

m = 7

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.35

0.40

0.45

0.50

0.55

0.60

m = 8

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

20
15

10
5

0
pc

a_
nr

 DBSCAN

0.35

0.40

0.45

0.50

0.55

0.60

m = 9

Silhouette Index, for various MinSamples and various ε: Each plot has a fixed
number set for nPCA, when using DBSCAN

298

A.5 Shutdown

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.35

0.40

0.45

0.50

0.55

No PCA

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.36

0.42

0.48

0.54

0.60

nPCA = 5

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.35

0.40

0.45

0.50

0.55

0.60

nPCA = 10

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.35

0.40

0.45

0.50

0.55

0.60

nPCA = 15

0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0
dbscan_eps

9
8

7
6

5
4

3
2

db
sc

an
_m

in
_s

am
pl

es

 DBSCAN

0.35

0.40

0.45

0.50

0.55

nPCA = 20

Effect of increasing MinSamples: Each plot shows the two most important PCA
components. Further it has the optimal values for number of PCA and ε fixed, which is
nPCA = 5 and ε = 0.8.

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 25 with eps 0.8 and minsamp 2.0

MinSamples = 2

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 11 with eps 0.8 and minsamp 3.0

MinSamples = 3

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 5 with eps 0.8 and minsamp 5.0

MinSamples = 5

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 5 with eps 0.8 and minsamp 6.0

MinSamples = 6

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 5 with eps 0.8 and minsamp 8.0

MinSamples = 8

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 5 with eps 0.8 and minsamp 9.0

MinSamples = 9

Effect of increasing ε: Each plot shows the two most important PCA components.
Further it has the values for MinSamples and ε fixed, which is MinSamples = 3 and
nPCA = 5.

299

A Appendix A: Case Study Full Evaluation

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 15 with eps 0.1 and minsamp 3.0

ε = 0.1

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 14 with eps 0.2 and minsamp 3.0

ε = 0.2

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 19 with eps 0.4 and minsamp 3.0

ε = 0.4

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 11 with eps 0.8 and minsamp 3.0

ε = 0.8

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 5 with eps 1.5 and minsamp 3.0

ε = 1.5

0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

Estimated number of clusters: 1 with eps 3.0 and minsamp 3.0

ε = 3.0

A.5.1.2 Found clusters

The algorithm found 11 clusters, including one cluster that we refer to as fragmentary
which contains all TVS that were considered noise during clustering. Most dominant
clusters could be named as (1) car state information before shut down, (2) state infor-
mation post shutdown or (3) key information. Due to the big size of this data set a
subclustering is possible, which is omitted here, as a similar case was already studied in
the main work.

A.5.1.3 Reduced Clusters

Based on the found clustering a subset of TVs was selected by experts for further inves-
tigation.
Statistics of chosen clusters:
TV Cluster 1:

• Number of TVs [num / nom / bin / ord]: 24 [0/18/6/0]

• Number of samples [num / nom / bin / ord]: 1569 [0/1451/118/0]

• Mean gap: 8.223 s

• Std. gap: 22.098 s

TV Cluster 2:

• Number of TVs [num / nom / bin / ord]: 7 [0/7/0/0]

• Number of samples [num / nom / bin / ord]: 3505 [0/3505/0/0]

300

A.5 Shutdown

binary nominal
0.0

0.2

0.4

0.6

0.8

1.0

Proportions of TV frequencies per data type

Figure A.213: TV Cluster 1: Proportions
of TVs

nominal
0.0

0.2

0.4

0.6

0.8

1.0

Proportions of TV frequencies per data type

Figure A.214: TV Cluster 2: Proportions
of TVs

Figure A.215: Proportion of TVs per Cluster

• Mean gap: 34.893 s

• Std. gap: 10.248 s

The proportion of occurrence frequencies per TV and data type is shown in Figure A.215.

A.5.2 Segmentation Clustering

For this data set the range segmentation clustering is used. Per data set and cluster of
TVs hyperparameters are found as described in this section, with statistics shown in the
following.

A.5.2.1 Hyperparameters

TV Cluster 1:

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Std of Seq. Lengths

0

2000

4000

6000

8000

10000

Mean of Std. of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Seq. Lengths

0.0

0.5

1.0

1.5

2.0

2.5

Mean of Sequence lengths per TV

301

A Appendix A: Case Study Full Evaluation

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Number of Clusters

0.0

0.4

0.8

1.2

1.6

2.0

Number of Clusters found

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Silhouette

0.00

0.15

0.30

0.45

0.60

0.75

Silhouette index

TV Cluster 2:

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Std of Seq. Lengths

0

2000

4000

6000

8000

10000

Mean of Std. of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Mean of all Seq. Lengths

0.0

0.6

1.2

1.8

2.4

3.0

Mean of Sequence lengths per TV

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Number of Clusters

0.0

0.8

1.6

2.4

3.2

4.0

Number of Clusters found

0.01 0.05 0.1 0.15 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 3.0 4.0 5.0
ε

1.
5

1.
0

0.
5

0.
25

0.
17

0.
1

0.
05

0.
01

r t
em

p

Silhouette

0.00

0.15

0.30

0.45

0.60

0.75

Silhouette index

For TV cluster 1 ε = 1.0 and rtemp = 0.25 and for TV cluster 2 ε = 0.01 and rtemp = 0.1
were chosen.

A.5.2.2 Statistics

TV Cluster 1:

302

A.5 Shutdown

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cluster Index

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cluster Index

19.0

19.1

19.2

19.3

19.4

19.5

19.6

19.7

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cluster Index

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

Two found clusters:

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cluster 0

0 1 2 3 4 5 6 7
1e8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cluster 1

TV Cluster 2:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cluster Index

2.0

2.5

3.0

3.5

4.0

S
eq
u
en
ce

 L
en
gt
h
s
p
er

 T
V

Sequence lengths per TV

0.0 0.2 0.4 0.6 0.8 1.0
Cluster Index

12.12

12.14

12.16

12.18

12.20

N
u
m
be
r
of

 M
S
S
s

Number of MSSs

303

A Appendix A: Case Study Full Evaluation

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cluster Index

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

N
u
m
be
r
of

 T
V
s
p
er

 s
eq
u
en
ce

Number of TVs per sequence

Two found clusters:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e8

0

2

4

6

8

10

12

Cluster 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e8

0

2

4

6

8

10

12

Cluster 1

A.5.3 Specification Extraction

Next, on a subset of the segments found during Segmentation Clustering Specification
Mining with BaySpec and MPE is used to find specifications. Here, only a subset of
clusters and segments is considered.

A.5.4 TV Cluster 1 - Segment Group 0

A.5.4.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

8

16

24

32

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

8

16

24

32

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0

8

16

24

32

k = 0.35

Chosen parameters are k = 0.00, α = and χth =, which gives the structure given in
Figure A.233.

A.5.4.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure
A.233. 209 specifications with a threshold pmin > 0.6 were found.
This segment resembles the start up of multiple systems. Sorted by likelihood the
following specifications were found (the exact names of TVs were altered). The dominant
specifications are the vehicle state, engine component activations and the start button.

304

A.5 Shutdown

• First, the main patter includes the component activations.
G(((driver:present or engine-component:a on)→ X(F((engine-component:b chang-
ing and X((engine-component:b on and X(F(driver:driving)))))))))
or the same situation when the driver was in another state
G(((driver:in parking or engine-component:a on)→X(F((engine-component:b chang-
ing and X((engine-component:b on and X(F(driver:driving)))))))))

• The above behavior was also found when including the start button.
G(((driver:present or start button:activation) → X(F(driver:driving))))

• Combination of all TVs. G(((((engine-component:a on or driver:in parking) or
driver:present) or driver:driving)→X(F((engine-component:b changing and X((engine-
component:b on and X((engine-component:c on and X(F(engine-component:b on)))))))))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1:
engine - dt=0.0 - off - dt=206202769 - starting
engine-component - dt=0.0 - a on - dt=71543944 - b
changing - dt=97400191 - b on - dt=210268894 - c on - dt=466739935 - b on
driver - dt=0.5 - in parking - dt=67200404 - driving
start button - dt=0.0 - activation - dt=112656636 - no action

A.5.5 TV Cluster 2 - Segment Group 0

A.5.5.1 Model Training

Results of Hyperparameter evaluation in terms of inter edges when varying α and χth.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

3.0

4.5

6.0

7.5

9.0

k = 0.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

3.0

4.5

6.0

7.5

9.0

k = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

10
0.

0
80

.0
55

.0
40

.0
25

.0
10

.0
4.

0
2.

5
1.

0
0.

2
0.

0
χ
th

Inter Edges

0.0

0.8

1.6

2.4

3.2

4.0

k = 0.35

Chosen parameters are k = 0.00, α = and χth =, which gives the structure given in
Figure A.237.

A.5.5.2 Specification Extraction

With this BaySpec and MPE are used to produce specifications as shown in Figure A.237.
503 specifications with a threshold pmin > 0.6 were found. This segment resembles the
start up of multiple systems. The structure has less connections giving specifications
among three TVs only. The dominant specifications are the driver behavior, the state
transitions after pressing the start button and various reasons to change from parking
to driving.

305

A Appendix A: Case Study Full Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cluster 0

4 6 8 10 12
Height

2

3

4

5

6

7

8

W
id

th

Specification Count

pmin = 0.4

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

pmin = 0.9

pmin = 1.0

Figure A.233: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

306

A.5 Shutdown

• First, the main patter includes the driver behavior across one TV only.
G(((driver:present or driver:initialized driving) → X(driver:driving)))

• Second, the sequence after pressing the start button.
G((start button:activated → X(F((trigger state:gate activated and X(activation
trigger state:driver intends activation))))))

• Third, a combination of both.
G(((driver:present or start button:activated) → X(F((trigger state:gate activated
and X(activation trigger state:driver intends activation))))))

The dominating MPEs are given in the following where dt is specified in nano seconds
and a subset of TVs is named.
Example 1:
engine - dt=0.1 - off - dt=127023990 - starting
engine-component - dt=0.0 - a on - dt=0.0 - b changing - dt=103681666 - b on
activation trigger state - dt=0.1 - driver intends activation - dt=1459612 - driver acti-
vates using start button - dt=118070992 - activation by b on - dt=96969978 - driving
initialized
driver - dt=0.1 - in parking - dt=457282028 - driving
start button - dt=0.0 - activation - dt=87760836 - no action - dt=0.0 - no action

307

A Appendix A: Case Study Full Evaluation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e8

0

2

4

6

8

10

12

Cluster 0

2 4 6 8 10 12
Height

3

4

5

6

7

8

W
id

th

Specification Count

pmin = 0.4

pmin = 0.5

pmin = 0.6

pmin = 0.7

pmin = 0.8

pmin = 0.9

pmin = 1.0

Figure A.237: Flow of extraction. On the left the MSS segments used for training are given.
The middle shows the learned structure and the right side shows the complexity
of found specifications. Size of circles indicates the number of found specifica-
tions with this complexity that have likelihood bigger than pmin.

308

B Appendix B: Deriving Update Equation

In Chapter 7 the update equation for the temporal estimate was presented. Here, a
deduction of this equation is given.

First, it is known that

q∗(∆tij ;µ
∗, σ∗2) ∝ E∆t−ij [log p(Z,X)]

∝
∑

ω∈Pa(∆tij)

log p(∆tij ;µij , σij
2|Pa(∆tij) = ω) ·

∏
ωr∈ω

q(vr = ωr)

∝
∑

ω∈Pa(∆tij)

logN (µij|ω, σ
2) ·

∏
ωr∈ω

q(vr = ωr)

, with

N (µij|ω, σ
2) =

1√
2πσ2

· exp(−
(∆tij|ω − µij|ω)2

2σ2
)

Thus,

q∗(∆tij ;µ
∗
ij , σ

∗
ij

2) ∝ exp(
∑

ω∈Pa(∆tij)

logN (µij|ω, σ
2) ·

∏
ωr∈ω

q(vr = ωr))

∝ exp(
∑

ω∈Pa(∆tij)

log (
1√

2πσ2
· exp(−

(∆tij|ω − µij|ω)2

2σ2
)) ·

∏
ωr∈ω

q(vr = ωr))

∝ exp(
∑

ω∈Pa(∆tij)

(log (
1√

2πσ2
) + log (exp(−

(∆tij|ω − µij|ω)2

2σ2
))) ·

∏
ωr∈ω

q(vr = ωr))

∝ exp(
∑

ω∈Pa(∆tij)

(log (
1√

2πσ2
)−

(∆tij|ω − µij|ω)2

2σ2
) ·
∏
ωr∈ω

q(vr = ωr))

with

a1 = log (
1√

2πσ2

a2 =
1

2σ2

a3(ω) =
∏
ωr∈ω

q(vr = ωr))

309

B Appendix B: Deriving Update Equation

the above can be written as

q∗(∆tij ;µ
∗
ij , σ

∗
ij

2) ∝ exp(
∑

ω∈Pa(∆tij)

(a1 − a2(∆tij|ω − µij|ω)2) · a3(ω))

∝ exp(
∑

ω∈Pa(∆tij)

(−a2 · a3(ω)∆t2ij|ω + (−2 · a3(ω)a2µij|ω)∆tij|ω + (µ2
ij|ωa2 · a3(ω) + a1))

, which can be used to read of parameters of a normal distribution as it is of shape
e(ax2+bx+c). That is,

a =
∑

ω∈Pa(∆tij)

−a2 · a3(ω)

b =
∑

ω∈Pa(∆tij)

(−2a2 · a3(ω)µij|ω)

c =
∑

ω∈Pa(∆tij)

(µ2
ij|ωa2 · a3(ω) + a1)

With this,

q∗(∆tij ;µ
∗
ij , σ

∗
ij

2) ∝ exp (a∆t2ij|ω + b∆tij|ω + c)

and thus,

µ∗ij = − b

2a
= −

∑
ω∈Pa(∆tij)

(−2a2 · a3(ω)µij|ω)

2(
∑

ω∈Pa(∆tij)

−a2 · a3(ω))

=

∑
ω∈Pa(∆tij)

(2a2 · a3(ω)µij|ω)

2(
∑

ω∈Pa(∆tij)

a2 · a3(ω))
and as a2 is constant here

=

∑
ω∈Pa(∆tij)

a3(ω)µij|ω∑
ω∈Pa(∆tij)

a3(ω)

µ∗ij =

∑
ω∈Pa(∆tij)

µij|ω
∏
ωr∈ω q(vr = ωr)∑

ω∈Pa(∆tij)

∏
ωr∈ω q(vr = ωr))

Note that here σ was assumed constant.

310

