TUTI

Fakultat fur Informatik, Informatik 26 - Data Analytics and Machine Learning

Specification Mining in High dimensional Heterogeneous Data Sets of Large-Scale
Distributed Systems

Artur Mrowca

Vollstandiger Abdruck der von der Fakultat fur Informatik der Technischen Universitat Miinchen
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.
Vorsitzende/-r: Prof. Dr. Uwe Baumgarten

Prufende/-r der Dissertation:

1. Prof. Dr. Stephan Glinnemann

2. Prof. Dr. Sebastian Steinhorst

Die Dissertation wurde am 04.12.2020 bei der Technischen Universitat Mlinchen

eingereicht und durch die Fakultéat fir Informatik am 17.03.2021 angenommen.

Abstract

In an increasingly interconnected world, distributed systems power our everyday lives.
This includes multiple areas, ranging from automobiles and IoT to the domestic life and
medicine. However, with this a lot of trust is put in those systems and its functioning,
while unexpected behavior might lead to failures that cause serious damages.
Therefore, verification of distributed systems is essential, which includes the communi-
cation between devices, as well as its hardware and software.

In this work, the focus is on the verification of software. An increasingly important way
for verification of distributed systems is to use traces that are recorded from system
executions, which are used to detect, identify or explain errors. However, with growing
size of such distributed systems this is increasingly challenging, e.g. as massive amounts
of data are recorded, systems evolve, and the system is developed by multiple domains.
To ensure verification of such systems often model checking is used, which is able to
verify manifold nominal behaviors that were specified by respective domain experts.
However, at a larger scale the manual generation of specifications becomes in-feasible,
as functional variety is increasing and human cognition is limited. Therefore automated
methods for Specification Mining are required. This includes methods that allow to bet-
ter understand the system, as well as methods to automatically generate specifications
from recorded traces.

This work presents a novel Specification Mining approach, which is aimed to be applied
on traces of distributed systems.

Existing approaches for this, do not consider multi functionality, heterogeneity of data
or exploitation of dimensional information in combination. Further, often no domain
knowledge is included and specifications are limited in length or applicable to perfect
traces only.

This is overcome in this work by proposing an end-to-end Data Mining pipeline that al-
lows to extract specifications from raw traces. This is achieved by systematically break-
ing down complexity in dimension and procedure, as well as by modeling the recorded
data under uncertainty with an appropriate model.

This pipeline contains six stages which are enabling this. Each of those steps requires
dedicated characteristics. Therefore, in this work per stage multiple approaches are
compared, developed and extended, which are presented here. Lastly, the overall consis-
tency of the proposed approach is validated in an extensive case study of the automotive
industry.

iii

Zusammenfassung

In einer zunehmend vernetzten Welt gewinnen verteilte Systeme in zahlreichen Gebi-
eten unseres Lebens immer mehr an Bedeutung. Im Zuge dessen genieflen derartiger
Systeme ein hohes Mafl an Vertrauen. Dennoch kann ihr unerwartetes Verhaltens in
schwerwiegenden Konsequenzen resultieren. Auf Grund dessen kommt der Verifikation
von verteilten Systemen eine hohe Bedeutung zu. Dies beinhaltet die Korrektheit von
Kommunikationsverhalten zwischen einzelnen Geréten, sowie die Korrektheit der Hard-
ware und Software solcher Geréte.

Diese Arbeit behandelt den Softwareaspekt der Verifikation. Ein kosteneffizienter Weg
der dies ermoglicht liegt in der datenbasierten Verifikation von Tracedaten, die aus Sys-
temausfithrungen resultieren. Diese werden u.a. verwendet um Fehler zu entdecken, zu
identifizieren und zu erklaren. Mit zunehmender Gréfle derartiger Systeme wird dies
jedoch stetig komplexer. Dies liegt zum Beispiel an der immensen Groflie der Daten,
an der stetigen Evolution der Systeme, sowie an der Tatsache, dass eine Vielzahl an
Domanen bei der Entwicklung beteiligt sind.

Um dies zu 16sen wird Model Checking verwendet, da diese Technologie in der Lage ist
eine grofle Bandbreite an nominalem Verhalten zu validieren. Hierzu werden manuell
Spezifikationen definiert, die unterschiedlichen Doménen entstammen koénnen. Durch
die immense Komplexitéat verteilter Systeme wird jedoch eine manuelle Erstellung un-
verhaltnisméfig schwierig. Dies liegt insbesondere an der Funktionsvielfalt und der
Beschranktheit der menschlichen Kognition. Aus diesem Grund werden automatisierte
Methoden hierfiir entwickelt, die unter dem Begriff des Specification Mining in der Lit-
eratur zu finden sind. Derartige Verfahren erlauben es zum Einen automatisiert Spezi-
fikationen zu generieren und zum Anderen Systemverhalten besser zu verstehen.

Diese Arbeit beschreibt ein neuartiges Verfahren dieser Kategorie, dass die Extraktion
von Spezifikationen aus verteilten Systemen immenser Groéfle ermoglicht. Existierende
Ansétze beinhalten nicht alle notwendigen Charakteristika hierfiir. Z.B. wird Multifunk-
tionalitat der Systeme oder die Heterogenitdt der Daten nicht beachtet. Das prasentierte
Verfahren 16st diese Herausforderungen, da es eine Ende-zu-Ende Losung bietet, die den
Prozess von rohen Daten bis hin zu extrahierten Spezifikationen beschreibt. Insbeson-
dere wird die Komplexitédt der Daten heruntergebrochen. Basierend auf der reduzierten
Représentation werden probabilistische Modelle verwendet, um Spezifikationen zu ex-
trahieren.

Die Methode beinhaltet sechs Schritte, die dedizierte Charakteristika erfordern, um die
Herausforderungen solcher Systeme zu bewéltigen. Deshalb, werden fiir jeden dieser
Schritte eine Vielzahl an Verfahren entwickelt, erweitert und verglichen. Zuletzt, wird
die Validitdt der préasentierten Methodik an Hand mehrerer Datenséitze aus der Auto-
mobilindustrie bewiesen und bewertet.

Contents

Abstract i
Zusammenfassung v
Contents vii
List of Figures xiii
List of Tables Xix
Glossary XXi
1 Introduction 1
1.1 Diagnosis in Software of Large Scale Systems 1
1.2 Data-Driven Verification o L 3
1.3 Contributions and Research Questions 5
1.3.1 Contributions 5

1.3.2 Research Questions Lo 5

1.4 Thesis Outline e 6
1.5 List of Publications 7

2 Preliminaries 9
2.1 Terminology L e 9
2.1.1 Verification 9

2.1.2 DataTypes e 10

2.2 System Definition oo 10
2.2.1 Distributed Systems 10

2.2.2 Simplified System State Perspective 12

2.2.3 Functional Perspective oo 13

2.3 Analyzed Trace Data 14
2.3.1 Trace Recordings 14

2.3.2 Functional Procedures and Traces 15

2.3.3 Diagnosis and Fault Model 17

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems 19
3.1 Stateofthe Art. 20
3.1.1 Modeling Behavior for Diagnosis 21

3.1.2 Extraction of Specifications oL, 27

3.2 Research Demand 29
3.3 System Work Flow 32
3.3.1 Targets of Big Data Frameworks 34

vii

Contents

viii

3.3.2 Systems Work Flow 35
3.4 Data Mining Pipeline oo 36
3.4.1 Assumptions 36
3.4.2 Proposed Diagnosis Pipeline., 37
343 Inputdata 38
3.4.4 Preprocessing e 39
3.4.5 Clustering Temporal Variables 39
3.4.6 Segmentation Clustering 40
3.4.7 Model - Structure Discovery and Parameter Estimation 41
3.4.8 Inference of Specification and Behavior 41
3.4.9 Evaluation of Framework 42
3.5 Summary and Conclusion, 42
Automated Interpretation and Reduction of Traces at a Large Scale 43
4.1 Related Workso 44
4.2 Automated Interpretation and Reduction Pipeline 45
4.2.1 Overall Processing Pipeline 45
4.2.2 Overviewo 47
4.2.3 Interpretation Phase L. 50
4.2.4 Sequence Reduction, 52
4.2.5 Final Representation L 0oL 57
4.3 Discussion e e e 57
4.4 FEvaluation of Framework Performance 59
4.5 Summary and Conclusion 63
Clustering High-Dimensional Sequences 65
5.1 Related Works 66
5.1.1 Temporal Clustering Approaches 66
5.1.2 Temporal Clustering Applications 68
5.2 Feature-based Clustering Approaches 69
5.2.1 Background on Clustering Approaches 69
5.2.2 Overview e 73
5.2.3 Preprocessing e 74
5.2.4 Feature Extraction oo 75
5.2.5 Feature Selection and Transformation 78
5.2.6 Formal Comparison of Clustering Approaches 80
5.2.7 Expert Input and Refinement 81
5.3 Ewvaluation. 82
5.3.1 Setup e 82
53.2 DataSets e 82
5.3.3 Clustering Criteria, 83
5.3.4 Feature Selection 83
5.3.5 Window Size 85
5.3.6 Clustering e 86
5.4 Case-Study e 87
5.5 Summary and Conclusion 89

6 Concurrent Segmentation and Clustering of Event Sequences

6.1 Related Works Lo oo
6.2 Formal Definition and Problem Statement
6.2.1 Formal Definition
6.2.2 Problem Statement,
6.3 Extending Existing Approaches
6.3.1 Window-based Approach
6.3.2 Extending Local Trace Segmentation
6.4 Large-Scale Reduced Segment Clustering.
6.4.1 Overview e
6.4.2 Range Segmentation
6.4.3 Frequency Clustering
6.5 Refinement Clustering
6.6 Evaluation.
6.6.1 Setup
6.6.2 Performance Comparison
6.7 Summary and Conclusion

7 Modeling Multivariate State Sequences

7.1 Background
7.1.1 Bayesian Networks
7.1.2 Conditional Independence

7.2 Stateofthe Art
7.2.1 Temporal Probabilistic Models
7.2.2 Structure Discovery Approaches
7.2.3 Bayesian Models for Temporal Data

7.3 Temporal State Change Bayesian Networks
731 Model
7.3.2 Formal Definition,
7.3.3 Modeling State Sequences
7.3.4 TrieDiscover.
7.3.5 Discussion of TrieDiscover
7.3.6 Parameter Estimation

7.4 Evaluation.
7.4.1 Experimental Setup
742 Model
7.4.3 Structure Discovery
7.4.4 Parameter Estimation

7.5 Summary and Conclusion

8 Inference: Specification Mining and Dominant States

8.1 Preliminaries
8.1.1 Inference in Bayesian Networks
8.1.2 Model Checking

8.2 Most Likely Behavior of MSSs

Contents

ix

Contents

8.3 Automated Specification Mining using BaySpec 163
8.3.1 Overview e e 164
8.3.2 Mining Graph Conversion 164
8.3.3 Candidate Search oo 166
8.3.4 Path Merging 168

8.4 Evaluation 175
8.4.1 Synthetic Evaluation of Performance and Expressiveness of BaySpec176
8.4.2 CaseStudy e 180

8.5 Summary and Conclusion oo 187

9 Case-Study: Specification Mining in Automotive In-Vehicle Network Traces 189

9.1 TImplementation 189

9.2 Background: Automotive Verification. 193

9.3 Data Sets e 194

9.4 Mining in-vehicle Network Traces for Specifications 195
9.4.1 Preprocessing 195
9.4.2 Clustering e 197
9.4.3 Segmentation Clustering, 201
9.4.4 Structure Discovery oo 208
9.4.5 Specification Mining oo 210

9.5 Conclusion 220

10 Conclusion and Outlook 223

10.1 Summary 223

10.2 Lessons Learned L oL 224

10.3 Answers to Research Questions 225

10.4 Future Work oL 227

Bibliography 231
A Appendix A: Case Study Full Evaluation 251

A1 ACC . . 251
A1l TV Clustering 251
A.1.2 Reduced Clusters 253
A.1.3 Segmentation Clustering: 254
A.1.4 Specification Extraction 0L 254
A.1.5 TV Cluster 1 - Segment Group 0 254
A.1.6 TV Cluster 1 - Segment Group 1 256

A2 Lights e 261
A21 TV Clustering 261
A.2.2 Segmentation Clustering 264
A.2.3 Specification Extraction L. 267
A.2.4 TV Cluster 1 - Segment Group 0 267
A.2.5 TV Cluster 1 - Segment Group 3 269
A.2.6 TV Cluster 2 - Segment Group 3 270

A3 Wiper e 274
A3.1 TV Clustering o . v i it 274

Contents

A.3.2 Segmentation Clustering 276
A.3.3 Specification Extraction 278
A.3.4 TV Cluster 1 - Segment Group 9 278
A.3.5 TV Cluster 1 - Segment Group 14 279

A4 Startup 283
A4l TV Clustering o o e 283
A.4.2 Segmentation Clustering 286
A.4.3 Specification Extraction 289
A4.4 TV Cluster 2 - Segment Group 1 289
A.4.5 TV Cluster 2 - Segment Group 8 290
A.4.6 TV Cluster 2 - Segment Group 15 292
A.4.7 TV Cluster 3 - Segment Group 0 294

A5 Shutdown 298
A5.1 TV Clustering 298
A.5.2 Segmentation Clustering 301
A.5.3 Specification Extraction L. 304
A.5.4 TV Cluster 1 - Segment Group 0 304
A.5.5 TV Cluster 2 - Segment Group 0 305

B Appendix B: Deriving Update Equation 309

xi

List of Figures

1.1

2.1
2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

Fields of large-scale distributed systems

A formalization of a distributed system [1] is shown.
The simplified representation of a large-scale distributed system is shown,
which is referred to as DMS in the scope of this thesis.
Multiple occurrences of functional procedures fi; are shown that each are
a part of a function Fy. Each Fj is represented with a different color here,
e.g. fi1 and fi3 are functional procedures of F; (indicated in blue).

This image shows the product development cycle. In particular this in-
cludes recording and processing of data which is the focus of this work.
The procedure of Root Cause Analysis (RCA) as it was presented in [2]
isshown here.
An overview of models used in previous works is shown as it was defined
in [2]. In this work the TSCBN model is used (marked as *).
An example of a big data system with its components as it was presented
in[3]. . .
A modern system work flow for diagnosis is shown that includes multiple
sub procedures. Lo
An overview of the proposed pipeline is shown. This approach consists
of six main steps. These are preprocessing (1), clustering of TVs (2),
segmentation and clustering (3), learning of model structure (4) and its
parameters (5) followed by inference of specifications and dominant be-
havior (6).

K}, is the recorded raw trace. Its payload [; contains certain TV types
that are defined by mjq; and bjq;. TV instances with same m;q;, bjq; and
position I; form one source of information, such as Kgid:”el, which is a
discrete time-series describing the vehicle speed or Kgi4=¢" which is a
temporal sequence marking time-instances were a certain error was sent.
In this example the velocity TV instance sequence Kgid:”el is extracted
by taking the messages sent at t; and t3 and interpreting their first value
to get e.g.511 = (10,vel) and $3; = (12,vel) for speed 10 at time ¢; and
speed 12 at time t2. E.g. in a BMW Series 7 2 million messages are
generated for Ky, per minute. oo
Wiper function: Example of the formalization used. Assuming I’ to be
the first two bytes (=wpos) per message and [” the last two bytes (=wvel)
the rules for mapping between Ky, onto K, are v = 0.5-1" and v = 1" [4].
Overview of the flow of the preprocessing framework [4].

15

46
48

xiii

List of Figures

Xiv

4.4 Example of four K,.q each consisting of TV instances of one TV type
with four different data types. Those TVs need to be processed based on
their data type [4].

4.5 On the left the execution time after interpretation and removal of identical
consequent TV instances is depicted, when the number of initial examples
is varied. The right figure shows the size after each processing step when
the whole trace and all TVs are interpreted, reduced and symbolized [4]. .

4.6 On the left side the occurrence rate of values for the original TV values of
the angle of the acceleration pedal are shown. The occurrence rate after
symbolization is shown on the right.

5.1 Two sequences of TVs are shown. On the left a numerical TV time series
is shown and on the right two nominal TVs, with two states each, are
shown. L

5.2 An overview of the overall TV clustering approach is shown [5].

5.3 The extraction of features from overlapping windows is shown. Per win-
dow and TV a set of features is extracted. Per TV these features are
stacked to form the feature vector that represents the TV [5].

5.4 The forward backward feature selection is shown. At each iteration a
feature is added or removed if accuracy improves [5].

5.5 Relevance score determined as number of optimal feature subsets in which
a feature occurred [5].

5.6 Clustering performance in terms of Silhouette index before and after the
generalized feature selection is applied [5]. L.

5.7 Comparison of centroid-based algorithms in terms of Silhouette index [5].

5.8 Comparison of hierarchical algorithms in terms of Silhouette index [5]. . .

5.9 Silhouette index per data set and clustering algorithm [5].

5.10 On the left the result of signal clustering with DBSCAN and e = 10 and
on the right with e = 0.5 are shown [5].

5.11 The numerical TV ”Braking Momentum” and the nominal TV ”Brake
Light State” are grouped with the presented approach [5].

5.12 Dendrogram illustrating hierarchical clustering at various granularities.
I.e. branches resemble possible groupings. E.g. one possible granularity
is shown in red and blue [5]. oo Lo

6.1 Given a MES < z1,...zxy > an optimal approach finds patterns that are
consistent in state and time. In this case three clusters with representa-
tives ADBH, XF and CEG would be discovered. There, e.g., the cluster
XF occurs three times within the trace.

6.2 An observed sequence X, is shown. Here colors indicate cluster assign-
ments. Ppeps assigns each event an identifier, which defines the pattern it
belongs to. With c.s a cluster is assigned to each pattern.

6.3 The LTS approach is shown given an example trace as it was introduced
in[6].

6.4 The F1 score of clustering and pattern assignments is presented, when
overlap is increased. Lo

60

6.5

6.6

7.1

7.2
7.3

7.4

7.5

7.6

7.7

7.8

7.9

List of Figures

The F1 score of clustering and pattern assignments is presented, when
the length of the trace is increased.
The run times are shown, that result when the length of the trace is
increased. e e e

An MSS with 3 Temporal Variables for the process of wetting grass, and
models to generate it, are shown. If the grass is dry the sprinkler turns
on, if it is not raining. Once it starts raining the sprinkler turns off. The
same model could produce a sequence where the rain is falling throughout
the process. Then, the sprinkler would never have turned on. Temporal
State Change Bayesian Networks provide a compact yet expressive repre-
sentation for such scenarios.
A DBN of order 3 is shown here.
Here an example of a CTBN structure is shown [7]. At each time step
a Markov Process that is conditioned according to this structure models
the temporal evolution of the data.
Two Temporal Variables (T'Vs) S; and Sy are illustrated. The top part
shows a MSS that is generated by the Temporal State Change Bayesian
Network (TSCBN) shown in the lower part. X; and X5 indicate the 0b-
served sequence of state changes, which are generated by the true latent se-
quences ((vio, Atio), (vi1, Ati1), (viz, Ati2), (v13, Aty3)) and ((vag, Atao),
(va1, Atar), (va2, Ataa)). Note that a temporal-causal dependency between
state change v1; of TV S; and state change v9; of TV Sy is given in the
shown TSCBN [8].
A Multivariate State Sequence (MSS) of the movement of a person is
shown, with four dependent TVs Siove; Siocations Stemp, Sinjury- The
MSS is M =< (0,4, Smove, sit), (0,5, Stemp, cold), ... >. Also, the main
concept of TSCBNSs is shown. Intervals are modeled by State Changes
(SCs). Causal dependence between intervals (here: Spmoves Stemp and
Sinjury) 1s modeled as edges between SCs to respective intervals [8].

The compact representation of a TSCBN defines each node n as the state
a TV S changes to and its time of change [8].
Allen’s temporal relations are shown on the left, between a TV S; that is
in state s;, for a certain time interval and a TV S}, that is in time interval
Sgz- Each interval boundary is modeled by a node n of a TSCBN. On the
right the according temporal requirements for the absolute times (defined
by the respective At) of each node n is illustrated [8].
An example of the overlaps relationship, which shows the state of the door
and the key as TV. When the key is turned, the open door changes to a
closed state. The overlaps relationship is modeled as TSCBN, with v14 as
state change from open to closed and with vy as start and ves as end of
the key turning procedure [8].
The basics step of the discovery approach are shown. Starting from a
long trace the input MSSs for TrieDiscover are deduced by segmentation.
With this TrieDiscover finds a BN structure to represent a set of MSSs [8].

7.10 A Trie modeling the observation of four MSSs is shown [8].

XV

List of Figures

XVi

7.11 The DAWG after minimizing the trie in Figure 7.10 is given [8].
7.12 Results of structural complexity, as number of nodes ny and CPDs n¢,
for various numbers of TVs [8].o L.
7.13 Left: Various number of added and missing edges for sbTD in comparison
to ground truth, when structure and t;, is varied, with 3 TVs assumed [8].
7.14 Execution time when assuming ny = 3 for various numbers of TVs and
the two steps of TrieDiscover [8].
7.15 Results in terms of run time and SHD for various sizes of the training set,
SC probabilities [8].
7.16 Results in terms of run time and SHD for various sizes of the training set,
SC probabilities [8].
717 Left and Mid: Abs. MLL and run time when varying probability of
state change and number of training samples using the EM algorithm for
estimation of TSCBN parameters. right: Run times for three approaches
including EM, VI and MLE random for two structure sizes [8].
7.18 The KL divergence and temp. MLL when varying probability of state
change and number of training samples for three approaches including
EM, VI and MLE random for two structure sizes are shown [8].

8.1 The basic model checking process is depicted and was taken from [9]. . . .
8.2 Various operators are shown. This example was taken from [9].
8.3 A Bayesian Network with two states 0 and 1 per node is shown on the left
and the resulting Mining Graph after conversion is shown on the right.
This figure was taken from [10].
8.4 The limitations of the Dijkstra Algorithm are illustrated [10].
8.5 The syntax tree of the LTL formula G(z — XF y) is shown to exemplify
the notion of complexity.
8.6 Left: Number of mined specifications under various percentages of re-
moved cross-edges & between original and validation BN, under various
minimum average likelihoods punin. Right: Comparison of metric based
and comparison based approach in terms of # Mined Specifications for
various minimum average likelihoods ppi, for 2 different BN sizes [10]. . .
8.7 Run time of the approach under various average likelihoods pmi, for 4
cross-edge deletion percentages £ [10].
8.8 Left: Height and number of unique events of found specifications for three
approaches, with circle size being frequency of occurrence. Right: Height
of Specifications against its frequency [10].
8.9 Ratio of FPs mined by three approaches with traces of increasing number
of functions [10]. L
8.10 Distribution of gaps between consecutive state changes in nanoseconds for
the high beam and indicator data set [10].
8.11 Number of inter-edges after structure discovery for different values of &
and xip, with the high beam shown on the left and the indicator results
shown on the right [10]. L
8.12 Original and validation BN for the indicator activation function [10]. . . .

160

165
168

8.13

8.14

9.1

9.2

9.3

9.4

9.5

List of Figures

This figure shows the network that was discovered with TrieDiscover for
the indicator on the left and for the high beam assistant on the right [10]. 185
Height and number of unique events of found specifications for three ap-
proaches, with circle size being frequency of occurrence [10]. 185

First part of the overview of the configuration used for the evaluation in

this chapter. L 190
Second part of the overview of the configuration used for the evaluation
in this chapter. 191

An example of the times of transmission of Kj is shown. There each
dimension represents the type of transmitted frames and each data point
its point of occurrence. The right part shows a magnified version of the
left plot. It can be seen that both cyclic, as well as event based frames

are transmitted. L 195
The distribution of TVs for K,.,,q is shown. Each color represents one
TV and its number of occurrences in the dataset. 196

Here the statistics of all data sets are shown after preprocessing, i.e. K.
There the left pie chart shows the numbers of occurrences per TV, the
middle chart show the same distribution per data type and the right plot
illustrates the distribution of data types. 198

xvii

List of Tables

4.1

4.2
4.3
4.4
4.5

4.6
4.7

5.1

5.2

5.3

8.1
8.2

8.3

8.4

8.5
9.1

9.2

Example for U, with relevant bytes to extract: Bytes 1 and 2 for wpos
in messages with id 3, Bytes 3 and 4 for wvel. From SOME/IP the wiper
status wstat and from K-Lin the wiper type wtype could be extracted
from messages with respective ids 11 and 212, i.e. the presented approach

allows to combine multiple protocols into this extraction [4]. 51
Extension: Gap between wpos TVs from sequence Kg4= "%, 55
Map TV instance sequences to data type and processing branch [4]. . .. 57
Exemplary state representation of TV instances of the function lights

combined with driving speed [4]. Lo Lo 58
Exemplary state representation of TV instances of the function lights

combined with driving speed. L 58
Statistics of the three data sets used here. 60
TV extraction times for massive traces as introduced in [4]. 61

Comparison of algorithms in clustering of in-vehicle signals. I.e. handling
high-dim. data, detect clusters of any shape, allow multiple granularities
of clusters, visual representation and computational complexity, with t
iterations, maximal depth d, n examples and k classes. This table was
taken from [5]. 80
Statistics of the datasets: total number and proportions of numerical and
nominal signals, data points per set, recorded part of journey. Here, small
subsets are used for evaluation, while in practice thousands of signals are

considered. This table was taken from [5]. 82
Experimentally determined optimal window sizes per data set in seconds.
This table was taken from [5]. 0L 85
Edit operation rules for regular expressions as introduced in [10]. 170
The Levenshtein matrix for two expressions abed and acD is shown as
givenin [10]. 171
Properties of the automotive datasets including results after model cre-
ation and parameter estimation [10].o L. 181

Excerpt of LTL Specification found with BaySpec. The upper part shows
the indicator and the lower half part shows the high beam results, with

likelihoods of found specifications £. 186
Metrics for the specifications that were extracted with BaySpec. 186
The statistics of each data set are shown. The type of data corresponds

to Keong of the presented pipeline. 195
The statistics after preprocessing are shown, which corresponds to K,,. . . 197

Xix

Glossary

BIC — Bayesian Information Criterion
BN — Bayesian Network

CAVI - Coordinate Ascent Variational Inference
CB — Constraint-Based

CI — Conditional Independence

CPD — Conditional Probability Distribution
CTBN - Continuous Time Bayesian Network
CTL — Computational Tree Logic

DAG — Directed Acyclic Graph

DBN — Discrete Bayesian Network

DBSCAN — Density Based Spatial Clustering of Applications with Noise
DM — Data Mining

DMS — Dynamical Multifunctional System

ELBO — Evidence Lower Bound
EM - Expectation Maximizations

FSA — Finite State Automaton

GHC — Greedy Hill Climbing

HBN — Hybrid Bayesian Network
IoT — Internet of Things

JPD — Joint Probability Distribution

LTL — Linear Temporal Logic
LTS — Local Trace Segmentation

MAP — Maximum A Posteriori

MES — Multivariate Event Sequence

MLE — Maximum Likelihood Estimation
MMHC — Max-Min Hill Climbing Algorithm
MPE — Most Probable Explanation

MSS — Multivariate State Sequence

poel

Glossary

xxii

PGM - Probabilistic Graphical Model
PM — Process Mining

RCA — Root Cause Analysis
RV — Random Variable

SAX — Symbolic Aggregate approXimation
SB — Score-Based

SC — State Change

SD — Structure Discovery

SOM — Self Organizing Map

TSCBN — Temporal State Change Bayesian Network
TV — Temporal Variable

VI — Variational Inference

1 Introduction

Growing inter-connectivity of systems that are surrounding us is rapidly changing the
way we live. In the morning, a virtual assistant informs us on the weather, our appoint-
ments at work and the traffic situation, while, at the same time, the car heater activates
as it received a signal from our alarm clock that we woke up. Driving to work, the car
reads our emotions providing the right music to play and the best route to take, while
it informs other cars about hazards along the way.

The functionality that is underlying this comfort is enabled by computational devices
that are part of bigger systems that are surrounding us. Such devices are communicat-
ing either as part of a common infrastructure, such as the Internet of Things (IoT), or
within their own infrastructure, e.g. within automotive in-vehicle networks. Systems
that are combined in that sense are referred to as large-scale distributed systems within
this thesis. Here, large-scale refers to either a high number of executing processes (or
nodes) or applications processing vast amounts of data [11].

As presented in the introductory example such systems are highly beneficial for us mak-
ing it increasingly hard to refrain from their usage. However, our safety and even the
working of our society, depends on the well-functioning of those systems. As a conse-
quence, it needs to be ensured that those systems behave as expected in terms of their
hardware, software and communication.

1.1 Diagnosis in Software of Large Scale Systems

In this thesis the focus is on the software aspect of verification of such systems. This
aspect is getting increasingly important [2] due to several reasons.

First, sensors and processors are integrated in more and more products of different indus-
tries, including automotive, aerospace, medicine or the social sector as shown in Figure
1.1. Next, within complex internally-interconnected systems, such as cars or airplanes,
the number of control units that are running distributed software is increasing. Safety
and functionality are improved through redundancy and more powerful software and
hardware architectures. In addition to that, running those systems requires a high de-
gree of compatibility across functionality and communication behavior on both hardware
and software level. Thus, growing amounts of interrelated components and functionali-
ties aggravate their verification.

At the same time misbehavior of functions and execution failures in both individual
systems and within their interconnected cooperation might have severe consequences.
These can be outages or unexpected behavior, which cause high costs in terms of un-
planned down times [12], customer dissatisfaction or even loss of life [13]. Therefore, a
high effort needs to be put in the verification of such large-scale distributed systems.

1 Introduction

Domestic Life

Computers and
Digital Appliances Robots Smartphones

Infrastructure

Industry

. Industrial
Robots Logistics

Internet Railroads Photovoltaics Pumps

TS :
] ii:i kS ‘
iy ’ [

Aviation Automobiles

Ships a

Figure 1.1: This image shows an overview of fields in which large-scale distributed systems are
applied’.

b i

IoT

Collection and
Application of Data

Construction
Factories Machinery

Ay

Jufinnn

——

Software Verification: Two common ways for verification are fault injection and
fault diagnosis. While in fault injection faults are specifically injected into the system
in order to analyze resulting symptoms of the system, in diagnosis, faults are directly
inferred from observed symptoms [14]. This work addresses approaches in the context
of diagnosis. Diagnosis refers to tasks such as detection, localization, identification or
prediction of known and unknown errors, as well as the determination of their root cause
based on observations that are made from the system.

In diagnosis, multiple types of errors might be investigated. Among others, this includes
scale dependent, configurational, behavioral or communicational errors. For instance, in
automotive, bus overload might lead to functions remaining inactive, disabled compo-
nents hinder requested functionality and unexpected driver behavior needs to be handled.
Such errors are not always visible, e.g. due to the faults’ characteristics, fault tolerance
mechanisms that are built into the system or the lack of monitoring functionality in the
system [14], making diagnosis of such errors challenging. This effect is amplified with
the scale of the system, i.e. growing size yields more complex distributed systems with
more functions, sensors and actuators. The consequence of this is an increasing amount
of possible fault types with more and more complex patterns.

In particular, errors in software of large-scale distributed systems can manifest both
within components or across components [11]. This makes verification challenging, as
components are developed by distinct teams before being integrated to an overall sys-
tem.

Therefore, during development of a large-scale distributed system or its participants,
diagnosis is performed both before and after integration. The latter is particularly chal-
lenging, as a high degree of expertise across domains of the integrating parties is required,
error patterns are more complex and multiple combinations of systems might be given.

L Source: https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/
technology/new_field/iot/img/img_iot_Ole.jpg

https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/technology/new_field/iot/img/img_iot_01e.jpg
https://www.nidec.com/en-NA/product/new_field/iot/~/media/nidec-com/technology/new_field/iot/img/img_iot_01e.jpg

1.2 Data-Driven Verification

1.2 Data-Driven Verification

An increasingly important way to verify software behavior of integrated systems sys-
tematically is by recording and verifying traces from system executions. Using traces is
beneficial, as it is both cost-efficient and well-suited to systematize.

This type of verification can be done in multiple ways. First, those traces can be analyzed
manually for misbehavior in an exploratory manner based on an expert’s knowledge and
his experience [15]. However, this requires a lot of effort and is often only possible for
known errors.

Second, another common approach to verify correctness of integrated systems is by using
model checking, where nominal behavior is defined and used to verify observed behav-
ior. Definition of nominal behavior is done in a comprehensible manner using a set of
rules. Each rule (also referred to as specification) can be defined, e.g. by using model
checking languages which specify states the system is allowed to transition to. Those
specifications are ran on observed traces or systems. If the observed behavior violates
any specification, the respective erroneous part of the trace or system was identified.
This allows to check for specific behavior of a set of functionalities systematically on
large sets of traces. Especially for software of increased scale this is important, as man-
ual localization of errors becomes in-feasible and such methods are well able to guide
developers to the locations of faults with minimal human intervention [16]. A problem
with this type of approaches is that currently such rules are mostly defined manually.
However, with growing complexity of systems this becomes intractable as there are vast
numbers of possible execution branches, generation is time consuming, multiple domains
are involved in the process, high expertise is required and human cognition is limited.
Third, automated methods that operate directly on the data to diagnose known and un-
known errors are becoming increasingly important. A growing branch of such methods
are those that apply Machine Learning to infer knowledge for verification from recorded
data. On the one hand, this is done with black box models, such as Neural Networks.
Such approaches are helpful to use for tasks such as anomaly detection, error prediction
or classification of unspecific errors [16, 12, 17]. On the other hand, such knowledge
inference is done on the basis of white box models (e.g. using Bayesian Networks). This
type of approaches is preferable to use in tasks that require interpretable results, e.g.
during testing of functionalities.

Specification Mining: A field of research that combines both model checking and
data-driven learning approaches is referred to as Specification Mining. Instead of man-
ually defining nominal behavior as a set of rules (= specifications), such as in classical
model checking, in Specification Mining automated approaches are developed to learn
such rules from software code or execution traces. For instance, Machine Learning is
used to learn and model observed behavior and inference is used to identify rules that
most likely represent correct system behavior. Using such techniques allows to generate
a more complete set of rules, while manual effort is reduced.

Current approaches in the field of Specification Mining are not designed for large-scale
distributed systems. For instance, those methods do not assume combinations of mul-
tiple functional behaviors with high-dimensional, massive and heterogeneous data sets.
However, traces are expected to grow in size and complexity, making it essential to solve

1 Introduction

this task for such massive data sets. As described in [2], there will be nearly 26 billion
devices on the Internet of Things by 2020 and, as indicated in [4], in-vehicle network
complexity increased to up to 90 interacting components with traces that have grown
to massive amounts. In [16] this task was described as highly complex by stating that
”although the complete execution trace of a program is a valuable resource [...], the huge
volume of data makes it unwieldy for usage in practice”.

A promising direction to solve this is the usage of Specification Mining at a large scale.
Doing this becomes possible with the current advent of Big Data technology, such as
Apache Hadoop [18], in combination with Machine Learning. Less recent work dealt
with this topic, while applying this at scale might allow to perform systematic verifica-
tion of future distributed systems to ensure its safety and quality.

Therefore, in this work, those methods are combined to a systematic extraction approach
which addresses the above issues. The proposed method is a Data Mining (DM) pipeline
that systematically reduces, prepares and structures recorded traces. From the resulting
representation, the expert guides the extraction of dominant system states, that, first,
can be used as templates for specifications and, second, improve the expertise of the
expert and thus, supports the experts ability to generate specifications. The same rep-
resentation is further used in this pipeline to semi-automatically extract specifications
described in Linear Temporal Logic (LTL).

Challenges: Mining of specifications in large-scale distributed systems has multiple
challenges.

First, this includes the type of data that needs to be dealt with. Recorded traces are
often massive and in raw data format with a high degree of redundancy in the data.
Therefore, it needs to be interpreted and reduced meaningfully. Above that, this data is
temporal, high dimensional and heterogeneous. For an automated procedure those data
types need to be homogenized and further reduced in dimension.

Second, recorded data represents multiple functional behaviors. Different dimensions
and segments in the analyzed trace correspond to particular functional groups that are
relevant to experts of particular domains only. Such functional groups need to be found
(semi-) automatically. Especially, in massive traces, this requires to break down com-
plexity by identifying functional aspects.

Third, large systems are designed by multiple experts from different domains. As a con-
sequence, testing of those systems is aggravated as individual functional behaviors cover
multiple fields of knowledge, expertise is distributed, cross-functional system knowledge
is represented implicitly (i.e. experience) and hidden correlations of subsystems exist.
To overcome this, the lack of domain knowledge needs to be covered by guiding the
inspecting experts towards relevant functional procedures and dimensions for diagnosis.
This allows for identification of relevant functional entities and consequently, for extrac-
tion meaningful specifications.

Fourth, when given a set of observed temporal behaviors within a functional group, a
consequent step is to perform specification extraction. Challenges of this extraction in-
clude handling of imperfect traces and finding specifications of arbitrary length. This
is solved by appropriately representing traces, which is commonly done by using either
rule-sets or models. For the case of imperfect traces, probabilistic models are promising
to handle such data types for the given scenario. In case of the given type of system,

1.3 Contributions and Research Questions

this requires to represent multivariate temporal sequences in a way that dimensional
information is preserved while noise is handled.

Fifth, granularity of found functional groups is often subjective and depends on the an-
alyzing domain, e.g. it can be on a communication layer where messages are considered
events or on a system state layer, where changes in system state are analyzed. Thus,
again domain knowledge needs to be included in the process of specification mining.

1.3 Contributions and Research Questions

1.3.1 Contributions

This work deals with the task of extraction of specification as well as the determination
of dominant procedures in traces of large-scale distributed systems. In particular this
includes the following contributions.

e Design of a Data Mining Pipeline: Based on the shortcomings that were
identified for the existing approaches for specification mining and dominant behav-
ior extraction, a novel approach is presented to overcome those. It allows to extract
specifications per domain through a semi-automated procedure that involves ex-
pert input. By extracting functional groups and by reducing data meaningfully,
complexity of the inspected large scale system is broken down and traces are ana-
lyzed in terms of aspects relevant to the domain. Further, this approach is modular
which allows for variation of individual stages within this pipeline. Lastly, an end-
to-end solution is presented, that covers all stages from the raw trace to sets of
relevant specifications.

e Pipeline Stages: For each stage of the approach, multiple variations can be
used, which in general depend on the data used. In this work, each of those is
discussed and evaluated in order to allow for a good choice of methods per stage.

o Extensive Evaluation: To demonstrate its validity and effectiveness, the pro-
posed approach was evaluated on multiple data sets from the automotive industry.
There, all stages are evaluated in detail. This includes validation of each step,
discussion of hyper parameters in dependence of the data set and the discussion
of conclusions that are drawn from this. The evaluation shows that the proposed
DM pipeline allows for Specification Mining at large scale.

1.3.2 Research Questions

Within the above contributions multiple research questions arise that need to be an-
swered within the design of the DM pipeline. Those are the following.

1. How does a systematic Specification Mining approach need to be designed to be
integrable in current testing and verification procedures of large-scale distributed
systems?

2. How can temporal structure be exploited to allow for a more expressive Specifica-
tion Mining on MSSs?

1 Introduction

3. How can Specification Mining be performed on noisy and heterogeneous traces in
order to produce specifications that compare multiple data types?

4. How can domain-specific Specification Mining be performed and experts included
in the mining procedure?

5. How can the complexity of a multi-functional large-scale distributed system be

broken down, such that effective and efficient mining of relevant specifications is
enabled?

6. How can behavior of functional procedures of MSSs be represented under uncer-
tainty and specifications of arbitrary length extracted?

7. How can raw communication traces of large-scale distributed systems be processed
and functional procedures, as well as specifications identified from those?

8. How can functional procedures be identified in high-dimensional MSSs of large-
scale?

9. Which combination of approaches is suited to be used at each individual step of
the semi-automated processing pipeline?

After presenting the pipeline in the further course of this thesis, in Chapter 10 answers
to the above questions will be given based on the conclusions drawn from the individual
steps of the pipeline.

1.4 Thesis QOutline

The focus of this thesis is on Specification Mining for the identification of functional er-
rors from traces of large-scale distributed systems. Such traces needs to be represented
in an appropriate data format. Also, an understanding of the formal connection be-
tween the system, its state over time, the functional perspective and the recorded trace
is required. Those preliminary aspects are introduced in Chapter 2. Based on those
assumptions in Chapter 3 the novel DM pipeline for Specification Mining is presented
and put into context of related work in the field. In the successive chapters the indi-
vidual steps of this pipeline are presented and approaches for those steps are evaluated
for suitability in the pipeline. An automated preprocessing approach for communication
traces is described in Chapter 4, a clustering approach for multivariate temporal data in
Chapter 5, a segmentation clustering approach to identify correlating MSSs in Chapter
6, a model for representation of MSSs under uncertainty in Chapter 7 and two inference
approaches to identify specifications from this model in Chapter 8. Based on the results
that are presented in those chapters an implementation of the DM pipeline is presented
and evaluated on multiple data sets of the automotive industry in Chapter 9. Lastly, a
conclusion is given, which summarizes the results of this work in Chapter 10

1.5 List of Publications

1.5 List of Publications

The following publications resulted from research performed during the time of this
doctoral thesis, while only publications [1-4] are referenced in this work.

1.

Artur Mrowca, Florian Gyrock, Stephan Giinnemann. Temporal State Change
Bayesian Networks: Modeling Multivariate State Sequences with evolving depen-
dencies. Under Review.

. Artur Mrowca, Martin Nocker, Sebastian Steinhorst, Stephan Glinnemann. Learn-

ing Temporal Specifications from Imperfect Traces Using Bayesian Inference. Pro-
ceedings of the 56th Design Automation Conference (DAC 2019).

Artur Mrowca, Barbara Moser, Stephan Giinnemann. Discovering Groups of
Signals in In-Vehicle Network Traces for Redundancy Detection and Functional
Grouping. Proceedings of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases (ECMLPKDD 2018).

Artur Mrowca, Thomas Pramsohler, Sebastian Steinhorst, Uwe Baumgarten. Au-
tomated Interpretation and Reduction of In-Vehicle Network Traces at a Large
Scale. Proceedings of the 55th Design Automation Conference (DAC 2018).

Jan-Philipp Schulze, Artur Mrowca, Elizabeth Ren, Hans-Andrea Loeliger, Kon-
stantin Bottinger. Context by Proxy: Identifying Contextual Anomalies Using an
Output Proxy. Proceedings of the 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (SIGKDD 2019).

Peter Wolf, Artur Mrowca, Tam Nguyen, Bernard Béker, Stephan Gilinnemann.
Pre-ignition Detection Using Deep Neural Networks: A Step towards Intelligent
Automotive Diagnostics. Proceedings of the Intelligent Transportation Systems
Conference 2018 (ITSC 2018).

Tam Nguyen, Artur Mrowca, Barbara Moser, Andreas Jossen. Analysing the load
on electric vehicles using unsupervised segmentation models as enabler to deter-
mine the time of battery replacement and assess driving mileage. Proceedings of
the 13th Conference on Ecological Vehicles and Renewable Energies (EVER 2018).

2 Preliminaries

First, multiple terms are introduced, which are used in the context of fault diagnosis in
the verification community. Second, the proposed approaches are aimed to analyze large-
scale distributed system. Therefore, those systems are introduced on a systematical and
a functional level together with the type of data that those produce. Lastly, in this work
the focus is on verifying behavioral errors in software of distributed systems, which is
why those are introduced in the last part of this chapter.

2.1 Terminology

2.1.1 Verification

Distributed System: According to [1] a distributed system is a set of components
that are located on different nodes, which coordinately perform an action by exchanging
communication messages. These components can be seen as a collection of computa-
tional devices that appear to its users as a single coherent system [1].

Diagnosis: Diagnosis is the identification of the nature of a problem by examination
of the observed symptoms [14]. Those are tasks such as fault localization, root cause
identification, fault prediction and fault detection.

Event: Events are exceptional conditions that occur when running the system. In the
scope of this thesis this includes all conditions of the system, e.g. its state changes.

Failure: A failure is a system state in which a service or an application deviates from
its correct behavior. It is an error that is observable from outside the system [16].

Error: An error is a certain condition within the system that may have led to a failure.
It is caused by one or more faults and is a discrepancy between a condition of the system
and its theoretically correct condition [16].

Fault (= bug): A fault is defined as the underlying cause of an error. Faults are events
that can cause other events but are not caused by other events. Faults can be permanent
if the fault persists until reparation, intermittent if those are discontinuous and transient
if those are temporary. [16].

Symptom: A symptom is a subset of observed system states that indicates a system’s
misbehavior. It is an external manifestation of failures and might be visible indicators
that a failure happened (e.g. anomaly) or the direct observation of a failure [14].

2 Preliminaries

Failure Mode: The failure mode is a possible way that a system can fail. A complex
system has multiple failure modes [16].

Root Cause: The root cause of a failure or of a fault obtains the symptoms that led
to the failure or fault [2].

Explanation: The explanation of a failure or fault explains how the root cause is linked
to the symptoms [2].

Bohrbug: A software bug which manifests reliably under a well-defined, but possibly
unknown set of conditions [16], as opposed to Mandelbugs. Mandelbugs are complex
and unpredictable. Those include performance bugs, memory leaks, software bloats and
security vulnerabilities [16].

2.1.2 Data Types

Temporal Variable (TV): A temporal variable S refers to a dimension of information
that is transmitted, with a value space of V. Bach TV S might be of numerical, binary,
ordinal or nominal type with events or states with value o € V. That is for the numerical
case © € R, binary case ¥ € {0, 1}, ordinal case © € N, nominal case & € S = {s1, 82, ...}

Multivariate Event Sequence (MES): A MES M is defined as a series of events
E; = (t,Sk,s;j) that each represent a state s; of a TV Sy at a defined time ¢. It is
ordered according to its times of occurrence:

M =< El, EQ, ... > such that Ei.t < Ei+1.t (21)

Multivariate State Sequence (MSS): Formally, a MSS M is a series of state intervals
E; = (s, e, Sk, s5), defined by start times s, end times e and states s; they are in. It is
ordered according to their start times and each assigned a TV Sj:

M =< Ej,..., Ef > such that E;.s < Eiv1.5,B.e = Eiq1.s (22)

In particular, in MSSs each TV is in a state at all times and only state changes are
observed. Moreover, MESs record states of TVs at defined points in time. In contrast
to that, MSSs store intervals of states that TVs are in. In this context, each MES can
be transformed to a MSS by filtering MESs such that two consecutive sequence elements
of the same TV, that have same value, are filtered out.

2.2 System Definition

2.2.1 Distributed Systems

The DM pipeline that is proposed in this thesis is aimed to support trace diagnosis of
large-scale distributed systems. Here, the term large scale refers to a system which has
a large number of applications running and consequently produces vast amounts of data
(as opposed to ingesting big amounts of data [11]). Such systems can be formalized

10

2.2 System Definition

E Components i
El sensor || actuator sensor actuator sensor actuator |E
E App. A App. B App. C E
1 LT 1
E Distributed-system layer (middleware) E
E Local OS | | Local OS | | Local OS | | Local OS E
1 Node 1 Node 2 Node 3 Node 4 |
i Network E
1 System |

Figure 2.1: A formalization of a distributed system [1] is shown.

as shown in Figure 2.1, which was taken from [1], and are introduced in detail in the
following.

A distributed system is surrounded by an environment and one or more users that are
interacting with it. Within the system, multiple computing nodes run distributed appli-
cations that might be executed on one or multiple nodes. Moreover, multiple applications
may run on one node. Each node is connected and interacting on a common network
and interacts with hardware components by receiving sensory input from those or by
transmitting actuatory input to those. Above that, components are connected to the
environment and to the users.

The goal of the proposed diagnosis is on learning behavioral patterns of such systems
in order to use the gained knowledge for verification of functional correctness. This is
done by inspecting data recorded from traces of system executions. It is assumed that
the system records the state of the environment, the state of the user interaction, as
well as calls of the applications that describe functional operations and the state of the
system. For example, in the distributed software system that runs in a car, the system
state might be the speed of the car or the state of the left front door. Each application
that is running on the system nodes is modifying the state of sub-components as well as
other nodes of the system, where both nodes and components are coupled.

Further, unlike in component tests, where the goal is to verify that individual parts of
the system behave as expected, here the focus is on integration tests. In those types of
tests the goal is to ensure that the overall integrated system behaves as expected. This
correctness can be verified using data-driven verification methods. For this, traces are
recorded which contain the states of the users, the environment and the overall system.
Those traces are analyzed for diagnosis of errors and failures.

11

2 Preliminaries

Inputs Subsystems/Components Outputs

System R
Actions Q »

Environment W » R1 RZ Rn

» Raw Recordings K,

Figure 2.2: The simplified representation of a large-scale distributed system is shown, which is
referred to as DMS in the scope of this thesis.

2.2.2 Simplified System State Perspective

In the following, a black-box system formalization is deduced from the above definition.
This representation will allow to formalize and introduce the proposed DM pipeline, as
well as to define the scope of applicability of it. In particular, this includes the link-
age between the system states, its functions and its executions, which are presented here.

System representation: The simplified representation, which is called a Dynamical
Multifunctional System (DMS) in the scope of this work, is shown in Figure 2.2. There,
the system state R is abstracted into interconnected sub-component states R;. In terms
of the above definition, sub-components R,; are either nodes or components, e.g. R;
could be the door and Re the left rear wheel of a car. As specified above, the overall
system state R depends on the previous system states, user actions and the environ-
mental states. To verify the correctness of this system, it is executed under multiple test
scenarios. Those produce a trace which contains multiple variants of system executions,
which need to be analyzed using data-driven approaches for verification.

Dynamical Multifunctional System: In the scope of this work we define a DMS
R as the state of an integrated system that consists of K interrelated subsystems with
states Ry with k£ € [1...K], that may or may not interact. A DMS has a system state
R(t) it is in at any point in time ¢ and has a set of actions Q and a set of environment
variables W' as input. Thus, recorded behavior of those variables is represented in an
trace K that is produced by the system.

Action: The set of actions Q defines the state of multiple temporal input variables,
which are external actions that interact with the system state. This variable has a de-
fined state Q(t) it is in at any time t.

Environment: The set W is the state of multiple TVs that define the environmen-
tal influence on the system. Those variables have a state W (¢) those are in at any time t.

Total DMS State: The state X of the overall DMS is called the total state of the

system. It is comprised of the system states R, the actions Q and the environment
variables W, i.e. X = (Q, W, R). There, each dimension X; of X is comprised of a TV

12

2.2 System Definition

Xy with a defined state Xyq, i.e. Xi = (X 40, Xivat)-

Dynamics: From a generative perspective it is assumed that each system state is pro-
duced from its preceding states. Starting from an initial state R, the consecutive state
R*! is produced by a mapping function f, that uses its previous actions Q?, environ-
mental influences W and states R’ as input, i.e. R = f(Q?, W, R?) = f(X%). Here,
the iteration index indicates a particular point in time, in terms of a discrete time of the
recording at that time of iteration.

From that perspective any trace K; can be seen as the product of multiple iteration
steps performed on R*! = f(X'), when starting from a defined RY.

2.2.3 Functional Perspective
2.2.3.1 Functions

A modern distributed system is highly complex, as applications run on multiple compo-
nents and communicate on a common network, while components, applications and the
network communication are developed by different groups of developers. In particular,
this might result in bugs or hidden causalities.

Therefore, in data-driven integration tests the correct interplay of those components is
verified by inspecting that its functional flow during run time is correct. For this, subsets
of those components are tested. Further, it is assumed that if all functional flows of all
functions are correct, the integrated black-box DMS behaves according to its nominal
behavior and thus, is also correct.

The verification of such functional flows from recorded executions is the main intent
of this thesis. This requires to introduce the notions of functions and the concept of
functional procedures, which is done in the following.

Formal Definition: A function Fj of a DMS R is a defined group of processes of the
DMS, that realize a closed subset of tasks that logically belong together. Each function
F}, operates on a defined subset Ry, of subsystems Ry € Ry, and thus, modifies the sys-
tem state of those subsystems. It depends on subsets of actions and of environment vari-
ables. Each function that operates on the system is denoted as RZH = F.(Q', W, R};),
which is a function that inputs the current state Ri: of its subsystem and outputs its

consequent state R?l.

The totality of all functions F} defines the procedural aspects of the overall DMS R
and thus, the complete behavior that is present within the DMS. For the purpose of
verification it, therefore, makes sense to define the system dynamics function f(X?)
that links consecutive system states, in terms of such functions. For this the total-
ity of functions F = (F}, Fy, F3,...F},) is assumed, that can either be active or inac-
tive at any iteration step, where the activeness of each function is defined by a vector
o(X) = (01(X), 02(X), 03(X), ...0n(X)), where 0;(X)) = 0 if the corresponding function
is inactive and 1 other wise. With this f(X%) can be written as

R = f(X') = o'(X') - F/(X") (2.3)

13

2 Preliminaries
where o(X") defines the set of active and inactive functions at iteration i.

2.2.3.2 Functional Procedures

In a DMS functions Fj are not modifying the system state randomly, but rather allow
for a finite set of procedural patterns that modify the system state R (or rather its sub-
systems) within a defined time span in a defined manner. Such patterns, that a function
may cause, are called functional procedures.

Formal Definition: Depending on the state X’ , the start of the activity of function
Fy (i.e. 0,(X?) changes from 0 to 1) might trigger the execution of a defined procedure
of system states Q, W and Ry,,. The number of possible procedures of function Fy
is finite and thus a set of functions fy; is defined, that each produce a defined MES
depending on X’. Those defined procedures are called functional procedures.

The set of all sub-functions of a function can be written as Fi(Q, W, Rsup) = (fr1, -y fim)
and its activation at step ¢ denoted as ox(X) = (0g1(X), ...0pm(X)). Here, 0x(X) is ei-
ther a one-hot or a zero vector, as a functional procedure can be either currently active
within a time span or not active. Thus, by inserting this into equation 2.3 the overall
consecutive system state R could be written in terms of all functional procedures.
In particular, any subsystem state R depends on all active functional procedures influ-
encing it. Notably, the system state at iteration ¢ depends on inputs that might have
triggered functional executions, functional procedures of other active functions, actions
and environmental conditions. Apart from this, the amount of interaction between func-
tional procedures and other functions depends on the amount of overlapping subsystems
R, that are influenced by the respective function. This idea of functional procedures
is illustrated in Figure 2.3 for four functions Fj that each operate on different TVs of
subsystems R, producing different functional procedures f;.

2.3 Analyzed Trace Data

2.3.1 Trace Recordings

The DMS under test is ran under multiple test scenarios and the execution recorded for
verification. In the proposed DM pipeline this trace data is represented mainly in the
three following formats.

Raw Recording: The raw recording K; captures a sequence of one or more en-
coded total states X(¢) at defined times t. Its elements are defined as tuples of shape
(t,enc(X(t))), where enc is the encoding used for each state X(t).

Interpreted Recording: The interpreted recording K captures a MES that repre-
sents the total states X(¢) at defined times t after being decoded and split according to
their TV dimension, where the TV has an identifier s;4 and a value v. Its elements are
defined as tuples of shape (¢, X;(t)) = (¢, s;4(t),v(t)) for components X; € X(t). Here,

14

2.3 Analyzed Trace Data

»

time

Figure 2.3: Multiple occurrences of functional procedures fx; are shown that each are a part of
a function Fy. Each F} is represented with a different color here, e.g. f11 and fi3
are functional procedures of Fy (indicated in blue).

each dimension of X(¢) refers to a TV.

Reduced Recording: The reduced recording K, captures a MSS of the total states
X(t), where each dimension contains the state a TV is in at any time ¢ and only changes
in state are observed. There, each element describes the start and end time of a state, as
well as the corresponding TV and its state as tuple (s, e, s;4,v), where s are start and e
end times of intervals of a TV defined by s;4. This representation is found by removing
consecutive duplicates per TV in K.

2.3.2 Functional Procedures and Traces

Functional procedures represent behavior of subsets of the system. These procedures
are observed on a subset of TVs in a trace, and thus, can be similarly represented as
either MESs or MSSs. Such procedures occur multiple times within the trace. Thus,
it is assumed that the total observed trace is the composition of multiple functional
procedures that are active or inactive across time and that might or might not interact
with each other within certain time spans.

Each functional procedure produces a MES (called instance), where dimensions are TVs
S; of the system, which can be actions);, environmental variables W; or states of the
system R;. In case of a DMS, each TV can have a different data type which could be
numerical, ordinal, binary or categorical. Apart from TVs with numerical data type all
TVs S; have a fixed set of states S = {s1, s2,...} which a TV can be in at any point
in time. For TVs with numerical data type the same can be achieved through quan-
tization of its values. Further, in both the MES and MSS representation of a trace it
is assumed that there are dynamically changing temporal-causal dependencies between
multiple TVs Si at many points in time.

This definition of functional procedures is useful for multiple tasks. Depending on the
task any fr; might capture procedures of different granularity. fr; might capture an
exact variant of a functional execution (e.g. 30 observations of (press button, left light
on)) or it could capture multiple branches of the execution both in state and time (e.g.

15

2 Preliminaries

10 observations of (press button, left light on), 20 observations of (press button, power
down, left light off)). The former, might be useful for specification mining, while the
latter might be used for anomaly detection. Therefore, the right representation of fg;
depends on the mining task.

Data Characteristics: The data that is recorded as a raw trace is characterized as
follows.

o Raw trace: The recorded data is raw in the sense that an encoded representation
is initially stored. Thus, data needs to be preprocessed into MESs or MSSs.

o Massive size: The considered data is massive in size, e.g. in an in-vehicle network
which resembles a DMS, this is in the range of about 10 million data points that
are recorded per minute from the DMS.

e High dimensional: The number of TVs that define each state X in the DMS is
high and potentially ranges from 1 000 to 10 000 dimensions.

e Heterogeneous: Multiple data types are present in the recordings which include
nominal, ordinal, binary and numerical types.

e Unstructured: Data of multiple functions is recorded within one common trace.
As the integrated system might contain hidden correlations data structure is not
clear and thus, needs to be found.

e Noisy and erroneous content: Data recorded from DMSs might be noisy or erro-
neous, e.g. resulting from bad measurement devices.

o Multifunctional: Multiple functions from multiple domains are recorded from the
integrated DMS. Those functions operate on common subsystems and thus, may
interfere. In addition to that, functional procedures per function need to be iden-
tified.

Example: An example of a DMS is a car which consists of multiple subsystems such as
the infotainment, the driving assistance or the light system, i.e. R = (Rins, Rda, Riig)-
In that system actions Q might be the activation of the blinker or the intervention of
the driving assistance when pressing the braking pedal, i.e. Q = (Qqct, Qped)T. Also en-
vironment variables, might be the outside brightness, which might influence if a driving
assistance system is on or off W = (Wbm-ght)T. The raw recording K; might be oc-
currences of information captured throughout a 30 minute driving session, which could
give K; = ((t = 1s,x5A x01), (t = 2.7s,x5C x01),, (t = 4.25,x5C x02),...), where x5A
might encode the brightness recorded from the environment and x01 might be the state
of the left blinker, which might be on or off. The interpreted recording could thus, be
K = ((t = 1s, brightness, 20%), (t = 1s, left blinker, on), (¢t = 2.7s, left blinker, on), (t =
2.7s, brightness, 40%), (t = 4.2s,left blinker, off), ...). The resulting reduced representa-
tion could then read as K, = ((t = 1s, brightness, 20%), (¢ = 1s, left blinker, on), (t =
2.7s, brightness, 40%), (¢t = 4.2s, left blinker, off), ...).

16

2.3 Analyzed Trace Data

2.3.3 Diagnosis and Fault Model

Goal of Diagnosis: The aim is to do diagnosis in complex distributed systems in
a data-driven manner, i.e. identify problems in such systems by analyzing recorded
traces. In particular this includes identifying and finding errors in a trace, as well as
understanding errors of such systems to enable explanation of it. Failures are external
manifestations of a system misbehavior and thus, are observed when those occur. Fail-
ures are the result of underlying errors. While not all errors result in failures, errors
in a system might eventually lead to a failure. Therefore, it is crucial to locate errors,
identify the faults which are the root cause for the errors, understand the correlations
and explain the error. The focus of the investigation in this thesis is on finding and
explaining errors (rather than failures or faults).

Relevant Types of Errors: In a distributed system, errors can be categorized into
system-level or function-level errors. System-level errors include node-level errors, such
as excessive workloads or memory leaking, as well as inter-node errors, such as commu-
nication errors. Function-level errors manifest in the behavior of the system in terms of
its state X. In integrated systems, verification of systems on a functional level allows to
effectively analyze large-scale DMSs using data-driven testing methods. That is why, in
the scope of this thesis, the focus is on this type of error.

In those types of errors, the correct condition is defined by valid states X the system can
be in at any time. Here, static and dynamic (also called behavioral errors) function-level
errors are distinguished. The former refers to errors that manifest in a single bad system
state, e.g. a car might have the error state of an engine beings off and the rotational fre-
quency of the engine being high. The latter refers to errors that manifest in a sequence
of bad system states, e.g. a car might have the correct state of a sequence (button
pressed, engine starts, engine running), while a possible error state would be (button
pressed, engine off, engine not running). An extension to this are dynamic errors that
include the system state and procedural information at the same time, e.g. the sequence
(button pressed, engine starts, engine running) is valid if the keys are in the car, while
an erroneous state would be that the keys are not in the car while the same sequence is
observed. For both latter cases, in the context of the term functional procedures, two
instances of the same functional procedure are observed. One with the correct behavior
and another one with a bad behavior. Notably, this functional procedure includes steady
system states, as described in the last case. Assuming all system states to be recorded in
a trace, symptoms are invalid dynamic states of functional procedures that are present
in the trace.

Multiple faults could have caused such errors, such as deadlocks in the code, hardware
failure or simultaneous access to hardware resources by multiple threads.

In this thesis, the focus is on both dynamic errors as well as on the extension that
includes the system state. This is done by building a model that is able to capture
corresponding relationships both in terms of procedures and steady states, which will
be presented in more detail in subsequent chapters. Additionally, it is assumed that
faults of the distributed software are Bohrbugs, i.e. it is assumed that under identical
conditions similar errors result.

17

2 Preliminaries

Verification of Behavioral Errors: Functional procedures can have different in-
stances. Those instances might correspond to correct or erroneous executions of the
function, where erroneous instances exhibit behavioral errors. It is assumed that any
data point in a trace corresponds to an instance f;; of a functional procedure fi;. With
this, the system is assumed to be correct (in terms of behavior), if no instance f;; contains
behavioral errors. That is, if all observed executions of functions Fj, are correct. If this
is the case, all corresponding subsystems Ry in an observed trace of a DMS are correct
in behavior. Thus, by considering each functional procedure separately for diagnosis, all
error types and failure modes that are caused by behavioral errors can be verified. If
correct functional procedures are known, those can be used to identify behavioral errors
of corresponding observed instances of functional procedures using approaches such as
model checking. This requires specifications that need to be generated per functional
procedure. A procedure to do this for DMSs is presented in this work.

Dominant behavior: In order to identify behavioral errors in this work, multiple
instances f;, of a functional procedure fi; are observed. Those instances might vary in
behavior, while sub-sequences of the procedures are identical. We refer to the sequence of
sequence elements of fi; that are shared most often among instances of f;, as dominant
behavior.

18

3 Data Mining Pipeline for Systematic
Diagnosis of Distributed Systems

In this chapter the DM pipeline is introduced and put into context of its application
and of existing works. For this, first, the testing procedure of integrated systems is
introduced, as this is a common scenario in which the proposed DM pipeline is used.

Integration Testing Cycle: The work flow during the development and testing phase
of a large-scale distributed system is shown in Figure 3.1. There, the system is repeatedly
tested to identify errors and potential for optimization, improved based on the gained
knowledge and either released or passed to the next test cycle.

Such verification is usually performed on components, subsystems and the integrated
system. In this thesis, the focus is on the integrated system which is formalized as a
DMS.

A cost-efficient way to allow for large-scale verification of such integrated systems is
to perform data-driven testing. For this, multiple test cases are performed on the inte-
grated DMS that simulate the usage of the system under realistic user and environmental
conditions. During those executions, trace data Ky, is recorded and analyzed to verify
correct system functioning.

This is challenging due to the following reasons. (1) The demand for high quality prod-
ucts leads to an increase of functionality implemented in such systems. Complexity of
system interactions, as well as variability of system compositions grows. Those factors
lead to more variants of the system behavior that need to be observed and verified during
data-driven testing to allow for its verification. (2) This results in huge amounts of data
with hidden and complex dependencies that need to be analyzed. (3) At the same time,
the pressure of competitors requires to keep the time to market short, which is often
achieved by keeping release cycles brief. That is, the product is tested extensively and
iteratively within short periods of time. For example, within a period of a week, test

i product i ELLLLLLL 2 test execution L) i data !
s :
: v
development / data analysis and

4.IIIIlIIIIlllllllllllllllllllllll

optimization diagnosis

Figure 3.1: This image shows the product development cycle. In particular this includes record-
ing and processing of data which is the focus of this work.

19

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

data is recorded by the test team and subsequently analyzed for faults and optimizations.
Those are forwarded to the development team, which finds and corrects the errors or
implements optimizations. This yields the next iteration of the DMS development cycle,
which starts anew by recording data from the optimized system. With each iteration,
components, subsystems, functional dependencies or interactions of the system might
have changed, which makes data from previous iterations deprecated. Thus, next to the
requirements of systematically analyzing complex and large amounts of data, efficiency
of testing methods on fleets of objects is crucial.

Automated Diagnosis: To allow for this, (semi-) automated approaches are applied
to handle errors by supporting experts in two main ways. First, this is through direct
fault diagnosis, which includes finding, predicting, understanding and explaining errors.
Second, this is through the improvement of the expert’s understanding of the system,
e.g. by extracting relevant information or by using appropriate visualizations.

Existing approaches are not ideally suited for this tasks, as will be discussed in the next
section, which is why a novel DM pipeline is introduced here. This pipeline is intended
to successively reduce complexity within the trace by finding correlating TVs and func-
tional procedures. Those are modeled and used to infer specifications and dominant
variants of behavior.

Chapter Outline: The state of the art of data-driven testing is discussed in the first
part of this chapter. Foremost, this includes the field of failure diagnosis and existing
methods for Specification Mining. Based on drawbacks of those approaches, the demand
for a large-scale DM pipeline for DMSs is discussed.

Above that, the proposed approach operates within a data-driven testing work flow.
Thus, to put this work into context, in the second part of this chapter, a systematic
diagnosis work flow of modern large-scale data is presented. This flow provides an
overview of procedures for diagnosis, including techniques for fault localization, RCA,
anomaly detection and Specification Mining.

In the third part of this chapter, the proposed DM pipeline is introduced and discussed.
Approaches that are required at each stage of this pipeline are presented, discussed and
evaluated in successive chapters. Further, to validate the applicability and consistency
of this method, in Chapter 9 a case-study is presented that is performed on a DMS of
the automotive industry.

3.1 State of the Art

In this Section, the proposed Data Mining pipeline is put in context of existing research
in the respective fields.

Overview: Fault Diagnosis in software of distributed systems has been an active field
of research for many years. Approaches for diagnosis, of fields that are relevant to
this work, can be mainly categorized into two types. First, those are methods to find
and diagnose errors. Second, those are techniques that extract nominal behavior from
data or that model it. This is either done to generate specifications that are relevant
in model checking or for extraction of dominant behavior to improve understanding of

20

3.1 State of the Art

systems and data. The former includes, foremost, the fields of fault localization, root
cause identification and anomaly detection. The latter includes automated failure/error
diagnosis techniques for visualizing or modeling behavior and techniques for Specification
Mining.

The proposed DM pipeline is closely linked to the former, as its basic procedure partly
uses a well-established RCA procedure. However, unlike those approaches, the proposed
method is used to systematically extract specifications and aims for semi-automated
Specification Mining and extraction of dominant behavior from traces of a DMS. Thus,
it can be equally categorized as a Specification Mining approach.

Consequently, in the following, first, a categorization and comparison of the proposed
DM pipeline to approaches in diagnosis is performed and second, a comparison to other
Specification Mining approaches is given.

Notably, this chapter focuses on the overall pipeline and literature related to it only.
However, in further chapters, individual stages of this approach are discussed. There,
related work on these stages is given in the respective chapters.

3.1.1 Modeling Behavior for Diagnosis

Definition: The proposed approach aims to both extract specifications from observed
traces and to increase system understanding of complex DMSs by breaking down com-
plexity and modeling observed behavior of subsystems. In this work, the latter is re-
ferred to as the extraction of dominant behavior, which is used to support diagnosis
in three ways. First, by inspecting dominant variants of behavior that occurred before
an error, potential causes may be identified. Second, by representing dominant vari-
ants of functional procedures that led to a specific target state (e.g. the shutdown of
a car) system understanding is improved, e.g. the gained knowledge could be used to
semi-automatically construct specifications. Third, by representing dominant variants
of functional procedures across a trace, data understanding is improved, e.g. with there
identifying procedures that took place at specific time spans within a trace.

This extraction of functional procedures in terms of both dimensions, procedures and
dominant behavioral variants has been less researched in the past, while it has a high
potential to significantly support an expert during data-driven diagnosis.

The most comparable approaches for this were presented in the field of automated fail-
ure diagnosis. The main aim of those techniques is to localize the most likely source of
an error by performing RCAs [14]. Thus, in this section, the proposed method is put
into context of those works on automated failure diagnosis and RCA. Those fields target
to automatically identify root causes of failures, based on observed symptoms. Similar
to the proposed approach, there, models are used to represent dominant and intended
behavior for diagnosis to improve system understanding of the expert and to support
him or her during diagnosis.

According to [14], such techniques can be categorized as rule-based, model-based, statis-
tics based, Machine Learning-based, count-and-threshold based and visualization-based.
The proposed DM pipeline can be used for extraction of such dominant behavior by
aggregating functional procedures in models. Thus, it is categorized both as model-
based and Machine Learning-based. According to the categorization that is used here,

21

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

the proposed approach is categorized as model-based, which is why here the focus is on
literature on those types of approaches. Further, for the sake of completeness a short
definition of the categories is given.

1. Rule-based: Rule-based techniques use rules to identify errors in the system. For
instance, an expert might specify a directive that hints to the error, e.g. ”if the
car is faster than 10 km/h, while the engine is off”. Limitations of such approaches
include that unknown problems can not be detected and manual specification gen-
eration becomes in-feasible (as will be discussed further below) [14].

2. Count-and-threshold: Such techniques allow to discriminate between transient
and intermittent faults. The further, refers to an internal system error that can
be traced back to a system component, while the latter refers to an external error
that cannot be traced back to that [14].

3. Statistical: Such techniques aggregate data of the system empirically. By using
statistical tools such as correlations and histograms, experts can deduce potential
problems and causes of those. In a broader sense, the TSCBN model that is
introduced in Chapter 7 also models behavior of the data in terms of distributions.
However, this is performed within a defined procedural model, which is why it was
decided to categorize the proposed approach as model-based [14]. Here, statistics
refer to empirical indicators that aggregate the system states. This is limiting as
a more fine grained inspection in terms of procedures is not possible [14].

4. Machine Learning: The proposed DM pipeline is partly Machine Learning
based. However, within this categorization in the context of diagnosis, this mainly
refers to clustering approaches for anomaly detection or to identify odd behavior.
The proposed approach, however, intends to derive behavior from a learned model,
similar to the approaches categorized as model-based [14].

5. Visualization techniques: Visualization is a classical tool for the inspection of
a system. In the field of DMSs often time-series analyses are used for inspection
and to improve system and data understanding. Again with growing complexity
this might become intractable. Other visualizations may visualize paths within a
model. However, in contrast to the proposed approach, no automated extraction
of dominant behavior is possible [14].

6. Model-based: In this field, models are used to represent either the nominal
behavior of a system or a model of the observed behavior, which is similar to the
approach that is proposed. Models might be of various types, such as physical,
regression or graph-theoretic models. As part of the proposed DM pipeline in
this approach a graph-theoretic model (more specifically a PGM) is learned from
observed behavior.

Relevant model-based approaches in diagnosis

The proposed DM pipeline is composed of multiple steps, that ultimately yield a model
that can be used for inspection of dominant behavior and for the extraction of specifi-
cations. Thus, it uses a similar analysis procedure, consisting of modeling and inference

22

3.1 State of the Art

Domain Knowledge
System Knowledge
Observations Observations

g

Model Construction SEEEEEEH » RCA model
A
‘x“ Model Update system

no ‘s, : yes o change

Root-cause
Explanations

Update
model?

Figure 3.2: The procedure of RCA as it was presented in [2] is shown here.

steps, as it is common in RCA. However, in our approach we are focusing on DMSs and
MSSs, which requires to develop additional steps, as well as new modeling and inference
methods. In the following these three building blocks namely the analysis procedure,
the models and the inference approaches are discussed in the context of this work.

Analysis Procedure: The basic procedure for model-based RCA is shown in Figure 3.2.
There, a model of the problem is constructed using expert, system and observational
input, which is then used to make inference (also called abduction) either on a new
observation or on the modeled data. This yields an aggregated view on the data, which
ultimately allows to find the root cause and an explanation of the analyzed problem.
Such problems might be hardware or software based and are identified by analyses of
the source-code or of data [2]. This RCA procedure may be surrounded by further
preprocessing steps, such as the approaches of [19, 20, 21]. There, static or dynamic
instrumentation is used to first, automatically capture identical procedures or profiles
that occurred before an error and second, apply a RCA approach on those.

Depending on the target of diagnosis, different relations may be modeled. This includes,
models that capture relations between nodes or components in terms of their topology.
Also, this might be a set of symptoms, i.e. events, that indicate the error. The proposed
approach has a target similar to the latter, as procedures of events are modeled, e.g.
characteristic events before some target state (such as a failure). In that case, events
within the model in the pipeline might be seen as symptoms. Multiple models might be
used for that purpose, where each of those approaches is defined by a learning proce-
dure. On the learned model, inference algorithms are used to deduce dominant or rare
behavior [22].

The proposed approach consists of similar steps, i.e. a preprocessing, modeling and
an inference step that identifies dominant behavior. However, in contrast to existing
approaches it provides an end-to-end solution that is able to deal with peculiarities of
DMSs and MSSs. In particular a specialized preprocessing approach is proposed, that
allows to handle raw and large communication traces. Moreover, this method allows
to break down complexity by identifying clusters in time and dimension, as well as by

23

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

: ’ Bayesian : b
Dempster Possibilistic Bay_eswn) Proba@zlzsttc Sum-Product Relational Dynarfuc { Stochastic
Shafer Logic i Abductive Logic Relational Network Sum-Product : Bayesian Petri Net
) Theory 81 : Program Model Network Network : ¢ ¢
= :
é *TSCBN
5 i 3 % . Hidden
2 Non-axiomatic ~ Fuzzy Fault Markov Logic Bayesian Arithmetic Markov i Stochastic
& Logic Tree Network Network Circuit Model DES
Fuzzy Logic Neural Network
° F”‘ztoo,’ der Fault Tree SVM Codebook Petri Net
2 gic
2
£
E Abductive Propositional
% Logic pLo ic Decision Tree Automaton
a Program e
., Classifier 73 Compiled “.. Process Model

Figure 3.3: An overview of models used in previous works is shown as it was defined in [2]. In
this work the TSCBN model is used (marked as *).

transforming traces to MSSs. With this, temporal behavior of subsystems of a DMS is
inspected using a novel model and inference approach that is optimized for MSSs.

Analysis Models: In the RCA setting, multiple models are used for modeling and in-
ference, none of which are used in the proposed pipeline, but rather, here, the TSCBN
model is used that is specifically designed for MSSs.

According to [2] analysis models are either deterministic or probabilistic. The former
does not capture uncertainty in the observed events or the inferences that are contained
in the model, while the latter does capture this uncertainty [2]. An overview of such
models is shown in Figure 3.3. The focus is on models that diagnose situations in which
time of observation is relevant, i.e. where a sequence of events is considered, rather than
static symptoms that indicate an error.

Multiple models were proposed for the representation of such dynamical behavior, the
deterministic side of which includes, most importantly, process models, such as Petri
Nets, or automata, such as Finite State Machines (FSM) [9]. This type of models cap-
tures each individual event as a node where succession of events is indicated by edges.
This allows to capture many branches of behavior, but at the same time makes those
models susceptible to quickly grow in size when learned from noisy data making it hard
for the expert to interpret the model. Modern Process Mining approaches [23] and tools
[24] allow to reduce this noise, e.g. by excluding rare events and performing diagnosis
interactively. However, due to an exploding size still such models are particularly badly
suited to be used for capturing behavior in large traces, as it is required in the given
context of DMS traces.

Further models include classifiers such as Neural Networks or Support Vector Machines.
This type of models is probabilistic in theory, while it is deterministic in the sense of
reliability where exact inputs are mapped to exact outputs. Such models can classify a
sequence in order to decide if it is erroneous or not, as well as parts within a sequence

24

3.1 State of the Art

to identify erroneous sequence elements. A problem with such models is its black box
nature, which does not allow for direct expert input (except for hyper parameter tuning)
or interpretability of internal procedures. Other classifiers such as Decision Trees allow
to do such classification while being interpretable. However, for complex and noisy input
data, this leads again to growth and highly complex structures making it less suitable
in the given setting.

Models that are relevant in the context of this work are probabilistic white-box models
which includes variants of dynamic Bayesian Networks, models relying on Markov Pro-
cesses and models designed for special tasks. Those models are well-suited to be used for
mining from complex traces, as those allow for compact representations, while capturing
the uncertainty of observed behavior. That is why this type of models is used in the
proposed DM pipeline. As the probabilistic modeling of MSSs of large-scale distributed
systems is one step of the proposed DM pipeline, the related works section of Chapter 7
gives a detailed overview and comparison of those models.

Inference/Abduction Approaches: Based on models that were learned from recorded
data, inference is performed to obtain the fault that generated the symptoms that indi-
cate an error. In RCA, this is done in many ways [14], e.g. by inferring how problems
propagate through the system [25, 26, 27, 28], by finding the error source or by rep-
resenting how successes propagate through the system [29, 30] to then compare failure
cases against success cases. Also, this is achieved through systems that capture expected
behavior and flag a problem whenever this behavior is violated. In contrast to this, in
the proposed DM pipeline the aim is different. The pipeline models the process of MSSs
that occurred within certain functional procedures using TSCBNs and infers its most
likely behaviors from it as dominant system states. Technically this is similar to model-
ing propagation through the system and analyzing symptoms.

Above that, techniques for inference vary with the type of model that is used for training.
In the proposed DM pipeline, Bayesian Networks (BNs) are used for this purpose, which
is why this is mainly discussed here. For BNs, techniques are marginals that are used to
find the state with highest likelihood that led to an error [31, 32], which is solved using
approaches such as Junction Trees [33], Node Elimination [34], Adaptive Inference [35],
Loopy Belief Propagation [36] or Markov Chain Monte Carlo approaches [32]. Further,
this includes the Most Probable Explanation (MPE) method that returns the most likely
constellation that was present in the error case using MPE bucket tree [37] or SLS [38].
For the case that a subset of values of RVs is given, the Maximum A Posteriori (MAP)
estimate is found using approaches such as stochastic sampling [39].

In the proposed pipeline, the modeling and inference part uses a similar approach. There,
a representation of a set of MSSs is learned as a variant of a BN and then, Gibbs Sam-
pling is used to determine the MPE. In that sense, this part of the proposed DM pipeline
differs mostly in the type of model that is used, which in contrast to existing approaches
captures a multidimensional snapshot of the temporal functional procedure in state and
time. This includes representation of symptoms to infer dominant states in order to
reveal constellations that are characterizing an error.

In other types of models, inference is done by using symptom vectors [40] and similarity
[41] to identify problems. Unlike our approach, this excludes temporal dependencies
making it less precise.

25

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Further methods are designed to extract most likely behavior or error locations in spe-
cific models and thus, its usability in the current setting is limited by the complexity
and model capacity of the model. In Petri Nets the most likely sequence are extracted,
e.g. using the Viterbi puzzle [42]. In Decision Trees, heuristic explanation methods [44]
or simplification methods are used, such as looking for locations where the most faults
occurred [45]. In Fault Trees approaches include tree search [46], while in Markov Logic
Networks those are Logic abduction [47, 48] or exploitation of marginals [49, 50]. Such
methods, again do not allow to infer behavior in terms of temporal dependencies be-
tween dimensions, making those less precise when applied in DMSs that are represented
as MSSs. In the case of classification, a learned classifier might be used to infer if a
test sample is erroneous or not [43]. Such approaches, unlike the proposed approach,
however, require known error cases for training.

Automated diagnosis approaches

As shown in Figure 3.2, RCA involves similar steps as the proposed pipeline, which is
modeling, and inference based on observations. However, those form only a subset of
the proposed approach, as the proposed method additionally includes systematic pre-
processing and identification of functional procedures, as well as a focus on inference of
specifications and dominant behavior. That is why, next, this work is put into context of
related automated mining procedures that are used in fault diagnosis. Categorization of
those approaches is not clearly possible as those consist of multiple steps. Nevertheless,
here a grouping based on the type of the main step in the respective pipelines is given.

Signature-based: This groups’ methods require known errors which are provided or
identified in a previous step. Those are the following. The approach in [51] collects
traces with static instrumentation and uses classifiers, which are trained on a set of
known problems, to determine the error type. As this type is known it corresponds to
the root cause. In [54], system logs are inspected by monitoring and collecting traces
of correct executions, which are, then, used to generate a FSM that generalizes the col-
lected traces and perform failure analysis on it. A method that requires to first identify
common behavior is described in [55], where signatures of system behaviors are extracted
and clustered based on a purity score. With this, error locations are identified and Tree
Augmented BNs are used to determine metrics that correlate with anomalous periods.

Similarity-based: Approaches of this type group similar sequences given a similarity
metric. In [19] anomalies are automatically detected by identifying identical procedures
of similar activities for fail-stop and non-fail-stop cases. This is done using a dynami-
cal instrumentation approach. These activities are compared using distance metrics to
identify segments that are substantially different from the others followed by a ranking.
Those segments are then inspected for their root cause by comparing segment elements.
The work of [20] similarly collects run time profiles, but uses static instrumentation.
Those profiles are clustered together to be presented to an expert for inspection of the
root cause. Pinpoint [52] records traces from applications and determines if an error
occurred using either known faults or by using probabilistic context-free grammars if
faults are unknown. Then, clustering and decision trees are used to identify erroneous

26

3.1 State of the Art

behavior. In particular by inspecting the decision tree, root causes are found.

Outlier Detection: Another type of automated approaches are those that find outliers
for the identification of errors. Magpie [21] collects traces of events which it clusters
together, identifies elements that are far from a cluster as outliers and models the event
sequences in a probabilistic manner. Event transitions of low probability are then, con-
sidered potential root causes. The method of [53] aims to identify node-level anomalies
in large-scale systems. For this it groups nodes and represents each of those as features,
which are then used to identify outliers. Those outliers are inspected by an expert to
identify faulty nodes. To automatically infer root causes in messages, the approach of
[15] applies a hybrid log analysis approach to identify and cluster similar parts of a
trace and to perform outlier detection using message flow graphs. Additionally, a model
checking approach is integrated in this flow that allows to identify known errors in traces.

Model-inference-based: ~ Approaches that are similar to the proposed approach learn
models which are used for inference. The approach in [56] infers behavioral models from
observed legal executions and compares failing executions with the inferred models to
automatically identify the likely anomalous events that caused observed failures. In [57]
event correlation mining is presented. There, logs are analyzed by automatically prepro-
cessing events, mining events, extracting rules between events and extracting a graph
(called Event Correlation Graph), which are used for successive error inspection tasks.

Probing approaches: Another way to perform diagnosis is to probe or simulate a system
behavior to learn valid behavior. The method of [43] uses defined test cases to produce
a trace under intended scenarios. Those are clustered according to good and bad per-
formance. Classification approaches are used to identify rules that indicate causes with
this.

3.1.2 Extraction of Specifications
3.1.2.1 Specification Mining

Definition: Verification of program execution is done by defining specifications, which
are used to to find specific errors. Such specifications are formalized in multiple ways
including rules, state machines, automata or specification languages such as LTL or
Computational Tree Logic (CTL). However, a major drawback of this is the manual
formalization of such specifications. Therefore, in 2002 the field of Specification Min-
ing arose. This field deals with the automated learning of specifications using Machine
Learning, which was first introduced by Ammons et al. [58].

By leveraging automatically learned specifications, unknown errors are found and ver-
ification on fleets of complex systems, that contain similar functional procedures, is
performed. Those characteristics make such approaches especially useful for diagnosis
of integrated DMSs during their testing phase, as high complexity hinders manual defi-
nition of specifications, unknown and known bugs are hard to find manually and fleets
need to be tested efficiently, e.g. by checking learned specifications weekly.

Current algorithms for inference of specifications are categorized as static [59, 60, 61,
62, 63] or dynamic [58, 64, 65, 66, 67, 68, 69, 70, 71, 72]. As the proposed DM pipeline

27

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

is a dynamic mining approach, the focus of the following overview is on the latter type
of mining.

Static mining: Those approaches infer specifications from program code. As the pro-
gram’s ground truth is known such methods are very accurate. However, with increasing
program complexity, those algorithms do not scale, due to rising numbers of program
branches [73].

Dynamic mining: Such miners extract specifications from simulation or execution
traces, such as the ones extracted from the DMS. This is especially required if the pro-
gram code is not available or system complexity is too large. In a DMS, especially the
latter is the case, as multiple interacting components, many TVs and many functional
procedures are present.

Dynamic approaches have the advantage that coarseness of recording can be configured
to fit required needs and run time information (e.g. user inputs or run time data types,
are inherently available). Also, in contrast to static mining, dynamic methods do not
need to consider redundant or impossible implementation paths and can mine specifica-
tions from traces independent of the implementation’s programming language.
However, the quality of mined specifications depends on the quality of the input trace
set and completeness of specifications depends on the fraction of observed program paths
in a trace. In the testing phase of complex integrated DMSs this is less of a problem,
as various defined test cases are performed on the respective system to maximize the
fraction of observed paths.

Current dynamic miners extract specifications as finite state automata [58, 64, 65, 66],
invariants [67], temporal logic formulas [68, 69], timed regular expressions [70] or further
temporal properties [71, 72].

Dynamic miners can be mainly categorized into two types, which are model-based and
non-model-based approaches.

Model-based: Ammons et al. [58] first dealt with the inference of specifications from
program execution traces. In their work they mine probabilistic finite automata (PFSA)
representing temporal as well as data dependencies under the assumption that the sys-
tem under analysis is mostly correct. This approach was extended by Lo and Khoo [65]
by filtering out erroneous traces and clustering related traces. Per cluster a Finite State
Automaton (FSA) is inferred. These FSAs are then combined to a larger FSA that
embraces all cluster automata. FSAs that satisfy binary temporal properties of three
different types are found by the approach in [64], which improves precision through re-
finement and coarsening. Such approaches produce automata, that are hard to interpret
and whose complexity increases with growing functionality. This, in contrast to the
presented method, aggravates expert input.

Non-model-based: Yang et al. [71, 72] mine two-event temporal patterns from execution
traces. Their tool, Perracotta, infers instances of eight common two-event patterns, e.g.
the alternating pattern (xy)*. These properties can then be chained together to form
larger rules. However, Perracotta misses out some rules and thus delivers only partially
complete specifications [65]. Also, a single violation of a pattern prevents it from being

28

3.2 Research Demand

mined, thus, requiring Perracotta to have perfect traces. Javert [66] also uses chaining
rules to construct more complex specifications from simpler patterns. Perracotta is ex-
tended in [72] to find temporal properties for the analysis of digital hardware designs.
Their work mines four binary patterns and uses inference rules to produce more complex
properties. These approaches differ from the presented miner in this work, such that
the proposed approach mines temporal rules of arbitrary length and does not rely on
chaining to construct more complex specifications from simpler ones.

Response patterns between sequences of events are found using sequential pattern min-
ing in [69]. In [67] Daikon is presented, which mines invariants of values of program
variables, e.g. X denotes that the variable X is always positive. Lemieux et al. [68]
introduced Texada, which finds instances of user-provided LTL property templates of
arbitrary complexity. However, this only allows to find predefined patterns and misses
out properties of any other structure.

Lastly, in the related field of temporal assertion mining approaches were proposed for
verification of hardware designs [74, 75, 76]. Such approaches often exploit system de-
sign knowledge and tend to produce hard-to-read properties, as opposed to the more
structured representation of the proposed approach with TVs as dimensions and its
values.

3.2 Research Demand

Based on the given state of the art, this work has two main aims, which cannot be suffi-
ciently handled for large-scale distributed systems with existing methods. Those are the
identification of functional procedures, as well as the extraction of dominant behavior
and specifications from traces of large-scale distributed systems in a (semi-) automated
manner.

Identifying dominant behavior: As described in Section 3.1.1 frameworks for anomaly
detection and fault diagnosis group similar activities to successively use RCA approaches
including modeling and inference to perform diagnosis. This approach is similar to the
DM pipeline that is proposed in this work. Further, the pipeline performs offline anal-
yses on a large trace that consists of multiple functional procedures that occur within
it. Unlike existing approaches, here, one main part of this work deals with the scalable
identification and processing of functional procedures, while existing approaches assume
those to be given. This is challenging due to high dimensionality and length of traces.
In addition to that, other approaches aim to analyze symptoms to analyze errors, while
this work aims to identify dominant functional behavior for improved system under-
standing at a large-scale. This is important, as in modern working environments experts
might change frequently and hidden correlations make it impossible to manually identify
dimensions and functional procedures that are part of a function and thus, of interest
to the expert. Thus, a semi-automated way (as the one introduced here) of providing
insights into large multidimensional system data is of high importance and only less
considered in the context of diagnosis so far.

Moreover, large-scale distributed systems produce heterogeneous data on a system state
level, while existing approaches mostly assume homogeneous ones. Thus, to include all
types of data during the analysis the proposed DM pipeline performs a defined set of

29

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

data preprocessing steps to unify data formats automatically.

Another difference to those approaches is, that TSCBNs are used to capture system be-
havior. This model is especially well suited to represent functional procedures in terms
of MSSs. It inhibits the procedural structure and thus, provides a more expressive rep-
resentation, which allows to provides more accurate snapshots of dominant behavior in
the data yielding more precise specifications.

Also, as stated above MPE is used for inference, which is similar to existing approaches.
But in contrast to those approaches, rather than a snapshot of symptoms, multiple snap-
shots in time and state are extracted from functional procedures in the data.

Lastly, existing frameworks do not consider raw traces in large-scale distributed systems
and do not have to ensure scalability. The proposed DM pipeline includes this aspect
and provides an effective way of preprocessing to reduce the data at an early stage. This
reduction comes at the cost of losing event information, which however, is tackled by
providing a model that can handle the resulting MSS format. This format still contains
enough information to extract meaningful knowledge from it.

Specification Mining: In terms of Specification Mining existing approaches do not
address the following aspects.

First, those do not assume multiple functions, but rather assume data to be given from
a defined function.

Next, those are unable to find properties of arbitrary length, e.g. by relying on tech-
niques such as chaining of events. In contrast to that, the given approach constructs a
TSCBN per functional procedure, which is flexible in length as it solely depends on the
length of the given functional procedure.

Due to the lack of functional separation, especially in large-scale distributed systems ex-
isting approaches also tend to exhibit higher false positive rates as random cooccurrings
of different functions might be misinterpreted as part of the same functional procedure.
This effect is reduced here by identifying relevant functional procedures first.

In addition to that many miners assume perfect traces that are used to deduce nominal
behavior. This is especially difficult to obtain in the scenario considered here, where the
testing stage of a system is considered which may contain a high number of faulty com-
ponents. This makes them inapplicable for Specification Mining from imperfect traces
that contain multiple functions.

This is amplified in large-scale distributed systems, as heterogeneous traces of massive
size are produced. This is solved by including appropriate preprocessing of data in terms
of cleaning, homogenization and transformation.

Above that, in the considered DMS MSSs are modeled as TSCBN, which captures dimen-
sional dependencies and correlation between TVs in a procedural and compact manner.
This allows to reduce complexity, such that expert input can be included. Further, with
this specifications are found as a multidimensional snapshot of behavior (e.g. by using
MAP on TSCBNs), rather than a linear chain of events. With this, e.g. whole MSSs
could be verified in terms of likelihood rather than as series of events.

Proposed Solution: To address this research demand, a systematic DM pipeline is
developed, that allows for dynamic mining of specifications and identification of domi-

30

3.2 Research Demand

nant behavior in large-scale distributed systems. In particular, the following challenges
of existing approaches are addressed with this.

e Multi functionality: Existing approaches are extracting correlations within a
trace, based on all events that those contain. This is sufficient if the trace consists
of a single functional procedure. However, for the case of DMSs multiple func-
tional procedures might exist. Those need to be identified and separated both in
dimension and time and are not known a priori. To solve this, the first stages of
the pipeline deal with a dimensional and procedural segmentation and clustering
that identifies functional procedures within traces.

e End-to-end processing: Instead of starting from a trace of one function, the
designed pipeline is an end-to-end solution, that automates the process of Speci-
fication Mining from the recorded raw trace to a set of resulting specifications of
multiple functional procedures. In particular, this includes the steps of data reduc-
tion, interpretation and unification which are important to handle heterogeneous
and large traces.

e Semi-automated mining: An optimal approach would be able to learn specifica-
tions fully automatically. However, due to hidden correlations and a high amount
of meta knowledge that is hard to represent, this is currently not possible. Meta
knowledge includes e.g. steady states that influence a procedure, while those are
only rarely observed together with it. Also, this includes naming of entities or the
distinguishing between data points in a trace that relate to behavior rather than to
other aspects such as communication headers. To handle this missing information,
in this work a semi-automated process is proposed for this. There, expert input is
included both during grouping of TVs and functional procedures, as well as during
structure discovery of TSCBNSs.

e Include structural information: Further, as opposed to other works informa-
tion about the temporal structure is included by modeling data as TSCBNs. Thus,
instead of deducing specifications from correlations between events, dedicated mul-
tidimensional functional procedures of MSSs are identified as a basis for this. This
allows, to both include expert knowledge and to exploit the inherent structure of a
DMS (i.e. state vector X). For example in the case of concurrent events the order
of events might alternate in the trace, making it hard to asses its correct ordering
on an event basis, while modeling the structure allows to handle this.

e Imperfect traces: Further, the proposed approach assumes systems that are po-
tentially in its development phase, i.e. extracted traces are imperfect, which means
that noise and erroneous behavior might be present. For example, permanent er-
rors might be in the trace, which make it hard to simply extract specifications
in terms of its most frequent behavior. This is handled at multiple stages in the
DM pipeline. First, it is assumed that multiple instances of DMSs are considered
of which a subset contains the correct behavior. Second, this approach applies
preprocessing on the trace, such that a clean, homogeneous and structured repre-
sentation is found. Third, the proposed TSCBN model models causality of MSSs
only between events of TVs, which do correlate. Fourth, by filtering for relevant

31

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

TVs and correlating functional procedures the pipeline allows to reduce the number
of possible false positive associations between unrelated TVs and its state changes.

e Arbitrary length: The proposed approach does allow for traces of arbitrary
length as functional procedures can be of arbitrary length. Thus, by representing
such procedures as TSCBNs resulting specification are restricted by the model’s
length only. As the length of functional procedures only depends on the length of
the segment set that is to be modeled and those segments might be of arbitrary
length, the proposed DM pipeline is able to mine specifications of arbitrary length.

e Computational Complexity: Further, large data sets are assumed here, which
are recorded from multiple instances of a DMS. Scalable approaches are required
and complexity needs to be broken down successively, which is solved here by
targeting the approach towards defined functional procedures instead of mining
specifications from the whole trace.

e Concurrency: DMSs are concurrent in nature, which requires to extract speci-
fications from multiple possibly interacting functional procedures. This is harder
than processing sequentially executed data. TSCBNs are used for this purpose, as
those allow to capture dimensional and procedural information in state and time.
This allows for an expressive representation of functional procedures, which in turn
results in expressive specifications.

3.3 System Work Flow

In this section a modern diagnosis work flow that is commonly used during the testing
phase of a large-scale distributed system is described. The proposed DM pipeline needs
to be designed such that first, it is applicable within this type of work flow and second,
challenges of those diagnosis frameworks are taken into account. That is, why in this
section those systems are introduced and discussed.

In order to perform diagnosis at a large-scale, automated methods are required to process
vast amounts of data, that are produced by many instances of systems. This needs to
be done within short time spans and with high test coverage. Therefore, in modern
diagnosis Big Data frameworks are used for this purpose. Such frameworks consist of
multiple components and are implemented on multiple machines with large memory
and high processing power. Figure 3.4 shows possible components that are used within
such systems [3]. There, incoming data is extracted, preprocessed, stored, analyzed and
knowledge inferred, which is then, visualized and provided to an analyst or a relevant
business unit.

Automated flows of diagnosis are implemented on such infrastructures. A modern flow,
that is commonly used in data-driven testing of modern systems is proposed here and
discussed in the following. Its basic building blocks are shown in Figure 3.5.

32

3.3 System Work Flow

i : [i i
1 I ! Distributed File b !
: i i . Data Mini '
! | < | System (HDFS/GFS) | | ata Mining !
i oS o |
' [P i
1 ' § ! Parallelize . !
' Databases | & E computing E E Machine Learning E
' ! E ! (MapReduce, ...) vl ! “
i S b ! 2
i S N < B b PR 3
: e i g i Data Storage . Statistics : “g S
i Mobiles E ‘§ i (NoSQL, ...) E i i 2 S
! P | = T
i Web =S e b2 =
E ¢ i é E Data Cleaning E E Network Analysis E S &
s 3 3 s
E i g E i E Time Series E
1 [Data Security Vo . '
i = B I Analysis i
i N O :
Data Source Data Management Data Analytics Application

Figure 3.4: An example of a big data system with its components as it was presented in [3].

Data

]

Preprocessing and

Reduction
Manual N
Specification 1 Data & System understanding
Process
Dimensional o Process
Specification Interpreted N Correlations Ident;/mutfon & i
Mining dzita Clustering
¥ T]]
Automated Test Interpretation Semi-Automated Test Interpretation Manual Test Interpretation
. . Anomaly Debug Output e.g. Statistics e.g. System Process .
B
Snzeifiariiinns Detection Error Message indicators Analysis Zopeciion
1 1 1 1 1 1
l 1 1 i 1 1 Expert
S A 1 t . i
Violations .bnorl.na Sys e.m System indicators Proc.ess lilxp.erlence
timepoints Exceptions N behaviour indicators

4 4 $ 3 4 3

Error Diagnosis

Figure 3.5: A modern system work flow for diagnosis is shown that includes multiple sub pro-
cedures.

33

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

3.3.1 Targets of Big Data Frameworks

Typically diagnosis frameworks include systematic fault detection, fault localization,
root cause identification, as well as explanation of known and unknown errors. Solution
of those tasks necessitates the following requirements.

34

e Reduction, Redundancy and Missing Structure: Recorded data is often

provided in an encoded manner in order to reduce storage costs, e.g. as a sequence
of bytes. Such data needs to be interpreted and reduced towards aspects that are
relevant for diagnosis of the application under test. This becomes especially com-
plex with growing data size, which requires parallel interpretation and reduction
approaches. Further, the interpreted trace data might contain redundancies, which
need to be removed and is in general composed of TVs with heterogeneous data
types, which need to be structured to provide a uniform format.

Data Understanding: Data is recorded in an unstructured manner, while struc-
ture in terms of functional procedures (see Chapter 2) is inherently present in the
data. This can be used to reduce the search space in which an expert needs to look
for errors. For the diagnosis of such functional procedures only a subset of data in
both dimension and time is relevant for analysis. Thus, to increase understanding
in such data, inspected data is structured and compacted. This is achieved by
identifying functional procedures with its corresponding TVs.

System Understanding: In today’s verification ultimately, correctness of verifi-
cation depends on the experience of the experts, who need to be familiar with valid
variants of functional executions. This gets increasingly complex as subsystems are
evolving, growing in complexity and are designed by defined domains only. Espe-
cially, when added to an integrated system, hidden interactions and unexpected
paths of executions might occur. This requires a high amount of experience. Thus,
to allow experts to inspect and learn about behavioral variations from patterns,
automatic approaches to represent complex executions of relevant sub-functions
are used. For example, this might be white-box models that aggregate the data.

Systematic Analyses: Data is ingested frequently and often becomes deprecated
once an iteration of optimization is finished. Therefore, analyses need to be per-
formable weekly in a standardized manner, such that no redundant processing on
the trace is run. This is solved by application of automated DM pipelines for sys-
tematic diagnoses. For example, for the application of error localization, diagnoses
could be classifiers that classify error types in the data or unsupervised approaches
that identify anomalous samples. Also, this might be the automated learning of
specifications which might consequent be applied on unknown traces which allows
to systematically test data from fleets.

In addition to that, redundant processing of data needs to be reduced in Big Data.
Thus, steps within the framework need to be modular. That is, those steps need
to provide results that can be used for multiple consequent approaches and that
allow for expert input at any stage of the process.

Computational Tractability: The processing of data needs to be computation-
ally tractable. That is, scalability needs to be ensured, which includes reduction of

3.3 System Work Flow

memory consumption in storage and during computation, as well as efficient and
parallel implementations.

3.3.2 Systems Work Flow

The proposed modern automated diagnosis work flow of Figure 3.5 is defined as follows.

Preprocessing: First, in a systematic preprocessing step, recorded traces K are inter-
preted and reduced, e.g. by removing redundancies.

Data and System Understanding: Recorded data is used to support the expert in
better understanding the data and the system. This is achieved in multiple ways, such
as through identification of correlating dimensions, through identification of groups of
procedures or through aggregation of procedures in appropriate models.

To do so, similar functional procedures [19] are inspected at this stage. This is done with
anomaly detection methods [19] to identify odd data points (e.g. by highlighting those
in the trace), RCA techniques to identify correlations (e.g. by highlighting probable
paths in a model) or process mining approaches such as replay [23] (e.g. by replaying
data on a process model [23]).

Systematic Analyses: Various approaches are applied on the reduced data for the
purpose of diagnosis. Those are used to perform localization, explanation or detection
of unknown and known errors and are categorized as automated, semi-automated or
manual in the following.

e Automated methods: First, this includes systematic checking of specifications
on all incoming recorded traces, which allows to locate known errors. This is
especially useful in large-scale distributed systems, as it allows to identify many
known errors in an efficient manner. Classically those specifications are designed
manually by experts. However, with growing complexity of systems this becomes
intractable, which is why automated Specification Mining approaches are used to
learn specifications from data or program code.

Second, exceptions are printed to the debug output and thus, forms a part of the
recorded traces. Those entries contain the error information and thus, identify
known errors in the trace. This allows to directly deduce the cause of the error by
interpreting the type of exception that was recorded.

Third, this includes localization of unknown errors. For this, anomaly detection
methods are used which are able to extract candidate errors. Experts or ranking
approaches then, filter and classify those according to severance or add them to
the collection of known errors.

¢ Semi-automated methods: Such approaches require expert inputs during its
execution.
First, expert input can be included by extraction of system indicators that might
point towards spots of misbehavior in the system, e.g. the time it takes for a car
to shut down. When, this value is identified abnormal by an expert an error is
found. Further, this value might already yield the error type and an experienced

35

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

expert might be able to directly explain the error from this.
Second, the system might be broken down into relevant functional procedures of
the system. By analyzing those, e.g. using inference algorithms or methods from
Process Mining (PM), bottlenecks or rare behavior is identified. This again requires
active investigation of the resulting representation by the expert in order to make
conclusions about both error location, type and explanation.

e Manual methods: Those methods work on the raw information contained in
the data and rely solely on expert knowledge. That is, an experienced expert is
familiar with relevant indicators, expected system executions and potential hot
spots that might contain an error and its cause. Here, exploratory data analysis
tools are used for diagnosis. Those might be tools for visualization of time-series
or tools to investigate descriptive statistics of the data.

As discussed in Section 3.1, many exiting approaches target individual aspects within
this work flow. In this thesis the focus is on two particular paths of those. First, this
is the automated extraction of specifications and second, this is the increase of system
understanding by identifying functional procedures and extracting dominant behavior
from those. Existing methods do not allow to sufficiently solve this task in the context
of large-scale distributed systems as was pointed out in Section 3.1. That is why, in the
next section a novel semi-automated DM pipeline is presented for this.

3.4 Data Mining Pipeline

In this section an overview of the proposed DM pipeline is given.

First, the definitions of Chapter 2 are revised and put in the context of the analysis
intent of the DM pipeline. After this, an overview of the proposed approach is given,
before an overview of its individual stages is given in successive sections.

3.4.1 Assumptions

In Chapter 2 the concept of functions and functional procedures was introduced, which
represents the overall behavior of a DMS. All functions Fj, input and modify the current
state X’. In case that the function is correct any input constellation X' yields the ex-
pected output constellation. In systems of low complexity, correct states of functional
procedures fi; of function Fj are exactly known by the experts and thus, are used to
manually design specifications. In a DMS this would require to represent all possible
input output constellations of this function for any X?. This is complex, as the dimen-
sionality of X is often high with multiple states per dimension, e.g. 1000 dimensions with
3 states already lead to 3'°%° possible input combinations for Fj, that need to be mod-
eled. Therefore, it is essential to reduce complexity by performing diagnosis not on the
total state X?, but rather per functional procedure and the subset of dimensions of X’
that are relevant to it. This reduction is performed with the following two assumption.

e Decoupling: The consequent state of any subsystem R, € Ry, depends on all
functions F} that operate on R,. Thus, functional procedures of the correspond-
ing functions that operate on common subsystems after integration are coupled,

36

3.4 Data Mining Pipeline

while in reality such functions are often developed and tested by separate experts.
In a correctly functioning system coupling of functions should not influence each
other and thus, correct functional procedures result. Therefore, it is assume that
when the functional procedure works mostly correct, all functions Fj, can be inde-
pendently considered and bad behavior considered noise. Consequently, testing of
behavior of individual functions is done separately.

e Vertical Reduction: Further, for certain functions F} only a subset of actions
Qsup and environmental influences Wy, are of relevance. In the correct case
similar Qs and Wy, yield similar functional procedures. With this, complexity
is further broken down. Moreover, it is assume that there is a low number of
functional procedures fi; that is active within any short time spans.

It is assumed that in the correct case all functional procedures result in similar behavior
in state and time when similar conditions are given. Further, in the error case variants
of that functional procedure might be possible. To capture the dominant correct and
the inferior erroneous behavior, it is proposed to assume each functional procedure fi;
to be a distribution in state, time and procedure.

Each distribution of a functional procedure fi; can be interpreted as a data generator,
that produces instances of a certain functional procedure depending on the currently
prevalent conditions (i.e. system states X). Also, each instance of a functional proce-
dure fy; is a sample from the corresponding data generator.

Resulting from this, any observed trace can be seen as a result of sampling from a
collection of functions and from the corresponding functional procedure distributions,
resulting in functional procedures that are active at overlapping time spans.

System correctness: With those assumptions a DMS R is correct if all observed in-
stances of functional procedures fi; of all functions Fj, are correct.

Goals: As aresult the two main tasks of a verification pipeline are to (1) identify samples
of functional procedures and to (2) learn its distributions (e.g. using a TSCBN). Based
on those distributions, it is expected that more likely behavior is observed more often
and the maximum a posteriori estimate of the according procedural distribution is likely
to correspond to nominal behavior.

3.4.2 Proposed Diagnosis Pipeline

An overview of the proposed DM pipeline for semi-automated Specification Mining and
deduction of dominant behavior is given. The main idea is to successively break down
complexity to identify functional procedures which are, then, analyzed to extract speci-
fications and dominant behavior. As illustrated in Figure 3.6 this can be achieved with
the following steps.

1. Preprocess traces to yield a reduced, interpreted and uniform MES. Traces of
multiple system executions are used as an input.

2. Identify correlating TVs of functional procedures.

37

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Raw: 0xC2 0x87
0xA2 0xDI 0x2A ...

GlaXFD) ihi ihi ihi 1"

I
1
! 1
1 N ‘
1 1 1
: Gu—xo nxro) .\. g .\. ‘>P:
! "
! o i |
] |I
1 |I

(6) Inference — Specifications, Behavior

__

Figure 3.6: An overview of the proposed pipeline is shown. This approach consists of six main
steps. These are preprocessing (1), clustering of TVs (2), segmentation and cluster-
ing (3), learning of model structure (4) and its parameters (5) followed by inference
of specifications and dominant behavior (6).

Identify functional procedures and its correlating instances in time.
Learn the structure of each functional procedure from its observed instances.

Learn the corresponding distribution of each functional procedure.

A

Deduce specifications and dominant behavior per functional procedure by extract-
ing behavior of high likelihood from its distribution.

In the remainder of this chapter these stages are introduced. To allow for a consistent
application of the pipeline, methods at individual stages were extended and compared
to baseline approaches. This is also discussed here.

3.4.3 Input data

The input data of the framework is a raw trace Kj that is transformed to a MES with the
properties specified in Chapter 2. Further, depending on the task, data of the according
format might be ingested at any of the first three steps. Among others possible inputs
are the following;:

e Erroneous traces: If the dominant behavior is error free such traces are modeled
as functional procedures under noise.

e Error-free traces: Those are modeled directly as functional procedures.

e Known target segments: To identify dominant behavior that occurred directly
before a failure or before a target state change, segments before each failure (or
target state) instance are modeled as functional procedures.

e Segments of similar execution: To increase understanding of variants of
procedures or to identify misbehavior in such variants, multiple executions of a
certain functional procedure are analyzed.

38

3.4 Data Mining Pipeline

Note that each output is systematically extracted from a fleet of objects and directly
used as input for the proposed DM pipeline.

3.4.4 Preprocessing

If required, the raw input trace Kj is converted to its MES format K, and reshaped
to form a MSS K,,, that is used as an input for the consequent processing steps. As
described in Chapter 2 this trace might be unstructured, contain redundancy and have
heterogeneous data types.

Thus, at this stage good data quality needs to be established in terms of data complete-
ness (e.g. missing entries), accuracy (e.g. include vs. exclude noise) and consistency (e.g.
illogical entries). Notably, in diagnosis the degree of quality required, depends on the
task to be performed. For exact tasks such as fault detection, missing entries might be
errors and noise needs to be included. However, for tasks, such as Specification Mining,
such noise needs to be filtered out and a more consistent representation is desirable.
Here, data is transformed and cleaned, the trace format is unified and redundancy is
removed. In general K; might be of any format that encodes MES.

Processing: The input to this step is a raw trace Kj, which is preprocessed to yield an
interpreted MES K, and a reduced MSS K,,.

K,,K; = prep(Ky) (3.1)

Extension and Evaluation: An important group of traces K; are encoded messages,
e.g. as found in network traces of communicating distributed systems. Such traces are
of large-scale and therefore, require an efficient approach for preprocessing. In [4] an
interpretation and reduction strategy was introduced, which is revised in Chapter 4.
Evaluation of this stage was performed on a set of in-vehicle network traces.

3.4.5 Clustering Temporal Variables

Traces in DMSs are high dimensional, while vertical correlations between TVs exist,
which is used to identify the vertical dimension of functional procedures. In general
these groupings are not known in advance. Also, it is intractable to identify these man-
ually as dimensionality may be large, the integrated system is developed by multiple
domains and a high degree of experience is required.

Also, functions Fj and its functional procedures fi; operate on subsets of TVs of the
trace (K,,, Ks) only. During diagnosis domain experts need to focus on groups of TVs
that are relevant to them only, e.g. for the analysis of the active cruise control of a car
TVs such as the state of the wiper are irrelevant.

As part of this pipeline, unsupervised Machine Learning algorithms in combination with
expert input are used to identify correlating TVs that are part of common functions
F}. This requires expert input, as clustering granularity (i.e. hyper parameters of the
clustering approaches) is dependent on the target of clustering.

Thus, this stage reduces complexity by adding structure to the data and by revealing
vertical correlations in it.

39

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Processing: The input to this step is an interpreted trace Ky, a clustering approach
C, and hyper parameters of the clustering approach Po. The output is an assignment
a(S;) of TVs S; to K defined clusters a(S;) € {1,..., K}. The operation performed is

a = sigcl(Ks, C, Pe) (3.2)

Each cluster k € {1, ..., K'} together with the expert selection allows to reduce the trace
K, in dimension, resulting in a trace K¥ that has only TVs S that were chosen by the

expert, potentially as part of a certain cluster assignment a.

K" = sel(K,, S,), where all S; € S and a(S;) = a (3.3)

s

K = sel(K,, S,), where all S; € S and a(S;) = a
Notably K might be 1, i.e. one cluster with all signals could be chosen. Moreover, the
MSS KF is further processed, as it provides a reduced and more meaningful representa-
tion of the functional procedures (e.g. no redundancies).

Extension and Evaluation: Clustering is used at this stage. As there is no clear
definition for the correlation of TVs, similarity metrics, that are used to identify groups
of TVs, need to be designed towards the target of grouping.

For this, in Chapter 5 a feature-based clustering approach is described that was first
introduced in [5]. There, occurrences in common time spans are used as a metric for
correlation of TVs.

This approach is evaluated on multiple traces K, that were recorded from cars of a big
OEM.

3.4.6 Segmentation Clustering

Multiple instances of functional procedures fi; occur in each trace Kfl, which need to be
found at this stage. At the same time, segments in the trace that correspond to similar
functional procedures need to be identified. For this, an automated segmentation and
clustering approach is required.

The granularity of functional procedures depends on the target of diagnosis. Here, for
the target of Specification Mining, segments of high similarity are preferable, as the aim
is to identify dominant correct functional procedures.

With this stage data is horizontally structured and correlations in terms of similar func-
tional procedures are revealed.

Processing: The input to this step is a trace K];i with a reduced set of TVs, a seg-
mentation approach D and hyper parameters of the segmentation approach Pp. The
output are multiple sets of MSSs M, each representing a set of MSSs M; of a functional
procedure. The operation performed is

M = segcl(K* D, Pp) (3.5)

Notably D might include a clustering approach that allows for expert input.

40

3.4 Data Mining Pipeline

Extension and Evaluation: To allow for discovery of MSSs, existing segmentation
approaches are extended in Chapter 6. Further, alternative segmentations are discussed.
Also, to allow for expert input in terms of granularity, at this stage clustering is used to
further subgroup segments.

These approaches are compared on a synthetic data set.

3.4.7 Model - Structure Discovery and Parameter Estimation

At this point M contains segment sets M; of instances of defined functional procedures.
Those segments might be of high dimensionality and complexity, which is why here
functional procedures are aggregated into appropriate models. In general those mod-
els depend on the focus of diagnosis and e.g., might be Process Models, Probabilistic
Graphical Models (PGMs) or supervised classification models (e.g. Decision Trees, Deep
Neural Networks (DNN)). With this step an aggregated representation of the data is ex-
tracted.

Processing: The input to this step is a set of MSSs M; € M, a model type T, a learning
approach L and the hyper parameters for learning Pr. The output is a learned model
(. The operation that is performed is

Q = learn(M;,T, L, Pr) (3.6)

Extension and Evaluation: For the task of Specification Mining the model Q needs
to allow to represent the nominal behavior of a functional procedure. In particular this
includes capturing the temporal structure of MSSs under uncertainty in state, time and
procedure. In [8] a model was presented for this, which is described in Chapter 7.

The model, its structure discovery and parameter estimation approaches are evaluated
on a synthetic data set.

3.4.8 Inference of Specification and Behavior

Based on the learned models, inference is performed to get insights for diagnosis. For
the given goal of specification extraction, this includes the identification of likely states
of the learned distributions of functional procedure that are represented in TSCBNSs.

Processing: The input to this step is a trained model (), an inference approach I and
the hyper parameters for inference P;. The output is the gained knowledge W, which
depends on the inference performed, e.g. this could be a list of specifications or most
dominant states. The operation performed is

W =inf(Q,I, Pr) (3.7)

Extensions and Evaluation: TSCBNs are used to extract LTL specifications that
resemble potential specifications. An approach to this was first presented in [10] and is
revised in Chapter 8.

This approach is evaluated both on a synthetic data set and in a real world example.

41

3 Data Mining Pipeline for Systematic Diagnosis of Distributed Systems

Above that, the MPE is used to identify dominant behavior which is also discussed in
this chapter.

3.4.9 Evaluation of Framework

The evaluation of approaches at each individual stage is presented at the respective
chapter. Next to this, the overall pipeline is evaluated on five real world application
scenarios from the automotive industry.

This is done to evaluate the applicability of this approach in real-world scenarios, of hyper
parameters per stage, of consistency of the pipeline and of the quality of its outcomes.
The results of this are presented in Chapter 9.

3.5 Summary and Conclusion

In this chapter a DM pipeline for large-scale distributed systems is introduced. This
approach intends to systematically extract specifications and dominant behavior from
traces recorded from integrated systems. Existing approaches are not end-to-end, are
not capable of mining heterogeneous traces, do not handle multi-functionality, do ex-
clude structural information of the distributed system, do not include expert input, do
not sufficiently handle imperfect traces or cannot produce arbitrary length specifications.
The proposed approach tackles those challenges by introducing a five step procedure,
which systematically homogenizes and reduces the data, identifies functional procedures,
models those and performs inference on those. At the same time expert input is included
at multiple steps along the pipeline. For this, existing approaches are extended or com-
pared at each stage, in order to allow for a consistent flow through this pipeline. These
approaches are presented in the following chapters. Additionally, the evaluation of the
framework is presented in a case study in Chapter 9.

42

4 Automated Interpretation and Reduction
of Traces at a Large Scale

In this Chapter the focus is on the first step of the proposed DM pipeline, which is
the automated preprocessing of trace data Kj; recorded from executions of large-scale
distributed systems. The input to this step is a raw trace K, which is preprocessed to
yield an interpreted trace Kg and a reduced trace MSSs K,,, by performing

K,, K = prep(Ky) (4.1)

This preprocessing step depends on the input data format of such traces which could
have manifold shapes. This includes directly recorded system states X such as recordings
from simulations where all states are known at all times. Also, this might be the debug
log that is output on individual computational devices. Further, those are encoded state
sequences, which is a common type of data that is obtained from the system at a low
cost. This type of data is recorded in internal networks of automotive or IoT by record-
ing the internal messages that are transmitted for communication. Especially in the case
of automotive traces those messages transmit all relevant system state information as
well as sensory input that senses both interaction with the system and environmental
states.

This forms an important group of traces, which is why here the focus is on this type
of raw traces. Those traces are represented as an event sequence of encoded system
states and are used in systematic analysis work flows as the one presented in Chapter 3.
This is due to the fact that this representation allows to reduce the storage costs of
the recorded trace. However, as states are encoded the data is also hard to access for
analysis and thus, requires dedicated preprocessing approaches before being applicable
for further processing.

In particular, recorded raw trace data has several characteristics that need to be ad-
dressed during preprocessing. Those are the following.

Data Characteristics: The main characteristics of the input data include the fol-
lowing. Traces Kj are in a raw data format that is redundant, encoded, of massive size
(i.e. > 10 000 000 samples), of high dimension (i.e. > 3000 TVs of R, Q and W),
heterogeneous, unstructured, noisy and contains multiple functions.

Requirements: The task of Specification Mining requires the traces to only contain
the essence of what is relevant to represent the nominal behavior of a system. Further,
to be able to include expert input, the mining procedure is run per domain of an expert.
That is, only functions that are relevant to a domain need to be considered. To allow
for those two tasks, first, a reduced representation needs to be found that is targeted
towards the analyzing domain by extracting relevant TVs. Second, redundancies need

43

4 Automated Interpretation and Reduction of Traces at a Large Scale

to be removed and a homogeneous representation of the data needs to be found.

In addition to that, as part of the automated DM pipeline presented in Chapter 3, this
preprocessing needs to be deterministic and automated towards systematic extraction
of expert relevant output. Moreover, as data is of massive size and data is processed as
batch, a scalable reduction and interpretation approach needs to be integrated.

Thus, in terms of Specification Mining good data quality is achieved by homogenization
of T'Vs, reduction of noise per TV, reduction of trace size and by extraction of domain
specific aspects of the data that allow to be ingested in further mining steps. Thus, both
an accurate and consistent data set needs to be found at this stage.

Existing approaches do not allow for automated interpretation and reduction of encoded
large traces, which is why a framework for this is presented. This framework was first
introduced in [4] in the context of automotive and is used in this thesis as a preparation
step within the automated Specification Mining pipeline.

Chapter Outline: First, in Section 4.1 related works are presented and in Section 4.2
the framework of [4] is detailed. Next, in Section 4.3 benefits of this procedure in the
context of Specification Mining are discussed. Lastly, in Section 4.4 existing evaluation
results from [4] are presented together with additional experiments.

4.1 Related Works

As little comparable frameworks exist, related works include those on preprocessing of
similar types of data, which is in-vehicle networks, and those on user-aided trace analysis
frameworks.

A work similar to the framework of this chapter is introduced in [77], where vehicle
data is collected from test vehicles at a large scale and analyzed by experts for faults.
However, they focus on rule-based and visual error-diagnosis from data subsets, while
the focus here is on preprocessing of task-specific data from full-system traces.

Using in-vehicle network traces for Data Mining was part of several prior works. CAN
signals are used for predictive maintenance by mapping signal groups and finding rele-
vant signals using wrapper methods [78], by extracting signal characteristics at various
times, using histograms [79] or for fault detection, using condition indicators [80]. CAN
signals are used for road type classification [81] and driver workload monitoring [82]. In
[83] detection of driver distraction from signal features is presented. Detecting faults
with CAN signals was proposed early in [84] and in [85], where signals are partitioned
into segments and features extracted. In terms of preprocessing the authors of [86] in-
troduced a clustering approach for vehicular-sensor data to optimize it for Data Mining,
which unlike the preprocessing here, groups data for reduction. Similarly to the in-
troduced work, in [87], SAX [88] is used to symbolize numeric signal values for motifs
relevant for diagnosis. In [89], the authors aggregated vehicle signal data, such as av-
erage speed, to predict compressor faults in trucks and in [90] to model the remaining
useful life time in trucks. In contrast to the presented approach, signal preprocessing
in those works focuses on aggregated data or small subsets of numeric signals, which
does not raise the problem of interpreting massive traces. Others extract features to
either minimize computational cost for on-board applicability or to optimize it towards
a specific Data Mining task, resulting in loss of generality for other Data Mining tasks.

44

4.2 Automated Interpretation and Reduction Pipeline

B}

E"
3
P
Iﬁ)

Sn I | bu | mie | M t3 | 8§21 KEEN
i Itz |§zz|bu|"'

Figure 4.1: Kj, is the recorded raw trace. Its payload I; contains certain TV types that are
defined by m;q; and bjq;. TV instances with same m;q;, biq; and position [; form one
source of information, such as Kiid:vel, which is a discrete time-series describing
the vehicle speed or Kfi4=°"" which is a temporal sequence marking time-instances
were a certain error was sent. In this example the velocity TV instance sequence
K3ia=v¢l i extracted by taking the messages sent at ¢; and t3 and interpreting their
first value to get e.g.511 = (10,vel) and §31 = (12, vel) for speed 10 at time ¢; and
speed 12 at time t5. E.g. in a BMW Series 7 2 million messages are generated for
K}, per minute.

However, the presented framework extracts a task-specific and general representation of
data without feature extraction, while determining features could be a subsequent part
to the presented process.

In the context of distributed systems, in [91], an approach to remove irrelevant events
from event traces in Web application logs based on constraints is presented and in [92],
user-based data simplification in a medical context was introduced. In [93], anomaly and
in [94], intrusion detection in large scale network traces is presented. In the software
context, users are involved for processing event traces with Data Mining [51] and in opti-
mizing software design [66]. To detect faults based on event traces, several user-involved
analysis frameworks are proposed. They include approaches for application failures [19],
for problem detection in internet services [52] and to examine execution reports for error
detection in clusters [20].

Those works focus on analyses aimed towards certain Data Mining tasks and with or
without user interactions for simplification. By contrast the framework used here is an
automated approach.

4.2 Automated Interpretation and Reduction Pipeline

4.2.1 Overall Processing Pipeline

The framework [4] aims to preprocess data that is initially encoded in messages of for-
mat Kj,. Those are transformed to K, and Kg, which can then be used to consider
the extracted data per TV with name S;;. These data types are formally introduced
according to 2 in the following and the concept of how those types correlate are shown in
Figure 4.1. Oftentimes devices communicate with each other, in order to transmit state
information of multiple TVs. With this functionality between those is established and
provided, e.g. in in-vehicle networks this might be messages exchanged for the wiper

45

4 Automated Interpretation and Reduction of Traces at a Large Scale

function. The transmitted information is encoded in messages, which have dedicated
state information sent in dedicated message types. Those messages might be sent on
different communication channels and thus, be of different protocols. Also, the transmit-
ted state information includes both sensory and actuator data of the distributed system.
Such traces are recorded directly from the communication channel, successively analyzed
offline and used for various diagnosis tasks, e.g. in this case for Specification Mining.
This raw trace forms Kj, as presented in Chapter 2 in this scenario. As this data is
recorded from communication channels, additional formalizations to the ones given in
Chapter 2 are required to understand the overall proposed pipeline. This formalization
is introduced here.

Formal Definitions: The communication between devices is performed via messages
of type m, where each message has a unique identifier m;q. Any message with mq
transmits the exact same type of information, i.e. the states of a defined set of TVs.
Further, a message instance m is referred to as an occurrence of a message type m in
the trace. In the same way it is referred to the type of a TV S as s which is identified by
an identifier s;q, which could be the unique name of a TV. The occurrence of this TV in
a message is declared as 5. The set of all types of TVs that may exist in a message are
Y = {s1, s2,...,5:}. Each instance m of a message type m contains an exactly defined
set of TV types S C ¥ and the channel on which it occurs biyq. Thus, the message type
can be written as

m = (S’,mid,bid) (4.2)

, where the number of state types transmitted |S| can vary per message. Further the
TV instance consists of an identifier s;q that defines the TV type and a value v it has

Kp |t 1 big | Mig | Mingo

2s x5A x01 | FC | 3 CAN

2.5s [[x78 x0I\| FC | 3 | CAN
[/ Urel \]

K, |t m

2s ((45°, wpos), (1 rad/min, wvel)), m;g=3, bjq=FC

2.5s | ((60°) wpos), [1 rad/min, wvel)),miq=3, bjg=FC

K |t S biq |K4="Po
2s (45°, wpos) ~FC || t S biq
2s (1 rad/min, wvel) | FCH| 2s (45°, wpos) | FC
2.5s | (60°, wpos) EC—4 2.55 | (60°, wpos) | FC
2.5s | (1 rad/min,, wvel) | FC

Figure 4.2: Wiper function: Example of the formalization used. Assuming I’ to be the
first two bytes (=wpos) per message and I” the last two bytes (=wvel) the
rules for mapping between K}, onto K,, are v =0.5-1" and v = 1" [4].

at that time, which corresponds to the state of the TV at that time. In the case of gen-
eral communication systems TVs might be concerning either a function (e.g. steering

46

4.2 Automated Interpretation and Reduction Pipeline

angle), a control unit (e.g. reset) or the network (e.g. frame qualifier). For the case of
Specification Mining the focus is on the functional TVs here.

Example: A good example that visualizes this concept is given in Figure 4.2. There
instances of all messages of type m’ identified by miq = 3 contain all TV types S’ C 2
related to the wiper function, which is sent on a communication channel called FC, which
has an identifier b;q = FC. The set of contained TVs is S’ = (Swpos, Swvel) has Swpos which
include the TVs wiper position and syel wiper velocity. Further, an particular instance
m’ of the message type m’ has the instances M’ = ((Swpos, Swvel), 3, FC) with Sypos =
(45°, wpos), Syvel = (1 rad/min, wvel).

Further for this scenario the data format is declared as

Ky =< kp1, kb2, oy kbw > (4.3)

with |Ky| = w, byte tuple kn; = (5,1}, bidj, Midj, Minfoj) With [as message payload in
byte format, b;q as channel identifier, miq as message identifier and mi,g, as protocol
specific message fields used for protocol specific translation. For instance in a CAN bus
myq is the CAN identifier.

Further the payload [can be translated to its TV instances it contains using its unique
identifier m;q. Thus, after interpretation Kj, can be written as:

K, =< (tl,ml), (tg,mg), ...(tw,mw) >=
< (t1, (S1,74a1)); (t2, (S2, 12iq2), - (tu, (Sws Midw) >

By extracting individual instances § from the set of TV instances, per time of occurrence,
this can be written as:

KS =< (tla'gllybidl)a (tlv ’§127bid1)7 "'(twa§w17bidw)7 e >

Per TV, the identifier sig can be used to find all 3;; instances of the same TV from
its messages, which allows those to be grouped. That is each TV represents one state
information of the system. For instance to obtain the velocity of the wiper as infor-
mation it suffices to filter for the according identifier s;q, which yields the temporal
state sequence of the according TV K:id:w”el = 05 =wvel(Ks). With this formaliza-
tion the preprocessing approach allows to extract an interpreted and domain-specific
homogeneous representations from traces that are initially recorded from a large-scale
distributed systems. This step enables automated Specification Mining to be performed
based on this. The overall approach of [4] is shown in Algorithm 4 using relational
algebra and in Figure 4.3 as an overview that includes the main steps of the approach.

4.2.2 Overview

The automated framework yields a reduced, interpreted and domain-specific represen-
tation of traces from large distributed systems. Its main steps include structuring,
interpretation and reduction, as shown in Figure 4.2 and Algorithm 4.

For early reduction and minimal interpretation cost, in line 3 of Algorithm 4 task-
dependent TV types are preselected from Ky based on domain knowledge. In particular

47

4 Automated Interpretation and Reduction of Traces at a Large Scale

Trace Kb

Signal Splitting - K"

" I

|

| |

| e
|

| |

5

(= [72)

g @

S &

T ©

- =%

8 o

(=

=. B

11|

. o

~ 3
Parameters

Constraint-based-Reduction - Kcond
User-Extensions - W

nominal numeric zaft =V zaft =F

out EMA out | gradient

per signal

SAX

Representation - Krep

Figure 4.3: Overview of the flow of the preprocessing framework [4].

for the task of Specification Mining this is done by providing a list of TVs that might
be related to the specification to mined. That is, detailed clustering and extraction
of related TVs is done in the clustering step of the framework proposed in this thesis,
while here a selection of the expert is included. That is, for better efficiency experts
can exclude irrelevant TVs at this stage, which could have potentially yielded erroneous
or false positive specifications. Further, this exclusion is imperative as computational
complexity is reduced by this, which is important to handle massive trace sizes.

K,re is interpreted by looking at payload bytes of Ke’s elements that contain TV types
relevant for analysis (line 5) and map those bytes of payload [in K}, to a TV instance
$ (line 6) resulting in K. Knowledge of relevant bytes per TV type and their positions
are contained in the interpretation rules U,e. Also, only relevant message instances m
are inspected.

Next, as TV instances vary in type, each TV type s (e.g. with sjq = vel) in K is pro-
cessed individually as a sequence KZid. Per TV type, in lines 10 to 11, domain-specific
reduction rules are used to reduce data to relevant data points. To extend each data
point with meta-data or pre-calculated values in line 11 extension rules are defined. Also,
varying types of TVs require prior classification of TV data types and type-dependent
preprocessing (lines 13 to 28). They specified three classes (a, 3, v) of types. For each
class they aim to obtain a symbolic representation of the data that reduces size while
preserving outliers relevant for fault diagnoses. While this is useful in general diagno-
sis, for the case of Specification Mining outliers might be excluded at this step in order
to reduce noise. For numeric values they determine a representation in terms of trend
extracted using the SWAB approach presented in [95] and range found using SAX as

48

4.2 Automated Interpretation and Reduction Pipeline

Algorithm 1 Algorithm taken from [4]

Reduction, Interpretation and Homogenization of raw Byte sequences

Input: trace Ky, preselected interpretation rules Uy, reduction rules C, extension
rules £

Output: homogeneous, reduced, interpreted Sequence R,z

1: Rout =0 > Output
2: Ucomb € Urel > Preselection
3 Kpre = 9 (mia;bia) EUecomb (Ky)

4: Kjoin = Kpre PIK pre-bia=Urel -bia MK pre- miq=Usel.Miq Urel > Interpretation
5: Kjoin2 = ful (Kjoin)

6: Ks =]:uz (Kjoin2)

7: for each s7 € ¥* do > TV Splitting
8: KSZ = OKs.sia=5}1a (KS)

0 (Ko, K3 = e(KSH)

10: Keond, = Ksep, PIK e, -51a=C'5ia C > Reduction
11: Kredi = O-Kcondi.e:true(Kcondi)

12: W; = fE(Kredi) > Extension
13: T = type(Kyeq;, Z) > Type-dependent processing
14: if 7is « then

15: (Knum; s Knom;) = typeSplit(K;ed,)

16: (Knumiow s Knumyyep) = outlier(Kyum,)

17 Kiumjeiean = m(Knumirep)

18: Kresi = Knumiout U Knumidean U Knomi

19: end if
20: if 7is 8 then
21: (Kr,,Kv,) = functionSplit(Keq,)
22: (KFiout7 KFiClean) = OutlieT(KFi)
23: KF e = addGTadient(KFiclean)
24: Kres; = Krou U KF, 00, UKV,
25: end if
26: if 7 is v then
27 Kresi = Kredi
28: end if
29: Rout = Rout U Kies;, UW; > Merge
30: end for

49

4 Automated Interpretation and Reduction of Traces at a Large Scale

described in [88] (line 17). This is a trade-off between reduced data size, that can be
handled during analyses, and loss of exact value information. However, by extracting
outliers (line 16) prior to symbolization important information for fault analysis is pre-
served. Lastly, the processed and symbolized data is merged together in line 29, forming
a state representation Rqy that can be used for Specification Mining. These steps can
be split in a interpretation and a reduction phase, which are detailed separately in the
following sections.

4.2.3 Interpretation Phase

For efficient Specification Extraction functions need to be considered in a semi-supervised
manner by domain-specific experts that perform the extraction. For this step multiple
TVs are relevant, which need to be extracted. This is done with the presented approach
as it allows for an automated and parameterizable way for each domain to extract rep-
resentations with a defined reduced number of TVs. This TV extraction process is
presented here. There, this is done by per-domain, extracting a reduced trace Kg that
contains only a subset of specified TVs from the raw trace Kj,. In particular this is done
on massive traces which requires processing on Big Data frameworks. However, such
approaches require to operate in a distributed manner, which requires the extraction
operations to be formulated in a tabular manner. TVs relevant for Specification Mining
are extracted by specifying relevant TVs once and then, running the defined framework
as batch for any incoming data set. Comparable tools [96] parse sequentially through all
messages of a trace and lookup each TV per message, while the approach discussed here
uses a distributed approach for this. This makes that approach fit well in the proposed
Data Mining work flow of Chapter 3, as it is designed to enable automated domain-
specific large-scale extraction of relevant aspects on large fleets of objects.

To achieve this first, relevant TVs to extract need to be specified as an input to that
framework. With this the approach is able to obtain a extracted and interpreted ver-
sion of relevant TVs, which is particularly efficient as interpretation cost is kept low by
filtering relevant messages at an early stage, i.e. prior to interpretation.

Structuring and Preselection

Experts of a function are usually aware of all subsystems and components that are in-
volved, which allows those to coarsely specify a subset of TVs that have to be included
in the mining process, although detailed interactions and particular TVs might be not
known. Extracting such hidden relations will be discussed in Chapter 5.

It is inefficient to translate all TV instances in all message instances. But, as this ap-
proach allows to provide a subset of TVs it is possible to only consider a relevant subset
of bytes per message. This allows to do the following.

Structuring: The relevant TVs are specified as a set Ugomp € Usel of translation tuples
urel, Where the set U, contains all tuples of possible TVs. This is used in the approach
for efficient retrieval of TV values § from Kjy,. For instance if the function to be mined
is the Wiper, an expert might specify the position wpos and the velocity wvel of the
wiper as relevant TVs in Ugomp. Also, he might include action TVs such as pressing the
handle bar for wiper activation or environmental TVs such as the rain intensity. For

50

4.2 Automated Interpretation and Reduction Pipeline

this to work a set of meta information needs to be passed as translation tuple, which is
trel = (815, bid, Mid, Uinto) (4.4)

, where u;nf, contains interpretation rules, that define how the encoded information is to
be translated, sfgl has the ids of TVs that are relevant to the mining process (e.g. wpos
and wvel), while biq and m;q contain the according channel and message ids on which

the TV occurs.

Preselection: It is preferable to perform less operations directly on Ky. To do this,
in the first step the knowledge of relevant message ids, resulting from the expert speci-
fication of TVs, can be exploited to filter Ky, for all m;gs and bigs of TVs in Ucomp,. For
instance one could select Uyt as the TVs wpos and wvel in Figure 4.2, which reduces
the rows in Kj, to only entries that have a miq € (3) and bjq € (F'C). WIth this, only a
byte sequence of relevant message types K remains. A simple example was presented
in [4] for U,e and is given in Table 4.1. Notably, the tuple of relevant entries Uy has an
identical schema as Uggmp.

srel big miq | Uinfo

wpos | FC 3 Int.rule: v=0.5-1; rel B =1" = (1,2)
wvel | FC 3 Int.rule: v =1; rel. B =1 = (3,4)
wtype | K-LIN 11 Int.rule: v =14 2; rel. B =1 = (1)
wstat | SOME/IP | 212 | Int.rule: v =1; rel. B = I’ = (10,22)

Table 4.1: Example for U, with relevant bytes to extract: Bytes 1 and 2 for wpos
in messages with id 3, Bytes 3 and 4 for wvel. From SOME/IP the wiper
status wstat and from K-Lin the wiper type wtype could be extracted from
messages with respective ids 11 and 212, i.e. the presented approach allows
to combine multiple protocols into this extraction [4].

Information Interpretation

Interpretation is an expensive operation and needs to be performed on relevant bytes
only. Further, for scalability reasons it is required to state the problem in terms of
scalable database operations, as processing frameworks for Big Data, such as Apache
Hadoop [18] are optimized to work on those effectively. Moreover, the format should
enable row-wise extraction of TV instances with interpretation rules u,.;. This is solved
by doing the following.

Interpretation Rule: Mapping K. to K can be performed by applying a mapping
u on each element ky, of K. for each wu,. that is associated to any ki,. Extraction
information wui,f, needs to contain the byte positions at which the TV value v can be
found in the payload [of k;, (see Figure 4.1) and how it can be evaluated to the TV
value v. This includes the definition of condition based positions, i.e. rules where values
of preceding bytes define the presence of a TV type in succeeding bytes. Furthermore,
evaluation information need to be given, such as data types, coding, protocol based fields
and translation rules (e.g. intercept to add or mapping of a Hex to a categorical value).
After having specified relevant TVs in Ugomp, the uninterpreted version of the trace Kpre

o1

4 Automated Interpretation and Reduction of Traces at a Large Scale

can be mapped to an interpreted trace K¢ which is done in the steps described in algo-
rithm lines 4 - 6. This includes the following.

1. The extraction instructions in Ugomp are joined on (myq, biq), with all its according
raw messages in K. This results in a table Kji, that contains entries of type
(ta l, Minfo, 8{317 bid, mid, Uinfo) .

2. With this, all ujg, of all TVs that are to be extracted are contained with all entries
of messages that contain the uninterpreted value of that TV K. Thus, now an
efficient row-wise translation of each row can be performed to extract the value of
each TV at each row by using the rules u specified in uiyf,. For this, uing needs
to contain the byte positions at which the TV value v can be found, the payload [
with the content and the translation rule that describes how it maps to the value
v. Such evaluation information in particular requires to contain meta information
including data types, coding, protocol based fields and translation rules (e.g. Hex
to categorical value).

This is exemplified in Table 4.1. As shown there, first, the relevant payload bytes [, are
extracted row-wise in Kjuin using w1 : (I, tinfo) — lrel Which gives Kjgina . With this, the
interpretation information is used to extract the TV values with ug : (lyel, Minfo, Uinfo) —
ks = (t,s) = (t, (v, siq)) resulting in the interpreted trace in Ks . In the proposed DM
pipeline a large amount of traces is handled, which requires to extract relevant dimensions
on a large scale. The approach is well suited for that purpose, as it allows to process large
traces by providing tabular operations that let it be distributed in Big Data frameworks,
which allow for automated and systematic extraction on a regular basis. Scalability is
enhanced further by the memory efficiency of that approach. That is, traces are stored
in raw format Ky, which is more efficient than translating all Ky, to K. For instance
considering five messages with 10 bytes per message where per message only one byte is
relevant for TV extraction, would result in a K of 10 times the size as proposed here.
Moreover other existing tools [96] need to ingest and cache traces of multiple journeys
under inspection per analysis. However, once parameterized, the preprocessing allows to
automatically extract a trace of relevant TVs at this stage. This allows the consequent
semi-automated Specification Mining approach to start directly from the resulting trace,
without requiring prior expert intervention during preprocessing every time that a new
trace is ingested.

4.2.4 Sequence Reduction

After interpreting the data the method uses a defined reduction technique and type-
dependent processing of TVs to achieve a representation that captures the main essence
of the data. For this the data is reduced in two ways. First, extensions might be added
to the data. That is, by processing the states of TVs further meta information can be
extracted, which would be represented as a separate TV. This step is not required for
Specification Mining, as the goal is to capture the behavior of the system as is, rather
than in terms of meta information. Second, reduction of the data such that only the
essence of each TV remains, which is especially useful for Specification Mining as redun-
dancies lead to complex models and thus, overly complex specifications.

52

4.2 Automated Interpretation and Reduction Pipeline

numeric ordinal
t S bia t S bia
2s (45°, wpos) | FC 2.1s | (high, heat) K-LIN

2.5s | (60°, wpos) | FC || 2.7s | (medium, heat) | K-LIN

nominal binary
t S biq t S bia
1.0s (driving, state) | DC 1.4s (ON, belt) | FC
50.1s | (parking, state) | DC 22.2s | (OFF, belt) | FC

Figure 4.4: Example of four K,.q each consisting of TV instances of one TV type with
four different data types. Those TVs need to be processed based on their
data type [4].

The method provides a parameterizable, tabular approach that allows to perform those
steps in a distributed and automated manner. Further, at this stage the heterogene-
ity of the trace is resolved, by performing type-dependent processing that results in a
homogeneous data format, with this allowing to perform consequent semi-automated
Specification Mining.

4.2.4.1 Reduction

Multiple approaches for reduction of traces towards specific Data Mining tasks were
introduced, which are mostly instance [97] or feature [98] selection algorithms. Reduc-
tion of traces in the context of software and distributed networks includes reduction of
repeated data points [99], pattern-based approaches to map multiple trace segments on
a representative [100], sampling techniques [101], clustering approaches to select repre-
sentative clusters for traces [102] and compression [103]. Those are either restricted to
certain system types or tailored to a certain task. However, for a general task-specific
analysis of in-vehicle traces, a minimal parameterization for reduction is required. There-
fore, unlike in those approaches, in the approach of this chapter database operations are
used for reduction, which are performed according to a condition set that is specified
by the domain-expert. Also, traces of large distributed systems contain special charac-
teristics that can be well exploited for condition-based reduction. Those include defined
communication patterns and channels, routing of identical TV instances on multiple
channels, open or closed information flows, sending conditions, sender and receiver in-
formation or channel specific information. Such information is well-known and thus,
allows for a defined extraction of relevant parts of a trace. For instance, when consid-
ering specifications that concern behavior of specific components, only TV instances of
defined nodes in the distributed system could be extracted. This reduction is performed
in two steps, that include TV splitting with successive type-dependent processing and
using constraints. Further, the extension of the trace is performed as separate step. This
step is included here for the sake of completeness while it is excluded in the proposed
DM pipeline. Those three steps are described in the following.

53

4 Automated Interpretation and Reduction of Traces at a Large Scale

TV Splitting: The data type of a TV determines how it is processed. This is why
in, line 8 the trace Ky is split according to its data type. For this the TV types ¥* =
{s1,55,..., st} that remain after the previous filtering steps are considered, where ¥* C .
Thus, the trace is considered in terms of each TV individually, i.e. a sequence of the

trace that is filtered by a certain TV which is defined as Kg'**. For instance this could
be the TV MES that only contains the position of the wiper over time, which is declared
in that sense as K59~ “P?°. This is exemplified in Figure 4.2.

Next, in traces recorded on such systems identical TV instances might have been sent
and thus, recorded multiple times. As such entries contain the same information the
Specification Mining approach might learn correlations between those if kept in the data
set. Further, any redundant information increases computational costs. That is why,
TV instances of one of those entities is processed only. For this the algorithm checks
equality of T'Vs in line 9 by doing

. KSfid stid stid 4
€: S = (Srep ? Scor) (5)
S ol : s7id s¥id .
is gives a representative sequence K '.© and a set K¢ of the according sequence
This sentative s K., and t K20 of th d S
s¥id s¥ia
K., - In the following the naming of this sequences is declared as Ksep := K, -

Constraint Reduction: The expert may specify a set of constraints in order to reduce
the trace systematically and specific to his data. Therefore, in this step elements of the
constraint set can be marked and filtered for relevant elements of K. For instance,
for the task of Specification Mining at this stage communication information might be
excluded. That is, as a TV might contain information about errors during transmission
and thus, may contain values such as bad state or missing TV. Such constraints are
defined as a set C' = {¢;|0 < i < m,i,m € N} with elements ¢ = (s;q,d, F'), where sjq
defines the TV for which c is to be applied. As a result, if d is true, all functions f € F
are applied, where f can be a row-wise or an aggregation operation which are inherently
distributable in Big Data systems. Such functions might be filtering conditions, such as
the computation of the temporal gaps between subsequent rows using f. If that gap is
acceptable it the row will evaluate to true and will be false otherwise. Programmatically
those constraints are applied in line 10 by joining C with K, on their TV type, which
results in a reduced trace Kconq. With this, f € F is computed if d holds yielding a
value e as follows:

true if 3f; € F, with fij(ksep) = true

false otherwise

f : kcond'e = { (46)

If any f is true, so is e. Thus, in line 11, K,q is found by filtering for f being false
leaving only elements that are potentially relevant to Specification Mining at this stage.
In particular this is, that only TVs with values that contain state information (R, W
or Q) are remaining.

Extension Rules: Extension rules are used to extract further meta-information that

is included in the trace. Such information can be declared as separate TV and systemat-
ically extracted from the trace. Such TVs are declared as W = {wy, we, ...} when added

o4

4.2 Automated Interpretation and Reduction Pipeline

to the trace. The meta information is obtained by applying defined functions on Ki.q,
which is described in line 12. Instances that are computed are added to the trace as new
instances of TVs w. Those are defined similar to TV types as w = (v, wiq) with v as
value and w;q as an identifier associating w to its corresponding TV type. An instance
of this TV type is denoted as w. An example of such meta-information is shown in Table
4.2, where the gap between two consecutive instances of the TV wpos are considered
as meta information. This type of rules is not of relevance in the Specification Mining
pipeline that is introduced in this thesis.

t w = wposGap bia
2s (0.5, wposGap) | FC
2.5s | (0.4, wposGap) | FC
2.9s | (0.45, wposGap) | FC

Table 4.2: Extension: Gap between wpos TVs from sequence Kz~ 7%,

4.2.4.2 Type-Dependent Processing

Next, TVs are processed depending on their type. The procedure for homogenization is
required in Specification Mining to allow for semi-automated preprocessing that directly
results from this step.

TV types of K,.q are diverse in data type. However, it is cost-efficient for further analyses
to have data available homogeneously in a common representation, as then, inspection
can be performed instantly. Each interpreted sequence K,qq is either nominal, ordinal,
binary, numeric or of mixed type. This includes sequences, where numeric values de-
scribing a system property (e.g. velocity of a car) are mixed with network specifics (e.g.
TV invalid). In those cases, it is not enough to filter out nominal data, as it could
resemble a fault occurrence. This also holds for outlier handling for similar reasons. E.g.
outliers need to be removed during symbolization, while being in the data set after the
processing procedure.

For homogenization, TV types are grouped in three classes that require different pro-
cessing approaches corresponding to criteria that were determined through inspection of
more than 1000 TV types. Those are presented in the following.

Data Types - Criteria: Each TV instance sequence needs to be classified in advance.
Therefore criteria are defined.

Z = (Ztypm Zrates #num Zval)- (47)

First, the data type
Ztype € {57 N} (48)

is either a String S or a Numeric N. The affiliation

Zaff € {F, V} (4.9)

95

4 Automated Interpretation and Reduction of Traces at a Large Scale

is used to distinguish between values that express a functional property F' and the ones
that define validity V' of either the sent message (e.g. message invalid), the TV instance
itself (e.g. TV invalid) or a functional component (e.g. object invalid). For numeric

values
H if 2>T
= At 4.10
“rate {L otherwise ()

is used to differentiate between values changing at a high rate H, such as sensor TV
types and those changing at a slow rate L, using a threshold T, that is determined with
domain knowledge. zpate is the number of values n in active segments of duration Af.
Furthermore, the number of different values zpum of a functional property information
is used. For ordinal values it needs to be specified if TV values of a type contain a
comparable valence:

Zval € {true, false}; zpum € N (4.11)

According to Z, each TV instance sequence K,¢q is assigned a processing branch accord-
ing to the mapping in Table 4.3.

Branch a: In general K,oq contains at this point both elements that are numerical
and nominal. This is because, when transmitted, data is a value, erroneous or given
a meaning. Nevertheless, those nominal values are impeding the processing of numeric
values, e.g., during trend estimation. Thus, K,q is split in a sequence Ko, of nominal
and a sequence K, of numerical elements, which are processed separately as follows:

Kred = (Knuma Knom) (412)

For Kyum the data is split in a trend and range part as introduced in [104]. To exclude
outliers from this estimation, first a filtering for outliers is performed by windowing
the data and per window, removing all values that are further than three times the
standard deviation from the mean value. This results in K, ,,. However, as outliers are
potentially meaningful, those elements are marked and stored in Kyym,,,. The mapping
can be written as

Knum = (KnumoumKnumrep) (413)

Next, for symbolization the mapping m on Kyjum,., is used. This mapping applies
exponential moving average smoothing to remove noise, uses SWAB [95] and linear
regression to determine the trend and SAX [88] for symbolic quantification. This, results
in a nominal tuple of trend and range for each element giving Kyum,,,, by using

m : Knumyep = Knumgean - (4.14)

To return outlier and nominal information, Kyum,,,,, is merged with Kum,,, and Kyom
giving the sequence
K. = Kuumgea, Y Knumewe U Knom- (4.15)

, which is excluded from the DM pipeline that is propose here.

Branch g: For the same reasons, a similar approach is used for ordinal values. Those
are split by applying condition z,g on each element in K,.q giving a nominal part Ky

56

4.3 Discussion

Ztype Zrate Znum Zval Data Type Processing Branch
N H > 2 true numeric [
N L > 2 true ordinal B
S HUL > 2 true ordinal 3
S HuUL =2 true binary ~
S HuUL > 2 false nominal 0
N HUL =2 true binary 0

Table 4.3: Map

—

V instance sequences to data type and processing branch [4].

where V holds and a functional part Ky where F' holds. This gives
Kirea = (Kr, Kv). (4.16)

Similar to «, Kp is first translated into a numerical equivalent, analyzed for outliers
and the trend is determined using the gradient. This results in a tuple of gradient as
trend and the value of the element, giving sequence Kp_ . Outliers are again stored
to sequence Ky, and can optionally be merged (which is not done in Specification
Mining), giving

Kﬂ =Krp,,. UKFp UKy. (4.17)

clean

Branch ~: If a low amount of values is given no transformation is needed and all
values are treated as nominal values. Splitting similar to 8 in Ky and K is possible.
Also, similar to B, outliers can be removed optionally. This results in K.

Notably, for the Specification Mining task that is following this procedure, outliers are
removed, as the aim is to reduce noise and to filter for the essence of the true behavior
of each domain-specific function and its functional procedures.

4.2.5 Final Representation

To obtain the final representation the resulting sub sequences of K,, Kg and K, are
merged, which yields a homogeneous representation of the trace Kiep.

State Representation: Multiple representations can be extracted from K,e,. For
instance, when vectorizing the state of the system for Machine Learning algorithms, such
as Recurrent Neural networks a good representation is to store all states at each time
step, while recording a time step each time a value changed. An example of this is shown
in Table 4.4.

Notably the resulting format decodes a MSS, e.g. if one column is considered only and
duplicates are removed a state sequence per TV is extracted. MSSs are used as an input
to the proposed Specification Mining approach. For this, it suffices to store the changing
TV only resulting in a format as shown in Table 4.5.

4.3 Discussion
For Specification Mining the result of K; is further processed, which is extracted after

the Interpretation phase. Further, this preprocessing produces the MSS K,ep, which is
referred to as K,, in the remainder of this work. The latter, is produced by removing

o7

4 Automated Interpretation and Reduction of Traces at a Large Scale

t Sheadlight Slevercontrol Sspeed Sindicatorlight | Slightswitch

2 off default (high,increasing) | off default

4 off pushed up | (high,increasing) | off default

4.25 | off pushed up (high,increasing) | left on default

7 off default (high,increasing) | left on default

7.22 | off default (high,increasing) | off default

14 | off default (high,steady) | off default

20 off default (high,steady) off turned halfway
20.1 | park light on | default (high,steady) off turned halfway
22 park light on default outlier v = 800 | off turned halfway
23 park light on default (high,steady) off turned full
23.5 | headlight on | default (high,steady) off turned full

Table 4.4: Exemplary state representation of TV instances of the function lights com-
bined with driving speed [4].

t Sid v

2 Sheadlight off

4 Slevercontrol pushed up
4.25 Sindicatorlight left on

7 Slevercontrol default

7.22 Sindicatorlight off

14 Sspeed (high,steady)
20 Slightswitch turned halfway
20.1 | Sheadlight park light on
23 Slightswitch turned full
23.5 | Sheadlight headlight on

Table 4.5: Exemplary state representation of TV instances of the function lights
combined with driving speed.

o8

4.4 Evaluation of Framework Performance

successive identical states. Once parameterized, those representations are automatically
generated and are used for the consequent steps of the proposed pipeline.

The presented approach is performed in a semi-automated manner and per domain.
This is well suited here, as the expert is usually responsible for a certain function, that
consists of a set of TVs that are relevant to it. Thus, at this stage an initial set of TVs
is specified in U,.;. While the expert does not exactly know all relevant TVs at this
stage, he is able to provide a broad set of T'Vs which he expects to potentially influence
the inspected functional procedures. Additionally, reduction constraints C' can be added
here by the expert. For Specification Mining this might be the removal of communication
information, e.g. the filtering for state information only.

Advantages of this approach include, that once parameterized, the resulting trace can
automatically be extracted on each ingested instance of a system. Then, from there
each expert can proceed with the further steps of the pipeline. This is further enhanced
by the fact that the trace can be reduced significantly towards the analyzing domain,
which will be shown in the evaluation section. This allows to save both computational
as well as memory costs. Moreover, this preprocessing results in a noise reduced and
homogeneous trace.

Due to those reasons this step is important to allow for a systematic and automated
mining of Specifications at a large-scale.

4.4 Evaluation of Framework Performance

Within the proposed pipeline the aim is to reduce the size of any incoming trace of a
massive data set such that the resulting format can be used by the domain specialist
for further Specification Mining. Two particularly important properties for this include
the time required for the transformation to take place and the reduction rate that is
achieved through this step. The time aspect was covered in comparison to existing
methods and is shortly revisited here. Next, to this the reduction rate of the approach is
discussed on the same data. This evaluation was first published in [4] and is revised here.

Setup: The evaluation is performed on lines 3 to 11 of Algorithm 4 using Apache
Spark on a cluster with 70 servers, Infiniband QSFP, 20 virtual CPUs, per node two
Intel ® Xeon ® processors E5-2680v2 with 256 GB DDR3 RAM using 5 virtual CPUs
and 10 servers with 3 GB RAM per executor and 4 GB RAM per driver node. The
remaining part of the algorithm is not considered, as methods used there are evaluated
in respective literature, e.g., SWAB Algorithm [95]. In the given data sets TV instances
are sent with constant cycle times and often, for subsystem inspection, only changes
of TV values are relevant. Thus, as constraint reduction the choice was to remove TV
instances where values did not change over time.

Data: Three representative data sets are inspected, which were recorded from one
modern premium vehicle during 20 hours of driving. Their statistics are described in
Table 4.6. From this trace, per data set only message instances are extracted that
contain any of the TV types of the chosen data set. Thus, all message instances in Ky,
contain at least one TV instance of the corresponding data set. The first data set is the

Lights data set LIG with trace Kgg and relevant TV types UE containing TV types

99

4 Automated Interpretation and Reduction of Traces at a Large Scale

SYN LIG STA
TV types 13 180 78
TV types - o 6 27 6
TV types - B 4 71 1
TV types - v 3 82. 71
TV types 13,197,983 12,306,327 4,807,891
@ TVs per message 1,47 5.11 3.66
Table 4.6: Statistics of the three data sets used here.
14 TR T
712 beroain i S| | g I interpreted
i‘ f gtgrp‘ff-mt'{?}] 'l'ii?el[;ights S repetitions—redueed
é 1 F eaduction me lg]‘S //.* Q II type_reduced
Eos AL {Eos) I
g N 3
g 06 B ./.—¢‘ 1 7 E
F02] /T - oM 1 -
0‘:::.r.'.'r“.’.‘.r.‘""r“.“r'r‘:’r“r ‘.”r" = T T T
005115225335445555665775 Lights Synthetic State

Initial Examples in Dataset 106

Figure 4.5: On the left the execution time after interpretation and removal of identical conse-
quent TV instances is depicted, when the number of initial examples is varied. The
right figure shows the size after each processing step when the whole trace and all
TVs are interpreted, reduced and symbolized [4].

exchanged within the light function and include e.g. the brightness or the state of front
lights. The State data set STA (with K§* and US%) has TV types that describe the
cars State, e.g. its driving state (parking, driving, repair). The third set is synthetic
SYN (K{™ and U;2") and generated from 13 representative TV types from data sets of
different functions which are replicated 9 times. Per replicated TV type, a minimal time
shift is added and a unique mjq is assigned yielding a data set with 130 TV types. The

interpretation rules per data set U, are stored in a Hive table.

Execution performance: The approach was run with a constant number of TV types
and step-wise increase a subset of Kj,. Also, per data set, all TV types are extracted
giving one Koq per TV type. lLe., in each data set, all entries are interpreted. The
results that were presented in [4] are shown in Figure 4.5.

Execution time increases with the number of additional examples in the data set. This
growth is linear as interpretation is performed per row, more examples are processed per
node and this processing has complexity O(n). Fluctuations result from communication
that is performed within the cluster and the distribution of types of TV instances among
nodes, as processing differs per data type. It was found that interpretation is expensive
in terms of execution time and, thus, early reduction shows to be advantageous here.
This approach has reasonable results for STA and LIG, as e.g. the interpretation of 2.6
million examples was processed in 1324 seconds and 7.4 million examples in 930 seconds.

60

4.4 Evaluation of Framework Performance

104 ‘ ‘ ‘ ‘ | | |
Al i]
11 Pedal Original % 0 { Pedal Symbolized ‘
o~
£ g
gl 1 Zozf |
o S
= el
3 £
e o
R}
of A i
T T T T T T T T T T T
0 20 40 60 80 100 vlow low medium high vhigh

Figure 4.6: On the left side the occurrence rate of values for the original TV values of the angle
of the acceleration pedal are shown. The occurrence rate after symbolization is
shown on the right.

3 Trace Extracted # Extracted Extraction time Extraction time
ourneys rows -102 rows 108 TVs Proposed [min] in-house [min]
1 0.481 12.751 9 9.58 41.66

1 0.481 79.466 89 168.05 41.66

7 4.286 94.013 9 62.00 372.88

7 4.286 586.124 89 183.25 372.88

12 5.901 133.619 9 87.62 504.27

12 5.901 833.066 89 269.65 504.27

Table 4.7: TV extraction times for massive traces as introduced in [4].

Here, computational power was restricted to 10 nodes, thus, on a bigger scale an increase
of the underlying resources can improve this performance.

Comparison: Further, this approach was compared to an OEM’s in-house tool [96]
(comparable to Wireshark), that was run on an HP™ 7-840 equipped with two Intel®
Xeon® E5-2640 v3 2.60GHz CPUs and 96GB of RAM. The approach of this chapter
was run on 10 nodes, 5 cores and 10 GB of RAM per executor and 20 GB of RAM per
driver. Here the extraction procedure was performed on massive traces of billions of
rows, with results as shown in Table 4.7.

For extraction this the in-house tool does the interpretation on ingest and in [4] the time
for ingest was measured as extraction time, while for the preprocessing in the framework
the time for interpretation until it is written to the database was measured. The same
amount of traces was ingested to both approaches with a fixed number of TVs, which
is the second column in Table 4.7. Based on this the execution times in both methods
for traces of various sizes was discussed. It was found that for 89 extracted TVs from
12 journeys a reasonable extraction time of 269.65 minutes was needed, that is nearly
twice as fast as the existing solution with a time of 504.27 min. For 9 TVs the tool
needs 87.62 min for 9 TVs while the existing tool requires 504.27 min which shows a
improvement of factor 5.7. The in-house tool loops through the data to extract relevant
TVs , which yields a linear scaling with data size. This extraction time does not change
with the number of extracted TVs as extraction is done within one loop. This existing
solution is sufficient if individual journeys are considered. However, when extracting

61

4 Automated Interpretation and Reduction of Traces at a Large Scale

TVs from massive traces (i.e. multiple journeys) this becomes inefficient and distributed
approaches become essential. Thus, the processing approach discussed in this chapter is
well suited to work as a basic preprocessing within the systematic DM pipeline proposed
here, as it can reduce the size to a trace relevant to a domain expert within a reasonable
time. This suitability is further given as the process is parameterized once and the re-
sults are automatically written to a database that is used for the further semi-automated
Specification Mining task.

Reduction performance: Just as for execution time the reduction rate r was mea-
sured and results are shown in Figures 4.5 (middle). r is measured as number of examples
that remain after interpretation npwoc (and number of examples after reduction, respec-
tively) and the initial number of examples n; in each data set using r = nfL—rb"C.

In a separate experiment for each data set also type-dependent preprocessing is applied
for all extracted TV instances and types. The reduction results are shown in Figure 4.5
(right).

Results show (r > 1) that interpretation produces multiple TVs extracted per message,
because as Table 4.6 shows on average multiple TV types are present per message. The
values in Table 4.6 resemble the average number of TV types in the same message type.
For sets SYN 1.47, for LIG 5.11 and for STA 3.66 TVs should be extracted on average.
This is true for SYN. For the other sets, this value is bigger, as the distribution of occur-
rence of each message type is unknown. E.g. a message instance with 8 TV types could
be dominating. It can be seen that traditional approaches, which extract all available
TV types per message, would cause a massive data increase here, while with the given
algorithm increase in size due to interpretation is minimized.

After reduction, the percentages of TV instances were reduced to be below 34 %, which
shows that for functional analyses only a fraction of data is relevant. For SYN only
about 23 % (=223), for STA 6.5% (=%3!) and for LIG 3.65% (=%3!) of TV instances
are relevant (e.g. 5.2 as mean of interpreted size for STA). Similar to the execution
time, the curve showing the interpretation size fluctuates as added message instances
can contain different numbers of TVs.

Next, type-dependent preprocessing was performed on the whole trace, per TV type, re-
sulting in a symbolic trace. After symbolization, further reduction of data is performed
by removing repeating elements of the same content, as symbolization could have led to
similar repeating symbols. Results are shown in Figure 4.5 (right). When compared to
the number of interpreted values for SYN, data size are reduced to 0.35 % , for LIG to
2.6 % and for STA to 6.4 %. With this reduction performance, visual inspection and
further Data Mining become applicable.

Filter evaluation: As an example for the symbolization procedure the reduction qual-
ity of the TV type ” Acceleration Pedal Angle” is shown with its occurrence distribution
before and after symbolization for the whole trace. As the symbolic value is valid until
a state change occurred, we, per state, aggregate the relative time the Pedal angle had
a certain symbolized state and binned it. As original values are sent with high cycle
times, those were binned in 100 bins of equal range. Figure 4.6 shows that for the pedal
TV type symbolization yields a good approximation and that SAX is a valid approach
for symbolization as it keeps approximate characteristic while reducing the data.

62

4.5 Summary and Conclusion

4.5 Summary and Conclusion

In this chapter the focus was on preprocessing of raw communication traces in the con-
text of automated Specification Mining. For this, we revised the approach that was
presented in [4], which is used at the first step of the proposed DM pipeline. This ap-
proach is a fully parallelisable preprocessing framework that allows for systematic and
efficient interpretation, reduction and homogenization of communication traces. Using
its parametrization in terms of constraints, experts are able to specify both TVs and
constraints for automated extraction, which ultimately yield a domain-specific represen-
tation of the data that is used as an input for the further steps of the proposed pipeline.
The evaluation presented here and in [4] showed on three real world data sets, that this
framework is reasonable in run time, has low loss of information and can automatically
extract relevant aspects of the trace.

Here, the method is used as preprocessing for the scalable mining of specifications. Never-
theless, this approach has great potential to be extended towards further fault inspection
tasks. Thus, in the future the framework can be extended by systematic anomaly detec-
tion and ranking anomalies in terms of error potential. This information could then, be
automatically transformed in extension rules w, that detect similar anomalies in further
runs. Another interesting aspect would be to do this autonomously by detecting faults,
learning bad behavior and by using this to generate new reduction and extension rules or
to associate relevant meta-data. Moreover, for detected errors, data can be enriched with
counteractions that were undertaken. Using those as target variables for classification,
models for automated recommendations of counteractions can be generated.

63

5 Clustering High-Dimensional Sequences

At this stage it is assumed that a preprocessed MSS K,, and MES K, was extracted
that represents the overall trace. This trace consists of multiple data points of an object
over a long period of time. In the second step of the proposed pipeline this trace is
used to identify correlating TVs. Starting from the MES K; a clustering approach C

with hyper parameters Pc is used to assign each TV S; a cluster k using a(S;), where
ked{l, .. K}

a = sigcel(Ks, C, Po) (5.1)

Resulting from this, K clusters of TVs are found, which results in sub traces K’; that

only contain TVs S that were chosen by the expert and that are part of a certain cluster
assignment a. This gives the output

K" = sel(K, S, a), where all S; € S and a(S;) = a (5.2)
K = sel(K,,, S,a), where all S; € S and a(S;) = @ (5.3)

This step is essential, as the resulting MES K is of high dimension, while only a subset
of TVs are relevant to the functional procedures of the analyzing domain, e.g. for the
analysis of the active cruise control of a car TVs such as the state of the wiper are irrel-
evant. Further, both to identify all relevant dominant behaviors and specifications in a
trace, complexity is significantly reduced by considering subsets of T'Vs for this process
only.

In complex distributed systems the identification of TV groups is in general not possible
to be done manually, as dimensionality is too high, the integrated system is developed
by multiple domains, the system is incrementally evolving throughout the development
process, functionality of the system is growing, multiple disjunct functional procedures
might be present in the trace and a high degree of experience is required. Additionally,
the massive number and high complexity of TVs, that results from heterogeneous data
formats across multiple functions, aggravates this process. It becomes increasingly diffi-
cult to identify TVs that belong together and need to be considered for domain-specific
Specification Mining. Thus, by identifying correlating TVs automatically and refining
this selection with expert input, functional procedures are found on relevant subsets of
TVs only. This reduces both complexity of the consequent mining approach, as well as it
increases the relevance of the found functional procedure towards the analyzing domain.

Thus, in this chapter a method for sigcl is presented. For this a feature-based clustering
approach is combined with expert input on a trace K; for grouping of correlated TVs.
Relevant features are determined and multiple clustering approaches C' are compared.

65

5 Clustering High-Dimensional Sequences

Therefore, it is assumed that, TVs that change within similar periods of time are highly
likely to be part of a common functional procedure or at least a common function. The
more frequently a subset of TVs occurs together, the more likely it is that this occurrence
was not random, but due to correlation.

Moreover, expert input needs to be included, as this grouping may possibly not include
all relevant TVs. Oftentimes a subset of TVs remains in a steady state for a long time.
The value of this state is crucial to the respective functional procedure or if the proce-
dure occurs at all, e.g. being in the driving state as a car, it is more likely to observe a
braking procedure than in the parking state. Further, it might be the case, that separate
clusters of TVs are found that correspond to the same functional procedure, where e.g.
one cluster corresponds to the left and the other cluster to the right part of a procedure.
By using a simplified and grouped representation of TVs, that is extracted during this
step, experts are able to include relevant TVs in the further process. Above that, gran-
ularity of clustering, i.e. the hyper parameters of the clustering approaches, are hard to
assess automatically as the highest degree of similarity does not always correspond to
common functional procedures. Thus, at this step expert input is used in the proposed
semi-automated clustering approach.

A further challenge results from the high dimensionality, i.e. high number of samples,
of each TV. Due to the curse of dimensionality clustering gets increasingly imprecise as
the pairwise distance between vectors increases with the number of dimensions. [105].

Chapter Outline: First, related works in the field of temporal clustering are presented
in Section 5.1 before the clustering procedure of [5] is presented in Section 5.2. Lastly, in
Sections 5.3 and 5.4 the evaluation of this procedure is discussed. Notably, this chapter
is based on the paper presented in [5]. The findings of this work are used as part of the
proposed DM pipeline.

5.1 Related Works

Related Works include temporal clustering approaches that were presented in the past,
as well as its applications.

5.1.1 Temporal Clustering Approaches

Temporal Clustering can be mainly grouped in approaches working on raw data, clas-
sical feature-based approaches and novel clustering approaches that originate from the
field Representation Learning. All these approaches often use the same clustering ap-
proaches, while the main difference lies in the type of data that is processed and the way
of representing the input within these approaches.

Raw Data: This type of approaches is applied on raw time-series, which are clustered
according to its characteristics. Based on these various clustering approaches, such as K-
Means can be used [106]. For that, often a distance function is defined, which describes
the similarity between corresponding TVs. This includes classical distance measures
such as Euclidean or Mahalanobis distance, as well as measures such as Dynamic-Time
Warping [107]. Further, for short time-series the glsSTS - Distance was introduced in

66

5.1 Related Works

combination with a variation of the K-Means approach [108]. However, these works focus
on short time series, while these are not suited for longer sequences. In this chapter the
focus is on clustering of large sequences, which makes these approaches not applicable
here.

Feature-based: These methods extract features that represent characteristics of a
time-series or sequence and groups sequences according to these. This, is especially
useful for long sequences, as it allows to break down the sequence to its essence, which
enables a more computationally efficient processing. These approaches mainly differ in
the type of features that are chosen and the representation of the sequence. Further,
such approaches are less prone to noise as it is usually filtered out during preprocessing
and has less influence within the approach [109].

In [109] features were extracted per TV from control flow information using static fea-
tures including mean, standard deviation or skew. Here, a neural network was used for
clustering. In [110] time-series are clustered using the trend, seasonality, periodicity or
skew using Self Organizing Maps (SOM)s. The authors of [111] used Wavelet coefficients,
that, depending on their level, are able to capture both high frequent characteristic and
coarse tendencies of a sequence. In [112], the sum of differences between consecutive
elements is used.

For longer sequences it is useful to segment the overall trace and to extract features
within such segments, which can be done bottom-up, top-down or using sliding window
approaches [113]. This is for instance done in [114], where TVs are windowed and per
interval relevant features are computed, which is similar to the approach applied in this
chapter. Also, in [115] a time series of the electrical usage is segmented and features
extracted, that include variance, skew of energy.

Main advantages of such approaches include the possible reduction of dimensionality,
robustness against outliers and the ability to process time-series of different lengths. In
[116] Piece wise Linear Representation is used for that purpose, which uses a bottom up
approach that merges segments while keeping an approximation error per unit low.
Static window sizes might however, simplify away relevant characteristics for the case
of patterns of varying lengths or for patterns that are part of multiple windows, [117].
This is be solved by performing segmentation not statically but rather at Perceptually
Important Points [118], which cut sequences at points apart of trends, or by slicing win-
dows such that entropy is minimized [119]. Overlapping windows were used in [120] with
static features. Such approaches are mostly limited to time-series rather than MES of
heterogeneous data types as it is the case here.

Feature-based clustering approaches are mainly grouped in partitioning algorithms, such
as K-Means [121] or K-Medoids [122], hierarchical, such as agglomerative [123], density
based, such as DBSCAN [124], raster based, such as STING [125] or other approaches
such as Affinity Propagation [126] and Self Organizing Maps [127]. These approaches
will be discussed in Section 5.2.1.

Representation Learning: In representation learning features are not extracted
manually, but rather the approach is able to learn relevant features automatically. In re-
cent years this is mostly achieved by using Deep Learning approaches. Such approaches
include general clustering approaches and methods specified on temporal clustering.

67

5 Clustering High-Dimensional Sequences

According to [128] general clustering approaches are categorized according to its net-
work architecture to the following groups. First, this is Auto encoders that are trained
to reconstruct the original data, allowing these to represent its inherent features. This
includes algorithms such as Deep Clustering Networks [129], Deep Embedding Network
[130] or Deep Continuous Clustering [131]. Second, these are methods based on feed-
forward networks that are trained by specific clustering loss. Approaches for this are
Deep Embedded Clustering [132], Discriminatively Boosted Clustering [133] or Deep
Adaptive Image Clustering [134]. Third, approaches based on Generative Adversial
Networks which includes Categorical GAN [135] or Information Maximizing GAN [136]
and fourth, methods that use Variational Auto encoders, such as Variational Deep Em-
bedding [137], are used in this context.

Further, approaches that are specific to time series data introduced. This includes the
approach described in [138], which is called Deep Temporal Clustering, that uses a tem-
poral Auto encoder that is composed of convolutional and bi-directional long short-term
memory neural networks. This approach is mainly used on univariate time series. This
type of clustering showed to outperform feature-based approaches in terms of accuracy
and representational capacity. However, it is computationally expensive, as training
deep neural networks requires multiple iterative optimization steps.

5.1.2 Temporal Clustering Applications

Applications of clustering on temporal data are manifold, some of which are the follow-
ing. K-Means was used in [115] to group power usage based on the Davies-Bouldin-Index.
Shaw and King grouped speed measurements recorded in a wind channel [139] using ag-
glomerative clustering. Both approaches were used in [140] for stock market prediction,
in [141] to group functional magnetic resonance tomography measurements. SOMs were
used in [142] for clustering of power consumption.

In fault diagnosis in [84] features are extracted from multiple signals in order to classify
them as normal or abnormal. Also, in [85] the focus is on finding causal relations between
individual features of signals and fault types. Grouping of signals was performed in [78],
where supervised learning approaches were used to classify signals as internal (state of
vehicle) and external (state of environment). However, for massive numbers of signals a
supervised approach requires high labeling costs. Many Data Mining approaches where
applied to in-vehicle signals, most of which are focused on diagnostics. In [143] diagnos-
tic neural networks are trained for fault classification and in [144] induction motor drive
faults are detected using recurrent dynamic neural networks. More recently diagnosis
in in-vehicle signals was done for anomaly detection, e.g. by using condition indicators
[145]. CAN signals were used for predictive maintenance [12]. In [89] vehicle signals are
used to predict compressor faults, and in [146] to model the remaining useful life time
of batteries in trucks. Moreover, in-vehicle signals were used in applications, such as
detection of scenarios [147] or driver workload monitoring [148].

In this chapter the focus is on feature-based approaches, combined with overlapping win-
dowing and static features per window. Such methods are most promising to effectively
represent and group long sequences.

68

5.2 Feature-based Clustering Approaches

5.2 Feature-based Clustering Approaches

In general, clustering of temporal data is done either by variable or by sample. The
further refers to grouping TVs while the latter refers to grouping events of TVs. In this
chapter the focus is on grouping TVs that change at time steps of common neighborhood
[149] and present an approach to enable this.

This is done by reducing data to relevant features and transforming it to a more ex-
pressive space. Further, the influence of individual steps on this approach is discussed,
which includes the window size, the selected features and the clustering approach cho-
sen. Notably, the focus is on temporal data that is extracted from large-scale distributed
systems, which is characterized by multiple functional procedures that occur jointly with
common TVs, by its heterogeneous data types and by its massive size.

5.2.1 Background on Clustering Approaches

As described in Section 5.1 the focus is on feature-based clustering approaches, as these
are computationally well suited to represent T'Vs of large size. Existing approaches are
the following which are categorized as proposed in [150].

Formally, clustering refers to the task of separating a data set |X| = n into &k < n
partitions, i.e. in the current context it refers to the partitioning of n TVs into k
partitions, where

k
C=Cy,..,Cis| JCi=X, (5.4)
=1
with C; N Cj =0 for 1 <i,j <k [123] (5.5)

5.2.1.1 Common Distance Metrics

Different distance metrics are used for this clustering most common of which are the
following.

e Minkowski - Norm: This norm is defined by a constant « for a p-dimensional
distance x between two points, where x\) refers to the j-th element in x. That is

(5.6)

e Manhattan - Distance: This distance is a Minkowki - Norm with a = 1, which
is

69

5 Clustering High-Dimensional Sequences

e Euclidean - Distance: This distance is a Minkowki - Norm with a = 2, which

1S

e Chebyshev - Distance: This distance is a generalization of Minkowki - Norm

with « +— oo, which is

[%]loo = manZl,‘..,pX(j) (5.9)

5.2.1.2 Clustering Approaches

Partitioning Algorithms: This type of clustering separates all samples in the data
set in a given number k of groups [150]. Most important approaches include k-Means,
k-Medoids or Gaussian Mixture Models.

70

e k-Means: In this approach the clustering problem is defined as an optimization

problem that aims to minimize the error function

ci= Yy Y de,x) (5.10)

C,eC xeC;

with cluster ¢;, data set X, data set element x € X and distance function d(c;, x).
A common algorithm that solves this optimization problem is Lloyd’s algorithm.
There each cluster i is defined by a prototype, which is the center of the cluster c;.
Each element of the data set x € X is assigned a prototype c;, that has the closest
distance d(c;,x). Based on this assignment the cluster center is recomputed at
each iteration using

1
T 11
&= e 2 (5:11)

XkECi

Following this step the next iteration starts with the reassignment. On appropriate
initialization the cluster center converge towards a good separation. Complexity:
The complexity is O(nkt) where t is the number of iterations [151]

k-Medoids: This approach is similar to k-means. However, in k-means the
computed result might be blurred by outliers that negatively affect the compu-
tation of the mean. That is why k-Medoids uses the median as a more robust
prototype at each iteration. A common implementation is called the Partitioning
Around Medoids, while more scalable implementations are Clustering Large Appli-
cations (CLARA) or Clustering Large Applications based on Randomized Search
(CLARANS) [150].

Gaussian Mixture Models: This approach models each cluster as a Gaussian
distribution that best fits the data in each cluster. For this, it assumes the like-
lihood p(Cj|x) of a data point x to be part of cluster C; and models the overall

5.2 Feature-based Clustering Approaches

likelihood of all data points as

Lxio)y= I > mpxlcy) (5.12)

=1 j=1:k

where 7; is the likelihood of cluster C}.

Clustering is achieved by fitting all distributions onto the data. Multiple algo-
rithms are used for this purpose. Common approaches include the Expectation
Maximization (EM) algorithm or Variational Inference. Complezity: The com-
plexity of EM is O(nk) [152]

Hierarchical Clusterings: These approaches perform a sequential decomposition
of objects to form clusters. This can be done bottom-up. That is, starting from fine
grained clusters per data point groupings coarser clusters are found by grouping such
clusters. Also, this can be done top down, where the opposite is the case, i.e. starting
from a coarse clustering finer clusters are successively found. This is usually done based
on a distance metric [123] that is computed between clusters, which can be

Single Linkage:

d(Ca, Cp) = mingec, yec, |z — | (5.13)
Complete Linkage:
d(Cq, Cp) = maxzec, yeo, | — yl| (5.14)
Average Linkage:
4CuC) = e 3 el (515)
2€Cq,yeC)
Center distances:
1
d(Cy, Cy) = HC 7 Z chngcjbxn (5.16)
Ward method:
Cul|C 1
reAEa il ren 2. TGl Z 40

which corresponds to a minimization of the cluster variance [153]

Important approaches of this type are the following

Agglomerative Hierarchical Nonoverlapping Clustering (SAHN): In this
approach initially each element corresponds to individual clusters. Then, recur-
sively clusters that are pairwise close to each other are merged.

Complezity: The complexity is O(n3) [123]

71

5 Clustering High-Dimensional Sequences

e Sequential Divisive Hierarchical Nonoverlapping Clustering (SDHN):
In this approach initially all elements correspond to one cluster. Then, clusters
are iteratively split until only one element per cluster remains. Splitting is done
using partitioning algorithms such as k-means. For this k-means is executed once
per split operation.

Complexity: The complexity is O(29nkt) [154], where d is the maximal depth of
the clustering and t the maximum number of iterations of k-means.

e Divisive Analysis Clustering (DIANA): In this approach at each iteration
the cluster with biggest diameter is chosen. Within this cluster the element of
furthest distance is chosen and defined as a cluster center. Then, all data points
of the original cluster are assigned the cluster center that is closest at each split,
i.e. the newly assigned center or the original center [155].

Density-based Clusterings: While the above approaches are good in identifying
spherical clusters, density based approaches allow to find clusters of complex shapes.
For this elements that are close to each other form clouds that represent the cluster. As
basis for this a radius e is assigned around each element [151]. Important approaches
are the following.

e Density Based Spatial Clustering of Applications with Noise (DB-
SCAN): In this approach initially core objects are defined that consist of MinPts
elements per cluster. These elements are then, connected if these are reachable
within their density region. That is the case if two objects p and ¢ if p is in the €
neighborhood of ¢q. The connected regions form the final clustering.

Complezity: The complexity is O(nlogn) [151]

Raster-based Clusterings: This type of approaches attempts to optimally place a
grid in the space of the elements to be clustered, where each element is part of a cell
resulting from that multidimensional grid. Important algorithms include the following.

e WaveCluster: This approach uses the wavelet transformation to separate clus-
ters. For this the space is divided in m regions, i.e. m® cells. Per feature of a data
point according to its grid position a wavelet transformation is performed. In the
resulting coeflicients high frequent regions represent edges of the cluster while low
frequent ones are cluster centers. By grouping connected areas in the transformed
space clusters are found, which can e.g. be done using graphs as proposed in [157].
Complezity: The complexity for clustering is O(n).

Other Clustering Approaches: Further important algorithms that do not fall in
above categories are the following.

o Affinity Propagation: In this approach messages are exchanged between data
points. The value of each message contains the affinity of a data point to choose
another data point as its cluster centroid. The algorithm then assesses how well
each data point is suited to be chosen as a cluster centroid. In multiple iterations
information are exchanged that define how high the likelihood of each data point
is to be a centroid. This is done until convergence [126].

Complezity: The complexity is O(n?) [126]

72

5.2 Feature-based Clustering Approaches

4 intensity 4

Brake Light
ONnp---e-e--—--—--—---- @ ----o-onoeee- 000 -0 --ooooee
Off @00 @------mmmemeen 000--0--0-------------

Brake

pushed @@ -eeeee I T e 000--9--9-------o-oonn
VI e 0= g
t t

Figure 5.1: Two sequences of TVs are shown. On the left a numerical TV time series is shown
and on the right two nominal TVs, with two states each, are shown.

e Self-Organizing Maps (SOM): SOMs are g-dimensional regions of [nodes with
q € {1,2}. In two dimensions this might be rectangular or hexagonal nodes. Each
node ¢ has a positional vector r; that defines its position on the map and a vector
m; as a reference vector which is a point of the data set. Training is performed by
iteratively determining for each element x € X the node ¢ whose reference vector
is closest to x. Clusters are found by grouping elements using similar reference
vectors [127].

Complezity: The complexity is O(ni), where i is the number of iterations [158].

5.2.2 Overview

In the following a feature-based approach is presented that is used to cluster TVs of het-
erogeneous data types and of massive size. The basic idea is to represent each TV using
overlapping windows that each contain a set of features. If a TV changes in a common
window with a related TV it is assumed that its features are closer to each other at the
corresponding points in time. That is, common TVs perform similar actions at similar
points in time. For instance, assuming two disjoint TVs, where one variable is always
active while the other is not, features at corresponding dimensions would never have
values and thus, would be further away and not clustered together.

Resulting from the preprocessing presented in Chapter 4, in the interpreted trace K
each TV is either of numerical, nominal, ordinal or binary type. The latter three types
are referred to as nominal, as these are treated identically during the clustering proce-
dure. Each numerical TV forms an regularly sampled time-series, while the other types
are seen as an event sequence, where only state changes are observed and identical con-
sequent values were filtered out in the preprocessing step. Further, all TVs operate on
the same time scale. These representations are used in the following to cluster similar
TVs. An example of these signal types is shown in Figure 5.1.

73

5 Clustering High-Dimensional Sequences

iv. Feature Selection & Transformation
b

speed
: Vspeed = Vs 1 _,
i. Recording Trace ii. Conversion & Fusion iii. Preprocessing & speed " Pspeed vy Vlight
gy = . e,
Feature Extraction Vlight = Viighe . ,.‘9;/
! gepeset teesss H
Time Bus data Payload } Speed a Y i eee
LIN i Spee /4

13434 | x24xD6 | xFFxAB i

v. Parameterization & Clustering

13465 | 27354 | xtivaz [TCay | Letligt 1_J o e, A
: H !]

3 Func. B

13490 | x24xDD | xFFxFI 8 ! : | Feedback | /./qu :

;Wiper |_ ' a%21° unc. C

13543 | x02xA49 xI12x32 H i ' ! L .-,8
oo ! Parameter |
i
\

Figure 5.2: An overview of the overall TV clustering approach is shown [5].

Overview: The basic steps of the clustering approach are shown in Figure 5.2. Ob-
served temporal data is used to extract a feature representation per TV. There overlap-
ping windows are formed and features are extracted per window. In particular features
need to be identified that allow to group nominal and numerical TVs. These features
are stacked and form the representative of the TV. Next, feature selection and transfor-
mation is performed to reduce the dimensionality, before lastly, clustering is performed
together with the expert, who aims to determine the appropriate coarseness of clustering
as well as the selection of relevant signals that did not end up in identical clusters. This
is as clusters are formed based on common occurrence while steady TVs might be of
relevance for consequent Specification Mining as well. All steps are discussed in detail
in the following Sections. These steps were first presented in [5] and are explained here
in more breadth.

5.2.3 Preprocessing

In the preprocessing performed in Chapter 4 the goal was to minimize the loss of in-
formation during automated preprocessing, while reducing the trace and preserving the
TVs characteristics. For clustering of TVs however, loss of information is allowed, as
only the key characteristics need to be considered and comparability of TVs needs to be
ensured. For instance, considering TVs such as speed and braking, it is more likely for
these TVs to be clustered if these have a value range between 0 and 1, rather than its
original units. Therefore, in this step a set of filtering, cleaning and normalization steps
are performed to ensure that TVs that change together are clustered together.

Cleaning: Multiple data cleaning operations might be performed at this stage to en-
sure good data quality for clustering. First, this is the removal of invalid values, which
might be resulting from errors in the recordings. For instance if the state was recorded
from an automotive networks this might be invalid messages. This is done either through
an expert or rule based (e.g. regular expressions). Further, missing values might be re-
placed with its last value if required. For the case of numerical TVs filtering operations
are performed that allow to remove outliers. This is only performed if a sufficient num-
ber of distinct values for that TV is given. This can be done in multiple ways including
using Moving Average, Moving Median or Exponential filtering. It was found that the
latter performs best, as other approaches tend to add a time-shift to the data making it

74

5.2 Feature-based Clustering Approaches

unsuitable for grouping according to similar time steps.

Normalization: Further, the aim is to group TVs with similar curves, such as speed
and the wheel frequency, which have different ranges but similar shape. To make these
comparable each TV curve is normalized to a defined value range. Approaches for nor-
malization include Min-Max normalization, z-transformation or interquartile normaliza-
tion. It was found that in comparison to the further two approaches, the interquartile
normalization is less prone to outliers and thus, is best suited to normalize the given
numerical time series.

Symbolic Aggregate approXimation (SAX) Algorithm: Numerical time-series
are additionally symbolized using the SAX algorithm, which is shortly described here.
In this approach first a Piece wise Aggregate Approximation (PAA) is applied to a
time series. That is, a z-transformation is applied, segmentation is performed and per
segment a representative value of the time series is found, e.g. the mean of the values
in the segment [88]. SAX puts these values in buckets and assigns a nominal value per
bucket. The values defining the borders of the bucket are chosen such that it is equivalent
to a Gaussian distribution that is divided into chunks of equal size [88].

5.2.4 Feature Extraction

To capture temporal-causal dependence in a feature vector, a windowing approach is
applied on the preprocessed trace. This is challenging as no dominant signal is given
and thus, the segmentation points are not clear. Further, using PIPs for segmenta-
tion might yield windows where numerical TVs change while its corresponding nominal
type TVs that change at such points fall in the window before, thus, not clustering
such correlated TVs. Thus, to be able to not omit patterns at the borders of windows
a static window with overlap is chosen for this task. The size of the window depends
on the frequency of changes of the data set and thus, needs to be determined per data set.

Extraction Approach: As shown in Figure 5.3, at first TVs are segmented into
such overlapping windows. Next, for each window w; of each TV s; a sub-feature vector
v; = f(w;, s;) is extracted. This is done using the function f : (w, s) — v which extracts
a set of features based on the data type type(s;) of the TV. The numerical TVs are
referred to as type(s;) = num and the nominal ones as type(s;) = cat. Notably, nominal
signals do only contain state changes at this point and it is assumed that these state
changes only occur at areas of functional procedures, i.e. correlating TVs that are part
of the same functional procedure tend to change jointly.

Features: The data type defines the characteristics that are relevant for extraction to
suitably represent the value behavior of a TV s; in state and time. Therefore different
sets of features are extracted for both types. These are the following.

If the data type is type(s;) = num the dominant characteristic to capture is the shape of
the TV per window, which is the flow of the values and the type of change. To represent

75

5 Clustering High-Dimensional Sequences

this the following features are identified as candidate representatives for the temporal
data X of each TV.

76

e Mean: As data was normalized before this value resembles the height of a TV

[151], which is
i1 Tn

p(X) = £ (5.18)

Variance: This defines the deviation from the mean and thus, the dispersion of
the TV sequence [151], which is

o} (X) =Var(X) = - Z(mn — u(X))? (5.19)

Skew: The skew measures the lack of symmetry [109], which is

E[(X — p)°]

shew(X) = Var(X)3/2

(5.20)

Kurtosis: The kurtosis represents the relative flatness in relation to the normal
distribution [109], which is

E[(X —)]

kurt(X) = Var(X)2

(5.21)

Variance of Slope: This value measures the intensity of noise in the TV se-
quence, which is
1 n
GA(X') = Var(X') = = 3 (!, — u(X)))? (5.22)
i=1
Magnitude of Mean of Slope : This value indicates the intensity of a TV
trend, which is

2ie1%n
[W(X")| = \Tll (5.23)
Maximal Slope : This value indicates if a peak is found in the given window,
which is

max{|z||z € X'} (5.24)

Wavelet Coefficients: £k coefficients of a TV sequence resemble low and high
frequency representations of the TV. A good choice is to consider only a subset of
highest coefficients, as these are used to reconstruct the time-series and thus, have
less loss in information.

5.2 Feature-based Clustering Approaches

These numerical features were chosen as they were successfully applied in similar tasks
in [109] and [110].

If the data type is type(s;) = cat the information about the occurrence and value of
a TV in each window is given and subsequent identical samples of the same TV are
dropped, i.e. TVs that are part of the same functional procedure share similarity of
occurrence behavior, which is captured as features. Further, the goal is to also be
able to group numerical TVs together with nominal ones. Thus, in order to do so,
numerical signals need to be discretized. This is done either manually according to expert
input that is familiar with relevant quantization steps or using automated approaches
such as Symbolic Aggregate approXimation (SAX) [88], which is the choice here. After
symbolization again elements with identical preceding symbols are removed and thus,
only relevant state changes remain after discretization. With this, the following set of
features is extracted from categorical and discretized numerical TV sequences:

e Value Change: This feature defines if a TV changed its value within the given
window. If this is the case the value is 1 and 0 otherwise.

e Change Ratio: This value is defined as the ratio between the number of changes
that occurred within a window and the total number of samples per window. Thus,
it measures the relevance of an interval for a certain TV in comparison to the
relevance of the interval for all TVs. It is defined as

#changes

ROC = (5.25)

#samplesinw;

e Occurrence Frequency: This value measures the relevance of an interval for a
particular TV. It is defined as the ratio of the number of changes of a TV divided by
the temporal length of a window. In the given case the window length is constant,
which is why this value can be reduced to the enumerator. In general it is defined
as

#changes

0 = #time — dif ferenceofw;

(5.26)

e SAX Mean: Further, using all SAX values of a TV a distribution of the sym-
bolized values is formed, i.e. A=1, B=2,... . The mean value of this distribution
is used as additional features. This mean allows to represent the character of
numerical TVs more robustly.

B #changes
~ #time — dif ferenceo fw;

ocC (5.27)

Choosing these features allows to compare nominal and numerical signals, while com-
parison among numerical signals is done on a more fine grained level using its numerical
features.

7

5 Clustering High-Dimensional Sequences

; Us1 Us2 VUs3 Vsa Vss
b — e e
Speed : I } } >
3 — ,TJ' — > —
| VUp1 b2 Vp3 Ups Vps
Blinker | j j j j —
speed = (Vs1 Vs2 Vs3 Vsq Vsss5)

v
Vplinker = (Vb1 Vb2 Vb3 Vpa Vps)
Figure 5.3: The extraction of features from overlapping windows is shown. Per window and

TV a set of features is extracted. Per TV these features are stacked to form the
feature vector that represents the TV [5].

To now represent a signal s; with identifier m, sliced in n windows, as a feature vector
Um, all sub-vectors v,,; are stacked as

Um = (Um1Um2-+Umi--Vmn) (5.28)

The goal was to find vector representations that both capture the time and value of
a TV under heterogeneous data types. In the presented approach this is solved, as
the found representation captures temporal interrelation, as same dimensions represent
same windows and value behavior is represented by each value in a dimension. Also,
comparability between nominal and numerical TVs is enabled by discretization of the
numerical time series.

5.2.5 Feature Selection and Transformation

Each resulting vector vy, contains a high-dimensional representation of a TV. To reduce
the effect of the curse of dimensionality and to improve computational complexity it is
common to reduce dimensionality by selecting relevant features and by transformation of
v, to another space, where less informative dimensions are dropped. This, is especially
suitable here, as functional procedures are assumed to occur within certain time spans
only, while there are periods of inactivity were no or only less information is transmitted.
These periods of inactivity further depend on the TVs that were extracted in Chapter 4,
e.g. considering the wheels of a car only information is only given once the car is driv-
ing. Reduction of dimensionality is thus, a crucial step. This is discussed in the following.

Feature Selection: Types of selection methods are filter and wrapper methods. Filter
methods extract meaningful features independently from the Machine Learning approach
that is underlying it. That is, it considers characteristics of the vectors only such as the
variance or the eigenvalues. In contrast to that, wrapper based methods do include
this information. Based on the performance measured on the learning task, features
are chosen, that yield the best metrics [159]. A common approach to determine most
important features is to use forward-backward search in a wrapper-based evaluation,
i.e. the quality of a subset of features is evaluated on a validation data set using the
clustering target (e.g. redundancy or function grouping) it is optimized for. In the

78

5.2 Feature-based Clustering Approaches

~
A
Sy

el
[F = FUL |
IF accuracy(Clustering(F)) < accuracy(Clustering(F \ {f;}):
F=F \ {fi}
v

optimal feature set F

Figure 5.4: The forward backward feature selection is shown. At each iteration a feature is
added or removed if accuracy improves [5].

proposed Data Mining pipeline this includes either optimizing internal indices, such as
the Silhouette index, or using labeled data and external indices, such as a similar data
set with expected clustering. Also, by running the approach on data sets with various
characteristics a general set of good features is found. As Figure 5.5 shows the selection
approach that was chosen consists of two steps called forward and backward selection.

1. Forward Selection: Starting from a feature set ' = () and a set of available
features F,; iteratively features f; € Fy; are added to the set F' if their addition
yields a better performance than without it [160].

2. Backward Selection: Here, a feature is removed from F' if this improves the
accuracy.

Resulting from this a subset of relevant features is found per data set. The remaining
vector however, is still of high dimensionality, as for n windows and f features, the vector
has n - f dimensions, which is why a transformation is performed in the following.

Transformation: In Machine Learning it is common to transform data to another
representation that is better suited to represent the data. A large variety of approaches
for this was introduced in literature. This includes approaches from signal processing,
such as discrete Fourier transformations [123] and discrete Wavelet transformations [111]
or from Data Mining, such as Piece wise Aggregate Approximation [88], Principal Com-
ponent Analysis (PCA) or Independent Component Analysis [123].

A two step approach is used to reduce the dimension. In the first, step the variance
is computed per dimension. That is if no TV occurred within a window, the variance
of all features that correspond to this window will be small or even zero. Thus, low
variance dimensions are dropped here. In the second step, PCA is used to transform the
vectors to an information maximizing space. As PCA is a linear transformation, inher-
ent properties of each TV vector are conserved. Further, only dimensions with highest
information content are used and the remaining dimensions are dropped. With this a
significantly reduced vector is found that is used in the further process.

79

5 Clustering High-Dimensional Sequences

Approach High-dim. Complex-shapes Mult. Gran. Visualization Complexity
k-Means yes no yes no O(nkt)
k-Medoids no no yes no O(k(n — k)% x t)
EM no no yes no O(nk *t)
DBSCAN yes yes yes no O(nlogn)
Agglomerative yes yes yes dendrogram O(n?)
Top-Down no yes yes dendrogram O(Qd * nkt)
WaveCluster indirect yes yes no O(n)

Affinity Propagation no yes no no O(nz)

SOM indirect yes yes map O(n * t)

Table 5.1: Comparison of algorithms in clustering of in-vehicle signals. I.e. handling high-dim.
data, detect clusters of any shape, allow multiple granularities of clusters, visual
representation and computational complexity, with t iterations, maximal depth d, n
examples and k classes. This table was taken from [5].

5.2.6 Formal Comparison of Clustering Approaches

The resulting feature vector might be still of high dimension due to highly complex
characteristics per TV. Further, the aim is not only to group TV sequences that occur
at exact same times and have exact same shapes. Rather, here the aim is to find TVs
that have similar shapes. For instance, lets assume that one dimension is the number of
times a signal occurred and another is the peak value of the TV. A spherical clustering
would only find peak values that are further apart if also the number of times the TV
occurred is further apart. However, it might be the case that the peak value is far away,
but still the number of occurrences is similar, which in this case is a good indicator that
the TVs correlate on a functional level. This would rather require an elliptical shape of
the clustering. Thus, complex shapes have to be supported by the clustering here. Apart
from that, complexity of involved TVs is still very high and thus, it is still required to in-
clude expert input to find clusters of appropriate granularity. Therefore, it is a desirable
property to be able to parameterize the approach towards clusters of certain levels of
granularity by adjusting hyper parameters. For instance, at a higher level of granularity
per wheel the four sensors of the rotational frequency would be grouped, while at a lower
level both left wheel (front and back) and both right wheel sensors could be assigned to
two separate groups. Additionally, the computational complexity needs to be kept low
and in order to allow for good expert feedback it is important to visualize the data.
Not all of the aforementioned clustering approaches are suited to fill these needs, as is
shown in Table 5.1.

Suitability is assessed in these terms as follows.

e (entroid-based: Granularity is settable as target clusters k. k-Means is in general
suited for high dimensional data as prototypes are found as mean of all clusters and
a separation is forced through k. But, only spherical clusters are possible which is
contrary to signal feature vectors which can be grouped in any shape. k-Medoids
and EM are less suited. In k-Medoids samples are part of the data set which shifts
the centroid on a data point and thus, imbalances the center.

e Hierarchical: Such approaches are independent of shape, as successive splitting
or joining is performed based on neighborhoods. But, top-down clustering tends
to split the biggest cluster more often. This results in many clusters of similar size

80

5.2 Feature-based Clustering Approaches

which is not the target grouping in the given scenario where cluster sizes may vary.
Granularity is parameterized on according splitting and joining rules.

o Density-based: These approaches allow for multiple granularity by setting the
radius per data point, while they are independent of shape as neighboring elements
are found using the radius. This radius can exist in any dimension leaving this
approach to be well suited for clustering of signals.

e Grid-based These approaches allow for multiple granularity by setting the raster
size and are independent of shape as the raster can be of any shape. Above that,
high dimensional clustering is possible with the limitation that dimensions need to
be restricted as e.g. in WaveCluster similar Wavelet coefficients will be too far away
to be assigned in one clusters (due to curse of dimensionality). With the reduction
to a sufficient number of dimensions and its low computational complexity these
approaches are well suited.

o Affinity Propagation: Here prototypes are data points themselves, leading to
similar imbalance as in k-Medoids. However, common grouping is not dependent
on cluster shape as the totality of points is considered for clustering.

o Self-Organizing Maps: Due to small numbers of signals each hexagon is sparsely
populated by data points making cluster detection difficult.

According to this formal evaluation WaveCluster and DBSCAN are most suited.

5.2.7 Expert Input and Refinement

The process of clustering can be performed in two ways. First, this can be done in a fully
automated manner, where hyper parameters are found automatically based on internal
indices that assess the quality of clustering. Second, this can be done in an iterative
procedure, where the expert is choosing hyper parameters based on a grouping of TVs
that is valid and relevant for Specification Mining in his opinion. As clustering itself can
be performed effectively once a representation per TV is given and as clusters can be
well visualized, this iterative procedure is not excessively time-consuming.

Within this iterative procedure an expert might have three intentions. First, parame-
ters may be adjusted such that a clustering with different goals of grouping are found.
Second, given a big cluster the expert might sub-cluster this cluster to get a more fine
grained representation. Third, an expert might merge found clusters to get a coarser
cluster.

With these clusterings found in a last step the expert is able to select TVs based on the
clustering that was found within this procedure. This is required as e.g. steady TVs
and active TVs are not clustered together while being still correlated. Also, TVs within
multiple clusters might correspond.

Consequently, to optimally leverage the potential of this approach expert input is re-
quired, while an automated execution that is based on hyper parameter optimization is
possible as well. In the further case, this approach can thus, be seen as a method to
structure the TVs and to work as a supporting tool to the expert to identify TVs of
common functional procedures that are used for Specification Mining.

81

5 Clustering High-Dimensional Sequences

Set Signals (tot[num/nom]) | Datapoints (tot[num/nom]) | Part of journey
body-id 38 [1/37] 2251 [89/2162] complete
chassis 53 [18/35] 9999 [9896/103] start
chassis-nom 35 [0/35] 9896 [0/9896] start
chassis-num 18 [18/0] 103 [103/0] start
chassis-ctr 12 [11/1] 10000 [9999/1] mid
most-freq-num | 24 [24/0] 12508 [12508/0] start
most-freq-ctr | 22 [19/3)] 11773 [11765/8] mid
light 39 [6/33] 10055 [2941/7114] start
mixed 95 [12/13] 60402 [69339,/63] start
mixed-nom 13 [0/13] 9509 [0/9509] start

Table 5.2: Statistics of the datasets: total number and proportions of numerical and nominal
signals, data points per set, recorded part of journey. Here, small subsets are used
for evaluation, while in practice thousands of signals are considered. This table was
taken from [5].

5.3 Evaluation

So far, a process for clustering of heterogeneous TVs was proposed and multiple methods
were compared in terms of suitability for clustering this type of data.

Next, the validity of the proposed approach is evaluated experimentally as it was first
presented by us in [5].

5.3.1 Setup

Both preprocessing and feature extraction were performed on a cluster with 70 servers
in Apache Spark. The reduced data set was used to perform all further steps including
selection, transformation and clustering operations. This was done on a 64-Bit Windows
7 PC with an Intel® Core™i5-4300U processor and 8 GB of RAM using RapidMiner
Studio, Python’s Data Mining stack and R.

5.3.2 Data Sets

The statistics of the data sets are shown in Table 5.2. To cover most characteristics of
automotive in-vehicle network traces the approach is evaluated on 10 test data sets that
are different in terms of TV types (e.g. chassis-nom vs. chassis-num), data points per
type, TV number, association to one (e.g. chassis) or multiple (e.g. mixed) functions and
resemble different excerpts of a journey. The target of the evaluation is the grouping of
TVs in terms of their assignment to similar functions. All approaches were parameterized
per data set such that the true number of clusters is achieved and the best possible
grouping (according to the expert) within this clustering is reached.

82

5.3 Evaluation

5.3.3 Clustering Criteria

Indices for measuring clustering quality are divided into external and internal indices.
External indices use external information, such as a reference clustering. In this case the
goal is to ensure cluster homogeneity, i.e. each cluster should consist of elements of a
cluster within the reference clustering, and cluster-completeness, i.e. each cluster should
contain as many elements of its corresponding reference cluster. Important indices of this
group are the Jaccard-Index and the accuracy. Internal indices do not require a reference
clustering. According to [161] and [162] the best indices of this type include the Gamma-
Index, C-Index, the point based correlation coefficient and the Calinski-Harabasz-Index.
For validation the Silhouette-Index was found to be well suited according to [163].

In this evaluation the accuracy and the Silhouette-Index were used.

Accuracy: Accuracy is the number of samples ncorrect correctly clustered in relation to
the total number of samples in the data set ngeqser given as

Ncorrect
acc = (5.29)
Ndataset

Here, the assignment of reference cluster labels to each TV as a ground truth is done
manually by experts.

Silhouette index s(i): This index measures a clustering assignment per data point 4
in terms of degree of affinity to its assigned cluster relatively to all other clusters. IL.e.
a(i) as distance of ¢ to all element within its cluster, b(7) as average distance to all data
points in all other clusters. It is optimal for s(i) = 1 and defined as

b(i) — a(i)
maz{a(i),b(i)}

s(i) = (5.30)

5.3.4 Feature Selection

Here, a good feature set for the grouping of T'Vs in of vehicle systems is sought. For
this, the forward-backward feature selection is run on all data sets with its various char-
acteristics (e.g. ratio of numeric to categorical TVs), yielding an optimal feature subset
per data set. Next, all features are ranked by counting subsets that contain this feature,
which ranks more general features that are valid for more data sets higher. The top
ranked features are used for further processing (e.g. top 50). To find features that gen-
eralize over all data sets, as a metric the number of times a feature was included in the
optimal feature subset, is measured. K-Means was again used for clustering. The results
are shown in Figure 5.5. The performance gain of the generalized feature selection was
measured before and after the ranking selection, with results shown in Figure 5.6.

Results: It can be seen that for the numerical characteristics best features are the mean,
skew, kurtosis, as well as the variance and magnitude of the gradient. This shows that
the fine granularity of numerical TV characteristics requires to capture noise, value and
shape characteristics. For nominal characteristics all nominal features were suited. This
shows that the frequency and type of a nominal/discretized numerical TV is captured.

83

5 Clustering High-Dimensional Sequences

o6 |
—
S)
O
Cf)4% |
L
Q
5
=20 N
e I I
Q
=, HH_] l
r—r—1T 1T 1T 1T 1T 1T 1T 1T T T T T "1
[
SYTEEETLIE48550
O = O
SEEEREESTTE LR S
T8 2 ELfiEd ol
> g X 22020 =
w0 == S o 0 =
>
= @)
@)

Figure 5.5: Relevance score determined as number of optimal feature subsets in which a feature
occurred [5].

—_

Index
o
o

uette
o 2
= o

- General Selected Features .
- No Selection

Silho
o
b

body-id T
chassis
chassis-ctr
chassis-nom
chassis-num |
most-freq-num |
most-freq-ctr |
light
mixed
mixed-nom

Figure 5.6: Clustering performance in terms of Silhouette index before and after the generalized
feature selection is applied [5].

84

5.3 FEvaluation

body-id | chassis | chassis-ctr | most-freq-ctr | light | mixed | mixed-nom
1288 |35 | 798 | 1.8 | 533.6 | 1.5 | 2147.7

Table 5.3: Experimentally determined optimal window sizes per data set in seconds. This table
was taken from [5].

| | |
I k-Medoids ||
I1 k-Means

—_
T

Silhouette Index
o
(&)
T

I I I I I I I I I I
g g8 § £ § & £ ® T E
S 8 & © E & % T £ %
8 8 % 4 7 3 & = 8 =
1 1 _.L o 1 = e} E —
= 2 0w @a 2 S Q
S %7 2 £ % b
g & 8 < % 2
E < ©c = &
] (] E

Figure 5.7: Comparison of centroid-based algorithms in terms of Silhouette index [5].

Further, this resembles the assumption that in-vehicle TVs are correlated, when they
occur and change their value together. As Figure 5.6 depicts a performance gain of up
to 20 % (e.g. at light data set) is achieved with this approach. Notably, all data sets
show an improvement after the generalized selection.

5.3.5 Window Size

Setup: After preprocessing each TV was split in windows with 50 % overlap. Based
on this all features are extracted, transformation is performed and clustering is applied.
Per data set the window size is increased successively from 0.1 seconds to 5000 seconds
and the performance is measured in terms of accuracy. From this, the window size with
highest accuracy is identified as optimal. Here, K-means was used for clustering, while
other approaches yielded similar results. The results are shown in Table 5.3.

Results: If the window is too small patterns relevant for features are overseen, while
for big windows feature details are simplified away. Also, as can be seen in table 5.3
less frequently changing TVs, e.g. with a higher number of nominal TVs, require bigger
windows , e.g. in body-id, light and mixed-nom, as these TVs do change less often. If
more frequently changing numerical TVs need to be clustered smaller windows appear
to be optimal which is the case in chassis, chassis-ctr, most-freq-ctr and mixed.

85

5 Clustering High-Dimensional Sequences

| | | |
I1 Agglomerative ||
Il Top-Down

—
T

Silhouette Index
o
o o
T T
|
||
|
|]

most-freq
chassis-ctr
chassis
most-freq-ctr -
body-id |
mixed |

light |

mixed-nom |
chassis-nom |
chassis-num -

Figure 5.8: Comparison of hierarchical algorithms in terms of Silhouette index [5].

5.3.6 Clustering

The characteristics of in-vehicle TVs require clustering algorithms that can handle high-
dimensionality, different granularities and have low computational complexity.

Setup: To examine the suitability of different algorithms for grouping of in-vehicle
TVs, k-Means, k-Medoids, DBSCAN, Agglomerative, WaveCluster and SOM cluster-
ing approaches were evaluated on all data sets in terms of clustering quality. This is
done by using the optimal feature subset as selected by the feature selection approach,
parameterization with expert feedback and by consequent application of the clustering
approaches.

First, Agglomerative clustering was compared to Top-Down clustering and k-Means to
k-Medoids. This is done to evaluated the characteristics of these sub types in terms of
applicability to in-vehicle TVs. This is followed by a general experimental comparison
of all approaches.

Results - Sub types: As illustrated in Figure 5.7, among centroid-based approaches
k-means performs better than k-Medoids. This is, as taking the mean among TVs for
clustering avoids a shifting bias.

Results - Hierarchical: Among hierarchical approaches Agglomerative clustering re-
sults in better accuracy in 90 % and in better Silhouette index in 70 % of all cases
which is shown in Figure 5.8. The best centroid-based and hierarchical approaches are
evaluated with further clustering approaches giving results shown in Figure 5.9.

Results - Overall: As depicted in Figure 5.9, DBSCAN, Agglomerative clustering
and WaveCluster works best if a data set contains mixed characteristics (i.e. different
TV types, proportions of nominal to numerical, etc.) combined. Also, in these cases
centeroid-based approaches perform worse. This confirms the expectations and formal
analysis of the approaches. Further, as depicted in Figure 5.9, WaveCluster performs

86

5.4 Case-Study

1 |00 k-Means
1 DBSCAN
11 WaveCluster

In SOM
| ‘ ‘ ‘ “ “ ‘ “ ‘ ‘ ‘ ‘ ““ |

Figure 5.9: Silhouette index per data set and clustering algorithm [5].

Silhouette Index
(s
t

[e=}

mixed-nom -
chassis-nom -
most-freq |
chassis-ctr |
chassis-num
chassis
most-freq-ctr
body-id -
mixed

light |

best on 80 % of all data sets and shows solid results in the remaining 20 %. Thus,
this approach seems best suited for the given scenario. This is because extraction of
Wavelet coefficients enables to well capture both fine and coarse grained properties of
TVs equally. Also, as described before WaveCluster can well represent the shape and
the data’s high dimension.

Similarly, DBSCAN and Agglomerative Clustering are well suited to capture these prop-
erties. However, the latter approach is biased in that it tends to find clusters of nearly
similar sizes which is not given in all test sets.

As deduced before SOM and k-means perform slightly worse, as dimensions are reduced
in SOMs and k-means cannot capture varying cluster shapes.

Conclusion: All clustering approaches have solid results in terms of cluster qual-
ity. This shows that the proposed processing and clustering approach is well suited for
groupings of in-vehicle network TVs. WaveCluster and DBSCAN perform best due to
their ability to capture most of the heterogeneous characteristics included in such TVs.
As described an optimal window size depends on the structure of the processed data
and thus, needs to be determined. Further, feature subsets as discussed in the selection
allow for good generalization when clustering in-vehicle T'Vs.

5.4 Case-Study

In this section it is exemplary shown how the clustering approach can be used to deter-
mine TVs of common functions.

Setup: For this case study a realistic data set was used. After the preprocessing of
Chapter 4 this data set contains 419 TVs and (after reduction) 20 026 065 data points
recorded from one vehicle over eight days. This processing is implemented on a Hadoop
system, while the resulting reduced data is processed locally.

87

5 Clustering High-Dimensional Sequences

DBSCAN with € = 10 DBSCAN with ¢ = 0.5

e Nominal Signals ‘ ‘ ‘ o e Light/locking ! e
~ 5| o Numerical Signals i ~ 5| ®Brake light control/state i
g . g Ext. temperature g
% % Wheels” Rotational freq.
2, 2,
g 0 |® o i g 0 |® o B
O ' 4 O
S S
A5 e 4 [aPI o B 4

| | | | | | L] | | | | | | | | | | | |
-6 -4 -2 0 2 4 6 8 10 -6 -4 -2 0 2 4 6 8 10
PCA Component 1 PCA Component 1

Figure 5.10: On the left the result of signal clustering with DBSCAN and ¢ = 10 and on the
right with e = 0.5 are shown [5].

‘Value

Signal

— Braking Momentum
—3,000 - ® Brake Light State

| | | | | | | T T
1.6 165 1.7 1.75 1.8 1.8 19 195 2 205 21 215 22 225
.10]1

Figure 5.11: The numerical TV ”Braking Momentum” and the nominal TV ”Brake Light
State” are grouped with the presented approach [5].

Preparation: An optimal window size of 17.7 seconds was found with 7 477 windows
of 50 % overlap. Per window the features found in the above selection were used result-
ing in more than 10 000 dimensions per TV. Reduction to less dimensions is done by
filtering for dimensions with a variance bigger 0.3 and a successive PCA, resulting in 80
dimensions per TV which are used for local clustering. For clustering DBSCAN was used.

Granularity by cluster inspection: Depending on the parameterization of the clus-
tering, granularity of the target is set. This is illustrated in Figure 5.10 where a coarse
grouping separates TVs with different data types and finer clustering extracts TVs of
similar functions. Finding an appropriate granularity is done through expert feedback
as described above. The extracted clusters are inspected and successively parameterized
towards a good target clustering. Experts can then asses the grouping results, e.g. de-
cide whether a grouping signifies a good representation for Specification Mining.

88

5.5 Summary and Conclusion

o 60
=
2
“ .
g 40
S 207
s
B 0 I—I_I_I ——
Q o) 5)
E 2 = 2 £ 2 T B 2
= o= on = - < o = Bl
= 4 = - ©n = o) o 4
& g o £ o = S 5§ g
g © ~ NS < eh on . o
S = [. S g = = o
15 3 15) i — 1
E & =& 2 /A £ E » 3
g & 5 o~ ‘g s s
s
g M >
m o

Figure 5.12: Dendrogram illustrating hierarchical clustering at various granularities. I.e.
branches resemble possible groupings. E.g. one possible granularity is shown
in red and blue [5].

Results: With the presented approach multiple related TVs were found in the analyzed
data set. For instance in a fine clustering groupings of speed TVs and TVs representing
the time were found. The further were the speed TV for the speedometer, the state of
the speed in horizontal direction and the speed of the car’s mass center. These are all
identical as they measure the vehicle speed, however, for the mining of specifications it
could be useful to have these structured in order to decide which once are relevant.

A further example for detected groups of similar functions are TVs related to the brak-
ing function which were grouped (see Figure 5.12, red cluster). It shows that the brake
light state, state of the driver braking, braking momentum on the wheels and the target
braking momentum resulting from the driver pressing the pedal are grouped. In par-
ticular as Figure 5.11 shows, with the presented approach nominal TVs were grouped
together with related numerical TVs. Further examples of discovered functional groups
are TVs for automated parking (e.g. parking space, driver intervention), battery state
(e.g. battery capacity, state of charge) or constant TVs (e.g. air pressure, state of
the belt buckle). Thus, the proposed approach is well suited to find TVs of common
functionality, which in turn enables successive domain-specific Specification Mining of
relevant T'Vs.

5.5 Summary and Conclusion

In this chapter the approach for clustering of TVs is presented. It was shown how TVs of
both numerical and nominal type, that are extracted from large scale distributed systems,
can be grouped. By using a feature-based approach TV sequences of massive length are
broken down to a reduced representation. An optimal clustering is found interactively
through expert feedback or automatically through optimization based on internal indices.
An evaluation on 10 real world data sets and on a data set with 419 TVs showed that
this approach can be effectively applied for this task. Thus, by choosing the right TVs
at this stage, the expert is able to perform further semi-automated Specification Mining

89

5 Clustering High-Dimensional Sequences

based on the chosen TVs. By filtering the MSS K,, and MES K for this subset of TVs
the relevant subset trace for Specification Mining K* and K* is found. Notably, both
K’; and Kfl can be based on the selection of a particular cluster, the merging of multiple
clusters, as well as the combination of clusters with manually chosen TVs.

90

6 Concurrent Segmentation and Clustering
of Event Sequences

In the previous chapter groups of TVs were identified that correlate in time and state
change. Within the trace of this subset of TVs multiple functional procedures might
be present, which are unknown a priori. Neither, it is known how many functional
procedures are present, nor, it is known to which of those any state change in the overall
MSS belongs.

Therefore, in this chapter multiple approaches for identification of functional procedures
are discussed, which is referred to as segmentation clustering in the scope of this work.
This task includes finding clusters of similar behavioral patterns and identifying segments
of MSSs that correspond to those patterns in the trace. With this, multiple subsets of
similar MSSs are identified from a trace.

Thus, this step uses a trace KfL that was previously reduced in dimension, a segmentation
approach D, and hyper parameters of the segmentation approach Pp as inputs. With
this, it produces multiple sets of MSSs M, each representing a set of MSSs M; of a
certain functional procedure, which are formally described as

M = segcl(KF, D, Pp) (6.1)

The input and output of those approaches are exemplified in Figure 6.1. Notably, in the
general case those approaches use MESs as an input. However, those approaches can be
used in the same way with MSSs, as the data format is identical when state changes are
seen as events.

AL EoE J LA
g, DoE FoTT FopT
| PARCAND /0 SR A ¢ Vo
§ - O/K ————————————————————— 0)—(——— oX— ————————————————
T

XX, X3 X4

Clusters
ADBH [* . . *] [* . . *]
XF [o o] [o] [« *]

CEG [+ o] [¢ e ol[e & o]

Figure 6.1: Given a MES < z1,...xy > an optimal approach finds patterns that are consistent
in state and time. In this case three clusters with representatives ADBH, XF and
CEG would be discovered. There, e.g., the cluster XF occurs three times within
the trace.

91

6 Concurrent Segmentation and Clustering of Event Sequences

Challenges: The task of segmentation clustering is challenging due to the following
reasons. First, if overlap between segments is present it needs to be handled, while for
the case of no overlap and sparse functional procedures consecutive segmentation and
clustering can be performed.

Second, as a result of this clustering segmentation step, resulting clusters might be of
bad granularity. This is, as variance within those clusters is dependent on the input
data.

Third, in some cases segmentation might inherently require expert input that needs to
be included in the designed approaches, e.g. if procedures before a target state are in-
spected.

Chapter Outline: First, existing approaches of clustering and segmentation and
related works are discussed in Section 6.1. In Section 6.2 the problem is formalized.
Next, in Section 6.3 extensions of two classical approaches are presented, which are
Local Trace Segmentation (LTS) [6] and a window-based approach. Following this, in
Section 6.4 a novel large-scale segmentation clustering method is introduced.

All of those approaches yield clusters of MSS sets, which can be further refined by an
expert using the method described in Section 6.5. Lastly, in Section 6.6 the discussed
methods are compared on a synthetic data set.

6.1 Related Works

Related approaches operate on temporal data, which are either given as time-series or
as assumed in this thesis, as sequences. Multiple related fields of research deal with
the extraction and grouping of patterns of temporal data. Those are pattern mining ap-
proaches, which aim to extract frequent or infrequent patterns, segmentation approaches
that cut a trace into segments, clustering approaches for temporal segments, as well as
approaches that perform simultaneous segmentation and clustering. In the following an
overview of those fields is presented.

Episode Mining: Episode Mining deals with the task of searching for patterns of in-
terest, that are covered within common windows [164]. In general this is similar to
segmentation clustering, as it also aims to discover dominant patterns. However, unlike
Episode Mining, segmentation clustering aims to assign all data points to a segment and
a cluster.

The first attempt to this type of mining was sequential mining [165]. There most fre-
quent patterns where mined from sets of sequences (rather than one sequence), if those
occurred a sufficient number of times. Later, this was extended to the discovery of all
interesting patterns. Those might be frequent patterns, which are extracted with ap-
proaches as presented in [166]. Also, this might be mining of closed sequential patterns
which was done in [167, 168].

In general such approaches yield a high number of output patterns, which need to be
assessed and reduced according to its interestingness. In [169], this is done by repre-
senting patterns using partial orders and in [170] by allowing users to specify regular
expressions for patterns of interest.

Discovery of episodes in one sequence was first done in [171], where discovered serial

92

6.1 Related Works

and parallel episodes are patterns that occurred in a window often enough. Other met-
rics of interestingness that were used in this context include the number of windows
that support a pattern [171] or the maximum number of non-overlapping occurrences of
an episode [172]. Next, to such window-based approaches, in [173] frequency of items
is counted from points in time rather than per window. Apart from the discovery of
dominant episodes, in further approaches higher interestingness of episodes is given if
deviations from nominal behavior are present, such as in the approaches proposed in
[174, 175, 176]. Also, in temporal data interestingness is considered higher if similar
durations of patterns are given [177, 178, 179].

Approaches for this type of mining, range from rule-based [180] to probabilistic [181]
approaches and aim to detect parallel; serial or composite patterns.

Similar to those techniques, in this chapter multiple approaches are used to identify seg-
ments. Those can be interpreted as patterns in the above context, where interestingness
is defined as frequent occurrences of patterns, which is referred to as clusters within the
scope of this thesis.

Segmentation: This type of method aims to identify segments within a trace that is
used for representation of temporal data.

This includes windowing approaches, which were extracted and used in various ways in
past research. First, those could be identified in a top-down manner, where long seg-
ments are successively broken down into shorter segments [113]. Similarly, this can be
done bottom-up where events and segments are successively grouped to larger segments
[113]. An example for the latter is Piece wise Linear Representation, where time series
of defined length are aggregate such that the variance of an approximation error per
unit is minimized [116]. Second, this includes sliding-windows, where fixed size windows
are shifted in fixed steps over the temporal data [113]. Third, this might be adjacent
or overlapping windows of fixed size. This is useful when grouping segments as overlap
allows to avoid errors around segment borders. Such windowing was for example suc-
cessfully applied in [120], where a feature based approach is used to perform detection
of situations in inertial sensor data. Fourth, in [117] it was shown, that fixed length
windows might miss out relevant patterns, e.g. if a pattern is spread across multiple
windows or patterns vary in length. One possible solution to this is proposed in [118],
where time series are cut at points of relevant changes, which are called Perceptually
Important Points and are chosen based on sought target patterns. Other solutions use
the entropy to solve this [119].

In general window-based approaches are equally suited for numerical, nominal or het-
erogeneous data types and are thus, are also used in this chapter.

Other approaches cannot be categorized clearly. For instance, this includes the follow-
ing. In [182] time series are segmented based on its trend, where a genetic optimization
algorithm is used to shift boundaries to ensure consistency. In [181] multigrams are used
to identify relevant chunks and in [183] characteristic signatures are identified and used
for segmentation.

Temporal Clustering: Another field that is relevant for this chapter is clustering of
temporal data. This was already discussed in Section 5.1 of Chapter 5. As discussed
there, main types of methods include those that operate on raw data, that use features

93

6 Concurrent Segmentation and Clustering of Event Sequences

for clustering and methods from the field of representation learning.

Segmentation and Clustering: This step includes approaches that use a combina-
tion of segmentation and clustering. Those might be also categorized in either of the
above categories (i.e. segmentation, temporal clustering).

This type of methods might be either approaches that run segmentation and clustering
consecutively or simultaneously.

The former type of methods includes the following. In [114] fixed length windows are
extracted from time series and the mean of features extracted from those. Based on
this patterns in time series are indexed. In a similar approach for indexing the sum
of differences between successive windows is used for characterization [112]. The work
of [115], extracts segments from time series of electricity consumption by using weekly
segments. Based on this multiple features such as variance or skew are used to cluster
those. 50 % overlapping windows were applied on inertial sensor data in [120] to identify
activities, which is done based on static features including mean, energy or entropy of
the segments. Other approaches assume underlying probabilistic processes, which are
learned from the data. This is done in [184], where time series are modeled as Markov
Chains and the parameters of those models that were learned from the data are used as
input for hierarchical clustering. Also, in [185] Markov Random Fields where used to
capture dependencies, when clustering and segmenting time-series.

Simultaneous segmentation and clustering of temporal event data was also previously
done in PM. There, LTS [6] was presented, which defines windows at each data point
and successively reduces those until non-conflicting segments are found. In another ap-
proach, called global trace segmentation fingerprints are extracted from segments, which
are clustered based on frequency [186]. Above that, in [187] an approach to mine longer
macro sequence groups from shorter micro sequences using Markov Models is presented.

The proposed DM pipeline uses the latter type of approaches. Thus, in order to provide
a good choice for this stage, multiple of those approaches are revised and compared in the
following. First, a window-based approach with consequent feature-based clustering is
used. Second, in the same way a simple but effective segmentation approach is presented,
that uses ranges around data points to identify segments and feature-based clustering
to group those. Third, LTS is used and extended for the given scenario.

6.2 Formal Definition and Problem Statement
In this section a formal description of the segmentation clustering problem is given.

6.2.1 Formal Definition

In the previous chapter MSSs were extracted which are now used to identify segments
and clusters from those. This is formalized as follows.

Observed sequence: As illustrated in Figure 6.2, an observed sequence of N sequen-
tial events is considered, i.e. Xpps =< Z1,%2,...xny >€ RZ*N_ where each occurrence
T, = (si,ti)T consists of a state of an event s; € Cat and a time-stamp t; € R*. In

94

6.2 Formal Definition and Problem Statement

the context of the proposed DM pipeline, the observed sequence X, refers to the input
trace K¥, where the state s; of each observation corresponds to the corresponding TV

with its outcome, i.e. s; = (E;.S; = Ej.s;), and the time t, i.e. t; = E;.t.

Clusters and Patterns: X, is assumed to be generated from K generators, i.e. func-
tional procedures, that each produce I}, instances X7, j € [1, Ix], k € [1, K] of a sequence
pattern Xjy.

This pattern is assumed as being exact or as approximately similar as in Section 6.4.
In the further case, X; € R?*Nk is defined by fixed states < si1, sk2, ...8EN, > and its

time stamps < til, tiQ, ti N, For the latter case this fixed state sequence might be
varying in terms of noise and variations of functional procedures.

Further, temporal gaps Atfm. = t{ci — tiFl are assumed to be each drawn from a set of
defined distributions of ¥;(O;) with parameters Oy;. Such instances of Xy, are called a
pattern, while the group of all sequences that are produced by the same generator X, are
considered a cluster. For instance, in an automobile a cluster might be the characteristic
sequence of events occurring when the engine is started, while each occurrence of this
sequence is a pattern.

Cluster sequence: Assuming Oy such patterns of Xy the cluster’s sequence is defined
as Xy =< X1, X2, .. X0k >,

Pattern Assignment: The observed sequence X,;s can thus, be seen as a superposi-
tion of all K cluster sequences Xj. In order to preserve the information of cluster and
pattern assignment, a pattern vector pops Of patterns p; € P is introduced, that assigns
each event j in X5 a globally unique pattern identifier p; from the set of all pattern
identifiers P by setting the entry peps[j] = pi. The subset of events with the same iden-
tifier p; form the event set Xi.

Cluster assignment: The surjective mapping cqps : p; — ¢; maps each pattern with
identifier p; € P to the cluster ¢; € [1, K] it is assigned to. Thus, pys and cups together
define the segmentation and clustering of X ps into K Xj.

This is illustrated in Figure 6.2 where the shapes of the events resemble the clusters and
the separation in each line indicates patterns within that cluster. Note, that in order
to determine those patterns within one cluster the symbols of the other clusters need
to be blanked out. This is especially complex as initially it is not known which symbol
contributes to which pattern.

6.2.2 Problem Statement

In the observed sequence X,,s both the pattern assignment pgps and the cluster map-
ping ceps, as well as the length of each pattern N and the number of clusters K are
unknown.

Thus, as exemplified in Figure 6.1 the aim of the approaches introduced in this chapter

95

6 Concurrent Segmentation and Clustering of Event Sequences

@ R S RRCETEEETEEES
I W@ O
i | S VR [S o---
5 .
B¢
Ap------ e R TR Ao
| | | |

Observed X1Xp X3 Xg---
Cluster | [M—a¢}, —B——Aac}, —M—Acl, -)

Cluster2 [A—ae,—A | [A—nz—A]

Cluster 3 [0—At;, —0A5,0] [@—a,—es0]
Xovs [x1x2 X3 X4Xx5 Xe X7XgXg X10X11X12 X13 X14]
Dobs [12 3 123 314 1 54 5 5]
Cobs {1:1,2:2,4:2,3:3,5:3,6:3}

Figure 6.2: An observed sequence X, is shown. Here colors indicate cluster assignments. pops
assigns each event an identifier, which defines the pattern it belongs to. With cps
a cluster is assigned to each pattern.

is to find an optimal pattern and cluster assignment. That is, in order to segment and
cluster the observed sequence, the task is to learn those parameters from the observed
sequence data. There, patterns might be either overlapping or non-overlapping.

6.3 Extending Existing Approaches

As discussed in Section 6.1 the task of segmentation clustering can be solved partly by
existing approaches. In this Section two of such approaches are discussed and extended
for the scenario of segmentation clustering. This includes a window-based approach and
LTS [6].

6.3.1 Window-based Approach

In this approach the event sequence X s is first segmented into non-overlapping windows
of size n,,, which are consequently clustered based on its content. To automatically find
optimal window sizes the Silhouette index is used.

Initially a good window size is determined by applying the full approach to X,;s with
various window sizes n,, € R,, within a range R,, and by choosing the best n,, based on
the Silhouette index. Given those input parameters the following approach is performed.

1. S