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Abstract—Machine perception is a key challenge towards
autonomous systems. Especially in the field of computer vision,
numerous novel approaches have been introduced in recent years.
This trend is based on the availability of public datasets. Logistics
is one domain that could benefit from such innovations. Yet, there
are no public datasets available. Accordingly, we create the first
public dataset for scene understanding in logistics. The Logistics
Objects in COntext (LOCO) dataset contains 39,101 images. In
its first release there are 5,593 bounding-box annotated images.
In total 151,428 instances of pallets, small load carriers, stillages,
forklifts and pallet trucks were annotated. We also present and
discuss our data acquisition approach which features enhanced
privacy protection for workers. Finally, we provide an in-depth
analysis of LOCO, compare it to other datasets (i.e. OpenImages
and MS COCO) and show that it has far more annotations
per image and also a considerably smaller annotation size. The
dataset and future extensions will be available on our website
(https://github.com/tum-fml/loco).

Index Terms—Dataset, Object Detection, Logistics, Perception

I. INTRODUCTION

Since AlexNet’s [1] winning entry in the ImageNet [2]

Large Scale Visual Recognition Challenge 2012, the field of

computer vision has continued to make great strides. This is

due to the fact that cutting-edge computer vision approaches

such as object classification, object detection or panoptic seg-

mentation are considered to be an enabling technology for new

applications throughout a multitude of sectors. The availability

of large, public datasets is perhaps the most important factor

in this success of machine learning in computer vision.

Current datasets mostly focus on common scenes and

objects [2]–[4] or task specific use-cases (e.g. autonomous

driving [5], remote sensing [6]). To date, the industrial sector

in general and logistics in particular has not displayed any

interest in this respect, although enhanced environment per-

ception capabilities are deemed necessary to enable intelligent

material flow. As a result of increased digitalization and

autonomization, current research in logistics is confronted with

similar problems as in the field of robotics or autonomous driv-

ing. However, the environment, as well as the hardware (i.e.

sensors and compute) in industry is fundamentally different

compared to previously mentioned application areas.

In order to overcome these problems, we are releasing the

first publicly available dataset that depicts logistics objects

in realistic logistics scenes. In its first release, the Logistics

Objects in Context (LOCO) dataset considers pallets, small

load carriers, stillages (also known as lattice boxes), forklifts
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Fig. 1. Logistics-specific objects. Pallets (a), small load carriers (b), stillages
(c), forklifts (d) and pallet trucks (e) are common objects within the logistics
domain.

and pallet trucks (illustrated in Fig. 1). Our dataset reflects

previously mentioned challenges and offers a first basis for

combining current computer vision research with industrial

environments. In addition, LOCO might also point out new

directions for basic research in the field of computer vision as

a result of increased requirements (e.g. class imbalance, small

object size, etc.) as further discussed in Sec. IV.

To date, generating a scene understanding dataset for

logistics has failed most probably due to one of the following

problems: No images on the web. In contrast to common

images, only a few logistics images are available online

which could be used to create a dataset. Furthermore, those

images that are available are often press images which

have little to do with real logistics environments. Economic

pressure. Logistics environments can almost always be found

in companies that pursue an economic goal, and therefore

image recordings are viewed critically, as they might deliver

information to competition. Personal privacy. Furthermore,

capturing images of workers is needed in order to create

a realistic dataset. At the same time, however, it must be

ensured that there is no invasion of a worker’s privacy in

taking and publishing pictures.

Our contributions are two-fold and can be summarized as

follows:

a) Logistics Objects in COntext (LOCO) dataset. This is

the first publicly available, annotated dataset focusing

on object and scene understanding within the logistics

domain.

b) Image acquisition approach with privacy protection. In

order to meet the aforementioned requirements for image
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acquisition, we introduce a new method to ensure that

workers’ privacy is always protected.

II. RELATED WORK

Wide-ranging datasets. One key element for successful

machine-learning-based computer vision is a representative

dataset. Current datasets try to cover different tasks like image

classification, object detection or semantic segmentation. One

approach for datasets is to cover as many different classes and

tasks as possible, allowing a more general neural network to

be trained [2]–[4], [7]. As implied by the name, the Common

Objects in Context (COCO) datasets goal for example is to

cover everyday scenes, contributing over 200,000 labeled

images, including 80 object categories [7]. The Developers

of the Open Image dataset [4] collected their data by using

Flickr as an image source, downloading all accessible images

within the Creative Commons Attribution (CC-BY) license,

and therefore the dataset was not designed for a specific

purpose, it instead tries to cover as many different tasks,

scenes and classes as possible.

Specialized datasets. Furthermore, more specialized datasets

are available, covering specific tasks often related to certain

challenges within diverse use-cases. ScanNet [8] provides

12.5 million images created from 1513 3D-scanned indoor

environments used for 3D object classification and semantic

voxel labeling. Moving from single rooms to outdoor en-

vironments, CityScapes [9] was created to train models to

semantically understand urban street scenes, containing 30

different classes captured in 50 different cities. To address

the field of autonomous driving and enhance driver-assistant

systems, several datasets exist: The India Driving Dataset

[10] contains 46,588 images for object detection and 10,003

for segmentation, captured from a camera mounted on a

car in India. The KITTI dataset [5] was also introduced

for autonomous-driving-related challenges, like scene flow

estimation [11], and road-area and ego-lane detection [12].

In industrial environments datasets mostly focus a specific

tasks rather than scene understanding: MVTec Industrial 3D

Object Detection Dataset (MVTec ITODD) [13] was created

to allow object recognition for different industrial objects,

containing 38 different objects like cylinders, clamps and

screws. The dataset contains images as well as information

about the object, such as pose, diameter and symmetry. Due

to the manifold industrial environment, it only covers a small

range of objects.

Despite the vast amount of wide-ranging and specialized

datasets available, most industrial areas have still not been

covered. To tackle the lack of data in the logistical environ-

ment, we created the LOCO dataset in order to accelerate

and improve research based on scene understanding in logistic

environments.

III. DATA ACQUISITION APPROACH

In contrast to common datasets, it is not sufficient to

create a realistic logistics dataset by crawling images from

the web, due to the amount of available images and the fact

that their content does not represent realistic environments.

Consequently, we decided to record images using a mobile

platform in various logistics warehouses, automatically pre-

processing and subsequently annotating them. The following

chapter gives an insight into the process and describes its key

features.

A. Image Collection

Data acquisition forms the basis for our dataset and is

decisive for its quality. From a sensor-technology point of

view, five different cameras were chosen to record the dataset,

in order to increase the variance of the captured images. On

the one hand, low-cost consumer hardware was selected, and

on the other hand established computer vision cameras such as

the Microsoft Kinect 2 are used. However, industry trends also

influenced the selection: Intel Realsense cameras for example

are already being used on a large number of mobile robots

in logistics. High-level camera information can be found in

Table I.

In order to ensure good portability, the cameras were

mounted on a mobile unit (see Fig. 2 (a)). Special fixings

(see Fig. 2 (b)) hold the cameras in place while driving, but

also allow easy re-orientation. The cameras were mounted

both in and perpendicular to the direction of travel at different

heights. These measures ensure a high variance of the camera

perspective throughout the dataset. The cameras were not

intrinsically calibrated. We did not do an extrinsic calibration

either, as we changed the positions and angles of the cameras

on the mobile unit during the recording in order to increase the

image variance by introducing novel viewpoints. The effort for

an extrinsic calibration of all cameras after each re-orientation

would have been too high. Moreover, time delays during the

recordings in productive environments at the companies had

to be minimized. In addition to the cameras, the mobile unit

is equipped with a mobile power supply (i.e. battery and con-

verter) and two recording computers. The recording process

is as follows: the mobile unit is moved through the logistics

environment and the computers store images at a frequency of

one hertz. During recording, the position of individual cameras

is changed to further increase the perspective change.

While recording, it is possible to take pictures of employees

at work. On the one hand, this is an intentional feature in

order to create a representative dataset. On the other hand,

this would endanger the employee’s privacy. To resolve this

discrepancy, neural networks are deployed for automated face

recognition. Even before an image is saved on the hard drive,

faces are recognized and made unrecognizable via pixelation

(see Fig. 2 (c)). The automated process step is supplemented

by a manual annotation step, where possible false positives

are manually annotated and pixelated.

Lastly, potential companies in different sectors were iden-

tified, contacted and images were recorded. Again, emphasis

was put on the variance of the selected warehouses in order

to keep the information entropy of the dataset high.



TABLE I
CAMERAS IN USE. IMAGES WERE CAPTURED USING DIFFERENT CAMERAS

(I.E. ACTION CAMERA, GAME CONSOLE CAMERA, WEBCAM, ETC.) IN

ORDER TO ENSURE A DIVERSE DATASET

Camera Data Resolution Field of View (HxV)
in pixel in degrees

MS Kinect v2 RGBD 1920 x 1080 84.1 x 53.8
Intel Realsense D435 RGBD 1920 x 1080 91 x 65
SJCAM SJ-4000 RGB 1920 x 1080 170 x N/A
MS LifeCam HD-3000 RGB 1280 x 800 68.5 x N/A
Logitech C310 RGB 1280 x 800 60 x N/A

(a) (b)

(c)

Fig. 2. Data acquisition with privacy protection. (a) We mount five cameras
on our mobile unit using special fixings (b) to be able to re-adjust the camera
perspective. (c) In order to ensure workers’ privacy is protected, we deploy a
two-step blurring approach.

B. Image Preprocessing

In total, 64,993 color images were captured. Before anno-

tation all images underwent a three-step preprocessing pro-

cedure. These steps were chosen in order to enable high-

quality annotations and maintain high information entropy of

the dataset per image.

Step 1: Removing blurred images. This step eliminates

images that are too blurry due to extensive motion, making

them unrecognizable and therefore un-annotatable, even for

experts. Variance of Laplacian was chosen as a measure

for blurriness. Images exceeding an empirically determined

threshold were excluded. In total, 17,109 images were re-

moved due to blurriness.

Step 2: Removing similar images. Here we aim to increase

the information entropy of the dataset per image by removing

images with the same structural content from the dataset.

This simplifies the annotation effort and at the same time

ensures the datasets balance. In order to analyze the similarity

of the images, they were sorted by acquisition time, and

the structural similarity [14] of two consecutive images was

calculated. The exclusion criterion is again an empirically

determined threshold. In total, 8,783 images were sorted out

due to structural similarity.

Step 3: Random sampling. Finally, 15 % of the remaining

images were randomly selected for annotation. Here, too, our

goal is to maximize the information entropy of the dataset per

image while minimizing the annotation effort.

C. Image Annotation

Annotations were generated using the COCO-Annotator1.

The images were annotated using bounding boxes. We ex-

tended the annotator in the form of a dedicated bounding

box tool, new hotkeys and additional automation to make

labeling more ergonomic, efficient and smooth. The majority

of changes were fed back into the project. Lastly we included

a blurring mechanism which allows the automatic blurring of

certain bounding boxes. This is used to blur faces which were

not detected by the neural network.

Since the object classes are logistically specific, annotators

had to be trained prior to the start. During this training,

object classes were explained and exemplified using images.

Additionally a logistics-specific compendium and experts were

available for further exchange. To ensure consistent annotation

results, only a single class was selected at a time and annotated

throughout a subset, before the annotation of the next class was

started. As far as possible, annotators were only assigned to

one object class. Finally, samples were taken from each subset

for validation purposes.

IV. DATASET STATISTICS, BENCHMARKS AND

PRELIMINARY ANALYSIS

LOCO consists of 39,101 images grouped into five image

subsets. There are 5,593 labeled images, totalling in 151,428

human-labeled annotations over five different logistics-specific

object categories: Small load carrier, pallet, stillage, forklift

and pallet truck. Each subset represents a specific warehouse

and contains images acquired using our previously described

approach. Images are stored in JPEG format. Annotations are

provided in COCO format. LOCO and future extensions will

be available on our website (https://github.com/tum-fml/loco).

A. Statistics

To better illustrate the dataset and the possible challenges

for computer vision applications in logistics, we analyzed

LOCO in its current release with respect to object class

distribution, number of annotations per image and object size

distribution, and compared it to COCO and OpenImages. The

object class distribution is illustrated in Fig. 4. This shows

the unbalanced character of the application specific dataset.

In particular, classes of the super-category load carrier (i.e.

pallet, small load carrier and stillage) are represented 43 times

more often than objects of the super-category transportation

vehicles (i.e. pallet truck, forklift).

1https://github.com/jsbroks/coco-annotator

https://github.com/tum-fml/loco
https://github.com/jsbroks/coco-annotator
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Fig. 3. LOCO sample images. The figure shows different object categories labeled throughout different subsets. For illustration purposes, only labels of
specified classes are shown. Note the object difference within classes (e.g. pallet truck), image quality due to different cameras, and the contextual difference
within subsets. In addition, subset four and five do not contain stillage instances, as they are not common within distribution centers.
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Fig. 4. Number of annotations per class in the LOCO dataset.

Moreover, the number of annotations per image in LOCO’s

subsets was evaluated and compared. A cumulative density

histogram in Fig. 5 highlights the difference between the

datasets under consideration. The domain difference between

logistics and other common datasets is apparent: While half

of the images in common datasets have fewer than five

annotations per image, our dataset provides on average 31.1

annotations per image across the subsets. Finally, the instance

size of the different classes was examined, compared and

plotted in Fig. 5. The graph shows the relative bounding

box size cumulated over all annotations within a dataset.

Once again, a difference can be observed: 90 % of LOCO’s

annotations have a relative bounding box size of less than 2 %.

In comparison, less than 25 % of annotations in OpenImages

training set and approximately 70 % of annotations in the

COCO dataset cover the same relative size, meaning that

there are considerably more small annotations in the LOCO

dataset. In summary, analysis and comparison of the LOCO

dataset showed that its classes are unevenly distributed, and

that, on average, LOCO has more annotations per image

than the COCO and OpenImage datasets. Additionally these

annotations are much smaller.

B. Benchmark

To be able to compare the detection performance of different

models, we also define the LOCO dataset benchmark. We

specify a training and evaluation split which, unlike other

datasets, is not random. On the contrary, we use subsets
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Fig. 5. Statistics of the LOCO dataset. Top: Cumulative density function of annotations per image for LOCO, COCO and OpenImages. Bottom: Cumulative
density function of object size for LOCO, COCO and OpenImages. Note the logarithmic scale.

to perform the training and evaluation split, since each of

them corresponds to one particular logistics environment. This

guarantees that the training and evaluation sets are disjoint

from each other, which implicitly shifts the focus in machine-

learning applications towards generalizable models, since cer-

tain conditions (i.e. scene, lighting, color) may have not been

encountered in the training set. We divide the five subsets as

follows: subsets two, three and five make up the training set,

whilst subset one and four serve for evaluation purposes. This

results in a ratio of 3/5 training and 2/5 validation split. The

subsets were combined to best reflect the class distribution

over both, training and validation set. The validation set

has 1.96% more pallet truck instances, 8.55% more pallet

instances, 0.57% more SLC instances, 7.2% fewer stillage and

48.16% fewer forklift instances. As usual for bounding box

detection, results are calculated using mean average precision

as the key performance indicator.

C. Preliminary Analysis

Finally, we present first results of an object detection model

trained on the LOCO dataset. For this purpose, we used the

Darknet2 and Detectron23 framework to train YOLOv4-608,

YOLOv4-tiny and Faster R-CNN (R50-FPN-3x). All models

were trained and evaluated as described in Section IV-B.

Furthermore, we used pretrained weights available in each

model zoo and fine-tuned on the LOCO dataset with standard

training settings provided by each framework.

For evaluation the average precision (AP) metric [3] at an in-

tersection over union (IoU) of 0.50 was chosen. AP results per

class are documented in Table II. Across the different classes,

this results in a mean AP (mAP) of 41.0%, 22.1% and 20.2%

for YOLOv4-608, YOLOv4-tiny and Faster R-CNN, respec-

tively. Looking at mAP@0.50 only, all models perform worse

2https://github.com/AlexeyAB/darknet
3https://github.com/facebookresearch/detectron2



on the LOCO benchmark compared to the COCO detection

challenge. On average, the fine-tuned models perform 27.5%

(mAP@0.50) worse on the LOCO challenge when compared

to the COCO baseline. As quantitative metrics are sometimes

hard to grasp, we additionally ran the trained model on a video

for illustration purposes. This video was recorded in the chair’s

laboratory and is disjoint from the LOCO dataset. The video

is available online (https://github.com/tum-fml/loco).

TABLE II
PRELIMINARY ANALYSIS. TABLE SHOWS EVALUATION RESULTS FOR

YOLOv4-608, YOLOv4-tiny AND Faster R-CNN TRAINED ON LOCO.

Model YOLOv4-608 YOLOv4-tiny Faster R-CNN

Dataset LOCO COCO LOCO COCO LOCO COCO

mAP@0.50 41.0% 65.7% 22.1% 40.2% 20.2% 60.0%
Small load carrier 27.7% N/A 18.1% N/A 28.3% N/A
Pallet 65.0% N/A 36.2% N/A 19.8% N/A
Stillage 53.1% N/A 31.3% N/A 37.6% N/A
Forklift 31.3% N/A 11.6% N/A 2.9% N/A
Pallet truck 28.1% N/A 13.3% N/A 12.5% N/A

V. FUTURE WORK

We see LOCO as the first release towards a bigger objective;

a combination of datasets that realistically capture industrial

environments, ready to be used for Autonomous Mobile Robot

and Computer Vision research for industrial applications.

Therefore we are working on extending the dataset with addi-

tional data (more subsets), novel data types (e.g. depth data)

and annotations (e.g. segmentation). Furthermore, we will

provide a synthethic version of the LOCO dataset, covering

the same object categories.d

VI. CONCLUSION

We presented LOCO, the first dataset focusing on scene

understanding in logistics environments. To the best of our

knowledge, it is the first publicly available dataset in the

logistics domain. It currently consists of 39,101 images of

which 5,593 were annotated. In total 151,428 pallet, small

load carrier, stillage, forklift and pallet truck instances were

labeled. Furthermore we presented our data acquisition ap-

proach using object detection to automatically blur faces of

workers captured. Lastly we thoroughly analyzed our dataset

and compared it to the OpenImages and COCO datasets.

The comparison shows that our dataset not only has far

more annotations per image but also consists of far smaller

instances.

Considering the low number of annotated images, the un-

even class distribution, the large amount of annotations per

image, the amount of very small annotations (see Sec. IV-A)

as well as the preliminary analysis (see Table II), the developed

dataset and corresponding industry-oriented benchmark can be

regarded as challenging for state-of-the-art object detection

approaches.

In the future, we plan to further extend LOCO to enable

scene understanding for industrial applications.
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