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ABSTRACT: Open-source software platforms are becoming more important for researchers in the
field of autonomous driving. One of the leading platforms for autonomous driving is Apollo,
whose purpose is accelerating the testing and deployment of autonomous vehicles. However,
Apollo’s complex software structure hampers an easy integration of software modules, especially
for motion planning. Moreover, the standalone version of Apollo requires users to upload their
algorithms to a cloud platform to allow testing in diverse scenarios, which is unacceptable for
many companies. In contrast, the open-source CommonRoad benchmark suite contains diverse
testing scenarios in different settings, such as highways, urban environments, dense traffic, and
settings where interaction with bicyclists and pedestrians is particularly important. In addition,
CommonRoad provides a motion planning framework in Python, which enables rapid prototyping
of motion planners, along with additional tools, such as an efficient drivability checker, a map
format converter, and interfaces to the traffic simulators SUMO and CARLA. In this work, we
introduce a Python API between the planning module of the Apollo platform and the CommonRoad
software framework, which bridges the gap between rapid prototyping for planning algorithms
and their validation through real test drives. We demonstrate our interface with two scenarios.

KEYWORDS: Autonomous driving, motion planning, open-source software framework, Com-
monRoad, and Apollo

1. Introduction

Due to the complexity and the wide variety of possible
traffic situations, autonomous driving requires exten-
sive virtual testing as well as real test drives. While
virtual testing of motion planners only requires sim-
ulators (e.g., the open-source traffic simulator SUMO
[1]) or recordings of vehicle movements (e.g., from the
highD dataset [2]), real test drives obviously require
the entire software stack from perception to action.

To bridge the gap between rapid prototyping of
planning algorithms and real test drives, we cou-
pled the Apollo open-source software stack1 with our
open-source software framework CommonRoad [3]
for benchmarking and motion planning of automated
vehicles. Our interface allows one to test arbitrary
motion planners on scenarios from the CommonRoad

1https://github.com/ApolloAuto/apollo

benchmark suite as well as on a real vehicle using
Apollo without the need for any modifications. Ad-
ditionally, our interface can be used for safety verifi-
cation frameworks as introduced in [4, 5, 6]. Further-
more, our interface can record test results in the Com-
monRoad format from Apollo for offline analyses.

1.1. Related Work

Early software stacks for autonomous driving, such
as the autonomous Bertha Benz Memorial Drive [7],
are not publicly available. However, several open-
source software stacks other than Apollo have been
released in the past years (e.g., Autoware2, Nvidia
Drive-Works3, and openpilot4). In particular, Kessler

2https://github.com/Autoware-AI/autoware.ai
3https://developer.nvidia.com/drive/drive-software
4https://github.com/commaai/openPilot
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et al. [8] presented the required steps for setting up
the Apollo software stack in a research vehicle. We
selected the Baidu Apollo software stack to test our
safety verification framework in order to align with
Ford’s collaboration with Baidu5.

Testing a motion planner in a simulation is cru-
cial before running it on a real vehicle. Therefore,
some open-source software stacks can be connected
to a simulator, like Apollo, which can be used with
the LGSVL simulator6 or the CARLA simulator7 [9].
However, LGSVL and CARLA focus on all aspects of
autonomous driving, including perception, which un-
necessarily increases the complexity of testing solely
the motion planning module. Instead, lightweight
simulators such as SUMO [1], which can be coupled
with CommonRoad [10], can be used for traffic simu-
lation. By combining the interface of this work with
[10], one can import generated traffic from SUMO into
Apollo. In addition, one can utilize dataset converters
in CommonRoad to load recordings from the highD
dataset [2], the Next Generation Simulation (NGSIM)
program [11], and the INTERACTION dataset [12] to
perform extensive virtual testing. Moreover, the Com-
monRoad framework provides an efficient drivability
checker [13], which consists of a collision checker, a
road-compliance checker, and a feasibility checker.

1.2. Challenges

The Apollo platform has been continuously updated
since its initial launch. In this work, we provide an
interface with the most up-to-date version Apollo 5.0.
In addition, Apollo 3.0 is the latest version based on
the Robot Operating System (ROS)8, which is the most
commonly used robotics middleware for robot soft-
ware development. For this reason, we present the
coupling with Apollo 3.0 as well. Note that we test our
safety verification modules on Apollo 3.0, whereas the
interface to Apollo 5.0 allows one to test an arbitrary
motion planner.

To integrate CommonRoad modules in Apollo 3.0
and 5.0, we have overcome the following major chal-
lenges:

• Communication between an independent compo-
nent from outside docker and Apollo modules is
quite cumbersome when using Apollo 3.09.

• Apollo 3.0 does not support Python 3, which is
required by CommonRoad.

• Apollo 3.0 runs on Ubuntu 14, which provides
outdated library dependencies and compilers.

5https://media.ford.com
6https://www.lgsvlsimulator.com
7https://github.com/AuroAi/carla_apollo_bridge
8https://www.ros.org
9https://github.com/ApolloAuto/apollo/issues/4892

• There is a lack of clear documentation in Apollo
for integrating one’s own modules.

• Although Apollo 3.0 is ROS-based, it significantly
deviates from ROS so that ROS software modules
are not directly interchangeable.

To tackle these challenges, we have developed an in-
terface for Apollo 3.0 that is directly integrated into
Apollo modules, supports Python 3, and runs on
Ubuntu 14. For the Apollo 5.0 integration, we only
have to convert the attributes of the messages. We
show our approach in detail in Sec. 3.

1.3. Contributions

This paper presents an easy-to-use interface bridging
the CommonRoad motion planning framework with
the Apollo open-source driving stack. Specifically, the
Apollo-CommonRoad interface10

• can be used with arbitrary motion planners and
supports fail-safe planning (see Sec. 2.3);

• provides a well-documented Python API;
• makes a unified interface for several motion plan-

ning tools available, such as an efficient drivabil-
ity checker and a map converter;

• realizes offline generation of traffic from the open-
source traffic simulator SUMO to Apollo;

• enables recording test scenarios in the Common-
Road format for offline analyses.

The remainder of this paper is organized as follows.
In Sec. 2, we present the motion planning framework
in CommonRoad and the associated safety verification
framework. Sec. 3 introduces our interface between
the Apollo driving stack and CommonRoad. In Sec. 4,
we demonstrate our approach in two scenarios. The
paper ends with conclusions in Sec. 5.

2. Preliminaries

We start by introducing Apollo, followed by the mo-
tion planning framework and the safety verification
framework in CommonRoad.

2.1. Apollo Platform

The structure of Apollo 3.0 is shown in Fig. 1 and con-
sists of the following main modules:

• Map engine, which provides structured informa-
tion regarding the road network;

• Localization, which leverages various informa-
tion sources, such as GPS, LiDAR, and IMU to
estimate the current location of the autonomous
vehicle;

10available at commonroad.in.tum.de
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Figure 1. Apollo 3.0 Open Software Platform (Source: https://github.com/ApolloAuto/apollo)

• Perception, which identifies the world surround-
ing the autonomous vehicle;

• Planning, which plans the spatio-temporal trajec-
tory for the autonomous vehicle to execute;

• Control, which executes the planned spatio-
temporal trajectory by generating control com-
mands such as throttle, brake, and steering;

• End-to-end, which combines perception, plan-
ning, and control using machine learning as an
alternative solution;

• HMI, which uses Dreamview as a human ma-
chine interface for displaying the status of the ve-
hicle, testing other modules, and controlling the
vehicle functions in real-time.

Each module runs as a separate CarOS-based ROS
node as well as publishes and subscribes certain top-
ics.

2.2. CommonRoad

The CommonRoad API provides methods for han-
dling CommonRoad [3] scenarios, which contain the
basic information for solving a motion planning prob-
lem. A CommonRoad scenario consists of a road net-
work, the movement of other traffic participants, the
initial state, and a goal region. The CommonRoad API
provides various motion planning tools, including

• a drivability checker [13], which consists of a col-
lision checker, a road-compliance checker, and a
feasibility checker;

• a map converter [3], which converts the Open-
DRIVE and the OpenStreetMap format to the
lanelet format;

• a set-based prediction tool [14], which predicts
all possible future states of other traffic partici-
pants;

• CommonRoad-SUMO interface [10], which cou-
ples CommonRoad with the macroscopic traffic
simulator SUMO.

2.3. Safety Verification Framework

We demonstrate our Apollo-CommonRoad interface
for safety verification as presented in [4]. The basic
idea is shown in Fig. 2: we computed a collision-
free fail-safe trajectory with respect to all possible
legal behaviors of surrounding vehicles at all times

(Fig. 2a). These behaviors are contained in reachable
sets, obtained by set-based prediction [14]. While the
ego vehicle follows its intended trajectory, a new fail-
safe trajectory is computed to ensure safety at any
time (Fig. 2b). In the case where other traffic partic-
ipants deviate from their most-likely trajectory and no
new valid fail-safe trajectory is found, the previously-
computed fail-safe trajectory is executed. The set-
based prediction module and the fail-safe trajectory
planning module are briefly described below.

Host Other

Host: intended trajectory (Apollo planner [15])

Host: fail-safe trajectory (our fail-safe planner [5])

Other: most-likely trajectory (Apollo trajectory prediction)

Other: reachable set (our set-based prediction [14])

(a) Initial Scenario

(b) Future Scenario

Figure 2. Fail-safe planning for online verification [6].

2.3.1. Set-Based Prediction

The set-based prediction tool SPOT [14] predicts the
set of future occupancies of other traffic participants
based on reachable sets, considering physical con-
straints and assuming that traffic participants abide by
the traffic rules. Assumptions for each traffic partici-
pant are removed individually as soon as a violation
of a traffic rule is detected. The set of the overall occu-
pancy of a traffic participant is obtained as

O(t) = O1(t) ∩O2(t) ∩O∁
3(t), (1)

where O1(t) denotes the acceleration-based occu-
pancy, O2(t) denotes the lane-following occupancy,
and O∁

3(t) denotes the complement of the safe dis-
tance occupancy O3(t), as depicted in Fig. 3. For com-
puting the reachable sets, SPOT requires the current
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ego vehicle

obstacle 4

Acceleration-based occupancy O1(t)

Lane-following occupancy O2(t)

Safe distance occupancy O3(t)

(a) Separate occupancies O1(t), O2(t), and O3(t).

(b) Combined occupancy
O(t) = O1(t) ∩O2(t) ∩O∁

3(t).

Figure 3. Occupancy of Obstacle 4 in a Multi-Lane
Highway Scenario. The plot shows the
initial configuration at t0 and the predicted
occupancies O(t) for t ∈ [1.0 s, 1.5 s] [14].

set of possible states of the ego vehicle capturing mea-
surement uncertainties.

2.3.2. Fail-Safe Trajectory Planning

The module for fail-safe trajectory planning requires
an intended trajectory and the set-based prediction of
other traffic participants. Before we can compute the
fail-safe trajectory, the time tTTR, at which the fail-safe
trajectory branches off the intended trajectory, has to
be determined. For tTTR, we choose the Time-To-React
(TTR), which is the maximum time we can continue
the intended trajectory before we have to execute an
evasive maneuver to avoid a possible collision [16].
Starting from the state at tTTR, we compute an eva-
sive trajectory based on [17], which is checked for col-
lision with the reachable sets of other traffic partici-
pants. The fail-safe module returns a verified trajec-
tory consisting of the intended trajectory for t < tTTR
and an evasive trajectory.

3. CommonRoad-Apollo Interface

The interfaces of Apollo 3.0 and Apollo 5.0 have dif-
ferent structures because of the different versions of
operation systems provided by Apollo docker images.
Both interfaces convert Apollo messages to Common-
Road Python classes and vice versa. Since our motion
planner uses a different time step size than the Apollo
planner, trajectories must be resampled via linear in-
terpolation.

3.1. Structure

CommonRoad-Apollo3.0 Interface: Since Apollo 3.0
does not support Python 3, we had to build Python
3 as a Bazel library, which enables us to integrate our
Python scripts directly into the Apollo Planning mod-
ule in C++, as depicted in Fig. 4. Our interface accesses
the C++ objects directly and converts them to Python
CommonRoad objects, which is directly used in the
Python scripts calling our safety modules.

obstacles
(cf.Tab. 1a 1b)

lanelets
(cf.Tab. 1c)
intended trajectory

(cf.Tab. 1d)

Map
Engine planning.cc

commonroad_connect.py

verified
trajectory

(cf.Tab. 1d)

Planning Module

Localization
Module

Perception
Module

Control
Module

Apollo Docker - Ubuntu 14.04

Figure 4. Structure of the CommonRoad-Apollo 3.0
Interface.

CommonRoad-Apollo5.0 Interface: Since Apollo
5.0 allows us to send messages from outside the
Docker system without building a communication
mechanism, we can deploy our planner module as
an independent module running on the host machine,
as shown in Fig. 5, which significantly simplifies our
interface. The interface subscribes the corresponding
messages from Apollo, transfers them to the Common-
Road planner, and publishes the planning messages
generated by the CommonRoad planner to Apollo.

Apollo Docker - Ubuntu 18.04

Map
Engine

Localization
Module

Perception
Module

Control
Module

Host Machine

CommonRoad
Planning Module

lanelets

initial state of
ego vehicle

trajectories of
obstacles

planned trajectories

Figure 5. Structure of the CommonRoad-Apollo 5.0
Interface.

3.2. Message Conversion

The actual conversion of the attributes of the Apollo
messages and CommonRoad Python classes for both
interfaces is very similar. The only difference is that
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C++-Python conversion is used for Apollo 3.0 and mes-
sages subscription and publication is used for Apollo
5.0. Therefore, we only introduce the message conver-
sion for Apollo 3.0. For more details about message
conversion for Apollo 5.0, please refer to the source
code at commonroad.in.tum.de.

As previously mentioned, our software module re-
quires the road network, the initial states of the other
traffic participants, and the intended trajectory of the
planner that needs to be verified, as shown in Fig. 4.
The conversion between the corresponding Apollo
messages and CommonRoad Python objects is shown
in Fig. 6. Since Apollo uses a UTM coordinate system
and CommonRoad uses a local coordinate system, we
convert the coordinates of the obstacles, the waypoints
of the lanes, and the intended trajectory according to
the current position of the ego vehicle, which is pro-
vided by the LocalizationEstimate message.

CommonRoad Classes Apollo ROS Messages

Scenario

LaneletNetwork

Obstacle

Trajectory

MapMsg.hdmap.lane

PerceptionObstacle

LocalizationEstimate

ADCTrajectory

Figure 6. Message Conversion of the
CommonRoad-Apollo Interface.

Table 1 shows how we convert each attribute of
Apollo messages to CommonRoad Python classes.
Note that the intended trajectory of the Apollo plan-
ner consists of multiple ADCTrajectoryPoints, while
the fail-safe trajectory of our planner consists of multi-
ple States.

3.3. Sampling of Trajectories

Since our fail-safe planner has a time step size of ∆t =
0.2s and the time step size of Apollo ADCTrajectory

changes from 0.02 s to 0.1 s, we have to downsample
the trajectory points of Apollo ADCTrajectory to 0.2 s
and upsample the CommonRoad Trajectory to 0.02 s
and 0.1 s. We sampled the points of the trajectories
using linear interpolation at certain time steps. We
denote the first time step of Apollo ADCTrajectory

by tcp, which has a time interval of 0.1 s from its
previous point (e.g., tcp = 13 in Fig. 7a). To down-
sample an Apollo ADCTrajectory to a CommonRoad
Trajectory for t < tcp, we take one point from the
Apollo trajectory every ten points; for t ≥ tcp, we
linearly interpolate points of the Apollo trajectory, as
depicted in Fig. 7a. To upsample a CommonRoad

Table 1. Conversion between Apollo ROS Messages
and CommonRoad Classes

(a) Conversion of Obstacles

Apollo CommonRoad
PerceptionObstacle Obstacle

PerceptionObstacle.position.x -
LocalizationEstimate.pose.position.x

initial_state.position[0]

PerceptionObstacle.position.y -
LocalizationEstimate.pose.position.y

initial_state.position[1]

(PerceptionObstacle.velocity.x2

+PerceptionObstacle.velocity.y2)
1
2

initial_state.velocity

PerceptionObstacle.theta initial_state.orientation

PerceptionObstacle.width obstacle_shape.width

PerceptionObstacle.length obstacle_shape.length

PerceptionObstacle.type obstacle_type

(b) Conversion of Obstacle Types

Apollo PerceptionObstacle.type CommonRoad
Obstacle

UNKNOWN_MOVABLE UNKNOWN

UNKNOWN_UNMOVABLE PARKED_VEHICLE

PEDESTRIAN PEDESTRIAN

BICYCLE BICYCLE

VEHICLE CAR

(c) Conversion of Lanelets

Apollo MapMsg.hdmap.lane CommonRoad Lanelet

id.id.data lanelet_id

left_boundary.curve.segment.
left_verticesline_segment.point

-LocalizationEstimate.pose.position

right_boundary.curve.segment.
line_segment.point
- LocalizationEstimate.pose.position

right_vertices

successor_id successor

predecessor_id predecessor

left_neighbor_forward_lane_id adjacent_left_same_direction

left_neighbor_reverse_lane_id adjacent_left

right_neighbor_forward_lane_id adjacent_right_same_direction

right_neighbor_reverse_lane_id adjacent_right

speed_limit speed_limit

(d) Conversion of Trajectory State

Apollo ADCTrajectoryPoint CommonRoad State

ADCTrajectoryPoint.path_point.x
- LocalizationEstimate.pose.position.x

state.position[0]

ADCTrajectoryPoint.path_point.y
state.position[1]

- LocalizationEstimate.pose.position.y

ADCTrajectoryPoint.path_point.theta state.orientation

ADCTrajectoryPoint.path_point.kappa state.yaw_rate

ADCTrajectoryPoint.v state.velocity

ADCTrajectoryPoint.a state.acceleration

ADCTrajectoryPoint.relative_time state.time_step
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Apollo ADCTrajectory

CommonRoad trajectory

Target Point 1

Target Point 2

Target Point 3

tcp

Source Point 1

Source Point 2 Source Point 3

0.02 s 0.1 s

0.2 s

linear interpolation

(a) Downsampling of an Apollo ADCTrajectory to a CommonRoad trajectory.

Apollo ADCTrajectory

CommonRoad trajectory

Target Point 1

Target Point 3

tcp

Source Point 1
Source Point 2

Source Point 3

Target Point 2 linear interpolation

(b) Upsampling of a CommonRoad trajectory to an Apollo ADCTrajectory.

Figure 7. Sampling of trajectory points between an Apollo ADCTrajectory and a CommonRoad trajectory.
Source points are the points of the trajectory that should be converted, whereas target points are the
points of the trajectory that we obtain after the conversion.

Trajectory to an Apollo ADCTrajectory, we linearly
interpolate points of the CommonRoad trajectory to
0.02 s for t < tcp and 0.1 s for t ≥ tcp, as depicted in
Fig. 7b.

4. Evaluation

We demonstrate our interface and our software mod-
ules in two scenarios, where the second one is more
complex. The maps of the scenarios are offered by
the open-source LGSVL simulator and the obstacles
are generated offline from SUMO [1] through our
CommonRoad-SUMO interface [10].

Fig. 8 shows an example scenario visualized in
Apollo Dreamview. We recorded the test scenarios
in CommonRoad format and visualized the results in
CommonRoad for offline analyses, as shown in Fig. 9.
In Fig. 9a, the predicted occupancies of the other vehi-
cle do not intersect with the planned trajectory so that
tTTR = tend, where tend is the final time step of the in-
tended trajectory. In such a situation, the fail-safe plan-
ner concatenates a braking trajectory to the intended
trajectory to verify the intended plan as safe for all
times. In Fig. 9b, the intended trajectory turns left at
the intersection, which intersects with the predicted
occupancies of the other vehicles. Therefore, the fail-
safe planner computes a braking trajectory from tTTR,
as presented in Sec. 2.

Table. 2 shows the individual computation times for
the two demonstration scenarios of each module. The
computation times have been obtained using a single

Figure 8. Example Scenario of Borregas Ave Map
Visualized in Dreamview. The green boxes
depict the obstacles. The red curve shows
the rough path that the ego vehicle needs to
follow according to the routing module.
The blue curve shows the planned trajectory
by the ego vehicle.

Table 2. Computation Times

Module Single Lane Road Borregas Ave

Apollo-CommonRoad
Interface

3 ms 24 ms

Set-Based Prediction 0.75 ms 22.67 ms

Fail-Safe Planner 46.76 ms 130.47 ms
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ego vehicle intended trajectory fail-safe trajectory

predicted occupancies other vehicle

t = 0 ms

t = 40 ms

t = 120 ms

(a) An example scenario within a single lane road
map containing one obstacle.

t = 0 ms

t = 240 ms

t = 560 ms

(b) An example scenario within Borregas Ave map
containing four obstacles.

Figure 9. Example Scenarios Generated in Apollo 3.0
and Visualized in CommonRoad.

core on a machine with an Intel Xeon W-2155 3.30 GHz
processor and 32 GB of DDR4 2666 MHz memory.

5. Conclusion

In this paper, we present an interface between the
planning module of Apollo and the open-source Com-
monRoad motion planning framework. Our interface
converts the road network and obstacle information
between Apollo and CommonRoad. Combining the
presented interface and the CommonRoad-SUMO in-
terface, we can generate traffic for offline testing in
Apollo. Developers can first test their planners in
diverse scenarios from the CommonRoad benchmark
suite and directly on a real vehicle afterwards us-
ing the Apollo platform with our interface. We have
demonstrated our interface and our safety modules
in a simple two-lane scenario as well as a complex
urban scenario. Numerical experiments confirm the
real-time capability of our software.
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