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„Ihr kennt die Welt nicht, Ritter. Was man scheint,
Hat jedermann zum Richter; was man ist, hat keinen.”

Elisabeth in Schillers Maria Stuart
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Abstract

Amongst others, the cruising range of Electric Vehicles (EVs) suffers from overcau-
tious High Voltage (HV) current restrictions during recuperation to prevent damages
caused by deviations between measured and real values. During acceleration, the
HV current restrictions limit the EV’s performance unnecessarily. Decreasing the gap
between measured and real values of HV currents thus serves as basis to increase
the performance as well as the electric cruising range.

My goal is to increase the measurement quality of electric power trains. To keep
the manual calibration effort as low as possible, the correction is executed with self-
adjusting methods from the field of Machine Learning. The measurement correction
shall be feasible for the standard hardware of common series EVs. This means that
I correct measurement values based only on the information carried by measurement
signals without additional sensors. Furthermore, all considered algorithms shall be
feasible for execution on automotive Electronic Control Units (ECUs).

To correct the measurement deviations, I regard two sub-problems separately. To
solve the problem of deviations caused by time delays, I compare several algorithms
for Time Delay Estimation (TDE) and simulate not yet received signals with time series
prediction. A fleet-based approach is my solution of choice to detect deviations caused
by measurement inaccuracies with the help of measurement models and a classifier.
The correction is then executed with Compressed Sensing.

The results of this work show that time delay correction can reduce measurement
deviations from 25 % to below 5 % of the maximum current. The additionally devel-
oped fleet-based measurement correction is able to distinguish between hardware and
measurement faults. Measurement faults caused by drifts and biases can be corrected
with a recovery rate up to 90 %.

My results show that Machine Learning methods can successfully be applied to cor-
rect HV current measurements efficiently enough for automotive ECUs. However, es-
pecially when it comes to retrieve accurate corrections as efficiently as possible, man-
ual calibration is required. It cannot be replaced, but rather be transformed by Machine
Learning.
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Kurzfassung

Die Reichweite von Elektrofahrzeugen leidet unter anderem unter übervorsichtigen
Beschränkungen des Hochvoltstroms (HV-Stroms) zur Vermeidung von Schäden
durch Abweichungen zwischen gemessenen und realen Werten während der Reku-
peration. Während der Beschleunigung begrenzen die HV-Strombeschränkungen die
Leistung des Elektrofahrzeugs unnötig. Das Verringern der Lücke zwischen gemesse-
nen und realen Werten von HV-Strömen dient somit als Grundlage zur Steigerung
sowohl der Leistung als auch der elektrischen Reichweite.

Mein Ziel ist es, die Messqualität von elektrischen Antriebssträngen zu erhöhen.
Um den manuellen Applikationsaufwand so gering wie möglich zu halten, erfolgt
die Messkorrektur mit selbstparametrisierenden Methoden aus dem Bereich des
Maschinellen Lernens. Die Messkorrektur soll auf der Standardhardware gängiger
Serienelektrofahrzeuge ausführbar sein. Das bedeutet, dass ich die Messwerte nur
auf Grundlage der von den Signalen getragenen Messinformationen ohne zusätzliche
Sensoren korrigiere. Darüber hinaus sind alle in dieser Arbeit betrachteten Algorith-
men für die Ausführung auf in der Automobilindustrie üblichen Steuergeräten aus-
führbar.

Um die Messabweichungen zu korrigieren, betrachte ich zwei Teilprobleme getrennt.
Das Problem der durch Zeitverzögerungen verursachten Abweichungen löse ich, in-
dem ich mehrere Algorithmen zur Zeitverzugserkennung vergleiche und noch nicht
empfangene Signale mit Zeitreihenvorhersage simuliere. Durch Messungenauigkeiten
verursachte Abweichungen identifiziere ich mit Hilfe eines flottenbasierten Ansatzes
unter Verwendung von Messmodellen und eines Klassifikators. Die Korrektur führe
ich dann mit Spärlichkeitsannahmen und Komprimierter Erfassung aus.

Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Zeitverzögerungskorrek-
tur die Messabweichungen von 25 % auf unter 5 % des maximalen HV-Stroms kor-
rigieren kann. Die zusätzlich entwickelte flottenbasierte Messkorrektur ist in der Lage,
zwischen Hardware- und Messfehlern zu unterscheiden. Messfehler wie Relativ- und
Absolutfehler können in der vorliegenden Arbeit mit einer Wiederherstellungsrate von
bis zu 90 % korrigiert werden.

Meine Ergebnisse zeigen, dass Methoden des Maschinellen Lernens erfolgreich
angewendet werden können, um HV-Strommessungen mit der für Automobilsteuer-
geräte notwendigen Effizienz auszuführen. Dennoch wird die manuelle Applikation
weiterhin benötigt. Vor allem dann, wenn es darum geht, präzise Korrekturen effizien-
testmöglich auszuführen. Manuelle Applikation kann durch Maschinelles Lernen nicht
ersetzt, sondern lediglich transformiert werden.
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1 Introduction

One of the biggest challenges humanity is facing in these times is the Global Warm-
ing. To slow it down, the emission of greenhouse gases must be reduced [21]. The
reduction can be reached with the help of decarbonization. One of the most promising
approaches for decarbonizing individual transport are Electric Vehicles (EVs) [21].

However, sales numbers of EVs are still small compared to Internal Combustion En-
gine Vehicles (ICEVs) [18]. One of the reasons for the reluctant buying behavior is
the so-called range anxiety. Range anxiety describes the behavior of people not pur-
chasing an EV because of being afraid to break down during a trip due to a completely
discharged High Voltage Battery (HVB) [18].

There are two ways to prevent such a break down. For example, one can increase
the capacity of the HVB. Although relatively simple from a technological point of view,
this approach has several drawbacks. Besides not being sustainable, increasing the
HVB would mean to increase the costs for the production of the anyway most expen-
sive component (up to 45 % of the total price) of an EV [1]. The resulting increased
purchasing price would further hinder fast EV adoption by the markets. A more sus-
tainable and cost-effective alternative is to increase the efficiency of the electric power
train.

1.1 Motivation

The efficiency of the electric power train suffers from measurement deviations. The
measurements recorded in the scope of this thesis show that deviations between mea-
sured and real values can be up to 25 % of the maximum battery current (compare Fig-
ure 1.1). The deviations lead to several restrictions. For example, the battery current
is restricted, when the power train is operating close to its physical limits. Harming the
limits would lead to severe damages in the HVB [11, 13]. The damages would shorten
its lifetime or, in the worst case, lead to a destruction of the HVB. To prevent such dam-
ages, the electric power train restricts the maximum current as shown in Figure 1.2a
with the help of so-called battery protection limits. The limits may not be harmed even
under the worst measurement conditions. To guarantee safe power train operation in
every situation, the maximum possible measurement inaccuracy must be considered
and added as additional offset to the battery protection limits (see Figure 1.2b).

However, these offsets also have disadvantages. For example, when the EV is ac-
celerating, too conservative offsets restrict the vehicle’s performance unnecessarily.
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Figure 1.1: Measurements of all High Voltage (HV) currents of an EV during a test drive [19].
The sum of all currents must be equal to 0 % according to Kirchhoff’s current law. The mea-
surements show that the deviation between the sum of the measured currents (black) and
its real value (0 %) is up to 25 % of the maximum current. Zooming into the measurements
reveals that the measurement deviation is higher than the overall consumption of whole HV
components like the DC-DC converter. The noise spectrum of the deviation is half as high as
the second highest current consumption of this drive 𝑖heat [19].

During the opposite case, when the EV is decelerating, too conservative offsets re-
strict the energy recuperated to the HVB. As a result, the power train’s efficiency and
thus the vehicle’s electric cruising range decrease. The decrease can be avoided by
improving the measurement quality. Better measurements would allow to minimize the
battery protection offsets and thus increase the performance as well as the efficiency
and the cruising range of EVs.

1.2 State of the Art

This section introduces the state of the art concerning the development of EVs. The
development can be distinguished between hardware and software development. The
hardware of an EV is described in subsection 1.2.1, where I present all HV compo-
nents of the electric power train. In subsection 1.2.2, I present the hardware layout
of vehicular processing units. The function and software development process in the
automotive industry is introduced in subsection 1.2.3.

In the scope of this work, the term EV denotes vehicles which are able to drive
purely electric. Examples for these vehicles are Battery Electric Vehicles (BEVs) like
the Mini Cooper SE or Plug-in Hybrid Electric Vehicles (PHEVs) like the BMW 740Le.
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(b) Battery protection limits with additional offsets considering measurement deviations.

Figure 1.2: Battery protection limits for charging and discharging a HVB.

15



1 Introduction

1.2.1 HV Components of an Electric Power Train

Usually, electric power trains consist of the five HV components presented below.
Thereby, each component can have multiple units installed in one vehicle. In the
Audi e-tron 55 quattro, for example, two Electric Machines (EMs) are installed. An
overview of all HV components is pictured in Figure 1.3 which shows the electric power
train of a BMW i3 as an example.

High Voltage
Battery (HVB)

Electric
Heating

Power 
Electronics
of the EM

Electric
Refrigerant
Compressor

DC-DC 
Converter

Electric Machine
(EM)

Figure 1.3: Power train of a BMW i3 with all HV components considered in this thesis.

The Electric Machine (EM)

The EM is the heart of the electric power train. It can be used both as a motor for
accelerating and as a generator for recuperating kinetic energy during braking [11].
Therefore, it can be seen both as a sink as well as a source of electric power.

The EM is coupled with the power electronics. In motor mode, the power electronics
convert direct current into phase currents for the operation of the EM. In generator
mode, this conversion is inverted. From the perspective of power sinks and sources,
EM and power electronics form a unit. Therefore, when speaking of the EM, I always
mean both the EM and the power electronics in the scope of this thesis. The same is
valid for other HV components which make use of power electronics.
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The High Voltage Battery (HVB)

The HVB is the central energy storage system. It can charge or discharge electric
power at any time step. This means that it too can be used as a source and sink of
power. When charging or discharging the HVB, it is always important to respect the
battery protection limits (see Figure 1.2) in order to prevent the HVB of overheating,
over and deep discharge. The prevention is crucial for guaranteeing the longest pos-
sible service life and highest safety of the HVB [11].

The Electric Heating

The electric heating is used to warm up the passenger compartment and, if neces-
sary, vehicular components. Like the other HV components, the electric heating is
connected to the HV circuit [11]. It is a pure sink of electric power.

The Electric Refrigerant Compressor

The electric refrigerant compressor is the counterpart to the electric heating. It is also
supplied with power via the HV circuit [11]. The refrigerant compressor is used for
cooling power train components and the passenger compartment. Like the electric
heating, it is a pure power sink.

The DC-DC Converter

The DC-DC converter supplies the conventional low-voltage onboard grid with electri-
cal power. To this end, it transforms the adjacent HV from usually 90V to 800V to a
Low Voltage (LV) of 12V for passenger cars, 24V for trucks or 48V for some modern
vehicles [11]. The EVs considered in the context of this thesis have a rated voltage of
around 400V in the HV range and 12V in the LV range. All here considered EVs use
the DC-DC converter only as power sink.

1.2.2 Vehicular Information Processing Topology

Most of the automobiles purchased today do not have a central computer. Instead,
they have distributed systems consisting of several dozens Electronic Control Units
(ECUs) [25]. The ECUs are connected to each other and communicate via bus net-
works.

Electronic Control Units (ECUs)

Originally introduced to control the combustion process and thus reduce fuel consump-
tion and pollutant emissions, there are now many areas of application for automo-
tive ECUs [12]. For example, safety-critical systems such as Anti-lock Braking Sys-
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tem (ABS) and Dynamic Stability Control (DSC) are integrated into the vehicle with the
help of ECUs [12, 22].

Sensors

Setpoint Encoders ECU Actuators

Bus

Figure 1.4: Interfaces of an ECU according to [22], greatly simplified from [7].

As depicted in Figure 1.4, ECUs receive input from sensors and setpoint en-
coders [22, 7]. Based on these inputs, the ECUs execute software functions during
operation of the vehicle [22]. Today, the number of functions performed by a control
unit is typically in the three-digit range [22]. Depending on the functions, the ECUs
control actuators accordingly [22, 7].

With the number of features and the sensor signals to be processed in modern ve-
hicles, the demands on the performance of the ECUs also increase. Special high per-
formance ECUs are developed for the field of application of autonomous driving [25].
However, these high performance ECUs are very often in a prototypical development
stage [25]. Due to their advanced processors, these ECUs are more expensive than
common ECUs.

Most of the ECUs available today, especially those applied to the power train of EVs,
do not offer such a high computation performance. Therefore, high performance ECUs
are not considered in this thesis and my requirement for the proposed solutions is that
they can be executed efficiently.

Bus Communication

While the potential of ECUs was limited in the beginning to the connected sensors,
since the 1990s there has been a huge increase in the possibilities of use by net-
working the control units with each other with the help of buses [22]. Buses are time-
synchronized and allow scalable exchange of information while reducing the required
cables [22, 12]. One of the most famous bus systems is the Controller Area Net-
work (CAN) bus [12, 22]. It is the basis of many modern bus systems [12]. Never-
theless, there are many other bus systems, some of which are specialized in specific
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applications [22]. In addition, it is common for certain information from ECUs to be
placed on multiple buses to enable advanced features that require a lot of different
information [12]. An exemplary bus network is shown in Figure 1.5.
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Figure 1.5: ECUs (labeled boxes) and buses (colored lines) of a PHEV BMW 745Le xDrive.
Since the exact number of ECUs and buses depends on the individual optional equipment, this
figure can only serve as an example. The exact number of ECUs and maybe buses may vary
from vehicle to vehicle, including the same model.

1.2.3 The Function and Software Development Process in the
Automotive Industry

In the automotive industry, software development is carried out according to the so-
called V-model. The V-model is diagrammed in Figure 1.6. The model elements func-
tional development and application are the focus of the present work.

Variant Management with Modular Systems

Automotive development is characterized by a strong variety of models and variants to-
day. In the past, there were comparatively few models of a manufacturer with slightly
different characteristics. In 1960, for example, only three different car models were
available from the BMW Group. Today, 60 years later, there are around 50 models.
In addition, there are different variants and equipment. In order to minimize the de-
velopment effort for such a number of models, modular systems are used. These
allow the use of individual components, the so-called modules, in several models with
one-time development effort [24, 22]. In the case of the function modules considered
here, this means that once developed (partial) functions of the electric power train are
used in several vehicle models and variants. The appropriate parameterization of the
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Functional 
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Software
Development

Software
Test
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Overall System

Integration into
System Architecture

Application

Acceptance Test & Overall System Test

System Architecture Test

Functional Test

Figure 1.6: Simplified V-model according to [22] and [21], as it is used in the automotive in-
dustry.

respective functions takes place in the application (see Figure 1.7). By using the func-
tion blocks, the additional effort for the functional development is minimized with an
increased number of models and variants.

Functional Development

Functional development in the sense of this work describes the development of function
modules. This is done in several steps. First, the requirements arising from the speci-
fication of the system architecture are reviewed and further developed [22]. Functional
structures are then developed together with the system architects. In these struc-
tures, total functions are divided into subfunctions according to logical and physical
aspects [24].

The main tasks of functional development include the search for principles of action
and solution variants and selecting and evaluating suitable algorithms to solve the
specified task [24]. Above all, such algorithms are preferable, which allow different
variants only by different parameterizations without changing the functions [24].

Together with the applicators and function testers, function developers create test
cases and test the correct implementation and expression of the functions [22].

The final task of functional development is to create designs and requirements that
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Application
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Figure 1.7: The V-model from Figure 1.6 taking into account modular-based development with
different variants.

serve as the basis for software development [24, 22]. Software development is the
next step in the development process (see Figure 1.6), in which the functions are im-
plemented.

Application

The application or calibration refers to the finding and setting of the optimal parameters
of the developed functions. The parameters can be characteristic values, characteris-
tic curves or characteristic fields. Often, as shown in Figure 1.7, the parameters must
be applied individually for each vehicle model and all different variants of a model [22].
This work is carried out by so-called applicators or calibration engineers either directly
on the vehicle, at test benches or in simulation environments [5]. The number of pa-
rameters to be set usually increases with each model generation due to new functions.
For modern electric vehicles such as those studied in the scope of this work, more than
40,000 parameters are currently standard.

1.3 Scope of the Thesis

The goal of this thesis is to minimize the deviation between measurements and real
values of HV currents in electric power trains. To minimize the effort for the applica-
tors, my goal is to achieve a solution with self-learning methods. To enable solutions
which are feasibly applicable to the software development processes in the automotive
industry, I work with real measurement data from close to production vehicles without
additional sensors.
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Thereby, this thesis answers the following research questions.

RQ1 Can the deviation between measured and real values of the HV currents in the
power train of EVs be corrected?

RQ2 Can this correction take place without additional sensor systems based only on
the measurements available in modern series EVs?

RQ3 What Machine Learning methods can be applied to automotive ECUs to solve
the problems described above?

RQ4 Can the automated correction be implemented without or at least with minimal
additional effort for the applicators?

To answer the research questions, I work with the following hypotheses.

H1 The deviation between measured and real values of the HV currents can be
corrected, if the problems of measurement inaccuracies and time delays are
considered separately.

Hypothesis H1 is reflected by the thesis as follows. While sections 4.1 and 4.2 deal
with the detection and correction of measurement inaccuracies, the sections 3.1 and
3.2 focus on the correction of measurement deviations caused by time delays.

H2a For measurement deviations caused by time delays, the correction can work
without additional sensors. With the help of Kirchhoff’s current law, the deviation
can be minimized by shifting slower signals to the past.

H2b For measurement deviations caused by measurement inaccuracies, Kirchhoff’s
current law alone is not sufficient. To identify the ground truth underlying the
measurements, we additionally need a redundant measurement to verify the
plausibility of the HV current measurements. This redundant measurement can
be provided by a fleet of many equally constructed EVs. For a sufficient large
number of EV, the averaged HV current measurement will tend to the real value.

I focus on hypothesis H2a in section 3.1. In the sections 4.1 and 4.2, I show the
feasibility of H2b. The hypothesis is justified due to the following reasoning.

Clearly, if the whole fleet for a large number of EVs measured on average e.g. an off-
set fault of -5 A, this would be a systematic measurement fault. In the contrary case,
if it was not a systematic fault, the mean measurement fault of the fleet would con-
verge towards 0. In my thesis, I concentrate on non-systematic measurement faults
and show how to correct them. Non-systematic in this context describes the whole
fleet. Nevertheless, from the perspective of an individual vehicle, the error might be
systematic. The problem of systematic measurement faults of the whole fleet is not
the scope of my thesis. That problem can be solved otherwise with the help of quality
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instruments. For example, at the end of the production line, the vehicles as well as
the individual components and sensors have to successfully complete several tests.
There, systematic measurement faults would be recognized and the component sup-
plier would be further investigated to solve the quality issue. My focus is on vehicles
after they left the production line. Some sensors start to drift (which means slowly
increasing measurement faults) with proceeding age. As the production life cycle of
automobiles commonly is around 7 years and the majority of sensors usually works
faultless for very long time, the fleet of vehicles of the same model will always be bal-
anced. Even if the mean of the measurement faults would not sum up to 0, it would
be negligibly small compared to the majority of healthy (and in most cases younger)
vehicles.

H3 Machine Learning methods allow appropriate solutions for the problems de-
scribed above. However, for the sake of feasible implementation on automo-
tive ECUs, the algorithms must be chosen carefully with regard to the required
memory consumption and runtime.

This hypothesis is confirmed in all papers in chapters 3 and 4. In each paper, I com-
pare the runtime of all considered algorithms and try to achieve the best compromise
between runtime and accuracy. All solutions proposed in the papers are selected to
minimize the amount of data that needs to be stored on-board of the EV.

H4 With the help of self-adjusting methods from the field of Machine Learning, the
automated measurement correction can be implemented with minimal additional
effort for the applicators.

Hypothesis H4 is also confirmed in all papers printed in chapters 3 and 4. To keep
the additional effort for the applicators as low as possible, I work only with self-adjusting
methods from the field of Machine Learning. For each sub-problem, I compare several
algorithms to select the most suitable one, depending on the requirements.

1.4 Structure of the Thesis

After introducing the research topic in chapter 1 above, I show the current state of the
research in chapter 2. There, I cite literature addressing related research topics, ac-
centuate the differences to my work and formulate the contribution of this thesis. The
solutions implemented in the scope of this thesis and the corresponding results are
shown in the previously published papers printed in chapters 3 (measurement devia-
tions caused by time delays) and 4 (deviations caused by measurement inaccuracies).
In chapter 5, I summarize the most relevant points of my work.
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2 Related Work and My Contribution

My contribution in this thesis is the development of an automated measurement cor-
rection. The proposed correction is able to detect and correct deviations between HV
current measurements and real values in the power train of EVs. The deviations can
be caused by measurement inaccuracies as well as time delays in the communication
between the HV components. The correction takes place without additional hardware
and bases only on the existing measurement signals alone. Due to its low computa-
tional effort, it is feasible to be executed on the existing ECUs of modern production
vehicles. To the best of my knowledge, this is the first time – besides the already pub-
lished papers in the scope of this thesis – that such a measurement correction system
is proposed for the standard hardware of power trains of EVs.

Therefore, I am not able to compare other researchers’ experimental EVs to the
ones I used to collect and improve measurements in the scope of this thesis. Instead,
I compare different experimental vehicles from the application field of assisted and
autonomous driving. Similar to the electric power train, these applications require ac-
curate measurements of high quality to control the vehicles safely in real time. One of
the outstanding events of research into autonomous driving is the DARPA Urban Chal-
lenge 2007. There, the spearheads of the international research community compete
against each other in autonomously driving through a parkour with several experimen-
tal vehicles. Figures 2.1 and 2.2 show the vehicles participating in the challenge for
the Massachusetts [14, 15] and the Karlsruhe Institute of Technology [10] respectively.

The experimental vehicle (see Figure 2.3) of Jo et al. does not participate in the
DARPA Urban Challenge. Nevertheless, the authors’ goal is to enable autonomous
driving, too. For a sufficiently precise localization, they present an approach for cor-
recting bias faults in Global Positioning System (GPS) measurement data [9]. Like the
two vehicles mentioned above, there are several additional sensors mounted to the
vehicle of Jo et al.

Looking at the vehicles, it is conspicuous that it is very common among the re-
searchers to achieve a higher measurement quality by integrating the maximum of
available sensors and processing units into the vehicles. Although the approach of
increasing mounted hardware is quite expensive from a cost-oriented perspective, it is
trivial from the problem view. Of course, the measurement quality increases by adding
more and better sensors and providing additional resources to process the measure-
ment data.

This attitude contradicts my approach. My goal is to achieve the highest possible
measurement quality with the existing measurements of series sensors in close to pro-
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2 Related Work and My Contribution

Figure 2.1: Talos, the experimental vehicle which participated for the Massachusetts Institute
of Technology in the DARPA Urban Challenge [14]. Its sensor equipment is far beyond the
series sensor set of the basic vehicle Land Rover LR3 [15].

 

Figure 2.2: AnnieWAY, the vehicle that participated in the DARPA Urban challenge for the
Karlsruhe Institute of Technology [10]. The image shows on the left side the additional sensors
mounted on the experimental vehicle. On the right side, you can see the additional computation
units installed in the vehicle, because common ECUs would not be capable to execute the
algorithms proposed by the researchers in real-time.
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Figure 2.3: The experimental vehicle of Jo et al [9]. To enable precise GPS localization, the re-
searchers mount several additional sensors on the vehicle. Amongst the GPS sensors marked
with red circles, the figure also reveals additional Radio Detecting And Ranging (RADAR) and
Light Detecting And Ranging (LIDAR) sensors installed at the front and rear bumper.

Figure 2.4: One of the EVs used to record measurement data for the experiments of this thesis.
Besides data loggers for recording measurement and bus data, no additional signal processing
hardware beyond the scope of a series vehicle is mounted1.
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duction vehicles. When processing information of the measurements, I pay attention
to ensure that the algorithms I use can be realistically carried out on serial ECUs. In
contrast to the experimental vehicles mentioned above, the ones used in the scope of
this thesis are equipped only with sensor sets close to series production as shown in
Figure 2.41. Here, the only additionally mounted hardware is used to log measurement
data to enable simulation on computers outside the vehicle after driving.

Another field of application of measurement correction are the power trains of ICEVs.
In contrast to EVs, Machine Learning approaches are quite common to increase the
measurement quality there.

For example, Froschhammer applies Neural Networks to internal combustion en-
gines in his very inspiring dissertation [6]. The author uses Recurrent Neural Networks
to automatically detect and correct measurement deviations in the injection system of
the power train. In the present thesis, my goal is to extend the idea of automated
measurement deviation detection and correction to electric power trains.

In a related dissertation, Beuschel introduces another example of Neural Net-
works [2]. With the help of Harmonically Activated Neural Networks, the author com-
pensates time delays of measurement signals and hardware deviations. His focus is
on an optimal cylinder running behavior, which is not necessary for EVs. Nevertheless,
the idea to use Machine Learning methods to identify hardware faults and compensate
time delays inspires my work and is extended here to electric power trains.

Lu et al. propose an inspiring approach for measurement deviation detection and
correction for aero engines [17]. Their correction is able to identify different kinds of
measurement faults with the help of an Online Sequential Extreme Learning Machine
with Memory principle (MOS-ELM). Unfortunately, the training time of several seconds
for a MOS-ELM is too long to apply it directly to an EV for online learning during execu-
tion. Nevertheless, Lu’s article, especially the distinction between drift and bias faults,
is very helpful for my work.

Although exemplarily applied to power trains of ICEVs, Wolf et al. introduce a quite
general approach for automotive diagnostics [26]. It is not restricted to individual com-
ponents but rather analyze data independent from its origin. With the help of Long
Short-Term Memory Neural Networks (LSTMs), the authors analyze vehicle data. De-
viations in the data lead them to unusual behavior and allow conclusions about possible
faults. In the paper printed in section 4.1, Wolf and I show that their approach can be
extended to electric power trains. Together with Pereira, we additionally implement
and evaluate State-Space Models as alternative to LSTMs.

If Machine Learning methods are used to optimize EVs, the focus is usually on en-
ergy management strategies.

For example, Li et al. present an interesting approach of Deep Reinforcement Learn-

1I downloaded the image from https://www.press.bmwgroup.com/global/arti
cle/detail/T0293467EN/electromobility-under-extreme-conditions:
-the-bmw-ix3-the-bmw-i4-and-the-bmw-inext-undergo-cold-testing-i
n-the-arctic-circle?language=en on the 25th of March 2019.
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ing for the power trains of PHEVs [16]. Their goal is not to correct measurements but
to develop an energy management strategy for the optimal operation of the internal
combustion engine. Similar to my work, Li et al. pay attention to the runtime of their
algorithms to enable practical applications of their approach. Although the authors
specify the runtime of their approach, they unfortunately do not mention the computa-
tion hardware used.

Cussigh and Hamacher have a similar goal like Li et al. Their goal is to find optimal
driving and charging strategies for BEVs on long distance trips [3]. Unlike Li et al., who
try to optimize the energy consumption during a trip, Cussigh and Hamacher focus on
the minimization of the time required for traveling and charging.

The approach proposed by Straub et al. is very similar to the one proposed in this
thesis [23]. The authors’ goal is to predict the energy consumption of BEVs accurately
with Machine Learning. The Machine Learning methods implemented by the authors
are regression and classification, similar to my approaches in sections 4.1 and 4.2.
Another similarity is that Straub et al. also work with fleet data. However, different to
my work, the authors’ interest lies on the energy consumption of the whole vehicle.
They do not consider explicitly individual HV components.

There are also works on improving measurements of electric power trains. However,
these works only focus on individual HV components. Xiong et al. give an overview of
State of Charge (SoC) estimation methods for HVBs [27]. HVBs are the only applica-
tion area. The methods considered can only be transferred to other HV components
in exceptional cases, if at all. In contrast, the methods presented in my work can be
flexibly applied to all HV components.

Independent from automotive applications, Ren et al. develop a calibration method
for current sensors in the electrolysis industry [20]. Different to our circumstances, Ren
et al. deal with relatively high currents. The current values in the automotive domain
for are usually much smaller. Another difference is that, in contrast to Ren’s system,
automotive HV systems usually do not consist of redundant sensors.

Hamrita et al. propose a generic measurement correction approach for voltage in-
strument transformers [8]. According to the authors, the approach can also be ex-
tended to current instrument transformers. With the help of a model of the transformer,
their approach is able to correct measurements of steady-state waveform signals with
repetitive learning control. Unfortunately, the HV currents of electric power trains are
not necessarily wave-shaped, which makes this approach unfeasible for our problem.
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3 Time Delay Correction

In order to reduce the deviations between real and measured HV currents in the elec-
tric power train and to answer the questions formulated in section 1.3, I split the main
problem into two sub-problems. While the focus of chapter 4 lies on deviations caused
by inaccuracies in the measurements, the following sections concentrate on measure-
ment deviations caused by time delays. In section 3.1, I show how to detect time delays
between the measurement signals. With the knowledge of the emerging time delays,
the resulting measurement deviations can be corrected directly. However, the informa-
tion of not yet received measurements cannot be reconstructed only by knowing the
value of the time delay. Section 3.2 presents a suggestion on how to draw conclusions
about the missing information.

3.1 Time Delay Estimation

The following section consists of two papers. The first paper validates Hypothesis H1
by focusing on measurement deviations caused by time delays.

Consequently, Hypothesis H2a is validated by the solutions proposed in the paper.
All solutions try to find the optimal time delay between two corresponding HV current
measurements, eg. between HVB as source and another considered HV component
as sink. The optimal time delay is determined as the one which minimizes the differ-
ence between the two measurement signals according to Kirchhoff’s Current Law.

Hypothesis H3 is validated by the three evaluated methods Linear Regression, Vari-
ance Minimization and Adaptive Filters.

Regarding Hypothesis H4, it is positive to mention that all proposed methods are able
to learn on the data alone without additional manual parametrization. However, since
this is, in contrast to the approach proposed in 4.1 and 4.2, an online solution, there
results some parametrization from the treatment of the data. For example, it might
be useful to manually apply the length of the input data or the distance between input
samples. Since the number of parameters to be applied manually depends strongly on
the respective problem, the used algorithm and the HV component dependent proper-
ties of the measurement curve, unfortunately no general statement can be made here
about the workload for the applicators.

My contribution to this paper is the fundamental problem statement, the recording
and preprocessing of measurement data, the conceptualization of possible solutions
as well as the choice of the considered methodologies. I implement the very first
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3 Time Delay Correction

versions of the Linear Regression and a Root Mean Square Error (RMSE) Minimization
approach. Xuyi Wu’s contribution is the further development of the RMSE Minimization
approach to a Variance Minimization approach. Furthermore, the full implementation
of the Adaptive Filters approach is her achievement. In the paper, she is responsible for
the sections considering the experimental setups and the results. My responsibility are
the sections regarding the introduction, the state of the art, the concepts, the discussion
and the conclusion and outlook. Furthermore, I review the sections written by Xuyi Wu
before submission and reformulate the sections to meet the reviewers’ requirements
after submission.
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Abstract — Deviations between electric current measure-
ments and reality can cause severe problems in the power
train of electric vehicles (EVs). Among others, these are
unnecessary power limitations and inaccurate performance
coordination during driving or charging. One reason for
these deviations are time delays. In this paper, we present
three different approaches for time delay estimation (TDE)
and evaluate these with real data from power trains of
EVs. Besides the accuracy of the TDE, the focus of our
evaluation lies on the computational efficiency to enable an
execution on automotive electronic control units (ECUs). The
Linear Regression approach suffers even from small noise
and offsets in the measurement data and is unsuited for our
purpose. A better alternative is the Variance Minimization
approach. It is not only more noise-resistant but also
very efficient after the first execution. Another interesting
approach are Adaptive Filters presented by Emadzadeh et
al. Unfortunately, Adaptive Filters do not reach the accuracy
and efficiency of Variance Minimization in our experiments.
Thus, we recommend Variance Minimization for TDE of
current signals in the power train of EVs.

Keywords — automotive; current; electric power train; elec-
tric vehicle; embedded systems; delay; detection; distributed
systems; measurements; power train; sensor; signals; time
delay estimation

I. INTRODUCTION
Kirchhoff’s current law states that the sum of all cur-

rents in an electric system is equal to 0A. However, con-
sidering measurement signals of electric vehicles (EVs)
with distributed sensor systems, the sum of all currents
can differ up to 20% of the maximum current (see
Figure 1). If we look closer at the root mean square error
(RMSE) of the sum of currents RMSE(isum) = 0, 67%,
we realize that it has the same value as the current of the
DCDC converter which is μiDCDC = 0.67% on average.
Another value than 0A for the sum of all currents

indicates that there is a divergence between measurements
and reality. The divergence becomes problematic when
the power train is operating close to the system bound-
aries. For example, there are boundaries for the protection
of the high voltage battery (HVB). The HVB is only
capable to discharge or charge a restricted amount of
power. Higher amounts would threaten the HVB’s lifetime
and safety [1]. Additional offsets might be added to the
boundaries to ensure a safe operation mode even for high
divergences between measurements and reality, although
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Figure 1. Currents of all HV components in an EV on a test
drive. The sum of all currents isum is plotted in black.

According to Kirchhoff’s current law, it should be constantly
0 %. But looking on the measurements shows that the
deviation isum is higher than the current of the DCDC

converter iDCDC. Even its noise spectrum is approximately half
as high as the consumption of the heating iheat, which is the

second largest consumer in this drive.
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Figure 2. The same test drive like in Figure 1 but with the
battery current iHVB (green) shifted by 6 time steps. The sum
of all currents isum (black) is significantly closer to 0 %.

they have some drawbacks. In the charging case, most
notably during recuperation, the HVB might not allow
the full power level, even though it would be capable
to handle it. In the opposite case, the system might not
release requested power, although the HVB could provide
it in reality. As a result, the mentioned offsets restrict the
cruising range and performance of the EV.
Besides measurement faults and sensor uncertainties,

the divergence between measurements and reality is
caused by time delays. The delays result from distributed
sensor systems in the power train. The high voltage (HV)
components have their own electronic control unit (ECU)
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which is connected with the current sensors and processes
the sensor information. The ECUs exchange these in-
formation via bus systems. The buses require individual
amounts of time to send the measurement signals. Thus,
from an ECU’s point of view, the sensor information from
other ECUs arrives with individual delays. Figure 2 shows
an example of the sum of all currents isum being reduced
by shifting a signal by 6 time steps.
The aim of this work is to automatically detect the

time delay between measurement signals from different
sensors. For this purpose, we develop two different ap-
proaches. One of them is based on Linear Regression,
whereas the other one optimizes the estimated variance of
the difference between several signals. We compare our
approaches to other state of the art time delay estimation
(TDE) algorithms and evaluate them with a focus on
precision and run-time efficiency. Apart from allowing
a more accurate power distribution, the automated TDE
helps to reduce the battery protection offset and thus to
increase the performance and range of EVs.
The rest of this paper is structured as follows. Section II

states related work and our contributions. In section III,
we explain the theory behind our work before we describe
the practical experiments in section IV. The results of our
experiments are stated in section V. In section VI, we
discuss the advantages and drawbacks of the proposed
concepts. Finally, we draw our conclusions and give a
short outlook in section VII.

II. STATE OF THE ART

There exists plenty of literature about TDE, although –
to our best knowledge – none of them is tailored to the
specific problem of TDE of current signals in EVs.
Zeng et al. [2] introduce a statistical approach to predict

the delay of a bus message. The message’s content does
not need to be known to achieve high accuracy. This is
different from our scenario where we want to make use
of the information carried by the message. In contrast
to Zeng et al., we do not require to predict the time
delay accurately to milliseconds. For our purposes, an
estimation of the number of delayed discrete time steps
is sufficient.
Svilainis et al. [3] present another interesting approach.

Their goal is to estimate the time passed between emitting
an ultrasonic signal and absorbing its reflection. Like
Zeng et al., they require high precision. Another differ-
ence to our approach is that their algorithms make use
of the pulse form of ultrasonic signals. Our signal as
plotted in Figure 1 can vary in a large range and does
not necessarily contain pulses (e.g. after time step 5,000).
Emadzadeh et al. [4] show an inspiring approach

for detecting the relative position of spacecrafts. For
retrieving the position, they examine an X-ray signal
received by two spacecrafts and determine the time delay
between them. For the TDE, they use Adaptive Filters.
This approach seems very promising to us. We implement

the algorithms of Emadzadeh et al. and compare them
to ours in order to find out, if their approach can be
transferred from X-ray signals to current measurements
in the power train of EVs.
Our contribution is the development of a regression-

based and a Variance Minimization-based algorithm for
TDE. We transfer the ideas introduced by Emadzadeh et
al. to the domain of currents in the HV system of EVs
and compare the results to our approaches in matters of
accuracy and computational performance.

III. CONCEPTS
In this section, we introduce the algorithms and shortly

explain the concepts from other authors which we imple-
ment and compare for TDE. From now on, for the sake
of easier understanding, we focus on the current of the
electric machine (EM) iEM and the HVB iHVB (without
other consumers than the EM) as examples. Nevertheless,
the proposed methods can be extended to every current
signal in the HV system of an EV. Furthermore, we
inverse the sign of iHVB from now on to make its shape
similar to the one of the EM. Thus, we can treat the HVB
current signal as delayed or preceded version of the EM
respectively.
Our goal is to find the time delay td in a bus system

which can be described as
x1(t) = i1(t) + n1(t)

x2(t) = i2(t − td) + n2(t − td),
(1)

where t stands for the time step, x1(t) is the measurement
signal of the faster component, x2(t) describes the slower
component’s signal, i1(t) and i2(t) describe the corre-
sponding currents and n1(t) and n2(t) are noise terms [4].
As we cannot retrieve the currents i1(t) and i2(t) di-
rectly, we cannot minimize the difference between i1(t)
and i2(t). Instead, we directly minimize the difference
between the two measurement signals x1(t) and x2(t).

A. Linear Regression
Our first approach is to use Linear Regression to

identify the basis functions of two received signals and
compare the horizontal offset between these functions. As
degree of the basis function, we choose a parabola for two
reasons. First, the sampling frequency of our measure-
ments is high enough to fit the signals with a parabola
for a short time duration. Second, the comparison of the
horizontal offset is easiest with a parabola because it only
has one extremum.
We collect the last M measurements xk of the HV

components k ∈ {EM,HVB} in a measurement vector
yk =

(
xk(t) xk(t−1) · · · xk(t−M + 1)

)
.

Then, we retrieve the weight vector
wk =

(
wk,0 wk,1 wk,2

)T
with Linear Regression [5]

according to

wk =

(
N∑

n=1

φn(φn)T

)−1 N∑

n=1

yn
kφ

n. (2)
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Here, the notation yn
k and φn represents the n-th column

of yk and φ, respectively. The so-called design matrix

φ =

⎛
⎜⎜⎜⎝

1 t t2

1 t−1 (t−1)
2

...
...

...
1 t−M + 1 (t−M + 1)

2

⎞
⎟⎟⎟⎠

T

consists of N = 3 columns in our case.
With the weight vector from (2), we are able to fit a

parabola

fk(t) = wk,0 + wk,1t + wk,2t2 (3)

as basis function to the measurement vector yk.
After retrieving the basis functions in (3), we transfer

them into vertex form

fk(t) = wk,2(t − xk,vertex)
2 + yk,vertex (4)

to identify the coordinates (xk,vertex, yk,vertex) of each basis
function’s vertex. The time delay between the EM and the
HVB current signals is then given by the difference on
the time axis between their vertices according to

td = xEM, vertex − xHVB,vertex. (5)

B. Variance Minimization

Our second approach is to minimize the variance of
the difference between two signals x1(t) and x2(t) by
shifting the signal x2(t) forward.
Like in III-A, we collect the two signals x1(t) and

x2(t) for M time steps. A straightforward idea for the
minimization of the difference between x1(t) and x2(t)
is to minimize their estimated mean squared error (MSE)

MSE(x1(t), x2(t)) =
1

M − Tmax

M−Tmax∑

t=1

(x1(t)−x2(t+td,i))
2

(6)
with different time shifts td,i in a pre-defined range
td,i ∈ [Tmin, Tmax] with Tmax < M . However, our
experiments show that we need a relatively high M to
achieve stable results. We can significantly minimize M ,
if we take the estimated expected value

E =
1

M − Tmax

M−Tmax∑

t=1

(x1(t)− x2(t + td,i)) . (7)

into account. Thus, instead of minimizing the MSE
from (6), we minimize the estimated variance of the
difference between the two signals

σ2 =
1

M − Tmax

M−Tmax∑

t=1

((x1(t)−x2(t+td,i))−E)2. (8)

The time delay between the EM and the HVB current
signals is the td,i that minimizes the variance

td = argmin
td,i

σ2. (9)

As we do not know in the beginning whether xEM(t)
or xHVB(t) is the faster signal, we have to choose one
of them as x1(t) and the other one as x2(t) for the
first execution and try Tmin = −Tmax. From the second
execution on, the value of Tmin and Tmax can be reduced
and chosen recursively, because the EV’s bus system
usually changes its time delay only once in the beginning,
but not during advanced execution. Therefore, we choose
Tmin(t) = td(t−1) − 1 and Tmax(t) = td(t−1) + 1 from
the algorithm’s second execution on.

C. Adaptive Filter

Emadzadeh et al. model the time delay as finite impulse
response (FIR) filter. To find the optimal filter parameters,
they use Least Mean-Squares (LMS) and other related
algorithms. Their approach results in a similar one which
we use in III-B with the difference that they minimize
the MSE instead of the variance. For further details, we
kindly refer the reader to [4].

IV. EXPERIMENTAL SETUP

In this section, we explain the data and the setup for
the experiments to evaluate the performance of the three
concepts for TDE.

A. Data

For the evaluation of the three concepts shown in III,
we use 74 data sets. The data sets contain all currents
of the HV system and are recorded during representative
drives on public roads with close to production EVs. The
recordings correspond to 10 h 33min of driving. For the
experiments, the 74 data sets are divided into 409 sub-
data sets with a maximum length of 10,000 time steps.
The minimum length among the 409 sub-data sets is 1,807
time steps.

B. Experiments

According to Kirchhoff’s current law, we assume that
the sum of the measurements of iHVB, iEM, iheat, icool and
iDCDC is zero. Thus, we estimate the ground truth of the
time delay for each data set by minimizing the MSE of
the complete data set (see equation 6). In this case, M
is the length of the data set, Tmax is 10 time steps and
Tmin is -10 time steps, since the time delay in the EV is
normally smaller than ten time steps.
For the evaluation of the variance mini-

mization concept we test different frame sizes
M ∈ {30, 50, 100, 200, 300}. In the first calculation,
we also choose Tmax = 10 and Tmin = −10. From the
second execution on we select Tmin(t) = td(t−1) − 1
and Tmax(t) = td(t−1) + 1.
In the experiment of the Adaptive Filter concept, we

choose the frame size of 210 as proposed by [4]. Addi-
tionally, we execute our experiments with a more efficient
frame size of 28. We assume the length of the adaptive
filter to be 10. All the other parameters for the used
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Figure 3. Basis functions of iHVB (black) and iEM (red)
simulated by Linear Regression (blue and green, respectively).
The magenta marked points are the vertexes. Their horizontal
difference is 43 time steps in contrast to the real time delay
which is 6 time steps. The wrong TDE is caused by the noise

and the vertical offset of the measurement signals.

algorithms are chosen equally to [4]. Furthermore, we
evaluate five different learning rates for LMS.
For each of the three concepts, we calculate the time

delay every 20th time step. In total, this results in around
90,000 time delay estimations for each concept.

C. Environment

The three concepts are implemented in Matlab R2015b
with Microsoft Windows 10 on an HP R© EliteBookTM840
G3 with an Intel R© CoreTMi5-6300U 2.40GHz CPU and
8 GB RAM.

V. RESULTS

In this section, we present the results of our experi-
ments and evaluate the performance of the three concepts.

A. Linear Regression

The first approach Linear Regression is, to a large
extent, affected by noise and the offset between the two
signals caused by measurement inaccuracies. Especially
this offset leads to an imprecise estimation of the vertices
and thus a wrong estimated time delay. Figure 3 shows
an example for such a wrong estimation. In this data set,
the time delay between iHVB and iEM is equal to 6 time
steps. We train both curves on 200 measurement samples
of their corresponding signal. However, due to noise and
some vertical offset between the signals the vertex of the
slower signal is not only shifted to the right but also to
the top. The shift in vertical direction also affects the
horizontal position of the vertex and results in a wrong
TDE of 43 time steps.
Table I shows the results and the average run-time

of this approach with three different frame sizes. The
run-time grows with increasing frame sizes, whereas the
RMSE becomes smaller. Nevertheless, the RMSEs are in
general very high even for large frames.

B. Variance Minimization

Table II shows the RMSE between the ground truth of
the time delay and the calculated time delay as well as the

RMSE Average Run-Time (s)

Frame Size 30 5.83 · 1010 1.74 · 10−4

Frame Size 200 4.92 · 104 9.80 · 10−4

Frame Size 300 4.47 · 104 1.40 · 10−3

Table I. RMSE AND RUN-TIME ANALYSIS OF THE LINEAR
REGRESSION CONCEPT.

RMSE Average Run-Time (s)

Frame Size 30 2.0696 4.54 · 10−5

Frame Size 50 1.3034 4.70 · 10−5

Frame Size 100 1.2364 4.77 · 10−5

Frame Size 200 1.2215 5.16 · 10−5

Frame Size 300 1.1825 5.79 · 10−5

Table II. RMSE AND RUN-TIME ANALYSIS OF THE
VARIANCE MINIMIZATION CONCEPT.

average of the run-time for each time delay calculation,
corresponding to different frame sizes M (in equation 8).
We can see that the concept requires a relatively short
run-time as it benefits from the recursive calculation only
in the area td,i ∈ [Tmin, Tmax] with Tmin(t) = td(t−1)−1
and Tmax(t) = td(t−1) + 1. In addition, the RMSE
decreases while the size of the frame increases. The
accuracy has a large improvement when the frame is
enlarged from 30 time steps to 50 time steps.

C. Adaptive Filter

Based on the learning rate and parameters in [4], the
Recursive Least-Squares (RLS) algorithm performs better
than the LMS, Normalized Least Mean-Squares (NLMS)
and Least Mean-Fourth (LMF) algorithms (see table III).
Furthermore, we analyze the learning rate for the LMS

algorithm. As mentioned in [4], the learning rate μ is
typically chosen in the range 0 < μ < 2/(Mσ2

u), where
σ2
u is the input signal variance and M is the length of the
filter. Thus, we compare the performance of LMS with
different μ = a/(Mσ2

u) and a ∈ {0.01, 0.05, 0.1, 0.5, 1}.

RMSE Average Run-Time (s)

LMS 2.8972 1.13 · 10−2

NLMS 2.5163 1.31 · 10−2

LMF 2.6138 1.14 · 10−2

RLS 2.276 1.07 · 10−2

Table III. RMSE AND RUN-TIME ANALYSIS OF THE
ADAPTIVE FILTER CONCEPT FOR DIFFERENT ALGORITHMS WITH A

FRAME SIZE OF 210 .
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RMSE Average Run-Time (s)

a = 0.01 3.0451 1.14 · 10−2

a = 0.05 2.3608 1.14 · 10−2

a = 0.1 2.1479 1.14 · 10−2

a = 0.5 2.6484 1.14 · 10−2

a = 1 3.2474 1.14 · 10−2

Table IV. RMSE AND RUN-TIME ANALYSIS OF LMS WITH
DIFFERENT LEARNING RATES AND A FRAME SIZE OF 210 .

RMSE Average Run-Time (s)

a = 0.01 2.8603 2.80 · 10−3

a = 0.05 2.5598 2.80 · 10−3

a = 0.1 2.3994 2.80 · 10−3

a = 0.5 2.4983 2.80 · 10−3

a = 1 3.0781 2.80 · 10−3

Table V. RMSE AND RUN-TIME ANALYSIS OF THE
LMS ALGORITHM WITH A SHORTER FRAME SIZE OF 28 .

In table IV, the RMSE has the minimal estimation RMSE
of 2.1479 with a = 0.1. It is much smaller than the
RMSE of 2.8972 with the fixed learning rate in [4]. For
a too large or a too small a, the performance of the LMS
decreases significantly. This result is expected, since a
too small learning rate leads to slow convergence while a
large learning rate most often misses the optimum.
In addition, we evaluated the LMS algorithm with a

more efficient frame size of 28. As printed in Table V,
the smaller frame size improves the run-time. Although
some non-optimal learning rates improve their estimation
accuracy, which we explain with the drop of local minima
due to the shortened frame, the two best learning rates in
the experiment with the frame size of 210 increase their
estimation errors with the smaller frame size.

VI. DISCUSSION

We discuss the advantages and drawbacks of the pre-
viously described and evaluated concepts in this section.
Linear Regression has the advantage that it can directly

find out the faster component. Thus, one single execution
during the same time step for the same signal is sufficient
even in the beginning, which makes it interesting, if a
computational effective approach is needed. However, its
efficiency suffers from the matrix inversion in (2). Even
worse, it is least accurate of the three proposed concepts
due to noise and vertical offsets between the signals. The
high estimation errors make this approach infeasible for
our purpose. Another drawback is that a parabola is not

always the optimal basis function for the regression of
measurement signals.
The Variance Minimization approach does not require

such a basis function. Unfortunately, it is not able to detect
the faster signal without trying each possible time delay
for both signals. This results in a computational expensive
brute force calculation in the first time step. Afterwards,
it is very efficient because it only must execute basic
math operations and searches only for a restricted number
of possible delays. Compared to the other approaches,
Variance Minimization requires the smallest frame size
to retrieve feasible results. In total, Variance Minimiza-
tion is most accurate and efficient among the proposed
approaches.
Although it is not as efficient and accurate as Variance

Minimization, the Adaptive Filter approach still retrieves
better results than Linear Regression. The best results
for Adaptive Filters, in our case, are reached with the
LMS algorithm and a learning rate of μ = 0.1/(Mσ2

u)
(see Table IV). The learning rate, which must be chosen
manually, is the worst drawback of this algorithm. It can
lead to sub-optimal learning, if the user chooses a wrong
value. In contrast to LMS, the RLS algorithm does not
require a learning rate. However, we see that the RLS
algorithm has lower accuracy and longer running time
than the variance minimization concept (see Tables II
and III).

VII. CONCLUSION AND OUTLOOK

This paper presents three different approaches for TDE
of measurement signals in the power train of EVs. As
automotive ECUs are designed very efficiently, our eval-
uation’s focus lies also on computation complexity and
not solely on accuracy. Unfortunately, Linear Regression
is not suited for our purposes because it suffers too
much from vertical offsets in the measurement data.
But with Variance Minimization, we present a feasible
approach for TDE of distributed sensor systems of EVs.
We recommend to use Variance Minimization due to its
high estimation accuracy and computational efficiency.
Adaptive Filters are also not suited because they require
too large frame sizes and have lower accuracy than
Variance Minimization.
After the introduction of an automated TDE system,

we now know each signal’s delay. However, if we correct
the delay, we move some signals to the past and lose the
measurements corresponding to the latest time steps. This
is correct because in fact we do not receive up-to-date
measurements, only delayed ones from the past. We really
do miss the last measurements and there is a gap between
the last received measurement and the present time step.
Thus, our next work focuses on possible ways to close
this gap by replacing the hidden information about the
missing measurements from the latest time steps.
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3.1 Time Delay Estimation

The next paper is an extended version of the previous one. It has been published in
the scope of a special issue for selected papers of the 10th IEEE International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS). Besides an extended introduction and more extensive re-
search into the state of the art, the extended paper offers a new, optimized version
of the Variance Minimization approach. The optimization consists of a quantification
of the reliability of new input data. If the reliability is not sufficiently large, we do not
update the estimated time delay. This way, our resulting estimated time delay between
two measurement signals becomes more reliable.

Hypotheses H1 and H2a are not affected compared to the previous paper. But Hy-
pothesis H3 is validated even more by the additionally proposed solution. However,
regarding Hypothesis H4, the workload for the applicators unfortunately grows here.
In this case, it is necessary to balance the stability of the results with the workload for
the applicators.

Since the following paper is an extension of the previous one, my contributions here
are the same. Additionally, I am responsible for the extended sections dealing with the
introduction and the state of the art. The development of the new, optimized Variance
Minimization approach is Xuyi Wu’s and Ahmed Ayadi’s achievement. Furthermore,
Ahmed Ayadi is responsible for the subsections explaining and evaluating the method.
Like in the previous version of the paper, it is my task to review all changes made
by the authors as well as to integrate the external reviewers’ feedback to the paper.
Additionally, it is my responsibility to acquire the funding for the publication from the
BMW Group.
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Abstract: Deviations between High Voltage (HV) current measurements and the corresponding real
values provoke serious problems in the power trains of Electric Vehicles (EVs). Examples for these
problems have inaccurate performance coordinations and unnecessary power limitations during
driving or charging. The main reason for the deviations are time delays. By correcting these delays
with accurate Time Delay Estimation (TDE), our data shows that we can reduce the measurement
deviations from 25% of the maximum current to below 5%. In this paper, we present three different
approaches for TDE. We evaluate all approaches with real data from power trains of EVs. To enable
an execution on automotive Electronic Control Units (ECUs), the focus of our evaluation lies not
only on the accuracy of the TDE, but also on the computational efficiency. The proposed Linear
Regression (LR) approach suffers even from small noise and offsets in the measurement data and
is unsuited for our purpose. A better alternative is the Variance Minimization (VM) approach. It is
not only more noise-resistant but also very efficient after the first execution. Another interesting
approach are Adaptive Filters (AFs), introduced by Emadzadeh et al. Unfortunately, AFs do not
reach the accuracy and efficiency of VM in our experiments. Thus, we recommend VM for TDE of
HV current signals in the power train of EVs and present an additional optimization to enable its
execution on ECUs.

Keywords: automotive; current; electric power train; electric vehicle; embedded systems; delay;
detection; distributed systems; measurements; power train; sensor; signals; time delay estimation

1. Introduction

Political guidelines in various countries to decarbonize individual mobility led to an exponential
growth of Electric Vehicles (EVs) in offers and sales. However, one obstacle for the success of EVs is the
so-called range anxiety [1]. Customers are afraid that an EV is not able to provide the range they need
for all of their journeys. To combat range anxiety and increase the range of EVs, there are two different
ways. The first one is to simply increase the size of the High Voltage Battery (HVB). Unfortunately,
this means to increase the size of the most expensive component of an EV, and after all, it is not a very
sustainable way. The second way, which is our solution of choice, is to make EVs more efficient.

Kirchhoff’s current law states that the sum of all currents at a node of an electric system is equal to
0 A. However, considering measurement signals of nodes in the power trains of EVs with distributed
sensor systems, the sum of all currents can differ up to 20 % of the maximum current (see Figure 1).
If we look closer at the Root Mean Square Error (RMSE) of the sum of currents RMSE(isum) = 0.67%,
we realize that it has the same value as the mean current of the DCDC converter µiDCDC = 0.67%.

Sensors 2020, 20, 351; doi:10.3390/s20020351 www.mdpi.com/journal/sensors
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Figure 1. Currents of all HV components in an EV on a test drive. The sum of all currents isum is
plotted in black. According to Kirchhoff’s current law, it should be constantly 0 %. However, looking
at the measurements shows that the deviation isum is higher than the current of the DCDC converter
iDCDC. Even its noise spectrum is approximately half as high as the consumption of the heating iheat,
which is the second largest consumer in this drive.

A different value than 0 A for the sum of all currents indicates that there is a divergence between
measurements and real values. The divergence becomes problematic when the power train is operating
close to the system boundaries. For example, there are boundaries for the protection of the HVB.
The HVB is only capable of discharging or charging a restricted amount of power. Higher amounts
would threaten the HVB’s lifetime and safety [2]. To ensure a safe operation mode even for high
divergences between measurements and real values, additional protection offsets (see Figure 2) might
be added to the boundaries, although they have some drawbacks.

t

i Maximum 
Battery Current

Measurement

Additional Battery
Protection Offset

Measurement 
Tolerance

Figure 2. A simplified example of offsets for protection of the HVB. The measured value (black)
differs from the real value in the range of some tolerance (grey). To prevent exceeding the battery
limit (red, solid) even under the worst measurement conditions, an additional battery protection offset
(red, dashed) is introduced. The same principle is used analogously with negative currents. It can be
extended to other HV components.
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For example, in the charging case, most notably during recuperation, the HVB might not allow the
full power level, even though it would be capable of handling it. Thus, the amount of power charged
to the battery is restricted and the EV loses cruising range while its power consumption increases.
In the opposite case, the system might not release requested power, although the HVB could provide it
in reality. This additional restriction of power decreases the EV’s performance. As can be seen from
the two examples above, minimizing the magnitude of the protection offsets also allows increasing the
performance as the efficiency and the cruising range of EVs.
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Figure 3. The same test drive as in Figure 1 but with the battery current iHVB (green) shifted by six
time steps. The sum of all currents isum (black) is significantly closer to 0 %.

Besides measurement faults and sensor uncertainties [3], the divergence between measurements
and real values is caused by time delays. Figure 3 shows an example of the sum of all currents isum

being reduced by shifting a signal by 6 time steps. The delays result from distributed sensor systems in
the power train as plotted in Figure 4. The High Voltage (HV) components have their own Electronic
Control Unit (ECU) which is connected with the current sensors and processes the sensor information.
The ECUs exchange this information via bus systems. The buses require individual amounts of time
to send the measurement signals. Thus, from an ECU’s point of view, the sensor information from
other ECUs arrives with individual delays (see the Ego ECU in Figure 4). These individual delays
could be compensated easily with a synchronized clock and time stamps as part of each bus message.
However, this solution would have two drawbacks. First, it would increase the bus traffic as not only
the measurement information must be carried by the messages but also the time stamp. As a result,
the EV would either require a faster bus which is able to transport more information, or it would have
to reduce the information exchanged between the ECUs. Second, there exists no clock in the power
trains of modern series EVs which is synchronized with all ECUs at the same frequency as the message
exchange. Usually, the ECUs are synchronized in a longer time frame than they communicate. Thus,
the time stamp solution would require additional or higher performing hardware and increase the
costs for the production of the EV.
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Figure 4. A schematic example of an automotive bus system with higlighted sources of time delays.
Please note that the time delays are highly individual and not necessarily equal, but constant or only
slowly changing. The ECUs can be connected directly or indirectly via other ECUs. The Ego ECU
is not able to reconstruct the time delays, because it only knows the received measurement values
and their last sender. It has no further information about the time passed since the measurement’s
original creation.

The aim of this work is to automatically detect the time delay between measurement signals
from different sensors without additional hardware. For this purpose, we develop two different
approaches. One of them is based on Linear Regression (LR), whereas the other one optimizes the
estimated variance of the difference between several signals. We compare our approaches to other
state-of-the-art Time Delay Estimation (TDE) algorithms and evaluate them with a focus on precision
and run-time efficiency. Apart from allowing a more accurate power distribution, the automated
TDE helps to reduce the battery protection offset and thus to increase the performance, efficiency and
cruising range of EVs.

The rest of this paper is structured as follows. Section 2 states related work and the similarities
and differences to our work. Furthermore, Section 2 highlights the contributions of our work to the
state of the art. In Section 3, we explain the theory behind our work before we describe the practical
experiments in Section 4. The experiments’ results, stated in Section 5, show us the performance of
the algorithms for our use case. Based on this evaluation, we take the best performing algorithm
and optimize it further. The optimization steps can be taken from Section 3.4 and their impacts to
the results from Section 5.4. In Section 6, we discuss the advantages and drawbacks of all proposed
concepts. Finally, we draw our conclusions and give a short outlook in Section 7.

2. State of the Art

There exists plenty of literature about TDE, although—to the best of our knowledge—none
of them is tailored to the specific problem of TDE of current signals in EVs. In the following, we
present several publications about TDE from different fields of application, such as embedded systems,
acoustics, medicine, positioning, aeronautics, process technology, and robotics.

An approach which also deals with EVs and time delays is the one by Guo et al. [4]. However,
their approach is similar to ours only at the first look. Their goal is to stabilize a grid of electric sources
and sinks with EVs. For the stabilization of the grid, they propose time delay resistent control strategies
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of smart grids with EVs. The EVs are able to charge bidirectionally. The bidirectional charging is used
to smooth disturbances and respond rapidly to fast occurring changes in the power distribution of
the grid. An example for such a rapidly occurring change in the times of renewable energies is the
power output of wind turbines when a strong wind occurs. Compared to our approach, Guo’s focus
is rather on the control strategy than on the TDE. Another difference with our work is that Guo’s
system is rather macroscopic with lots of different elements and many EVs in the grid. Our system
is instead quite microscopic. We consider a single EV with a power train of around five sources and
sinks. Our communication network might be smaller than the number of HV components as some
consumers might share the same ECU. For example, the heating and the cooling component of an EV
use both the climate control ECU for bus communication.

Kali et al. [5] propose a controller with TDE for Electric Machines (EMs). The TDE is executed
state-based with the help of a model of the EM. The model design demands expert knowledge about
the physical principles of an EM. This is justified for Kali et al. as they require the same knowledge
for their controller. However, for our case, we want to be able to estimate the time delays without
further knowledge about the HV components. Our TDE shall be executable with nothing else than the
available measurement data.

Zeng et al. [6] introduce a statistical approach to predict the delay of a bus message. The content
of the messages does not need to be known to achieve high accuracy. This is different from our scenario
where we want to make use of the information carried by the message. In contrast to Zeng et al., we do
not require predicting the time delay accurately to milliseconds. For our purposes, an estimation of
the number of delayed discrete time steps is sufficient.

Not from the field of electric power trains or bus communication, but from acoustics is the
approach shown by Lourtie and Moura [7]. They use a stochastic approach to model time delays in
an acoustic path environment. Like ours, their environment consists of several sources. However,
in contrast to our scenario, the delay they want to estimate varies with time. In our case, we assume
the time delay to be constant in a short time frame. For longer periods, it might change slowly.
The reason for the slowly changing time delay is that it is caused during the wake up procedure of
the EV. The ECUs wake up in an unsynchronized way. Afterwards, the ECUs are synchronized on a
relatively large time frame (e.g., 1 s), but work based on short time steps (e.g., 10 ms).

Another acoustics application for TDE is shown by He et alii [8]. They use the so-called
Multichannel Cross-Correlation Coefficient algorithm to estimate time delays of speech sources in
noisy and reverberant environments.

Svilainis et al. [9] present another interesting approach. Their goal is to estimate the time passed
between emitting an ultrasonic signal and absorbing its reflection. Like Zeng et al., they require high
precision. Another difference to our approach is that their algorithms make use of the pulse form of
ultrasonic signals. Our signal as plotted in Figure 1 can vary in a large range and does not necessarily
contain pulses (e.g., after time step 5,000).

Mirzaei et al. expand TDE for ultrasonic signals to the field of medicine [10]. The authors introduce
a window-based TDE approach to estimate the time passed between two frames of radio-frequency
data. They compare the results of the new window-based approach to their previously developed,
optimization-based method [11] and to Normalized Cross-Correlation.

Recently, Garcez et al. published their work on a similar problem to ours, but in a completely
different field of application [12]. Like bus systems of EVs, Global Navigation Satellite Systemss
(GNSSs) systems have real-time requirements. Their goal is to minimize deviations between
measurements and real position data. The time delays are caused during the transmission of GNSS
messages, when the signals do not take straight lines of sight, but are reflected on their way or suffer
from noise. The authors propose a tensor-based subspace tracking algorithm to efficiently estimate
time delays of received GNSS signals.

A similar approach is presented by Xie et al. for an indoor positioning sensing system [13].
They sense positions of mobile devices based on the signal strength and the signal’s time delay since
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its transmission from a base station. For the TDE, Xie et al. combine Cross-Correlation with Quadratic
Fitting. This is similar to our LR approach (see Section 3.2), where we try to fit the signals with
quadratic functions to retrieve the delay between them. Like Garcez et al., they have to deal with
the problem that the signals are often reflected and do not take direct lines of sight. Different to
Garcez et al., Xie’s approach takes the strength of the signal into account for retrieving a more exact
position estimation. For our work, we cannot take advantage of this information, because in wire-based
bus systems all signals are equally strong.

Schmidhammer et al. estimate positions of moving, non-cooperative objects in vehicular
environments [14]. Their idea is to estimate the position of an object based on time delays in a
network of distributed receiving and transmitting nodes. In contrast to our work, the networking
nodes of Schmidhammer et al. are not necessarily on-board the vehicle, but can also be mounted on
the road infrastructure.

Emadzadeh et al. [15] show an inspiring approach for detecting the relative position of spacecrafts.
For retrieving the position, they examine an X-ray signal received by two spacecrafts and determine
the time delay between them. For the TDE, they use Adaptive Filters (AFs). This approach seems
very promising to us. We implement the algorithms of Emadzadeh et al. and compare them to ours in
order to find out if their approach can be transferred from X-ray signals to current measurements in
the power train of EVs.

Like Emadzadeh et al., Liu et al. focus on AFs [16]. Compared to our problem of fixed or only
slowly changing time delays, the difference in Liu et al. is that they deal with time-varying time delays.
That makes further processing steps necessary. For example, they require a transition probability matrix
and an initial probability distribution vector to model the time delay changes with a Markov chain.

Park et al. analyze time series data with Autoencoders and Long Short-Term Memory Neural
Networks (LSTMs) to detect faults in industrial processes [17]. The authors emphasize the importance
of TDE for correct fault detection. However, they focus only on time delays caused by their own
fault detection system. Our focus lies on earlier steps in the processing chain. We want to detect time
delays between the input signals before they are passed to other computation processes. Furthermore,
we want to implement algorithms which are able to learn on-board the automotive ECUs and adapt
themselves to new data. As the training of Neural Networks is quite memory intensive and demands
high computational power, they do not belong to our methods of choice.

Close to the application field of industrial processes is the approach of Srinivasa Rao et al. [18].
In their recent article, the authors propose fuzzy parametric uncertainty to mathematically model
systems with time delays. Their goal is to enable a robust controller design. For this purpose, they first
approximate the time delay system as an interval system. After retrieving the intervals, they design an
optimal controller for these. Like Guo et al., Srinivasa Rao et al. focus on how to retrieve an optimal
controller, which is not part of our work. Although they focus on the control of industrial processes,
their article is very general. Besides industrial plants, they also mention potential fields of application,
such as EMs or robot manipulators.

Time delay compensation for robots is the focus of Shen et al [19]. Their focus is on teleoperating
robots which require knowledge about the time delay between the master and the slave robot for
stable operation. The robots and their communication channels are modeled as extended dynamical
system. For this system, Shen et al. develop a cascade observer which is able to control it in a stable
way. The authors assume that a sufficiently accurate value for the TDE is given and concentrate on its
compensation. This is different to our work here. We explicitly want to estimate the time delay.

You et al. develop a proportional multiple integral observer for fuzzy systems [20]. The goal
of their work is the same as ours. They want to minimize deviations between measurements and
real values caused by time delays and measurement inaccuracies. Their time delays are also varying.
Unlike the varying time delays presented before, the ones of You et al. do not vary with time but rather
with states. Their focus is also on industrial processes and not on electric power trains. However, the
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main difference between our works is that You et al. want to minimize time delays and measurement
inaccuracies with the same system.

Our approach follows the divide and conquer strategy and faces the two problems separately.
We focus on the problem of measurement deviations caused by measurement inaccuracies in our
previous work [3]. However, measurement inaccuracies are not part of this work. Here, we assume that
the measurements are appropriately accurate and that the main deviations are caused by time delays
as shown in Figure 1 and Figure 3. Thus, TDE is our solution of choice to minimize the deviations.

Our contribution in this article is the development of a regression-based approach and an
algorithm based on Variance Minimization (VM) for TDE as first presented in [21]. We transfer the
ideas introduced by Emadzadeh et al. to the domain of currents in the HV system of EVs and compare
the results to our approaches in matters of accuracy and computational performance. Our TDE works
only with the data available in modern series EVs and does not require an additional clock. In addition
to [21], we introduce an optimization of the most accurate and efficient of our evaluated approaches.
We further evaluate the optimization both on artificially created data with known ground truth as well
as real drive data with unknown ground truth.

3. Concepts

In this section, we introduce the algorithms and shortly explain the concepts from other authors
which we implement and compare for TDE. From now on, for the sake of easier understanding,
we focus on the current of the EM iEM and the HVB iHVB (without other consumers than the EM)
as examples. Nevertheless, the proposed methods can be extended to every current signal in the
HV system of an EV. Furthermore, we inverse the sign of iHVB from now on to make its shape similar
to the one of the EM. Thus, we can treat the HVB current signal as a delayed or preceded version of
the EM, respectively.

Our goal is to find the time delay td in a bus system which can be described as

x1(t) = i1(t) + n1(t)

x2(t) = i2(t− td) + n2(t− td),
(1)

where t stands for the time step, x1(t) is the measurement signal of the faster component, x2(t) describes
the slower component’s signal, i1(t) and i2(t) describe the corresponding currents and n1(t) and n2(t)
are noise terms [15]. As we cannot retrieve the currents i1(t) and i2(t) directly, we cannot minimize
the difference between i1(t) and i2(t). Instead, we directly minimize the difference between the two
measurement signals x1(t) and x2(t).

3.1. Adaptive Filter

The idea of Emadzadeh et al. is to model the time delay as Finite Impulse Response (FIR) filter.
They define x1(t) to be the faster signal. For each measurement x2(ti) at time step ti, they collect a
row of the last M measurements of the other signal

x1(ti −M + 1 : ti) = [x1(ti −M + 1), x1(ti −M + 2), . . . x1(ti − 1), x1(ti)] . (2)

Then, the authors search for an optimal channel impulse response vector ω∗ such that the deviation
between x2(ti) and x1(ti −M + 1 : ti)ω

∗ becomes minimal. Mathematically, this can be expressed by
the minimization of the expectation value of the Mean Squared Error (MSE) between the measurement
value of the slower signal and the filtered measurement row of the faster signal. It results in the formula

ω∗ = argmin
ω

E
[
(x2(ti)− x1(ti −M + 1 : ti)ω)2

]
. (3)
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This is similar to our VM approach (see Section 3.3) with the difference that we minimize the variance
instead of the MSE. In Emadzadeh’s work, the optimal factor ω∗ is estimated recursively. For the
recursion, the authors implement and compare the four algorithms Least Mean-Squares (LMS),
Normalized Least Mean-Squares (NLMS), Least Mean-Fourth (LMF) and Recursive Least-Squares
(RLS). The optimal time delay estimate t∗d is then the one where the impulse response ω∗ reaches its
maximum, or mathematically

t∗d = argmax
i∈[1,M]

ω∗(i)− 1. (4)

For further details on this approach, we kindly refer the interested reader to [15].

3.2. Linear Regression

Our first approach is to use LR to identify the basis functions of two received signals and compare
the horizontal offset between these functions. As degree of the basis function, we choose a parabola
for two reasons. First, the sampling frequency of our measurements is high enough to fit the signals
with a parabola for a short time duration. Second, the comparison of the horizontal offset is easiest
with a parabola because it only has one extremum.

We collect the last M measurements xk of the HV components k ∈ {EM, HVB} in a
measurement vector yk =

(
xk(t) xk(t−1) · · · xk(t−M + 1)

)
. Then, we retrieve the weight

vector wk =
(

wk,0 wk,1 wk,2

)T
with LR [22] according to

wk =

(
N

∑
n=1

φn(φn)T

)−1 N

∑
n=1

yn
k φn. (5)

Here, the notation yn
k and φn represents the n-th column of yk and φ, respectively. The so-called

design matrix

φ =




1 t t2

1 t−1 (t−1)2

...
...

...
1 t−M + 1 (t−M + 1)2




T

consists of N = 3 columns in our case.
With the weight vector from (5), we are able to fit a parabola

fk(t) = wk,0 + wk,1t + wk,2t2 (6)

as basis function to the measurement vector yk.
After retrieving the basis functions in (6), we transfer them into vertex form

fk(t) = wk,2(t− xk,vertex)
2 + yk,vertex (7)

to identify the coordinates (xk,vertex, yk,vertex) of each basis function’s vertex. The estimated time delay
between the EM and the HVB current signals is then given by the difference on the time axis between
their vertices according to

t∗d = xEM, vertex − xHVB,vertex. (8)

3.3. Variance Minimization

Our second approach is to minimize the variance of the difference between two signals x1(t) and
x2(t) by shifting the signal x2(t) forward.
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Like in Section 3.2, we collect the two signals x1(t) and x2(t) for M time steps. A straightforward
idea for the minimization of the difference between x1(t) and x2(t) is to minimize their estimated MSE

MSE(x1(t), x2(t)) =
1

M− Tmax

M−Tmax

∑
t=1

(x1(t)− x2(t + td,i))
2 (9)

with different time shifts td,i in a pre-defined range td,i ∈ [Tmin, Tmax] with Tmax < M. However, our
experiments show that we need a relatively high M to achieve stable results. We can significantly
minimize M, if we take the estimated expected value

E =
1

M− Tmax

M−Tmax

∑
t=1

(x1(t)− x2(t + td,i)) . (10)

into account. Thus, instead of minimizing the MSE from (9), we minimize the estimated variance of
the difference between the two signals

σ2 =
1

M− Tmax

M−Tmax

∑
t=1

((x1(t)− x2(t + td,i))− E)2. (11)

The time delay between the EM and the HVB current signals is the td,i that minimizes the variance

t∗d = argmin
td,i

σ2. (12)

As we do not know in the beginning whether xEM(t) or xHVB(t) is the faster signal, we have to
choose one of them as x1(t) and the other one as x2(t) for the first execution and try Tmin = −Tmax.
From the second execution on, the value of Tmin and Tmax can be reduced and chosen recursively,
because the EV’s bus system usually changes its time delay only once in the beginning, but not during
advanced execution. Therefore, we choose Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1 from the
algorithm’s second execution on.

3.4. Optimized Variance Minimization

As the results of our experiments (see Section 5) show, the VM concept provides the best results
in terms of RMSE, run-time and required frame size. However, when running this concept in real
time (both on simulated and real data, see Section 5.4), we find that the TDE is unstable and that
the estimated time delay frequently alternates between different values. These many changes of
the estimated time delay contradict the fact that the time delay is rather stable in reality, and that,
if any, changes occur after relatively long periods. Thus, in order to stabilize the TDE, we suggest the
following improvement of the plain VM approach from Section 3.3.

The main idea of the stabilization is to use a statistical test. The test’s purpose is to quantify
the reliability of the input data segment on which the TDE is performed. In fact, we know from
Section 3.3 that the estimated time delay td at time step t minimizes the variance given by Equation (11).
This equation in turn is based on the M last values of both signals. Due to the noise in the data,
the estimation for the next step can jump to a different value, even if the vast majority of data points
(M− 1) are shared between the two steps. The idea is thus to compare at each step the minimal variance
with the second smallest one. If the difference between both in relative terms is not sufficiently large,
we presume that the TDE is not reliable, and consequentially do not estimate a time delay. In this case,
we simply keep the prediction from the last step. Otherwise, we update the estimation to the newly
calculated td.
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Formally, at each time step, we calculate the variance criterion from Equation (11) for each
potential time delay td,i. Let us denote this by σ2(td,i). Then, we know that the least achievable
variance is given by

σ2(t∗d) = min
td,i

σ2(td,i). (13)

The second smallest achievable variance in turn is given by

σ2(t∗∗d ) = min
td,i 6=t∗d

σ2(td,i). (14)

In other words, we minimize the variance over all potential time delays except that which minimizes it
(t∗d). By definition, we have σ2(t∗∗d ) ≥ σ2(t∗d). The intuition is that if the difference between those two
values is not large enough, the noise makes it impossible to tell with high confidence which one is the
real minimizer. The minimum in Equation (13) might result in t∗d by random noise instead of being the
true minimum. Thus, we suggest deciding whether to perform an update based on the criterion

σ2(t∗∗d )− σ2(t∗d)
σ2(t∗d)

> K, (15)

where K is a hyper-parameter defining the minimal percentage error required to perform an update.
Clearly, the larger K, the more severe is the criterion, and the fewer updates are done. Therefore,
we choose K to strike a balance between reliability on the one hand, and being up-to-date on the other
hand. In fact, if we choose K too high, updates are performed only rarely, so that we can miss changes
in the underlying real time delay. If K is chosen too small, then the predictions are more unstable.
We empirically found K = 0.2 to strike a balance between both criteria for our power train data.

4. Experimental Setup

In this section, we explain the data and the setup for the experiments to evaluate the performance
of the three concepts for TDE and the optimization presented above.

4.1. Data

For the evaluation of the three concepts and the optimization shown in Section 3, we use 74 data
sets. The data sets contain all currents of the HV system and are recorded during representative drives
on public roads with close to production EVs. We use bus loggers to record the data. The loggers store
the received measurement signals from all ECUs and write them to a log file during each time step.
After driving, we use the log files to execute our experiments and evaluate our approaches. Thus, the
algorithms get at each time step the same input data which they would receive during execution on an
ECU in the real EV. The recordings correspond to 10 h 33 min of driving. For the experiments, the 74
data sets are divided into 409 sub-data sets with a maximum length of 10,000 time steps. The minimum
length among the 409 sub-data sets is 1,807 time steps.

For the Optimized VM approach, we create an additional data set artificially. The artificial data
set bases upon the real data sets described above. However, instead of computing the time delay
between two real signals, we introduce an artificial signal. This artificial signal is a real signal shifted
by some time steps. We can then compute the time delay between the original signal and its artificially
delayed correspondence. This has the advantage that we exactly know the time delay and thus know
the ground truth.

4.2. Experiments

According to Kirchhoff’s current law, we assume that the sum of the measurements of iHVB, iEM,
iheat, icool and iDCDC is zero. Thus, we estimate the ground truth of the time delay for each real data set
by minimizing the MSE of the complete data set (see Equation (9)). In this case, M is the length of the



Sensors 2020, 20, 351 11 of 18

data set, Tmax is 10 time steps and Tmin is -10 time steps, since the time delay in the EV is normally
smaller than ten time steps.

In the experiment of the AF concept, we choose the frame size of 210 as proposed by [15].
Additionally, we execute our experiments with a more efficient frame size of 28. We assume the
length of the AF to be 10. All the other parameters for the used algorithms are chosen equally to [15].
Furthermore, we evaluate five different learning rates for LMS.

For the evaluation of the VM concept we test different frame sizes M ∈ {30, 50, 100, 200, 300}.
In the first calculation, we also choose Tmax = 10 and Tmin = −10. From the second execution on we
select Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1.

For the Optimized VM, we choose a fixed frame size of 50 time steps. This frame size proved
to be the best compromise between run-time and accuracy in previous experiments as described in
subsection 5.3.

For each of the three concepts, we calculate the time delay every 20th time step. In total, this results
in around 90,000 time delay estimations for each concept.

4.3. Environment

All concepts are implemented in Matlab R2015b with Microsoft Windows 10 on an HP R©

EliteBookTM840 G3 with an Intel R© CoreTMi5-6300U 2.40GHz CPU and 8 GB RAM.

5. Results

In this section, we present the results of our experiments and evaluate the performance of the
three concepts and the optimization individually. The results of all three algorithms compared next to
each other can be found in the next section.

5.1. Adaptive Filter

Based on the learning rate and parameters in [15], the RLS algorithm performs better than the
LMS, NLMS and LMF algorithms (see Table 1).

Table 1. RMSE and run-time analysis of the AF concept for different algorithms with a frame size of 210.

RMSE Average Run-Time (s)

LMS 2.8972 1.13 · 10−2

NLMS 2.5163 1.31 · 10−2

LMF 2.6138 1.14 · 10−2

RLS 2.276 1.07 · 10−2

Furthermore, we analyze the learning rate for the LMS algorithm. As mentioned in [15], the
learning rate µ is typically chosen in the range 0 < µ < 2/(Mσ2

u), where σ2
u is the input signal

variance and M is the length of the filter. Thus, we compare the performance of LMS with different
µ = a/(Mσ2

u) and a ∈ {0.01, 0.05, 0.1, 0.5, 1}. In Table 2, the RMSE has the minimal value of 2.1479
with a = 0.1. It is much smaller than the RMSE of 2.8972 with the fixed learning rate in [15]. For a too
large or a too small a, the performance of the LMS decreases significantly. This result is expected, since
a too small learning rate leads to slow convergence while a large one most often misses the optimum.
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Table 2. RMSE and run-time analysis of LMS with different learning rates and a frame size of 210.

RMSE Average Run-Time (s)

a = 0.01 3.0451 1.14 · 10−2

a = 0.05 2.3608 1.14 · 10−2

a = 0.1 2.1479 1.14 · 10−2

a = 0.5 2.6484 1.14 · 10−2

a = 1 3.2474 1.14 · 10−2

In addition, we evaluate the LMS algorithm with a more efficient frame size of 28. As printed
in Table 3, the smaller frame size improves the run-time. Although some non-optimal learning
rates improve their estimation accuracy, which we explain with the drop of local minima due to the
shortened frame, the two best learning rates in the experiment with the frame size of 210 increase their
estimation errors with the smaller frame size.

Table 3. RMSE and run-time analysis of the LMS algorithm with a shorter frame size of 28.

RMSE Average Run-Time (s)

a = 0.01 2.8603 2.80 · 10−3

a = 0.05 2.5598 2.80 · 10−3

a = 0.1 2.3994 2.80 · 10−3

a = 0.5 2.4983 2.80 · 10−3

a = 1 3.0781 2.80 · 10−3

5.2. Linear Regression

Our first approach LR is, to a large extent, affected by noise and the offset between the two
signals caused by measurement inaccuracies. Especially this offset leads to an imprecise estimation
of the vertices and thus a wrong estimated time delay. Figure 5 shows an example for such a wrong
estimation. In this data set, the time delay between iHVB and iEM is equal to 6 time steps. We train
both curves on 200 measurement samples of their corresponding signal. However, due to noise and
some vertical offset between the signals the vertex of the slower signal is not only shifted to the right
but also to the top. The shift in vertical direction also affects the horizontal position of the vertex and
results in a wrong TDE of 43 time steps.
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Figure 5. Basis functions of iHVB (black) and iEM (red) simulated by LR (blue and green, respectively).
The magenta marked points are the vertexes. Their horizontal difference is 43 time steps in contrast to
the real time delay which is 6 time steps. The wrong TDE is caused by the noise and the vertical offset
of the measurement signals.
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Table 4 shows the results and the average run-time of this approach with three different frame sizes.
The run-time grows with increasing frame sizes, whereas the RMSE becomes smaller. Nevertheless,
the RMSEs are in general very high even for large frames.

Table 4. RMSE and run-time analysis of the LR concept.

RMSE Average Run-Time (s)

Frame Size 30 5.83 · 1010 1.74 · 10−4

Frame Size 200 4.92 · 104 9.80 · 10−4

Frame Size 300 4.47 · 104 1.40 · 10−3

5.3. Variance Minimization

Table 5 shows the RMSE between the ground truth of the time delay and the calculated time
delay. Furthermore, the table shows the average of the run-time for each time delay calculation,
corresponding to different frame sizes M (in Equation (11)). We see that the concept requires a
relatively short run-time as it benefits from the recursive calculation only in the area td,i ∈ [Tmin, Tmax]

with Tmin(t) = td(t−1)− 1 and Tmax(t) = td(t−1) + 1. In addition, the RMSE decreases while the size
of the frame increases. The accuracy has a large improvement when the frame is enlarged from 30 time
steps to 50 time steps.

Table 5. RMSE and run-time analysis of the VM concept.

RMSE Average Run-Time (s)

Frame Size 30 2.0696 4.54 · 10−5

Frame Size 50 1.3034 4.70 · 10−5

Frame Size 100 1.2364 4.77 · 10−5

Frame Size 200 1.2215 5.16 · 10−5

Frame Size 300 1.1825 5.79 · 10−5

5.4. Optimized Variance Minimization

We evaluate the proposed stabilization approach twofold. First, we evaluate it based on simulated
data with known ground truth time delay. Second, we evaluate the approach on real signals. While the
first experiment shows the accuracy of the proposed approach, the second one shows its effectiveness
in providing more stability.

5.4.1. Evaluation with Simulated Signals

In this experiment, we first take a current signal x1(t) from a real-world data set recorded
on-board of an EV. Based on x1, we then create a second signal x2(t) = x1(t− td(t)) + n2(t). Therefore,
the ground-truth time delay td(t) ≥ 0 is a realization of a random jump process that in known
in advance. Furthermore, n2(t) is a white noise process whose variance is chosen such that the
resulting Signal-to-Noise Ratio (SNR) is equal to -10. We then run our VM algorithm with and without
stabilization to detect the delay td(t). Figure 6 shows the results of this experiment.
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(a) A zoom-in of the signals x1 and x2.
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(c) Estimated time delay without stabilization.
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(d) Estimated time delay with stabilization.

Figure 6. Illustration of the TDE estimation procedure using the VM approach with and without
stabilization for the case of simulated signals. Clearly, the estimation is more stable when using the
criterion in equation (15). Waiting for the right moment to perform an update comes however with the
expense of a slightly delayed, yet more reliable, prediction. For example, the jump of td(t) from 1 to 2
was detected with a delay of around 320 steps, which corresponds to around 3.2 seconds.

5.4.2. Evaluation with Real Signals

In this experiment, we take both signals x1(t) and x2(t) from a real-world data set. We then run
the VM approach with and without stabilization, and plot the results in Figure 7.
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(c) Estimated time delay with stabilization.

Figure 7. Illustration of the TDE estimation procedure using the VM approach with and without
stabilization for the case of real signals. Although we do not know the underlying true time delay, it is
again clear that the TDE is more stable using the suggested approach.

6. Discussion

We discuss the advantages and drawbacks of the previously described and evaluated concepts in
this section.

Although it is not as efficient and accurate as VM, the AF approach still retrieves better results
than LR. The best results for AFs, in our case, are reached with the LMS algorithm and a learning rate
of µ = 0.1/(Mσ2

u) (see Table 2). The learning rate, which must be chosen manually, is one drawback of
this algorithm. It can lead to sub-optimal learning if the user chooses a wrong value. In contrast with
LMS, the RLS algorithm does not require a learning rate. However, we see that the RLS algorithm has
lower accuracy, requires longer run-time and more memory for a larger frame than the VM concept
(see Table 6).
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Table 6. RMSE, run-time analysis and frame size of all three concepts compared to each other.

RMSE Average Run-Time (s) Frame Size

Adaptive Filter 2.3994 2.80× 10−3 28

Linear Regression 4.92× 104 9.80× 10−4 200
Variance Minimization 1.3034 4.70× 10−5 50

LR has the advantage that it can directly find out the faster component. Thus, one single execution
during the same time step for the same signal is sufficient even in the beginning, which makes it
interesting, if a computational effective approach is needed. However, its efficiency suffers from the
matrix inversion in Equation (5). Even worse, it is the least accurate of the three proposed concepts
due to noise and vertical offsets between the signals. The high estimation errors make this approach
unfeasible for our purpose. Another drawback is that a parabola is not always the optimal basis
function for the regression of measurement signals.

The VM approach does not require such a basis function. Unfortunately, it is not able to detect the
faster signal without trying each possible time delay for both signals. This results in a computationally
expensive brute force calculation in the first time step. Afterwards, it is very efficient because it must
only execute basic math operations and searches only for a restricted number of possible delays.
Compared to the other approaches, VM requires the smallest frame size to retrieve feasible results.
In total, Table 6 shows clearly that VM is the most accurate and fastest of the three proposed approaches
with the lowest memory consumption.

For the high precision and low run-time, we decide to continue our work with the VM concept.
Before we are able to apply our approach to series production EVs, we require further optimization
as shown in Section 3.4 to stabilize the estimated time delay. This stabilization comes with another
drawback. The algorithm requires more time steps to pass before it adapts to a new delay. Nevertheless,
regarding that succeeding power train control functions require stable inputs, this drawback seems
acceptable for us. Another drawback of the optimization is the threshold value K in Equation (15)
which must be chosen manually. Although it does not require expert knowledge but can be set by trial
and error, we would prefer an automated way for finding the optimal value for K.

7. Conclusions and Outlook

This article presents three different approaches for TDE of measurement signals in the power
train of EVs. As automotive ECUs are designed very efficiently, our evaluation’s focus lies also on
computation and memory complexity and not solely on accuracy. Unfortunately, LR is not suited for
our purposes because it suffers too much from vertical offsets in the measurement data. However, with
VM, we present a feasible approach for TDE of distributed sensor systems of EVs. AFs are also not
suited because they require too large frame sizes and have lower accuracy than VM. We recommend
using VM due to its high estimation accuracy and computational efficiency. As the output of VM is not
stable enough to directly process it to power train control functions of series EVs, we optimize it first.
For the optimization, we introduce a threshold value as additional requirement for changing the value
of the estimated time delay. The new requirement decelerates the detection of changed time delays.
Nevertheless it improves the TDE’s stability and accuracy.

After the introduction of an automated TDE system, we now know each signal’s delay. However,
if we correct the delay, we move some signals to the past and lose the measurements corresponding to
the latest time steps. This is correct because in fact we do not receive up-to-date measurements, only
delayed ones from the past. We really do miss the last measurements and there is a gap between the
last received measurement and the present time step. Thus, our next work focuses on possible ways to
close this gap by replacing the hidden information about the missing measurements from the latest
time steps.
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8. Patents

The TDE for the power trains of EVs is registered at the German Patent and Trade Mark Office
(DPMA) as patent application. Both the VM approach as well as its RMSE-based version for TDE in
the power trains of EVs are registered there as a common patent application. The optimization is
registered as a third patent application resulting from this work.
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Abbreviations

The following abbreviations are used in this manuscript:

AF Adaptive Filter
AR Auto-Regressive
ARIMA Auto-Regressive Integrated Moving Average
ECU Electronic Control Unit
EM Electric Machine
EV Electric Vehicle
FCHEV Fuel Cell Hybrid Electric Vehicle
FIR Finite Impulse Response
GNSS Global Navigation Satellite Systems
HV High Voltage
HVB High Voltage Battery
I Integrated
IDAACS IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications
LSTM Long Short-Term Memory Neural Network
MA Moving Average
MOS-ELM Online Sequential Extreme Learning Machine with Memory principle
LMF Least Mean-Fourth
LMS Least Mean-Squares
LR Linear Regression
MSE Mean Squared Error
NLMS Normalized Least Mean-Squares
N4SID Numerical State Space Subspace System Identification
RLMS Recursive Least Mean-Squares
RLS Recursive Least-Squares
RMSE Root Mean Square Error
SNR Signal-to-Noise Ratio
PCA Principle Component Analysis
TDE Time Delay Estimation
VM Variance Minimization
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3 Time Delay Correction

3.2 Time Series Prediction

The Time Delay Estimation (TDE) proposed in the previous section allows to correct
time delays between measurement signals from different ECUs according to Hypothe-
ses H1 and H2a. But it does not allow to estimate not yet received measurement values
from delayed signals. If I correct the time delay of 𝑡𝑑 time steps of a delayed signal,
I shift the signal 𝑡𝑑 steps to the past. The shifting results in not available measure-
ment values of the slower signal for the last 𝑡𝑑 time steps. This corresponds to the
real system behavior. Indeed, the Ego ECU, the ECU on which I am operating on, did
not yet receive the unavailable measurement values. My idea is to estimate replace-
ment values for the missing measurements with the help of time series prediction. In
the following paper, Mohamed Ali Razouane and I compare different time series pre-
diction algorithms and examine their suitability for estimating replacement values for
delayed HV current measurements of EVs to validate Hypothesis H3. We evaluate and
compare the following five different algorithms:

1. Simple Exponential Smoothing

2. Holt-Winters Exponential Smoothing

3. Auto-Regressive Integrated Moving Average (ARIMA)

4. Box-cox transformation, ARMA residuals, Trend and Seasonality (BATS)

5. Trigonometric seasonal, Box-cox transformation, ARMA residuals, Trend and
Seasonality (TBATS)

To evaluate the accuracy of the algorithms above, we additionally implement two
naive methods and compare the results:

1. Random Walk

2. Naive Method which simply takes the last value as prediction

Additionally, we use Bootstrap Aggregation to combine different algorithms.
Unfortunately, our results show that the advanced algorithms achieve only a rela-

tively slightly improved accuracy with significantly higher computational effort than the
naive methods. Thus, without additional research the prediction algorithms beyond
the scope of this thesis, Hypothesis H3 cannot be validated for time series prediction
on automotive ECUs. To predict HV currents on ECUs, I recommend to use the Naive
Method. The Naive Method has the advantage with respect to Hypothesis H4 that it
works without any parameters due to its simplicity. The more advanced algorithms
require at least the number of training points to be set manually, and, depending on
the individual algorithm, further additional parameters.
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3.2 Time Series Prediction

My contribution to the paper is the conceptualization. I formulate the problem state-
ment and the introduction of the paper. Together with Mohamed Ali Razouane, I re-
search into the state of the art and write the corresponding section in the paper. Mo-
hamed Ali Razouane’s contribution is the methodology. He researches, implements
and evaluates appropriate time series prediction algorithms. Together, we decide
which algorithms shall be published in the paper. Like in the previous papers, it is
my responsibility to collect all the data used as input for the algorithms in the scope of
this paper. Besides funding acquisition, administration and supervision of the project,
I am responsible for reading and correcting all equations as well as all the text written
in the paper.

In this context, I must mention that there are wrong indices in some equations in the
paper even after my and the reviewers’ inspection. Namely, in equations (7) and (12).
In correct notation, the formulae are stated as

𝑦
(𝜔)
𝑡+1 = 𝑙𝑡 + 𝜙𝑏𝑡 +

𝑇∑︁
𝑖=1

𝑠
(𝑖)
𝑡−𝑚𝑖+1 + 𝑑𝑡+1 (3.1)

for equation (7) of the paper and

𝑦
(𝜔)
𝑡+1 = 𝑙𝑡 + 𝜙𝑏𝑡 +

𝑇∑︁
𝑖=1

𝑠
(𝑖)
𝑡 + 𝑑𝑡+1 (3.2)

for equation (12) according to [4].
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Time Series Prediction for Measurements of Electric Power Trains

Jakob Pfeiffer1,2 and Mohamed Ali Razouane2

Abstract— Real-time systems require up-to-date information.
Measurement signals in the power train of Electric Vehicles
(EVs) are however often received with individual time delays
due to the distributed architecture of the power train. Our
idea is to compensate the time delays by predicting each signal
from the last received value until the present time step. In this
work, we evaluate 5 state-of-the-art algorithms and 2 naive
methods for time series prediction. We execute all algorithms
on real power train data of EVs and compare the results.
Our evaluation focuses on run-time and accuracy. All methods
achieve a prediction error rate of less than 5 %. As expected, the
benchmark naive method is the fastest. Surprisingly, it retrieves
comparably accurate results as Exponential Smoothing. BATS
and TBATS are the slowest methods. Nevertheless, they achieve
the best accuracy, but suffer from outliers. Auto-Regressive
Integrated Moving Average (ARIMA) achieves the smallest
Mean Absolute Percentage Error (MAPE) and thus the best
compromise between outliers and accuracy of all algorithms.
Additionally, to further improve the accuracy, we investigate
the benefits of combining predictions of different algorithms.

I. INTRODUCTION

Modern vehicles consist of several distributed and embed-
ded systems. For example, the climate control unit and the
motor unit are separate embedded systems. Each of these
systems consists of sensors and an Electronic Control Unit
(ECU). The ECUs are connected and exchange information
via bus systems. The bus communication requires time and
thus, many measurements are delayed once they arrive at an
ECU (see Fig. 1). Conversely, this means that from an ECU’s
perspective, measurements of the actual time step from other
ECUs are not yet available (see Fig. 2).

The missing or delayed availability of measurements is
problematic, because many vehicular real-time control func-
tions depend on these data and their timeliness. Especially
Electric Vehicles (EVs) lose efficiency and performance due
to time delays [1]. While there exist already several strategies
to detect the time delay in distributed sensor systems of EVs
(e.g. [1], [2]), there is to the best knowledge of the authors no
strategy to compensate not yet received measurement values.

Our goal in this work is to construct plausible virtual
measurement values for not yet received signals. We take
the already received measurements from past time steps and
predict the values until the present.

Selected works in the field of time series prediction are
presented in II. We analyze (see III) and evaluate (see V)
7 time series prediction algorithms. For the evaluation,

1Jakob Pfeiffer is with BMW Group, Petuelring 130, 80788 Munich,
Germany Jakob.J.Pfeiffer@bmwgroup.com

2Both authors are with the Department of Electrical and Computer Engi-
neering, Technical University of Munich, Arcisstr. 21, 80333 Munich, Ger-
many {Jakob.Pfeiffer, Medali.Razouane}@tum.de
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Fig. 1. Due to time delays between the distributed system in the power
train of EVs, an ECU receives a delayed version (blue circles) of the original
electric current measurement signal (green crosses).
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Fig. 2. If we correct the delayed signal according to [1], we realize that
we did not receive the measurements of the last time steps (red circles) yet.
Nevertheless, those actual measurements are needed for controlling the EV.
Our goal in this work is to predict the missing values until the present.

we measure the performance of the algorithms in several
experiments on real power train data of close to production
EVs (see IV). In the end of this paper, we conclude the
advantages and drawbacks of each algorithm (see VI).

II. STATE OF THE ART

Time series prediction is a common and often referred
to problem [3]. Logically, there exists a plethora of lit-
erature about time series prediction, actually about time
series prediction related to EVs. However, to the best of
our knowledge, none of the existing literature deals with the
prediction of High Voltage (HV) currents in the power trains
of EVs. Our contribution is the analysis and evaluation of
5 state-of-the-art time series prediction algorithms for HV
measurements in electric power trains. The focus of our
evaluation lies not only on accuracy but also on run-time
efficiency in order to enable an execution on automotive
ECUs with limited memory and processing power. Previous
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measurements are the only input for our considered algo-
rithms. The algorithms do not require additional information
for the prediction. Thus, our time series prediction is not
restricted to individual signals and can flexibly be applied to
several measurement signals in the electric power train.

Styler et al. make use of time series prediction to develop
an efficient discharging and charging strategy for the super-
capacitor of an EV [4]. Their approach is based on data
collected during real drives. However, in contrast to our data,
Styler’s data set only contains position data and no power
train measurements. Thus, Styler’s team has to simulate the
HV currents which they use for their purposes.

The strategy for the energy management of Fuel Cell
Hybrid Electric Vehicles (FCHEVs) proposed by Ibrahim
et al. is based on wavelet transform and Auto-Regressive
Integrated Moving Average (ARIMA) models [5]. Unfor-
tunately, the authors do not mention how they access or
generate the data. A difference to our approach is that our
prediction horizon is shorter. We predict the next 20 time
steps while Ibrahim et al. predict up to 64 time steps.
Another difference is that we access the measurements of
each HV component separately and predict the consumption
component-wise. Ibrahim et al., in contrast, predict the total
consumption of the EV and assign it to the components based
on the frequencies of changes in the measurement signal.

Bolovinou et al. also predict the total consumption of the
EV independent of the individual HV components [6]. They
collect real drive data with an experimental EV. Based on
the power train data and additional information about the
EV’s environment, they use the Baseline algorithm, Linear
Regression and Support Vector Regression (SVR) to estimate
the EV’s future consumption and its remaining cruising
range. Thus, their relatively large prediction horizon reaches
until the next charging point. As stated above, our maximum
prediction horizon of 20 time steps is much shorter.

Although Zulkas et al. state in the outlook of their paper
that their approach can be extended to problems of the auto-
motive domain, their focus is on the prediction of the energy
consumption of their laboratory [7]. For the prediction, they
implement and compare Auto-Regressive Moving Average
(ARMA) models and Kalman Filters.

Independent from applications in the automotive context,
there exist many attempts for feature-based model selection
for univariate time series prediction. For instance, Collopy
and Armstrong design a rule-based system [8]. For their
system, they combine 4 different algorithms (Random Walk,
Regression, and 2 types of Exponential Smoothing). The
system predicts annual time series of demographic and
economic data. Depending on 18 data features, the system
decides which of the 4 prediction algorithms shall be chosen.

Shah uses a similar system with 3 algorithms [9]. The
algorithms are 2 types of Exponential Smoothing and a
basic structural time series model. Shah’s system chooses the
optimal algorithm depending on 26 data features. The author
evaluates the approach on 4 data sets of the M competition.
(For further information about the M competitions, see [3].)

Regarding the 2 previously mentioned publications on

feature-based time series prediction, we find that although the
researchers highlight the usefulness of time series features for
selecting the best prediction algorithm, most of the existing
approaches depend on the manual choice of an appropriate
set of features. The manual choice complicates the algorithm
selection and makes it error-prone, although there are works
that categorize and automatically analyze features of time
series [10]. Inspired by the work of Hatami et al. [11] and
Wang and Oates [12], this paper aims to explore time series
prediction based on model selection and model averaging.

In our previous work, we introduce and evaluate several
approaches for time delay estimation [1], [2]. In this work,
we assume that the time delay is already known as depicted
in Fig. 2. Here, our goal is to close the gap between the last
received measurement value and the present time step.

III. CONCEPTS
After researching into the state of the art in the previ-

ous section, we now take a closer look at the prediction
algorithms considered for this work. Additionally, we outline
Bootstrap Aggregation to improve the prediction results.

A. Prediction Algorithms
We consider the following 4 groups of algorithms.
1) Exponential Smoothing: Exponential Smoothing is a

family of time series prediction algorithms first proposed
more than 60 years ago [13]. In the scope of this work,
we focus on the simple and the fully additive Holt-Winters
model [14].

The basic idea of Exponential Smoothing is to construct
predictions of future values ŷt+1 as weighted averages of
past observations yt and former predictions ŷt. The heavier
weight is thereby assigned to the more recent values. Values
from the more distant past are weighted less. Formally, the
simple Exponential Smoothing prediction equation can be
written as

ŷt+1 = α · yt + (1− α) · ŷt, (1)

where 0 < α < 1 is a smoothing factor.
An extension of this basic model is the fully additive

Holt-Winters model. It predicts the value for the next time
step by considering additive trend and seasonality. The
seasonality aspects are included by extending the prediction
from equation (1) by the 3 hidden state variables

lt = α · (yt − st−m) + (1− α) · (lt−1 + bt−1),

bt = β · (lt − lt−1) + (1− β) · bt−1,
st = γ · (yt − lt−1 − bt−1) + (1− γ) · st−m,

(2)

where lt is the series level, bt the trend, and st the seasonal
component at time step t. α, β and γ are the corresponding
smoothing coefficients. These are fitted by an optimization
algorithm and have values between 0 and 1. m denotes the
seasonality factor. It reflects the number of time steps in a
seasonal period and ensures that the seasonality is correctly
modeled. m can be obtained by means of a spectral density
analysis of the simple and partial auto-correlation functions
in conjunction. The new prediction is given by

ŷt+1 = lt + bt + st+1−m. (3)
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2) ARIMA: ARIMA is a class of statistical models for
analyzing and predicting time series data [15]. It is a gener-
alization of the simpler ARMA extended by integration.

The acronym ARIMA is descriptive and captures the key
aspects of the model itself. These can be resumed in the 3
following components:

1) Auto-Regressive (AR): A model that uses the depen-
dent relationship between an observation and a number
of lagged observations.

2) Integrated (I): Differentiation of raw observations to
make the time series stationary. This can be achieved
by subtracting an observation at the actual time step
from an observation at the previous time step.

3) Moving Average (MA): A model making use of the
dependency between an observation and residual er-
rors from a moving average model applied to lagged
observations.

Each of these components is explicitly specified in the model
parameters in the standard notation ARIMA(p, d, q). They
are substituted with integer values to indicate the specific
model being used and defined as follows:

1) p: The number of lag observations included in the
model, also called the lag order.

2) d: The number of times that the raw observations are
differentiated, also called the degree of differentiation.

3) q: The size of the moving average window, also called
the order of moving average.

The predicted value ŷt+1 of the future step t+1 is therefore
a constant and a weighted sum of one or more recent values
of y or of one or more recent values of the prediction error e.
For our example, let p = 1, d = 1, q = 2. The ARIMA model
obtained in this case is a damped-trend linear Exponential
Smoothing. It extrapolates the local trend at the end of the
time series. Simultaneously, it flattens the trend out at longer
forecast horizons to introduce a note of conservatism. For the
prediction, we first calculate the dth difference ŷ′t+1 of the
future value yt+1. The difference is a linear combination of
past values of the original time series and past values of the
prediction errors. It can be computed according to

ŷ′t+1 = lt + α0ŷ
′
t + α1ŷ

′
t−1 + ...+ αpŷ

′
t−p

+et+1 + θ0et + ....+ θqet−q,
(4)

where lt is the series level and et the prediction error at time
step t. αj is the slope coefficient relative to the dth difference
ŷ′t−j of yt−j with j ∈ {1, 2, . . . p}. θk is the moving
average parameter relative to the prediction error et−k with
k ∈ {1, 2, . . . q}. et+1 is hereby assumed as white noise. The
integrated part of ARIMA is reflected in the dth difference
ŷ′t−j of ŷt−j . For a first differentiation, ŷ′t can for instance
be obtained by

ŷ′t = yt − yt−1, (5)

where yt and yt−1 are the true values, respectively at time
step t and t− 1. Finally, we retrieve the prediction equation

ŷt+1 = yt + ŷ′t+1. (6)

3) BATS and TBATS: Box-cox transformation, ARMA
residuals, Trend and Seasonality (BATS) and Trigonometric
seasonal, Box-cox transformation, ARMA residuals, Trend
and Seasonality (TBATS) are an extension of the state-
space modeling framework [16]. They introduce a com-
prehensive approach for predicting complex seasonal time
series such as those with multiple seasonal periods, high
frequency seasonality and non-integer seasonality. This is
achieved by leveraging the benefits of Box-Cox transforma-
tions, Fourier representations with time varying coefficients,
and ARMA error correction. The Box-Cox transformation
solves the issues of non-linearity in the data. The ARMA
model addresses the de-correlation of residuals in the time
series data. De Livera et al. prove that BATS model can
improve the prediction performance compared to simple state
space models [16]. A key feature of both frameworks is
that they rely on an optimized method that greatly reduces
the computational complexity of the maximum likelihood
estimation.

The BATS model is rooted in Exponential Smoothing
(compare III-A.1). It reformulates equation (3) as

y
(ω)
t+1 = lt + φ · bt +

T∑
i=1

s
(i)
t−mi+1 + dt (7)

and the hidden state variables from (2) as

lt = lt−1 + φ · bt−1 + α · dt,
bt = (1− φ) · b+ φ · bt−1 + β · dt,
s
(i)
t = s

(i)
t−mi

+ γi · dt,
(8)

with

dt =

p∑
i=1

ϕi · dt−i +
q∑

i=1

θiεt−i + εt. (9)

Here, y(ω)
t is the observation at time step t Box-Cox trans-

formed with the parameter ω. Similar to III-A.1, s(i)t denotes
the i-th seasonal component, lt the local level and bt the
dampened trend. The notation dt stands for the ARMA(p, q)
process for residuals. As we cannot compute the prediction
error et directly, it is modeled as a Gaussian white noise
process. et−i stands for the i-th Box-Cox transformed pre-
diction error. The Box-Cox transformation parameter ω, the
smoothing parameters α and β, the trend damping factor φ,
the ARMA coefficients ϕi and θi, as well as the seasonal
smoothing factor γi can all be estimated by the means of a
Gaussian likelihood process.

TBATS extends the BATS model by including a trigono-
metric formulation for decomposing complex seasonal time
series and identifying latent seasonal components [16]. The
seasonal component is modeled based on a Fourier series as
follows

s
(i)
t =

ki∑
j=1

s
(i)
j,t ,

s
(i)
j,t = s

(i)
j,t−1 · cosλ

(i)
j + s

∗(i)
j,t−1 · sinλ

(i)
j + γ

(i)
1 · dt,

s
∗(i)
j,t = −sj,t−1 · sinλ(i)j + s

∗(i)
j,t−1 · cosλ

(i)
j + γ

(i)
2 · dt,

(10)
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where γ
(i)
1 and γ

(i)
2 are the smoothing parameters. λ(i)j is

retrieved by
λ
(i)
j = 2πj/mi, (11)

whereby mi describes the length of the i-th seasonal period.
s
(i)
j,t denotes the stochastic level of the i-th seasonal compo-

nent. s∗(i)j,t reflects the change in the seasonal component over
time. The number of harmonics required for the i-th seasonal
component is denoted by ki. The trigonometric expression
of seasonality terms helps to reduce the number of model
parameters when the frequencies of seasonality are high. It
also adds to the flexibility of the model in dealing with
complex seasonality. The measurement equation for y(ω)

t+1

discussed in equation (7) is replaced by

y
(ω)
t+1 = lt−1 + φ · bt−1 +

T∑
i=1

s
(i)
t−1 + dt. (12)

Point forecasts and forecast intervals for both the TBATS
and the BATS models can be obtained using the inverse Box-
Cox transformation of appropriate quantiles of the distribu-
tion of y(ω)

n+h|n. h is hereby the forecasting horizon and n the
number of points in the observed data y = (y1, ..., yn).

4) Naive Methods: To benchmark the advanced prediction
algorithms presented above and to show their effectiveness,
we introduce 2 naive methods. The naive methods predict
the next values of time series without further computational
intelligence. The lack of computations or advanced models
makes them very fast and proves if the predictions of the
advanced methods are really accurate, or if the same results
can be achieved with less effort.

The first naive method simply predicts the last measure-
ment as future value

ŷt+1 = yt. (13)

The second naive method is the driftless Naive Random
Walk. A time series is said to follow a Random Walk if the
differences from one observation to the next one are random.
In other words, the series itself is not necessarily random but
its first differences are. A Random Walk for a time series is
written as

ŷt+1 = yt + εt+1, (14)

where ŷt+1 is the predicted value at time step t + 1, yt its
current value at time step t and εt+1 is the unsystematic
component and can be modeled as a white noise process [17].

B. Bootstrap Aggregation

Bootstrap Aggregation, commonly known as Bagging, is a
method for reducing variance without increasing the bias of
predictions. It enables to achieve more accurate predictions
by combining forecasts of different predictors [18]. Com-
bining predictions is especially useful when the uncertainty
about the environment and the prediction method is relatively
high, and when errors need to be moderated. In Bagging,
predictors are trained on bootstrapped versions of the original
data. The predictors form an ensemble. Predictions are
generated by applying all predictors on the data set at hand

and then combining the results. This can be achieved by
averaging the obtained results, for example. Bagging tackles
the three sources of uncertainties. It helps to moderate
data uncertainty and the variation of the inherent random
component that exist in time series. It also helps to temper
the uncertainty linked with the selection of the optimal model
form. Parameter uncertainty can furthermore be softened
especially in terms of selecting the best set of parameters
for describing the data. Bergmeir et al. show an example of
successfully applying bagging for time series prediction [19].

IV. EXPERIMENTAL SETUP

In this section, we explain the circumstances of our
experiments and how we evaluate the results.

A. Data Set

Our reference data consists of an extensive set of record-
ings of current measurements in power trains of EVs. The
measurement data are recorded on public roads and reflect
the behavior of power trains of EVs under common driving
conditions. The data set covers in total 4 h of driving data
measured at a frequency of 100Hz. For our experiments,
we focus on the 5 HV currents of the HV battery, the
electric machine, the electric heating, the air-conditioning
compressor and the DCDC converter.

We divide the data set at hand into training and test
segments to apply nested cross-validation. To this end, we
split the data into chunks of constant size. Each chunk
consists of 20 data points. In total, 10,480 chunks are taken
into consideration.

To better estimate the prediction error of each algorithm,
a common approach is to average the errors over all the
train/test splits. The technique we use is based on a method
called forward-chaining. It is referred to in the literature as
rolling-origin evaluation [20] or rolling-origin-recalibration
evaluation [21]. Based on this method, we successively con-
sider each data chunk as the test set (see Fig. 3). All previous
data is assigned to the training set. Assuming that the data
set can be divided in 5 chunks as in Fig. 3, we produce
4 different training and test splits. By producing multiple
different train/test splits, we achieve a better assessment of
the prediction accuracy of each algorithm. The error on each
split is again averaged in order to compute a robust estimate
of each algorithm’s error. The overall prediction error ε is
modeled according to

ε =

n∑
i=1

m∑
j=1

ε
(i)
j , (15)

where n stands for the number of splits, m for the number
of data points per split and ε

(i)
j for the error performance

metric at hand.

B. Performance Metrics

To measure the performance of each algorithm in re-
spect of its accuracy and computational efficiency according
to (15), we introduce the following metrics.
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Fig. 3. Chronological representation of the nested cross-validation pipeline.
The pipeline is used to split the data set into, in this exemplary case, 5
training and test chunks.

1) Root Mean Square Error: The Root Mean Square
Error (RMSE) is a quadratic scoring rule that measures the
average magnitude of the error. It is the square root of the
average of squared differences between prediction ŷt and
actual observation yt. It is given by

RSME(yt, ŷt) =

√√√√ h∑
t=1

(yt − ŷt)2

h
, (16)

where h is the prediction horizon.
2) Mean Absolute Percentage Error: The Mean Absolute

Percentage Error (MAPE) is a statistical measure of the accu-
racy of a prediction model. In a set of predictions divided by
the actual values, the MAPE is the average error magnitude.
The average error magnitude reflects the average over the
test sample of the absolute differences between prediction
and actual observation where all individual differences have
equal weight. It is given by

MAPE(yt, ŷt) =
100

h

h∑
t=1

|yt − ŷt|
|yt|

. (17)

3) Run-Time: Analyzing the run-time performance of
each prediction algorithm is important for investigating its
suitability for real-time systems. If the prediction takes too
much time, it becomes obsolete. Therefore, we execute all
algorithms several times on the same execution platform
under the same circumstances and measure their run-time.

C. Environment

For the comparison within the scope of this paper,
we implement and execute all algorithms in Python 3.6.
with Microsoft Windows 10 as operating system on an
HP R© EliteBookTM840 G3 with an Intel R© CoreTMi5-6300U
2.40GHz CPU and 8 GB RAM.

D. Experiments

This work aims to find the best prediction algorithm
among a pool of 7 candidate algorithms, or their best com-
bination. Its essence is to link the knowledge on prediction
errors of different algorithms to historical data. Therefore,

this subsection focuses on the experiments applied for map-
ping historical current measurements to prediction method
performances. In the first step, we focus on retrieving the
optimal hyper parameters of each algorithm and assessing the
individual performances (see IV-D.1). In the second step, we
aim to assess the added value of combining forecasts from
different methods in reducing uncertainty and increasing
forecasting accuracy (see IV-D.2).

1) Individual Performance Assessment: The core focus
in this section is to analyze the individual performance
of the algorithms introduced in section III in predicting
future HV current values. The analysis is performed under
specific constraints. The main constraint is that the inference
and prediction of future current values are based only on
historical measurements. The performance of each algorithm
is assessed using the nested cross-validation procedure de-
scribed in IV-A.

In a first stage, we perform an exhaustive grid search
through a manually specified subset of the hyper parameter
space on the training splits. This helps to identify the
best combination of hyper parameters for each algorithm.
As a selection metric, we employ the Akaike Information
Criterion (AIC). The AIC rewards the goodness of fit as
assessed by the likelihood function given the number of
estimated parameters k per algorithm. Simultaneously, k
and the algorithm’s complexity are penalized by the AIC
to prevent over-fitting. Let L̂ be the maximum value of the
likelihood function for the prediction algorithm. The AIC
value of the algorithm is then

AIC = 2k − 2 ln(L̂), (18)

where the log-likelihood is a representative measure of the
model fit. Statistically, the higher the number, the better the
fit. The preferred model, respectively the best combination of
hyper parameters, is hence the one with the minimum AIC
value.

In a second stage, the prediction performance of each
algorithm on the test data splits is evaluated. In total, the
three metrics discussed in IV-B are used as comparative
values. Thereby we can investigate how well each individual
algorithm performs both in terms of prediction accuracy
and run-time efficiency. In the given context of HV current
measurements, attaining a trade-off between run-time and
accuracy is most critical. The focus of this stage of the
analysis is thereby on identifying the algorithm that ensures
the best trade-off. To this purpose, the optimal number of
historical data points necessary per algorithm is also taken
into consideration. The results of each algorithm relative to a
prediction horizon of 20 time steps are provided in section V.

2) Bootstrap Aggregation Performance Assessment: An-
other core aspect of our work is to analyze the potential
added value of Bootstrap Aggregation. Our hypothesis is that
combining predictions derived from substantially different
methods helps to increase the overall accuracy. As discussed
in III-B, Bootstrap Aggregation is especially relevant in the
present case given that the uncertainty about which method is
most accurate and under which conditions the power train is
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operating are high. We adopt formal procedures in combining
predictions of the algorithms. In the ideal case, prediction
errors are negatively related so that they might cancel each
other. Thereby, we follow an equal-weights approach as
described in the following equation

ŷt+1 =
1

M

M∑
i=1

ŷ
(i)
t+1, (19)

where ŷ(i)t+1 is the predicted value of algorithm i ∈ [1..M ] at
time step t + 1 and M = 7 is the number of algorithms in
the pool.

V. RESULTS

The focus of this section is on discussing the results
obtained for the experiments described in section IV-D. Each
experiment is discussed separately.

A. Individual Performance Assessment

In this subsection, we aim to assess the isolated
performance of each prediction algorithm. To this end, we
refer to the performance metrics discussed in subsection IV-
B. The values obtained for the RMSE and MAPE metrics
are summarized in Table I. For the comparison of the
retrieved prediction performances, we use the naive method
as benchmark. It is only outperformed by the ARIMA
algorithm in matters of the MAPE. The MAPE improvement
achieved by ARIMA is 8 %. These superior results are
achieved due to the integration part of ARIMA. Thus, the
algorithm can better adjust itself to our non-stationary data
and retrieves only small outliers in its predictions. It is also
relevant to mention that all considered algorithms except
for BATS and TBATS achieved an average prediction error
rate of less than 5 %.

However, the comparison with regard to the RMSE re-
trieves better results. ARIMA, BATS and TBATS outperform
the benchmark. Especially BATS and TBATS achieve much
better results. Their good RMSE results are interesting,
because they both obtained relatively high MAPE values with
respectively 7.47 % and 7.48 %. The other naive method,
Random Walk, and the Exponential Smoothing Algorithms
achieve comparable results like the benchmark. The discrep-
ancies obtained both in terms of RMSE and MAPE hint that
combining the forecasts of several algorithms might result in
an improvement of the overall performance.

TABLE I
OVERVIEW OF THE PREDICTION PERFORMANCE SCORES OBTAINED BY

THE ALGORITHMS ON THE TEST SET.

Algorithm RMSE MAPE
(%)

% improvement
over benchmark

Simple Exp. Smoothing 1,85 4,25 -0.2
Holt-Winter Exp. Smoothing 1.84 4.24 0
ARIMA 1.59 3.90 +8.0
TBATS 0.74 7.48 -76.4
BATS 0.75 7.47 -76.1
Random Walk 1.81 4.38 -3.3
Naive (Benchmark) 1.84 4.24 0

Table II extends the results described in Table I to cover
computational aspects. As discussed in IV-B.3, computa-
tional complexity and run-time requirements are critical
to our objective of predicting HV current measurements.
Considering the prediction horizon of below 20 time steps,
the methods of seasonal ARIMA, BATS and TBATS become
obsolete. Their respective run-time exceeds our limit of at
maximum 200ms. Under real usage conditions, the obtained
forecasts would be irrelevant by the time they are computed.
ARIMA misses the run-time limit only shortly. Further
optimizations could make this algorithm feasible for our
purposes. Without further optimizations, the focus should be
set on the remaining simplest methods for deployment.

TABLE II
COMPARISON PER ALGORITHM WITH REGARD TO ACCURACY AND

EFFICIENCY.

Algorithm MAPE
(%)

Run-Time
(ms)

# Historical
Data Points

Simple Exp. Smoothing 4.25 6 10
Holt-Winter Exp. Smoothing 4.24 7 10
ARIMA 3.90 490 40
TBATS 7.48 18 · 103 10
BATS 7.47 12 · 103 10
Random Walk 4.38 0.5 5
Naive (Benchmark) 4.24 0.064 1

B. Bootstrap Aggregation Performance Assessment

In this section, we discuss the results obtained during the
experiment introduced in IV-D.2. For this experiment, we
combine the 5 algorithms with the lowest MAPE. Thus, the
algorithms considered for the combination are ARIMA, the
simple and Holt-Winters Exponential Smoothing, as well as
the Random Walk and the naive method, as can be seen
from Table I. As mentioned in IV-D.2, we follow an equal-
weights approach. The prediction values of each algorithm
are therefore averaged at each prediction run-through. The
hereby discussed results are obtained for the same data sets
used in V-A. This enables an objective comparison of the
individual and combined performances on the same data.
For the same test set, the bootstrap aggregation resulted in
an RMSE value of 1.74 and a MAPE value of 4.19 %.
This means again a prediction error rate of below 5 %.
Compared to the individual performances, the bootstrap ag-
gregation outperformed all individual methods in terms of the
MAPE except for ARIMA. Unfortunately, this contradicts
the hypothesis discussed IV-D.2 that the combination of
several algorithms is able to improve the overall prediction.
Nevertheless, we think that future work can improve the here
retrieved results with an adaptive weights approach. Instead
of the equal weights approach used in the context of this
work, the adaptive weights approach might be able to benefit
from the high accuracy of ARIMA.

As expected, Bootstrap Aggregation has the worst run-
time of all considered approaches. As the concept combines
the predictions of several algorithms, it also sums up the
required run-time of all these algorithms. Especially in our
field of application, the execution on ECUs, the long run-
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time is a heavy disadvantage. Regrettably, this disadvantage
cannot be equalized by the here achieved results.

VI. CONCLUSIONS

Time delays between distributed systems lead to outdated
measurement signals. But up-to-date input data is required
for control functions, especially in real-time systems like
power trains of EVs. A solution to this problem is to predict
delayed signals until the present. The goal of this paper
is to evaluate which algorithms are suited for time series
prediction of delayed measurement signals of power trains
of EVs. For this purpose, we evaluate 5 state-of-the-art time
series prediction algorithms and 2 naive methods. As it
is important for real-time systems to retrieve information
in the required time frame, we focus our evaluation not
only on accuracy which we measure with the RMSE and
the MAPE, but also on the required run-time to execute
the prediction. BATS and TBATS are the most accurate
algorithms. However, due to their high outliers, they are un-
suited for our purposes. ARIMA offers the best compromise
between high accuracy and small outliers. As expected, the
naive method is the fastest method. Surprisingly, although
it is the simplest of all methods, its accuracy is not far
below the other methods. Its relatively good results show
the difficulty of predicting HV measurements of electric
power trains accurately. Thus, further work needs to be done
to enable fast and accurate predictions. A possibility for
future work is to optimize ARIMA and try to make it faster.
Another possibility is to combine the predictions of several
algorithms with Bootstrap Aggregation. Although the here
implemented equal weights approach outperforms almost all
algorithms, it is not able to achieve the low MAPE value
of ARIMA. Further work is necessary to investigate, if an
adaptive weights approach is able to outperform ARIMA.
Until now, Bootstrap Aggregation requires by far the most
run-time. To make it feasible for the execution on automotive
ECUs, further research to increase its efficiency is required.
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4 Deviation Correction

After correcting time delays in the previous chapter, this chapter deals with the correc-
tion of deviations caused by measurement inaccuracies. Section 4.1 shows how to
detect such measurement deviations. After detection, the deviations can be corrected
as shown in section 4.2.

4.1 Measurement Deviation Detection

Following Hypothesis H1 in section 1.3, this paper focuses on deviations between real
and measured currents caused by measurement inaccuracies.

It validates Hypothesis H2b by learning a measurement model on-board of each
vehicle in a fleet of equally constructed EVs. The EVs send the measurement models
to a back-end, once the models are trained. In the back-end, all models are applied
to a unique input data set, the so-called unity drive. Afterwards, the outputs on the
unity drive of all models are averaged. The average is assumed to be the real value
without measurement deviations, the ground truth. The deviation between each EV
and the fleet serves as input for our classifier. By taking additionally the measurement
deviation between the HVB and the considered HV component of the EV into account,
the classifier is able to detect measurement faults as well as hardware faults. The fault
values determined by the classifier can serve as input for a measurement correction
in the next development stage (see section 4.2).

By training only the measurement model on-board and outsourcing the ground truth
estimation to a back-end, this approach validates Hypothesis H3. Clearly, it is more
efficient to transmit the measurement model parameters and the mean deviation be-
tween HV component and HVB to the back-end only from time to time than to transfer
the raw data completely during each time step. To enable the relatively expensive
training of the measurement model on ECUs, the paper suggests to collect some raw
data on-board during driving and execute the training once the power train ECU has
the available resources free for a sufficiently long time period, like for example during
charging.

Hypothesis H4 is validated by the proposed algorithms in the paper. The un-
supervised training of the measurement model works completely without manual
parametrization. This means that there is no work for the applicator here. However,
the classifier requires in its current stage that the decision boundaries are set manually.
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4 Deviation Correction

This would mean that there are two new parameters which need to be adjusted by an
applicator.

My own contribution to the paper is the basic idea for the fleet-based approach as
well as the idea to take subspace identification algorithms like Multivariable Output
Error State Space (MOESP) and Numerical State Space Subspace System Identifica-
tion (N4SID) into account for learning the measurement model and to compare their
performance to Neural Networks. The final versions of the proposed fleet-based ap-
proach and the classifier are the result of two joint brainstorming sessions with Peter
Wolf, Roberto Pereira and me. Peter Wolf is responsible for the implementation and
training of the LSTM and the classifier used in the scope of this paper. Although I
implement the very first versions of the MOESP and N4SID algorithms, it is Roberto
Pereira’s decision to focus on the N4SID algorithm in the context of this paper. The final
version of the implementation is also his work. I execute all the test drives for recording
the training data for the models. Furthermore, I am responsible for the introduction,
the research into the state of the art and the conclusion written in the paper. Beyond
these three chapters, I review and edit all parts written by the other two authors.
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A Fleet-Based Machine Learning Approach for Automatic Detection of
Deviations between Measurements and Reality

Jakob Pfeiffer1,2, Peter Wolf1,3 and Roberto Pereira1,2

Abstract— Deviations between system current measurements
and reality can cause severe problems in the power train of
electric vehicles (EVs). Among others, these are inaccurate
performance coordination and unnecessary power limitations
during driving or charging. In this work, we propose a
fleet-based framework to detect such deviations. Our main
assumption is that the real value is the mean of all identically
constructed EVs’ measurements for the same input. Under this
assumption, we train individual on-board models to predict
the current of the electric machine (EM) and transmit the
model parameters to a back-end. There, we compare individual
deviations of the predicted current against the fleet in the same
scenario. We use the results to classify three fault sources. As
models we choose two different Machine Learning algorithms:
State Models and Long Short-Term Memory Neural Networks
(LSTMs). These are evaluated on an artificial fleet of 34 EVs
derived from real drive data containing three different kinds
of faults. Results show that our proposed approach correctly
classifies major measurement faults. Additionally, both models
offer similar classifications. LSTMs are more accurate, whereas
state models are less computationally complex, and thus better
suited for electronic control units (ECUs).

I. INTRODUCTION

According to Kirchhoff’s current law, the sum of all
currents in an electric system is equal to 0. Kirchhoff’s theory
might match the current measurements in high voltage (HV)
systems of academic or prototype vehicles with expensive
and extremely accurate sensors. However, considering mea-
sured signals of high volume EVs with off-the-shelf sensors,
the sum of all currents can differ up to 20% of the maximum
current (see Fig. 1). More detailed, the root mean square
error (RMSE) of the sum of currents RMSE(isum) = 0, 67%
is as high as the average current of the DCDC converter
µiDCDC = 0, 67% (see the zoomed section of Fig. 1). Even its
variance σisum = 1, 88%, which indicates the uncertainty of
all measurements, is higher than the consumption of smaller
components. It reaches approximately half of the consump-
tion of the second largest consumer µiheat = 3, 78 %.

The divergence between measurements and reality be-
comes problematic when the system is operating close to
its boundaries. To increase safety and ensure long battery
lifetimes, the amount of power charged to or discharged from
the high voltage battery (HVB) needs to be restricted [1].
In addition, to guarantee a safe operation mode even under

1 BMW Group, Petuelring 130, 80788 Munich,
Germany {Jakob.J.Pfeiffer, Peter.WP.Wolf,
Roberto.Pereira}@bmwgroup.com
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Fig. 1. Currents of all HV components in an EV on a test drive. The sum
of all currents isum, which should be constantly 0 according to Kirchhoff’s
current law, is plotted in black. Zooming into the measurements shows that
the deviation isum is higher than the current of the DCDC converter iDCDC.
Even its noise spectrum is approximately half as high as the consumption
of the heating iheat, which is the second largest consumer in this drive.

worst measurement conditions, the maximum sensor inac-
curacy is added as an offset to this restriction. However,
this offset comes with drawbacks during discharging and
charging. In the former case, the system might not release
requested power, although the HVB could provide it in
reality. In the charging case, especially during recuperation,
the HVB might not allow the full power level, although it
would be capable to handle it. This results in a restricted
performance and cruising range of the EV.

The aim of this work is to automatically detect the
deviation between sensor measurements and real values. We
use a fleet-based approach to identify deviant sensors and
offer a basis for measurement correction. Besides enhancing
a more accurate power distribution, this allows to reduce the
battery protection offset and thus increase the performance
and range of EVs.

The rest of this paper is structured as follows. Section II
states related work and our contributions. In section III, we
explain the theory behind our work before elaborating on the
circumstances of our experiments in section IV. The results
of these experiments are discussed in section V. Finally, we
draw our conclusions in section VI.

II. STATE OF THE ART

For this work, we distinguish between two different kinds
of faults: measurement and hardware faults. The first de-
scribes faulty measurement data caused by, e.g., corrupted
sensors. The second means that the sensors correctly measure
wrong behaving hardware, e.g., defect actuators. Further-
more, we distinguish between two groups of approaches
for measurement correction with machine learning methods.
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The first group are off-board approaches and the second one
is composed of on-board approaches. Off-board approaches
train a model outside of its measurement environment. The
training is based on simulation or previously recorded data.
The model is executed on-board and deviations from a pre-
trained behavior can be detected.

Malakar et al. [2] use an off-board approach with Neural
Networks to increase the quality of their measurements. It
detects input signals which lead to a bias in the measurement
output. To drop the bias, Malakar et al. neglect these signals.
However, even if a signal, or the model that created it is
corrupted, it still might contain parts which carry valuable
information [3]. Unfortunately, neglecting the whole signal
also drops valid parts of the information. Therefore, we
prefer a correction of the signal to its cancellation. Another
difference between Malakar’s approach and ours is that their
measurement environment consists only of the sun and the
air, which means that deviations in their data are always
measurement faults and not hardware faults.

An example for the determination of hardware and mea-
surement faults is shown by Zhao et al. [4]. They build a
simulation model of an aero-engine. It contains sub-models
for all components including actuators and sensors which are
implemented based on physical principles. With the help of
principle component analysis (PCA) and diagnosis models,
Zhao et al. can detect deviations between expected and
measured values. Due to the component-wise modeling, they
can draw conclusions about the occurrence of sensor faults.
Their modeling technique demands expert knowledge about
the physical principles of the measurement environment.
If physical modeling is not carried out accurately enough,
a problem might occur which is called the reality gap
in the fields of evolutionary robotics [5]. It describes the
phenomena that models often perform well in simulations,
but fail when they are confronted with the real world during
execution [3]. The reasons for this failure are that training
data samples are often only available in certain working
conditions, whereas the environment of the system varies
across a broad range during execution [6].

In general, the reality gap must be considered when work-
ing with off-board approaches. Usually, training of machine
learning methods is quite time-consuming [3]. The advantage
of off-board approaches is that they separate the expensive
training from a low-performance execution platform. This
makes the use of higher computation and memory resources
available for training and enables to apply a broad range
of algorithms for analyzing the input data. Furthermore, the
training does not need to take place in real-time. However,
the drawback of these approaches is that situations might
occur during execution which the training did not cover.
These algorithms are not able to adapt to new circumstances
and thus perform suboptimally [6].

In the second group of on-board approaches, the models
are directly trained on the execution platform and continu-
ously updated.

Jo et al. [7] show a particle filter based correction of bias
errors of GPS sensors on-board of an experimental vehicle.

As a series vehicle’s standard hardware is not sufficient for
their approach, they require additional sensors.

The sensor set of a series production engine is sufficient
for the inspiring approach of Lu et al. [6]. They introduce a
new on-board approach with an Extreme Learning Machine
for sensor fault detection and apply it to the control system
of an aero-engine. It is capable to distinguish between drift
and bias faults and provides corresponding compensation
data. Unfortunately, their approach is not able to distinguish
between hardware and measurement faults.

These faults can be differentiated by Kobayashi and Simon
[8]. Similar to Lu et al., their goal is to detect faults in
an aero-engine as well. For that purpose, Kobayashi and
Simon use a bank of Kalman Filters. Each sensor signal
is monitored by a separate filter. An additional signal is
designed to detect hardware faults. Based on a decision
matrix, corrupted signals are isolated. However, especially
for high dimensional problems, a separate filter for each
signal results in a high number of filters and thus high
computational costs.

On one hand, it is a general advantage that on-board
approaches continuously update their model. Therefore, these
algorithms can adapt to never before experienced situations.
On the other hand, on-board learning suffers from three main
disadvantages. First, especially in the automotive domain,
cost effective design mostly prevents to add additional mem-
ory and performance to ECUs. This restricts the on-board
learning capability and makes many algorithms infeasible.
Second, the training is often required to be executed in
real-time. Third, on-board approaches detect deviations only
from otherwise working sensors. If the sensor returns biased
measurements from the beginning, the data is mistakenly
assumed to be correct.

Our contribution is the development of a fleet-based ap-
proach with an on-board trained measurement model and
an off-board fault classifier. To the best of our knowledge,
this paper is the first to propose such a hybrid measurement
deviation detection approach for close-to-production EVs.
Thus, we combine the ability to handle unseen situations
with detecting ab initio corrupted sensors. We efficiently
minimize data volume to be transferred over the air while
being able to use the resources of a back-end. We evaluate
our approach on real world data from the power train of a
series EV without additional sensors. For building the on-
board measurement model, we present and compare two
approaches: State Models and LSTMs. Finally, the proposed
classifier is capable to differentiate between hardware and
two kinds of measurement faults.

III. CONCEPT

In this section, we explain the process of our measurement
deviation detection approach first. Then, we present the the-
ory used for model training before introducing our classifier.

To identify the deviation between measurements and real-
ity for each vehicle, we propose a concept comprised of an
on-board and off-board unit as plotted in Fig. 2. The main
challenge is to find the real value, the so-called ground truth.
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Fig. 2. Our concept for retrieving each vehicle’s measurement deviation.
We compare the measurements of the EM to the HVB and the fleet to
determine if potential deviations are caused by inaccurate measurements or
by hardware failures.

Due to the cost-effective design of high volume EVs, the
ground truth cannot be retrieved on-board from redundant
current sensor systems. An alternative way is to get the
ground truth from other EVs. For a sufficiently high number
of vehicles, the fleet’s mean tends towards the true value
apart from systematic errors. However, our goal is not to
correct systematic errors of the whole fleet, but to minimize
the individual deviation from the ground truth for each EV.
Thus, we assume the ground truth to be the mean of a fleet
containing as many EVs as possible of the same type.

A. Process

Our process for retrieving the ground truth and its devi-
ation to the vehicle’s measurements is visualized in Fig. 2.
In the following, we exemplify our approach with measure-
ments of the current of the EM. Nevertheless, the same
approach can be transferred to other HV components of EVs.

Transferring all measurements from the EVs to the back-
end is unfeasible. The amount of data would be too high
for the available bandwidth. Therefore, we first collect data
during driving. This can be optimized by taking account of
the planned route (e.g., with information from the navigation
system) and only store drives with an expected high variety
of data (see IV-A). When we collected enough data, we
build a simulation model on-board of the EV which returns
its (biased) EM current measurements. Since the training
algorithms require relatively high resources, we recommend
to execute the training when the power train ECU is not busy
and available for a long time period, e. g. during charging.
After training, the measurement model as well as the on-
board calculated deviation between the EM and the HVB
(calculated as RMSE) are transferred to a back-end which
collects all models of the considered fleet.

In the back-end, the ground truth and deviation determi-
nation take place. As stated above, we assume the ground
truth to be the mean of all measurement models of the same
fleet. Since it is not feasible to just calculate a mean over
all collected models [9], it is retrieved in the same scenario
using a unity drive. The unity drive is an input dataset from a
real drive. The corresponding output is obtained by executing

each measurement model on the unity drive. The mean of
all outputs of the whole fleet is then assumed to be the true,
unbiased measurement.

Once we have the ground truth, we compute the RMSE
against the current of the EM. We compare this RMSE
with the one we calculated on-board before. Based on these
RMSEs, our classifier returns the scale as well the type of
the deviation (see III-C).

B. Algorithms

As previously discussed, we compare two classes of
algorithms: State Models and LSTMs. The first one is chosen
due to its capability of modeling dynamic systems with
a small amount of parameters. These parameters can be
learned efficiently, e.g. with the State Space Subspace System
Identification (N4SID) algorithm. Efficiency is a crucial
feature for Embedded and Real-Time Systems. As alternative
approach, we choose LSTMs due to their accurate learning
of patterns in time [10]. We explain both methods here.

1) State Models: A discrete-time signal can be approxi-
mated by the state space model defined as

x(t+ 1) = Ax(t) +Bu(t) + wk

y(t) = Cx(t) +Du(t) + vk,
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny represent the
model’s state, input and output at time step t, respectively.
Matrices A,B,C,D carry information about the system’s
behavior. The objective, at training time, is to identify those
matrices given an observed sequence of input u(t) and output
y(t) data.

There are many existing methods to extract parameters
θ = {A,B,C,D} from data, e.g., [9], [11], [12]. In practice,
these algorithms can be computed using a standardized
approach [13].

In such approaches, matrices A and C can be extracted
from the weighted transformation of the observability matrix

Ô =W−1
1 U1S1, (2)

where S1 represents first nx most relevant singular values of
the observability matrix Ô and U1 its singular vectors. The
weighting matrix W1 is defined according to [13].

After finding A and C, approximating B and D [9] can
be done by solving the least square problem[

Xt+1

Yt

]
=

[
A B
C D

] [
Xt

Ut

]
. (3)

Recursive solutions, which do not directly regress B and D,
usually work best only with slowly changing signals [14],
[15]. This is not our case, as the required EM current can
rapidly vary from the lowest to the highest signal point in a
short period of time.

The problem of finding a recursive implementation of
subspace models that works well on fast changing signals is
a big disadvantage compared to LSTMs. However, especially
for our problem, we argue that subspace models require
less data and computational power. The learning step of
Numerical Algorithms for N4SID, a special type of state
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models [16], consists of data projection and decomposition
[13], which makes it a suitable method for our approach.

2) Long Short-Term Memory Neural Network (LSTM):
Another promising approach to regression on high-frequent
time series in the field of ML are LSTMs. This special
type of recurrent neural network was proposed by Hochreiter
and Schmidhuber [17] and further improved by Gers et
al. [10]. By using the concept of gating, LSTMs have the
ability to remember inputs for a long time. Approaches
using LSTMs have already achieved state-of-the-art results in
speech recognition [18] or human activity recognition [19].
Additionally, this network type has successfully been applied
in a stacked architecture to similar ECU data to detect faults
in a combustion engine [20]. For more detailed information
about LSTMs, the reader is kindly referred to [17] and [10].

The capabilities of LSTMs are used in our second model
to directly map present and past vehicle motion information
to the actual current required at the EM. For that, we build
a network which is comprised of 2 LSTM layers with 7
neurons each and a dense output layer with 1 neuron. The
first 2 layers extract relevant information from the features
and the last neuron transforms these information to the actual
current. As activation functions for the (output) hidden state
and inner recurrent activation, tanh and hard sigmoid, and
softmax, respectively, are selected.

The training is done in a supervised manner backprop-
agating gradients from the output layer to the first LSTM
layer. The network parameters are optimized using stochastic
gradient descent to minimize the mean squared error loss
with Adam [21]. This optimizer provided the most stable
results in our experiments. Since we do offline batch training
in the vehicle, this procedure is executed after a predefined
amount of new data is collected. Our LSTM model contains
1100 network parameters trained in 40 epochs using a batch
size of 2048. The inputs are obtained using a sliding window
approach (see IV-A) with a window length of 25 time steps
and a step size of 5 time steps. A learning rate and decay
factor of 20e−4 and 10e−5, respectively, are applied. Weight
initialization is conducted orthogonally for all layers. This
setup is obtained through an optimization (see V-C) and leads
to the best results for this application.

C. Classifier

Our classifier is built upon comparison rules. To iden-
tify sensor faults, we compare RMSEbatt and RMSEmean.
RMSEbatt is calculated on-board between the current of the
EM and the HVB. The off-board calculated RMSEmean de-
notes the deviation between the current of the individual EM
and the mean current of the fleet. The final fault classification
is done with the deviation chart shown in Fig. 3.

The decisions in the chart are based on the following
considerations. If the deviation between an individual vehicle
and the fleet is high (RMSEmean high), the vehicle behaves
differently than the others. The reason for this might be either
a hardware or a measurement fault. However, by looking at
RMSEmean alone, we are not able to distinguish between the
two cases. On the other hand, if we only look at RMSEbatt,
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Fig. 3. Deviation chart for classifying measurement deviations. Group I
represents EVs with an HVB measurement fault. EVs with a measurement
fault in the EM belong to group II. Group III contains healthy EVs without
recognizable faults and group IV consists of EVs with a hardware fault.

we can state if there is a measurement fault, but not where
it occurs. The combination of both values provides us the
needed information.

This results in the following four cases. First, consistency
between the EM measurements and the fleet but not the
HVB data (case I in Fig. 3) indicates a current measurement
fault of the HVB. Second, additional inconsistency with the
fleet denotes an EM measurement fault (case II). Third, no
or small deviations between the EM measurements and the
HVB as well as the fleet describe the ideal case when the
measurements and the hardware work correctly (case III).
Finally, if the measurements of the EM and the HVB are
consistent, but the fleet behaves differently, a hardware fault
is highly probable (case IV).

The boundaries separating the cases can be obtained by
two procedures, i.e., data perturbation or maximum distance.
Both procedures start with a healthy vehicle. For data per-
turbation, the boundaries are set between one vehicle known
as healthy and a first perturbed dataset which predicts a cur-
rent considered as just about faulty. When using maximum
distance, the boundaries are set at a predefined maximum
mean deviation (distance) which is considered as border of
being not healthy anymore. The current and maximum mean
deviation are initially defined by domain experts.

IV. EXPERIMENTAL SETUP

In this section, we further explain the data we use in this
work as well as the setup and environment of our experiments
for evaluating State Models and LSTMs.

A. Data

For training our models, we use real data recorded during
representative drives on public roads. In the context of this
paper, we use 1 real EV and generate an artificial fleet of
33 faulty EVs based on the real data set. As we expect the
classification to become better with data from more EVs,
the ideal data set would consist of all identically constructed
EVs. Per vehicle, the training data allocates 87 MB of
memory and corresponds to 2 h 41min of driving. Lossless
reduction of this data is still up to research. The output
data is one signal and is learned by the models namely the
current consumption of the EM, as we want to simulate this
signal. In our experiments, we use data according to physical
principles as input to the models. These are the vehicle’s
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velocity, acceleration, the selected gear, requested power,
and the number of rotations of the EM. Further improvement
is achieved by adding the temperature and the altitude of the
vehicle’s environment.

For the evaluation of the classification, we create an
artificial fleet containing 1 healthy EV, 11 EVs with a
measurement fault, 11 EVs with a hardware fault and 11 EVs
with an HVB measurement fault. Following [6], the faults
consist of drifts, offsets and additionally pulses, where we
multiply or add a value or add random noise, respectively. We
choose the values such that the healthy EV’s measurements
match their mean. The values of the perturbations are printed
in Table I.

The input vectors for both models are obtained using a
sliding window approach. A window of a fixed size is sliding
over the input data with a predefined step size. Since we want
to predict the current at every time step, a sliding window
with a length of w and step size s results in an overlap of
w−s time steps. Additionally, the inputs of the LSTM model
are scaled to an interval of [−1, 1] for training and rescaled
to the original scale for evaluation.

B. Experiments

We perform three experiments for the state model and
LSTM approach. First, each learned model predicts the
current of the EM on the mean unity drive per perturbation
type. The results are passed to the classifier to identify the
source of the measurement deviation (see V-A). Second, we
measure the final performance of each approach against the
ground truth (current of the EM) as an overall performance
and per perturbation type. This experiment is done using
the unseen test set and gives us insights on the prediction
error (see V-B). Third, we conduct hyperparameter tuning
to get the optimal measurement models for this work. The
optimization is done using the validation dataset and is
discussed in Sec. V-C.

C. Environment

The LSTM model is implemented in Tensorflow1 using
Keras2, a high-level application programming interface to
generate and train neural networks. The state model is
implemented using the linear algebra functions from SciPy3.
Training, validation and testing are executed on an HPTMZ-
840 with two Intel R© Xeon R© E5-2640 v4 2.4Ghz CPUs and
96GB DDR4 RAM. All models are implemented in Python
3.6 with Microsoft Windows 10 as operating system.

V. RESULTS AND EVALUATION

In this section, we present the results of our experiments
and discuss both algorithms regarding the classification,
model performance and the required hyperparameters.

1Martı́n Abadi et al. Tensorflow: Large-scale machine learning on het-
erogeneous systems, 2015.

2François Chollet et al. Keras. https://keras.io, 2015.
3Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific

Tools for Python, 2001

0 2 4 6 8 10 12 14 16
RMSE mean

0

5

10

15

20

R
M

S
E

b
at

te
ry

Healthy

HVB Measurement

Measurement

Hardware

Original

Pulse

Offset

Drift

1.4 1.6 1.8 2.0
5.6

5.8

6.0

0.9

-0.3

0.3
-0.3

0.3

-0.3

0.3

Fig. 4. The resulting classification of the LSTM approach. The size of the
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A. Classifier results

We train both LSTMs and State Models on the artificial
fleet of 34 EVs. The resulting classifications in Fig. 4 and
Fig. 5 show similar outcomes for both of our approaches.
Group I and II do not contain any false positives with one
exception for N4SID. Both models misclassify EVs with
very small fault values (e.g., offset faults of ± 0.3 A) as
healthy. With increasing perturbation values, measurement
and hardware faults drift apart. We observe that HVB mea-
surement faults move away from the healthy section on
an approximately vertical line with increasing perturbation
values. This is due to the fact that these models learn the
same EM current data. In contrast to that, all other models
are trained on varying (perturbed) EM current. Hence, the
deviation against the mean fleet and HVB current varies on
a higher extent.

B. Model performance

Training the LSTM in our setup includes sources of ran-
domness, i.e., weight initialization and data shuffling. There-
fore, we train and test the LSTM model multiple times and
calculate statistics of the RMSE (mean, standard deviation,
maximum, minimum) to gain more insights about a realistic
RMSE result over several experiments. In opposite to that,
as described in section III-B.1, our N4SID implementation
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consists of data decomposition and solving a least squares
problem. Therefore, no randomness is inserted and the model
is trained and tested once.

1) LSTM: The performance evaluation for LSTM is car-
ried out for 240 runs in total and thus 20 runs per perturbation
type. Each run includes training and testing where the mean
training time amounts to 359.11 s ± 5.09 s. The RMSE and
related statistics are calculated as performance measures on
all datasets and per perturbation type.

As a result, the LSTM model achieves an RMSE of
5.15 ± 0.61 over all runs and perturbation types with a
minimum of 3.86 ± 0.16 at a sensor drift of 0.75. The
maximum deviation of prediction and ground truth results
in a RMSE of 6.41 ± 0.24 at a sensor drift of 1.25. On
the original dataset, the LSTM is capable of predicting the
current with a mean RMSE of 5.10±0.20 and a minimum of
4.80. Based on the results in Table I, we observe that higher
drifts and a pulse lead to a higher error while more extreme
offset values have less impact. Additionally, a comparison of
the predictions and the ground truth show that deviations in
sections of negative current are twice as high as in sections
of positive current, e.g., on the non-perturbed dataset, we
achieve RMSEs of 8.47 and 3.97, respectively.

The first aspect is due to the error types chosen in this
work. A sensor drift amplifies an erroneous prediction on the
original data and a pulse adds random noise which cannot
be predicted based on the input data. An offset influences
the starting point of the curve but not the shape of the
waveform itself, which is less difficult to learn. The second
aspect is due to the availability of features to the model.
Right now, we only consider the requested power at the
electrical engine. This signal is always equal to or larger
than 0 since recuperated energy, e.g., during breaking, is
not taken into account. Thus, the model is provided with
less detailed information about upcoming negative power at
the engine. This effect is further increased when applying
a sensor drift to the data, which acts as an amplifier. An
improvement might be achieved if further signals about the
negative regions are included, such as recuperation level or,
to some extent, the brake pedal position.

2) State Models: As discussed in section III-B.1, the
difficulty in designing a recursive version of N4SID, which
works on fast changing signals, leads us to use an offline
implementation [13].

The first challenge is to simulate cars with multiple gears.
Different gears imply different signal behavior and gear
shifts insert perturbations to the signals. Both are hard to
model using a single subspace model. To tackle this problem,
we use one subspace model per gear. This results in a
accumulated training time of 221.95 s for N4SID.

Following this approach, subspace models achieve an
RMSE of 9.29 over all runs and datasets with a minimum
of 6.84 at sensor drift of 0.75. The most misled prediction
results in an RMSE of 11.91 and is generated by sensor drift
of 1.25. The RMSE of the original dataset reaches an RMSE
of 9.14 and is below the overall error.

When comparing these results with the LSTM, subspace
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Fig. 6. Relationship between RMSE and checkpoint distance for all
perturbation types. The overall, minimum, and maximum RMSEs increase
with an increasing checkpoint distance.

models lack simulation capability. To improve the model, we
insert auxiliary points during training and test time (see Sec.
V-C.2 for further details). This reduces the overall RMSE
to 5.90, the minimum to 5.11, and the maximum RMSE to
7.24. These values are shown in table I by N4SID(AP).

Two signal properties found during the LSTM experiment
can be observed in the subspace experiments as well. First,
higher drifts and pulse lead to higher prediction errors.
Second, predictions in positive areas of current are more
accurate than in negative regions.

In summary, LSTMs are more accurate than State Models
in the setup of this work and achieve an RMSE of 5.15±0.61
compared to 5.90. However, lower requirements on memory
and computation performance for training let State Models
be better suited for an on-board application.

C. Hyperparameter

1) LSTM: Three hyperparameter sets are evaluated in
order to gain insights on the most suitable architecture for
the setup in this work: Sliding window length and step size,
number of layers, and number of neurons per layer. We vary
the sliding window length and step size in the value range of
{5, 10, 15, 18, 20, 22, 25, 30, 35, 40, 45, 50} and {1, 2, 3, 4, 5}
time steps, respectively, to determine the optimum of infor-
mation provided to the model. The number of layers are
varied in {1, 2, 3} with a range of {1, 2, 3, 4, 5, 6, 7} neurons
per layer. This parameter set is evaluated to determine the
optimal complexity of a function which maps the input
signals to the actual current at the EM. The learning and
decay rate are set to 20−4 and 10−5 so that the loss converges
after approximately 40 epochs (determined by a grid search
in {10−5, 10−4, 20−4, 10−3} and {0, 10−5, 10−4, 10−3}).
Through an early removal of low performance configurations,
we reduce the possible combinations so that approximately
800 model configurations in total are trained and tested.

2) State Models: Two hyperparameter sets are optimized
for better performance of state models: zero-padding between
gears and distance of auxiliary values.
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TABLE I
RMSE AND TRAINING TIME OF LSTM AND N4SID WITHOUT (N) AND

WITH AUXILIARY POINTS (AP) ON THE TEST SET.

Perturbation RMSE

Type Value N4SID LSTM
- N AP mean± std min max

Origin - 9.14 5.84 5.10± 0.20 4.80 5.58

Pulse N (0, 1) 9.18 6.74 5.24± 0.33 4.77 6.09

Drift 0.75 6.84 5.11 3.86± 0.16 3.54 4.20

Drift 0.90 8.19 5.11 4.59± 0.19 4.33 5.07

Drift 1.10 10.43 7.24 5.57± 0.30 4.97 6.14

Drift 1.25 11.91 6.94 6.41± 0.24 6.04 7.07

Offset −10.00 9.18 5.85 5.08± 0.18 4.75 5.38

Offset −5.00 9.21 5.66 5.25± 0.26 4.81 5.88

Offset −0.30 9.07 5.66 5.12± 0.19 4.79 5.47

Offset 0.30 9.18 5.29 5.17± 0.23 4.71 5.63

Offset 5.00 9.01 5.41 5.13± 0.29 4.76 5.83

Offset 10.00 9.30 5.52 5.22± 0.24 4.87 5.81

Overall - 9.29 5.90 5.15± 0.61 3.54 7.07

The first describes the number of added zeros in between
the gear shifts. This is required since a gear shift causes
perturbation of data (e.g. peaks, noise). To avoid negative
effects on model training, zeros are added to reduce the
impact of perturbation.

The second hyperparameter refers to the insertion of
checkpoints for training and validation. We observe in our
experiments, that whenever there is a fast change in the
current signal, subspace models usually fail to detect it.
To overcome this problem, we use past ground truth data
as checkpoints and enforce the correctness of the model.
This has shown to be a useful trick to boost the method
performance. As shown in Fig. 6, increasing the distance
of auxiliary points increases the model error. To preserve
memory and processing resources, we choose to insert the
checkpoints every 10 time steps, representing a maximum
increase of 10% of storage.

In total, 192 experiments are conducted. We use
value ranges of {0, 5, 10, 20, 25, 50, 100, 150} and
{0, 5, 10, 20, 25, 35, 45, 50, 60, 75, 90, 100} for the amount of
zero-padding and the distance of checkpoints, respectively.
Each combination is executed for multiple and single gear
approaches. The best balance between data storage and
performance is acquired with zero-padding of 100 and
inserting checkpoints every 10th time step. We use N4SID
as subspace model implementation [13].

VI. CONCLUSION

This paper presents a fleet-based classification framework
to distinguish between hardware and measurement faults in
EV power trains. We combine on-board training and off-
board classification to identify individual EV faults through a
comparison with the mean behavior of the fleet. Two different
algorithms, LSTMs and State Models, are proposed to offer
a more accurate and more resource effective solution, respec-
tively. We choose a data efficient approach by transferring the
on-board models only instead of extensive vehicle data. The
application on an artificial fleet derived from real world data
shows that our classifier is capable to distinguish between

major hardware, EM and HVB measurement faults. This
serves as basis for measurement corrections to increase the
performance as well as the efficiency of EV power trains.
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4.2 Measurement Deviation Correction

4.2 Measurement Deviation Correction

Based on the paper printed in section 4.1, the following paper proposes an approach
to correct detected measurement deviations with the help of Sparsity Constraints. We
develop the classifier from section 4.1 further in such a way that it is able to distin-
guish between the absence and presence of hardware faults and measurement faults
respectively. The core of the paper are the following two assumptions.

A1 For a sufficiently large 𝑁 , and at each time step 𝑡, i𝑠 (𝑡) can be accurately approx-
imated by the average of the simulated currents i

𝑗

𝑠𝑖𝑚
(𝑡) across the 𝑁 vehicles

in the fleet, i.e. we have

i𝑠 (𝑡) ≈ ĩ𝑠 (𝑡) :=
1

𝑁

𝑁∑︁
𝑗=1

i
𝑗

𝑠𝑖𝑚
(𝑡).

A2 The vector x containing all parameters (𝑑ℎ, oℎ,D𝑚, o𝑚) is a sparse vector,
meaning that only few of the therein included parameters are non-zero.

Assumption A1 is the formal validation of Hypotheses H1 and H2b. Its justification
is stated formally in the paper and detailed in this thesis in section 1.3.

Assumption A2 is the sparsity assumption. It assumes that it is very unlikely for an
individual EV that all its HV current measurements of all sensors suffer from hardware
and measurement faults at the same time. As mentioned in section 1.3, it is indeed
very unlikely that hardware and measurement faults occur at newly produced EVs di-
rectly after the production. It is even unlikelier that this happens to all measurements at
the same time. This would mean that all tests at the assembly line delivered false neg-
atives. In the paper, we explain detailed how we use Quadratic Basis Pursuit (QBP) to
recover the values vector x. From x, we retrieve the drift and offset values for hardware
and measurement faults. Knowing these values allows us to send them back to each
EV and to correct the measurements there. Thus, Hypothesis H3 is validated here.

Theoretically, the proposed approach works without parameters which would be re-
quired to be adjusted manually. In the paper, we explain that the new approach is
even able to work without the distinction between hardware and measurement faults.
However, from a practical perspective, it might be useful to work with such parameters
to define a threshold under which no measurement correction is executed. This allows
a more stable execution, as for example jumps between two or more fault parameters
are suppressed. Thus, Hypothesis H4 is validated, because there is a solution with-
out additional work for applicators. Nevertheless, it might be desirable to increase the
workload for the applicators here in order to achieve a better system performance.

My contribution to this paper is, besides stating the fundamental problem and il-
lustrating the corresponding Figures 1-4, the conceptualization for possible solutions.
Ahmed Ayadi supports me here by considering the methodology of sparsity constraints
and QBP, and by implementing the software to solve the problem. My responsibility
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is the research into the state of the art, the collection and provision of data as well as
the supervision and administration of the project. Furthermore, I am responsible for
reading and editing the whole paper before the first submission as well as for editing
the text to meet the reviewers’ requirements during the review process.
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ABSTRACT Deviations between system current measurements and real values in the power train of
Electric Vehicles (EVs) can cause severe problems. Among others, these are restricted performance and
cruising range. In this work, we propose a fleet-based framework to correct such deviations. We assume
that the real value is the mean of all identically constructed EVs’ measurements for the same input. Under
this assumption, we decide for each vehicle whether it displays hardware errors with the help of a binary
classifier. Depending on the classification, if no hardware errors are detected, we recover the parameters
of an assumed measurement error model via Linear Regression. Otherwise, we combine the regression
with a convex optimization problem and sparsity constraints. We achieve an overall recovery rate of up
to 90%, allowing the full automation of the measurement correction procedure with no need to add more
sensors, or computational units on-board of the EV.

INDEX TERMS Measurement correction, electric vehicles, machine learning, compressed sensing, sparsity
constraints, intelligent sensors.

I. INTRODUCTION

MEASUREMENTS of High Voltage (HV) currents play
a crucial role in the power train of EVs. For exam-

ple, when the HV system operates close to its physical
limits, measurements serve as base for the power limita-
tion. Harming the limit would result in restricted battery
life time and threaten safe vehicle operation [1]. The EV’s
safety is usually ensured with the help of battery pro-
tection offsets. The magnitude of the offsets depends on
the measurement accuracy to make sure that it is suffi-
cient even under the worst measurement conditions (compare
Figure 1). Thus, inaccurate measurements lead to high off-
sets. High offsets are problematic for several reasons. One
reason is that during acceleration the offset leads to a
restriction of the power even if the measurement is more
accurate than the worst expected and the power-train indeed
would be able to provide the requested power. In this case,
the EV’s performance is restricted unnecessarily. An even
worse problem occurs in the opposite situation. During
recuperation a too conservatively chosen offset leads to a
restriction of the amount of power which is charged into
the High Voltage Battery (HVB) although the HVB would

FIGURE 1. A schematic representation of power limitation due to battery protection
during the acceleration of an EV. The measurement (black) might differ from the real
value by some measurement tolerance (grey). To guarantee that the real value never
exceeds the maximum battery current (red, solid), an additional offset (red, dashed)
serves as prevention. The same principle is used analogously with negative currents
during recuperation [2].

be capable to store it. This decreases the EV’s cruising
range.
Kirchhoff’s current law states that the sum of all currents

at an electric node is equal to 0A. As our HV system consists

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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FIGURE 2. A highly simplified view of the HV power train of the EVs which we use
for our studies. It consists of only a single node. Thus, the sum of all HV currents
must be equal to 0 according to Kirchhoff’s current law.

of only a single node (compare Figure 2), the sum of all
HV currents must be equal to 0A according to Kirchhoff’s
law. However, considering measurement signals of EVs with
distributed sensor systems, the sum of all currents can differ
by up to 25% of the maximum current (see Figure 3). If
we look closer at the Root Mean Square Error (RMSE) of
the sum of currents RMSE(isum) = 0.67%, we realize that it
has on average the same value as the current of the DCDC
converter which is μiDCDC = 0.67%.

Our aim is to increase the measurement accuracy to enable
a minimization of the battery protection offsets. To this
end, we develop and evaluate a measurement correction
system based on the measurement fault detection we propose
in [3]. The correction uses compressed sensing and sparsity
constraints. It works based on the power train data alone
and does not require further expert knowledge for manual
calibration.
We explain related work and our contribution to the state

of the art in Section II. In Section III, we explain the theory
behind our work before we describe the practical experiments
in Section IV. The results of our experiments are stated in
Section V. In Section VI, we discuss the advantages and
drawbacks of the proposed concepts. Finally, we draw our
conclusions in Section VII.

II. STATE OF THE ART
In this work, our contribution is the development of an auto-
mated measurement correction system based on compressed
sensing. We enhance the measurement deviation detection
presented in [3] in such a way that it is not only able to
detect, but also to recursively correct measurement faults.
The proposed system is able to minimize deviations between
measurements and real values. The self-reliant correction
uses methods from the field of Machine Learning and does
not require any expert knowledge or high calibration effort
for its execution. We develop the measurement system close
to its field of application. Thus, it works with only the
data already available in modern series EVs without addi-
tional sensors. Another advantage of our system is that it
does not increase the computation load or memory con-
sumption of the Electronic Control Units (ECUs) of EVs.

FIGURE 3. Currents of all HV components in an EV on a test drive. The sum of all
currents isum is plotted in black. According to Kirchhoff’s current law, it should be
constantly 0 %. But the measurements show that the deviation isum is higher than the
current of the DCDC converter iDCDC.

We evaluate our approach with simulation data based on
previously recorded real power train data of series EVs on
public roads. To the best of the authors’ knowledge, this
is the first time that a measurement correction system is
proposed for the HV power trains of close-to-production
EVs based on compressed sensing without redundant sensor
systems.
Within the scope of our work, we differentiate between

two different kinds of faults: measurement and hardware
faults. Hardware faults describe sensors measuring cor-
rectly wrong behavior, e.g., in the case of broken actuators.
Speaking of measurement faults, we mean faulty measure-
ment data caused by, e.g., corrupted sensors. Besides the
two kinds of faults, we distinguish between two groups of
Machine Learning approaches for measurement correction:
off-board and on-board approaches.
Off-board approaches train a model outside of its common

environment. The training is based on previously recorded
data or simulation. After training, the model is executed
on-board and detects deviations from the previously learned
behavior.
Malakar et al. [4] increase the quality of their measure-

ments with an off-board approach based on Neural Networks.
They detect and neglect input signals which lead to a bias in
the measurement output to improve the measurement qual-
ity. However, even corrupted signals might contain parts
with valuable information [5]. Neglecting the whole signal
means to drop also the valid parts of the information. Thus,
we prefer to correct corrupted signals instead of dropping
them. Malakar’s measurement environment consists only of
the sun and the air. There are no further actuators. In contrast
to our work, deviations in their data cannot be caused by
hardware faults and are always provoked by measurement
faults.
Hardware and measurement faults are distinguished by

Zhao et al. [6]. The authors construct a simulation model of
an aero-engine. Their model contains sub-models based on
physical principles. The sub-models represent all components
including actuators and sensors. Zhao et al. detect deviations
between expected and measured values with the help of
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Principal Component Analysis (PCA) and diagnosis models.
They are able to recognize sensor faults and the affected
system components due to the component-wise modeling.
This modeling technique demands expert knowledge about
the physical principles influencing the measurement environ-
ment. If the physical modeling is not carried out accurately
enough, it can lead to a problem which is known as the real-
ity gap in evolutionary robotics [7]. The reality gap denotes
the phenomenon that models perform well during simula-
tion, but fail once they are executed in the real world [5].
A reason for this failure is that the simulation data used for
training is often only available in certain working conditions,
whereas the environment of the real system varies across a
broad range during execution [8].
The reality gap is a general problem of off-board

approaches. It is their main drawback that situations might
occur during execution which the algorithm did not experi-
ence during training. As a result, these algorithms are not
able to adapt to new circumstances and thus perform subop-
timally in certain situations [8]. Another drawback is that the
training of Machine Learning methods usually is quite time-
consuming [5]. Off-board approaches separate this expensive
training from low-performance execution platforms. Thus,
they allow cheaper hardware which is an advantage in cost-
efficient industries like the automotive domain. Another
advantage is that the separated training environment allows
the use of higher computation and memory resources. This
enables a broad range of algorithms to be considered for
solving the requested problem. Additionally, the training is
not necessarily required to be executed in real-time.
The major difference of on-board approaches is that the

models are directly trained on the execution platform and
then updated continuously.
An example for an on-board approach is the DC current

calibration presented by Ren et al. with an high-precision
current adder [9]. The adder is an additional hardware com-
ponent which is able to correct faulty measurements during
execution. The authors apply the adder successfully in the
electrolysis industry. However, the automotive industry has
different requirements. Due to the restricted available instal-
lation space and the cost efficiency resulting from mass
production, we want to avoid additional hardware. Our
algorithms are supposed to run with the hardware and the
measurement data available in modern series vehicles.
The sensor set of a series production engine is sufficient

for Lu et al.’s inspiring approach [8]. They introduce an on-
board approach for sensor fault detection with an Extreme
Learning Machine and apply it to the control system of an
aero-engine. Although their approach is capable to detect
bias and drift faults, it is not able to distinguish between
hardware and measurement faults. Thus, if a hardware
fault occurs, it must be detected separately. Nevertheless,
their approach can correct measurement faults by providing
compensation data.
Like Lu et al., Kobayashi and Simon focus on the detec-

tion of faults in an aero-engine [10]. They propose an

on-board approach which is capable to differentiate between
hardware and measurement faults. Instead of an Extreme
Learning Machine, Kobayashi and Simon use a bank of
Kalman Filters. Each filter monitors a sensor signal sepa-
rately. Kobayashi and Simon create an additional signal to
detect hardware faults. They isolate corrupted signals with
the help of a decision matrix. However, particularly for prob-
lems with many signals, a filter for each signal leads to a
high number of filters and thus to high computational costs.
On the one hand, on-board approaches have the advantage

of continuously updating their model. Thus, these algorithms
are capable to adapt to never before experienced situations.
On the other hand, they suffer from three main disadvantages.
First, the training is required to be executed in real-time for
many use cases. Second, cost effective design prevents to
add additional performance and memory resources to ECUs.
Especially in the automotive domain, this is an issue of high
interest and restricts the capability of learning on-board of
EVs. As a result, many algorithms become infeasible for
automotive ECUs. Third, on-board approaches are only able
to detect deviating behavior of otherwise working sensors.
If the sensor returns biased measurements from the initial
execution, the data is mistakenly assumed to be correct.
In our previous work, we develop a fleet-based approach

with an on-board trained measurement model and an off-
board fault classifier for close-to-production EVs [3]. With
that hybrid approach, we combine the ability to handle
unseen situations with detecting ab initio corrupted sensors.
The on-board measurement model minimizes the data trans-
ferred over the air. This enables us to use the resources of
a back end. In the back end, the classifier is capable to dif-
ferentiate between hardware and two kinds of measurement
faults. The measurement deviation detection proposed there
serves as basis for our work in this paper. Here, we develop
the classifier further. Additionally, we append the still miss-
ing correction of deviations between measurements and real
values.
In their inspiring paper, Ohlsson et al. extend classical

compressive sensing to quadratic relations and second order
Taylor expansions [11]. They give examples for different
types of measurements. Their paper serves as theoretical
basis for our work described in this article. We want to extend
their approach to our measurements to correct measurement
faults.
Besides measurement faults and sensor uncertainties, the

divergence between measurements and real values can be
caused by time delays [12]. Time delays are not the focus
of this work. For this work, we assume that all data is
synchronized correctly and potential time delays have been
detected and corrected previously. We treat with the detection
of time delays in our other previous work [2], [12].

III. CONCEPTS
In the HV power train of an EV, we consider an elec-
tric system of K currents i1, i2, . . . , iK . To each current
ik, we dedicate one sensor providing measurements of ik
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FIGURE 4. A graphical illustration of our approach. For the sake of simplicity, our
approach is illustrated here only for the electric machine and the HVB. The reduction
to two HV component means that the current vectors i = (ieD, ibatt) and im = (ieD,m ,
ibatt,m ) are of dimension K = 2 in this case.

in real-time (without time delays), which we henceforth
denote by ik,m. We further assume that all K currents flow
into the same node, so that we have their sum

∑K
k=1 ik

equal to 0 by Kirchhoff’s current law (because of mea-
surement errors, this needs not to be true for the sum∑K

k=1 ik,m). To simplify notation, we denote from now on
by i and im the K-dimensional vectors (i1, i2, . . . , iK)T and
(i1,m, i2,m, . . . , iK,m)T , respectively.
Our approach is illustrated in Figure 4. We presume an

EV collecting measurement data {im(t)}1≤t≤T during driving.
Based on these data, we state our problem as that of learning
a correction mapping im �→ i. Our aim is to subsequently use
this mapping to correct the measurement signals in real-time.
The main challenge thereby is that only im(t) is available,
but not the corresponding ground truth i(t). The lack of
the ground truth makes it impossible to learn the desired
mapping a priori in a supervised manner.
Thus, we want to estimate an ideal ground truth is first

(see Section III-A). Then, a pre-trained classifier decides
whether the considered EV displays hardware faults (see
Section III-B). Finally, depending on the classification result,
a recovery algorithm is executed to learn the desired mapping
(see Section III-C).

A. IDEAL GROUND TRUTH ESTIMATION
In the sequel, we suppose the existence of a perfect vehicle
from the investigated model, i.e., a vehicle S featuring a
perfect behavior with respect to the model specifications, and
equipped with perfect sensors. Let ik,s be the k-th current
in S, and is = (i1,s, i2,s, . . . , iK,s)

T . Then, we can think of
is as the should-be value of im resulting in is = im. Thus,
for any imperfect vehicle we retrieve im �= is, whereby this
deviation can be caused by hardware faults, measurement
faults or a combination of both.
On the one hand, because of potential hardware faults

(e.g., a flat tire), the vehicle might display a dynamical
behavior different from that of S, which then changes is into i,

but without changing the sum of currents which remains 0,
i.e., 1T i = 1T is = 0.

On the other hand, because of measurement errors (e.g.,
a sensor offset/drift), a second deviation might be observed
between im and i. In contrast to hardware errors, this devi-
ation does most likely change the sum of currents, so that
in general one has 1T im �= 0. Together, we can write

im − is︸ ︷︷ ︸
total deviation

= im − i
︸ ︷︷ ︸

measurement error

+ i − is︸ ︷︷ ︸
hardware error

. (1)

We assume the existence of a fleet of N (imperfect) vehi-
cles from the investigated model, and denote the vector of
measured currents in the j-th vehicle by ijm. For each j, we
train a discrete State-Space Model consisting of the system
matrices Aj,Bj,Cj and Dj with state x, input u and output ijm
based on a set {ijm(t)}1≤t≤Tj of measurement data as described
in [3]. In the next step, we estimate the currents {ijm}1≤j≤N
that would be measured across the fleet, if all vehicles drove
under the exactly same conditions [3]. Simulated on these
unity drive conditions, {ijsim(t)}1≤j≤N denotes the outputs of
the trained measurement models at time t according to

x(t + 1) = Ajx(t) + Bjuud(t)

ijsim(t) = Cjx(t) + Djuud(t) (2)

with x0 = x(0) and u(t) = uud(t), t ∈ {1, 2, . . . ,Tud}.
Finally, by denoting the current vector is(t) of the perfect

vehicle S at time t under the unity drive conditions, we come
to the following assumption:
Assumption 1: For a sufficiently large N, and at each time

step t, is(t) can be accurately approximated by the average
of the simulated currents ijsim(t) across the N vehicles in the
fleet, i.e., we have

is(t) ≈ ĩs(t) := 1

N

N∑

j=1

ijsim(t). (3)

This assumption is based on the observation

1

N

N∑

j=1

ijsim = 1

N

N∑

j=1

(
is + ijm − ij + ij − is + ijsim − ijm

)

= is + 1

N

N∑

j=1

(
ijm − ij

)
+ 1

N

N∑

j=1

(
ij − is

)

+ 1

N

N∑

j=1

(
ijsim − ijm

)
(4)

and the assumption that for large N, measurement, hard-
ware and simulation errors at a certain time step average
to 0 across the fleet, so that the three averages in (4)
converge to 0.

B. CLASSIFICATION
Having obtained an estimation for ijm and is at each time
step t ∈ {1, 2, . . . ,Tud}, namely ijm(t) ≈ ijsim(t) and is(t) ≈
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ĩs(t) as in (3), we would have almost solved the problem
for the j-th vehicle, if we could exclude the possibility of
hardware errors. In fact, if that was the case, we would have
ij(t) = is(t) ≈ ĩs(t), which we could use together with ijsim(t)
to learn the desired mapping ijm �→ ij (i.e., the mapping is
learned by means of the tuples {(ijsim(t), ĩs(t))}1≤t≤Tud ).

In order to reduce the complexity of our approach, we
propose to first predict by means of a classifier whether any
given EV displays hardware errors. If the prediction is neg-
ative (i.e., no hardware errors are detected), we proceed as
described above. Otherwise, we utilize a more complex algo-
rithm to recover the measurement error (see Section III-C).
In this work, we propose and compare two different clas-
sification rules, both based on a set of K + 1 features
f1, f2, . . . , fK+1.
On the one hand, it seems reasonable that the absolute total

deviation between ijm and is would in average be larger, if
the j-th EV suffers not only from measurement faults but
also from significant hardware faults (see (1)). Accordingly,
we estimate by means of ijsim(t) and ĩs(t) for each vehicle j
and each current k the average quadratic deviation between
ijk,m and ik,s, and define that as the k-th feature for the j-th
vehicle

f jk = 1

Tud

Tud∑

t=1

(
ijk,sim(t) − ĩk,s(t)

)2 ≈ E
((
ijk,m − ik,s

)2
)

(5)

for 1 ≤ k ≤ K.
On the other hand, we define the (K + 1)-th feature as a

measure of the significance of measurement faults in the j-th
vehicle. Since these faults result in ijm almost surely not sum-
ming to 0, we quantify the magnitude of the measurement
faults by means of the average square of 1T ijm, i.e.,

f jK+1 = 1

Tj

Tj∑

t=1

((
1T ijm(t)

)2
)

≈ E
((

1T ijm
)2
)

, (6)

where a set {ijm(t)}1≤t≤Tj of measurement data is required
for the estimation.
Let fj = (f j1, f

j
2, . . . , f

j
K+1)

T . Based on fj, we decide
whether the j-th vehicle displays significant hardware faults.
We thereby compare between two classification rules:

• Simple Thresholding Classifier: The classifier decides
for the existence of hardware errors, if

ηj :=
K∑

i=1

f ji − 1

K
f jK+1 > δh (7)

for some threshold δh. For an intuitive explanation, we
rewrite the above criterion as

ηj ≈
K∑

k=1

E
((
ijk,m − ik,s

)2
)

− 1

K
E
((

1T ijm
)2
)

= E

⎛

⎝
K∑

k=1

(
ijk,m − ik,s

)2 −
(
1T ijm√
K

)2
⎞

⎠

FIGURE 5. Graphical representation for K = 2. Here, H is the line described by
i1 + i2 = 0. is is the should-be current and part of H as it satisfies Kirchhoff’s law.
Hardware errors in the j-th vehicle move is to another point on H, here ij . Then,

measurement errors move ij outside of H to ijm . When projected back on H, ijm
returns �H(ijm ). In (8), we use Pythagoras theorem on the triangle spanned by the

points is , ijm and �H(ijm ). The triangle is right-angled at �H(ijm ).

= E
(∥
∥
∥ijm − is

∥
∥
∥

2

2
−
∥
∥
∥ijm − �H

(
ijm
)∥
∥
∥

2

2

)

> δh (8)

by inserting (5). Here, �H is the projection operator on
the hyperplane H given by H = {x ∈ RK | 1Tx = 0}.
Since is satisfies Kirchhoff’s law, we have is ∈ H, and
thus by Pythagoras (see Figure 5)
∥
∥
∥ijm − is

∥
∥
∥

2

2
−
∥
∥
∥ijm − �H

(
ijm
)∥
∥
∥

2

2
=
∥
∥
∥�H

(
ijm
)

− is
∥
∥
∥

2

2
. (9)

Knowing that ij also satisfies Kirchhoff’s law and thus
ij ∈ H, we can think of �H(ijm) as the best possi-
ble approximation of ij in the absence of any further
information. Thus, the above criterion is an approxi-
mation of the average squared distance ||ij − is||22, i.e.,
of the average squared deviation caused by hardware
faults (see (1)).

• Decision Tree Classifier: The classifier decides whether
or not the j-th vehicle displays hardware faults based
on previously induced comparison rules. The rules are
learned during a training phase with an artificially cre-
ated fleet of EVs. The artificial creation is based on
data from real drives and has the advantage for our
work that we know about the (non)-existence of hard-
ware faults in advance. Thus, we are able to evaluate
the correction.

Based on the utilized classifier, we distinguish between
four different cases:

• Case 1: Neither hardware nor measurement faults are
detected. In this case, we have a nearly perfect vehicle,
for which no further steps are necessary.
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• Case 2: Only hardware faults are detected. No further
steps are necessary in this case, too, as our goal is to
correct measurement faults only.

• Case 3: Only measurement faults are detected. Here,
only one further step is necessary, namely to use the
tuples {(ijsim(t), is(t))}t to learn the correction mapping
ijm �→ ij.

• Case 4: Both types of faults are detected, i.e., the devi-
ation between ijm and is is to be decomposed into its
two components as in (1). Without further assumptions,
the problem is however ill-posed, as there is an infinite
number of such decompositions. In order to provide
a unique solution, we propose in the sequel a set of
assumptions which we find to be both reasonable and
sufficient to make the problem well-posed again.

C. ERROR MODEL AND RECOVERY
In this section, we first present the error models we assume
for measurement and hardware faults. Since hardware faults
do not alter the validity of physical laws, here in particular
Kirchhoff’s law, one can in general model them using a
continuous mapping fh : is �→ i, such that it holds

is ∈ H =⇒ fh(is) ∈ H. (10)

In this work, we choose a simple linear model for fh
satisfying (10), namely:

fh(is) = (1 + dh)is + oh, (11)

where dh ∈ R is a drift scalar and oh ∈ H is an offset vector.
We retrieve

is, oh ∈ H
=⇒ 1T is = 1Toh = 0

=⇒ (1 + dh)1T is + 1Toh = 0

=⇒ 1T fh(is) = 0

=⇒ fh(is) ∈ H. (12)

Similarly, we model measurement faults as a linear map-
ping fm : i �→ im. However, we model the mapping without
the constraints from (10), since the noisy vector im does not
need to satisfy Kirchhoff’s law. This results in

fm(i) = (I + Dm)i + om, (13)

where I is the identity matrix, Dm ∈ RK×K is a diagonal
drift matrix, and om ∈ RK is an offset vector. Note that in
these terms, the goal of this work is to learn the inverse
mapping f−1

m (im). As i is unknown, we instead aim to learn
the parameters Dm and om with the help of the tuples (im, is).
From (11) and (13), we retrieve

im = fm ◦ fh(is) = (I + Dm)((1 + dh)is + oh) + om
= (I + Dm)(1 + dh)is + (I + Dm)oh + om. (14)

However, we cannot generally recover the parameters (in
particular Dm and om) from tuples in the form (im, is) (and
even less (isim, ĩs)). To solve this problem, we consider the
classification result and differentiate between two cases.

1) RECOVERY WITH NO HARDWARE ERRORS

This case is equivalent to setting both dh and oh to 0. We
retrieve im = (I+Dm)is+om from (14). We learn the param-
eters Dm and om straightforward by linearly regressing isim(t)
on ĩs(t). More precisely, we execute in total K regressions
where we regress isim,k(t) on im,k(t) for each k.

2) RECOVERY WITH HARDWARE ERRORS

Here, the problem is ill-posed without additional knowledge.
For example, if (dh, oh,Dm, om) satisfies (14), then (dh, oh+
e,Dm, om − (I + Dm)e) does so, too, for any e ∈ H. In
this work, we avoid such ill-posedness with the following
assumption.
Assumption 2: The vector x containing all parameters

(dh, oh,Dm, om) is a sparse vector, meaning that only few
of the therein included parameters are non-zero.
This assumption bases upon the following reasoning: in

one vehicle, it is very unlikely that all, or at least many, fault
sources exist concurrently. All faults at the same time would
mean that all K involved sensors suffer from offset or drift
faults, or even both. Additionally, K currents are affected by
hardware faults without exception. Thus, it is reasonable to
assume that only relatively few sources of faults exist in the
same vehicle at the same time.
Accordingly, we recover x as follows. First, we estimate

the expressions (I+Dm)(1+dh) and (I+Dm)oh+om based
on the tuples (isim(t), ĩs(t)). We do this estimation by linearly
regressing isim(t) on ĩs(t). More precisely, we define the k-th
diagonal element of Dm as dm,k, and the k-th elements of
oh and om as oh,k and om,k, respectively. Then, we retrieve
for each k ∈ {1, 2, . . . ,K}

(
1 + dm,k

)
(1 + dh) ≈ ak

(
1 + dm,k

)
oh,k + om,k ≈ bk (15)

where ak and bk are the slope and intercept estimates
obtained from regressing (isim,k(1), . . ., isim,k(Tud))T on
(ĩs,k(1), . . . , ĩs,k(Tud))T . Next, we define y = (a1, . . . , aK ,
b1, . . . , bK)T and x̃ = (dh, oh,1, . . . , oh,K , dm,1, . . . , dm,K ,
om,1, . . . , om,K, 1)T ∈ R3K+2. We then rewrite each of the
estimated terms in a quadratic form x̃TQx̃ of x̃, for example

(
1 + dm,k

)
(1 + dh) =

(
x̃Te3K+2

)2 + x̃Te3K+2eTK+1+kx̃

+ x̃Te3K+2eT1 x̃ + x̃TeK+1+keT1 x̃
= x̃T

(
e3K+2eT3K+2 + e3K+2eTK+1+k

+ e3K+2eT1 + eK+1+keT1
)
x̃

:= x̃TQkx̃, (16)

where the notation e3K+2 denotes the canonical vector with
respect to 3K + 2. Similarly, we obtain (1+dm,k)oh,k+om,k =
x̃TQK+kx̃ and rewrite (15) as

∀i ∈ {1, 2, . . . , 2K} x̃TQix̃ ≈ yTei. (17)
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Finally, we recover x (resp. x̃) by solving the optimization
problem

min
x̃

‖x̃‖1 s.t.
2K∑

i=1

(
x̃TQix̃ − yTei

)2 ≤ ε,

x̃Te3K+2 = 1,

x̃T
(

K∑

i=1

e1+i

)

= 0. (18)

Thereby, ε is an error threshold. The constraint x̃Te3K+2 = 1
forces the last element of x̃ to be equal to 1, and the con-
straint x̃T(

∑K
i=1 e1+i) = 0 makes sure that the hardware

offsets oh1 , . . . , oh,K sum up to 0 to satisfy (10). To solve
the optimization problem from (18), we use the Quadratic
Basis Pursuit (QBP) algorithm suggested in [11]. This algo-
rithm uses a lifting technique to convexify the above problem
and thus makes it computationally tractable.
In the end of this section, we want to emphasize that

in theory, we could bypass the classification step from
Section III-B. Our proposed recovery does not require the
existence of hardware errors. It could theoretically recover
the parameters successfully even when dh = 0 and oh = 0.
Thus, we could directly execute the optimization in (18) for
all EVs, irrespective of whether or not they are affected by
hardware errors. We would only need to run the optimization
procedure in (18) when necessary. This would reduce the
complexity without negatively affecting the performance.
However, in the presence of classification errors, the recov-
ery’ success rate might be negatively affected. On the one
hand, in case of false positives, the algorithm would try
to recover the parameters using the optimization problem
from (18). Instead of the simple and highly reliable regres-
sion from Section III-C1, the optimization problem might fail
to recover the parameters. On the other hand, in case of false
negatives, the recovery algorithm would assume wrongly that
there are no hardware errors. The wrong assumption would
lead to a systematic estimation error. From these observa-
tions, we conclude that false negatives are more harmful than
false positives in our case. We will take this fact into account
for the evaluation of the classification step in Section V-B.

IV. EXPERIMENTAL SETUP
In this section, we describe the experiments we conduct in
order to evaluate the suggested method.

A. ARTIFICIAL GROUND TRUTH
Each experiment is based on an artificially created data set
D = {is(t)}1≤t≤T of ground truth current signals. To make
sure that the data set is realistic, we start with real measure-
ment data D′ = {im(t)}1≤t≤T of HV current signals recorded
during driving. The data set is modified in such a way that
at each time step t, the condition is(t)T1 = 0 is satisfied.
We guarantee the satisfaction of the condition by setting

ik,s(t) =
{
ik,m(t) for k ∈ {1, . . . ,K − 1}
−∑K−1

j=1 ij,m(t) for k = K
. (19)

FIGURE 6. The density function.

B. ARTIFICIAL RANDOM FLEET
Besides the artificial ground truth, we create a random fleet
of N EVs based on D and the model given in (14). We do
this by randomly drawing the parameters (dh, oh,Dm, om)

for each EV, so that

• the constraint oTh 1 = 0 is satisfied,1

• for a given sparsity level S, only (100 − S)% of the
parameters (up to rounding) are nonzero. (For example,
if K = 3 and S = 60, we have in total 3K + 1 = 10
parameters. Only 4 of these are set to be nonzero. The
support of the parameter vector is thereby chosen at
random.),

• each nonzero parameter is set as the realization of some
random variable X = (2B− 1)U where

B ∼ Bernoulli

(
1

2

)

and U ∼ U(a, b) (20)

for some hyper-parameters a and b. The corresponding
density function is depicted in Fig. 6. The rationale
behind this choice of the distribution is to prevent a
previously nonzero parameter to take very small values
(and thus become approximately zero).

Once we finished the sampling, we define the measure-
ment signal ijm(t) in the j-th vehicle as

ijm(t) =
(
I + Dj

m

)(
1 + djh

)
is(t) +

(
I + Dj

m

)
ojh + ojm, (21)

where djh, o
j
h,D

j
m and ojm are the sampled parameters.

On top of the above listed sampling conditions on the
individual vehicle level, we make sure that on the fleet-level,
the following two conditions are satisfied:

• The fleet is balanced, i.e., the ratio of EVs affected
by hardware faults to those which are not is around
1:1. Thus, we force oh and dh to be zero for half of
the vehicles in the artificial fleet. We use this trick
because for a larger K, and a smaller sparsity level S,
almost all EVs would be affected by hardware faults.

1. In our implementation, we utilize a slightly different parametriza-
tion, namely by only preserving the first K − 1 components of oh as
unknown parameters, and setting oh,K = −∑K−1

j=1 oh,j. This constraint is
then satisfied automatically.
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According to our experiences, this would be very unre-
alistic. Especially, if the fleet contains EVs of young
age with a low amount of vehicle miles traveled.

• The fleet is symmetric, i.e., we have for all t ∈
{1, . . . ,T}

is(t) = 1

N

N∑

j=1

ijm(t). (22)

This condition makes sure that Assumption 1 is nearly
satisfied.2 It is enforced by creating for each vehi-
cle in the fleet with parameters (dh, oh,Dm, om), three
other vehicles with parameters (−dh,−oh,−Dm,−om),
(dh, oh,−Dm, om), and (−dh,−oh,Dm,−om), respec-
tively. This means that we assume N to be divisible
by 4.

C. SIMULATION MODELS
In the previous two subsections, we define the ground truth
signal is(t) and the measurement signals ijm(t) for all j ∈
{1, . . . ,N} and t ∈ {1, . . . ,T}. The only step left is to define
the simulation signals ijsim(t) for all j ∈ {1, . . . ,N}. To do
so, we differentiate between two methods:

• State-Space Simulation: For each j, we split the avail-
able data into two parts. We define T1 = �0.8T� and
use the first part {ijm(t)}1≤t≤T1 to train and validate a
State-Space Model which is able to simulate the dynam-
ics of the j-th vehicle. By simulating the model on
the remaining 20% of the available data,3 we obtain
{ijsim(t)}T1+1≤t≤T .

• Artificial Simulation: Alternatively, we assume that the
error ejsim = ijsim − ijm is distributed as N (0, σ 2

simI) for
some variance σ 2

sim and define for j ∈ {1, . . . ,N} and
t ∈ {T1 + 1, . . . ,T}

ijsim(t) = ijm(t) + ejsim(t)

where ejsim(t) ∼ N
(
0, σ 2

simI
)
. (23)

While our method originally relies on the state-space sim-
ulation as described in [3], the second method allows us
to provide more general results by investigating the effect
of σ 2

sim on the overall performance of our method. Besides
that, it makes it easier to conduct experiments, especially
for larger values of N.

D. EXPERIMENTS
Following the previous sections, each experiment consists of
the following steps:
1) As described in Section IV-A, generate for all K

currents and time steps t ∈ {1, . . . ,T} an artificial
ground truth is(t).

2. Note that Assumption 1 uses the simulated currents and not the
measured currents.

3. For both training and simulation, we also use the corresponding input
vector {u(t)}1≤t≤T which is available from the original data set used to
build the artificial ground truth (see Section IV-A).

2) Depending on is(t), j ∈ {1, . . . ,N} and t ∈ {1, . . . ,T},
create a balanced artificial random fleet of N vehicles
as described in Section IV-B with sparsity level S to
obtain ijm(t).

3) Choose one of the simulation methods described
in Section IV-C to obtain the simulated currents
{ijsim(t)}T1+1≤t≤T .

4) Based on {ijsim(t)}T1+1≤t≤T , estimate the ground truth
as described in Section III-A according to

ĩs(t) = 1

N

N∑

j=1

ijsim(t). (24)

5) Based on {ĩs(t)}T1+1≤t≤T and {ijsim(t)}T1+1≤t≤T ,
classify whether the j-th vehicle is affected by
measurement and/or hardware faults as described in
Section III-B. Depending on the experiment, we either
utilize the simple thresholding classifier with parame-
ter δh, or a previously trained decision tree classifier.
In the latter case, the classifier is trained on another
data set Dtrain. This data set is created artificially in
the same way (i.e., using the same sampling scheme
and parameters) as D.

6) For each vehicle in the fleet, follow the descriptions in
Section III-C to recover the parameters (dh, oh, m, om).

7) Calculate the recovery rate, i.e., the ratio of cases for
which Dm and om have been recovered with a relative
error below 10%.4 The reason we only focus on Dm

and om is that we do not need the other parameters to
be able to correct the current via the inverse mapping

im �→ (I + Dm)−1(im − om). (25)

V. RESULTS
In this section, we evaluate our approach in an end-to-end
fashion. Therefor, we run the experiment from Section IV-D
multiple times with different parameter combinations (i.e.,
values of the number of currents K, the fleet size N, the
sparsity level S, etc.). By fixing all parameters but a few, we
investigate in a number of experiment series the effect of
the variable parameters on the overall achieved performance
as measured by the recovery rate defined above. Due to the
large number of parameters involved, we will thereby restrict
our analysis to the following effects.

A. EFFECT OF THE SIMULATION NOISE VARIANCE
All the steps of the proposed approach rely on simulated
signals, so that a too large simulation error is likely to cause
the recovery to fail. To avoid such a failure, it is important to
quantify how good the simulation should be for the algorithm
to achieve a sufficiently high recovery rate. In other words,
we investigate the stability of our approach against simula-
tion noise. For this investigation, we fix N = 1000, K = 2,

4. For our purposes, it is sufficient to assume cases with a relative error
below 10% as recovered. Of course, the reader is free to choose a value
depending on the individual use case.
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FIGURE 7. The recovery rate is plotted against the signal-to-noise ratio SNRdB.

and S = 60. For our experiments, we use the signal-to-noise
ratio SNRdB to measure the goodness of a simulation. We
run for the experiment 10 times for several signal-to-noise
ratios in the interval [−20, 60] with

σ 2
sim = 10−SNRdB/10 · P, (26)

where P is the average power of is,1(t),5 i.e., P =
T−1∑T

t=1 is,1(t)
2. Note that in order to isolate the inves-

tigated effect from other noise sources, we enforce a
symmetric fleet and a perfect classifier. A non-symmetric
fleet would introduce an additional noise in the ground truth
estimation (see (4)), and false negatives in the classifica-
tion would introduce a systematic error in the parameter
estimation.6

In Figure 7, we plot the average recovery rate (across
the 10 repetitions) as a function of SNRdB. We see that an
SNR above around 15 dB is necessary for the algorithm
to have a recovery rate above 80%, which we consider to
be a sufficiently mild requirement on the simulation model.
In fact, the State-Space Models introduced in our previous
work [3] largely satisfy this requirement.

B. EFFECT OF THE CLASSIFIER
As discussed in Section III-C, classification errors in general,
and false negatives in particular, are harmful to the recovery
rate. To investigate which of the two suggested classifiers
(simple thresholding rule vs. decision tree) produces better
results, we conduct the following experiment. We set N =
1000,K = 2 and S = 60 and run the experiment from
Section IV-D 10 times for each classifier with SNRdB = 20
in (26). Thereby, on the one hand, we set for the thresholding
classifier δh = δ̃hση, where δ̃h is empirically set to 1/3, and

5. Because K = 2, we have is,1(t) = is,2(t), so that P is also the average
power of is,2(t).

6. For false negatives, the classifier wrongly decides there are no hardware
faults. All parameters relating to hardware faults, i.e., dh and oh, are wrongly
set to 0, which leads to systematic errors in the estimation of dm and om.

TABLE 1. Results of the second experiment for simple thresholding, the decision tree

classifier and the perfect classifier.

ση is the standard deviation of the decision criterion across
the fleet (see (7)), i.e.,

ση =

√
√
√
√
√

1

N − 1

N∑

j=1

(
ηj − η̄j

)
with η̄j =

N∑

j=1

ηj. (27)

On the other hand, we train the decision tree on an artificial
fleet of 3, 000 vehicles. The fleet is created using the same
hyper-parameters as the ones utilized to create the primary
fleet (i.e., with the same sparsity level S and parameter dis-
tributions a and b). We further restrict the tree depth to 6 to
prevent overfitting.
On top of the two suggested classifiers, we include the

results obtained using a perfect classifier as benchmark. For
the evaluation, we use the following three metrics:

• The f2 score as a performance measure of each classifier.
We chose this score since we consider false negatives to
be more harmful than false positives, and thus consider
recall to be more important than precision.7

• The recovery rate as a measure of the end-to-end
performance.

• The percentage of cases for which the optimization pro-
cedure in (18) is executed (i.e., the percentage of cases
classified as displaying hardware errors) as a complexity
measure.

Table 1 summarizes the results of this experiment. We see
that the decision tree classifier outperforms the simple thresh-
olding rule on all evaluation criteria. In particular, thanks to
its better f2 score, the decision tree classifier is able to reduce
the complexity score to only 0.41, so that the classification
step is fulfilling its originally conceived target. Note that
this gain in computational resources does compensate the
resources needed to train the tree in the first place.

C. EFFECT OF THE SPARSITY LEVEL
The sparsity constraint is paramount to make the originally
ill-posed problem well-posed again. We therefore want to
evaluate our method for various values of S, and find out how
much sparsity is actually required to obtain a high recovery
rate. To do this, we run our algorithm in an end-to-end
fashion using the same setting as the last experiment, only
this time fixing the classifier to be a decision tree, and letting
S vary in {20, 40, 60, 80}. The results are summarized in
Figure 8.

7. This corresponds to the particular choice of β = 2 in the more gen-
eral fβ score defined as fβ = (1 + β2)pr/(β2p+ r), which is a weighted
harmonic mean of recall and precision, where the weight for recall (r) is
β2 times that of precision (p).
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FIGURE 8. Classification and recovery rates for different sparsity levels.

TABLE 2. Results of the end-to-end evaluation using state-space models.

D. OVERALL EVALUATION
As last experiment, we evaluate our method in an end-to-
end fashion using the state-space approach suggested in [3]
as concrete simulation model. We thereby set K = 2 and
N = 500, enforce the fleets to be symmetric and balanced,
and use pre-trained decision trees for the classification step.
Each tree is trained on an artificial data set created using
the artificial simulation method with SNRdB = 20. When
executing this for various values of S, we obtain the results
in Table 2.

VI. DISCUSSION
Our approach for the correction of measurement faults in
the power train of EVs consists of 3 steps. First, we esti-
mate the ideal ground truth. Second, we classify hardware
and measurement faults. Finally, the measurement faults are
recovered based on the classification result.
To evaluate our approach, we execute 4 experiments. In

the first experiment, we show that the recovery rate increases
for lower simulation errors. Our previously implemented
State-Space Models satisfy the experimental requirement of
15 dB needed to achieve a high recovery rate (> 80%, see
Figure 7). It is interesting that the recovery rate improves
just marginally at higher dB levels. This means that we need
a relatively accurate simulation model but do not require
highest accuracy. Thus, our approach is capable to handle
simulation errors to a certain extent.
Our second experiment shows that decision trees are supe-

rior to the thresholding rule. There are several reasons for
the decision trees’ advantages. First, they are trained on the
data before they are deployed in contrast to rules which are
set manually. Second, besides simple thresholding, they are
able to learn complex decisions rules and third, they take

all defined features as input. However, decision trees also
have some drawbacks. They require training which in turn
requires the creation of an artificial fleet. For the fleet’s cre-
ation, we need to state distributional assumptions about the
fleet. These assumptions might add uncertainty to our data
and lead to wrong decisions. Overall, even if the improve-
ment of decision trees to the recovery rate is relatively small
(0.86 vs. 0.84 as can be seen in Table 1), we still find them
better as they achieve a better classification rate (0.84 vs.
0.68 as can be seen in Table 1), which, as discussed in the
end of Section III, reduces the required computational power.
The main insight of our third experiment is that the

sparsity assumption is the crucial influencing factor on the
recovery rate. The recovery rate can be decreased to 47% by
low sparsity levels. This behavior is comprehensible since
the recovery algorithm is conceived to work with sparse vec-
tors and thus to minimize the 1-norm. The goal of sparsity
constraints is to deal with the ill-posedness of problems.
Assuming low sparsity means to deal with highly ill-posed
problems and low recovery.
From the fourth experiment, we learn that the recovery rate

is lower (e.g., 75% instead of 86% for S = 60) for State-
Space models instead of artificial simulation (see Table 1
and Table 2). This is surprising for us because State-Space
Models also fulfill the dB requirement of the first experi-
ment. A possible reason for the lower recovery rate might
be that the errors induced by the State-Space Models sat-
isfy the dB requirement for the standard deviation but are
not normally distributed. This might lead to some correla-
tions and decrease the accuracy of the regression in the first
recovery step. Further research into the exact reasons for
the lower recovery rate of State-Space Models is up to our
future work.
Regarding the whole work described in this article, we

realize that Assumption 2 is crucial for the results. Lower
sparsities induce worse results. This means that our algo-
rithm is sensitive to the previously stated assumption. We
expect this drawback to be solved by stabilizing the algorithm
with respect to simulation errors. Overall, if the assump-
tions are fulfilled, the results look very promising. The good
results with high recovery rates serve as basis for our future
work. Furthermore, we want to replace the simple linear
error model by more complex non-linear models.

VII. CONCLUSION
This article presents an advanced fleet-based framework to
correct measurement faults in the power trains of EVs.
Through a comparison with the mean behavior of the fleet,
we are able to classify whether a certain vehicle suffers
from significant hardware errors. Then, based on the classi-
fication result, we use a combination of linear regression and
convex sparse optimization to recover the parameters defin-
ing measurement errors. Using relatively mild and realistic
assumptions, we thereby achieve a high recovery rate of up to
90%. Overall, our framework is able to correct measurement
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faults in a completely automated way, and without additional
sensors or computational power on-board of the EV.

ABBREVIATIONS
ECU Electronic Control Unit
EV Electric Vehicle
HV High Voltage
HVB High Voltage Battery
PCA Principal Component Analysis
QBP Quadratic Basis Pursuit
RMSERoot Mean Square Error
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5 Conclusion

In this thesis, I propose a self-learning correction of measurement deviations of HV cur-
rents in the power trains of EVs. The correction distinguishes between measurement
deviations caused by sensor inaccuracies and by time delays. It works with the sensor
data available in modern production vehicles and can be executed on the processing
resources of automotive ECUs. To keep the additional effort for applicators as low as
possible, I propose and evaluate several methods from the field of Machine Learning.
These algorithms are able to adjust themselves to the data and require no or at least
only minimal manual parametrization.

The variety of Machine Learning methods evaluated in the scope of this thesis in
chapters 3 and 4 shows that it depends strongly on the individual problem which al-
gorithm is suited best to achieve the required result. As you can see especially from
section 3.2, sometimes Machine Learning methods are not the best choice and naive
but simple methods can achieve comparable results with less effort.

The proposed measurement correction allows to minimize the additional offsets on
the battery protection limits introduced in section 1.1. The smaller offsets allow to
increase the efficiency as well as the performance of the power train of an EV. For
example, the time delay correction presented in section 3.1 reduces the measurement
deviation from 25 % of the maximum current to below 5 %. This means that the offsets
on the battery protection limits can be reduced by 80 % and the maximum power of
the EV can be increased by approximately 27 % while at the same time increasing
the efficiency due to higher recuperation. Additionally, the fleet-based measurement
correction proposed in chapter 4 allows to correct drift and bias faults in the HV current
measurements with a recovery rate of up to 90 %.

The automated, self-learning measurement correction shows that Machine Learn-
ing methods allow to replace application by functional development to a certain extent.
However, as especially section 4.2 shows, manual application is still required to re-
trieve optimal and efficient results. Thus, I would rather conclude that Machine Learn-
ing transforms the process of application in the automotive software than replacing it
completely. The task of applicators might change to adjusting models in such a way
that they adapt themselves optimally to the input data in a fast way. The models might
be extended to Machine Learning methods instead of the controller models which are
common in the electric power train nowadays.
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Acronyms

ABS Anti-lock Braking System
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
BATS Box-cox transformation, ARMA residuals, Trend and Seasonality
BEV Battery Electric Vehicle
CAN Controller Area Network
DSC Dynamic Stability Control
ECU Electronic Control Unit
EM Electric Machine
EV Electric Vehicle
GPS Global Positioning System
HV High Voltage
HVB High Voltage Battery
ICEV Internal Combustion Engine Vehicle
LIDAR Light Detecting And Ranging
LSTM Long Short-Term Memory Neural Network
LV Low Voltage
MOS-ELM Online Sequential Extreme Learning Machine with Memory principle
MOESP Multivariable Output Error State Space
N4SID Numerical State Space Subspace System Identification
PHEV Plug-in Hybrid Electric Vehicle
QBP Quadratic Basis Pursuit
RADAR Radio Detecting And Ranging
RMSE Root Mean Square Error
SoC State of Charge
TBATS Trigonometric seasonal, Box-cox transformation, ARMA residuals, Trend

and Seasonality
TDE Time Delay Estimation
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Related Patent Applications

The contribution to the state of the art from chapter 2 and the implementation of my
co-authors and me in chapters 3 and 4 lead to five patent applications. The patent ap-
plications are presented more detailed below. Additionally, I registered another patent
application protecting the idea of charging EVs while being transported on trains. How-
ever, as this patent application does not fit the scope of the thesis, it is not listed below.

Method for Computer-Aided Evaluation of a Measurement of an
Electrical Unit in a High-Voltage On-Board Network of a Predetermined
Electrically Driven Motor Vehicle

Inventors: Jakob Pfeiffer, Peter Wolf, Roberto Pereira
Official file number: 10 2018 132 658.0
Registration date: December 12, 2018

This patent application is created in the context of the paper from section 4.1. It
protects the idea of fleet-based measurement deviation detection and the resulting
correction with the help of Machine Learning. The Machine Learning methods are used
to learn measurement models on-board of individual EVs. The deviation correction is
performed in the backup with the help of the classifier proposed in the paper.

Method, Device, Computer Program and Computer Program Product for
Processing Measurement Data Sets (Linear Regression)

Inventor: Jakob Pfeiffer
Official file number: 10 2019 106 461.9
Registration date: March 14, 2019

This patent application results from the work in the context of the papers printed
in section 3.1. It protects the idea of correcting measurement deviations caused by
time delays. Especially the measurement correction based on Linear Regression is
protected here.

Method, Device, Computer Program and Computer Program Product for
Processing Measurement Data Sets (Error Measure Minimization)

Inventor: Jakob Pfeiffer
Official file number: 10 2019 108 328.1
Registration date: March 29, 2019

Like the patent application above, this one results from the work in the context of the
papers printed in section 3.1. Its focus is on protecting the idea of correcting measure-
ment deviations caused by time delays by minimizing an error measure, for example
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the RMSE. The RMSE approach is a predecessor of the Variance Minimization ap-
proach presented in the papers.

Please note that in addition to this patent application, Xuyi Wu and Ahmed Ayadi
registered another patent application protecting the stabilization for this approach pro-
posed in the second paper in section 3.1.

Method for Computer-Aided Evaluation of Measurements of Electrical
Currents in a High-Voltage On-Board Network of a Predetermined
Electrically Driven Motor Vehicle

Inventors: Jakob Pfeiffer, Ahmed Ayadi
Official file number: 10 2019 135 022.0
Registration date: December 18, 2019

This patent application results from the work in the context of the paper presented in
section 4.2. It protects the correction of measurement deviation caused by measure-
ment inaccuracies. Additionally to the patent registration from 5, it protects the new
classifier and the measurement correction based on sparsity constraints.

System, Method and Computer Program for Determining Estimated
Sensor Data

Inventors: Jakob Pfeiffer, Mohamed Ali Razouane
Official file number: EP20171463.1
Registration date: April 17, 2020

Resulting from the work of the context presented in section 3.2, this patent applica-
tion protects the idea of predictive reconstruction of delayed measurements with time
series prediction algorithms.
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European Research Award

The research topic and the presented solutions of this work have been awarded with the
third place in the category Road of the TRA VISIONS Young Researcher Competition
2020. For further information on TRA VISIONS and the related transport research
award, I kindly refer the interested reader to https://www.travisions.eu/
TRAVisions/.

103

https://www.travisions.eu/TRAVisions/
https://www.travisions.eu/TRAVisions/




Bibliography

Copyrights

In the following, I print the copyright statements allowing me to print all the papers in
the scope of this thesis. Regarding the second, extended paper from section 3.1 and
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Commons Attribution 4.0 International License. This license explicitly authorizes the
copying and distribution of the papers. You can find the detailed license underhttps:
//creativecommons.org/licenses/by/4.0/. The papers in this thesis
are printed as copy of the original papers without any changes.
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