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ABSTRACT

This dissertation develops digital wind turbine models and uses computational fluid dynamics (CFD)
tools to simulate and explore various wind farm control strategies. The two main research methods
applied are computational fluid dynamics (CFD) simulation and wind tunnel experimentation. While
experimental measurements serve to validate the numerical results obtained with CFD, the detailed
insights enabled by CFD help explain physical mechanisms in the experiments. In previous works
conducted by the Wind Energy Institute of TUM, a scaled wind turbine model named G1 was designed
to conduct experiments on the turbines in the wind tunnel. The G1 is a three-bladed clockwise-rotating
wind turbine designed to display a natural energy conversion process and wake behavior. The rotor
size of the model resulted from a compromise between Reynolds number mismatch, miniaturization
constraints, limited wind tunnel blockage, and the ability to simulate multiple wake interactions
within the wind tunnel. The G1 is capable of active individual pitch, torque, and yaw control, meaning
that modern control strategies at the turbine and farm levels are feasible. In this work, a digital
duplicate of the G1 was developed and used for numerical simulations. One crucial step towards
obtaining a high-quality digital copy is to estimate the airfoil polars. Given the small size of the
airfoil, even modest manufacturing imperfections and regular blades wear can lead to deviations
from the nominal shape. Thus, the airfoils were identified by a maximum likelihood method that
explicitly considered all measurement uncertainties. The G1 digital model was used to conduct CFD
simulations of various wind farms that were governed with different control strategies, including
yaw misalignment control, dynamic induction control, and individual pitch control. The effects
of each control strategy were validated with experimental data, while the physical mechanism of
each strategy was explained. Thanks to the controlled and repeatable environment that prevails
inside the wind tunnel, it was possible to evaluate the effects of all the control mentioned above
strategies with high levels of accuracy and reliability. Since all these works were done with the scaled
model G1, an important question remains to be answered: How accurate are the wakes compared
to actual ones in the field? It is crucial to quantify the level of realism of wind tunnel simulated
wakes and identify which aspects faithfully represent the full-scale truth and which aspects do not.
For this purpose, a full-scale turbine model was designed simulated with the same CFD code. The
full-scale model was designed with realistic airfoil and structural constraints, and it matches the
non-dimensional circulation distribution of the G1 for the majority of the blade span in the meantime.
The CFD simulation results of the full-scale turbine and G1 were compared for both wind-aligned and
misaligned conditions. Various metrics were compared, including wake shape, path, speed profile,
Reynolds shear stresses, and power available at downstream locations. The comparison demonstrates
that the physical processes associated with a scaled wind turbine operated in a wind tunnel can be
highly representative of the full-scale turbine operating in the field, showing that the research findings
for scaled wind farms can be used as a proxy for full-scale wind farm wake behaviors.
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CHAPTER 1

Introduction

The growth rate of primary energy consumption over the past ten years is, on average, 1.6% per year.
Although the main sources of primary energy are still traditional ones such as oil and coal, renewables
have grown by a record increment, making the largest contribution (41%) to growth in primary energy,
with the level of renewable power generation exceeding nuclear power for the first time. The wind
made the largest contribution to the growth of renewables, followed closely by solar [1]. According
to the latest statistics of the World Wind Energy Association, the overall capacity of all wind turbines
installed worldwide reached 650.8 GW by the end of 2019. After hydropower, wind energy has become
the second-largest contributor to renewable energy. A clear advantage of wind energy compared to
oil and coal is its cleanliness. The carbon footprint of coal is almost 90 times larger than that of wind
energy. In addition, compared with other renewables, wind energy has a very low relative carbon
footprint [2].

The key to facilitating the growth of wind energy is to decrease the levelized cost of energy (LCOE).
The cost range of onshore turbines can be as low as 33 $/MWh, while the lowest value for offshore
turbines can be 83 $/MWh [3]. Together with improving aerodynamic efficiency and decreasing
maintenance costs, wind farm control is an important method to decrease LCOE. Wind farm control
can be employed to improve power capture and reduced loading [4, 5], and it can also serve to fulfill
the provision of grid [6], e.g., by tracking the power requirement of the grid [7, 8].

The goal of this dissertation is to build up high-fidelity numerical tools to understand and explore
wind farm control. The numerical tools include a fast and relatively low-fidelity blade element mo-
mentum model (BEM) and a high-fidelity computational fluid dynamics (CFD) model. The primary
data used for this work is measurements obtained with scaled wind turbines operated in a boundary
layer wind tunnel. Serving the final goal, three primary steps are taken as follows.

1. Build up and validate the numerical tools with wind tunnel measurements of scaled wind
turbines and farms operated with various operating conditions.

2. Evaluate the effectiveness and explain the physical mechanisms of various wind farm control
strategies applied to scaled wind farms by using numerical tools.

3. Demonstrate how realistic is the behavior and wakes of scaled wind turbines compared with
full-scale turbines with numerical tools.

The validation of numerical tools with experimental measurements is paramount, and this step is
typically non-trivial. In the last decade, a blind test of various numerical codes showed that the code
predictions were not good enough: the power predicted by different codes in blind tests ranged from
25% to 175% of the measured value for a no-yaw, steady-state, and no-stall operating condition [9].
A well-validated numerical tool should be able to match the measurements under a wide range of
operating conditions, and only such a tool is capable of giving plausible insights into the physical
phenomena in wind farms. A fully validated CFD tool can be easily applied to turbines with different
sizes, from a rotor diameter of several centimeters [10] to above one hundred meters [11]. The
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2 Chapter 1. Introduction

comparison between the wakes of turbines with different sizes can indicate the level of realism of the
turbine wakes measured in wind tunnels.

The turbine wakes play a vital role in wind farm control research. Wind turbine wakes are formed
behind rotors and typically characterized by lower speed and higher turbulence intensity compared
to the ambient flow. Wake interference among wind turbines not only results in power losses on
downstream turbines [12], but also increases their fatigue loading significantly [13]. While power
losses directly lead to a reduction in annual energy production, fatigue loading decreases turbine
lifetime expectations and increases maintenance cost. Ultimately, both factors have negative effects
on the cost of energy [11]. Mitigating such negative effects is a problem of major relevance in the field,
and it has strong implications on the design and operation of wind power plants [14]. The emerging
discipline of wind farm control is based on the concept of mitigating the effects of wake interactions
by the cooperation and coordinated action of the various turbines within a farm. The effectiveness
of such measures is typically associated with trade-off among turbines, as well as between power
and fatigue loading. For example, a turbine located upstream can be deliberately yawed out of the
wind to deflect its wake away from the downstream ones in order to boost the power of downstream
turbines. However, such an action decreases the power of the upstream machine and increases the
fatigue loading of the downstream machine, so there are already two pairs of trade-off in this scenario.
Therefore, it is important to quantify relevant positive and negative effects with precise models.

In general, any mitigating action, either adopted for a newly designed wind farm or an existing
wind farm – is based on two fundamental prerequisites: understanding the problem and being able
to accurately model and simulate it. Due to the high sensitivity of turbine power to the inflow wind
speed that is often influenced by wakes, the requirement for the accuracy of numerical models is high.
Once the numerical models are well-validated, they can be used to evaluate subtle changes caused by
various actions with high accuracy, abundant details, very low costs, and the best repeatability.

1.1 Research topics and innovative content

A wind farm is a typical example of a multi-scale physical problem, ranging from the diffusion of
the flow of the order of Kolmogorov microscales [15] of 0.1 millimeters to the whole scale of a wind
farm, which can be several kilometers [16]. The physical phenomena are complex, while numerical
modeling is challenging. To understand the complex phenomena at play in wind farms, it is necessary
to employ both experimental and numerical methods. Wind tunnel experiments [17] form the basis of
this investigation and are used to validate the numerical models. Fully validated numerical models
provide an insight into the physical processes operating inside wind farms and play an essential role in
the mechanism-explanation of wake development and recovery. Numerical models are also employed
to enable rapid testing of various control methods at a much lower cost than experimentation. When
a control method is confirmed to be effective by both the wind tunnel experiment and numerical
simulation, field testing can serve as the final validation.

1.1.1 Wind tunnel experiments

State of the art
The non-dimensional physical quantities can be calculated on the basis of the Buckingham π theo-
rem [18]. This theory states: an equation with n variables and k dimensions can be rewritten with a
set of n −k dimensionless parameters that are constructed from the original variables. Modern wind
turbines typically have large sizes, which makes field experiments very expensive or even impractical,
especially regarding the control of boundary conditions. Based on the Buckingham theory, the investi-
gation of small-scale wind turbines that can be operated in wind tunnels [17] can be a good substitute
for direct research using full-scale turbines. Except for the much lower experiment costs, the ability to
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control boundary conditions and measure detailed physical quantities are also major advantages of
wind tunnel experiments.

Various types of scaled wind turbine models were tested in different wind tunnels. A simple way of
developing a scaled turbine is to use a porous disk to model the wind turbine rotor according to the
actuator disk method [19]. Although the turbine wake of such simple models is not distinguishable
after 3D [20], it is impossible to research wind turbine control with them. The first wind tunnel test of a
scaled turbine was conducted in [21], which was limited to laminar inflow cases when studying the
near wake. A scaled turbine [9] with a rotor diameter of 10 m was used to study dynamic stall, rotational
augmentation effects as well as the influence of the tower on wake recovery, and the study focused
solely on experiments. The MEXICO project [22] validated both BEM and RANS-CFD models with a
scaled turbine with a rotor diameter of 4.5 m. While this study reveals details of pressure distribution
around airfoils and tip vortices shed by the rotor, little attention has been paid to wind turbine and farm
control. LES-CFD simulations were conducted for a miniature turbine with a 0.15 m-diameter-rotor
in [10]. The match between experiments and simulations was excellent. The turbine model matches
the tip speed ratio of field-scale turbines, but its small size limits its ability to mimic the wake behavior
of field-size turbines, while pitch control of the blades is not yet feasible. Later, a scaled turbine model
G2 with a rotor diameter of 2 m, good aerodynamic properties, and full pitch, speed, and yaw control
was developed and introduced in [17]. The turbine model is equipped with both pitch and torque
systems as well as various types of sensors, which allow it to be used for conducting non-aerodynamic
and non-standard experiments. G2 was tested in a wind tunnel [23] in Politecnico di Milano with a
cross-section area of 52.44 m2. Similarly, another scaled turbine MoWiTO [24] with a diameter of 1.8 m
was designed, and the model is capable of individual pitch control. MoWiTO was tested in the wind
tunnel of the University of Oldenburg that has a cross-section of 9 m2. A drawback of both G2 and
MoWiTo is their relatively large sizes compared to the cross-section of the corresponding wind tunnels,
which might result in a blockage effect that hinders its suitability for use in investigations of wind farm
control, where a cluster of turbine models is typically desirable.

The G1 is a smaller turbine model with a rotor diameter of 1.1 m, which was designed to support
wind farm control research [25]. The size of the G1 represents a design compromise between Reynolds
mismatch, miniaturization constraints, limited wind tunnel blockage, and the ability to simulate
multiple wake interactions in the wind tunnel. The G1 model is capable of the individual pitch, torque,
and yaw control to enable its use in testing modern control strategies at both turbine and farm levels.
The G1 model was also operated in the wind tunnel in Politecnico di Milano. Therefore, the G1 model
is one of the main objects of investigation employed in this study.
Innovative contribution
The G1 model is used to test three different kinds of wind farm control strategies. Although the author
of this dissertation did not participate in the experiments directly, the author performed numerical
simulations and data post-processing for the tests.

The first application is the yaw misalignment control, one of the most promising methods to
increase wind farm power. Yaw control can be used both to increase wind farm power [26, 27] and
alleviate loads [28], and it is even considered during the design of wind farm layouts [29]. The focus of
this work is about power increase.

While most studies in the literature present the effectiveness of yaw control based only on CFD
studies, few results were obtained from experiments. In addition, detailed measurements of flow and
turbine power have not been conducted for this control strategy. In this work, a measurement of
the mean flow speed on a horizontal slice for a scaled wind farm was shown, together with detailed
measurements of turbine power and thrust. In the experiment, three misaligned G1 wind turbines were
put into operation in the wind tunnel. The power and thrust were measured by the on-board sensors.
A novel aspect of the experiment was the measurement of flow using two scanning LiDARs [30]. The
LiDARs scanned the flow field to obtain an average flow field by averaging the scanned data over
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multiple passes. Measurements were conducted for both wind turbines with greedy control and those
with optimal yaw misalignment control. The results reveal the path of the wake and the mechanism of
power enhancement by the yaw misalignment control. The secondary deflection effects caused by a
yawed wind turbine was observable from the measurement data.

The second verified control strategy is dynamic induction control (DIC), a novel method that
exploits natural instabilities in the near-wake vortex structures so as to enhance wake recovery [31, 32].
This strategy was first obtained by numerical simulation using the actuator disk method (ADM), then
first validated experimentally in the wind tunnel [33]. The technique works by sinusoidally varying the
rotor thrust in an open-loop; when performed at the right frequency, this perturbation has the effect of
speeding up the breakdown of the vortex and enabling the recovery of the wake.

In [31, 32], only simulation results were presented, and there were no corresponding experiments.
In the wind tunnel in Politecnico di Milano, experiments with a cluster of three aligned G1 wind
turbines were conducted in the wind tunnel to study the parametrization of the DIC control. The
experiments specifically studied the relationship between wind farm power and the non-dimensional
Strouhal number. An increase in wind farm power was observed for the proper values of the Strouhal
number.

The third control method tested is individual pitch control (IPC) that reduces the periodic loads
caused by shear and wind misalignment using pitch activity [34].

While the load-reduction function of IPC is already indisputable [35], the impact of IPC on tur-
bine wake has not previously been studied in detail, especially for wake-steering turbines with yaw
misalignment. Therefore, wind tunnel experiments were conducted with G1 models in different yaw
misalignment conditions with and without IPC control. While a significant load reduction was ob-
served, the influence of IPC on wake path, wake recovery, turbine power, and wind farm power was
quantified in detail. The effects attributable solely to IPC can be isolated from the other factors by
analyzing the experimental data.

1.1.2 Parameter identification

State of the art
Airfoil polars are used for modeling the aerodynamics of rotors using lifting lines, in conjunction with
blade element momentum (BEM) and computational fluid dynamic (CFD) models. BEM methods are
routinely used for the aeroservoelastic analysis of wind turbines and provide most of the industrial-level
simulation capabilities for load analysis nowadays, design, and control development activities [36].

One crucial component of the simulation chain has been a method for estimating the polars
directly from the operational data of the turbines [37]. In fact, the blades of scaled wind turbine models
operate in low Reynolds regimes, where even relatively small changes in the operating conditions
can cause significant changes in the aerodynamic characteristics of the blade sections. In addition,
given the small size of these models, even modest manufacturing imperfections and normal wear of
the blades can lead to deviations from their nominal shape. Using the method of [37], the nominal
airfoil polars are augmented with parametric correction terms, which are identified using a maximum
likelihood (ML) criterion based on operational power and thrust measurements.

These measurements were collected on the turbine at various operating conditions, selected in
order to span the desired range of angles of attack and Reynolds numbers. Since a large number of
free parameters are necessary to represent the correction terms, the resulting problem is ill-posed,
and the parameters are collinear. To address this issue, the original parameters are transformed into a
new orthogonal set by using the singular value decomposition (SVD). Because the new parameters are
uncorrelated with each other, one can select an observability threshold, discard the unobservable set
and solve only for the observable one. After having solved the identification problem, which is now
well-posed, the solution is mapped back onto the space of the original physical parameters.
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Innovative contribution
Although the traditional maximum likelihood method works well in practice, it still suffers from
assumptions that limit its effectiveness. Indeed, the classical ML formulation is based on an input-
output model and assumes errors in the outputs only [38, 39]. Following this approach, outputs differ
from available measurements because of measurement errors and model deficiencies. However, errors
are not explicitly accounted for in the inputs, which are assumed to be equal to their measured values.
In the present context, inputs represent the operating conditions of the turbines, which are expressed
by the ambient air density and wind speed, the rotor angular velocity, and the blade pitch setting.
Errors in such quantities have a non-negligible effect on the outputs and should be taken into account
in a rigorous statistical sense.

To address this issue, the present dissertation proposes a new general formulation of ML identifica-
tion that includes errors both in the outputs and in the inputs. This generalized formulation leads to an
optimization problem in the model parameters and the unknown model inputs, which can now differ
from their measured values. The proposed method is again cast within the SVD-based reformulation
of the unknowns to deal with the ill-posedness and redundancy of the parameters. A few measures to
accelerate the identification, including a filtering technique, are proposed and applied. In addition,
the new method considers the dependency of polars on the Reynolds number and the correspond-
ing constraints. The new formulation was applied to the identification of the polars of small-scale
controlled wind turbines developed to support wind farm control and wake research [33, 40, 41].

1.1.3 Computational Fluid Dynamics

State of the art
CFD simulation of wind turbines has been a major object of investigation for more than a decade. The
practice began with Reynolds-averaged Navier–Stokes (RANS) simulations of turbines, for instance, the
simulation of near wake behavior with RANS equations in [42]. [43] simulated wind turbine clusters
and compared RANS to the higher-fidelity large-eddy simulation (LES) method, which showed that
RANS was not sufficiently accurate, as it typically displayed excessive numerical diffusion. Thanks to
improvements in computational power, LES has been increasingly adopted by the wind farm research
community due to its ability to resolve more features in the flow and to deliver more accurate results.
For example, the LES results shown in [10] match extremely well with the experimental measurements.
Later, an open-source software SOWFA [44] based on the open-source repository OpenFOAM [45] has
become one of the most important CFD tools for use with wind farms. Results in [44] demonstrate the
ability of SOWFA to simulate turbines with yaw misalignment with high accuracy.

Besides the turbulence model, the way that the turbine is modeled is critical to the accuracy of
the results. The actuator disk method (ADM) was the first to be widely used. It has non-rotating
and rotating versions, as shown in [10]. However, the actuator disk model does not directly resolve
the locations and motions of turbine blades, which can result in a loss of fidelity, especially in the
near wake. The actuator line method (ALM) proposed in [46] models the blades directly and gives
results that match well with measurements. It is gradually becoming one of the most widely used
methods for wind turbine LES. The BEM code FAST [47] can be used in conjunction with ALM to
model wind turbine blades. A similar method to ALM, known as actuator curve embedding (ACE),
was put forward in [48]. One of the major differences between ACE and ALM is the way in which they
compute body forces. While ALM loops over all actuator points and projects body forces in spherical
regions using a Gaussian function with a kernel ε, ACE loops directly over cells and can project body
forces in cylindrical domains. Nevertheless, ALM and ACE are both capable of capturing the major
characteristics of the blade-flow interaction, while the former has been adopted and discussed more
widely. The simulations in this study are conducted with ALM. One major topic of discussion with
ALM is the choice of Gaussian kernel ε, as it directly influences the power prediction of the turbine
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model. While some authors suggest that it should be chosen as a constant multiple of the grid size [49],
some prefer choosing ε as distribution along the blade span [50]. Other approaches were discussed in
great detail using LES with a relatively dense mesh [51] or coarse mesh [52]. There is no consensus
on a unique method of body force projection since different rotors were investigated. Nevertheless,
it is clear that realistic flow solutions typically have a relatively small kernel compared to the chord
of the blade, while a kernel that is too small results in numerical instabilities. While blades are the
most relevant components in aerodynamics, the nacelle and tower also influence the wake of a turbine.
For full-scale turbines, the impact of the nacelle and tower is so small that it is neglected by many
researchers. Nevertheless, [53] models the nacelle and tower with ALM and obtains reasonable results.
One shortcoming of such a model is that it cannot prevent the flow from going through the body of
the nacelle and tower. Models with higher fidelity are therefore desirable, especially for scaled wind
turbines operated in wind tunnels since the relative sizes of nacelle and tower are typically larger when
compared with full-scale turbines.
Innovative contribution
The CFD simulations in this study were conducted with SOWFA. Since it is open-source, it can be
modified to enable the use of SOWFA in simulations of scaled wind turbines. This study uses ALM to
model wind turbine blades. A tip loss model has implemented such that the blade tip loads are much
smaller than they would be without the tip loss model. This slight modification avoids non-physical
high loading being predicted at the tip. Rather than using ALM as described in [53], this work uses the
immersed boundary method [54] to model the nacelle and tower, which solves the issue of flow passing
through the bodies of the nacelle and tower and allows accurate modeling of the surfaces. In this
work, the airfoil polars are identified from measurements such that the power and thrust predictions
of BEM simulations match the experiments. Rather than attempting to find a universal approach
to distributing the body force for different kinds of rotors, the ε distribution of G1 is tuned to match
the blade load distribution predicted by BEM simulation. A direct result of matching the blade load
distribution is the match of power. Therefore, a customized choice of ε results in the highest possible
accuracy for CFD simulations.

The FAST and SOWFA codes were modified significantly to enable the implementation of various
types of wind turbine and wind farm controllers, respectively. While most researchers simulate wind
turbines rotating at constant rotor speed [10, 44], realistic turbines are able to accelerate in accordance
with the unbalance between the generator torque and the aerodynamic torque. As reported in [55],
if the generator torque controller is properly implemented in the CFD simulation, the rotor speed
fluctuates in a similar manner to the measured value, while the spurious and non-physical oscillation
of the rotor power with constant-rotor-speed can be eliminated. Turbine controllers for dynamic
induction control and individual pitch control, as described above, were implemented and validated
with experimental power, thrust, and wake data. The implementations included dynamic induction
control, individual pitch control, yaw misalignment control on the wind turbine level, and gradient-
based control on the wind farm level.

Another innovation of this study is the precursor simulations. Common methods of precursor
simulation include atmospheric simulation by CFD [56] and engineering models such as TurbSim [57].
The approach taken in this work differs from those commonly adopted but is the most suitable for use
in wind tunnel applications with a passive method of generating turbulence. A cluster of spires was
placed close to the inlet of the wind tunnel to create turbulence. The process was replicated digitally
by generating a high-quality structured spire mesh and using it for LES. The precursor simulation aims
to match both the horizontal and vertical wind shear as well as the turbulence intensity distribution
by adopting an iterative approach. In the first iteration, a uniform inflow condition was used for the
precursor simulation, while for subsequent iterations, the inflow speed was rendered non-uniform by
taking the mismatches between the simulation and experiment results in the previous iteration into
account. After several iterations, it was possible to achieve an excellent match of the mean wind speed
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distribution. The precursor simulation was conducted for two different cases, a medium turbulence
intensity setup that corresponds to typical offshore conditions and a high turbulence intensity one
that represents onshore situations.

1.1.4 Comparison between different scales

State of the art
Wind turbine wakes are a primary form of coupling within a wind plant. Therefore, understanding
their behavior and being able to accurately simulate their effects are important problems in wind
energy science nowadays, which have direct practical payoffs on design, operation, and maintenance.
Wake effects have been researched in many recent works [17, 25, 58–61] in great detail.

Compared with full-scale field testing, wind tunnel experiments have many important advantages,
including repeatable inflow conditions, detailed flow measurements, and limited costs. Controlled and
repeatable wind tunnel tests contribute significantly to the current understanding of wind turbines
and farms, generating valuable data for the validation and calibration of mathematical models, offering
opportunities for the verification of control technologies.

These features are advantageous, but a critical question still remains to be answered: how realistic
are the wakes obtained in the wind tunnel compared to actual ones in the field? Without this question
being properly answered, it is still reasonable to doubt the actual usefulness of wind tunnel testing
based on a perceived lack of realism of scaled tests. An analysis of the scaling effect was performed
by [62], considering the effects caused by the mismatch of the rotor-based Reynolds number. Exper-
imental results based on a miniature wind turbine showed that wake behavior is unaffected by this
parameter when it is larger than 9.3 ·104. However, in reality, the behavior of the blades and the wake is
much more strongly affected by the chord-based Reynolds number, as initially discussed in [17]. In
addition, there are many other factors driving differences in wakes, including circulation distribution
and different torque coefficient. Although there are plenty of CFD simulations for both full-scale
turbines [11, 44] and scaled turbines operated in wind tunnels [10], a rigorous comparison between
wakes of scaled and full-scale turbines has not been conducted. Therefore, it is important to quantify
the level of realism of wind tunnel simulated wakes and to identify which aspects faithfully represent
the full-scale truth and which aspects do not.
Innovative contribution
Following [58] and [63], dimensional analysis has been done to review the main factors driving wake
behavior. The analysis also reveals which physical aspects of full-scale wakes cannot be matched at the
reduced scale with the considered experimental setup. In fact, the much lower Reynolds regime of a
small scale model compared to a full-scale machine implies very different aerodynamic characteristics
of the blade airfoils, which in turn drive a number of specific design choices of the scaled model [58,63].
Due to the relatively lower efficiency of the airfoils used by scaled turbine models, the models typically
have a lower power coefficient compared to full-scale ones.

With the aim to conduct a rigorous comparison between different scales, full-scale turbines were
designed that match some of the scaled-model parameters. Various versions of these models were
considered, ranging from a more realistic full-scale turbine —with a larger number of mismatched
effects with respect to the scaled model— to less realistic ones that match more quantities of the scaled
model.

The investigation mainly depends on the validated LES-ALM simulation framework [40]. The sim-
ulation tool was used to simulate both full-scale and scaled wind turbines. The underlying assumption
is that, since the code was found to be in very good agreement with measurements obtained in the
scaled experiments, the same code based on the same numerical setup should deliver results of similar
accuracy even at full scale. The numerically simulated scaled and full-scale wakes were compared. The
comparison reveals the similarities and discrepancies between wakes of scaled and full-scale turbines.
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Factors that drive discrepancies in the wakes were identified. It was found that the level of realism of
the G1 wake is high enough to justify the usefulness of wind tunnel experiments.

1.2 Publications

Eight publications are included in this dissertation. Figure 1.1 presents an overview of these publica-
tions, grouped according to category.

Figure 1.1: Research topic and publications.

Paper 1 proposes the system identification method used to identify the polars of the scaled G1
wind turbine model. In this section, the BEM G1 model is built and validated. Next, the CFD simulation
framework is validated in accordance with various aspects. Paper 2 serves as a basic validation work
by comparing the inflow and turbine wake profiles between simulations and experiments. Paper 3
goes one step further by including a generator torque controller in the CFD simulation. This paper also
validates the yaw misalignment wind farm control strategy. Paper 4 compares the second-order finite
volume method that is used in this dissertation with a sixth-order compact finite difference scheme.
The objective was to study whether a second-order solver is generally sufficient for resolving dominant
physical phenomena in wind farms. Then, the simulation framework is applied to a variety of appli-
cations, including the dynamic induction control presented in Paper 5, the individual pitch control
discussed in Paper 6, and the reduced-order model of the computation-intensive CFD proposed in
Paper 7. All aforementioned papers are based on the scaled wind turbine model G1, the aim being to
conduct a thorough validation of the CFD framework. The final topic in this dissertation responds to
the question of how realistic the wind tunnel experiments conducted with scaled wind turbine models
are. The answer to this question is discussed in detail in Paper 8, by comparing CFD simulations of
scaled wind turbines with full-scale ones. The results indicate a strong resemblance between the domi-
nant physical phenomena of the two different scales, with only minor limited mismatches displayed.
Paper 8 has been submitted, while other papers have been published.

Publications lead by the author:

• Paper 1: C. Wang, F. Campagnolo, and C. L. Bottasso, “Identification of airfoil polars from
uncertain experimental measurements,” Wind Energy Science, vol. 5, pp. 1537–1550, 2020. doi:
https://doi.org/10.5194/wes-5-1537-2020

https://doi.org/https://doi.org/10.5194/wes-5-1537-2020
https://doi.org/https://doi.org/10.5194/wes-5-1537-2020
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• Paper 3: C. Wang, J. Wang, F. Campagnolo, D. Carraón, and C. Bottasso, “Validation of large-
eddy simulation of scaled waked wind turbines in different yaw misalignment conditions,” in
Journal of Physics: Conference Series, vol. 1037, no. 6. IOP Publishing, 2018, p. 062007. doi:
10.1088/1742-6596/1037/6/062007

• Paper 4: C. Wang, A. Muñóz-Simon, G. Deskos, S. Laizet, R. Palacios, F. Campagnolo, and C. Bot-
tasso, “Code-to-code-to-experiment validation of les-alm wind farm simulators,” in Journal of
Physics: Conference Series, vol. 1618, no. 6. IOP Publishing, 2020, p. 062041. doi: 10.1088/1742-
6596/1618/6/062041

• Paper 5: C. Wang, F. Campagnolo, A. Sharma, and C. Bottasso, “Effects of dynamic induction
control on power and loads, by les-alm simulations and wind tunnel experiments,” in Journal of
Physics: Conference Series, vol. 1618, no. 2. IOP Publishing, 2020, p. 022036. doi: 10.1088/1742-
6596/1618/2/022036

• Paper 6: C. Wang, F. Campagnolo, and C. Bottasso, “Does the use of load-reducing IPC on a
wake-steering turbine affect wake behavior?” in Journal of Physics: Conference Series, vol. 1618,
no. 2. IOP Publishing, 2020, p. 022035. doi: 10.1088/1742-6596/1618/2/022035

• Paper 8: C. Wang, F. Campagnolo, H. Canet, D. J. Barreiro, and C. L. Bottasso, “How realistic are
turbine wakes in wind tunnel tests?” Wind Energy Science, in review, 2020. doi: https://doi.org/10.5194/wes-
2020-115

Publications with significant scientific contribution by the author:

• Paper 2: J. Wang, C. Wang, F. Campagnolo, and C. L. Bottasso, “Wake behavior and control:
comparison of les simulations and wind tunnel measurements,” Wind Energy Science, vol. 4,
no. 1, pp. 71–88, 2019. doi: https://doi.org/10.5194/wes-4-71-2019

• Paper 7: A. Fortes-Plaza, F. Campagnolo, J. Wang, C. Wang, C. Bottasso et al., “A POD reduced-
order model for wake steering control,” in Journal of Physics: Conference Series, vol. 1037, no. 3,
2018. doi: 10.1088/1742-6596/1037/3/032014

https://doi.org/10.1088/1742-6596/1037/6/062007
https://doi.org/10.1088/1742-6596/1037/6/062007
https://doi.org/10.1088/1742-6596/1618/6/062041
https://doi.org/10.1088/1742-6596/1618/6/062041
https://doi.org/10.1088/1742-6596/1618/2/022036
https://doi.org/10.1088/1742-6596/1618/2/022036
https://doi.org/10.1088/1742-6596/1618/2/022035
https://doi.org/https://doi.org/10.5194/wes-2020-115
https://doi.org/https://doi.org/10.5194/wes-2020-115
https://doi.org/https://doi.org/10.5194/wes-4-71-2019
https://doi.org/10.1088/1742-6596/1037/3/032014




CHAPTER 2

Methods

This study began by taking experimental measurements of scaled wind turbines and their wakes in
a boundary layer wind tunnel, with the aim of building and validating numerical simulation tools.
The tools include a computational fluid dynamics (CFD) framework and digital models of scaled
wind turbines. Wind turbines were measured and simulated under different operating conditions,
so the simulation model is capable of matching experimentation not just under one set of operating
conditions but generally.

The accuracy of the scaled wind turbine model is the most critical aspect of tool validation. While
some properties of the model are directly measurable, e.g., chord distribution and rotor speeds, other
quantities such as the lift and drag coefficients (polars) are not. In this study, the polars of blade
airfoils were obtained using a polar identification method. Improvements in the identification method
resulting from this study enable high-quality polar data to be obtained.

The simulation tool was applied to a set of applications to investigate wind farm control. This
includes open-loop control schemes such as yaw misalignment control, individual pitch control (IPC),
and dynamic induction control. A strategy of closed-loop wind farm control with gradient-based
automatic yaw misalignment was also demonstrated. In all cases, a good match was obtained between
simulation and experiment.

The validated simulation tool was then applied to full-scale turbines. The aim was to demonstrate
the similarities and differences between scaled and full-scale turbines. The full-scale wind turbines
were designed to match the characteristics of the scaled wind turbines. The airfoil properties of the
full-scale turbines were simulated using high-resolution CFD with body-conforming mesh. Based on
the simulation results of the scaled and full-scale wind turbines, it is possible to draw conclusions
regarding the extent to which wind tunnel experiments can guide wind farm design and control.

Section 2.1 presents the experimental facilities, including the wind tunnel and the scaled wind
turbines; Section 2.2 introduces the numerical model of the scaled wind turbine; Section 2.3 describes
the polars identification method; Section 2.6 explains the large-eddy simulation scheme; Section 2.7
explains the method of numerically duplicating the turbulent inflow condition in the wind tunnel; and
finally, Section 2.8 introduces the design and model of the full-scale turbine.

2.1 Wind tunnel experiments

A closed return wind tunnel [23] located in Politecnico di Milano in Italy was used for all the wind
tunnel experiments presented in this work. Figure 2.1 shows the arrangement of the wind tunnel. The
civil test section of the wind tunnel has a cross-section of 13.8 m × 3.8 m and a length of 36 m. It is big
enough to contain an array of scaled wind turbines while at the same time avoiding significant blockage
effects. A cluster of 14 fans in the lower layer of the wind tunnel can generate wind speeds of up to 14
m/s in the civil test section. A coordinate system for this test section is used consistently throughout
this work and is shown in Fig. 2.1. The origin of the coordinate system is located at the center bottom
of the inflow slice of the test chamber, as indicated in Fig. 2.1. The x-axis points downstream along the
streamwise direction while the z-axis points vertically up.
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Figure 2.1: Structure of the wind tunnel. The upper low-speed test section is used in this work [23].

The turbulence intensity in the civil test section is about 1% if no spires are placed in the wind
tunnel. However, a flow with a higher turbulence intensity is typically more useful for wind energy
applications because it better mimics the atmospheric boundary layer. There are several ways of
generating turbulence in the wind tunnel, such as passive and active grids [70, 71], pressurized tubes
[72], active air-jet [73], and spires and roughness elements [74, 75]. For the wind tunnel used in this
study, spires and roughness elements were used to generate the turbulence [74]. Different turbulence
intensities can be triggered with spires of different numbers, positions, and shapes. Typical onshore
and offshore turbulence was replicated experimentally in the wind tunnel.

Scaled wind turbine models of different sizes were designed by the Technical University of Munich
and Politecnico di Milano for the purpose of investigating wind farm control in wind tunnels, resulting
in a three-bladed scaled wind turbine model G1 [25]. Fig.2.2 shows the layout of the G1. It has a rotor
diameter of 1.1 m and a rated rotor speed of 850 rpm. It is equipped with a closed-loop control system
that permits active yaw control and individual pitch control. G1 mimics the aerodynamic properties of
full-scale wind turbines and can be used to investigate wind farm control in the wind tunnel.

Figure 2.2: G1 model layout [25].
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2.2 Turbine numerical model

Two different aerodynamic models are needed to support different simulation needs: a fast lower
fidelity BEM for repetitive simulations during model identification and a high-fidelity CFD model
for wake and wind farm research. The CFD model reuses the BEM model partially to include wind
turbines in simulations.

2.2.1 BEM model

The numerical model of turbine blades used in this study is based on the blade element theory first
proposed by William Froude (1878), David W. Taylor (1893), and Stefan Drzewiecki. It is assumed
that the whole blade is subdivided into segments that operate relatively independently of each other.
Each segment is modeled with a two-dimensional airfoil, whose properties can be either measured
or estimated. Therefore, the theory links the behavior of a complex three-dimensional blade to the
properties of two-dimensional airfoils, which simplifies the analysis. Loads of each blade element are
computed according to the local flow condition. The total force and moment are obtained by inte-
grating from the blade root to the tip. Despite its simplicity, the blade element theory has reasonable
accuracy. The state-of-the-art approach to modeling blade-flow interaction is based on the blade
element momentum (BEM) theory proposed by Glauert and Betz [76]. BEM methods are routinely
used for the aeroservoelastic analysis of wind turbines and provide most of today’s industrial-level
simulation capabilities for load analysis and design and control development activities [77–79]. The
blade-flow interaction to be solved by BEM works as follows: the flow applies lift and drag forces to
the airfoil, while the airfoil results in the induction of the flow. Therefore, the solutions of forces and
induction are coupled, so it is done iteratively. Despite the need for iteration, BEM simulation typically
takes very little time to solve, and the accuracy is sufficient for many applications. The accuracy of
polars is important for the quality of a BEM model. In this work, the polars were identified from
experimental measurements using the BEM model instead of CFD. The polars identification requires
evaluation of power and thrust under various operating conditions with different values of polars,
typically for millions of times. Due to the constraints of time and resource consumption, the BEM
model is a much more reasonable choice compared with a CFD model.

In this dissertation, an open-source code, FAST [47], based on BEM, is used to perform rapid
simulation of turbines under laminar inflow conditions and different operating conditions. The BEM
simulation of FAST takes into account the tip and hub losses of the blades as well as the axial and
tangential inductions of the flow. The code is well-validated and widely used in industry and academic
research. FAST models of all scaled and full-scale turbines used in this work were built and validated.

2.2.2 ALM-CFD model

The tool used to investigate turbine wakes and wind farm control is CFD simulation. The turbine
models used in the CFD simulation are again the FAST ones. However, in the circumstance of CFD
simulation, the flow induction is solved directly by CFD, rather than by using the BEM method. FAST
and CFD are coupled through SOWFA [44]. SOWFA samples the velocity in the vicinity of the turbine
blades and passes the results on to FAST, which computes the forces on each blade element before
returning them to SOWFA. Following the approach proposed in [46], the forces f are projected as body
forces fε in the computational domain. For any point in the domain, the distance from that point to
the blade point is noted as d , and the body force is then calculated as follows:

fε = ε−2π−3/2exp[−(
d

ε
)2]f, (2.1)



14 Chapter 2. Methods

where ε is a parameter that affects the spread width of the body forces in the domain. As indicated
by the formula, the body force decays exponentially with the distance d , and it is truncated when the
distance is big enough. The choice of ε has an impact on the prediction of turbine power by indirectly
influencing the velocity distribution in the blade vicinity. Decreasing ε results in more concentrated
force distribution, which typically leads to lower power predicted by the model. Thus, the choice of ε
has been investigated in many pieces of literature [49–52, 80, 81]. The use of very fine mesh, typically
four cells across the chord of the blade, is an optimal way of choosing ε to obtain a highly realistic
solution. However, such fine mesh is not usually feasible for wind farm simulations due to its excessive
size. With a mesh of intermediate fineness, roughly equal to the chord of the blade, there is a trade-off
between projecting body forces realistically and stabilizing the CFD solver. An excessively small ε
causes the solver to crash due to a too concentrated body force, while an excessively big ε results in
unrealistic force projection since the body force becomes high even far away from the blade. Inspired
by the guideline [50], the value of ε is distributed along the blade span. However, the approach adopted
in this study differs from the equivalent ellipse distribution proposed in [50]. The ε distribution is
chosen, such that the blade load distribution along the blade span matches the prediction of BEM
simulations. In this way, CFD results are not only realistic but also consistent with BEM simulations.

2.3 Polars identification

Both BEM and ALM-CFD models rely on polars. The polars, including lift and drag coefficients,
represent the aerodynamic characteristics of the airfoils used on the blade. Clearly, the quality of
model outputs is directly related to the accuracy of the polars. However, it is non-trivial to obtain precise
values. Traditionally, polars are obtained with wind tunnel experiments or numerical simulations for
isolated airfoils. Both approaches are able to give accurate nominal values of polars. Nevertheless,
there are many factors that make the actual polars of a specific blade be different from the nominal
ones. The difference is not always negligible in terms of predicting turbine power and thrust. This
dissertation proposes a novel approach for estimating polars based on operational turbine data. The
methodology is based on a maximum likelihood method described in [82].

The method directly estimates the polars from the operational data of the turbines [37]. For
wind tunnel applications, the blades of scaled wind turbine models operate in low Reynolds regimes,
making the aerodynamic properties sensitive to changes in operating conditions. In addition, the small
size of these models also increases the sensitivity of polars to manufacturing imperfections. Thus,
medium deviations from the nominal shape lead to non-negligible differences between the actual and
nominal polars. The method proposed in [37] augment the nominal airfoil polars with parametric
correction terms identified using the maximum likelihood (ML) criterion based on operational power
and thrust measurements. These turbine operational conditions are chosen with the purpose to
span the required range of angles of attack and Reynolds numbers. There are four parameters to
describe each operational condition, including the wind speed, air density, rotor speed, and blade
collective pitch angle. Polars at different Reynolds number and angle attack are to be identified, giving
a large number of unknown parameters, so the resulting problem is ill-posed, and the parameters are
collinear. A special coordinate transformation is conducted using the singular value decomposition
(SVD) method, and the new parameters are decoupled from each other and are sorted according to
a descending observability order. Thus, truncation can be performed to discard weakly observable
parameters. The transformation and truncation not only improves the posedness of the identification
problem but also decreases the complexity and computational burden of it. The solution in the new
coordinate space is then transferred back into the original space.

The maximum likelihood method, coupled with the SVD method, still has some limitations since
the classical ML formulation assumes errors in the outputs only [83, 84]. Under such an assumption,
differences between model outputs and experimental measurements can only be attributed to mea-
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surement errors of outputs, model deficiencies, and errors in parameters. However, errors of model
inputs are neglected, which is another important error source. In the context of polars identification,
model inputs include wind speed, air density, rotor speed, and blade collective pitch angle. Errors
of these quantities should be considered explicitly in the identification process. Hence, this study
proposes a new general formulation of ML identification that includes errors both in the outputs and
in the inputs. This generalized formulation produces an optimization problem not only for the model
parameters but also for the actual model inputs. Despite the increased complexity, the computational
costs are not increased significantly for several reasons. First, the optimization of polars and model
inputs are done separately. The optimization problem is broken into two steps whose coupling is
done by iterating among them. Second, the outer iteration is accelerated by providing high-quality
initial guesses with a filtering technique. Third, the optimization of the model inputs must be done for
each operating condition, but it can be separated into a series of decoupled inexpensive optimization
problems. Fourth, the SVD-based coordinate transformation of the unknowns can still be applied to
accelerate the identification, but it is limited to the model parameters. The concrete realization of
these measures is discussed in the following.

Consider a system described by the parametric model

y =h(p,u), (2.2)

where u ∈Rl are the inputs, including the air density, wind speed, blade pitch angle and rotor speed,
p ∈ Rn the model parameters, including the lift and drag coefficients by different angle of attack
and Reynolds number, and y ∈ Rm the outputs, including the power and thrust coefficients. In
correspondence to the N inputs U = {u∗

1 ,u∗
2 , . . . ,u∗

N }, N experimental measurements of the outputs
are available and noted Y = {y∗

1 ,y∗
2 , . . . ,y∗

N }. Because of modeling and measurement errors, the
experimental measurements are in general not identical to the outputs predicted by the model (2.2),
and there are differences that can be quantified by the residual r =y∗−y. The goal of the estimation
problem is to find the model parameters p that minimize the residuals r.

The formulation of ML that accounts for errors both in the outputs and inputs requires to expand
the parametric model (2.2) as

ŷ =
{

y
u

}
=

{
h(p,u)

u

}
. (2.3)

Given the modeling and measurement errors, the experimental output measurementsy∗ are in general
not identical to the model-predicted outputs y, while the experimental inputs u∗ are in general not
identical to the nominal ones u. These differences can be synthetically quantified by the residual
r̂ = ŷ∗− ŷ, where now ŷ∗ is an expanded vector that contains measurements of both outputs and
inputs:

ŷ∗ =
{

y∗

u∗
}

. (2.4)

The goal of the estimation problem is to find the model parameters p and system inputs ui that
maximize the probability of obtaining the measurements y∗ and u∗. According to the maximum
likelihood criterion, the goal of the optimization is

p,u1, . . . ,uN = argmin
p,ui

1

2

N∑
i=1

w2
i r̂

T
i (p,ui )R̂−1r̂i (p,ui ), (2.5)

where wi is the weighting for each experimental measurement. The weighting is assigned since
different conditions have different probabilities and significance in turbine operations. The error
covariance matrix is calculated as

R̂= 1

N

N∑
i=1

w2
i r̂i (p,ui )r̂T

i (p,ui ). (2.6)
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The optimization problem is decoupled by the following iteration:

1. Initialize p and set ui =u∗
i , i = [1, N ].

2. Calculate R̂ from Eq. (2.6).

3. Assuming temporarily frozen inputs ui , solve

p= argmin
p

1

2

N∑
i=1

w2
i r̂

T
i (p,ui )R̂−1r̂i (p,ui ). (2.7)

This is formally identical to the classical (error-in-the-outputs-only) ML formulation, which can
be solved with the SVD-based re-formulation in terms of uncorrelated parameters [37].

4. Assuming temporarily frozen parameters p, solve

u j = argmin
u j

1

2

N∑
i=1

w2
i r̂

T
i (p,ui )R̂−1r̂i (p,ui ), j = [1, N ]. (2.8)

These are N decoupled small size problems that are inexpensive and give the values of the model
inputs.

5. Return to step 2, and repeat until convergence.

To accelerate the iteration from step 2 to step 5, a filtering technique can be used to provide a better
initial guess of p for step 1. The filtering uses a priori information on the expected uncertainties. The
unknown true inputs ui can be bounded as

u∗
i −∆u≤ui ≤u∗

i +∆u, (2.9)

where ∆u are the expected uncertainty bounds. This a priori information can be used to retain in
the cost function J only those measurements for which the corresponding residual cannot be simply
explained by the uncertainties (2.9). The residual ri is a function of p and ui , i.e.

ri (p,ui ) =y∗
i −h(p,ui ). (2.10)

Indicating the j -th component of residual ri as ri j , its maximum and minimum values for a given p
are computed as

r M
i j

= max
ui

ri j (p,ui ), (2.11a)

r m
i j

= min
ui

ri j (p,ui ), (2.11b)

subject to: u∗
i −∆u≤ui ≤u∗

i +∆u. (2.11c)

If the maximum r M
i j

and minimum r m
i j

have different signs, then ri j = 0 lies somewhere within this

range, and hence this residual component can be fully explained by input uncertainties. Therefore, it
cannot drive meaningful changes in the parameters and should be neglected. Otherwise, this residual
carries valuable information and should be retained. To account for this, a filtered residual r̃i j is
defined as

r̃i j = min(|ri j |). (2.12)

The a priori estimates are used to initialize the parameters p at step 1 of the iterative algorithm. A
standard ML method is used for the initialization, considering only errors in the outputs and replacing



2.4. Nacelle and tower models 17

the residual components ri j by the filtered ones r̃i j . Filtering accelerates the optimization because it
avoids meaningless tuning of parameters caused by measurement noise.

Finally, another soft constraint is added for the identification to avoid unrealistic solutions. The
typical Reynolds number distribution along a wind turbine blade is almost constant for the majority
of its span but assumes smaller values close to the blade tip and root. The implementation of this
work, improving on the work of [37], specifically considers that the airfoil polars depend on Re. The
expected range of Reynolds numbers is discretized by linear shape functions and associated nodal
values, and the local Reynolds number is computed at each spanwise station based on local geometry
and flow conditions. The results presented later on consider scaled wind turbine models for wind
tunnel testing. For these rotors, the chord-based Reynolds number is much lower than in typical full-
scale applications, and ad hoc low-Reynolds airfoils [85] are used. Because of the special flow regime
of these airfoils, the formulation is complemented by the conditions ∂CL/∂Re > 0 and ∂CD /∂Re < 0.
The first condition accounts for the earlier reattachment of the laminar separation bubble on the
suction side of the airfoil for increasing Re, and the second for the shorter chord extent of that same
bubble [86]. They are enforced as soft penalty constraints in problem (2.5) by modifying the cost
function as J = J + Jp , where

Jp =W
∫ αM

αm

∫ ReM

Rem

(
max

(
0,−∂CL

∂Re

)
+max

(
0,
∂CD

∂Re

))
dRedα, (2.13)

where W is a penalty parameter, and [Rem ,ReM ] and [αm ,αM ] are the ranges of Reynolds and angle of
attack of interest.

2.4 Nacelle and tower models

The nacelle and tower have a few minor effects on the aerodynamics. For a full-scale wind turbine, the
impact of the nacelle and tower is usually neglected in CFD. The comparison study conducted here
also supports the general practice of neglecting them, as their impact is sufficiently small. However, the
effects should not be neglected for the scaled wind turbine models for two reasons. First, the relative
nacelle and tower size of the scaled wind turbine model is bigger than in the full-scale wind turbine. A
CAD model of the nacelle and tower in the G1 model is shown in Fig 2.3. The ratio between the height
of the nacelle and the diameter of the rotor is about 0.091 for the G1 model, compared with about
0.056 for the DTU 10 MW reference wind turbine [87]. For smaller-scale turbine models, the ratio can
be even higher. Second, the flow boundary layers on the surfaces of nacelle and tower are of similar
sizes, typically several centimeters. This size, when compared to that of a full-size wind turbine, is
small enough to be neglected. However, compared to the size of a scaled wind turbine, with a typical
rotor diameter of about 1 m, the flow boundary layer does have some influence on turbine behavior.

One fundamental approach to modeling the nacelle and tower is to use body-conforming mesh.
However, such an approach has at least two disadvantages. First, a structured mesh, as constituted by
the complex geometry of the nacelle and tower, is difficult to generate. Second, the body-conforming
mesh and transition region would experience mesh quality deterioration in the vicinity of the blades,
significantly impeding the solution of the blade aerodynamics close to the root. To avoid these two
issues, the immersed boundary method [88] was employed to model the nacelle and tower in this
study. The immersed boundary method (IBM) was been implemented in foam-extend-4.0 [89, 90].
IBM solves the critical issue of mesh quality deterioration since the mesh does not have to be modified.
A discrete forcing approach is used. The momentum equation is modified only in the stencil touching
the IB to impose boundary conditions. The velocity inside the body of the nacelle and tower is set to
zero to model the blockage of them.

Due to the large computation domain of wind farm CFD simulation, the cell size is comparable to
that of the nacelle and tower. Typically, the height and width of the nacelle and the diameter of the
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Figure 2.3: CAD model of the nacelle and tower of the G1 model.

tower are resolved by no more than two cells, both for the scaled and full-scale turbines. Therefore, all
details in Fig 2.3 are filtered by the mesh, so the accuracy of the solution is limited. However, the most
important effects of nacelle and tower on the wind turbine and wake can be captured. The existence of
a tower model influences the turbine power and wake recovery. Every time a blade passes in front of
the tower, the wind speed experienced by the blade decreases, leading to higher fatigue loads and noise
emission. The eddies shed by the tower also enhance the wake recovery of the turbine. Compared to
the tower model, the nacelle model has very little effect on the far wake, but it reduces wake center
speed in the near wake.

2.5 Control in simulation

Wind farm control also requires a supervisory controller plus various turbine controllers. Both types of
the controller were implemented in the CFD simulation framework. Each turbine controller communi-
cates with its FAST module, while the supervisory controller communicates with the SOWFA module.
The flow chart between different modules of the whole framework is shown in Fig.2.4.

Figure 2.4: Control framework.

The turbine controllers are implemented with Matlab Simulink. The Simulink model is then
converted to C-code before being compiled into a Dynamic Linked Library (DLL), which is then
called by FAST through the Bladed-style [47] DLL-interface. The use of the DLL allows for a quick
implementation of the controller, while the Simulink controller is the same one that was ported on-
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board the scaled wind turbine model. This serves to guarantee the consistency of the controllers in the
experiments and simulations.

The wind farm controller was implemented as an add-on module to SOWFA, in line with the
concept proposed by [91]. The implementation allows for a wide range of control algorithms, which
can be either coded in the module or linked through DLLs. A CFD simulation is usually executed in
parallel with hundreds of processors. The computation tasks of multiple wind turbines are distributed
to different processors. Typically, some processors are assigned with one turbine each, while the rest
are not assigned to a turbine and just solve the fluid dynamics. Physically, the supervisory controller
performs three tasks: collecting measurements from all wind turbines; computing control outputs
according to the measurements; communicating control outputs to all wind turbines. Computationally,
the process is similar but slightly more complicated. Fig. 2.5 illustrates the difference. For each
processor that runs the FAST simulation pertaining to a wind turbine, there is a supervisory controller
instance running at the same time. This controller, however, can only access the information elaborated
by its associated processor. Therefore, the processors have to perform pairwise communication to
exchange global information. Communication between processors is through the message passing
interface (MPI) [92].

Figure 2.5: Implementation of the supervisory controller.

An example of the communication procedure with three wind turbines is shown in Table 2.1.
P1, P2, P3 are processors populated with one wind turbine instance each, while the other processors
P4 Pn are only involved in solving fluid dynamics. First, the supervisor controller collects input infor-
mation from its only wind turbine instance. In the communication step that follows, the information
is sent to all the other processors with a turbine instance. After communicating, each supervisory
controller instance in the first three processors has complete knowledge of the status of the entire wind
farm, enabling it to compute its control outputs. Finally, the control outputs are distributed to each
wind turbine.

Operation Collect inputs Communication Compute outputs Send commands
P1 Get u1 from W T1 Send x1 to P2, P3 Compute y1, y2, , y3 Send y1 to W T1

P2 Get u2 from W T2 Send x2 to P1, P3 Compute y1, y2, , y3 Send y2 to W T2

P3 Get u3 from W T3 Send x3 to P1, P2 Compute y1, y2, , y3 Send y3 to W T3

P4 −Pn Do nothing
Table 2.1: The procedure of communication among processors in case of three wind turbines.
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2.6 Large-eddy simulation

LES simulation [10,60,61] has been employed in the wind energy field for more than a decade. It is one
of the most promising tools for studying the wakes and interactions of turbines. The principal of LES
and the way it is employed in the CFD framework of this study is presented in detail in this section.

2.6.1 Momentum equation

The incompressible momentum equation in Einstein notation can be written as:

ui ,t + (u j ui ), j =− 1

ρ0
p,i +νui , j j + 1

ρ0
fi , (2.14)

where ui is the velocity component in the i th direction, and i varies from 1 to 3; a comma in a subscript
stands for a derivative, e.g. (·),t means a derivative regarding time, (·), j means a derivative regarding
the j th spatial coordinate; f j is the body force from in the j th spatial direction. For incompressible
flow, the velocity field is divergence-free:

u j , j = 0. (2.15)

With this property, the diffusion term can be reformulated as follows

νui , j j = ν(ui , j j +u j ,i j ) = ν(ui , j +u j ,i ), j = 2νSi j , j = 2(νSi j ), j , (2.16)

where Si j , j = 1
2 (ui , j +u j ,i ) is the rate-of-strain tensor. Replacing the original diffusion term with

modified one, the momentum equation becomes:

ui ,t + (u j ui ), j =− 1

ρ0
p,i +2(νSi j ), j + 1

ρ0
fi (2.17)

The quantities are passed through a spatial filter. The LES in the foam-extend environment is imple-
mented implicitly, i.e. filtered by the mesh. The filtered quantities are denoted by a tilde symbol placed
above as in:

ũi ,t + (�u j ui ), j =− 1

ρ0
p̃,i +2(νS̃i j ), j + 1

ρ0
f̃i (2.18)

The filtered convection term can be split into:

�ui u j = τi j + ũi ũ j , (2.19)

where τi j is an unclosed term that reflects Sub-Grid-Scale (SGS) fluxes. Replacing the original convec-
tion term, the equation becomes:

ũi ,t + (ũ j ũi ), j =− 1

ρ0
p̃,i +2(νS̃i j ), j −τi j , j + 1

ρ0
f̃i , (2.20)

to solve the equation, τi j is modeled by the constant Smagorinsky model [93]:

τi j − 1

3
τkkδi j =−2νt S̃i j =−2(Cs∆g )2|S̃|S̃i j , (2.21)

where |S| =
√

2S̃i j S̃i j , and νt = (Cs∆g )2|S̃|. Only the deviatoric part of the SGS model is relevant
because the gradient of the trace can be absorbed into an effective pressure field.

ũi ,t + (ũ j ũi ), j =− 1

ρ0
(p̃ + 1

3
τkk ),i +2(νS̃i j ), j + (2νt S̃i j ), j + 1

ρ0
f̃i , (2.22)
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denote pe = p̃+ 1
3τkk as the modified pressure. Typically, the value of 1

3τkk is relatively small. Replacing
the expression of Si j by its definition, equation 2.22 becomes:

ũi ,t + (ũ j ũi ), j =− 1

ρ0
pe

,i + [(ν+νt )(ũi , j + ũ j ,i )], j + 1

ρ0
f̃i . (2.23)

Again, the divergence-free property of the filtered velocity field is used, and equation 2.23 becomes:

ũi ,t + (ũ j ũi ), j =− 1

ρ0
pe

,i + [(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )], j + 1

ρ0
f̃i . (2.24)

For a simulation involving wind turbines, the body force can be separated into two parts, the buoyancy
force and the turbine body forces:

fi = ρ

ρ0
gi +bi (2.25)

where gi is the constant gravity body force vector, bi is the wind turbine body forces term. Using the
Boussinesq approximation [94]

ρ = 1−β(T −T0) (2.26)

Substitute equations 2.25 and 2.26 into equation:

ũi ,t + (ũ j ũi ), j =− 1

ρ0
pe

,i + [(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )], j + [1−β(T̃ −T0)]gi + 1

ρ0
b̃i . (2.27)

The momentum equation should hold everywhere in the domain, which means the integral of the
equation should also hold for each cell. Therefore, the governing equation is integrated within the
body of one cell: Ñ

Vc

ũi ,t dV +
Ñ

Vc

(ũ j ũi ), j dV =− 1

ρ0

Ñ
Vc

pe
,i dV +Ñ

Vc

[(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )], j dV +

Ñ
Vc

[1−β(T̃ −T0)]gi dV + 1

ρ0

Ñ
Vc

b̃i dV.
(2.28)

Applying the Gaussian theorem to the convection and diffusion terms, the equation transforms into:Ñ
Vc

ũi ,t dV +
Ó
∂Vc

(ũ j ũi )dS j =− 1

ρ0

Ñ
Vc

pe
,i dV +Ó

∂Vc

[(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )]dS j +

Ñ
Vc

[1−β(T̃ −T0)]gi dV + 1

ρ0

Ñ
Vc

b̃i dV
(2.29)

The integral over the cell boundaries can be split into integrals over cell faces:Ñ
Vc

ũi ,t dV +Σ f ∈ f aces(Vc )

Ï
f

(ũ j ũi )dS j =− 1

ρ0

Ñ
Vc

pe
,i dV +

Σ f ∈ f aces(∂V )

Ï
f

[(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )]dS j +

Ñ
Vc

[1−β(T̃ −T0)]gi dV + 1

ρ0

Ñ
Vc

b̃i dV

(2.30)
Then, a one-point Gaussian integral is applied using volume center or surface center quantities,
denoted by an over-line above the quantity. The face area and cell volume are denoted as S and V ,
respectively. Thus, the spatially discretized form of the momentum equation can be written as follows:

ũi ,t V +Σ f ∈∂Vc (ũ j n j ũi )S =− 1

ρ0
p̃

e
,i V +

Σ f ∈ f aces(∂V )[(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )n j ]S + [1−β(T̃ −T0)]gi V + 1

ρ0
b̃i V

(2.31)
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To enable easier time discretization analysis, the spatially semi-discretized equation 2.31 has to be
simplified. Equation 2.31 can be rendered as:

U,t = D +P +B(ψs ,ψp ,U ) , (2.32)

where

U = ũi ,

D =Σ f ∈ f aces(∂V )[(ν+νt )(ũi , j + ũ j ,i − 1

3
ũk,kδi j )n j − (ũ j n j ũi )]

S

V
+ [1−β(T̃ −T0)]gi ,

P =− 1

ρ0
p̃

e
,i ,

B(ψ,U ) = 1

ρ0
b̃i ,

where the body force term is expressed as a function of three variables: ψs , the blade azimuth angle
when velocities are sampled, ψp , the blade azimuth angle at which the forces are projected, and the
velocity field U. The backward Euler time derivative scheme is employed:

1

∆t
(U n+1 −U n) = Dn+1 +P n+1 +B(ψn ,ψn+1,U n) , (2.33)

where ψ is the blade azimuth angle, and the superscripts denote the timestep, with n the current
timestep and n +1 the next timestep. The meaning of the body force term B(ψn ,ψn+1,U n) can be
explained together with the principle for calculating the force. First, the solver samples the flow
velocity in the vicinity of the blade from the current known velocity field U n when the azimuth angle
of the blade is ψn , after which the blade body force is computed and projected around the blade
when the azimuth angle is ψn+1. Velocity sampling and force projection, therefore, take place at
different locations. This is also referred to as loose coupling since the body force term B(ψn ,ψn+1,U n)
is explicit. Although the blade azimuth angle ψn+1 is indexed by the next timestep, this quantity is
known (ψn +Ω∆t withΩ the rotor speed and ∆t the timestep) before the solution of the next timestep
since. The loose coupling of the body force is both a good approximation of the original solution and a
good compromise between computation speed and accuracy. With the exception of the explicit body
force term on the RHS, the terms are implicit. Equation 2.33 is thus solved iteratively.

The pressure-implicit with the splitting of operators (PISO) algorithm [95] is used to solve the
equations. The algorithm consists of two steps: prediction and correction. The prediction step of
equation 2.33 can be written in a generic form:

Cu∗ = r−∇pn +ρn
k g+bn , (2.34)

where r is the right-hand side explicit source term excluding the pressure gradient, buoyancy force,
and turbine body forces; C is the multiplying matrix for the vector of predicted velocity u∗. The matrix
C is influenced by the turbulence model, but the change of the turbulence model does not change the
generic form of 2.34. The matrix C can be split into the diagonal part A and the off-diagonal part H′. So
the equation becomes:

Au∗+H′u∗ = r−∇pn +ρn
k g+bn . (2.35)

The predicted velocity u∗ is obtained by solving equation 2.35. The predicted velocity field u∗ is not
necessarily divergence-free. Therefore, a corrector is used to guarantee this property. The corrector
equation is written as follows:

Au∗∗+H′u∗ = r−∇p∗+ρn+1
k g +bn , (2.36)
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where the corrected field u∗∗ is forced to be divergence-free. Denote H = r −H′u∗, left multiply A−1

with equation 2.36 and take its divergence. This will yield:

∇2(A−1p∗) =∇· (A−1H+A−1ρn+1
k gn +bn) (2.37)

Equation 2.37 is called the Poisson equation, which gives the solution of the corrected pressure field
p∗. The solution of the Poisson equation is typically the most costly operation of the whole procedure.
Having obtained the solution of the corrected pressure, the corrected velocity can be calculated
explicitly as:

u∗∗ = A−1H−A−1∇p∗+A−1ρn+1
k g +A−1bn (2.38)

Equation 2.37 and 2.38 can be iterated several times to obtain better convergence and stability. In all
simulation cases presented in this work, the number of iterations was set to 3.

2.6.2 Temperature equation

Parallel to the momentum equation, the temperature is solved by the LES solver. The solution of
temperature is mandatory to enable the buoyancy force to be predicted and is especially desirable for
the atmospheric boundary layer (ABL) simulations [96, 97], which will also be presented in this work.

The temperature equation for an incompressible solver is written as follows:

(ρ0e),t + (ρ0eui ),i =−qi ,i , (2.39)

where ρ0 is the reference density of the flow, and qi the conductive heat flux leaving the control volume.
The subscript (·),t indicates the time derivative while the subscript (·),i indicates the spatial derivative.
The internal energy e can be calculated as:

e = cp T, (2.40)

where cp is the specific heat capacity of the material and T is the absolute temperature. Apply an LES
filter to Eq. 2.39 and use a tilde sign to indicate filtered quantities:

(ρ0ẽ),t + (ρ0ẽui ),i =−q̃i ,i , (2.41)

where the term ẽui can be modeled as ẽũi +qti , and qti is the turbulent heat flux. q̃i can be calculated
with the Fourier’s law of heat:

q̃i =−kT̃i , (2.42)

where k is the heat conductivity of the flow. The turbulent heat flux is modeled in a similar way:

q̃ti =−kt T̃i , (2.43)

where kt is the modeled turbulent heat conductivity. Substituting the expressions of the turbulent
model and heat fluxes into the temperature equation 2.39:

T̃,t + (T̃ ũi ),i = [
kt +k

ρ0cp
T̃ ],i . (2.44)

the coefficient of T̃ on the right-hand-side of Eq. 2.44 can be calculated as follows:

kt +k

ρ0cp
= νt

Prt
+ ν

Pr
, (2.45)

where νt is the turbulent viscosity modeled in the momentum equation, Prt = cpρ0νt

kt
is the turbulent

Prandtl number which can be approximated as a constant value, ν is the kinematic viscosity of the flow
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and Pr = cpρ0ν

k is the Prandtl number of the flow, and it can be evaluated directly since all quantities
are known. Finally, νt

Prt
+ ν

Pr is denoted as the effective heat transfer coefficient κe f f and Eq. 2.44 can
be simplified as:

T̃,t + (T̃ ũi ),i = (κe f f T̃ ),i . (2.46)

The same finite volume method is employed to solve the temperature equation. In the solution of the
equation, there is a predictor step, but no corrector step since no continuity condition is to be enforced.
Therefore, no Poisson solution is required, which makes the process of solving the temperature much
quicker than solving the velocity equation.

2.7 Precursor simulation

The turbulence generated in the wind tunnel is simulated with CFD to obtain a full digital copy of
the experimental facilities. The goal of the precursor simulation is to resolve the passive turbulence
generation process in the civil test chamber of the wind tunnel and save the turbulent inflow data. The
inflow data can then be used for wind turbine simulations. Once the inflow data has been collected, it
can be used repeatedly for different simulations of turbines.

The wind tunnel facility is a circuit, and the flow is generated by a cluster of fans. It is not necessary
to model the whole circuit since only the most important and relevant phenomena are to be captured,
i.e., the flow development in the civil test chamber. Therefore, only the civil test chamber is simulated,
applying inflow and outflow conditions for both open sides. For the inflow slice, a time-invariant
Dirichlet boundary condition that specifies a velocity distribution on the inflow slice is applied. This
approach is feasible for two reasons: the inflow of the civil test chamber only has a turbulence intensity
of about 1%, and the wind speed distribution on the slice does not change significantly in time. The
flow along the closed-loop wind tunnel has been observed to occasionally undergo low-frequency
oscillations, which cause only minor speed fluctuations that were not considered in the present work.
The precursor simulation is computation-intensive. It is worthwhile to discard the circuit structure in
exchange for a much lower computational cost.

The inflow of the civil test chamber can be modeled with a steady inflow with a distribution of
velocity U0(y, z). The velocity distribution UE (y, z) at 19.1 m downstream of the inflow slice of the test
chamber was measured with PIV. The aim of the precursor simulation is to match the velocity and
turbulence intensity distribution at the measurement location. If this goal is achieved, the inflow of the
wind farm in CFD will be very close to the inflow in the wind tunnel, which would aid further analysis.
The match is achieved by iterative corrections of U0(y, z). In each iteration, the distribution U0(y, z)
was superimposed with a different distribution UE (y, z)−US(y, z), where US(y, z) was the velocity
distribution obtained in the current iteration.

Precursor simulations were conducted for two different experimental setups to mimic onshore and
offshore scenarios, respectively. For the onshore case, nine type-A spires and hundreds of roughness
elements were used, as shown by Fig.2.6.

The type-A spire consists of a supporting board and an equilateral-triangular mainboard. The
length of the bottom edge and the height of the equilateral triangle are 0.8 m and 2.5 m, respectively.
The distance between two adjacent spires was 1.55 m. 24 rows of bricks were placed on the ground,
symmetrically around the slice y = 0 m. The number of bricks in odd rows is 12, in even rows 13,
resulting in a staggered brick distribution. The lateral distance between adjacent bricks and the
longitudinal distance between adjacent rows were both 1.1 m. For the offshore case, 14 type-B spires
and no bricks were used. The type-B spire consists of an equilateral trapezoid and a supporting board.
The lengths of the bottom and top edges of the trapezoid are 0.26 m and 0.1 m, respectively, and the
height of the trapezoid is 2.0 m. The distance between two adjacent spires was 1 m.

A body-conforming structured hexahedron mesh was generated in ANSYS-ICEM to resolve the
spires. The cells close to walls, including the surfaces of spires and wind tunnel boundaries, are refined
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Figure 2.6: Type A spires and bricks in the wind tunnel.

such that the non-dimensional wall distance y+ is about 100, which is suitable for the application of
wall functions. The non-slip wall boundary conditions with wall functions are applied to all walls. For
the type-A spires, a Y-grid technology was used to resolve the mainboard triangular geometry. The
roughness elements are modeled with immersed boundary methods [88] due to a large number of
elements and the staggered layout. Using a structured mesh to model the roughness elements is not
only too cumbersome but also not optimal for the quality of mesh in the free stream. In contrast, the
immersed boundary method does not require modification of the mesh close to the elements and
thus provides a high degree of freedom. The drawback of the immersed boundary method is its lack of
accuracy. However, for small roughness elements, the negative impact is limited to a very small region,
and the quality of simulation results is sufficiently high. For the type-B spires, an O-grid technology
was used to confine the fine mesh to the close vicinity of the spires. The physical process of turbulence
generation in the case of type-B spires is visualized by Fig. 2.7. Big eddies are shed after the spires, and
the eddies consistently break down into smaller ones. Finally, an almost uniform turbulence field was
generated for both types of spires.

Figure 2.7: Visualization of iso-vorticity surfaces for the precursor simulation with type-B spires.

2.8 Full-scale turbine design

Full-scale turbine models were designed through a backward-engineering approach to match the
characteristics of G1. The purpose is to compare the wake recovery, path, profile, Reynolds shear
stresses, and available power downstream between full-scale and scaled models. This section mainly
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introduces the characteristics and the approach to design the full-scale turbines.
The aerodynamic design of the rotor of the full-scale turbines was adapted to match the character-

istics of the G1 in terms of TSR and circulation distribution. Three different versions of the full-scale
models were designed, and they are termed as G178, G178-nRA, and G178-MC, respectively. All the
models are based on the DTU 10 MW wind turbine [98]. G178 and G178-nRA both use the same airfoil
as the DTU 10-MW turbine on the whole blade and match the circulation distribution of G1 partially
from 25% to 100% blade span, while G178-MC matches the circulation distribution of G1 completely by
using thinner airfoils close to the root as it was done for G1. Rotational augmentation correction that
corrects for delayed stall according to [99] was applied to G178 but not to G178-nRA. The distributions
of twist angle, lift coefficient chord, and circulation of the three models, as well as of G1, are shown in
Fig. 2.8. The chord distributions are normalized by their respective arithmetic mean values c0 over
the span. Lift coefficient and circulation are evaluated at rated conditions using the BEM method
implemented in the code FAST [47]. The lift coefficient of the G1 is significantly smaller than the one
of the full-scale turbines, which is a result of the low-Reynolds regime of its airfoils. However, the lower
lift is compensated by a larger chord and different twist distributions.
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Figure 2.8: Twist θ, non-dimensional chord c/c0, lift coefficient CL and non-dimensional circulation Γ/RV
distributions for the G1 and for the G178 and G178-MC full-scale turbines.

The full-scale turbines have a rotor diameter of 178.3 m and a hub height of 133.7 m. The hub
height H of the full-scale machine was slightly adjusted to match the D/H ratio of the G1 turbine,
where D is the rotor diameter, and H is the hub-height. The sizes of the nacelle and tower were kept
the same as the DTU reference. In terms of non-dimensional quantities, the front area of the nacelle of
G1 is 2.6 times bigger than the full-scale turbines, while the tower diameter of G1 is 49% larger than the
full-scale ones.

The impacts of the mismatch of the turbine size, circulation, nacelle, and tower sizes and the
integral length scale of the inflow on the wake are to be quantified and analyzed with CFD simulations
of the turbines.
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Paper 1: Identification of Airfoil Polars from
Uncertain Experimental Measurements

3.1 Summary

Both the low-fidelity BEM model and the high-fidelity CFD model use polars, i.e., the lift and drag
coefficients at different angles of attack and Reynolds numbers, as inputs. The accuracy of model
outputs is directly related to the accuracy of the polars. For scaled wind turbines, it is non-trivial
to know the polars of the airfoils used on the blades precisely because many factors can make the
actual polars of a specific blade differ from the nominal ones. As an important example, the polars of
small-sized airfoils used for scaled turbines are much more sensitive to production imperfections than
large ones used on full-scale turbines.

This paper describes a new procedure for the tuning of polars based on turbine operational data.
The method is based on a maximum likelihood formulation that uses the power and thrust coefficients
of a turbine under various operating conditions to identify the airfoil lift and drag coefficients. The
maximum likelihood method formulation used in this paper includes both errors in the outputs and
the inputs, generalizing the classical error-in-the-output-only formulation. The explicit consideration
of the errors in inputs, including wind speed, air density, blade pitch angle, and rotor speed, plays
a vital role in improving identification results. The new formulation requires the identification of
both the model parameters and the model inputs, resulting in a massive coupled problem. This
problem is broken into small ones and finally coupled again through an outer iteration. Since many
parameters are required to describe the behavior of airfoil polars as functions of the angle of attack
and Reynolds number, this paper uses a singular value decomposition to solve for a reduced set of
observable parameters. The singular value decomposition method decreases the complexity level of
the problem, accelerates the algorithm, and makes the identification problem better posed.

A filtering technique based on the a priori information about measurement uncertainties is pro-
posed to give a better initial guess for the identification problem. Since the filtering technique requires
additional computation, which becomes expensive when repeated in the iteration loop, an approach
to significantly decrease the computational burden has been proposed and applied in this paper.
This work also considers the dependency of airfoil polars on Reynolds number and corresponding
constraints related to Reynolds number.

The new approach is demonstrated by identifying high-quality polars for scaled wind turbines
used in wind tunnel experiments. With the identified polars, an excellent match between the blade
element momentum simulations and wind tunnel measurements under a wide range of operating
conditions has been achieved.

3.2 Contributions to the scientific literature

Various improvements of a previously published polars identification method have been proposed
in this work. The improvements include the explicit consideration of system inputs errors. The wind

27
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speed is one of the inputs with the most uncertainties, and the influence of the wind speed uncertainty
can be significant for the outputs, i.e., the power and thrust coefficients. Therefore, the input errors
are handled systematically in this paper, which improves results significantly. In addition, other
improvements include the capability to apply constraints concerning Reynolds number, a filtering
technique, and various methods to accelerate the identification algorithm. High-quality polars have
been identified, and they are used for subsequent CFD simulations presented in other parts of this
dissertation.

3.3 Authors’ contribution

Chengyu Wang developed the a priori residual filtering method, wrote the software, performed the
simulations, and analyzed the results. Filippo Campagnolo was responsible for the wind tunnel
experiments and the analysis of the measurements. Carlo L. Bottasso devised the original idea of
estimating polars from operational turbine data, developed the ML formulation with errors in inputs
and outputs, and supervised the work. Chengyu Wang and Carlo L. Bottasso wrote the manuscript.
All authors provided important input to this research work through discussions and feedback and by
improving the manuscript.

3.4 Reference

C. Wang, F. Campagnolo, and C. L. Bottasso, “Identification of airfoil polars from uncertain experimental
measurements,” Wind Energy Science, vol. 5, pp. 1537–1550, 2020. doi: https://doi.org/10.5194/wes-5-
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CHAPTER 4

Paper 2: Wake behavior and control:
comparison of LES simulations and wind tunnel

measurements

4.1 Summary

This paper presents an LES-ALM simulation framework based on open-source software. The CFD
numerical scheme, turbine model, and mesh setup are described in detail. The simulation framework
is validated with a scaled wind turbine operated in a boundary layer wind tunnel with experimental
measurements. A good match of wind turbine power, thrust, wake profile, and flow spectra has been
achieved.

A precursor-successor simulation procedure is described in this work. The precursor simulation
simulates the turbulent inflow generated with a cluster of spires in the wind tunnel. The spires are
modeled by structured mesh. The precursor simulation is validated with experimental measurements
of mean flow speed field and turbulence intensity distribution. The inflow data is sampled and used to
simulate a wind farm of scaled wind turbines.

In experiments, the rotor speeds vary slightly during operation. In CFD simulations, the speeds
are specified to the mean value measured from the experiments. Results indicate such an approach is
good enough to capture the main characteristics of turbine power, thrust, and wake.

Two different wind farm control strategies, i.e., yaw misalignment control and cyclic pitch control,
were applied in the simulation framework. For both situations, the simulation framework is still able
to match experimental measurements well.

4.2 Contributions to the scientific literature

This contribution of this work is to validate the simulation framework for scaled wind turbines operated
in a boundary layer wind tunnel. Results indicate that the phenomena in the wind tunnel and yaw and
pitch control effectiveness can be modeled with reasonable accuracy with the simulation framework.
The framework is used for all other CFD-relevant papers presented in this dissertation.

4.3 Authors’ contribution

Chengyu Wang performed the precursor simulations that were used to generate the turbulent inflow
data and analyzed the results. Chengyu Wang also participated in implementing the immersed
boundary method used to model the nacelle and tower, especially regarding the parallel computation
of the method and the CAD input files. Jiangang Wang and Chengyu Wang developed the simulation
framework together. Jiangang Wang conducted the simulations of wind turbines and wrote the
manuscript with Carlo L. Bottasso.
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CHAPTER 5

Paper 3: Validation of large-eddy simulation of
scaled waked wind turbines in different yaw

misalignment conditions

5.1 Summary

Yaw-based control appears to be very effective despite its simplicity. Upstream wind turbines are
yawed slightly out of the wind to steer their wakes away from downstream turbines. When the yaw
angle is chosen appropriately, the power gain on downstream turbines exceeds the power loss on
upstream ones, resulting in an increase of wind farm power.

This paper compares LES-ALM simulation results of scaled wind turbines against experimental
measurements obtained in a boundary layer wind tunnel. This paper serves to validate the CFD code,
the turbine model, and the implementation of wind turbine controllers. Three scaled wind turbine
models were arranged in either wind-aligned or misaligned conditions. In the experiments, the wind
turbine power and speed were measured by on-board sensors, while the flow was measured with two
LiDARs. In two sets of simulations, wind turbine controllers were switched either on or off. The turbine
controllers were based on a standard look-up table for torque and proportional-integral controller for
pitch, so the turbines in simulations could adjust their rotor speeds according to the inflow conditions.

Simulation and experimental results are compared concerning flow characteristics, turbine states,
and wake behavior. The analysis of the results shows a good match between simulations and experi-
ments. When simulated without turbine controllers, the turbine power time series contains spurious
oscillations, but they are eliminated when the torque controllers are properly integrated into the
simulations. Therefore, it is important to include torque controllers in CFD simulations to capture
the power spectrum correctly. Besides the verification, the numerical simulations are also used to
explain a wake interference phenomenon observed in the experiments, which causes the secondary
wake deflection in the path of the wake of shaded turbines. According to the simulation results, the
secondary deflection is caused by a significantly non-zero lateral velocity component that mainly
appears on one side of the turbine wake.

5.2 Contributions to the scientific literature

A framework to implement the wind farm controller and wind turbine controllers has been imple-
mented in this work. In this work, the supervisory controller is tasked with collecting information from
each wind turbine, while the turbine controller adapts the turbine to the inflow condition. The turbine
controller’s implementation is shown to be important in removing spurious oscillation of turbine
power outputs. For the first time, a comparison of turbine wakes on a whole horizontal slice between
experimental measurements and simulation results is demonstrated. The secondary wake deflection
phenomenon is observed both in the experiment and the simulation, and its mechanism is explained
by observing the simulation results.
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5.3 Authors’ contribution

Chengyu Wang implemented the turbine controller, performed the simulations, analyzed the results,
and wrote the manuscript with Carlo L. Bottasso. Chengyu Wang and Jiangang Wang developed
the simulation framework together. Filippo Campagnolo conducted wind tunnel experiments and
provided data. Daniel B. Carreón Cortés submitted and monitored CFD simulations. Carlo L. Bottasso
supervised the work.
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CHAPTER 6

Paper 4: Code-to-code-to-experiment
validation of LES-ALM wind farm simulators

6.1 Summary

Large-Eddy Simulation (LES) is actively researched and used to explain wind farm phenomena and
predict effects that enable improved design and operation. However, notwithstanding the success
of LES, there is still only a limited understanding of the actual accuracy of such numerical methods
in representing the complex physical processes that govern wake-turbine interactions. The present
paper presents a code-to-code-to-experiment comparison of two state-of-the-art LES-ALM (Actuator
Line Method) codes with significantly different features. While one code is second-order accurate in
space, the other is of sixth-order. Numerical results of both solvers for different mesh resolutions are
compared in this work to study the effectiveness of convergence order. Corresponding experiments
are used to validate the numerical results. The objective is to evaluate the accuracy and uncertainty of
LES for wind farm flows. While the experiments provide benchmarks of integral quantities like power,
thrust, and mean wake profile, the code-to-code comparison can also illustrate differences of other
quantities like Reynolds shear stresses and integral time scale.

Results indicate that the second-order method is slightly more accurate and substantially cheaper
in computational cost than the sixth order method. The higher accuracy of the second-order method
is most likely due to the Smagorinsky model that was set to the same value in both solvers. However,
the Smagorinsky constant was initially tuned for the second-order method. The second-order solver
also has a lower computational cost, which is mainly because of the ability of mesh refinement. When
the costs are normalized to the number of float operations per cell per code, the second-order method
has a slightly lower cost.

6.2 Contributions to the scientific literature

A detailed comparison between the two codes has been conducted. The excellent match in the detailed
code-to-code-to-experiment comparison increases the plausibility of both solvers. Results indicate
that both the widely adopted second-order scheme and the sixth-order scheme are able to match
experimental measurements well, while the second-order scheme matches experiments slightly better.
The computational cost of the second-order scheme is also significantly lower, mainly due to the
possibility of local mesh refinement. The match of Reynolds shear stresses and integral time scale
between the two solvers serves an even stronger validation of the method used in this dissertation.

6.3 Authors’ contribution

Chengyu Wang performed the simulations with the TUM code, analyzed the results, provided the
experimental data to the ICL authors, supported them in its use and the analysis of the results, and
wrote the manuscript with Carlo L. Bottasso and with the assistance of the ICL authors. The ICL
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authors, Arturo Muñoz-Simón, Georgios Deskos, Sylvain Laizet conducted the simulations with the ICL
code under Rafael Palacios’s supervision. Filippo Campagnolo conducted wind tunnel experiments
and provided data.
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CHAPTER 7

Paper 5: Effects of dynamic induction control
on power and loads, by LES-ALM simulations

and wind tunnel experiments

7.1 Summary

The dynamic induction control (DIC) strategy is a strategy to mitigate wake effects, and its primary
goal is to increase wind farm power. DIC has been studied by the authors who proposed this strategy
using LES-AD (actuator disk) simulations. DIC exploits the natural instabilities in the near-wake vortex
structures to enhance wake recovery. The technique works by sinusoidally varying the rotor thrust in an
open-loop; when performed at the right frequency, this perturbation speeds up the vortex breakdown
and enhances wake recovery. This strategy increases the power of downstream turbines. The choice of
DIC parameters is important for its performance. The parameters include the frequency, amplitude,
and offset of the pitch motion.

The cyclic pitch motion tends to increase the loads for various components of the turbine, especially
the tower. The first assessment of DIC effects on loads was attempted by aeroelastic simulations based
on a blade-element momentum (BEM) method, i.e., without considering a complete CFD simulation
of the system. In this paper, the effects of DIC on power and loads are demonstrated by CFD-ALM
(actuator line method) simulations.

A thorough validation of an LES-ALM simulation tool was first conducted against experimental
measurements, which shows the CFD tool’s capability to accurately simulate the power, loads, and
wake behaviors of a wind turbine operating with DIC. The validated CFD model was then employed to
study the DIC parameters. It is shown that the frequency, amplitude, offset of the blade pitch motion
all affect the wind farm power output. The optimal parameters were determined numerically, which
are very close to the ones obtained experimentally. The fatigue loads of various components of the
turbine were computed for the case with the baseline case without DIC and the optimal DIC case, i.e.,
the case with the maximal wind farm power. Results indicate that the slight power gain obtained with
DIC is at the cost of an enormous increase in the fatigue loads. Therefore, this trade-off should be
taken into account for the practical implementation of the DIC strategy.

7.2 Contributions to the scientific literature

This paper fills a gap in the literature by performing CFD-ALM simulations of the DIC strategy, which
have a higher fidelity compared with CFD-AD simulations. The optimal DIC parameters are found
through CFD simulations, which are very close to those obtained experimentally. This activity serves
as an even more robust validation of the CFD framework, showing its capability to model blade
aerodynamics and rotor speed response accurately in cyclic pitch scenarios. The simulation results
reveal the trade-off between power gain and fatigue loading increase caused by DIC.
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7.3 Authors’ contribution

Chengyu Wang implemented the DIC controllers and improved the turbine model, especially regarding
the moment of inertia. Chengyu Wang performed the simulations, analyzed the results, and wrote
the manuscript with Carlo L. Bottaso. Filippo Campagnolo conducted wind tunnel experiments and
provided data. Ashutosh Sharma participated in the simulation work. Carlo L. Bottasso supervised the
work.
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CHAPTER 8

Paper 6: Does the use of load-reducing IPC on a
wake-steering turbine affect wake behavior?

8.1 Summary

Wind shear, wind misalignment, and partial wake impingement can cause nodding and yawing
moments on the rotor, which cause periodic loads on the main shaft of a turbine during its operation.
IPC is capable of reducing such periodic loads, resulting in significantly reduced fatigue damage. In a
wind farm, some turbines are operated at high misalignment angles deliberately to steer their wakes,
which has potential benefits for the total wind farm power. However, the high misalignment may
induce an increase in fatigue loading through a yawing moment on the rotor, and IPC can be used to
limit this negative effect of wake steering. The present paper uses CFD-ALM simulation to investigate
the effects of IPC on the wake path, wake recovery, loads of turbines, and the impact on downstream
turbines.

Experiments of either a single turbine or two aligned turbines were conducted with scaled wind
turbines in a boundary layer wind tunnel. Baseline cases without IPC and cases with IPC have been
conducted. Comparisons between the simulation and experiment concerning turbine power, loads,
and wakes were presented for each case. A good match between simulation results and experimental
measurements was achieved for various operating conditions, so all CFD results are backed by exper-
imental evidence. After validation, the CFD tool was used to study the subtle effects of IPC on the
turbine wake path and recovery and explain the impact of IPC on turbine power and loads.

Results show that IPC is an effective way of reducing loading for all considered operating conditions.
The mechanisms by which IPC influences the turbine and its wake is discussed. Overall, no significant
wake recovery enhancement is observed. The use of IPC on the upstream turbine is shown to generate
a moderate power increase for positive yawing, both upstream and downstream, while induces power
losses for negative yawing. IPC on the downstream turbine tends, in general, to always reduce power.

8.2 Contributions to the scientific literature

This paper validates the application of a CFD-ALM simulation tool to the IPC scenario and obtains a
good match with experiments. The impact of IPC on the wake path, recovery, and turbine responses is
quantified. For each observed phenomenon, a physical explanation is given. When load-reducing IPC
is used, there is a preferable yaw direction, which is associated with higher expected power both on
the upstream and downstream turbines.

8.3 Authors’ contribution

Chengyu Wang implemented the IPC controllers, performed the simulations, analyzed the results,
explained the mechanism of the physical phenomena, and wrote the manuscript with Carlo L. Bot-

37



38 Chapter 8. Paper 6: Individual pitch control

tasso. Filippo Campagnolo conducted wind tunnel experiments and provided data. Carlo L. Bottasso
supervised the work.

8.4 Reference

C. Wang, F. Campagnolo, and C. Bottasso, “Does the use of load-reducing IPC on a wake-steering
turbine affect wake behavior?” in Journal of Physics: Conference Series, vol. 1618, no. 2. IOP Publishing,
2020, p. 022035. doi: 10.1088/1742-6596/1618/2/022035

https://doi.org/10.1088/1742-6596/1618/2/022035


CHAPTER 9

Paper 7: A POD reduced-order model for wake
steering control

9.1 Summary

The design of control strategies can significantly benefit from models that can faithfully capture
relevant physical processes playing a role in wind turbine wake interactions. However, the models also
pose significant challenges. Existing engineering models are typically fast and consume a small amount
of computation. They might often be not as accurate as desired. Also, these models typically depend
on parameters that need to be calibrated. Inappropriate model parameters may strongly influence the
accuracy of models. In contrast, CFD-based models are based on solving the Naiver-Stokes equations,
which implies better accuracy and resolution than engineering models. In the meantime, CFD models
rely less on parameter tuning.

On the other hand, CFD simulations are typically associated with very high computational cost.
Therefore, the use of CFD simulations in the context of control synthesis is challenging or even
impossible. Therefore, a model with both high fidelity and a lower computational cost is desired. This
paper proposes an approach based on compressing high-fidelity CFD data into a reduced-order model
(ROM). The model is obtained through a data-driven model-identification procedure, based on the
proper orthogonal decomposition (POD). The resulting ROMs capture the dominant dynamics of wind
turbine wakes and their interactions while showing at the same time a high degree of data compression.
In this way, the computationally intensive part of the process is performed offline. The identification of
ROM leads to a small-sized state-space model with high fidelity and a low computational cost, which
is optimal for the design of model-based wind farm control strategies.

9.2 Contributions to the scientific literature

Reduced-order models of CFD simulations are obtained in this paper. The method has a low computa-
tional cost and good accuracy, both essential features for a tool-oriented tool for wind farm control. A
Kalman filter that uses power as the feedback signal is used to improve the model’s quality. The focus
of this study is on yaw misalignment control with two turbines. The ROMs are identified with CFD
simulations in which the yaw angle of the upstream turbine keeps changing with time. Results indicate
that the ROMs can capture the main flow characteristics in a horizontal slice and a vertical slice, both
through the rotor center. The power predicted by the ROMs is very close to the values obtained in CFD.

9.3 Authors’ contribution

Chengyu Wang implemented the yaw controllers, performed the CFD simulations, and provided data
to the first author, Alberto Fortes-Plaza. Jiangang Wang and Chengyu Wang developed the simulation
framework together. Filippo Campagnolo conducted wind tunnel experiments and provided data.
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Alberto Fortes-Plaza wrote the manuscript with Carlo L. Bottasso. Carlo L. Bottasso supervised the
work.
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CHAPTER 10

Paper 8: How realistic are turbine wakes in wind
tunnel tests?

10.1 Summary

Wind tunnel testing offers some unique advantages over full-scale field testing. In addition to its much
lower costs compared to full-scale experiments, there are several other benefits. First, the ambient
conditions are repeatable and controllable. Second, it is possible to obtain detailed flow measurements,
for example, with hot-wire probes, PIV and LiDARs, whereas measurements of comparable accuracy
are hardly possible at full scale. Third, turbine models can be designed ad hoc to achieve specific goals
and can be extensively instrumented, while layouts and scenarios can be readily changed to explore
different operating conditions of interest.

Notwithstanding these benefits, it is essential to quantify the level of realism of wakes of scaled wind
turbines in wind tunnels. The aim of this paper is to identify what aspects of the wakes in wind tunnels
faithfully represent the full-scale truth and what aspects do not. Several steps are taken to answer the
question. First, detailed measurements of the TUM G1 scaled wind turbine wake are gathered in a
boundary layer wind tunnel for different yaw misalignment and turbulent inflow conditions. Second,
an LES-ALM (actuator line method) is used to simulate the wind tunnel experiments. The code is then
validated with respect to the power, thrust coefficients, and wake profiles. Third, a dimensional analysis
and wake physics are used to review the mechanism of wake formation and recovery. Next, full-scale
turbines are designed that match some of the parameters of the scaled model. Various versions of
these models are considered, ranging from a more realistic full-scale turbine to less realistic ones that
better match the characteristics of the scaled model. The full-scale models are simulated with the same
LES-ALM code, using the same algorithmic parameters. Finally, the numerically simulated scaled and
full-scale wakes are compared, revealing which aspects of the wakes obtained in the wind tunnel are
realistic and which aspects are not.

10.2 Contributions to the scientific literature

The non-dimensional mean flow speed and Reynolds shear stresses have been compared between
the full-scale models and scaled models for both wind-aligned and wind-misaligned conditions. The
match of all the quantities is good, especially in the far wake from 3D. Several factors result in slight
mismatches between different scales, including the circulation mismatch close to the blade’s root,
the sizes of nacelle and tower, and the mismatch of the inflow integral length scale. The mismatches
caused by these factors have been quantified using CFD simulations, and the impacts are very small
or even negligible. In addition to the analysis of a single turbine, two wind farm control metrics have
been evaluated, i.e., the available power ratio in the wake of a turbine and the amount of flow angle
change in the wake of a yawed turbine. The scaled turbine model preserves these two metrics well
compared to full-scale models. Overall, with very limited mismatches caused by various factors, the
wakes in wind tunnels obtained with appropriately scaled wind turbine models have a very high degree
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of realism. These results show that it is reasonable to research wake behavior in wind tunnels with
appropriately scaled wind turbine models.

10.3 Authors’ contribution

Chengyu Wang performed the simulations and analyzed the results; Carlo L. Bottasso devised the
original idea of this research, performed the scaling analysis, and supervised the work; Filippo Cam-
pagnolo was responsible for the wind tunnel experiments and the analysis of the measurements,
and co-supervised the work; Helena Canet designed the full-scale turbine models; Daniel J. Barreiro
Clemente validated the full-scale turbine models with BEM and CFD codes. Chengyu Wang and Carlo
L. Bottasso wrote the manuscript. All authors provided important input to this research work through
discussions, feedback, and by improving the manuscript.
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CHAPTER 11

Conclusions and discussion

In this dissertation, high-quality BEM and CFD models of a scaled turbine were built. The models
were thoroughly validated with wind tunnel measurement in terms of turbine responses and wake
profiles. The validated models were used to study various wind farm control strategies, and the physical
mechanisms of each strategy were explained. Several full-scale wind turbine models that match the
non-dimensional characteristics of the scaled wind turbine were designed, which were used to study
the level of realism of turbine wakes obtained in the wind tunnel.

One critical aspect of building up high-quality digital models was to obtain accurate polars, which
was achieved through a polars identification method. Then, the validated models were used to study
three different sorts of wind farm control strategies, including yaw misalignment control, dynamic
induction control, and individual pitch control. In addition, the models were also used to study the
aerodynamics of floating offshore wind turbines installed on a multi-turbine platform and a reduced-
order model that has the potential to reproduce CFD results with a much lower computational cost.
Finally, the comparison between the full-scale and scaled turbine wakes indicates that it is reasonable
to use appropriately scaled turbines and wind tunnel to study wake effects.

Polars identification

The aerodynamic parameters of airfoils used on scaled wind turbine models were identified from
turbine operational data. The inputs include wind speed, air density, rotor speed, and blade collective
pitch angle, while the outputs include power and thrust coefficients. The identification method is
appropriate for a scaled wind turbine since its aerodynamic parameters can deviate from nominal
values because of manufacturing imperfections [82].

A new maximum likelihood method [64] that accounts for errors in the outputs and inputs was
proposed and employed to obtain the parameters. The new method is a generalization of the classical
approach, which allows the model inputs to differ from the actual measured quantities because of noise.
The newly expanded formulation uses an iteration between the standard parameter estimation and a
series of decoupled and reasonable steps to compute the inputs. An SVD-based coordinate transfor-
mation was used to accelerate the algorithm and increase the posedness of the identification problem.
The formulation is further improved by a filtering technique that utilizes the a priori information on
the measurement uncertainties, which provides a better initial guess for the identification.

The new identification approach was applied to estimate aerodynamic characteristics of the blades
of small-scale wind turbine models. Results also indicate that the current approach was able to cope
with the ill-posedness of the problem caused by the low observability of many unknown parameters,
which is essential for the practical applicability of the model for complex problems. The polars obtained
had higher quality than the error-in-output-only method, indicating the necessity to account for input
errors in the polars identification problem. For the first time, the identified parameters were able to
correctly model derated operating conditions that were not included in the data for identification.
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CFD framework

A digital copy [40] of the scaled experiments performed in a boundary layer wind tunnel was developed
with a CFD approach. The digital copy includes both the turbulent inflow condition used in the wind
tunnel and the wind turbine ALM (actuator line method) model.

The turbulent inflow was generated passively by using spires and roughness elements in the wind
tunnel. With two different setups, turbulent inflows with a medium (5%) and high (10%) turbulence
intensity were generated, corresponding to typical offshore and onshore conditions. Precursor simu-
lations were conducted to obtain the digital copies of the two types of turbulent inflows. Structured
body-conforming mesh resolves shapes of the spires, while the immersed boundary method models
hundreds of roughness elements. The precursor simulation results were validated with constant
temperature anemometry (CTA) measurements conducted in the wind tunnel [100], and an excellent
match has been obtained for both the velocity and turbulence intensity profile. Among various ap-
proaches attempted during the dissertation, the one using body-conforming structured mesh gave the
best results.

The ALM models [46] of turbines were validated with detailed wind tunnel measurements of the
G1 model, including the power, thrust, and wake at different locations. Detailed comparisons between
numerical and experimental results demonstrate the ability of LES to model a wide range of operating
conditions. The comparison between experiments and simulations began with low-turbulence (1%)
operating conditions, showing a good agreement. Then, the medium turbulence intensity case was
considered, giving an even better agreement with the experiments. According to the validation findings,
the requirement on mesh fineness if the ambient turbulence intensity is relatively high. The ambient
turbulence fosters tip vortices break-down and decreases the mesh fineness requirement to resolve
the break-down process. Overall, results indicate that the LES-ALM approach in this work is a reliable
approach to model scaled wind turbine experiments, in the sense that CFD results match all wind
tunnel measurements well.

As a further step of validation, a code-to-code-to-experiment [65] comparison was conducted
for two LES-ALM codes. The main difference between the two codes is the discretization scheme: a
second-order finite volume method and a sixth-order compact finite difference scheme. The second-
order scheme is the primary methodology used for this dissertation, while partners at Imperial College
London use the sixth order scheme.

Both codes were able to simulate the scaled wind farm with reasonable accuracy. A grid conver-
gence study shows that the higher-order scheme converges at a coarser mesh resolution, as expected.
The comparisons of power, thrust, mean wake profiles, Reynolds shear stresses, flow spectra, and
velocity auto-correlations show a high level of similarity between the two codes. The sixth order
scheme is moderately under-dissipative, while the second-order scheme is slightly over-dissipative.
The second-order scheme had a better match with the experiments and also had a much lower compu-
tational cost. These results indicate that the second-order scheme used in this dissertation suits the
need to simulate wind farm phenomena.

Yaw misalignment control

The validated CFD simulation framework is applied to various applications with different wind farm
control strategies. The first wind farm control validated with CFD was the yaw misalignment con-
trol [44] of a cluster of three wind turbines [55]. Although it is not a new concept, the detailed flow
measurement using LiDARs and a thorough comparison between experiments and simulations pro-
vided valuable insights.

Numerical simulations were performed for scaled waked wind turbines at different fixed yaw
settings, including a greedy case and an optimal yaw case. For both cases, the flow in a horizontal slice
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slightly above the hub-height was measured with two scanning LiDARs [30]. A good match between
simulations and experiments in terms of flow velocity distribution and power was obtained. As a novel
aspect, turbine torque controllers were implemented in the CFD simulations. The rotor speeds of
all three turbines in the simulations matched well with experimental measurements, indicating the
accuracy of the turbine model. For the wind farm layout used in this work, the wind farm power of the
optimal yaw case is about 20% higher than the greedy case, confirming the potential of yaw control to
increase wind farm power.

Besides the validation of the numerical model, the secondary deflection effect was demonstrated
by both the experiment and the simulation. There is an observation that the wake of the second
turbine was more deflected than the wake of the first turbine, although the yaw angle of the second is
smaller than the one of the first. Therefore, it appears that the side wash caused by a deflected wake
has non-negligible effects on the path of downstream wakes.

Dynamic induction control

The CFD-ALM framework was used to simulate the dynamic induction control (DIC) strategy [31]. This
strategy uses cyclic blade pitch motions to enhance wake recovery. Although corresponding CFD-AD
simulations were performed in the past, higher fidelity CFD-ALM simulations were still desired, and
this part of the dissertation filled this gap.

In the wind tunnel, three aligned wind turbines models G1 were placed in the wind tunnel with
a spacing of 5D, and the pitch angle of the first wind turbine changed with a sinusoidal signal to
implement the DIC. An excellent match with experimental measurements was achieved [66].

The experimental and numerical results were both evidence for the power enhancement capability
of DIC. CFD was used to scan the DIC parameter space and study their effects on the performance. A
maximum wind farm power gain of 3.6% was determined with CFD simulations, which corresponds to
a thrust coefficient oscillation amplitude of 0.274 at a Strouhal number of 0.3. However, this power
increase was obtained at the cost of a high increase in fatigue loading.

Individual pitch control

The effects of load-reducing IPC [34] on the wake of turbines were studied with the CFD tool. Although
it is already known that IPC can reduce the nodding and yawing moments on the rotor, the impact
of IPC on the turbine wake was investigated in detail, and it was quantified experimentally and
numerically [67]. A simulation model was first validated with experiments and then exploited to study
differences caused by IPC on wake behavior, power, and loads.

Results show that IPC is an effective way of reducing loading for all considered operating conditions,
including positive yaw, negative yaw, and zero yaw cases. The mechanisms by which IPC influences
the turbine power and its wake was discussed. The IPC controller responds to lateral flow caused by
yaw misalignment and vertical wind shear, which creates asymmetry for positive and negative yawing
in terms of the impact on power. The response of the IPC controller directly influences the near wake
profile, while the effects change as the wake propagates and rotates.

Overall, no significant enhancement of wake recovery has been observed. The use of IPC on the
upstream turbine has been shown to generate a moderate power increase for positive yawing, both
upstream and downstream, while it induces power losses for negative yawing. Therefore, the positive
yaw direction is preferred when considering yaw misalignment wind farm control if other conditions
are kept the same. IPC on the downstream turbine tends, in general, to always reduce power.
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POD reduced-order model

Given the high computational cost of CFD, it is not practical to use it for real-time wind farm control
with currently available computational resources. A reduced-order model (ROM) was developed [69]
based on the proper orthogonal decomposition (POD) as an attempt to fill this gap. The model used
flow data obtained from a CFD simulation with two aligned wind turbines with a spacing of 5D. While
the yaw angle of the first wind turbine changed with a specified time series, the second turbine did
not yaw. This simulation is termed the training simulation. Instantaneous velocity data at each time
step on a vertical slice and a horizontal slice were sampled as inputs. The ROM was obtained by
compressing the collected data into a standard state-space representation. By extraction of the most
dominant features of the data, the degree of freedom of the ROM is significantly smaller than the
original data. Instead of only using the velocity data, a Kalman filter is added by using the power signal
to further improve the model performance.

After the model identification, a second simulation with a different yaw command was conducted
to validate the model. Results indicate that the proposed method can represent the CFD results well,
in terms of both flow and turbine power. The flow reconstructed by the ROM preserves the primary
features of the original flow sampled from CFD, while some small fluctuations are filtered because of
the model size reduction. The Kalman filter improves power prediction significantly. The ROM has a
significantly reduced computational cost compared to CFD, so this method can potentially be used for
real-time model-based wind farm control.

Level of realism of wind tunnel experiments

Although most research in this dissertation was conducted with scaled wind turbine models in the
wind tunnel, the ultimate target is still to understand full-scale turbine aerodynamics. Therefore, it is
important to quantify how faithful are the wakes of the scaled turbine compared to the actual ones in
the field. A thorough validation of the assumption about the similarity of wakes between scaled and
full-scale turbines was not conducted [68]. For this purpose, several full-scale turbines that match
the characteristics of G1 were designed. While one model matches the circulation distribution of
G1 completely, others only match it partially due to structural constraints. All turbine models were
simulated with the same LES-ALM code with the same algorithmic parameters to study factors that
lead to discrepancies between scaled and full-scale turbines, including the circulation mismatch.

Results indicate that the turbulence intensity and the non-dimensional velocity profiles are very
similar between the full-scale and scaled turbines, especially in the far wake from 4D. Discrepancies
mainly appear in the near wake, and they are caused by two main factors, i.e., the sizes of nacelle
and tower of and the difference in power coefficient due to airfoil characteristics. The discrepancies
decay as wakes propagates downstream. Other factors, like the influence of rotation augmentation
effect, and the integral length scale of the inflow, are all shown to have limited effects on the mean
wake profile. These results indicate that it is reasonable to research wake by conducting wind tunnel
experiments.

Outlook

In the scope of this dissertation, high-quality numerical models that are thoroughly validated by exper-
imental measurements were obtained. The numerical models were used to study various applications,
wind farm control strategies, and the similarity between different scales. The ultimate goal of the
efforts is to use numerical tools to help understand and explore effective wind farm control strategies.

While many works were done for the validation and the physical mechanism explanation for
various scenarios, only a limited amount of work was conducted to explore and optimize wind farm
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and turbine controllers. With high-quality numerical tools, further research can be done to explore
future wind farm control technology. A list of possible future research directions is listed in the
following.

Atmospheric boundary layer simulation

As described in the methods chapter, the current CFD framework models the buoyancy forces with the
Boussinesq approximation [94], and a temperature equation is solved for each time step. These two
features make the numerical simulations of atmospheric boundary layers (ABL) under different stability
conditions possible. In fact, some initial tests with the current CFD framework already demonstrate
its capability to model ABL with reasonable accuracy. Although all the wind tunnel experiments and
simulations presented in this dissertation were conducted with stable to neutral ABL, it is valuable
to check the situations with unstable ABL. An especially interesting research topic is exploring how
does the stability of the atmosphere influence wake recovery. The numerical simulation tools can be
exploited to give initial answers to this question. The approach is to use CFD to construct two ambient
flows with the same turbulence intensity but different ABL stability conditions. When a turbine is
operated in each ambient flow, the influence of ABL stability on wake recovery can be isolated and
studied.

Advanced dynamic induction control

Although it is known that the mechanism of dynamic induction control is to trigger the natural
instability of the wake, a more detailed explanation is desired. This goal can be achieved through more
detailed visualization through CFD. Some initial results of the iso-vorticity surfaces indicate that the
reason can be the collision between fast and slow concentric vortex rings. Once the DIC mechanism
is better understood, some more advanced DIC strategies can be explored. For example, the DIC
discussed in this dissertation was done with cyclic pitch motion, but it could also be done with yaw
oscillations. Given the low sensitivity of power with respect to yaw when it is close to zero and low
expectation of additional loads, yaw oscillations might result in better performance both for power
and thrust. The CFD tool can be employed to study such effects.

Advanced individual pitch control

The effects of load-reducing IPC based on PI control have been studied, and all observed phenomena
have been explained. However, the usage of IPC should not be only limited to load reduction, and
it could also be used for wake recovery enhancement. Instead of eliminating nodding and yawing
moments on the rotor, IPC can also be used to modify the frequencies and magnitudes of these two
moments. Thus, artificial wake meandering can be generated, which results in a helix [101]. When
conducted at the right frequency and magnitude, this strategy has the potential to enhance wake
recovery.

Development and exploitation of the ROM

The POD reduced-order model can be further extended to improve its predictive capabilities. For
example, local estimates of wind speed on the rotor speed obtained using blade load measurement
can be an additional input for the model. In addition, the temperature, pressure, and vorticity of the
flow can all be used as additional inputs to provide more abundant information, which can be handled
collectively by the POD method.
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While the reduced-order model was validated with out-of-set simulation data, it has not been
applied for real-time wind farm control purposes yet. It is interesting to verify the effectiveness of such
a model-based controller with closed-loop wind farm control.

Field testing

Pure numerical simulations were conducted to study the similarity of wakes between scaled and
full-scale turbines. Although the results are relatively complete, it is undoubtedly beneficial to collect
some evidence from experimental field measurements. With the validation of field testing data, the
similarity will be confirmed with even better plausibility.
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Abstract. A new method is described to identify the aerodynamic characteristics of blade airfoils directly from
operational data of the turbine. Improving on a previously published approach, the present method is based on
a new maximum likelihood formulation that includes errors in both the outputs and the inputs, generalizing the
classical error-in-the-outputs-only formulation. Since many parameters are necessary to meaningfully represent
the behavior of airfoil polars as functions of angle of attack and Reynolds number, the approach uses a singular
value decomposition to solve for a reduced set of observable parameters. The new method is demonstrated by
identifying high-quality polars for small-scale wind turbines used in wind tunnel experiments for wake and wind
farm control research.

1 Introduction

Most simulation models of wind turbine rotors, from the low
to the high end of the fidelity spectrum, rely on polars, i.e., on
the aerodynamic characteristics of the airfoils used on the
blade. Clearly, irrespectively of its sophistication, the quality
of the results that a simulation can deliver is bound to many
details of the underlying mathematical model and numerical
methods but also to the accuracy of the polars. Unfortunately,
it is often difficult to have a precise knowledge of such a cru-
cial ingredient. In fact, whereas polars are typically charac-
terized by ad hoc experiments or simulations conducted on
isolated airfoils, there are many reasons why the actual po-
lars of a specific blade can differ from the nominal ones. To
address this need, this paper describes a new procedure for
the tuning of polars based on turbine operational data.

Airfoil polars are used for modeling the aerodynamics of
rotors using lifting lines in conjunction with blade element
momentum (BEM), free vortex wake (FVW), and computa-
tional fluid dynamic (CFD) models. BEM methods are rou-
tinely used for the aeroservoelastic analysis of wind turbines
and provide most of today’s industrial-level simulation ca-
pabilities for load analysis, design, and control development
activities (Manwell et al., 2009; Burton et al., 2011; Open-
Fast, 2020). FVW methods (Sebastian and Lackner, 2012;

Shaler et al., 2019) are not yet routinely used because of
their higher computational costs but offer promising alterna-
tives by removing some of the assumptions of BEM theory.
On the higher end of the spectrum, the large-eddy simula-
tion actuator line method (LES-ALM; Troldborg et al., 2007;
Churchfield and Lee, 2012; Churchfield et al., 2012; Wang et
al., 2019) is currently the main approach for the modeling of
wakes, including the hot topic of wind farm control (Fleming
et al., 2013; Gebraad et al., 2016).

In all of these approaches, a lifting line models the blade
from the aerodynamic point of view. A generic lifting line is a
three-dimensional curve running along the blade, which may
be prebent and swept. The local chord, twist, airfoil type,
and its relative position (for example, in terms of the chord-
wise offset of the aerodynamic center) are specified along the
curve. The lifting line is attached to the structural model of
the blade and moves with it following its travel around the
rotor disk and its deformation. At each instant of time dur-
ing a simulation, the local flow relative to a generic point of
the lifting line can be computed. The local flow accounts for
the wind inflow, for the motion of the blade, and for the lo-
cal induction generated by the rotor, whose details depend
on the specific aerodynamic model (BEM, FVW, or CFD).
Given the local flow, the angle of attack of the airfoil and the
Reynolds number can be readily obtained. This allows one
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to compute the lift, drag, and moment aerodynamic coeffi-
cients at that location along the blade, typically by interpo-
lating within look-up tables that store the aerodynamic prop-
erties of the airfoil. Possible corrections are applied to take
into account tip and root losses, unsteady aerodynamics, dy-
namic stall, Coriolis-induced delayed stall, and other effects,
in turn producing the local aerodynamic force exerted on the
blade at that location. By the principle of action and reaction,
an equal and opposite force is applied to the flow, and, again
depending on the specific formulation, this closes the loop
between blade motion and fluid flow. A new estimate of the
local flow is therefore produced, and the process is repeated
until convergence.

For several years, the group of the senior author has been
developing scaled and controlled wind turbine models for
wind tunnel testing (Bottasso et al., 2014b; Bottasso and
Campagnolo, 2020). Applications have considered both wind
turbine (Bottasso et al., 2014b) and wind farm control (Cam-
pagnolo et al., 2016, 2020; Frederik et al., 2019). In addi-
tion to the collection of valuable data sets in the known, re-
peatable, and controllable environment of the wind tunnel,
the development and validation of digital copies of these
experiments have been main ambitions of this research ef-
fort. Both aeroelastic BEM (Bottasso et al., 2014b) and LES-
ALM (Wang et al., 2019) models of the experiments have
been developed, in the latter case including not only the wind
turbines but also the wind tunnel and the passive genera-
tion of a sheared and turbulent flow. Results collected to date
demonstrate an excellent ability of the simulation models in
reproducing the experiments, including multiple wake inter-
actions and conditions relevant to wind farm control (Wang
et al., 2019, 2020a,b,c).

One crucial component of the simulation chain has been
a method for estimating the polars directly from operational
data of the turbines (Bottasso et al., 2014a). In fact, the blades
of scaled wind turbine models operate in low Reynolds
regimes, where even relatively small changes in the operat-
ing conditions can cause significant changes in the aerody-
namic characteristics of the blade sections. In addition, given
the small size of these models, even modest manufacturing
imperfections and normal wear of the blades can lead to de-
viations from their nominal shape. Using the method of Bot-
tasso et al. (2014a), the nominal airfoil polars are augmented
with parametric correction terms, which are identified us-
ing a maximum likelihood (ML) criterion based on opera-
tional power and thrust measurements. These data points are
collected on the turbine at various operating conditions, se-
lected in order to span a desired range of angles of attack and
Reynolds numbers. Since a large number of free parameters
are necessary to represent the correction terms, the result-
ing problem is ill-posed, and the parameters are collinear. To
address this issue, the original parameters are transformed
into a new orthogonal set by using the singular value decom-
position (SVD). Because the new parameters are uncorre-
lated with each other, one can select an observability thresh-

old, discard the unobservable set, and solve only for the ob-
servable one. After having solved the identification problem,
which is now well posed, the solution is mapped back onto
the space of the original physical parameters.

Although this method works well in practice, it still suf-
fers from assumptions that limit its effectiveness. Indeed, the
classical ML formulation is based on an input–output model
and assumes errors in the outputs only (Klein and Morelli,
2006; Jategaonkar, 2015). Following this approach, outputs
differ from available measurements because of measurement
errors and model deficiencies. However, errors are not ex-
plicitly accounted for in the inputs, which are assumed to
be equal to their measured values. In the present context, in-
puts represent the operating conditions of the turbines, which
are expressed by the ambient air density and wind speed,
the rotor angular velocity, and the blade pitch setting. Errors
in such quantities have a non-negligible effect on the out-
puts and should be taken into account in a rigorous statistical
sense.

To address this issue, the present paper proposes a new
general formulation of ML identification that includes er-
rors both in the outputs and in the inputs. This generalized
formulation leads to an optimization problem in the model
parameters and the unknown model inputs, which can now
differ from their measured values. The proposed method is
again cast within the SVD-based reformulation of the un-
knowns to deal with the ill-posedness and redundancy of the
parameters. The new formulation is applied to the identifi-
cation of the polars of small-scale controlled wind turbines,
developed to support wind farm control and wake research
(Wang et al., 2019; Campagnolo et al., 2020; Frederik et al.,
2019; Bottasso and Campagnolo, 2020). Results indicate that
the new formulation delivers polars of superior quality with
respect to the original error-in-the-outputs-only formulation.
Specifically, the new polars were able for the first time to
correctly predict the turbine power outputs in derated condi-
tions, which had always defied previous efforts.

The paper is organized according to the following plan.
Section 2 describes first the classical ML approach in
Sect. 2.1 and its reformulation in terms of uncorrelated pa-
rameters in Sect. 2.2; Sect. 2.3 presents the novel ML method
with errors in both outputs and inputs, while Sect. 2.4 dis-
cusses a way to take into account a priori information on
the errors. Section 3 specializes the general formulation of
Sect. 2.3 to the identification of the polars of scaled wind tur-
bines. Finally, Sect. 4 presents the results, and conclusions
are drawn in Sect. 5.
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2 Formulation

2.1 Classical maximum likelihood estimation with errors
in the outputs

Consider a system described by the parametric model

y = h(p,u), (1)

where u ∈ Rl are the inputs (or, in the present context, the
operating conditions), p ∈ Rn the model parameters, and y ∈

Rm the outputs. In correspondence to the N inputs U = {u∗1,
u∗2, . . . , u∗N }, N experimental measurements of the outputs
are available and noted Y = {y∗1, y∗2, . . . , y∗N }. Because of
modeling and measurement errors, the experimental mea-
surements are in general not identical to the outputs predicted
by Eq. (1), a difference that can be quantified by the residual
r = y∗−y. The goal of the estimation problem is to find the
model parameters p that minimize the residuals r .

A classical approach to this parameter estimation problem
is the ML method (Klein and Morelli, 2006). The idea of
maximum likelihood estimation is to find the parameters p

that maximize the probability J of obtaining the measure-
ment sample Y , where J is written as

J =
Nm

2
ln(2π )+

N

2
ln(detR)+

1
2

N∑
i=1

w2
i r
T
i R−1r i, (2)

R being the residual covariance and wi a weight assigned to
the ith residual. In this work, weights are introduced to ac-
count for the fact that not all operating conditions appearing
in the sample U might have the same importance. For exam-
ple, it might happen that some ui’s represent frequent typ-
ical operating conditions of the system, whereas others are
less frequent or relevant conditions. It might then be desir-
able to better match these more frequent conditions than the
less frequent ones. One way to achieve this behavior from
the ML estimator is to assign weights to the residuals. The
weights could be proportional to the relative frequency of
each operating condition in the lifetime of the system or be
inversely proportional to the distance of that operating con-
dition to some nominal behavior, a concrete example of this
latter case being explained later in the results section.

A robust implementation of this optimization problem
is obtained by the following iteration (Klein and Morelli,
2006).

1. Assuming temporarily frozen parameters equal to p,
minimize J with respect to R, which yields the follow-
ing expression for the covariance matrix (Jategaonkar,
2015):

R=
1
NW

N∑
i=1

w2
i r i(p)rTi (p), (3)

where W = 1/N6Ni=1w
2
i .

2. Assuming a temporarily frozen error covariance R,
solve the minimization problem

p = argminp

1
2

N∑
i=1

w2
i r
T
i (p)R−1r i(p). (4)

3. Return to step 1, and repeat until convergence.

In the following, alternating between steps 1 and 2 is termed
a “major” iteration. The internal iterations necessary for the
solution of the optimization problem at step 1 are termed in
the following “minor” iterations.

2.2 Maximum likelihood estimation in terms of
uncorrelated parameters

The estimation problem expressed by Eqs. (3) and (4) can be
ill-posed because of low observability and collinearity of the
unknowns. This is a classical difficulty in parameter estima-
tion: on the one hand one would typically prefer a rich set of
parameters that give ample freedom to adjust the behavior of
a model in order to accurately match the measurements; on
the other hand, it might be difficult – if not altogether impos-
sible – to always guarantee that there is enough informational
content in the measurements to correctly identify and distin-
guish the effects of each one of the unknown parameters.

Indeed, the well-posedness of the identification problem
is associated with the curvature of the likelihood function
with respect to changes in the parameters. Around a flat max-
imum, different values of the parameters yield similar values
of the likelihood. A measure of the curvature of the solu-
tion space is provided by the Fisher information matrix (Jate-
gaonkar, 2015). The inverse of this matrix is also useful be-
cause it bounds the variance of the estimates (Cramér-Rao
bound) (Jategaonkar, 2015). Unfortunately, the Fisher infor-
mation by itself does not offer a constructive way of refor-
mulating a given ill-posed problem.

To overcome this difficulty, Bottasso et al. (2014a) pro-
posed to transform the original physical parameters of the
model into an orthogonal parameter space. This mapping is
obtained by diagonalizing the Fisher matrix using the SVD.
As the new variables are now statistically independent, one
can readily select and retain in the analysis only the parame-
ters that are associated with a sufficiently high level of confi-
dence. Once the problem is solved, the uncorrelated parame-
ters are mapped back onto the original physical space.

This approach enables one to solve an identification prob-
lem with many free parameters, some of which might be in-
terdependent or not observable in a given data set. Further-
more, the SVD diagonalization reduces the problem size, re-
taining only the orthogonal parameters that are indeed ob-
servable. Finally, this approach reveals, through the singu-
lar vectors generated by the SVD, the interdependencies that
may exist among some parameters of the model, which may
provide useful insight into the problem itself.
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A detailed description of the SVD-based version of
ML identification is given in Bottasso et al. (2014a). The
same formulation is used also in the present paper.

2.3 Maximum likelihood estimation with errors in the
inputs and outputs

The standard formulation of the ML identification presented
in Sect. 2.1 considers the presence of noise in the outputs y.
Indeed, outputs are affected by measurement errors but also,
being computed through a model, by the deficiencies of the
model itself. Although errors in the outputs are typically the
primary source of uncertainty in a parameter estimation prob-
lem, there are situations where significant errors may also be
associated with the inputs u, which is the case of the present
application. A formulation of ML that accounts for errors
both in the outputs and inputs is presented next.

The parametric model described by Eq. (1) is expanded as

ŷ =
{
y
u

}
=
{
h(p,u)

u

}
. (5)

Because of modeling and measurement errors, the experi-
mental output measurements y∗ are in general not identical
to the model-predicted outputs y. Similarly, because of mea-
surement errors and an imperfect realization of the operat-
ing conditions, the experimental inputs u∗ are in general not
identical to the nominal ones u. These differences can be syn-
thetically quantified by the residual r̂ = ŷ∗− ŷ, where now
ŷ∗ is an expanded vector that contains measurements of both
outputs and inputs:

ŷ∗ =
{

y∗

u∗

}
. (6)

The goal of the estimation problem is to find the model pa-
rameters p and system inputs ui that maximize the probabil-
ity of obtaining the measurements y∗ and u∗. According to
the maximum likelihood criterion, Eq. (4) becomes

p,u1, . . ., uN

= argminp,ui

1
2

N∑
i=1

w2
i r̂
T
i (p,ui) R̂−1̂r i (p,ui) , (7)

and Eq. (3) is now

R̂=
1
NW

N∑
i=1

w2
i r̂ i (p,ui) r̂

T
i (p,ui) . (8)

Instead of solving the problem in a monolithic fashion, the
following iteration can be conveniently used:

1. Initialize p (see Sect. 2.4), and set ui = u∗i , i = [1, N ].

2. Calculate R̂ from Eq. (8).

3. Assuming temporarily frozen inputs ui , solve

p = argminp

1
2

N∑
i=1

w2
i r̂
T
i (p,ui) R̂−1̂r i (p,ui) . (9)

This is formally identical to the classical error-in-the-
outputs-only ML formulation, which can be solved by
the SVD-based reformulation in terms of uncorrelated
parameters (Bottasso et al., 2014a).

4. Assuming temporarily frozen parameters p, solve

uj =argminuj

1
2

N∑
i=1

w2
i r̂
T
i (p,ui) R̂−1̂r i (p,ui) ,

j = [1,N ]. (10)

These are N decoupled small sized problems, which re-
turn the values of the model inputs.

5. Return to step 2, and repeat until convergence.

This way the solution of the identification problem with input
and output errors is obtained by using the classical error-in-
the-outputs-only ML implementation (using Eq. 9), followed
by a sequence of inexpensive optimizations to compute the
model inputs (using Eq. 10). Notice that, as long as it con-
verges, this iteration returns the same result as the monolithic
solution of Eqs. (7) and (8).

2.4 Filtering of measurements based on a priori
uncertainties

Often, a priori information on the expected uncertainties may
be available. In such cases, the unknown true inputs ui can
be bounded as

u∗i −1u≤ ui ≤ u∗i +1u, (11)

where 1u are the expected uncertainty bounds. This a priori
information can be used to retain in the cost function J only
those measurements for which the corresponding residual
cannot be simply explained by the uncertainties expressed
in Eq. (11) but must be due to the model parameters p.

To this end, notice first that the residual r i is a function
of p and ui , i.e.,

r i (p,ui)= y∗i −h (p,ui) . (12)

Indicating the j th component of residual r i as rij , its maxi-
mum and minimum values for a given p are computed as

rM
ij
=maxui rij (p,ui) , (13a)

rm
ij
=minui rij (p,ui) , (13b)

subject to : u∗i −1u≤ ui ≤ u∗i +1u. (13c)

If the maximum rM
ij

and minimum rm
ij

have different signs,
then rij = 0 lies somewhere within this range, and hence this
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Figure 1. Approximation of the maximal and minimal residuals.

residual component can be fully explained by input uncer-
tainties. Therefore, it cannot drive meaningful changes in the
parameters and should be neglected. Otherwise, this resid-
ual carries valuable information and should be retained. To
account for this, a filtered residual r̃ij is defined as

r̃ij =min
(∣∣rij ∣∣) . (14)

The a priori estimates are used to initialize the param-
eters p at step 1 of the iterative algorithm formulated in
Sect. 2.3. A standard ML method is used for the initializa-
tion, considering only errors in the outputs and using Eqs. (3)
and (4) where the residual components rij are replaced by
the filtered ones r̃ij . Filtering accelerates the optimization
because it avoids meaningless tuning of parameters caused
by measurement noise. Once this initial estimate of the pa-
rameters is obtained, it is further refined by considering the
a posteriori effects of noise in inputs and outputs by step-
ping through points 2–5 of the algorithm. Residual filtering
is not used further because it is based on a priori assumptions
relying on knowledge of the measurement chain, which can
only estimate bounds and might not reflect the actual noise
effectively experienced for any given measurement.

In practice, a naive implementation of filtering can be very
expensive. In fact, as the residual r i depends on p, one would
have to recompute the optimization problems expressed in
Eq. (13) each time the parameters are updated, which be-
comes prohibitively expensive.

The cost of filtering can be drastically reduced with a sim-
ple approximation, as graphically illustrated in Fig. 1. The
figure shows with a dotted blue line the residual compo-
nent rij as a function of the input ui for a given value of the
model parameters p(0). The counter (·)(0) refers to the values
that the parameters assume at the beginning of each major
iteration used to solve Eq. (4). The minimum and maximum
of this curve, corresponding to rm

ij
and rM

ij
, are respectively

indicated with downward- and upward-pointing blue trian-
gles. These stationary points are computed at the beginning
of each major iteration by solving Eq. (13). For simplicity,

this is obtained by a simple evaluation of the residuals over a
regular subdivision of the unknowns.

At the kth minor iteration of the solution of Eq. (4), the
model parameters have been updated, and they now assume
the value p(k). The corresponding function rij is depicted
in the figure with a solid red line, together with its new
minimum and maximum points indicated by downward- and
upward-pointing red triangles. To reduce the computational
burden, these stationary points are not computed by solving
Eq. (13) but are approximated.

The nature of the approximation is shown in the figure.
The initial function rij corresponding to p(0) is shifted by

the difference r∗(k)
ij
− r
∗(0)
ij

, i.e., the difference in the resid-
ual evaluated at the nominal inputs u∗i for the two parameter
values p(k) and p(0). The shifted function is shown by the
dashed black curve in Fig. 1. This is an inexpensive opera-
tion since it does not require any optimization. This nominal
difference is then used for shifting the minimum and maxi-
mum residuals from their initial value at p(0) to the new value
at p(k). By this approximation, the maximum and minimum
residuals are readily and inexpensively updated at each iter-
ation as

r
M(k)
ij
= r

M(0)
ij
+ r
∗(k)
ij
− r
∗(0)
ij

, (15a)

r
m(k)
ij
= r

m(0)
ij
+ r
∗(k)
ij
− r
∗(0)
ij

. (15b)

Based on these updated values, the residual filtering condi-
tion expressed by Eq. (13) can be readily updated.

This approximation works very well in practice since the
interval [u∗i −1u, u∗i +1u] is small. In addition, by a stan-
dard Taylor series analysis, one can show that this approx-
imation entails neglecting terms that are quadratic in the
changes in the parameters within a major iteration, which are
typically small. Finally, the approximation does not affect the
quality of the results as the true stationary points are recom-
puted at each new major iteration of the ML algorithm. In
this sense, the approximation only speeds up the calculations
of the minor iterations, but the results – at convergence of the
major and minor loops – are the same that would have been
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obtained by a straightforward (but more expensive) solution
of Eq. (13).

3 Application to the identification of airfoil polars

The parameter identification problem setting described in
the previous pages is completely general and could be used
for a wide range of applications. However, for the specific
problem at hand and with reference to Eq. (1), the outputs
are defined as y = (CP, CT)T , where CP = 2P/(ρAV 3) and
CT = 2T/(ρAV 2) are respectively the rotor power and thrust
coefficients, and P is power, T thrust, ρ air density,A= πR2

the rotor swept area, R the rotor radius, and V the wind
speed. The inputs describe the rotor operating conditions and
are defined as u= (ρ, V , �, β)T , where � is the rotor angu-
lar velocity and β the blade collective pitch angle. To obtain
the power and trust coefficients, nominal values of the inputs
are used for both the measured and predicted cases.

The airfoil lift and drag coefficients, respectively noted CL
and CD, are now assumed to be in error, and the goal of the
estimation problem is to calibrate them in order to match
a given set of measurements. This is achieved by defining
changes 1CL and 1CD with respect to nominal values CL0

and CD0 , i.e.,

1CL = CL−CL0 =1CL(η,α,Re), (16a)
1CD = CD−CD0 =1CD(η,α,Re), (16b)

where η is the spanwise location along the blade (because
different airfoils are typically used at different stations along
a rotor blade); α is the local angle of attack; and Re = uc/ν
is the local Reynolds number, u being the relative flow speed,
c the chord length, and ν the kinematic viscosity of air. The
dependency of these functions on spanwise location, angle of
attack, and Reynolds number is approximated using assumed
shape functions and their associated nodal parameters pCL
and pCD , which therefore represent the tunable algebraic pa-
rameters of the model, i.e.,

1CL(η,α,Re)≈1CL
(
pCL

)
, (17a)

1CD(η,α,Re)≈1CD
(
pCD

)
. (17b)

Following Bottasso et al. (2014a), instead of working di-
rectly with p = (pCL ; pCD ), which might not be all observ-
able, these variables are first transformed by the SVD into
an uncorrelated set of parameters, which are then truncated
with a variance threshold, calibrated according to the ML cri-
terion, and finally projected back onto the original functional
space 1CL and 1CD.

The dependency of y on p and u is expressed through
Eq. (1) using blade element momentum (BEM) theory (Man-
well et al., 2009), as implemented in the code FAST (Open-
Fast, 2020).

The typical Reynolds number distribution along a wind
turbine blade is almost constant for the majority of its span

but assumes smaller values close to the blade tip and root.
The implementation of this paper, improving on the work of
Bottasso et al. (2014a), specifically considers that the airfoil
polars depend on Re. The expected range of Reynolds num-
bers is discretized by linear shape functions and associated
nodal values, and the local Reynolds number is computed at
each spanwise station based on local geometry and flow con-
ditions. The results presented later on consider scaled wind
turbine models for wind tunnel testing. For these rotors, the
chord-based Reynolds number is much lower than in typi-
cal full-scale applications, and ad hoc low-Reynolds airfoils
(Lyon and Selig, 1998) are used. Because of the special flow
regime of these airfoils, the formulation is complemented by
the conditions ∂CL/∂Re > 0 and ∂CD/∂Re < 0. The first of
these conditions accounts for the earlier reattachment of the
laminar separation bubble on the suction side of the airfoil
for increasing Re and the second for the shorter chord extent
of that same bubble (Selig and McGranahan, 2004). They are
enforced as soft penalty constraints in Eq. (4) by modifying
the cost function as J = J + Jp, with

Jp =Wp

αM∫
αm

ReM∫
Rem

(
max

(
0,−

∂CL

∂Re

)
+max

(
0,
∂CD

∂Re

))
dRedα, (18)

where Wp is a penalty parameter, and [Rem, ReM] and [αm,
αM] are the ranges of Reynolds and angle of attack of inter-
est.

4 Results

4.1 Experimental setup

A scaled wind turbine model of the G1 type (Campagnolo
et al., 2016) was operated in the boundary layer wind tunnel
of the Politecnico di Milano in low turbulence (1 %) con-
ditions. The rotor blade design is based on one single low-
Reynolds airfoil of the RG14 type (Lyon and Selig, 1998).
Measurements of the rotor thrust and power were obtained
for 158 different operational conditions, chosen to span the
range [5.87, 8.81] for the tip speed ratio (TSR) λ=�R/V
and the range [−5, 12] ◦ for the blade pitch angle β. The
wind speed V was varied in the interval [3.10, 7.86] m s−1,
resulting in a range of Reynolds equal to [10 000, 90 000].

Table 1 reports a priori estimates of the uncertainties asso-
ciated with the various measured quantities. Given the uncer-
tainties of the measurements, worst-case uncertainties of the
power and thrust coefficients can be readily computed as

1CP =max
∣∣∣∣ 2(Q±1Q)(�±1�)
(ρ±1ρ)A(V ±1V )3 −

2Q�
ρAV 3

∣∣∣∣ , (19a)

1CT =max
∣∣∣∣ 2(T ±1T )
(ρ±1ρ)A(V ±1V )2 −

2T
ρAV 2

∣∣∣∣ . (19b)
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Table 1. A priori uncertainty estimates of measurements.

Quantity 1V 1β 1� 1ρ 1Q 1T

Uncertainty ±0.1 m s−1
±0.2◦ ±1.5 rpm ±0.01 kg m−3

±0.005 Nm ±0.03 N

The wind speed V was measured by a Mensor CPT-6100
pitot transducer (Mensor, 2016), which is affected by pres-
sure and alignment errors. The pitot tube measures the dy-
namic pressure, i.e., the difference 1p = 1/2ρV 2 between
the total and the static pressures. Since the wind speed is
computed by inverting the dynamic pressure expression, er-
rors in 1p and ρ directly pollute V . Additionally, a yaw
and tilt misalignment may exist between the pitot axis and
the incoming wind vector, increasing the error in V . The
uncertainty of the air density was estimated from the hy-
grometer and barometer installed in the wind tunnel. After
considering all relevant factors, the uncertainty of the wind
speed was determined using the guidelines described in Stan-
dard ISO 3354 (2008). The uncertainty in the blade pitch an-
gle β was estimated by calibrating the actuator encoder with
a Wyler Clinotronic Plus inclinometer (Campagnolo, 2013).
Power was computed as P =Q�, where Q is the torque,
which was measured by strain gages at the rotor shaft. These
sensors were calibrated by applying a known torque to the
locked rotor. The rotor speed � was measured by an optical
incremental encoder with a count per revolutionNe = 10000
and an observation window tow = 4 ms, which results in an
error 1�= 1/Netow ≈ 1.5 rpm. The thrust T was obtained
by measuring with a strain gage bridge the fore–aft bend-
ing moment at the tower base; here again, the strain gages
were calibrated by applying a known load to the turbine by
a pulley-and-weight system. The contribution to the bending
moment due to the drag of nacelle and rotor was obtained by
a dedicated experiment in the wind tunnel without the blades.
Additional details on sensors and error quantification are dis-
cussed in Campagnolo (2013) and Bottasso et al. (2014b).

For each wind speed V , a turbine should operate at a spe-
cific TSR λ and blade pitch β, which are computed in re-
gion II to maximize power capture and in region III to limit
power output to the rated value. On the other hand, for the
task of identifying the airfoil polars, a broad range of condi-
tions is necessary in order to span a sufficient range of angles
of attack and Reynolds of interest. Although a broad range
is necessary for the generality of the identified model, the
conditions that are closer to the nominal operating points –
according to the regulation trajectory of the machine – are
also the ones most likely encountered during the actual oper-
ation of the turbine. To account for this fact, the weight wi of
each operational condition i (see Eq. 2) was assigned based
on its distance to the nominal conditions, computed as

di =mins

√
ε1(Vi −V ∗(s))2

+ ε2(βi −β∗(s))2
+ ε3(λi − λ∗(s))2, (20)

where (·)∗ indicates a nominal value, and ε1/2/3 are scaling
factors. All data points were divided into four groups accord-
ing to their distance. Data points within each group were as-
signed the same weight, with longer mean distances corre-
sponding to lower weights.

4.2 Identification results

Nominal values of the blade polars are defined as the ones
previously computed with the method of Bottasso et al.
(2014a). Although of a good quality, these polars are not al-
ways able to correctly represent the behavior of the turbine,
for example in derated conditions. To improve on this situ-
ation, the method proposed here was used to further correct
the polars and provide improved estimates.

The lift and drag coefficients were parameterized in terms
of bilinear shape functions using seven nodal values for
Reynolds and 21 for angle of attack for each one of the
two coefficients. Since the G1 blades use one single airfoil
type along their entire span, it was not necessary to introduce
the dependency on η appearing in the general expressions of
Eq. (16).

For the nominal polars, Fig. 2 plots the variance σ 2 (which
is the inverse of the singular values produced by the SVD
analysis) for the seven considered Reynolds numbers and the
lowest 25 modes. The figure shows that modes of intermedi-
ate Reynolds number have better observability as most condi-
tions do happen within this range. All modes with a variance
above 1 (a threshold indicated in the figure by a dashed hor-
izontal line) were discarded, reducing the number of degrees
of freedom from the initial 294 to 117, which improves the
well-posedness of the problem and also reduces the compu-
tational cost.

The identification first used nominal model inputs u∗ and
the residual filtering technique of Sect. 2.4 to identify an ini-
tial guess to the system parameters p, a process that con-
verged after nine major iterations of Eqs. (3) and (4). For
the converged solution, Fig. 3 shows the nominal model in-
puts (two upper plots) and the output residuals (two lower
plots), including the nominal residual r∗, the maximal resid-
ual rM, the minimal residual rm, and the filtered residual r̃

(see Eqs. 13 and 14) for each one of the measured data points.
The filtered residuals r̃ are 0 for most conditions, indicating
that the information carried by these data points cannot be
distinguished further from input measurement noise. In ad-
dition, all nonzero filtered residuals are small, indicating an
almost singular R̃, which is in fact used as a termination cri-
terion.
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Figure 2. Variance of the lowest 25 modes for varying Reynolds.

Figure 3. (a, b) Nominal model inputs V , �, β, ρ. (c, d) Nominal, maximal, minimal, and filtered residuals for the two outputs 1CP
and 1CT. All quantities are plotted for each one of the 158 operating conditions in the measurement set.

An a priori estimate of the maximal uncertainties of the
power and thrust coefficients can be computed based on
Eq. (19) and Table 1, which yields

σP =

√√√√√√√√
N∑
i=1
w2
i

(
1CP,i

)2
N∑
i=1
w2
i

= 0.037, (21a)

σT =

√√√√√√√√
N∑
i=1
w2
i

(
1CT,i

)2
N∑
i=1
w2
i

= 0.047. (21b)

On the other hand, an a posteriori estimate of the uncertain-
ties evaluated with nominal inputs u∗ is available by the co-
variance matrix R of Eq. (3) that, using unfiltered residuals,
gives

σP =

√
R̂11 = 0.024, (22a)
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Figure 4. Differences between identified and nominal inputs for all operating conditions (a–d) and their corresponding distributions (e–h).

σT =

√
R̂22 = 0.023. (22b)

As expected, the a posteriori estimates are smaller than the a
priori ones since the latter represent a worst-case scenario.

The process was then continued using the previously con-
verged parameters as an initial guess. Now, however, the
model inputs u were added to the identification to include
the effects of their uncertainties. After three iterations, a con-
verged solution was obtained. The final identified inputs are
denoted in the following as uI . For all operational conditions,
Fig. 4 shows the differences1u= uI

−u∗ between identified
and nominal values. In all subplots, two dashed horizontal
lines indicate the a priori uncertainties reported in Table 1. It
is interesting to observe that most estimated inputs are within
the a priori bounds, indicating a good coherence between a
priori and a posteriori statistics. The right part of the same
figure reports the distributions of the errors that, except for
wind speed, are close to normal. On the other hand, density
appears to have a small bias, which violates one of the as-
sumptions of ML estimation.

Figure 5 shows the nominal (dashed lines) and identified
(solid lines) lift (left plot) and drag (right plot) coefficients as
functions of angle of attack for various Reynolds numbers.
Values outside of the angle of attack and Reynolds ranges of
the plot are not identifiable with the available data set and
therefore are not shown. The nominal coefficients tuned ac-
cording to Bottasso et al. (2014a) cross each other, violating
the consistency constraints on the laminar separation bubble
expressed by Eq. (18). In contrast, the new identified results
do comply with the constraints.

Table 2 reports the correlation coefficients, computed from
the extended covariance matrix R̂ at convergence, as %ij =
R̂ij/(σiσj ), where σk =

√
R̂kk . Because of symmetry, only

the upper triangle is shown.
The correlation coefficient between the two outputs, 1CP

and 1CT, is negative. This means that, on average, at the
end of the identification process the power and thrust residu-
als have opposite signs. This is expected since this behavior
minimizes the cost function of Eq. (7). Additionally, each in-
put induces same-sign variations in the two outputs; for ex-
ample, a larger wind speed or density implies higher power
and thrust coefficients, whereas a larger blade pitch implies
lower power and thrust coefficients. Given that 1CP and
1CT have a negative correlation, the input–output correla-
tion coefficients always have different signs for both outputs;
e.g., %(1CP, 1β) and %(1CT, 1β) have opposite signs. The
signs of the input–input correlations can be explained in sim-
ilar terms. For example, the correlation between density and
blade pitch is negative because these two inputs have correla-
tions of opposite sign as the outputs, whereas the correlation
between blade pitch and wind speed is positive because these
two inputs have correlations of the same sign as the outputs.

From the extended covariance matrix at convergence,
the mean absolute a posteriori uncertainties of the in-
puts |uI− u∗| were found to be 0.06 m s−1 for speed V ,
0.09◦ for blade pitch angle β, 0.5 rpm for rotor speed �, and
0.005 kg m−3 for density ρ. By comparison with Table 1, all
a posteriori uncertainties are smaller than the a priori ones,
as expected.
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Figure 5. Lift CL (a) and drag CD (b) coefficients as functions of angle of attack α for various Reynolds numbers. Dashed lines: nominal
values according to Bottasso et al. (2014a); solid lines: new identified values.

Table 2. Correlation coefficients among inputs and outputs.

1CP 1CT 1ρ 1β 1V 1�

1CP 1.0000 −0.8518 0.7084 −0.5550 −0.6206 0.7969
1CT – 1.0000 −0.8839 0.8540 0.1948 −0.6245
1ρ – – 1.0000 −0.6661 −0.1100 0.2488
1β – – – 1.0000 0.0134 −0.4751
1V – – – – 1.0000 −0.5025
1� – – – – – 1.0000

Table 3. Experimental conditions of the power-derating cases.

Power percentage 100 % 97.5 % 95 % 92.5 %

β (◦) 0.42 1.02 1.43 1.79
λ (rpm) 8.31 8.23 8.16 8.10
V (m s−1) 5.87 5.88 5.88 5.88

4.3 Power-derating cases

To verify the quality of the identified polars, derated opera-
tional conditions were considered. It should be stressed that
these conditions were not included in the identification data
set and therefore provide for a verification of the generality
of the results. These additional conditions are listed in Ta-
ble 3 and correspond to values equal to 100 %, 97.5 %, 95 %,
and 92.5 % of rated power.

Figure 6 shows the results in terms of power (on the left)
and thrust (on the right) coefficients as functions of der-
ating percentage. In all plots, the experimental results are
shown using a solid blue line with ∗ symbols; whiskers in-
dicate the uncertainties according to Eq. (19) and Table 1.
Simulation results are computed with nominal measured in-
puts u∗ for both the nominal polars p∗ according to Bottasso
et al. (2014a) and the newly identified polars pI, and they are
marked with × and ◦ symbols, respectively. The results indi-
cate a marked improvement when using the newly identified
polars, especially regarding the rotor power coefficient.

5 Conclusions

This paper has presented a new maximum likelihood iden-
tification method that, departing from the classical formu-
lation, accounts for errors both in the outputs and the inputs.
The new method is a generalization of the classical approach,
where the system parameters are estimated together with the
system inputs, which this way can differ from their actual
measured quantities because of noise. The new expanded for-
mulation is solved using a partitioned approach, resulting in
an iteration between the standard parameter estimation and
a series of decoupled and inexpensive steps to compute the
inputs. To cope with the ill-posedness of the problem caused
by low observability of the parameters, the formulation uses
an SVD-based transformation into a new set of uncorrelated
unknowns, which, after truncation to discard unobservable
modes, are mapped back onto the original physical space.
The formulation is further improved by an initialization step
that accounts for a priori information on the errors affecting
the measurements, discarding all data points whose residuals
can be simply explained by uncertainties.

The new proposed formulation was applied to the esti-
mation of the aerodynamic characteristics of the blades of
small-scale wind turbine models. This is a particularly diffi-
cult problem because an extended set of parameters is neces-
sary in order to give a meaningful description of the polars,
taking into account their variability with blade span, angle
of attack, and Reynolds number; invariably, this results in an
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Figure 6. Results for the power-derating cases. (a) Power coefficient, (b) thrust coefficient. Solid blue line with ∗ symbols: experimental
results, including uncertainties according to Table 1; solid orange line with ◦ symbols: simulation results with newly identified polars; solid
red lines with × symbols: simulation results with nominal polars according to Bottasso et al. (2014a).

ill-defined problem because of the many unknown parame-
ters and their possible collinearity. In addition, measurement
errors affect both the outputs and the inputs, the latter be-
ing particularly relevant and representing the operating con-
ditions of the turbines. On the other hand, good-quality esti-
mates of the polars are of crucial importance for the accuracy
of simulation models based on lifting lines.

Results indicate that a higher quality of the estimates is
achieved by the proposed method compared to an error-in-
the-outputs-only approach. Indeed, the estimated polars were
able to correctly model derated operating conditions, which
were not included in the parameter estimation process. All
prior attempts at modeling these conditions failed to a various
extent when using the standard maximum likelihood formu-
lation. In addition, results indicate that the present approach
was able to cope with the ill-posedness of the problem caused
by the low observability of the many unknown parameters,
which is an important aspect for the practical applicability
of the method to complex problems as the one considered in
this paper.
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Appendix A: Nomenclature

A Rotor-swept area
CD Drag coefficient
CL Lift coefficient
CP Power coefficient
CT Thrust coefficient
J Cost function
p Pressure
p Model parameters
P Power
Q Torque
r Residual
R Covariance matrix
Re Reynolds number
T Thrust
u Model inputs
V Wind speed
wi Weight of the ith measurement
y Model outputs
α Angle of attack
β Blade collective pitch angle
η Nondimensional blade span location
λ Tip speed ratio
� Rotor speed
ρ Density
% Correlation coefficient
σ Standard deviation
ˆ(·) Expanded quantity
˜(·) Filtered quantity

(·)I Identified quantity
(·)∗ Measured quantity
ALM Actuator line method
BEM Blade element momentum
CFD Computational fluid dynamics
FVW Free vortex wake
LES Large-eddy simulation
ML Maximum likelihood
SVD Singular value decomposition
TSR Tip speed ratio
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Abstract. This paper applies a large-eddy actuator line approach to the simulation of wind turbine wakes.
In addition to normal operating conditions, a specific focus of the paper is on wake manipulation, which is
performed here by derating, yaw misalignment and cyclic pitching of the blades. With the purpose of clarifying
the ability of LES methods to represent conditions that are relevant for wind farm control, numerical simulations
are compared to experimental observations obtained in a boundary layer wind tunnel with scaled wind turbine
models. Results indicate a good overall matching of simulations with experiments. Low-turbulence test cases
appear to be more challenging than moderate- and high-turbulence ones due to the need for denser grids to limit
numerical diffusion and accurately resolve tip-shed vortices in the near-wake region.

1 Introduction

Wind plants are collections of wind turbines often operat-
ing in close proximity of one another. Several complex phe-
nomena take place within a wind farm. First, there is an in-
teraction between the atmospheric boundary layer and the
whole wind farm caused by the smaller-scale interaction be-
tween the atmospheric flow and each individual wind tur-
bine. Second, within the power plant itself, there is an in-
teraction among upstream and downstream wind turbines
through their wakes. In turn, the wakes themselves interact
with the atmospheric flow and other wakes, playing a central
role in determining the overall behavior of the plant. Wakes
produced by upstream wind turbines may have a profound
influence on the performance of downstream operating ma-
chines. In fact, waked turbines experience lower power out-
put and increased loading compared to clean isolated condi-
tions. A thorough understanding of these complex phenom-
ena is clearly indispensable for optimizing the layout and op-
eration of wind plants. However, even an optimal layout will
still incur negative effects due to wake interactions, at least in
some wind and environmental conditions. To mitigate these
effects, a number of control strategies are currently being in-
vestigated to optimize the operation of wind power plants, in-

cluding power derating, wake deflection and enhanced wake
recovery (Fleming et al., 2014; Knudsen et al., 2015).

The current research in this field is very active, cover-
ing a broad spectrum that ranges from high-fidelity numer-
ical simulations to reduced order models, from scaled ex-
periments in the wind tunnel to direct measurements in the
field, all the way to control methods and various support-
ing technologies. Among the many studies reported in the
literature, meteorological and performance data collected at
the Horns Rev and Middelgrunden offshore wind farms have
been systematically investigated (Barthelmie et al., 2007;
Hansen et al., 2012). Moreover, scaled wind farm experi-
ments were conducted in wind tunnels to study wake deficit
and its impact on downstream wind turbines (Medici and Al-
fredsson, 2006; Chamorro and Porté-Agel, 2009; Bartl et al.,
2012). These test campaigns have been actively used to val-
idate several engineering and computational fluid dynam-
ics (CFD) wake models in terms of power capture, velocity
profiles and higher-order flow quantities (Barthelmie et al.,
2006; Kennedy et al., 2011; Porté-Agel et al., 2011; Gau-
mond et al., 2014). Wake models can be classified on the
basis of their complexity and fidelity to reality. The steady-
state kinematic wake model of Jensen (1983) was among
the first proposed analytical formulations, later extended by
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Jiménez et al. (2010) to cover the case of yaw misalignment.
Larsen et al. (2007) derived a more sophisticated dynamic
wake meandering model. Higher-fidelity models have been
developed by using CFD. For example, Carcangiu (2008)
used the Reynolds-averaged Navier–Stokes (RANS) equa-
tions to simulate near-wake behavior, while Stovall et al.
(2010) simulated wind turbine clusters and compared RANS
to the higher-fidelity large-eddy simulation (LES) approach.
Results indicated that RANS is not sufficiently accurate, as it
typically overestimates diffusion.

With the significant increase in computational perfor-
mance in recent years (thanks to advancements in hard-
ware, software and algorithms), LES has gained an increas-
ing adoption by the wind farm research community (Calaf
et al., 2010; Porté-Agel et al., 2011; Churchfield et al.,
2012). In fact, LES has the ability to better resolve the rel-
evant flow features, leading to an improved insight on flow
characteristics within a wind farm. In addition, several re-
searchers (Jiménez et al., 2010; Fleming et al., 2014; Ge-
braad et al., 2016) have been using LES to investigate wake
control strategies.

Although LES is an approach based on first principles, it
is still not completely tuning-free. For example, when used
in conjunction with an actuator line method (ALM) to repre-
sent wind turbine blades, there is a need to properly tune the
procedure used for mapping lifting line aerodynamic forces
onto the volumetric grid (Sørensen and Shen, 2002; Mar-
tinez et al., 2012). In addition to several algorithmic details,
other important characteristics of the simulation are repre-
sented by the grid (Jha et al., 2014; Martínez-Tossas et al.,
2017) and features of the model, including the presence of
nacelle and tower. The effects of the tower have been inves-
tigated with different versions of the ALM by Churchfield
et al. (2015) and Stevens et al. (2018), with an immersed
boundary method by Santoni et al. (2017) and with an ac-
tuator surface approach by Yang and Sotiropoulos (2018).

In general, most of the published research focuses on the
use of CFD to study wake behavior and control strategies,
but pay relatively less attention to the problem of ensuring
the fidelity of such simulations to reality. In fact, a compre-
hensive validation of LES methods for wind turbine wakes
is still missing. This is clearly not due to a lack of attention
to this problem, but rather to a lack of comprehensive high-
quality data sets. Unfortunately, experiments in the field are
not without hurdles: in fact, wind conditions cannot be con-
trolled, and measurements at full scale are not always possi-
ble or complete. In this sense, testing at scale in a wind tunnel
is gaining attention as a means to perform experiments with
much more precise knowledge and control of the testing con-
ditions.

As a contribution towards a better understanding of the
capabilities and limits of LES for modeling wind turbine
wakes, this paper applies a recently developed computational
framework to the simulation of scaled wind turbines. These
models were operated in a large boundary layer wind tun-

nel in a variety of conditions. A complete LES-based digital
model of the experiments is developed in this work, including
a model of the wind tunnel and of the passive generation of
sheared and turbulent flows. The paper specifically focuses
on operating conditions that are relevant to wind farm con-
trol. In fact, the existing literature either uses LES to study
wind farm control conditions without comparing simulations
against experiments (Jiménez et al., 2010; Fleming et al.,
2014, 2015; Gebraad et al., 2016) or considers both numer-
ical and experimental results but not in the context of wind
farm control (Jiménez et al., 2010; Lu and Porté-Agel, 2011;
Porté-Agel et al., 2011; Wu and Porté-Agel, 2011; Church-
field et al., 2012; Mo et al., 2013; Martínez-Tossas et al.,
2015; Sørensen et al., 2015; Nilsson et al., 2015; Shamsod-
din and Porté-Agel, 2017; Abkar and Dabiri, 2017; Sedagha-
tizadeh et al., 2018). The present paper tries to fill this gap by
conducting a first preliminary study on the ability of LES to
model the behavior of wakes in conditions that are relevant to
wind farm control applications. This study is preliminary in
the sense that only a limited set of conditions for one isolated
wind turbine are analyzed. Wake interactions are analyzed in
Wang et al. (2017b, 2018) and in forthcoming publications.
The authors believe in the need to clarify to what degree wake
modeling methods are indeed able to represent farm-control-
relevant conditions, this work being a first limited-scope step
in this direction.

The present LES framework is characterized by some dis-
tinguishing features. First, the tuning-free immersed bound-
ary (IB) method of Jasak and Rigler (2014) is used to model
the effects caused by the nacelle and tower. Second, the in-
tegral velocity sampling method (Churchfield et al., 2017) is
employed, which reduces the sensitivity of the results – and
especially of power – to the mapping of aerodynamic forces
onto the fluid flow. Third, an ad hoc developed approach is
used for tuning the airfoil polars. In fact, given the small
scale of the experimental models, their blades operate at low
Reynolds numbers and are therefore designed using special
low-Reynolds airfoils. Clearly, the accuracy of the airfoil
polars plays an important role in the accuracy of the over-
all LES simulation. Rotational augmentation, manufacturing
imperfections and other effects may influence the behavior
of the blade airfoils and alter it with respect to their nomi-
nal characteristics, which are typically obtained in 2-D ded-
icated wind tunnel tests. To address this issue, airfoil polars
are tuned here by means of a specific identification method
(Bottasso et al., 2014), which makes use of dedicated experi-
mental measurements conducted with the scaled turbine (i.e.,
not with the single airfoils, but with the rotor on which the
airfoils are used). Indeed, the airfoil Reynolds varies depend-
ing on the operating condition of the turbine. By accounting
for the effects of Reynolds on the airfoil polars, which are
particularly relevant at the low Reynolds numbers at which
the scaled models operate, better accuracy in the results can
be achieved.
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The problem of computational cost is addressed in a com-
panion paper (Wang et al., 2018), in which a scale-adaptive
simulation (SAS) approach is used to model the unresolved
scales, resulting in LES-like behavior at a cost similar to
RANS with a roughly similar accuracy.

The paper is organized according to the following plan.
The numerical method is described in Sect. 2. The com-
putational setup is reported in Sect. 3, in which a precur-
sor simulation mimicking the process that takes place in
the wind tunnel is used for the passive generation of the
turbulent flow, whose resulting outflow is used as an inlet
for subsequent wind turbine wake simulations (called suc-
cessor simulations). The experimental setup is presented in
Sect. 4, including a short description of the wind tunnel,
the scaled wind turbine model and the measurement equip-
ment. Results are discussed in Sect. 5. First, an isolated flow-
aligned wind turbine is considered, and the LES framework
is tuned to match experimental measurements obtained in
this baseline case. Next, the three wake manipulation strate-
gies of derating, yaw misalignment and cyclic pitch control
are considered. Here again, low-turbulence experimental re-
sults are compared with simulations, without any additional
tuning with respect to the parameters chosen in the baseline
case. Finally, a moderate-turbulent condition is considered,
again without any additional tuning. Conclusions are drawn
in Sect. 6.

2 Numerical simulation model

The present LES framework is developed within SOWFA
(Churchfield and Lee, 2012; Fleming et al., 2013), a simu-
lation tool based on a standard incompressible solver in the
OpenFOAM repository.

The rotor is modeled in terms of actuator lines by direct
coupling with the aeroservoelastic simulator FAST (Jonkman
and Buhl Jr., 2005). The integral approach of Churchfield
et al. (2017) is used to compute the flow conditions at each
station along an actuator line and to project the calculated
aerodynamic forces back onto the fluid domain using a sin-
gle Gaussian width value. Aerodynamic forces at each sta-
tion are computed by interpolating precomputed lift and drag
aerodynamic coefficients, which are stored in lookup tables
parameterized in terms of angle of attack and Reynolds num-
ber. Depending on the problem, the wind turbine model is
either controlled in a closed loop by a pitch and torque con-
troller based on the implementation described in Bottasso
et al. (2014) or simply by using experimentally measured val-
ues of pitch and rotor speed.

Both the constant Smagorinsky (CS) (Deardorff, 1970)
and the Lagrangian dynamic Smagorinsky (LDS) (Meneveau
et al., 1996) models are implemented. However, results of ex-
tensive numerical experiments indicate that, for the present
application, the performance of LDS is very similar to CS,
as shown later in this work and already observed by Sarlak

et al. (2015) and Martínez-Tossas et al. (2018) in turbulent
conditions.

The IB formulation of Lai and Peskin (2000), Mittal and
Iaccarino (2005), and Jasak and Rigler (2014) is used to
model the wind turbine nacelle and tower, whose effects on
the flow proved to be quite significant, at least in the near-
wake region, and should therefore not be neglected (Wang
et al., 2017b). The IB method is employed to avoid the
use of surface-conforming meshes to represent the shape of
such bodies (Mittal and Iaccarino, 2005). The present IB ap-
proach, based on a discrete forcing method, uses a direct im-
position of the boundary conditions (Uhlmann, 2005), thus
preserving the sharpness of the body shape. Boundary con-
ditions and wall models can be directly imposed on the IB
surfaces with this approach, yielding good solution quality
for high-Reynolds viscous flows (Bandringa, 2010). Details
on the formulation are reported in Wang et al. (2017b).

ALM-modeled blades and an IB-modeled nacelle and
tower introduce local numerical dispersion and diffusion,
which affect simulation stability and accuracy (Holzmann,
2016; Moukalled et al., 2016). The gamma-bounded high-
resolution interpolation method is used here to address this
issue (Jasak et al., 1999). The gamma scheme is parameter-
ized in terms of βm, a tunable constant that allows one to con-
trol the level of upwinding. In general, a larger value of βm
implies a lower dispersion and a higher diffusion (i.e., more
upwinding) and vice versa. The value βm = 0.45 is employed
in the near-wake region to stabilize the simulation, since ac-
tuator line body forces and an immersed boundary possibly
generate numerical dispersion, and βm = 0.05 is used in the
far wake to minimize numerical diffusion while retaining a
minimum amount of necessary upwinding.

Table 1 shows the linear solvers used for the precursor and
the wind turbine–wake simulations. The precursor problem
has slightly less regular grids because of the need to mesh the
large turbulence generators (termed spires) placed at the tun-
nel inlet, which requires a slightly different setup of the lin-
ear solvers. The PISO time-marching algorithm recursively
solves (or corrects) the pressure flux equation to account
for non-orthogonal grid elements (Greenshields, 2015). The
number of iterations is fixed a priori and set equal to 1 and
0 for the precursor and successor simulations, respectively.
Indeed, given the good quality of the grid in the latter case,
non-orthogonal corrections are not indispensable, and their
elimination lowers the computational cost by about 10 %.

Multi-airfoil table identification

Clearly, the accuracy of the sectional aerodynamic coeffi-
cients is a crucial ingredient of the ALM formulation. A
method to tune the aerodynamic polars of lifting lines was
described in Bottasso et al. (2014). In a nutshell, the method
works by first measuring thrust and torque on a rotor at a
number of different operating conditions that cover the an-
gles of attack and Reynolds numbers of interest. Next, these
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Table 1. Linear algebraic solvers used for the precursor and
the wind turbine–wake simulations (CG: conjugate gradient;
GAMG: geometric–algebraic multigrid; DIC: diagonal incomplete
Cholesky; GS: Gauss–Seidel; DILU: diagonal incomplete LU fac-
torization; NOC: non-orthogonal corrector).

Type Precursor Wind turbine
simulation simulation

p solver CG CG
p preconditioner GAMG GAMG
p smoother DIC-GS GS
No. of p corrector steps 3 3
ũ solver bi-CG bi-CG
ũ preconditioner DILU DILU
No. of NOC steps 1 0

values are used to update some given baseline polars by using
a maximum-likelihood criterion.

Nominal values of both the lift and drag coefficients Ck
(where k = L or k = D for lift and drag, respectively) are cor-
rected as

Ck(η,α,Re)= C0
k (η,α,Re)+1k(η,α,Re), (1)

where η ∈ [0,1] is a span-wise location, α the angle of attack,
Re the Reynolds number, C0

k the nominal coefficient value
and1k the unknown correction. This latter term is expressed
by a linear interpolation as

1k(η,α,Re)= nT (η,α,Re)pk, (2)

where pk is the vector of unknown nodal values and
n(η,α,Re) is the vector of assumed multi-linear shape func-
tions. To improve the well-posedness of the problem, the po-
lar correction terms are transformed using a singular-value
decomposition, which ensures the actual observability of the
tuned parameters. Through this method, the corrections to the
baseline lift and drag characteristics of the airfoils are recast
in terms of a new set of statistically independent parameters.
By analyzing their associated singular values, one can retain
in the identification only those parameters that are observable
with a desired level of confidence (Bottasso et al., 2014).

The unknown correction terms are computed by maximiz-
ing the likelihood function of a sample of N available exper-
imental observations. This amounts to first minimizing the
following cost function:

J =
1
2

N∑

i

rTi R−1r i, (3)

where r is the discrepancy between power and thrust coef-
ficients computed by a blade element momentum model as
implemented in the WT-Perf code (Platt and Buhl, 2012)
and the corresponding experimentally measured quantities.
The optimization is performed for a fixed covariance R

by using the gradient-based sequential quadratic program-
ming approach. Next, the covariance is updated as R=
1/N

∑N
i r ir

T
i , and the optimization is repeated. Iterations be-

tween the minimization and covariance update are continued
until convergence (Bottasso et al., 2014).

More than 100 operating points were measured experi-
mentally. The operating conditions were determined in order
to cover a desired range of angles of attack and Reynolds
numbers, and they were obtained by operating the scaled
wind turbine model at different tip speed ratios (TSRs) and
blade pitch angles. Experiments were then grouped in terms
of average blade Reynolds number, and for each group a sep-
arate identification was performed, yielding a calibrated ver-
sion of the polars at that specific Reynolds.

3 Computational setup

3.1 Precursor simulation

The LES-ALM numerical model was used to create a com-
plete digital copy of the experiments, which were conducted
in the 36 m× 13.84 m× 3.84 m boundary layer test section
of the wind tunnel at Politecnico di Milano (Zasso et al.,
2005; Bottasso et al., 2014).

A first simulation is used to generate the turbulent in-
flow (precursor) used as an inlet for successive wind
turbine–wake (successor) simulations. The layout of the par-
tially overlapped precursor and successor domains is rep-
resented in Fig. 1. The precursor domain has a size of
30 m× 6.92 m× 3.84 m. The reduced width of the domain
with respect to the actual tunnel size is chosen to limit the
computational cost. The turbulent inflow for the successor
simulation is sampled 19.2 m downstream of the precursor
inlet, as shown in the figure. The simulation mimics the pas-
sive turbulence-generating system adopted in this wind tun-
nel (Zasso et al., 2005). A structured body-conforming mesh
discretizes the volume around the turbulence-generating
spires at the wind tunnel inlet using a purely hexahedral O
grid. The average stretching ratio for the volume mesh is
1.25, while the maximum skewness is equal to 2.7, which
does not compromise the simulation stability. Mesh quality
is limited by the sharp edges and abrupt surface changes in
the spire geometry.

Dirichlet-type nonslip conditions are used for the resolved
velocity vector ũ on the tunnel side walls and the spire sur-
faces. Neumann-type conditions are imposed for pressure on
the same boundary surfaces, while Dirichlet-type wall con-
ditions are employed for temperature, which is assumed to
be the same on all surfaces. Regarding the sub-grid-scale
model, Dirichlet-type surface conditions are used for the
eddy viscosity µt on the ceiling, with a fixed value equal
to 1×10−5 m2 s−1 on account of the negligible turbulence; a
small positive nonzero value is used because µt is evaluated
at cell centroids and not on the wall surface. A wall model
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Figure 1. Layout of the partially overlapped precursor and successor computational domains.

is imposed on the other surfaces, including spires, left–right
walls and floor, to adjust wall shear stresses.

The inflow speed at the inlet equals 4.7 m s−1, as measured
in the wind tunnel, and the maximum Courant number is lim-
ited to 1. The constant Smagorinsky sub-grid-scale model is
used with its constant parameter Cs set to 0.13. In order to
reach steady-state conditions, the simulation requires about
15 s of physical time. After achieving a steady mean speed,
the precursor flow is collected at a sampling plane about 3 D
in front of the turbines and stored to be used as input for sub-
sequent successor simulations.

Figure 2 shows the normalized time-averaged streamwise
velocity 〈ux〉 and turbulence intensity σ/ 〈ux〉 profiles mea-
sured 20.85 m downstream of the tunnel inlet, which corre-
sponds to 1.5 D upstream of the wind turbine rotor. A ref-
erence frame is located at the hub, as shown in Fig. 1 on
the right. The two horizontal and vertical velocity profiles
are in good agreement with the experimental data. The aver-
age velocity error 〈1ux〉 is around 1 %–2 % for both profiles.
The horizontal velocity appears to be not exactly symmetric
with respect to y = 0. This is due to the 16 fans of the tunnel
(in two rows of eight side-by-side fans), stiffening transects
upstream of the chamber inlet and the turbulence-generating
spires. This slight horizontal shear was obtained in the nu-
merical simulation by adjusting the prescribed inflow at the
precursor domain inlet. Turbulence intensity also shows a
reasonable agreement, with an average error of 7 % and 5 %
for the horizontal and vertical profiles, respectively. The ex-
perimental results for σ/ 〈ux〉 along the horizontal profile
show an unexpected discontinuity not observed in the sim-
ulations, which might be due to the effect of the traversing
system used for holding and positioning the hot-wire probes.

Figure 3 shows the experimental and simulated turbulent
kinetic energy spectrumE(f ) and autocorrelation r(τ ) at hub
height 1.5 D upstream of the rotor. The LES-computed spec-

Figure 2. Normalized time-averaged streamwise velocity 〈ux〉 (a,
b) and turbulence intensity σ/ 〈ux〉 (c, d) 1.5 D downstream of
the rotor. Left column: hub-height horizontal profile; right column:
hub-centered vertical profile. Red + symbols: numerical results;
black ◦ symbols: experimental measurements.

trum appears to be in good agreement with the experimental
one. The autocorrelation is computed as

rj (τ )=
〈(
u
j
x(t)−

〈
u
j
x

〉)(
u
j
x(t + τ )−

〈
u
j
x

〉)〉
, (4)
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Figure 3. Turbulent kinetic energy spectrum E(f ) at hub height
1.5 D upstream of the rotor for the experiment (a, black line) and
simulation (b, red line). Autocorrelation r(τ ) at hub height 1.5 D up-
stream of the rotor (c) and 0.25 D to its left, looking downstream (d).

where ujx is the streamwise component of the velocity at spa-
tial point j . The integral timescale (O’Neill et al., 2004), de-
fined as

T jτ =

∞∫

0

rj (τ )〈
u
j,2
x

〉dτ, (5)

is found to be 0.139 and 0.143 s for the experiment and sim-
ulation, respectively. These results indicate a good overall
agreement between the simulation and experiment even at
small scales, with a consequent correct estimation of flow
mixture, wake recovery and other relevant features of the
flow.

3.2 Successor simulation

The computational setup for the wind turbine–wake simula-
tion follows Wang et al. (2017a). The domain layout is shown
in Fig. 1. The domain width is reduced to 3.9 D, which is
3.4 times less than the actual test section width to minimize
the computational cost without affecting the results due to
wall blockage. Note that the precursor width is about twice
the width of the successor domain, simply because the same
precursor is also used for nonaligned multi-turbine configu-
rations (not discussed here) that, having a larger frontal area,
require a larger inflow. The mesh uses three zones of increas-
ing density. Zone 1 is the base mesh, with cubic cells 0.08 m

in size, while zones 2 and 3 have cubic cells of 0.04 m and
0.01 m, respectively. Less than 1 % of the total mesh is com-
posed of polyhedral cells, while all others are cubic.

Two different flow conditions are considered in the present
study. In the first case, the flow velocity is obtained from a
lidar-scanned low-turbulence (< 2 %) inflow condition (van
Dooren et al., 2017). Measurements also accounts for a slight
nonuniformity of the flow within the wind tunnel (Wang
et al., 2017a). In the second case, as previously explained, the
output of the passively generated turbulent precursor simula-
tion was instead used as an inlet for the successor simulation.

The treatment of the domain walls is as follows. Dirichlet-
type nonslip wall conditions for ũ are used for the tunnel
ceiling and floor. Neumann-type conditions for pressure and
temperature and mixed-type conditions for ũ are used for the
side walls, enforcing a null component of the velocity normal
to the side surfaces to ensure mass conservation. The eddy
viscosity µt is set with Neumann conditions on the left–right
tunnel walls. For the ceiling and floor, µt is set with Dirich-
let conditions to the fixed value 1× 10−5 m2 s−1 in the low-
turbulence case, while a wall model is used for the moderate-
turbulence condition.

Dirichlet-type nonslip wall conditions are used for the IB-
modeled nacelle and tower in the low-turbulence case, for
which a laminar boundary layer (or, at least, a not fully devel-
oped turbulent boundary layer) is expected to extend over the
entire IB surface due to the steadiness of the incoming flow.
Despite the maximum y+ being equal to 50 on the IB sur-
faces, a wall function cannot be used here, as it could prop-
erly model only a fully developed turbulent boundary layer.
Due to the coarse grid, an overestimation of the boundary
layer thickness on the IB-modeled bodies is expected, which
in turn will lead to an overestimation of the blockage induced
by the turbine nacelle and tower.

Slip wall IB surface conditions are used for the moderate-
turbulence case in order to mitigate numerical stability is-
sues. Although this neglects the boundary-layer-induced
blockage and turbulence, results indicate a negligible impact
on the downstream wake profile. This is probably explained
by the background turbulence that, by enhancing mixing, dif-
fuses the signature of the tower and nacelle on the down-
stream flow.

4 Experimental setup

Tests were performed with the G1 scaled wind turbine model,
whose rotor diameter and optimal TSR are equal to 1.1 m and
8.25, respectively. The model, already used within other re-
search projects (Campagnolo et al., 2016a, b, c), is designed
to have realistic wake characteristics, with shape, deficit and
recovery that are in good accordance with those of full-scale
machines. The model features active individual pitch, torque
and yaw control that, together with a comprehensive onboard
sensorization (including measures of shaft and tower loads),
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enables the testing of turbine and farm-level control strate-
gies.

The flow within the wind tunnel was measured with hot-
wire probes or stereo PIV. The latter technique was used to
measure the flow characteristics in the near-wake (0.56 D)
and far-wake (6 D) regions. The measurement planes cover
a significant fraction of the wind turbine wake. In order to
achieve a higher spatial resolution of the velocity field, the
measurement area was divided into several windows with
small overlaps between them. A rapid scanning of the en-
tire measurement area was achieved by the use of an auto-
mated traversing system moving both the laser and the cam-
eras. The measuring windows were divided into 32×32 pixel
interpolation areas, which resulted in an approximate spatial
resolution of 15 mm. For each measuring window, 200 pairs
of images were acquired (per camera) without phase lock, re-
sulting in time-averaged flow field measurements. Additional
details concerning the PIV instrumentation are given in Cam-
panardi et al. (2017).

5 Result and analysis

5.1 Baseline simulation and parameter tuning

The baseline simulation represents an isolated flow-aligned
wind turbine. The machine is operated in a low-turbulence
flow with a rotor-averaged inflow velocity equal to 5.9 m s−1,
which is slightly lower than the G1 rated speed (6.0 m s−1).

This first case is used to determine the optimal values of
the Smagorinsky constant Cs and the gamma scheme param-
eter βm. The same tuned parameters are used for all other
simulations in the rest of this work. This first test case is also
used to verify the effects of the Gaussian width ε, which is
used to project aerodynamic forces from the lifting lines onto
the computational grid. In fact, it was observed that this pro-
jection may have a significant effect on the results, including
rotor power and thrust. In principle, ε should be set to 2–
3 times the cell size, i.e., 2h≤ ε ≤ 3h (Martinez et al., 2012).
It was found that the dependency of the rotor aerodynamic
power on ε is significantly reduced if the integral velocity
sampling approach is used (Churchfield et al., 2017). For in-
stance, if ε increases by 30 %, power will increase by 13 % if
the traditional point-wise velocity sampling approach is used,
but only by 5 % when using the integral velocity sampling
method. In fact, in the point-wise approach a variation of ε
reshapes the Gaussian curve, in turn changing the peak value
and eventually affecting the calculated aerodynamic power,
while the integral approach uses a weighted average that mit-
igates the reshaping effect (Churchfield et al., 2017).

Using a simple trial-and-error approach, the three param-
eters ε, Cs and βm (in the near wake) were set to 0.025,
0.13 and 0.45, respectively. Given the low turbulence of the
present case, the experimentally measured rotor speed was
very nearly constant, and its average value was used in the
simulation.

Figure 4. Streamwise velocity contours for the CS LES model and
PIV experimental measurements, on a plane 0.56 D downstream of
the rotor. Black arrows indicate the crosswind velocity component
at a number of sampling points.

The rotor integral quantities of power and thrust are com-
pared first by time averaging over 10 s. The wind turbine
power was found to be equal to 45.79 W in the experiment
and equal to 45.45 W for LES, showing a good agreement
between these two values. A slightly larger discrepancy was
obtained for the thrust, which was found to be 15.18 and
16.05 N for the experiment and simulation, respectively. This
may be explained by the fact that thrust is directly measured
at the shaft in the numerical simulation, while it is recon-
structed from the fore–aft bending moment at the tower base
in the experiment. This requires estimating the contribution
of the nacelle and tower, which is done by a dedicated exper-
iment performed on the wind turbine without the blades. As
a result, this indirect calculation of the experimental thrust is
affected by approximations, and it cannot be regarded to be
as accurate as the measurement of rotor torque (and hence of
power).

Next, the characteristics of the wake are compared be-
tween PIV measurements and the CS LES simulation. Fig-
ure 4 shows streamwise velocity contours on a plane 0.56 D
downstream of the rotor. Measurements are missing from two
areas left and right of the rotor disk; due to the close prox-
imity of the measuring plane with the wind turbine, part of
the nacelle (which is white) was in the background, leading
to a wrong correlation between the PIV images. Apart from
the two missing spots, the LES contours are similar to the
PIV ones both in terms of wake width and deficit. The wake
deficit for LES is on average 1.3 % higher than the experi-
ment.
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The figure also shows that the simulation overestimates
the local wake deficit behind the nacelle and tower as a result
of the enhanced blockage effect mentioned in Sect. 3.2. In-
deed, the current mesh resolution (high y+) implies a thicker
boundary layer, which in turn produces a higher blockage
with a consequent larger flow separation, tower shedding and
induced turbulence. This problem could be mitigated by a
suitable refinement of the mesh near the IB, which would
come at the price of a significant increase in the computa-
tional cost.

Next, hot-wire probe measurements are used to compare
wake profiles at 3, 4, 7 and 8 D downstream positions. Fig-
ure 5 shows horizontal (top row) and vertical (central row)
profiles of the normalized time-averaged velocity, as well as
horizontal profiles of turbulence intensity (bottom row). The
plots report results for the CS model, the LDS model and
experimental measurements. The CS case includes two sets
of results, one obtained including the effects of the nacelle
and tower in the model and one obtained neglecting these
two components. Comparing these two curves with the ex-
perimental results clearly indicates that the near-wake profile
is more accurately represented when the nacelle and tower
are included in the model, as already noted by other authors
(Santoni et al., 2017). This may be particularly true for the
present scaled wind turbine, for which these two components
are relatively bigger than in full-scale machines. Indeed, the
sum of the frontal area of the nacelle and the portion of the
tower located within the rotor swept area A is 0.037A, while
it is 0.023A for the NREL 5 MW wind turbine (Jonkman
et al., 2009). Although this parameter is larger for the G1, it
is expected that the effects of the nacelle and tower on wake
evolution might not be negligible even for typical multi-MW
wind turbines (Wang et al., 2017b). All other simulations re-
ported in this work were performed including the nacelle and
tower in the model.

Both CS and LDS show a good agreement with the
experimental curves. Indeed, the temporally and spa-
tially averaged streamwise velocity difference 〈1ux〉 =(〈
ux,LDS

〉
−
〈
ux,CS

〉)
/
〈
ux,CS

〉
between the CS and LDS mod-

els is consistently less than 1 % at all downstream distances.
Results indicate that the LDS model does not provide sig-
nificantly more accurate results than CS, while at the same
time it requires a 20 % larger computational effort caused by
the solution of its two extra transport equations. Moreover,
turbulence intensity plots seem to indicate a slightly better
match of CS to the experiments than LDS. Based on these
results, all other simulations in the present paper were based
on the CS model.

The rotor-averaged streamwise velocity difference be-
tween the simulation (with nacelle and tower) and ex-
periment 〈1ux〉 =

(〈
ux,sim

〉
−
〈
ux,exp

〉)
/
〈
ux,exp

〉
is equal to

−2.7 %, −1.6 % and −1.3 % at 3, 4 and 8 D, respectively.
The root mean square (RMS) error can be used to quantify
the spatial fit between simulations and experiments, and it is
defined as

RMS(·)=

√√√√ 1
N

N∑

j=1

(〈
(·)jsim

〉
−

〈
(·)jexp

〉)2
, (6)

where
〈
(·)j

〉
is a generic time-averaged quantity at a given

spatial point j . At the various downstream distances,
RMS(ux) equals 0.34, 0.33 and 0.15 m s−1, respectively.
As expected, the matching of simulations with experimen-
tal measurements improves when moving downstream. In-
deed, if rotor thrust is well predicted, flow mixture is prop-
erly resolved and numerical diffusion is suitably controlled,
then the simulation results in a fully developed wake that
correlates well with the experiment. The far-wake profile
can be approximated by the single Gaussian distribution
used in some engineering wake models (Larsen et al., 2007;
Renkema, 2007).

LES underestimates the rotor-averaged turbulence inten-
sity σ/ 〈ux〉 by 23 %, 12 % and 12 % at 3, 4 and 8 D, re-
spectively, while the rotor-averaged root mean square error
RMS(σ/ 〈ux〉) is 0.04, 0.02 and 0.02 at these same positions.
The turbulence intensity profiles in Fig. 5 clearly show that
matching is not as good as in the case of the streamwise ve-
locity, especially in the near-wake region where tip vortices
are not resolved enough and tower shedding is overpredicted.
Here again, the problem could be mitigated with a finer grid,
which would lead to increased computational costs.

Comparing the turbulence intensity results with and with-
out the nacelle and tower shows that there is an increased
turbulence in the wake of the former case, which causes an
earlier vortex breakdown and produces a higher turbulence
intensity at the far wake. In turn, this generates a faster wake
recovery, as shown in the speed deficit plots. Here again, this
confirms the need for including the nacelle and tower in the
simulation.

5.2 Low-turbulence inflow simulation

In this section, the characteristics of the LES framework
are assessed with reference to three wake control strategies,
namely power derating (or axial induction control), wake
steering by yaw misalignment and wake-enhanced recov-
ery by cyclic pitch control (CyPC). The flow conditions and
setup of the simulations are the same as described earlier in
the baseline case.

5.2.1 Power derating

Power derating was accomplished in the experiment by pro-
viding the turbine power controller with modified values of
the rotor speed and torque. Specifically, for a power partial-
ization factor pf, the reference rotor speed is modified as
3
√
pf�, while the torque is modified as 3

√
p2

fQ. This cor-
responds to having set the rated wind speed to the value
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Figure 5. Profiles of normalized time-averaged streamwise velocity 〈ux〉/U0 along hub-height horizontal lines (a) and along vertical lines
through the hub (b). Turbulence intensity σ/ 〈ux〉 along hub-height horizontal lines (c). Red+ symbols: CS model with nacelle and tower;
black dashed line: CS model without nacelle and tower; blue × symbols: LDS model with nacelle and tower; black ◦ symbols: experimental
results.

3
√
pfU∞; since this is lower than the current wind speed U∞,

the machine is now effectively operating in the full power
region. Therefore, the collective blade pitch controller auto-
matically adjusts the pitch setting to track the new reference
rotor speed.

The resulting pitch and rotor speed changes modify the
angle of attack and Reynolds number at the blade sections.
Therefore, tests that include power derating are useful for
evaluating the quality of the identified multi-airfoil tables. In-
deed, to accurately estimate rotor power and thrust, the lifting
line airfoil polars need to match the aerodynamic character-
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Figure 6. Normalized time-averaged streamwise velocity 〈ux〉/U0
profiles at 100 % and 92.5 % power settings, measured at hub height
and 4 D downstream of the rotor. Red + symbols: LES; black
◦ symbols: experimental results.

istics of the corresponding blade sections in order to generate
and project the proper body forces onto the fluid domain.

Simulations are conducted by prescribing the rotor speed
and blade pitch measured in the experiment. Four power set-
tings are considered, namely 100 %, 97.5 %, 95 % and 92.5 %
of rated power. Figure 6 shows wake velocity profiles mea-
sured at hub height at a 4 D downstream position. For all
cases, rotor-averaged speed error 〈1ux〉 and RMS(ux) are
about 1 % and 0.25 m s−1, respectively. A quite satisfactory
agreement between the simulation and experimental results
can be noticed, although partialization seems to have only a
modest effect on wake profile. Turbulence intensity profiles
are not presented here, since the quality of the comparison is
very similar to the one of the baseline case.

However, the situation is less satisfactory for rotor power
and thrust, as shown in Table 2. Results indicate that power is
particularly off, while thrust is affected by somewhat smaller
errors. This might indicate a possible discrepancy in the be-
havior of the aerodynamic coefficients – especially of drag
– with respect to the angle of attack. To verify that polars
are indeed the culprit, several tests were conducted to check
the effect of the Gaussian width ε. Indeed, one can tune ε to
nearly exactly match the experimental results for each value
of the curtailment factor. There is, however, not a single ε
that is able to accommodate the investigated range of curtail-
ments. On the other hand, keeping ε fixed, one can observe
that the errors in power and thrust grow as the extent of power
curtailment increases (and therefore as the angle of attack at
the blade sections changes). These results seem to support
the hypothesis that the slopes of the lift and drag coefficients
with respect to the angle of attack are not calibrated well.
To improve this aspect of the model, the polar calibration is
being improved by a more sophisticated statistical weighting

Table 2. Power and thrust at 100 %, 97.5 %, 95 % and 92.5 % power
settings.

100 % 97.5 % 95 % 92.5 %

Exp. (W ) 45.79 44.36 43.20 42.11
Power Sim. (W ) 45.45 42.28 39.72 37.33

1P % −0.74 −4.69 −8.06 −11.35

Exp. (N ) 15.18 14.24 13.62 13.10
Thrust Sim. (N ) 16.05 14.57 13.56 12.70

1T % 5.73 2.32 −0.44 −3.05

of the various experiments and by considering a span-wise
variability of the Reynolds number.

5.2.2 Wake steering by yaw misalignment

Next, the LES model is verified in yaw misalignment con-
ditions, which are relevant to wake deflection control. Hub-
height wake profiles measured in low-turbulence conditions
are used for the comparison for yaw misalignment angles of
±5, ±10 and ±20◦.

Simulated and measured longitudinal speed profiles are
presented at a downstream distance of 4 D in Fig. 7. Simi-
lar results were obtained at other distances, but are not re-
ported for space limitations. The maximum rotor-averaged
difference 〈1ux〉 between the simulation and experiment
is 4.1 % and corresponds to the 20◦ case, while the maxi-
mum RMS(ux) is 0.35 m s−1 at −10◦. The average 〈1ux〉
and RMS(ux) over the six yaw cases are equal to 1.6 % and
0.29 m s−1, respectively. The results indicate a good agree-
ment between the simulation and measurement, both in terms
of wake deficit and pattern. Note, however, that the 1.6 % av-
erage speed error would correspond to a 4.8 % power error
for a second wind turbine operating in full-wake shading at
this downstream difference, a value that is small but not com-
pletely negligible.

5.2.3 Enhanced wake recovery by cyclic pitch control

A third wake control strategy in the same low-turbulence
conditions is considered, in which the rotor blades are
cyclicly pitched. The effect of cyclic pitching is changing the
angle of attack of the blade sections cyclically over one ro-
tor revolution. In turn, this results in an azimuthal change in
the out-of-plane forces generated by the section, which then
has the effect of correspondingly modifying the local induced
velocity. A simple analytical model of the effects of cyclic
pitching was developed in Wang et al. (2016). The analysis
showed that, as already noticed by other authors (Fleming
et al., 2014), CyPC has some effect on the speed of recovery
of the wake, but results only in a very modest deflection of
its path. In fact, wake deflection by yawing is driven by the
tilting of the rotor thrust, which results in a significant lateral
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Figure 7. Normalized time-averaged streamwise velocity profiles at hub height for different yaw misalignments 4 D downstream of the rotor.
Red + symbols: LES; black ◦ symbols: experimental results.

force being applied onto the flow. On the other hand, CyPC
does modify the induced velocity, but only generates negligi-
ble lateral forces. In addition, it was observed that CyPC also
results in large moments being generated in the rotor fixed
frame, which further questions the practical applicability of
this wake manipulation strategy. Nonetheless, CyPC is con-
sidered here to further verify the characteristics of the LES
framework in operating conditions that differ significantly
from the ones in the previous test cases.

Each blade is pitched according to θi = θ0+ θc cos(ψi +
γ ), where θ0 is the collective pitch constant, θc the 1 P pitch
amplitude, ψi the blade azimuth angle (clockwise looking
downstream and null when the blade is pointing vertically
up) and γ the phase angle (with the same origin and positive
sense as ψ). The CyPC parameters were set as θ0 = 0◦, θc =

5.3◦ and γ = 270◦.
Given the effects of CyPC on the induced velocity and on

the near-wake behavior, a more complete analysis can be per-
formed by using the PIV measurements than considering the
simple hub-height line scans obtained by hot-wire probes.
Figure 8 reports, at left, the streamwise velocity just behind
the rotor (x/D = 0.56), which is a distance for which few
results have been previously reported. The images show that
the use of CyPC has a strong effect on the wake structure,
leading to a marked unsymmetrical shape. Indeed, the phase
angle γ = 270◦ implies that blades have maximum pitch and
hence produce the minimal rotor-plane-normal force in the
left part of the rotor, as shown in the figure, which in turn
exhibits the lowest induction and highest resulting longitu-
dinal flow speed. A comparison between experimental and
numerical results shows that there is, in general, a good qual-
itative agreement and that the main distortion effects caused
by CyPC are reasonably captured. The rotor-averaged error
〈1ux〉 between the simulation and measurement is 2.69 %,
while RMS(ux) is 0.79 m s−1.

The discrepancy between the simulation and experiment is
2 times larger than in the baseline case. One possible reason

for this is that unsteady aerodynamic effects of the airfoils
are neglected. This could be improved by using unsteady
aerodynamic models in the lifting line, including, for ex-
ample, a Theodorsen correction and a dynamic stall model.
Although the Beddoes–Leishman approach (Moriarty and
Hansen, 2005) is implemented in FAST and therefore could
be readily used in the present LES framework, the model re-
quires the definition of several airfoil-dependent parameters,
which would need to be specifically calibrated for the low-
Reynolds airfoils used on the G1 scaled wind turbine.

The comparison of LES and the experiment in the far wake
(6 D) is slightly better, as can be observed in the right part
of Fig. 8. The wake recovery is reasonably good in terms of
flow speed, although the slight tilting towards the right shown
by the PIV measurements is not apparent in the LES results.
Lastly, it should be remarked that CyPC leads to a faster re-
covery of the wake than in the baseline case, as already noted
by Wang et al. (2016). In principle, this could be of interest
for wind farm control, although, as previously mentioned, the
large resulting loads exerted on the rotor probably limit the
practical applicability of this control concept.

5.3 Moderate-turbulence inflow simulation

Next, a turbulent case is considered in which a flow charac-
terized by a 6 % hub-height turbulence intensity is generated
by the precursor simulation described in Sect. 3.1. The wind
turbine model is aligned with the streamwise flow direction
and the hub-height wind speed is equal to 4.76 m s−1 (partial
load region). The simulated wind turbine operates in two dif-
ferent modes, namely with a fixed rotating speed of 720 RPM
and blade pitch angle of 1.4◦ (which are the values measured
on the scaled model in the experiment) or with a controller
in the loop (Bottasso et al., 2014).

The aerodynamic power output, averaged over a 60 s time
window, is equal to 31.0 W for the experiment and to 30.5
and 31.2 W for the prescribed speed and closed-loop torque
simulations, respectively. In this latter case, the average ro-
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Figure 8. Streamwise velocity contour plots for the PIV measurements (a, b) and LES model (c, d) measured 0.56 D (a, c) and 6 D (b, d)
downstream of the rotor. Black arrows indicate the crosswind velocity component at a number of sampling points.

tor speed was only 2.2 % higher than the one measured on the
wind turbine, which clearly indicates a good overall match of
the numerical model with the experiment. On the other hand,
the power standard deviation was 0.2, 0.6 and 0.3 W, respec-
tively, for the experiment, prescribed speed and closed-loop
simulations. Clearly, prescribing a constant speed to the rotor
in the numerical simulation induces significant torque oscil-
lations because the rotor cannot adjust to the turbulent flow
fluctuations. When loads are of interest, it is therefore es-
sential to also use a closed-loop controller in the simulation.
However, in this case the simulation might drift away from
the operating condition realized in the experiment if the nu-
merical model has a significant mismatch with respect to re-
ality. Apparently, this is not the case here, and the numerical
model seems to be well in line with the experimental one.

Figure 9 shows the normalized time-averaged velocity and
turbulence intensity profiles for the LES model and experi-
ment at distances of −1.5, 1.4, 1.7, 2, 3, 4, 6 and 9 D from
the rotor. The position at −1.5 D is outside of the induction
zone, and the flow can be regarded as the undisturbed free
stream. The LES curves show, in general, a good agreement
with the experimental ones. Only the case of the closed-loop
regulation is reported here, as results are nearly identical to
the prescribed speed case. The rotor-averaged simulation er-
ror 〈1ux〉 is less than 1 % on average across all distances.
From the near-wake (1.4 D) to the far-wake (9D) regions, the
root mean square error RMS(ux) is gradually reduced from
0.2 to 0.1 m s−1. The comparisons all indicate that the LES
results are in good agreement with the experimental ones.

Contrary to the baseline low-turbulence simulation, the
two turbulence intensity peaks induced by the blade tip
vortices are well predicted in this case. To explain this
phenomenon, we report in Fig. 10 for the low-turbulence

(left) and moderate-turbulence (right) cases the instantaneous
streamwise speed component ux/U0, the vorticity 〈∇ ×u〉

and the turbulence intensity σ/ 〈ux〉 on a horizontal plane
at hub height. As previously observed, the turbulent struc-
tures induced by the nacelle and tower are different for the
two cases on account of the different boundary conditions on
their surfaces.

Vorticity shed by the tips in the near wake is quite similar
for the low- and moderate-turbulence cases. Turbulence in-
tensity is, on the other hand, very different in the blade tip re-
gion for these two different ambient turbulence cases. In fact,
the higher background turbulence of the turbulent inflow case
triggers the instability of the tip vortical structures (Sørensen,
2011), which rapidly break down. The contour plots of the
turbulent simulation clearly show that, starting from 0.1 D
downstream, the tip vortices generate significant turbulence
intensity, while vorticity quickly diminishes from 2 D down-
stream, signalling that the coherent tip vortices have broken
down into smaller and less coherent structures. Quite dif-
ferently, the low-turbulence case shows a persistent modest
turbulence intensity and high vorticity up to about 4 D down-
stream of the rotor. In this case, capturing the right amount of
speed fluctuations – which are mostly caused here by the tip
vortices in contrast to the other case that is predominantly
dominated by turbulent fluctuations – probably requires a
denser grid than the one used here, and this explains the poor
match with the experiments in this case in the near-wake tip
region. Apparently, the same grid is, however, capable of rep-
resenting the simpler turbulent case well. An analysis of tip
vortex breakdown is reported in Troldborg et al. (2015) using
a blade-conforming approach, which therefore uses signifi-
cantly denser grids than in the present case.
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Figure 9. Normalized time-averaged streamwise velocity 〈ux〉/U0 (a) and turbulence intensity σ/ 〈ux〉 (b) profiles at hub height. Red
+ symbols: LES; black ◦ symbols: experimental results.

Figure 10. Instantaneous streamwise speed component ux/U0 (a, b), vorticity 〈∇ ×u〉 (c, d) and turbulence intensity σ/ 〈ux〉 (e, f). At left,
low-turbulence case; at right: moderate-turbulence case.

6 Conclusions

This paper has employed an LES approach for the simulation
of wind turbine wakes, obtaining a complete digital copy of
scaled experiments performed in a boundary layer wind tun-
nel. The main goal of the paper was to try to quantify the abil-

ity of LES to represent operating conditions relevant to wind
farm control. To this end, numerical results were compared to
wind tunnel measurements of one single wind turbine, while
multiple machines and wake interactions are studied in Wang
et al. (2017b, 2018) and in other forthcoming papers. While
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this work does not have the ambition to develop a compre-
hensive validation activity, it represents a step in the direc-
tion of a better understanding of the capabilities and limits of
the current high-fidelity simulation technology for wakes.

A low-turbulence normal-operation problem is considered
first, showing that simulations are in good agreement with
experiments both in terms of rotor quantities (thrust and
power) and wake behavior. Next, the three wake control
strategies of power derating, wake steering by yaw misalign-
ment and wake-enhanced recovery by cyclic pitch control are
studied. Results show a good agreement of simulations with
experiments for yaw misalignment, but are less satisfactory
for derating, probably on account of inaccuracies in the air-
foil drag. The wake turbulence intensity shows some discrep-
ancies, which were here attributed to a lack of refinement of
the grid that in turn affects the breakdown of the near-wake
vortical structures. Slightly less accurate results are obtained
for cyclic pitching, possibly due to un-modeled unsteady air-
foil aerodynamics.

The paper continues by considering a moderately turbulent
wind. The characteristics of the simulated turbulent flow are
in good agreement with measurements. The average stream-
wise velocity is within 1 % of the experiments, and the av-
erage turbulence intensity within 5 %–7 %, while the tur-
bulent kinetic energy spectrum and integral timescale also
exhibit a good matching. The wake characteristics are in
very good agreement with the experiments, since tip vortices
break down earlier than in the low-turbulence condition, re-
laxing the need for very dense grids in the near-wake region.
The use of a controller in the loop leads to a more realistic
response of the model turbine to the turbulent flow, which is
important if the load response of the machine is of interest.
Remarkably, the model in the loop also operates at essentially
the same rotor speed as the experiment, which demonstrates
the overall fidelity of the digital model to the experimental
one.

Results shown in this work indicate that the present LES-
ALM approach is a viable way of simulating scaled wind
tunnel experiments. Results are, however, not perfect, and
areas of improvement include a more sophisticated and ac-
curate calibration of the airfoil polars, the inclusion of airfoil
unsteady aerodynamic effects (which also call for the cali-
bration of these models with dedicated data sets), and a more
efficient refinement of the grid where necessary by the use of
unstructured meshing and adaption techniques.

These encouraging results motivate and justify the appli-
cation of the present simulation framework to the analysis
of clusters of wake-interacting wind turbines, for which we
have gathered an ample collection of data sets in multiple
operating conditions. Hopefully, this will lead to a better un-
derstanding of wake behavior, which is of crucial importance
for the design and operation of wind turbines and wind power
plants. The final validation of the present and similar simu-
lation approaches can undoubtedly benefit from the use of
scaled wind tunnel experiments, as attempted in this work,
as an intermediate step towards their application to the full-
scale case.

Data availability. Data can be provided upon request. Please con-
tact the corresponding author Carlo L. Bottasso
(carlo.bottasso@tum.de).
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Appendix A: Nomenclature

A Rotor swept area
D Rotor diameter
CD Drag coefficient
CL Lift coefficient
C0
k Nominal coefficient
Cs Smagorinsky constant
E(f ) Turbulent kinetic energy spectrum
J Cost function
N Number of available experimental observations
Q Rotor torque
R Covariance matrix
Tτ Integral timescale
U∞ Free-stream wind speed
h Grid size
pf Power partialization factor
r(τ ) Autocorrelation
ui Velocity component
y+ Dimensionless wall distance
α Angle of attack
βm Tunable constant for gamma scheme
γ Phase angle
ε Gaussian width
η Span-wise location
θ Blade pitch angle
ψ Blade azimuthal angle
ρ Density
σ/ 〈ux〉 Turbulence intensity
τ Time shift for autocorrelation analysis
� Rotor speed
1· Correction or difference
〈·〉 Averaged quantity
(̃·) Resolved quantity
ALM Actuator line method
bi-CG Biconjugate gradient
CFD Computational fluid dynamics
CG Conjugate gradient
CS Constant Smagorinsky
CyPC Cyclic pitch control
DIC-GS Gauss–Seidel smoothing with diagonal incomplete Cholesky factorization
DILU Diagonal incomplete LU factorization
GAMG Geometric–algebraic multigrid
IB Immersed boundary
LES Large-eddy simulation
LDS Lagrangian averaging dynamic Smagorinsky
Lidar Light detection and ranging
NOC Non-orthogonal corrector
PISO Pressure-implicit with splitting of operators
PIV Particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
Re Reynolds number
RMS Root mean square
TSR Tip speed ratio
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Campagnolo, F., Petrović, V., Bottasso, C. L., and Croce,
A.: Wind tunnel testing of wake control strategies,
IEEE American Control Conference (ACC), 513–518,
https://doi.org/10.1109/ACC.2016.7524965, 2016a.
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Abstract.
This paper compares lifting-line large-eddy simulations (LES) of scaled wind turbines

against experimental measurements obtained in a boundary layer wind tunnel. The final
goal of this effort is to develop a verified digital copy of the experimental facility, in support
of wind farm control research. Three scaled wind turbine models are arranged in different
waked configurations and yaw misalignment conditions. In the experiments, the wind turbine
response is measured in terms of various operational parameters, while the flow is measured
with two scanning LiDARs. Simulation and experimental results are compared with respect
to flow characteristics, turbine states and wake behavior. The analysis of the results shows
a good match between simulations and experiments. Besides this important verification, the
numerical simulations are also used to explain a wake interference phenomenon observed in the
experiments, which causes a modification in the path of the wake of shaded turbines.

1. Introduction
Among existing wind farm control strategies, yaw-based control appears to be very promising
in spite of its apparent simplicity [1]. Using this control approach, upstream wind turbines are
yawed slightly out of the wind with the goal of steering their wakes away from downstream
turbines. A wind farm super-controller is then tasked with the goal of finding the optimal yaw
angles for each wind turbine, which optimize some performance index while satisfying desired
operational constraints.

In support of wind plant control research, our group has developed scaled wind turbines [2]
that can be operated in a boundary layer wind tunnel. The wind turbines are governed by their
individual controllers, but are also optionally managed in a collective manner by a wind farm
super-controller.

A first goal of the present paper is to compare the results of a LES model of the scaled test
facility with experimental measurements at different constant-in-time yaw misalignment angles.
Various operational conditions are considered, which correspond to different overlaps of the shed
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wakes with the downstream wind turbines. The present static validation is an intermediate step
towards the validation of the dynamic case, where the yaw angles change in time.

A second goal of the paper is to explain a wake interference effect observed in the experiments.
Specifically, it appears that one of the downstream wake-shaded turbines exhibits a larger wake
deflection than expected by its nominal misalignment angle with the free stream. Numerical
simulations are used to show that this phenomenon can be qualitatively explained by the
sidewash caused by the shading wake, which has the effect of modifying the flow direction
at the downstream turbine rotor disk and of translating its wake path sideways.

2. Experimental setup
A cluster of three wind turbines is operated in the wind tunnel. The wind turbine rotors have
a diameter of 1.1 m, and were designed to match the TSR and circulation distribution of a full-
scale reference machine, resulting in a realistic wake behavior [2]. Spires are placed at the tunnel
inlet and work as turbulence generators. Vortices shed by the spires result in quasi-isotropic
turbulence where the wind turbine models are located. The longitudinal distance between each
wind turbine is 4D, while the lateral distance is 0.5D. The static experiments are conducted at
different yaw settings of the various machines. Figure 1 shows a top view of the wind tunnel
when the wind turbines are optimally yawed for overall power capture, which corresponds to
20 deg and 16 deg of the first and second machine, respectively. The optimal yaw angles were
determined experimentally. A more detailed description of the experiments is given in Refs. [2,3].

Figure 1: Top view of the wind tunnel experiment: from left to right, chamber inlet, turbulence
generating spires, scanning LiDARs, upstream wind turbine WT1, example of LiDAR scanning
path, downstream turbine WT2, and downstream turbine WT3.

One of the highlights of the experiment is the measurement of the flow with two scanning
LiDARs [3]. The velocity field at a horizontal plane 0.09D above hub height is measured,
neglecting the vertical velocity component. The red curve in Fig. 1 depicts the scanning path
of the LiDARs, which takes 18.48 sec to be completed. An average flow field is obtained by
averaging the LiDAR data over 30 passes [3].

3. Numerical model
The numerical simulation environment is based on the open-source code Foam-extend-4.0. The
model is based on a finite-volume LES formulation, implemented in the code SOWFA [4], coupled
with a lifting line model of the blades, whose implementation is based on FAST v8 [5]. The
turbine nacelle and tower are modelled by an immersed boundary method [6]. The airfoil polars
are determined by a singular-value-decomposition-based system identification procedure [7]. By
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this method, the aerodynamic characteristic of the airfoils are obtained using experimental
measurements of the rotor thrust and torque at various operating points [2]. This same
simulation environment has been previously compared to scaled experimental measurements
in Refs. [8–10] in wind aligned conditions. The present paper extends that analysis to yaw
misaligned conditions, which are relevant to the problem of wind farm control.

The simulation model includes the wind tunnel walls and the passive generation of turbulence
obtained by the use of spires placed at the tunnel inlet. The simulation of the flow around the
spires is particularly expensive, as it must faithfully represent the breakdown of the spire-shed
vortices into a sheared and turbulent flow. In fact, a high-quality dense mesh —obtained by
the mesh generator ANSYS/ICEM— is used to resolve the flow around the spires. Since the same
turbulent flow can be used for several simulations characterized by different operating conditions
of the wind turbines, the overall wind tunnel chamber is split into two separate computational
domains. One models the tunnel inlet, the spires and the development of the turbulent flow, up
to a distance of 36 m downstream of the inlet. The outflow of this first “precursor” simulation
is then used as inflow of a second computational domain, which models the wind turbines and
their wake interactions all the way to the tunnel outlet.

The wind turbines are operated in closed-loop in the CFD simulations, using the same
controller implemented in the experiments. The controller receives as inputs power demand
Pd, measured power P , measured pitch β and measured rotor speed Ω, and it outputs the pitch
command βcmd and torque command Tcmd. The implementation is based on a standard look-up
table for torque and proportional-integral controller for pitch [12].

The inclusion of the turbine controller in the simulations is important for generating realistic
solutions. In fact, the turbulent flows in the experiment and simulation can only be similar in
terms of average speed, shear and turbulence intensity, but cannot clearly match instantaneously.
Therefore, one can not use in the simulations the blade pitch, rotor speed and azimuthal position
measured in the experiments. Even the use of constant values of these quantities would lead to
discrepancies, as shown later on in this work.

4. Results and analysis
Iso-vorticity surfaces of the precursor and of the wind turbine cluster simulations are visualized
together in Fig. 2. The figure shows the generation of large vortical structures by the spires
placed at the tunnel inlet. Such structures break down into a sheared and turbulent flow that
becomes the inflow of the downstream turbines.

Figure 3 shows the stream-wise velocity field at a horizontal plane 0.09D above hub
height. The images on the top report LiDAR measurements, the ones in the center are the
corresponding numerical simulations, while the ones in the bottom part show the difference
between measurements and simulations. The rotor planes are drawn using thick black lines.
Figures to the left correspond to the case of greedy control, in which all turbines point into
the wind. Figures to the right correspond to the case where the two upwind machines have
been optimally yawed out of the wind to deflect their wakes and reduce the shading of the
downstream turbines. For the LiDAR visualizations, fluctuations in the colors are due to data
resolution limits, and to the fact that the number of passes was probably not sufficient to
completely eliminate the effects of turbulence and wake meandering. For both the greedy and
the optimal yaw cases, the figures show a good qualitative accordance between experiments and
simulations. A significant wind farm power increase can be achieved by yaw control in this
particular turbine layout and operating conditions. In fact, compared with the baseline greedy
case, the optimally-yawed turbine cluster produces 17.6% more power.
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Figure 2: Visualization of iso-vorticity field for the precursor and turbine cluster simulations.

Figure 3: Stream-wise velocity field 0.09D above hub height. (a) Experiment, greedy policy;
(b) Experiment, optimal yaw; (c) Simulation, greedy policy; (d) Simulation, optimal yaw;
(e) Difference simulation-measurement, greedy policy; (f) Difference simulation-measurement,
optimal yaw.
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For the optimally-yawed case with turbine controllers in the loop, Fig. 4 shows the time
histories of mean power P̄ and power standard deviation σP defined as:

P̄j =
1

j

j∑

i=1

Pi, (1a)

σPj =

√√√√1

j

j∑

i=1

(Pi − P̄j), (1b)

where Pi is the instantaneous power at the ith step. Goal of these plots is to indicate the
necessary time horizon over which one should average in order to compute from instantaneous
noisy signals converged mean values and standard deviations for quantities of interest. In both
experiments and simulations, the heads of the data streams have been removed to eliminate
the effects of initial transients. In the experiments, it takes about 120 sec for the statistics to
converge, while it appears that the convergence of the same quantities in simulations takes a
much shorter time of about 40 sec. This is because the wind tunnel inflow exhibits moderate
low frequency fluctuations due to its closed-loop arrangement. These effects are not reproduced
by simulations, which only model the tunnel chamber and not the return flow. Due to their
large computational cost, simulations were run for a shorter duration than the experiments.
Nonetheless, as shown by the figure, this is still enough to allow for the near converge of the
statistics of power. A similar behavior was observed for rotor speed and other quantities of
interest.

Figure 4: Time histories of mean power P̄ and power standard deviation σP , indicating that
data streams are long enough to compute converged statistics of quantities of interest.

A quantitative comparison between experiments and simulations is obtained by considering
wake measurements performed by the scanning LiDARs along sampling lines at various
downstream distances, shown in Fig. 5. The sampling lines are orthogonal to the tunnel flow
and are located at 0.09D above hub height. The centers of the rotor planes of the three wind
turbines are located respectively at 0D, 4D and 8D. Three lines downstream of each machine
were measured, resulting in the wake profiles shown in the figure. The top part of the figure
reports the greedy case, where all machines point into the wind, while the bottom part of the
same figure shows the optimal yaw case.

Appendix C: paper 3



6

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 062007  doi :10.1088/1742-6596/1037/6/062007

Although the overall accordance between experiments and simulations is good, there are
areas where some small discordancies are indeed present. For the greedy case, the wake deficit
of the first wind turbine is overestimated at 2D and 3D, although the wake at 1D is very
precisely predicted. This implies a non-exact wake recovery, probably due to an underestimated
momentum exchange between free stream and wake. In turn, this is probably due to the blade
tip vortices [13], possibly because of an insufficiently refined mesh. An additional reason might
be due to inaccuracies in the lifting line formulation at the blade tips, both in terms of angle
of attack calculation and distribution of the computed aerodynamic forces back onto the CFD
grid. The exact determination of the sources of such discrepancies requires further work. The
wake deficit 1D downstream of the second wind turbine is slightly overestimated because of the
underestimated inflow wind speed. The wake recovery on the upper side of the figure (i.e., to
the left when looking downstream towards the wind turbine cluster) is underestimated. On the
other hand, it is interesting to observe that the wake is well predicted in the lower side of the
figure because that region interacts with the wake of the upstream wind turbine. Therefore, at
6 and 7D the wake deficit is only underestimated in the left part of the wake. A similar analysis
holds for the wake of the third wind turbine.

For the optimally-yawed case, the wakes of the first and second wind turbines are very well
predicted, with a very good match between experiments and numerical results. When the
turbines are yawed, the inclination of the rotor thrust with respect to the incoming flow induces
the generation of two counter rotating vortices in the near wake, that interact with the wake
swirling caused by the rotor torque reaction onto the flow. The resulting complex flow pattern
contributes to the momentum exchange between free stream and wake, reducing the role of the
tip vortices in this process. Because of this, a better match between experiment and simulation
is observed in the present case. As expected, since the third wind turbine is not yawed, wake
recovery is again slightly underestimated.

Figure 5: Wake profiles for the greedy (a) and optimally-yawed (b) cases.

Figure 6 shows the time histories of turbine speed and power for the simulations and
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experiments in the optimally-yawed case. The figures on the left show the case of the simulation
with the controller in the loop; the central plots correspond to the case when the controller is
off, and the rotor speed of each machine is constant in time and equal to the average of the
experimentally measured one; finally, the plot to the right shows the experimental case. The case
with the controller in the loop exhibits a behavior similar to the experimental one, although
clearly the instantaneous values cannot match as the two flows are only statistically similar.
On the other hand, when the rotors are driven at constant speed, power shows significant and
non-physical fluctuations.

Figure 6: Speed and power time histories for the optimally-yawed case.

For the same three cases (controller in the loop, controller off, and experiment), Table 1 shows
the time-averaged means (noted (̄·)) and non-dimensional standard deviations σ of rotor speed
Ω and power P . Based on the results of Fig. 4, means and standard deviations were computed
over 120 sec for the experiments, and over 40 sec for the simulations, which is enough to ensure
convergence. The relative error in the average rotor speed for the three turbines is smaller than
2%. Speed variations in the simulations are underestimated, probably because of the assumed
constant inflow velocity of the wind tunnel. The average power is predicted quite accurately for
both simulations, with and without turbine controllers in the loop. However, as expected, the
power standard deviation is much higher when the machines are driven at constant rotor speed.

Table 2 shows the results for the greedy case. The average rotor speed of the second wind
turbine is slightly (5%) underestimated because of its underestimated inflow speed. The average
speed of the other two wind turbines is very precisely predicted. Speed and power standard
deviations for the first wind turbine are underestimated because of the assumption of a constant
wind tunnel inflow. The standard deviations of the second and third wind turbines are relatively
well predicted because they are more affected by upstream wakes rather than wind tunnel free
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stream. For average power, the accordance is in general good, except for the second wind
turbine. This situation is visually summarized by the histograms of normalized power shown in
Fig. 7 for the various cases and turbines.

Wind turbine WT1 WT2 WT3
Case on off exp on off exp on off exp

Ω̄ [RPM] 814 802 802 764 778 778 828 812 812

σΩ/Ω̄ [%] 0.9 0 2.1 1.7 0 2.5 1.6 0 2.5

P̄ [W] 40.4 41.0 40.5 32.9 33.8 36.4 42.5 43.2 42.0

σP /P̄ [%] 3.2 8.5 4.0 5.5 13.6 5.5 4.7 12.5 4.5

Table 1: Power and speed comparisons for the optimally-yawed case.

Wind turbine WT1 WT2 WT3
Case on off exp on off exp on off exp

Ω̄ [RPM] 840 830 830 672 710 710 734 736 736

σΩ/Ω̄ [%] 0.5 0 2.0 1.7 0 2.7 1.9 0 3.0

P̄ [W] 44.5 45.7 44.3 22.8 21.5 26.5 29.5 29.1 30.3

σP /P̄ [%] 1.8 9.0 3.1 6.6 28.8 7.1 7.1 26.8 6.9

Table 2: Power and speed comparisons for the greedy case.

Figure 7: Wind turbine power histogram for simulations and experiments.
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5. Effects of wake shading on wake deflection
An interesting phenomenon can be observed in Fig. 3 for both the experimental and the
simulation results. In fact, for the optimally-yawed case, it appears that the wake of the second
wind turbine is more deflected than the wake of first machine, although the yaw angle of the
second (16 deg) is smaller than the one of the first (20 deg).

This phenomenon is caused by the changed inflow conditions for the second shaded wind
turbine, caused by the presence of the wake shed by the upstream machine. To better illustrate
this phenomenon, a simulation was run with one single wind turbine operating exactly in the
same conditions of the first upstream machine (the effects of the two downstream machines on
the inflow of the first one being negligible). For this single turbine simulation, Fig. 8 shows
the stream-wise and lateral velocity components, respectively to the left and to the right of the
picture. Although the second and third turbines are not present in this simulation, their rotor
planes are still plotted in dotted lines to indicate their location within the cluster.

When looking at the stream-wise velocity component, it appears that the wake of the first
turbine has only a modest overlap with the rotor disk of the second machine. On the other
hand, the analysis of the lateral velocity component reveals a very different situation. In fact,
the rotor disk of the second turbine is immersed in a region of significant sidewash caused by
the wake of the upstream machine. This sidewash component, combined with the incoming
free stream, generates a tilting of the local wind vector of about 3.6 deg. Therefore, while the
misalignment angle of the second wind turbine with the free stream is nominally equal to 16 deg,
its actual misalignment with the local wind vector is about 19.6 deg. This value is quite close
to the misalignment angle of the first wind turbine, which is equal to 20 deg.

Therefore, the additional deflection of the wake observed for the second machine can be
justified based on the sidewash velocity of the impinging wake. Indeed, this additional lateral
wind component causes two effects: a) it tilts the local wind vector, which has the effect of
modifying the actual misalignment angle of the turbine, and b) it carries the wake shed by
the second machine sideways, further incrementing its deflection. In present engineering wake
models, little attention has been paid so far to the changed ambient velocity outside of the
central wake region. Indeed, according to the authors’ knowledge, published engineering wake
models only represent what happens inside the wake, but not outside of it. However, the current
results seem to indicate that the induced lateral velocity outside of a deflected wake should be
taken into due account for an accurate prediction of the wake path of shaded wind turbines.

Figure 8: Wake of a single yawed wind turbine: (a) stream-wise velocity (b) lateral velocity.
Dashed lines indicate position and orientation of the downstream machines in the cluster.
Negative values of the lateral velocity indicate a velocity directed downwards in the picture.

6. Conclusion
In this paper, numerical simulations were performed for scaled waked wind turbines at given
fixed yaw settings. The flow within the scaled wind turbine cluster and the operational response
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of the machines show a good match between simulations and measurements. In particular, the
simulation model appears to be capable of predicting with good accuracy the wake behavior and
power output of the various wind turbines. The tool appears to be mature enough to consider
the dynamic case where yaw angles change in time, which will be the subject of future work.

Besides the validation of the numerical method, this paper also exploits the numerical model
to interpret and explain wake interference effects. Specifically, it appears that the sidewash
caused around a deflected wake has non-negligible effects on the path of downstream wakes,
effects that are currently not accounted for in engineering wake models.
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Abstract.
The aim of this work is to present a detailed code-to-code comparison of two Large-Eddy

Simulation (LES) solvers. Corresponding experimental measurements are used as a reference to
validate the quality of the CFD simulations. The comparison highlights the effects of solver order
on the solutions, and it tries to answer the question of whether a high order solver is necessary
to capture the main characteristics of a wind farm. Both solvers were used on different grids
to study their convergence behavior. While both solvers show a good match with experimental
measurements, it appears that the low order solver is more accurate and substantially cheaper
in terms of computational cost.

1. Introduction
Large-Eddy Simulation (LES) is actively researched and used because it has the potential
to explain wind farm phenomena and to predict effects that enable improved design and
operation [1]. However, notwithstanding the success of LES, there is still only a limited
understanding of the actual accuracy of such numerical methods in representing the complex
physical processes that govern wake-turbine interactions. The present paper presents a code-
to-code comparison of two state-of-the-art LES-ALM (Actuator Line Method) codes with
significantly different features. Numerical results of both solvers for different mesh resolutions
are compared in this work. Corresponding experiments are used to validate the numerical
results. The objective is to evaluate the accuracy and uncertainty of LES for wind farm flows
and possibly obtain indications for the future evolution of the numerical procedures. While the
experiments provide benchmarks of integral quantities like power, thrust and mean wake profile,
the code-to-code comparison can also illustrate differences of other quantities like Reynolds shear
stresses.

2. Methodology
2.1. Experimental setup
Three laterally-misaligned scaled wind turbines of the G1 type [2], with a rotor diameter of
1.1 m, were operated in the boundary layer wind tunnel of the Politecnico di Milano, which
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has a cross-section of 3.8 × 13.8 m2 and a length of 36 m. The longitudinal distance between
each wind turbine was 4D, while the lateral distance was 0.5D, resulting in a partial wake
impingement on the two downstream turbines. An inflow condition with 5% turbulence intensity
was generated passively with spires positioned close to the inlet of the wind tunnel. All wind
turbines were operated in region II with constant pitch and were governed by a standard look-
up-table generator torque controller. First, a greedy case was considered, in which the yaw
angles of all turbines were set to zero. Then, a yaw misalignment case was tested, in which
the yaw angles of the three turbines were set to optimal values with respect to total wind farm
power output. In all considered conditions, the power and thrust of each turbine were measured.
Additionally, two scanning LiDARs measured the horizontal mean wake profile of all turbines
on a horizontal slice 0.1D above hub height [3]. A previous code-to-experiment validation with
the same measurement data has been reported in [4].

2.2. Numerical models
The TUM solver [1] is based on OpenFoam [6] and SOWFA [7], and it is described in [1]. The
ICL Winc3D solver is described in [5]. Table 1 summarizes the differences between the two
solvers. LES with constant Smagorinsky model and the same Smagorinsky constant of 0.16 has
been used for both codes.

Item TUM ICL

Spatial discretization Finite volume
Compact finite

difference scheme
Time marching

scheme
Backward Euler

scheme
Third order Runge-Kutta

scheme
Pressure-velocity

decoupling
Rhie-Chow

interpolation
Half-staggered grid

Continuity enforcement Pressure correction Pressure correction
Turbine model ALM, FAST In-house ALM code

Mesh
Cartesian mesh
with refinement

Uniform
Cartesian mesh

Spatial convergence order Second order Sixth order
Turbulence model Constant Smagorinsky Constant Smagorinsky

LES filter Implicit Explicit

Table 1: Comparison of the main characteristics of the two codes.

One of the critical differences between the two codes is the different temporal and spatial
discretizations. The backward Euler time marching scheme of the TUM code has a lower order
compared to the Runge-Kutta scheme used by ICL. The second-order finite volume spatial
discretization method adopted by the TUM code also has a lower order compared to the
sixth order compact finite difference scheme used by ICL [5]. The ICL code also has better
scalability than OpenFOAM. In contrast, the finite volume method of the TUM code allows
for mesh refinement, while the ICL code is limited to a uniform Cartesian mesh because of
its spectral formulation. The TUM code used fine meshes only at necessary locations and a
coarse mesh for other regions of the domain, while the ICL code used the same fine mesh
for the whole computational domain. This results in significantly different cell numbers and
computational costs. To avoid staggered solutions, the TUM code adopts the Rhie-Chow
interpolation method [8], while the ICL code uses a half-staggered grid. The ALM approach has
been used by both codes to model the rotor.
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2.3. Simulation setup
In contrast to the quite different numerical schemes, the inputs to both codes are exactly the
same, including all the turbine setup, the inflow data, initial conditions, boundary conditions,
smearing length scales � and time steps for each mesh resolution. To guarantee the same rotor
operating condition, a prescribed constant rotor speed and blade pitch angle were used. The
values of rotor speed are identical to the mean values measured in the experiments. In reality,
the rotor speed oscillates in response to the turbulent fluctuations in the experiments. However,
specifying an average rotor speed is sufficiently accurate to capture mean quantities, as shown in
previous work [4]. Furthermore, to avoid subtle differences that could be caused by the models
of the nacelle, tower and tip and hub loss models, all these features were switched off. The mesh
resolutions were the same upstream, downstream and around all rotors.

3. Results
3.1. Impact of mesh refinement
The impact of mesh refinement on the inflow should be quantified since turbine power is very
sensitive to inflow conditions. Figure 1 shows the inflow profile and turbulence intensity along
a horizontal line slightly above hub-height and 2.55D in front of the first rotor. This location
is about 1.4 D behind the inlet plane of the domain. The vertical dashed lines in both plots
of Fig. 1 indicate the bounds of mesh refinement used for the TUM code. Within the bounds,
the grid size is 2 cm (55 cells per rotor diameter); outside the bounds, the grid size is 4 cm.
This results in a total number of cells of 10.3 million, which is significantly less than the 111
million cells used by the ICL code for a globally uniform Cartesian mesh. The values of mean
velocity and turbulence intensity show little difference within the refinement bounds, while the
turbulence intensity predicted by the TUM code is slightly lower than that of the ICL code
because of the coarse mesh outside of the bounds. A drop of turbulence intensity due to a
coarser mesh is an expected effect, while the good match in the fine mesh region indicates little
adverse impact of mesh refinement on the results.
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Figure 1: Lateral inflow profile and turbulence intensity along a horizontal line 2.55D in front
of the first rotor.

3.2. Comparison and convergence of mean quantities
Figure 2 shows the mean velocity fields slightly above hub-height measured in the experiments
and simulated by the codes with a 2 cm grid resolution. Table 2 shows the mean power and
thrust and the relative errors of both codes in percentage with respect to the experiments for
different grid resolutions.
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Figure 2: Top view of the mean velocity fields on a plane 0.1D above hub height. The black
lines represent the rotor planes. The grid resolution is 2 cm.

Mesh (cm) 4 3 2 1.5
Time step (ms) 1.000 0.750 0.500 0.375 -

� (cm) 6 5 4 3
Case TUM ICL TUM TUM ICL TUM EXP

γ1 = 20◦

γ2 = 16◦

γ3 = 0◦

P̄1 +1.2% 0.0% +0.5% +0.7% -0.7% -1.7% 40.4 W

P̄2 -25.5% -20.6% -16.5% -6.6% -18.4% -8.2% 36.4 W

P̄3 -21.9% -16.6% -15.9% -4.6% -17.0% -7.1% 45.2 W

T̄1 -7.2% -6.6% -7.2% -7.2% -6.6% -8.4% 16.6 N

T̄2 -21.9% -18.7% -17.4% -13.5% -18.7% -14.2 % 15.5 N

T̄3 -8.8% -5.7% -5.0% +0.6% -5.7% -0.6% 15.9 N

γ1 = 0◦

γ2 = 0◦

γ3 = 0◦

P̄1 +1.1% -1.4% +1.1% 0.5% -2.3% -2.0% 44.3 W

P̄2 -27.9% -23.4% -21.5% -10.9% -24.9% -12.1% 26.5 W

P̄3 -16.5% -12.2% -10.2% -1.0% -11.2% -3.6% 30.3 W

T̄1 -4.5% -4.0% -4.5% -4.5% -4.5% -5.1% 17.6 N

T̄2 -23.5% -22.1% -20.6% -16.4% -23.0% -17.2 % 12.2 N

T̄3 -11.8% -11.0% -9.4% -6.3% -10.2% -7.1 % 12.7 N

Table 2: Grid convergence and comparisons among the two codes and measurements. Percentage
errors are computed with respect to the experimental results.
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Figure 2 shows that the expansion, deflection and recovery of the wakes are captured by both
codes, although the ICL one somewhat underestimates wake speed. While the TUM code was
used on four different meshes, the ICL code was run only on two of them. The time step is
strictly proportional to the mesh size, giving almost the same CFL number for all simulations.
The basic uniform Gaussian body force projection method [10] was used for both solvers. The
projection parameter � was chosen to match the power of the first turbine. As � does not exactly
scale with grid size Δ, the ratio �/Δ is between 1.5 and 2 for all cases.

As the grid is refined, the errors of the TUM code drop significantly. Differences between
the results on the 2 cm and 1.5 cm grids are small enough to indicate a final convergence of the
solution. In contrast, the ICL code, thanks to its higher order discretization, converges much
earlier, since the differences between results on the 4 cm and 2 cm grids are already very small.

For a grid resolution of 2 cm, both the TUM and ICL codes predict the power and thrust
of the first turbine with almost the same accuracy for both the greedy and the optimal yaw
cases. However, the TUM code moderately underestimates the power and thrust of the two
downstream turbines, while the ICL code significantly underestimates these quantities. The
larger error of the ICL code is expected, since Fig. 2 already shows that the wakes computed
by this solver are too slow. Note that all simulations were conducted without nacelle and tower
models. On the one hand, the wakes shed by the tower and nacelle decelerate the flow in the
near wake region, but on the other hand, the stronger turbulence intensity caused by the wakes
of nacelle and tower enhances wake recovery. These two phenomena have opposite effects on the
wake. As indicated in [11], ambient turbulence intensity also contributes to making one prevail
over the other. For the 5% turbulence intensity considered here, the two effects almost cancel
each other. Therefore, the errors of the 2 cm grid resolution case are close to the errors reported
in [4], in which CFD-ALM simulations were conducted with nacelle and tower models for the
same scenario as in this paper.

3.3. Comparison of wake and Reynolds shear stresses
Figure 3 shows the mean velocity and two components of the Reynolds shear stress u�u� and
u�v� for the optimal yaw case, while Fig. 4 shows the same quantities for the greedy case. Data
has been sampled on nine horizontal crossflow lines 0.1D above hub-height. Each column of the
figure corresponds to different longitudinal downstream distances as in Fig.2. The positions of
the three turbines are 0D, 4D, and 8D, so there are three sample lines 1D, 2D and 3D behind
each turbine. The quantity u�u� is the square of turbulence intensity along the longitudinal
direction, and u�v� reflects the lateral turbulent flux that drives wake recovery.

A high-velocity region is visible behind the center of each rotor, since there is no nacelle
model. Except for this difference, the wakes simulated by the TUM code have a good match
with the experiments from 1D to 10D. However, the wakes at 11D are significantly slower than the
measured ones, for both the optimal yaw and the greedy cases. Consistently with the observation
from Fig. 2, the near wakes simulated by the ICL code are slower than the experiments. The
situation improves for the far wakes (3D, 7D), although the flow speed is still slower than for
the TUM code and the experiments, which explains the larger power underestimation shown in
Table 2. The Reynolds shear stress u�u� simulated by the ICL code is significantly higher than
for the TUM code, which indicates a stronger turbulence intensity. Similarly, u�v� computed
by the ICL code is moderately higher than for the TUM code in absolute value terms. Both
components indicate a stronger wake recovery for the ICL code, which is consistent with the
observed wake characteristics. Although experiments and simulations are both subject to errors,
the shapes of the curves shown in Fig. 4 and Fig. 3 are very similar and the differences of various
physical quantities are within an acceptable range. The wake recovery is simulated better by the
TUM code probably because of the Smagorinsky constant, since its value has been calibrated
for second order schemes.

Appendix D: paper 4



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062041

IOP Publishing

doi:10.1088/1742-6596/1618/6/062041

6

0 0.5 1

-1

0

1

2D

0 0.5 1

-1

0

1

3D

0 0.5 1

-1

0

1

5D

0 0.5 1

-1

0

1

6D

0 0.5 1

-1

0

1

7D

0 0.5 1

-1

0

1

9D

0 0.5 1

-1

0

1

10D

0 0.5 1

-1

0

1

11D

0 0.5 1

-1

0

1

1D

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

0 0.1 0.2

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

-0.1 0 0.1

-1

0

1

TUM

ICL

Exp.

Figure 3: Wake profiles slightly above hub-height at three downstream stations behind each
turbine for the optimal yaw case.
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Figure 4: Wake profiles slightly above hub-height at three downstream stations behind each
turbine for the greedy case.

Useful information can be extracted from the differences. First, the excessively slow near
wake of the ICL code indicates that the axial induction factor is overestimated; in comparison,
the TUM code seems to better resolve this quantity. Second, the higher-order scheme of the ICL
code predicts stronger Reynolds shear stresses because it is less dissipative. However, it appears
that wake recovery in this case is significantly quicker than in the experiment, which partially
offsets the overestimated axial induction factor. In both simulation cases, the wake recovery of
the first and second turbines are closer to the experiments for the TUM code, while the wake
of the third turbine recovers too slowly. This indicates that the TUM second order scheme is
slightly over-dissipative and the ICL sixth order scheme is moderately under-dissipative.
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3.4. Turbulence spectra and autocorrelation
The turbulence spectrum and autocorrelation of the longitudinal velocity component were
computed at a number of points in the wakes of the turbines. The match of these two quantities
between the two codes is very good for all considered points. As a representative example, Fig. 5
shows the spectra and autocorrelations at a point 1D downstream of the center of the second
rotor for the greedy case. The corresponding simulations have a grid resolution of 2 cm. A linear
decay slope of -5/3 can be seen in both spectra in the inertial range. The TUM code predicts
lower energy compared to the ICL code for most frequencies, which is consistent with the lower
u�u� shown in Fig. 4. The autocorrelation curves of TUM and ICL have a good match for both
mesh resolutions, thus giving a very similar integral time scale.
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Figure 5: Turbulence spectra and autocorrelation of the longitudinal velocity component.

3.5. Computational efficiency
Table 3 shows a comparison between computation efficiency between the two codes for a grid
size of 2 cm. For both codes, the number of cells Nc, the time consumption per time step Δt,
the number of processors used Np and the High Performance Conjugate Gradients (HPCG)
benchmark [12] are listed. The last column of the table, NpNsΔt/Nc, is an estimation of the
number of floating-point operations per time step per cell, where Ns is the number of floating
point operations of the processor per second. This value is slightly higher for the ICL code,
which makes intuitive sense because there is a computational cost to implement a high order
scheme.

Code
Number of
cells Nc

Time per
time step Δt (s)

Number of
processors Np

Cluster HPCG
Ns (GFlop/s)

NpNsΔt
Nc

(Flop)

TUM 10.3×106 1.789 192 0.680 2.27×104

ICL 111×106 2.085 2208 0.684 2.84×104

Table 3: Comparison of the computational efficiency of the TUM and ICL code

4. Conclusions
A code-to-code-to-experiment comparison has been conducted for the two LES-ALM codes and
wind tunnel experiments of three wake-interacting wind turbines. The main difference between
the two codes is the discretization scheme (with its implications on the grid), which is of the
second and sixth order, respectively. Both codes are able to simulate this small wind farm with
reasonable accuracy. A grid convergence study shows that the higher order scheme converges at
a coarser mesh resolution, as expected. The comparison of power, thrust, mean wake profiles,
Reynolds shear stresses, flow spectra and velocity autocorrelations show a high level of similarity
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between the two codes. The sixth order scheme is moderately under-dissipative, while the second
order scheme is slightly over-dissipative. The second order scheme has a better match with the
experiments and also has a much lower computational cost. This indicates that the second order
CFD is a good choice for wind energy applications. The reasons for the better matching of the
lower order scheme might be due to the calibration of the Smagorinsky constant, which was set
to 0.16 for both codes in this work. It is possible that this constant should be recalibrated for
the high order spectral method. Future work will try to clarify whether this is indeed the case,
or whether other reasons can explain the better results of the lower order scheme.
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Abstract.
Dynamic Induction Control (DIC) has the potential of boosting wind farm power by

enhancing wake recovery, whereby periodic pitch motions are used to exploit the natural
instabilities of wind turbine wakes. This work studies DIC both experimentally and numerically.
A thorough validation of an LES-ALM (Actuator Line Method) simulation tool is first conducted
against experimental measurements. This shows that the CFD model is able to accurately
simulate the power, loads and wake behavior of a wind turbine operating with DIC. The
validated CFD model is then employed to study the effects of some DIC parameters. Results
indicate an increase in the fatigue loads caused by the pitch activity that enhances wake recovery.

1. Introduction
Wake effects reduce power output and increase loading in wind farms. Various strategies
have been proposed and explored to mitigate the adverse impacts of wakes. Recently, a novel
Dynamic Induction Control (DIC) strategy has been proposed and studied by LES-AD (Actuator
Disk) simulations [1, 2]. The strategy exploits the natural instabilities in the near-wake vortex
structures to enhance wake recovery. The technique works by sinusoidally varying the rotor
thrust in open-loop; when performed at the right frequency, this perturbation has the effect
of speeding up vortex breakdown and the recovery of the wake. This strategy results in a
power increase for the downstream turbine that exceeds the power loss on the upstream one,
so that the combined upstream-downstream power increases. The potential of DIC has been
demonstrated in [3] through wind tunnel experiments and CFD-AD simulations, although the
observed increase in wind farm power was not as high as the one found in [1, 2]. In addition,
a first assessment of the effects of DIC on loads was attempted by aeroelastic simulations [3]
based on a Blade-Element Momentum (BEM) method, i.e., without considering a complete CFD
simulation of the system.

To the present date, it appears that the effects of DIC on power and loads have not yet been
demonstrated by a CFD-ALM simulation. The present paper aims to fill this gap.

This work first verifies the accuracy of an LES-ALM solver when applied to DIC. The
underlying idea is that the more accurate representation of the rotor and near wake behavior
offered by ALM, when compared to AD, might lead to a better and more detailed representation
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of the physical processes that govern dynamic induction. The verification of the simulation
model is here accomplished with the help of wind tunnel experiments performed with scaled
wind turbines [3]. After showing a good match between CFD and the experimental data, the
validated LES-ALM tool is exploited to further characterize and optimize dynamic induction
control in terms of wind farm power. Finally, loads of the optimized DIC case are compared to
the ones of the baseline case without DIC, showing a significant impact of this control strategy
on fatigue.

2. Methodology
2.1. Experimental setup
A cluster of three aligned wind turbines of the G1 type [4, 5] was operated in the boundary
layer wind tunnel of the Politecnico di Milano, with a longitudinal spacing of 5D. The inflow
turbulence intensity was about 5%. Turbulence was generated passively by using spires close to
the inlet of the wind tunnel test section. The wind tunnel has a cross-section of 3.8 × 13.8 m2,
sufficient to avoid significant blockage effects [6]. A pitot probe was placed 2.3 D upstream of
the first turbine to record the inflow conditions.

2.2. Numerical model
The LES flow solver is based on Foam-extend [7], while the wind turbine and farm models are
implemented in FAST [8] and SOWFA [9], respectively. The software has been validated in
previous work [10]. Both LES and faster scale adaptive simulation (SAS) [11] methods have
been used for the various cases considered here. Although the results of both turbulence models
are very close, SAS can be used on coarser meshes, hence reducing the computational time. A
passive turbulence generation method with a cluster of spires was applied in the wind tunnel.
This physical process was simulated with CFD using a structured body-conforming mesh of the
spires [12]. The mean wind speed, turbulence intensity and vertical shear were validated with
hot-wire measurements performed in the tunnel. The turbulent flow was sampled on a plane 3.8
D in front of the first turbine for every time-step, and then used as inflow for the subsequent
LES-ALM wind turbine simulations. The same inflow data has been used for all CFD cases.

2.3. Wind turbine control
In all experiments and simulations, DIC is only applied to the first turbine since there is
apparently no gain when also applied to the intermediate one [2]. The collective blade pitch
angle β is the sinusoidal function

β = α + A sin(ft), (1)

where α is the steady pitch angle, A is the dynamic pitch amplitude, and f is its frequency.
Changing α corresponds to the classical axial induction control, in which the thrust of upstream
turbines is decreased in order to increase the power of downstream machines. The frequency f
is related to the Strouhal number St = fD/U∞, which has a significant effect on the recovery
of the wake and, hence, on wind farm power [3]. The two downstream turbines are governed by
standard PI torque controllers, and their pitch angles are always equal to the fine pitch angle,
which is 0.4◦ for the G1 turbine.

3. Results
3.1. CFD validation: single-turbine cases
Comparisons between CFD and experiments are conducted with respect to the wake profile of
the first turbine, to the power and thrust of both the upstream and downstream turbines and
their sensitivity to DIC parameters. For the purpose of wake comparison, only the first turbine
was operated in the wind tunnel, and its wake 5D downstream was measured with hot-wire
probes in different operating conditions. Figure 1 shows the hub-height time-averaged lateral
wake profiles. The static pitch angle α and dynamic amplitude A cover a fairly wide range,
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and for each operating condition, the agreement between experiments and simulations is good.
Case 1, shown on the left of Fig. 1, has a relatively high pitch amplitude, and it is termed ”the
reference case” in the following.
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Figure 1: Turbine wake at a 5D downstream distance, for different DIC parameters.

The simulation model can capture both steady-state average values and the dynamic response
of the turbines. To correctly model the oscillation of the rotor speed, the rotor moment of inertia
was measured by a trifilar method [13]. The Fourier transforms of power and thrust of the first
turbine for experiments and simulations were calculated, as shown in Fig. 2 for the reference case.
There are peaks at multiples of the pitch excitation frequency of 1.6 Hz both for the simulation
and the experiment, and the values of the peaks are in a very good agreement. Experimental
measurements of both power and thrust contain high-frequency noise, which is not present
in the simulations. The measured power has some low-frequency oscillations as a result of a
slightly varying inflow speed, which is not modeled by CFD. However, these mismatches are at
least one order of magnitude smaller compared to the peak of the response at the excitation
frequency. Therefore, the CFD simulations should be able to capture turbine fatigue loads with
good accuracy.

The harmonic amplitudes of power P and thrust T at the excitation frequency 1.6 Hz are
shown in Table 1. These quantities are the most important contributor to fatigue loads. Here
again, an excellent match between experiments and simulations can be appreciated.
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Figure 2: Power and thrust spectra of the first turbine for the reference case: α = 3.8◦, A = 4.9◦,
f = 1.6Hz.
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Case A[◦] P̂E(f0) [J ] P̂S(f0) [J ] T̂E(f0) [J ] T̂S(f0) [J ]

1 4.9 1.61 1.4 8.18 8.8
2 2.7 0.95 0.9 5.16 6.14
3 1.6 0.49 0.53 2.98 3.84

Table 1: Amplitudes of the power and thrust harmonics at the pitch excitation frequency
f0 = 1.6 Hz, for experiments (subscript E) and simulations (subscript S).

3.2. CFD validation: the reference case
Next, DIC was applied to the first turbine in a cluster of three aligned machines. This subsection
shows the results for the reference DIC case. Figure 3 shows the time histories of the various
quantities. Table 2 shows the mean values and the harmonic amplitudes at the excitation
frequency of power, rotor speed and thrust for the same case. The match of all quantities
between experiments and simulations is good. The aforementioned low frequency oscillation of
power on the first turbine is clearly visible. For all other cases with different DIC parameters,
a comparable match was achieved, similarly to the case presented here.

Figure 3: Power, speed and thrust time histories of the three turbines for the reference case
(α = 3.8◦, A = 4.9◦, f = 1.6Hz).
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Quantity Unit
WT1 WT2 WT3

Exp. Sim. Exp. Sim. Exp. Sim.

P̄ W 28.0 27.3 21.1 20.0 16.2 16.7

P̂ (f0) J 1.61 1.40 0.64 0.55 0.12 0.09

Ω̄ rad/s 74.8 73.7 70.1 67.1 65.3 63.4

Ω̂(f0) rad 2.39 2.19 0.69 0.91 0.18 0.13

T̄ N 9.05 8.99 9.49 8.70 8.27 7.85

T̂ (f0) kg · m/s 8.17 8.80 1.8 2.82 0.5 0.41

Table 2: Comparison between experiments and simulations of the mean power P̄ , speed Ω̄ and
thrust T̄ and harmonic amplitudes P̂ , Ω̂, T̂ at f0 = 1.6 Hz for the reference case. WT1, WT2
and WT3 denote the first, intermediate and last turbines, repectively.

3.3. CFD validation: frequency sweep
A group of experiments with the same collective pitch angle α = 0.7◦, similar pitch amplitude
A (between 1.5◦ and 2.0◦) but different frequencies f was then analyzed. The wind farm power
coefficient ΣCP , defined as the sum of the individual wind turbine power coefficients, is plotted
as a function of pitch frequency f in Fig. 4. Results are normalized with the wind farm power
coefficient without DIC, noted ΣCP0. Except for one experimental outlier at 1 Hz, the trends
of simulations and experiments match well, and the optimal frequency is shown to be between
1.5 Hz and 2.3 Hz, since such frequency triggers the natural instability in the wake [2].

A large number of experimental observations was conducted for varying frequencies and
amplitudes. Considering all cases, the correlation coefficient between the simulated and
experimental wind farm power coefficients is 0.86. Based on this extensive set of results, the
CFD model appears to be capable of representing the physical phenomena at play with a good
level of fidelity.
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Figure 4: Wind farm power coefficient as a function of dynamic pitch frequency.

The gain obtained by employing DIC is a relatively small quantity of around 3% for the
current wind farm layout. It is difficult to precisely investigate such a small difference only with
experiments because of measurement uncertainties. Although the inflow condition in the wind
tunnel can be controlled, each test could have slightly different mean inflow speed and wind
shear. This effect is mitigated by using a pitot tube 2.3 D in front of the first-row turbine.
The maximal difference of the mean flow speed measured by the pitot is about 0.7% among all
tests, which indicates an excellent control of the inflow condition. However, even such a small
difference results in a roughly 2% power difference, which is comparable to the maximal power
gain of DIC. Hence, instead of using power, the power coefficient is used to study the effects
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of DIC. Nevertheless, this relies on the measurement of a single pitot tube, which is only a
single-point measurement and is itself subject to measurement errors, which could explain the
small scatter of the experimental results shown in Fig. 4.

3.4. CFD exploitation: power optimization
In contrast to experiments, all CFD simulations are performed with exactly the same inflow
condition for all cases, so that any change in wind farm performance in CFD can only be due
to changes of DIC parameters. Hence, once the CFD tool is validated, it can be readily used to
optimize the DIC parameters, which are the frequency f , collective pitch α and pitch motion
amplitude A. More than 30 CFD simulations were conducted for optimization. The number of
simulations is limited by their high computational cost. However, the number of data points is
more than ten times the number of free variables, and as shown later, they seem sufficient to
capture the behavior of the solution.

A gradient-based method was used to find the optimal parameters. The three DIC variables
and the wind farm power coefficient span a 4-D space. Figure 5 shows projections of all results
on three cross-sections to visualize the behavior of the normalized wind farm power coefficient
ΣCP /ΣCP0. The maximum envelope on each plot is shown as a black curve. Although only a
limited number of data points were used, the identification of the optimum should be relatively
accurate since the distribution of points is relatively dense close to it.

Regarding the frequency f , there is a relatively flat peak that ranges from 1.5 Hz to 2.0 Hz,
which is consistent with observations from experiments and corresponds to the natural instability
of the wake, as explained in [2]. The sensitivity of the wind farm power coefficient with respect
to the dynamic pitch amplitude seems to be the highest among all three DIC variables. The
pitch amplitude is directly correlated with the change in thrust coefficient, and either a too large
or too small value appears to be detrimental for the overall power. The collective pitch angle
is optimal around the fine pitch angle 0.4◦ of region 2. Applying a higher collective pitch angle
than the fine pitch is similar to the axial induction control, which usually does not increase wind
farm power [14]. In fact, wind farm power decreases almost monotonically with respect to α.
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Figure 5: Behavior of wind farm power with respect to DIC parameters.

The optimal DIC parameters obtained by CFD optimization are f = 1.6 Hz (corresponding
to a Strouhal number of 0.3), A = 2.0◦, α = 0.5◦. The wind farm power is 3.6% higher than
the baseline case. While the pitch angle is turbine-specific, the thrust coefficient has probably a
more generic sense, and its amplitude is 0.274.

3.5. CFD exploitation: load analysis
The significant changes of CT of the optimal DIC case raise concerns about fatigue loads.
Damage Equivalent Loads (DELs) were computed by the rainflow algorithm [15]. Table 3 shows
the DELs at blade root, at the shaft just behind the hub and at tower base for the optimal
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DIC case and the baseline one. Compared to the baseline case, DIC has little influence on shaft
DELs. In contrast, the DEL of the blades and tower of the front turbine increase significantly
by 106% and 216% respectively, due to the periodic oscillation of thrust. For the second turbine,
the increase in blade and tower DELs are 16% and 65%, caused by fluctuations in the wake speed
induced by the thrust on the front turbine. Little influence is observed for the third turbine.
The most critical additional loading caused by DIC is the tower fatigue of the first turbine,
although this is clearly not the only problematic spot.

Case Item
Blade DEL (Nm)
or relative increase

Tower DEL (Nm)
or relative increase

Shaft DEL (Nm)
or relative increase

f = 0.0Hz
A = 0.0◦

α = 0.4◦

WT1 1.30 5.37 1.49
WT2 1.68 7.23 2.47
WT3 1.87 7.40 2.44

f = 1.6Hz
A = 2.0◦

α = 0.5◦

WT1 +106% +216% +4%
WT2 +16% +65% -2%
WT3 +3% +11% +9%

Table 3: DELs of some turbine components for the baseline case and their relative increase for
the optimal DIC case.

4. Conclusions
LES-ALM simulations have been performed for various operating conditions of DIC,
demonstrating an excellent match with experimental measurements. The experimental and
numerical results are both evidence for the power enhancement capability of DIC. CFD has been
used to scan the DIC parameter space and study their effects on performance. A maximum wind
farm power gain of 3.6% has been determined with CFD simulations, which corresponds to a
CT oscillation amplitude of 0.274 at a Strouhal number of 0.3. However, this power increase
was obtained at the cost of an extremely significant increase in fatigue loading. A continuation
of this work should verify if such a large fatigue penalty is also observed for full-scale turbines,
rather than the scaled models considered here.
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Abstract.
This paper aims at quantifying and explaining the effects of Individual Pitch Control (IPC)

on the wake of a wake-steering wind turbine. As the machine is intentionally misaligned with
respect to the wind, IPC can be used to mitigate the resulting extra loading. However, while
IPC reduces loads, it also affects the wake, which influences the power of downstream turbines.
The question is therefore whether the IPC activity has any other appreciable effect at the wind
farm level, in addition to its original turbine-level load reduction goal. In this work, experiments
and CFD simulations of scaled wind turbines in a boundary layer wind tunnel are considered.
The CFD model is first validated with measurements, and then used to show subtle changes
in the wake, power and loads caused by IPC. It is observed that IPC does indeed have some
non-negligible effects, and that these effects differ for positive and negative yawing.

1. Introduction
Although IPC increases pitch activity and affects the duty cycle, it reduces the periodic loads
caused by shear and wind misalignment, resulting in reduced fatigue damage [1]. Furthermore,
blade-passing 3P loads [2, 3] and aerodynamic or mass imbalances of the rotor can also be
mitigated by IPC [4]. Today, operation at high misalignment angles is actively investigated as
a way to control the wake path, with potential benefits in terms of power capture and loading
of downstream wind turbines [5, 6]. However, the high misalignment angles at which a wake-
steering machine must operate may induce an increase in fatigue loading, and IPC can be used
to limit this negative effect of wake steering. The present paper tries to answer the following
questions: if IPC is used to reduce the loads on a wake-steering turbine, what is the effect on
the wake? Are path and/or recovery affected? Are these effects beneficial or detrimental for the
downstream machine? And are the loads on the wake-steering turbine significantly reduced?

2. Methodology
2.1. Experimental setup
The questions posed above are investigated in this paper by using both ad hoc wind tunnel
experiments and a simulation model. Two scaled wind turbines of the G1 type [7,8] were installed
in the large boundary layer wind tunnel of the Politecnico di Milano, one 5D downstream of
the other. Both turbines were equipped with a standard collective pitch-torque controller, with
an optional IPC loop. A sheared inflow with a 5% turbulence intensity was generated in the
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wind tunnel by passive means using a cluster of spires, resulting in a shear power coefficient
of about 0.12. One test was conducted by removing the downstream turbine, with the goal of
characterizing at its location the wake of the upstream machine using hot wire probes.

2.2. Simulation model
The simulation model is developed with a Large Eddy Simulator (LES) coupled with an Actuator
Line Method (ALM), described in [5, 9]. While ALM is used to model blades, the Immersed
Boundary Method (IBM) is used to model the nacelle and tower. To reduce the computational
cost, a Scale Adaptive Simulation (SAS) was also often used, with practically the same results
as LES. The turbulent inflow was obtained by LES precursor simulations conducted with Foam-
extend [11] using a structured body-conforming mesh of the spires and the wind tunnel, as
described in greater detail in [6].

2.3. Turbine control
The IPC implementation is based on fixed-frame loads, obtained by transforming rotating-frame
measurements provided by strain gages installed on the shaft of the G1 machines. The pitch
inputs in the d-q coordinate system are computed by a proportional-integral controller. The
reference angles in the d-q coordinate system βd, βq are governed by a PI controller:

βd = KI

� t

0
Mn(τ)dτ + KP Mn(t), (1a)

βq = KI

� t

0
My(τ)dτ + KP My(t), (1b)

where KI , KP are integral and propotional gains, respectively, and Mn and My are the fixed
frame nodding and yawing moments. The inverse Coleman transformation is then used to obtain
the blade pitch angles from the d-q frame [1]:

βi(ψi) = βd cos(ψi) + βq sin(ψi), (2)

where ψi is the azimuth angle of each blade, ψ = 0◦ corresponding to the blade pointing vertically
up, and ψ increases clockwise when looking downstream. The total pitch angle of each blade is
the sum of its individual pitch angle βi and the collective pitch angle βc.

The baseline generator torque controller is based on a standard look-up table, while the
collective pitch angle is constant since turbines only operate in region 2. The same controllers
have been implemented in simulations and experiments.

3. Results
3.1. Validation of CFD
To digitally duplicate the experiments, it is necessary to accurately simulate the inflow in the
wind tunnel. In fact, turbulence intensity influences wake recovery, while wind shear affects the
IPC behavior. In the tunnel, turbulence was generated passively with an array of spires. The
generated turbulent flow field has both a vertical and a small lateral wind shear. The turbulence
intensity of 5% and the vertical wind shear equal to 0.12 obtained by the precursor simulation
are both very close to the measurements.

Figure 1 illustrates the flow at hub height for two simulations considering only the upstream
turbine, at 30◦ yaw (left plot) and 0◦ yaw (right plot). The dashed lines indicate the position
of the downstream wind turbine that is 5D away from the upstream one.
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Figure 1: Top view of the instantaneous longitudinal flow speed at hub height. Solid lines
indicate the upstream rotor, while dashed lines the downstream one.

Figure 2 shows the pitch angle of the first blade as a function of its azimuth for the γ = 0◦

case. The pitch angle is not a single-valued function of the azimuth because of turbulence and
rotor dynamics. However, the data points form a sinusoidal shape with its lowest value around
ψ1 = 180◦. The scatter of the experimental data points is slightly bigger than the one of the
simulations, which is probably mainly caused by measurement noise in the experiments or by
having neglected the elasticity of the blades in the simulations.

Figure 2: Comparison of the pitch angle of the first blade between simulation and experiment
for the zero-yaw case.

To obtain a clearer view of the pitch-azimuth relationship, the mean pitch value corresponding
to each azimuthal angle was calculated for each operating condition, as shown in Fig. 3. Table 1
shows the mean values of βd, βq and also the changes in loads and power caused by IPC.
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Figure 3: Comparison of average individual pitch behavior for different yaw misalignment cases.
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γ = 30◦ γ = 0◦ γ = −30◦

Data source CFD EXP CFD EXP CFD EXP
Δ|M̄n|/|M̄n| -99% -94% -99% -99% -99% -99%
Δ|M̄y|/|M̄y| -97% -95% -81% -88% -98% -98%

βd [◦] 0.90 1.27 1.28 1.36 1.45 1.21
βq [◦] -0.67 -0.55 0.09 0.34 0.40 1.19

ΔCP /CP +1.0% +1.5% -3.0% -0.4% -2.6% -1.8%

Table 1: Pitch angles and changes in power and fixed frame (nodding and yawing) moments for
different yaw misalignment cases.

Note that IPC is not typically used in region 2 in aligned (γ = 0◦) conditions, because of
its impact on actuator duty cycle. However, here it is assumed that IPC is used in region 2 to
mitigate the extra fatigue caused by yaw misalignment for wake-steering wind farm control.

There are some differences between simulations and experiments in the mean values of βd and
βq, which are mainly driven by the differences in the vertical and horizontal local wind shears,
respectively. In fact, although the inflow speed distribution in the simulation is very similar to
the one of the experiments, the two are still not exactly identical. Notwithstanding these small
differences, the experimental measurements can still be used as references for the simulations,
since the goal of this work is to investigate changes caused by IPC rather than a precise match
between experiments and simulations. Indeed, experiments and simulations show many similar
trends.

In fact, changes in the yaw angle γ influence the phase of the β − ψ curve. For positive yaw
angles, the curve shifts to the right, and vice versa. This phenomenon is mainly driven by the
change of βq and it has an aerodynamic explanation. For a zero-yaw turbine with IPC, the pitch
angle is smallest when the blade is close to the lower part of the rotor (ψ = 180◦). When the
turbine is yawed by γ = 30◦, the left side (ψ = 270◦) of the rotor moves upstream, while the
right side (ψ = 90◦) moves downstream. This tends to decrease the angle of attack and loads of
the right side of the rotor, because the blade moves into the induction zone of the rotor, where
the flow speed is lower. The opposite happens for the left side of the rotor. At this point, IPC
intervenes to increase pitch on the left side and decrease pitch on the right side, which results
in a negative value of βq and a left shift of the β−ψ curve. The analysis is similar for the other
yaw direction (γ = −30◦) and it results in a positive value of βq and a right shift of the curve.
For the zero yaw case, a non-zero βq is only caused by the local horizontal wind shear, which is
slightly larger in the experiment than in the simulations.

Changes in the yaw angle also influence the amplitude of the β − ψ curve: the amplitude
decreases as γ increases, and vice versa. Although the sensitivity is stronger in simulations, this
phenomenon is visible from both simulation and experimental results, as shown in Fig. 3. In
the simulation, the difference of βq in absolute value terms is significant between the γ = 30◦

and γ = 0◦ cases, while the difference is small for the experiment, which is consistent with the
significant change of amplitude between these two yaw misalignment cases for the simulation and
a smaller change for the experiment. These differences might be caused by a slightly different
horizontal shear.

The change in βq is already understood, the task here is to explain the change in βd, which
can be done with the help of the schematic sketches of Fig. 4. In the figure, the airfoil profile
at different azimuthal locations has been shown. The speed of the airfoil caused by the rotor
rotation is ΩR. When the turbine is yawed, the incoming flow includes both a normal component
U cos(γ) and a tangential component U sin(γ), so that the direction of the flow depends on the
yaw direction and magnitude. For the cases with γ = 30◦, ψ = 0◦ (blade highest position) and
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γ = −30◦, ψ = 180◦ (blade lowest position), the effect of yaw misalignment is to decrease the
relative speed VRel with respect to the airfoil and increase the angle of attack α. In contrast,
for the cases with γ = 30◦, ψ = 180◦ and γ = −30◦, ψ = 0◦, VRel increases and α decreases
due to yaw. For both yaw misalignment cases, the changes in relative speed and angle of attack
have opposite effects on loads. For the operational conditions considered here, the dominant
factor is the effect of the relative speed, whose relative change is about 15% between ψ = 0◦

and ψ = 180◦, resulting in a 32% relative change of lift. The difference of α between the two
azimuthal positions caused by yaw is about 1.0◦, which results in only a 13% relative change of
lift.

Figure 4: Velocity triangles at different azimuthal positions for different yaw angles. U is the
flow speed at the rotor disk; VRel is the relative speed of the flow with respect to the airfoil; α
is the angle of attack.

The presence of a vertical wind shear breaks the symmetry between positive and negative yaw
angles. Further analysis of the triangle of velocities shows that a positive vertical shear increases
the relative flow speed and angle of attack around ψ = 0◦, and decreases both quantities around
ψ = 180◦. Considering a negative yaw angle, the effects of yaw and shear both increase the
relative speed for ψ = 0◦, and both decrease it for ψ = 180◦; on the other hand, the effects on
the angle of attack are of an opposite sign and tend to cancel each other. Exactly the opposite
happens for a positive yaw angle, where the relative speed changes caused by yaw and shear
have opposite signs, while the changes of angle of attack are in the same direction.

These changes in the operating conditions of the airfoils induce an effect of IPC also on power.
Indeed, IPC affects power even for γ = 0◦, as shown in Table 1. This is due to the fact that
IPC, by aggressively targeting loads, generates an excessively low loading in the top part of the
rotor, and an excessively high one in the bottom part. This moves the induction away from the
optimal value of 1/3, leading to a loss of power. A similar effect is present when the machine
is yawed. However, due to the lack of symmetry and the lower loading for positive yaw angles,
IPC leads to a slight power improvement for γ = 30◦ (Table 1).

This lack of symmetry has several effects. In fact, since lift in the top and bottom parts of
the rotor changes more for negative than for positive yaw, a higher βd is required for γ = −30◦

than for γ = 30◦ (cf. Table 1).
In the experiment, horizontal (at hub-height) and vertical wake profiles 5D downstream of

the rotor were measured with hot-wire probes. Figure 5 reports the results for the 30◦ (top
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plots), 0◦ (middle plots) and −30◦ (bottom plots) yaw misalignment cases. The first and third
columns show speed profiles for the case IPC on and off, and for both CFD and experiments. The
vertical wake profiles are located at the wake center, which was determined experimentally to be
at Y = −0.405 m, Y = 0 m, and Y = 0.437 m for the yaw angles 30◦, 0◦ and -30◦, respectively.
The match between experiments and simulations is acceptable, and small differences are caused
by slight changes in inflow. The second and fourth columns of Fig. 5 show the differences between
IPC on and off. Looking at the vertical profiles, it appears that IPC accelerates the flow above
hub height and decelerates it below hub height. This effect is proportional to the direct pitch
amplitudes βd, coherently with Table 1. In contrast, the effect of IPC on the horizontal wake
profile is not significant, as shown by the fourth column of Fig. 5.

The validation of CFD has been shown from different perspectives, indicating that the
numerical model is able to capture the effects of IPC with reasonable accuracy. As the inflow
conditions in CFD can be exactly the same for different operating conditions of the turbines,
numerical simulations can be used to evaluate subtle differences in power, loading and wake
behavior.
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Figure 5: Vertical and horizontal wake profiles with and without IPC, at a 5D downstream
location.

3.2. Effects of IPC on wake behavior
Figure 6 shows the difference in the wake longitudinal speed between IPC on and off at a 5D
downstream distance, as computed by the simulation model. Looking at the case γ = 0◦,
IPC generates an acceleration close to the top of the rotor and a deceleration close to its
bottom. This is consistent with the previously noted effect on induction, due to the aggressive
targeting of blade loads, which causes a drop in power. As the wake propagates downstream and
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swirls clockwise when looking upstream, the acceleration and deceleration regions are convected
clockwise around the wake center, as visualized by the high-speed (yellow) and a low-speed (blue)
bubbles present in all plots in Fig. 6. For a yawed turbine, a kidney-shaped wake is formed [10],
caused by two counter-rotating vortices and the wake swirl. This system of vortices causes a
small lateral velocity component on the leeward side of the wake, as shown by Fig. 7. This
lateral wind component, indicated with a black arrow in Fig. 6, breaks the high-speed bubble
for the γ = 30◦ case and the low-speed bubble for the γ = −30◦ case.

This influences the velocity field, and the resulting changes in the rotor effective wind speeds
at the downstream turbine are 0.3%, -1.0% and -0.3% for the 30◦, 0◦ and −30◦ yaw cases,
respectively. By these results, the use of IPC on the upstream turbine is expected to have
a positive effect on the power of the downstream turbine for γ = 30◦, while it should have a
negative effect for γ = 0◦ and γ = −30◦. These effects are indeed observed in the next subsection,
where two turbines are simulated. Notice also that IPC does not seem to have any noticeable
effect on wake recovery, as its frequency is not in the neighborhood of typical near-wake unstable
modes.

Figure 6: Difference in wake mean longitudinal speed between IPC on and off, 5D downstream
of the rotor. The rotor planes are viewed from downstream. The red dashed circles show the
location of the downstream rotor.

Figure 7: Mean lateral velocity component V̄ . The lateral velocity is significant only on the
leeward side of the wake.

3.3. Effects of upstream turbine IPC
As shown, the activation of IPC on the upstream turbine has effects on both the upstream
and downstream machines. Table 2 shows simulation results obtained with two turbines, and
reports percentage changes of power coefficient and bending moments. The influence of IPC on
the power coefficient CP1 of the upstream turbine is consistent with the results of single-turbine
simulations shown in Table 1. When γ = 30◦, IPC has a positive effect on the power for both
turbines, showing potential for some moderate wind farm power boost. When γ = 0◦, IPC

Appendix F: paper 6



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 022035

IOP Publishing

doi:10.1088/1742-6596/1618/2/022035

8

decreases power of both turbines. This is however not an issue, as IPC is not expected to be
used in non-misaligned conditions, due to its negative effect on the actuator duty cycle. When
γ = −30◦, power decreases for the first turbine and remains almost constant for the second one.

The mean nodding and yawing moment of the upstream turbine, |M̄y1| and |M̄z1|, are reduced
to almost zero. The bending moments of the downstream turbine |M̄y2| and |M̄z2| are also
slightly influenced, but only to a limited extent.

Case 1 2 3
γ1 [◦] 30 0 -30

WT1 IPC on on on
WT2 IPC off off off
ΔCP1/CP1 +1.7% -3.0% -3.9%
ΔCP2/CP2 +1.6% -4.2% -0.1%

Δ|M̄n1|/|M̄n1| -99% -100% -100%
Δ|M̄y1|/|M̄y1| -99% -94% -97%
Δ|M̄n2|/|M̄n2| -6% -9% -8%
Δ|M̄y2|/|M̄y2| +11% -14% -2%

Table 2: Effects of the upstream turbine IPC on power and loads. The relative changes of power
and mean bending moments with respect to the benchmark cases without IPC are shown.
Subscripts 1 and 2 indicate the upstream and downstream turbines, respectively.

3.4. Effects of downstream turbine IPC
Next, the IPC on the downstream turbine is also switched on. The simulated wake profiles at
the location of the downstream rotor for both yaw misalignment cases are shown in Fig. 8.
Two kidney-shape wakes pointing in opposite directions can be seen in the figure, triggering the
response of the IPC controller on the downstream turbine. Table 3 shows the effects of IPC,
which, as expected, brings all mean bending moments almost to zero.

Figure 8: Longitudinal flow speed at the location of the downstream turbine, showing the typical
kidney shape of a deflected wake.

When the upstream turbine is not yawed, the downstream turbine is exposed to a full wake.
In this case, its power decreases only moderately when IPC is activated, which is the penalty
for a high βd. When the upstream turbine is yawed, there is a partial wake impingement on the
downstream turbine, which results in high lateral wind shear. IPC reacts with a high βq that
has a detrimental effect on power; this differs from the beneficial effect of a small βq discussed in
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subsection 3.1. Case 6 indicates a more severe power loss on the downstream turbine than case
4 because of its higher βd, which is caused by the direction of yaw and can still be explained by
the analysis reported in subsection 3.1.

Case 4 5 6
γ1 [◦] 30 0 -30
γ2 [◦] 0 0 0

WT1 IPC on on on
WT2 IPC on on on

βd [◦] 1.5 1.3 1.9
βd [◦] -2.3 0.2 2.4

ΔCP2/CP2 -8.9% -3.2% -13.1%
Δ|M̄n2|/|M̄n2| -92% -100% -96%
Δ|M̄y2|/|M̄y2| -90% -90% -98%

Table 3: Effects on power and loads caused by the use of IPC on the downstream turbine.
The relative changes of power and mean bending moments are computed with respect to the
corresponding cases 1, 2, 3 of Table 2.

4. Conclusions
The effects caused by the use of IPC on a wake-steering turbine are quantified experimentally and
numerically. A simulation model is first validated with experiments and then exploited to study
differences caused by IPC on wake behavior, power and loads. The results show that indeed IPC
is an effective way of reducing loading for all considered operating conditions. The mechanisms
by which IPC influences the turbine and its wake has been discussed. Overall, no significant
enhancement of wake recovery has been observed. The use of IPC on the upstream turbine
has been shown to generate a moderate power increase for positive yawing, both upstream and
downstream, while it induces power losses for negative yawing. IPC on the downstream turbine
tends, in general, to always reduce power.
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Abstract. Wake steering by active yawing of upstream wind turbines is a promising wind
plant control technique. To enable the development of model-based wind plant control methods,
there is a need for models that can marry the contrasting requirements of good fidelity and
low computational cost. This paper presents a reduced-order model (ROM) obtained by
directly compressing high-fidelity computational fluid dynamics (CFD) simulation data using the
proper orthogonal decomposition (POD) method. At first, simulations of wake-interacting wind
turbines are obtained for time-varying yaw settings using the lifting-line large-eddy simulation
(LES) code SOWFA. Next, a ROM is synthesized from the CFD transient simulations, obtaining
a discrete-time state-space model that captures the dominant dynamics of the underlying high-
fidelity model with only a reduced number of states. The ROM is optionally augmented with
a Kalman filter, which feeds back turbine power measurements from the plant to the model,
enhancing its accuracy. Results obtained in realistic turbulent conditions show a good agreement
between high-fidelity CFD solutions and the proposed POD-based ROM in terms of wake
behavior and power output of waked turbines. Additionally, the ROM presents acceptable
results when compared to wind tunnel experiments, including the capability of the model to
partially correct for an intentionally built-in model mismatch.

1. Introduction
Wind turbines are typically installed in clusters, in order to lower construction, maintenance
and commissioning costs. However, turbines within a farm are often in close proximity of each
other, which has the effect of creating aerodynamic interactions between downstream turbines
and the wakes shed by upstream machines. In fact, wakes, which are characterized by a lower
wind speed and higher turbulence intensity than the free stream, have a negative impact on the
performance of wake-impinged downwind turbines, in turn increasing their loading and reducing
their power output. Wind farm control is a newly emerging technology that tries to mitigate
these effects.

The central idea of wind farm control is to move away from the current individual optimization
of the set point of each single machine, and operate instead the turbines within the plant in
a collective (cooperative) manner. This means that machines may be operated at set points
that are sub-optimal at the single turbine level, if this creates a benefit at the collective wind
plant level. Wake steering, or wake redirection, is a promising technique to implement wind
farm control. The idea is in this case to alter the wake path with the goal of reducing the
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shading of downstream turbines. Among various possible ways of affecting wake behavior, yaw
misalignment —where the rotor is intentionally misaligned with respect to the incoming wind—
is the method that is currently more actively being investigated. For example, Refs. [1–3] study
wake steering with the help of computational fluid dynamics (CFD) simulations, while Refs. [4,5]
use scaled wind turbine models in a boundary layer wind tunnel.

The design of control strategies for wake steering can greatly benefit from models that can
faithfully capture all relevant physical processes playing a role in wind turbine wake interactions.
This, however, poses significant challenges. In fact, existing engineering models —although
typically very fast and using only a limited number of degrees of freedom— might not always
be as accurate as desired. In addition, they depend on parameters that need to be calibrated.
Although the existence of model parameters offers the possibility of model tuning and adaption,
it is also clear that mistuning may hamper the accuracy of the model. On the other hand, CFD-
based models are based on first principles. This means that they should have better accuracy
and resolution than engineering models, while at the same time they will also have no (or very
few) tunable parameters. Unfortunately, they will also come at a very high computational cost.
Because of this, their use in the context of control synthesis is extremely challenging, or can
actually typically be altogether ruled out [6].

In order to marry the contrasting requirements of high-fidelity and low computational cost,
this paper proposes an approach that is based on the idea of compressing high-fidelity CFD data
into a reduced-order model (ROM). This is obtained through a data-driven model-identification
procedure, based on the proper orthogonal decomposition (POD). The resulting ROMs capture
the dominant dynamics of wind turbine wakes and their interactions, while showing at the same
time a high degree of data compression. This way, the computationally intensive part of the
process is performed offline and, once a ROM has been identified, one is left with a small size
state-space model that is ideally suited for the design of model-based control laws.

The paper is organized according to the following structure. Section 2 discusses the
characteristics of the simulation environment and considered wind farm control setup. Then,
Sect. 3 formulates the methods used for ROM generation. Next, Sect. 4 reports and discusses
results, comparing ROM-generated predictions with high-fidelity CFD simulations and wind
tunnel experiments. Lastly, conclusions and an outlook towards further developments end the
paper in Sect. 5.

2. Simulation environment
2.1. CFD model
First, high-fidelity CFD simulations are performed in order to generate detailed flow data,
which is then used to obtain a compressed model (described in Sect. 3). Simulations are run
here using a simulation tool based on SOWFA (Simulator fOr Wind Farm Applications) [7], which
is a lifting-line-based large-eddy simulation (LES) tool developed at the National Renewable
Energy Laboratory (NREL), using OpenFOAM and coupled with NREL’s FAST wind turbine
structural-dynamics model [8]. The implementation used here features an immersed boundary
formulation [9] to model the effects of nacelle and tower, which may have a significant influence
on wake development and behavior. Typical simulations last for several days, and were run on
the ‘SuperMUC’ cluster of the Leibniz Supercomputing Centre (LRZ, Germany).

2.2. Simulation setup
The simulations considered here reproduce experiments conducted in the boundary layer wind
tunnel of the Politecnico di Milano in Italy, using the G1 (Generic 1 m diameter rotor) scaled wind
turbine models [5, 10]. The LES CFD environment was validated with respect to experimental
data in previous studies [11]. Table 1 reports the main characteristics of the G1 scaled wind
turbine models.
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Table 1: Main characteristics of the G1 scaled wind turbine model [10].

Rotor diameter (D) 1.1 m
Hub height 0.825 m
Rated rotor speed 850 rpm
Control Variable speed, pitch, and yaw

The simulation setup considers a two-turbine cluster, where the machines are longitudinally
spaced at a distance of 4D and aligned with the prevailing wind flow direction. The free stream
flow has an average speed of 5.7 m/s with a turbulence intensity (TI) of about 6 % at hub
height. Simulations were run with a time step of 0.0004 s and data was collected in snapshots
sampled every 0.01 s (snapshot frequency of 100 Hz). The stored data includes the power output
of both wind turbines, the prescribed upwind turbine yaw control input, and the three velocity
components recorded at all grid points on two planes: the first one is a horizontal plane at
hub height (termed XY), while the second is a vertical plane going through the center of the
two turbine towers (termed XZ). Clearly, although data was collected only at these two planes,
simulations consider the full 3D computational domain. A finer mesh was used closer to the
turbines and in their wakes, while a coarser one was used elsewhere to reduce computational
cost. A description of the grid characteristics on the two planes is provided in Table 2.

Table 2: Grid resolution on the two planes used for data collection.

Plane Dimensions Fixed coord. Resolution Total points

XY ∆x = 6.2D, ∆y = 1.8D z = 0.825 m δx = δy ≈ 0.015D ≈ 53,000
XZ ∆x = 6.2D, ∆z = 3.5D y = 3.500 m δx = δz ≈ 0.016D ≈ 80,000

Data at the generic ith snapshot is collected into column vectors: the three velocity
components at each grid point on the two planes (for a total of Nx ≈ 400,000 values) are
stored in the state vector xi, the Ny = 2 wind turbine powers in the output vector yi, while the
Nu = 1 upwind turbine yaw angle in the input ui. Next, the various vectors are grouped into
snapshot matrices, which are defined as:

X =
[
x1 x2 . . . xns−1

]
∈ RNx×(ns−1), (1a)

X ′ =
[
x2 x3 . . . xns

]
∈ RNx×(ns−1), (1b)

U =
[
u1 u2 . . . uns−1

]
∈ RNu×(ns−1), (1c)

Y =
[
y1 y2 . . . yns−1

]
∈ RNy×(ns−1), (1d)

where ns is the number of snapshots.

3. Methods
3.1. Model identification signal
In the present approach, ROMs are obtained by a data-driven model-identification procedure.
Clearly, any ROM can only include information that is present in the data used for identifying
it. Therefore, it is important to excite the system in a proper way during the data generation
phase. The excitation signal, which is in this case the yaw input of the upstream turbine, should
consider a number of requirements [12,13]: its spectrum should be such that the system response
frequencies of interest are properly excited, it should account for limitations in the range of yaw
angles and in the yaw rates, and it should be generated with an acceptable length based on
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a tradeoff between accuracy and computational time. To account for these characteristics, an
APRBS (Amplitude-modulated Pseudo-Random Binary Sequence) signal [12,13] was chosen to
excite the system. Such a signal is based on the PRBS signal, a deterministic approximation
of white noise in discrete time, which in turn results in a broad-band excitation of the system.
Following the recommendations in Refs. [12–14], different values in the range of interest (yaw
angles between ±30◦) are assigned to different segments of the signal. This allows for the system
to be excited in a wider range of values. Lastly, an APRBS-like yaw input signal is generated
by inserting ramps to realistically connect the different steps of the APRBS. A ramp slope (yaw
rate) of 30 ◦s−1 was chosen in agreement with the wind tunnel scaled model characteristics.

3.2. POD-based ROM
From the different ROM formulations proposed in the literature, the approach chosen for the
present study is an I/O, data-driven, equation-free, POD-based approach, inspired by the
formulation reported in Refs. [15–17]. This modeling procedure is intended to fit and compress
the collected data into a standard state-space representation, in order to obtain models of a low
computational cost, but also of sufficient quality. A considerable data reduction is obtained by
extracting the most dominant features of the simulated system.

The reduced-order system is modeled as an explicit discrete-time time-invariant linear system
in state-space form, which writes

{
x̃k+1 = Ãx̃k + B̃uk,

yk = C̃x̃k + D̃uk,
(2)

where k is the generic time instant, x̃k ∈ Rr is the reduced-order state vector, uk ∈ Rnu is the
input vector (i.e. the yaw angle of the upstream wind turbine; see Eq. (3)), and yk ∈ Rny is the
output vector (i.e. the power outputs of the two turbines). Scalar r represents the order —or
number of states— of the ROM. Matrices Ã, B̃, C̃ and D̃ have the appropriate dimensions.

In order to address non-linearities in the system and to improve the accuracy of the model,
the input vector uk was enriched so as to better capture the effects of yaw angle variations on
the flow states x̃k and power output yk. To this end, the input vector is defined as

uk = f(γk) = (γk, γ
2
k , γ

3
k , γ

4
k , cosp(γk)− 1)T , (3)

where γk is the prescribed yaw angle. The non-linear relationship between yaw input and the
variations of flow states and power outputs is modeled by the combination of a fourth order
polynomial and a cosp term. The latter is included considering the experimentally-derived
relationship between yaw angle and power output [18], using the value p = 1.787. Regarding the
system non-linearities that the polynomial fit partially handles, it should be noted that power is
largely independent on the sign of the yaw angle misalignment. For this reason, even functions
are required for properly modeling the relationship between yaw misalignment and power. Odd
terms are also needed to match the behavior of the flow velocity components, and to handle any
lack of symmetry in power output for positive and negative yaw angles.

The reduced-order state vector is obtained by projecting the full-order state vector xk ∈ Rnx

onto a lower-dimensional subspace of dimension r (typically, nx � r). The relation between the
full-order state vector and the reduced-order one is defined as:

x̃k = Pxk, (4)

where P ∈ Rr×nx is the projection subspace matrix. A suitable choice for the projection subspace
matrix [15–17] is obtained by performing a singular value decomposition (SVD) of the snapshot
matrix X of Eq. (1), which writes

X = UΣV T , (5)
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where U ∈ Rnx×(ns−1) contains the left-singular vectors, Σ ∈ R(ns−1)×(ns−1) the singular values
and V ∈ R(ns−1)×(ns−1) the right-singular vectors of X . The left-singular vectors are, indeed,
the so-called POD modes (POMs) of the system [19,20]. Using such modes for the generation of
the subspace projection provides for major benefits, since POMs represent a series of intrinsic
patterns of the flow (specifically, spatial and non-temporal ones). The temporal description,
i.e. the evolution of the POMs over time, can be extracted from the right-singular vectors.
Finally, the energy, or the weight, of each one of the POMs is given by the corresponding
singular value.

The advantage of this decomposition is that, by only retaining a subset r of the POD modes,
a high degree of compression of the original data can be obtained while still preserving a
satisfactory modeling accuracy. In fact, the approximation of X can be written as

X = UΣV T =
[
Ur Uns−1−r

] [Σr 0
0 Σns−1−r

] [
Vr Vns−1−r

]T ' UrΣrV
T
r , (6)

where (·)r and (·)ns−1−r indicate a partitioning of the SVD matrices U , Σ and V T . As previously
stated, the projection subspace matrix that relates full- and reduced-order states is represented
by the POD modes of the original system. In particular, a selection is used of the first r POD
modes, i.e. the most energetic ones (characterized by higher singular values), which are also
the ones typically associated with lower frequencies (and that are hence better resolved). This
results in the following projection subspace matrix:

P := UT
r . (7)

Since Ur is a real orthogonal matrix formed by orthogonal unit vectors arranged in columns,
the following relation holds

PP T = Ir, (8)

where Ir is the r × r identity matrix.
Finally, consider the system of Eq. (2) expressed in compact form, i.e.

[
X̃ ′
Y

]
=

[
Ã B̃

C̃ D̃

] [
X̃
U

]
, (9)

where X̃ ′ and X̃ are the projections of X ′ and X , respectively, onto the lower-dimensional
subspace via matrix P . Substituting the expressions of Eq. (4) and Eq. (7) into Eq. (9), the
matrices defining the reduced-order state-space system can be readily obtained as:

[
Ã B̃

C̃ D̃

]
=

[
UT

r X ′
Y

] [
UT

r X
U

]†
. (10)

4. Results
The model-compression procedure explained in the previous section was applied to raw CFD
data in order to obtain the desired ROM. To this end, an APRBS signal was designed to excite
the system by changing the upwind turbine yaw angle. The length of the training simulation was
set to 60 s, which was considered long enough to appropriately excite the system within the range
of ±30◦, while limiting the computational costs. Then, the procedure explained in Sect. 3 was
applied, resulting in a ROM with 22 POD modes. The order of the model was chosen as a best
compromise between model size and error between high-fidelity and reduced-order-reconstructed
flow and power outputs.
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Subsequently, a second CFD simulation was performed with a different input signal to validate
the prediction capabilities of the previously obtained ROM. The ROM was verified for this
validation test case in two different variants: in conjunction with a Kalman filter (KF) state
observer [21], which uses the power measured at the two machines to estimate and update the
model state vector, and in open loop. The process noise covariance matrix of the KF (Qk) was
tuned by differently weighting each element of the reduced-order state, i.e. each POD mode.
Specifically, modes with higher energies and better resolution (low frequency spectra) were
assigned smaller covariances. The measurement noise covariance matrix Rk was set to a low
value, since power measurements can be assumed to be highly accurate.

A few of the POD modes of the system are displayed in Fig. 1. Each POM includes the
three velocity components for the two planes of data collection; however, only the horizontal
plane and the streamwise velocity component are plotted in Fig. 1. The low-index POD modes
exhibit patterns that are consistent with the expected behavior resulting from an excitation by
yawing of the upwind turbine, and indicate large spatial variations of the flow. High-index POMs
(e.g. number 200 in Fig. 1) preserve, on the other hand, the high-fluctuating spatial behavior of
the underlying high-fidelity data, and are therefore associated with lower energies. As explained
in Sect. 3, POMs are also associated to a specific frequency content, stored in the right-singular
vectors of the SVD. Commonly, POMs with low indices present also low-frequency spectra, and
vice versa. Indeed, a frequency analysis (discrete Fourier transform, DFT) was performed for
the POMs retained in the ROM. Their frequency spectrum was found to be below 15 Hz. Given
that the Nyquist frequency associated with the sampling frequency is 50 Hz, this result ensures
that the sampling is large enough to capture the mode dynamics.

A comparison of the power outputs of the validation case CFD simulation and ROM
reconstruction is shown in Fig. 2. The power variations of both turbines predicted by the
model is given directly in the model output vector, as stated in Eq. (2). The use of the Kalman
filter —which feeds power measurements from the plant back to the ROM— improves the quality
of predictions. Indeed, the time-averaged percentage error between CFD and ROM-predicted
power outputs reduced from 3.83%, 6.68% and 3.64% for the case without KF, to 1.81%, 3.98%
and 1.89% for the case with KF, where the three values refer to the upstream turbine (WT1),
the downstream one (WT2) and the whole cluster, respectively. In open-loop, the model does
not receive any information from the plant regarding power changes due to flow fluctuations.
This appears clearly in the figure where, for constant yaw angles, the model cannot accurately
predict the fluctuating behavior of power other than the intrinsic dynamics contained in the
ROM.

The reconstructed full-order flow produced by the ROM can be approximated combining
Eqs. (4) and (7). A comparison between CFD high-fidelity data and ROM-based reconstructed
flow is shown in Figs. 3 and 4 for a given instant in time. ROM predictions, with and without
state observer, match the average wake shape and position. On the other hand, smaller scale
fluctuations and wake meandering are not captured. Notice further that the Kalman filter is
capable of enhancing the behavior of the model in terms of power predictions, without visually
substantially affecting the macroscopic flow behavior in the wake.

Finally, the behavior of the model was also tested with data from a wind tunnel experiment [5],
under very similar conditions in terms of yaw dynamic changes, inflow and turbulent intensity
of the numerical test conducted so far. However, crucially, in the wind tunnel experiments the
two turbines were spaced 5D, while the simulations used to generate the ROM used a spacing
of only 4D. In other words, the ROM was created on purpose with a significant built-in model
mismatch. The ROM predictions are compared with the experimental data in terms of turbine
power outputs in Fig. 5. It is observed, indeed, that the predicted power for the downwind
turbine is always smaller than the actual one. This is expected, since in the experiment the
wake recovered further before impinging onto the downstream wind turbine, due to the larger
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Selection of POD modes of the simulated system (only the mode streamwise velocity
components in the XY plane are shown).

distance between the two machines. The KF is able to partially correct for this model defect.
For the upwind turbine, the prediction fluctuates but does not present a systematic bias, as
there is not a model mismatch in this case. Even considering the error due to the different wind
farm layout, the ROM seems to be capable of predicting the power outputs with acceptable
accuracy.

5. Conclusions and outlook
In this paper, a compression technique based on the POD is applied to obtain ROMs with
very low computational cost and good accuracy, suitable for model-based wind farm control.
The present study has focused on a two-turbine cluster, where yaw misalignment of the front
machine is used for wake steering. To further improve the quality of predictions, the resulting
ROM has been optionally equipped with a KF, which feeds power measurements from the plant
back onto the model. Results indicate that the proposed method is able to represent well, when
compared to high-fidelity CFD-simulated data, the wake characteristics of both turbines and
their respective power outputs. Regarding flow predictions, a proper deflection and development
of the wake is observed. With respect to power outputs, the predictions are also accurate
and correlate well with changes in the upwind turbine yaw angle. When compared to wind
tunnel experiments, acceptable results are also obtained, including the capability of the model
to partially correct for an intentionally built-in model mismatch.

The present work will be expanded in multiple directions. Regarding model updating, it

Appendix G: paper 7



8

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 032014  doi :10.1088/1742-6596/1037/3/032014

Figure 2: Comparison between CFD data and ROM-predicted power outputs (top); yaw angle
time history for the upstream wind turbine (bottom).

Figure 3: Comparison of the streamwise velocity component on the horizontal plane between
the CFD flow (top), ROM-predicted flow with KF state observer (middle), and ROM-predicted
flow without state observer (bottom) at one instant in time (γ = 23◦).
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Figure 4: Comparison of the streamwise velocity component on the vertical plane between the
CFD flow (top), ROM-predicted flow with KF state observer (middle), and ROM-predicted flow
without state observer (bottom) at one instant in time (γ = 23◦).

Figure 5: Comparison between wind tunnel and ROM-predicted power outputs considering a
model mismatch (top); yaw angle time history for the upstream wind turbine (bottom).
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should be mentioned that, in addition to power, other plant measurements can be used to
improve the predictive capabilities of the method. For example, Ref. [22] uses local estimates of
the wind speed on the rotor disk, obtained by using blade load measurements. Additional work
will try to improve the generality of the approach. In fact, since the method is based on system
identification, ROMs are derived for a particular configuration and operating condition (wind
farm layout, wind speed, TI, etc.). If other conditions are desired, additional high-fidelity CFD
simulations are required (cf. [23]). While this problem cannot be completely bypassed, there
are techniques that we are currently exploring to reduce the complexity of the approach and its
associated computational effort.
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Abstract.

The aim of this paper is to analyze to which extent wind tunnel experiments can represent the behavior of full-scale wind

turbine wakes. The question is relevant because on the one hand scaled models are extensively used for wake and farm control

studies, whereas on the other hand not all wake-relevant physical characteristics of a full-scale turbine can be exactly matched

by a scaled model. In particular, a detailed scaling analysis reveals that the scaled model accurately represents the principal5

physical phenomena taking place in the outer shell of the near wake, whereas differences exist in its inner core. A large eddy

simulation actuator line method is first validated with respect to wind tunnel measurements, and then used to perform a detailed

comparison of the wake at the two scales. It is concluded that, notwithstanding the existence of some mismatched effects, the

scaled wake is remarkably similar to the full-scale one, except in the immediate proximity of the rotor.

1 Introduction10

The simulation of wind turbine wakes in wind tunnels has been gaining an increasing interest in recent years. In fact, since

wakes represent a major form of coupling within a wind plant, understanding their behavior and accurately simulating their

effects are today problems of central importance in wind energy science, with direct practical implications on design, operation

and maintenance. Recent studies include the analysis of single and multiple interacting wakes (see, for example, the review

in Bottasso and Campagnolo (2020) or, among others, Whale et al. (1996); Chamorro and Porté-Agel (2009, 2010); Bartl15

and Sætran (2016); Bastankhah and Porté-Agel (2016); Tian et al. (2018); Campagnolo et al. (2016); Bottasso et al. (2014a);

Campagnolo et al. (2020); Wang et al. (2020c) and references therein).

Wind tunnel testing offers some unique advantages over full-scale field testing:

– The ambient conditions are repeatable and —at least to some extent— controllable.

– Detailed flow measurements are possible with a plethora of devices, from standard pressure and hot-wire probes, to20

PIV (Meinhart, 1999) and scanning lidars (van Dooren et al., 2017), whereas measurements of comparable accuracy are

today hardly possible at full scale. Additionally, time flows faster in a scaled experiment than at full scale (Bottasso and

Campagnolo, 2020; Canet et al., 2020; Campagnolo et al., 2020), which means that a large informational content can be

accumulated over relatively short periods of time.

1

https://doi.org/10.5194/wes-2020-115
Preprint. Discussion started: 10 November 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix H: paper 8



– Models can be designed ad hoc to achieve specific goals, and can be extensively instrumented (Bottasso and Campagnolo,25

2020), while layouts and scenarios can be readily changed to explore different operating conditions of interest.

– Costs are limited, even for highly sophisticated models, also because there are no energy production losses as it is often

the case in the field, whereas the costs of sophisticated wind tunnel facilities are typically amortized by their use for

several different applications over long periods of time.

– Open datasets can be shared within the research community and collaborations are facilitated, since there are no —or30

fewer— constraints from intellectual property than when real wind turbine data is used.

Testing in the controlled and repeatable environment of the wind tunnel is today contributing to the understanding of the physi-

cal processes at play, generates valuable data for the validation and calibration of mathematical models, and offers opportunities

for the verification of control technologies.

However, notwithstanding these and other unique advantages, a major question still hovers over the wind tunnel simulation35

of wakes: how faithful are these wakes to the actual ones in the field? In fact, in private conversations these authors have often

been questioned on the actual usefulness of wind tunnel testing, based on a perceived lack of realism of these scaled tests.

Indeed, some skepticism is justified and completely understandable: simulation codes are being calibrated and validated with

respect to wind tunnel measurements, and wind farm control techniques are being compared and evaluated in wind tunnel

experiments. Therefore, it is important to quantify the level of realism of wind tunnel simulated wakes, and to identify with40

better clarity what aspects faithfully represent the full-scale truth and what aspects do not.

A thorough and complete answer to this question is probably still out of reach today. In fact, detailed inflow and wake

measurements of a full-scale turbine would be necessary, with a level of detail comparable to the ones achievable in the tunnel.

Lidar technology is making great progress (Zhan, 2020), and might soon deliver suitable datasets. It should be a goal of the

scientific and industrial communities to completely open such future datasets to research, which would surely greatly favor the45

scientific advancement of the field. In the meanwhile, however, some partial answers to the question of wake realism can still

be given. This is the main goal of the present paper.

This study considers the TUM G1 scaled wind turbine (Bottasso and Campagnolo, 2020), and a dataset obtained with this

machine in the boundary layer wind tunnel of the Politecnico di Milano in Italy. A large eddy simulation (LES) actuator line

method (ALM) (Wang et al., 2019) is used to simulate the wind tunnel experiments, including the passive generation of a50

sheared turbulent inflow. The code has been validated with respect to the present and other similar measurements.

Following Bottasso and Campagnolo (2020) and Canet et al. (2020), dimensional analysis and wake physics are used to

review the main factors driving wake behavior. The same analysis also reveals which physical aspects of full-scale wakes

cannot be matched at the reduced scale and with the considered experimental setup. A first analysis of scaling was performed

by Chamorro et al. (2016), considering the effects caused by the mismatch of the rotor-based Reynolds. Experimental results55

based on a miniature wind turbine showed that wake behaviour is unaffected by this parameter when it is larger than circa

105. However, in reality the behavior of the blades and, as a consequence, of the wake is much more strongly affected by the

chord-based Reynolds number, as initially discussed in Bottasso et al. (2014a). In fact, the much lower Reynolds regime of a

2
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small-scale model blade compared to a full-scale machine implies very different aerodynamic characteristics of the airfoils,

which in turn drive a number of specific design choices of the scaled model (Bottasso and Campagnolo, 2020; Canet et al.,60

2020). Notwithstanding the differences caused by the chord-based Reynolds mismatch, it is relatively easy —as shown more

in detail later on— to match the main processes taking place in the outer shell of the near wake, as well as the ones that govern

its breakdown and the characteristics of the far wake. On the other hand, several mismatched effects do exist in the central core

of the near wake. Dimensional analysis also expresses the scaling relationships that allow the mapping of scaled quantities into

equivalent full-scale ones, and viceversa.65

Based on the understanding provided by dimensional analysis and wake physics, full-scale turbines are designed in this

work to match some of the G1 scaled-model parameters. Various versions of these models are considered, ranging from a more

realistic full-scale turbine —with a larger number of mismatched effects— to less realistic ones that however match a larger

set of quantities of the scaled model.

The full-scale models are then simulated with the LES-ALM code, using the same exact numerical methods and algorithmic70

parameters used for the scaled simulations. These wind turbine models are also exposed to the same identical ambient turbulent

inflow used for the scaled model. The underlying assumption is that, since the code was found to be in very good agreement

with measurements obtained in the scaled experiments, the same code based on the same numerical setup should deliver results

of similar accuracy even at full scale. This assumption cannot be formally proven at this stage, but it seems to be very reasonable

and it is probably the only possible approach that can be pursued in the absence of a detailed full-scale dataset.75

Finally, the numerically simulated scaled and full-scale wakes are compared. The analysis considers wind-aligned and mis-

aligned conditions, typical of wake steering control applications, and various metrics, including wake shape, path, speed profile,

Reynolds shear stresses, power available and wind direction modification due to the curled wake in misaligned conditions. This

detailed comparison is used to quantify the degree of similarity among the different models and across the various metrics.

Since the models differ by known mismatched effects, this also helps pinpoint and explain any source of discrepancy.80

The paper is organized according to the following plan. Section 2 uses dimensional analysis and wake physics to identify

the quantities that can be exactly matched between scaled and full-scale models, the ones that can only be partially matched,

the ones that are unmatched, and those that are neglected from the present analysis. Next, Section 3 describes the scaled

experimental wind turbine and its full-scale counterparts, which include various modifications to highlight the effects of specific

mismatches. Section 4 describes the numerical simulation model, including the generation of the turbulent inflow in the wind85

tunnel. Results and detailed comparisons among the scaled and the full-scale models are reported in Section 5. Finally, Section 6

summarizes the main findings of this work.

2 Scaling

The matched, partially matched, unmatched and neglected physical effects of the scaled and full-scale models are reviewed

next. Quantities referred to the scaled model are indicated with the subscript (·)M , while quantities referred to the full-scale90

physical system with the subscript (·)P . Scaling is defined by two parameters (Bottasso and Campagnolo, 2020; Canet et al.,

3
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2020): the length scale factor nl = lM/lP , where l is a characteristic length (for example the rotor radius R), and the time

compression ratio nt = tM/tP , where t is time. In the present case nl = 1/162.1 and nt = 1/82.5. A more complete treatment

of scaling for wind turbine rotors is given in Bottasso and Campagnolo (2020) and Canet et al. (2020).

2.1 Matched quantities95

– Inflow. The ambient flow is obtained by simulating the passive generation of turbulence in the wind tunnel, as explained

in §4.2; the developed flow is sampled on a rectangular plane, which becomes the inflow of the scaled turbine simulations.

For the full-scale turbine simulations, the sides of the inflow rectangular area are geometrically scaled by nl, while time

is scaled by nt and speed V as VM/VP = nl/nt, resulting in a flow with exactly the same identical characteristics (e.g.,

shear, turbulence intensity, integral length scale, etc.) at the two scales.100

– Tip speed ratio (TSR) λ= ΩR/V , where Ω is the rotor speed. TSR determines not only the triangle of velocity at the

blade sections, but also the pitch of the helical vortex filaments shed by the blade tips.

– Non-dimensional circulation Γ(r)/(RV ) = 1/2(c(r)/R)CL(r)(W (r)/V ), where CL is the lift coefficient, c the local

chord, W the local flow speed relative to the blade section, and r is the spanwise blade coordinate (Burton et al., 2011).

Each blade sheds trailing vorticity that is proportional to the spatial (spanwise) gradient dΓ/dr. Therefore, matching the105

non-dimensional spanwise distribution of Γ (and, hence, also its non-dimensional spanwise gradient) ensures that the

two rotors shed the same trailing vorticity.

The root of the G1 blade is located further away from the rotor axis than a typical full-scale machine, due to the space

required for housing the pitch actuation system. The resulting effects caused on the wake were investigated by developing

two different full-scale models, one with the exact same non-dimensional circulation of the G1 and one with more typical110

full-scale values, as discussed later.

– Rotor vortex shedding. The rotor Strouhal number St = f2R/V is matched, where f is the rotor vortex-shedding char-

acteristic frequency, which ensures the correct periodic release of vortices behind the rotor.

2.2 Approximatively matched quantities

The following quantities or effects are very nearly, but not exactly, matched:115

– Thrust coefficient CT = T/(1/2ρAV 2), where T is the thrust force, ρ is air density and A= πR2 the rotor swept area.

The thrust characterizes to a large extent the speed deficit in the wake. In misaligned conditions, it is also the principal

cause for the lateral deflection of the wake. The thrust coefficient is very nearly matched whereas the power coefficient

is not (as discussed later), because the latter strongly depends on airfoil efficiency, which is affected by the Reynolds

mismatch between the two models. On the other hand, drag has only a limited effect on thrust, which as a result is very120

similar in the two models.
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– Dynamic spanwise vortex shedding. During transients, spanwise vorticity is shed that is proportional to the temporal

gradient of the circulation. To match the spanwise vortex shedding of a rotor, the matching of (1/RV )dΓ/dτ should be

ensured (Bottasso and Campagnolo, 2020; Canet et al., 2020), where τ is a non-dimensional time (for example, τ = Ωrt,

Ωr being a reference rotor speed), equal for both the full and scaled models.125

Rewriting the circulation as

Γ
RV

=
1
2
c

R
CLα

W

V

(
UPUT

W 2
− θ

)
, (1)

CLα being the lift curve slope, the dynamic spanwise vortex shedding condition implies the matching of the non-

dimensional time rates of change of the sectional tangential and perpendicular flow components UP and UT , with

W 2 = U2
P +U2

T , and of the pitch angle θ. The flow speed component tangential to the rotor disk is UT = Ωr+uT ,130

where uT contains terms due to wake swirl and yaw misalignment. The flow speed component perpendicular to the rotor

disk is UP = (1−a)V +uP , where a is the axial induction factor, and uP the contribution due to yaw misalignment and

vertical shear. A correct similitude of dynamic vortex shedding is ensured if the non-dimensional time derivatives λ′, a′,

u′P , u′T and θ′ are matched, where (·)′ = d · /dτ .

Matching of λ′ is ensured here by the fact that the two rotors operate at the same TSR in the same inflow; additionally,135

the simulations were conducted by prescribing the rotor rotation (i.e. without a controller in the loop), so that Ω′ = 0.

The term a′ accounts for dynamic changes in the induction, which are due to the speed of actuation (of torque and blade

pitch) and by the intrinsic dynamics of the wake. The speed of actuation is not relevant in this case, due to the absence of

a pitch-torque controller. The intrinsic dynamics of the wake, as modelled by a first order differential equation (Pitt and

Peters, 1981), is also automatically matched thanks to the matching of the TSR (Bottasso and Campagnolo, 2020; Canet140

et al., 2020). Finally, u′P and u′T are matched because the inflow is the same, with the exception of the contribution of

wake swirl, which is not exactly the same because of the different torque coefficient, as noted below.

– Inflow size. The cross section of the wind tunnel has a limited size, resulting in the blockage phenomenon, i.e. in an

acceleration of the flow between the object being tested and the sides (lateral walls and ceiling) of the tunnel (Chen

and Liou, 2011). Although this problem is not strictly related to the scaling laws discussed here, it is still an effect that145

needs to be accounted for, especially if the ratio of the frontal area of the tested objected and the cross sectional area of

the tunnel is not negligible. Simulations in domains of increasingly larger cross sections are conducted to quantify the

blockage affecting the experimental setup considered here.

– Integral length scales (ILS). For the size of the TUM G1 turbines, the wind tunnel used in this research (located at

Politecnico di Milano, Italy) generates a full-scale ILS of approximately 142 m at hub height, which is respectively150

about 16% and 58% smaller that the lengths specified by Ed. 2 (IEC 61400-1, 1999) and Ed. 3 (IEC 61400-1, 2005)

of the IEC 61400-1 international standards. To understand the effects of this mismatch on wake behavior, different

simulations are conducted in turbulent inflows differing only in their integral scales.

5
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2.3 Unmatched quantities

The following quantities cannot be matched based on the current experimental setup and scaling choices:155

– The chord-based Reynolds number Re = ρWc/µ, where µ is the fluid viscosity. The Reynolds mismatch is ReM/ReP =

n2
l /nt, which is equal to 318.5 in the present case. This implies that the blades of the G1 model operate in a very different

regime than the ones of the full-scale blade (Lissaman, 1983). To mitigate these effects, the G1 blade has a larger chord

than the full-scale one, and uses ad hoc low-Reynolds airfoils (Bottasso and Campagnolo, 2020; Lyon and Selig, 1996).

Additionally, noting that the scaling relationship of the rotor speed is ΩM/ΩP = 1/nt, the time compression ratio nt160

was chosen to further increase Reynolds on the scaled blade and reduce its mismatch (Bottasso and Campagnolo, 2020).

– The power coefficient CP = P/(1/2ρAV 3), where P is the aerodynamic power. The power coefficient of the scaled

model is lower than the one of the full-scale machine, because of the smaller efficiency of the airfoils at low-Reynolds

regimes. Since the torque coefficient is CQ = CP /λ, then also CQ is unmatched and lower for the small-scale model

than for the full-scale one, resulting in reduced wake swirling (Burton et al., 2011).165

– Tower and nacelle vortex shedding. The tower Strouhal number St = fd/V is matched when the tower diameter d is

geometrically scaled. However, as noted later, the diameter of the G1 tower is 49% larger than the one of the full-scale

machine, so that frequency and size of the shed vortices is accordingly affected. An even larger mismatch applies to the

nacelle, which has a frontal area that is 2.6 times larger in the scaled model.

– Stall delay due to rotational augmentation (Dowler and Schmitz, 2015). Matching these effects requires the matching of170

the blade chord and twist distributions, of the non-dimensional circulation and of the Rossby number Ro = Ωr/(2W )

(Bottasso and Campagnolo, 2020). While the latter two quantities are indeed matched, the former two are not to compen-

sate for Reynolds mismatch. The G1 simulations were conducted without correcting the inboard airfoils for rotational

augmentation. To quantify the effects of rotational augmentation on wake behavior, two versions of the full-scale turbine

were developed, as explained later on.175

– The chord-based Mach number Ma =W/s, where s is the speed of sound. However compressibility effects are irrelevant

for the full and scaled models considered here, as for virtually all present-day wind turbines.

– Boundary layer stability and wind veer due to the Coriolis force. The wind tunnel used in the present research can only

general neutrally stable boundary layers. Although atmospheric stability has a profound effect on wakes (Abkara and

Porté-Agel, 2015), this problem has already been studied elsewhere, and it is considered to be out of scope for the present180

investigation. Similarly, Coriolis effects on the inflow and wake behavior are not represented in a wind tunnel, although

they are known to have non-negligible effects on capture, loading and also on wake path (van der Laan and Sørensen,

2007).
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2.4 Neglected quantities

The following effects could be matched with a different experimental setup and scaling choices, but were neglected in the185

present work:

– All gravo-aeroelastic effects. Since the blades of the G1 turbine are not aeroelastically scaled (and are very stiff), also the

full-scale model was simulated without accounting for flexibility. Aeroelasticity could have some effects on near-wake

behavior for very flexible rotors, but would probably have only a negligible role on the characteristics of the far wake.

Therefore, aeroelastic effects were excluded from the scope of the present investigation.190

– Unsteady airfoil aerodynamics, including linear unsteady corrections (for example, according to Theodorsen’s theory

(Bisplinghoff and Ashley, 2002)), and dynamic stall. It was verified that the mildly misaligned operating conditions

analyzed here would not have triggered dynamic stall, except than in a few instances, similarly to what was found in

Shipley (1995). Here again, these effects would hardly have any visible effects on far-wake behavior.

2.5 Remarks195

Wake stability analysis shows that the vortical structures released by the blade tips and root interact in the near wake (Okulov

and Sørensen, 2007).

In the outer shell of the near wake, the mutual interaction of the tip vortices —triggered by turbulent fluctuations and vortex

shedding— lead to vortex pairing, leapfrogging, and eventually to the breakdown of the coherent wake structures (Sørensen,

2011). The scaled and full-scale rotors are exposed to the same inflow (including the same turbulent fluctuations), experience200

the same vortex shedding (due to a matched Strouhal), the tip vortices have the same geometry (due to a matched TSR) and

strength (due to a matched circulation), and the speed deficit is also essentially the same (because of the very nearly matched

thrust coefficient). Hence, it is reasonable to assume a nearly identical near wake behavior of the external wake shell, given

that all main processes are matched between scaled and full-scale models (with the exception of the effects that the unmatched

tower may have).205

The situation is different in the near wake inner core. Here the root vortices combine with the effects caused by the pres-

ence of the nacelle and tower. In particular, the nacelle has a much larger frontal area, creating a different blockage (radial

redirection), nacelle wake and vortex shedding. Additionally, in the 20% inboard portion of the blade, both the circulation and

rotational augmentation effects are unmatched. Finally, the mismatch of power induces a mismatch of torque that reduces wake

swirl; as it is well known from blade element momentum (BEM) theory, swirl is mostly concentrated in the inner core of the210

wake, and decays rapidly with radial position (Burton et al., 2011). Hence, the near wake inner core is expected to behave

differently in the scaled and full-scale models. However, some of the results reported here, in addition to evidence from other

sources (Wu and Porté-Agel, 2011), indicate that the inner core near wake has only a modest effect on far-wake behavior. For

example, it is common practice to simulate far-wake behavior with LES codes without even representing the turbine nacelle

and tower (Martínez-Tossas et al., 2015).215
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As a consequence, thanks to the employed scaling and matching criteria, the far-wake behavior is expected to be extremely

similar between the wind tunnel generated wake and the full-scale one. The results section will more precisely support this

claim.

3 Wind turbine models

3.1 The TUM G1 scaled wind turbine220

The TUM G1 is a three-bladed clockwise-rotating (looking downstream) wind turbine, with a rotor diameter D of 1.1 m, a hub

height H of 0.825 m, and rated rotor and wind speeds of 850 rpm and 5.75 ms−1, respectively. The G1 was designed based on

the following requirements (Bottasso and Campagnolo, 2020):

– A realistic energy conversion process and wake behavior;

– A sizing of the model obtained as a compromise between Reynolds mismatch, miniaturization constraints, limited wind225

tunnel blockage and ability to simulate multiple wake interactions within the size of the test chamber;

– Active individual pitch, torque and yaw control in order to test modern control strategies at the turbine and farm levels;

– A comprehensive on-board sensorization.

The turbine has been used for several research projects and numerous wind tunnel test campaigns (Campagnolo et al., 2016,

2020). The main features of the G1 rotor and nacelle are shown in Fig. 1a.230

A brushless motor equipped with a precision gearhead and a tachometer is installed in the rear part of the nacelle and

provides for the rotor torque, which is in turn measured by a torque sensor located behind the two shaft bearings. An optical

encoder, located between the slip ring and the rear shaft bearing, measures the rotor azimuth, while two custom-made load

cells measure the bending moments at the foot of the tower and in front of the aft bearing. Thrust is estimated from the tower

base fore-aft bending moment, correcting for the drag of the tower and rotor-nacelle assembly.235

Each wind turbine model is controlled by its own dedicated real-time modular Bachmann M1 system, implementing super-

visory control functions, pitch-torque-yaw control algorithms, and all necessary safety, calibration and data logging functions.

Measurements from the sensors and commands to the actuators are transmitted via analogue and digital communication. The

Bachmann M1 system is capable of acquiring data with a sample rate of 2.5 kHz, which is used for acquiring aerodynamic

torque, shaft bending moments and rotor azimuth position. All other measurements are acquired with a sample rate of 250 Hz.240

3.2 Full-scale wind turbine

A full-scale wind turbine was designed through a backward-engineering approach to match the characteristics of the G1 scaled

machine. The DTU 10 MW wind turbine (Bak et al., 2013), shown in Fig. 1b, was used as a starting design for this purpose.

This turbine has a rotor diameter of 178 m and a hub height of 119 m, and the modified version used here is termed G178.
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Figure 1. Left: the TUM G1 turbine (Campagnolo et al., 2016). Right: the full-scale DTU 10 MW turbine (from Bak et al. (2013)).

The ratio of the rotor diameter D of the G1 and DTU turbines was used to define the geometric scaling factor nl. The hub245

height H of the full-scale machine was slightly adjusted to match the ratio D/H of the G1 turbine.

The shape of nacelle and tower were kept the same as the DTU reference, creating a mismatch with the G1 turbine. In fact,

the scaled model —due to miniaturization constraints— has a frontal area of the nacelle that is 2.6 times larger than the DTU

turbine; similarly, the tower diameter of the G1 turbine is 49% larger than the DTU machine. This creates a mismatch in the

drag of the nacelle and tower, in their local blockage and vortex shedding.250

The aerodynamic design of the rotor of the DTU turbine was modified, in order to match the characteristics of the G1 in

terms of TSR and circulation distribution (and, as a consequence, also of the thrust). Three versions of the rotor were realized.

The standard G178 uses the same airfoils of the DTU turbine over the entire blade span, while chord and twist distributions

were modified to satisfy the matching criteria. As the root of the G1 blade is located further away from the rotor axis than

in the case of the G178, the circulation is matched only between 20% and 100% of blade span. To account for the effects of255

rotational augmentation, the inboard airfoils were corrected for delayed stall according to the model of Snel (1994).

A second rotor was designed to investigate the effects of the mismatched circulation on wake behavior. To this end, the twist

angle close to the root was modified to decrease the lift inboard and match the circulation of the G1 turbine even in this part

of the blade; all the other parameters of the model were kept the same of the G178 turbine. This second turbine is termed

G178-MC, where MC stands for ‘matched circulation’.260

A third version of the rotor was obtained by eliminating from the G178 the rotational augmentation model, to investigate its

effects. The resulting rotor is termed in the following G178-nRA, where nRA stands for ‘no rotational augmentation’.

9

https://doi.org/10.5194/wes-2020-115
Preprint. Discussion started: 10 November 2020
c© Author(s) 2020. CC BY 4.0 License.

Appendix H: paper 8



Distributions of the twist, chord, lift coefficient and non-dimensional circulation of the G1 and of the full-scale rotors

are shown in Fig. 2. Chord distributions are normalized by their respective arithmetic mean values c0 over the span. Lift

coefficient and circulation are evaluated at rated conditions using the BEM method implemented in the code FAST 8 (Jonkman265

and Jonkman, 2018). The lift coefficient of the G1 is significantly smaller than the one of the full-scale turbines, which is a

result of the low-Reynolds regime of its airfoils. The lower lift is however compensated by a larger chord and different twist

distributions, resulting in a matched circulation from 20% span to the blade tip for the G178 turbine. For the G178-MC model,

the circulation is matched over the whole blade span. The difference in lift and circulation between G178 and G178-nRA are

due to rotational augmentation.270

0 0.2 0.4 0.6 0.8 1

0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

G178
G178-MC
G178-nRA
G1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2. Twist θ, non-dimensional chord c/c0, lift coefficient CL and non-dimensional circulation Γ/RV distributions for the G1 and for

the G178, G178-MC and G178-nRA full-scale turbines.

4 Simulation model

4.1 LES-ALM CFD code

Numerical results were obtained with a TUM-modified version of SOWFA (Fleming et al., 2014), more completely described

in Wang et al. (2018, 2019). The code has been used extensively to numerically replicate wind tunnel tests conducted with G1
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turbines, achieving an excellent correlation with the experimental measurements in a wide range of conditions, including full275

and partial wake overlaps, wake deflection, static and dynamic induction control, and individual pitch control (for example, see

Wang et al. (2019, 2020b, c)).

The finite volume LES solver is based on the standard Boussinesq PISO (Pressure Implicit with Splitting of Operator) incom-

pressible formulation, and is implemented in OpenFOAM (Jasak, 2009). Spatial differencing is based on the Gamma method

(Jasak et al., 1999), where a higher level of upwinding is used in the near wake region to enhance stability. Time marching280

is based on the backward Euler scheme. The pressure equation is solved by the conjugate gradient method, preconditioned

by a geometric-algebraic multi-grid, while a bi-conjugate gradient is used for the resolved velocity field, dissipation rate and

turbulent kinetic energy, using the diagonal incomplete-LU factorization as preconditioner. The turbulence model is based on

the Constant Smagorinsky method (Smagorinsky, 1963).

An actuator-line method (ALM) (Troldborg et al., 2007) is used to represent the effects of the blades, according to the285

velocity sampling approach of Churchfield et al. (2017). The implementation of the actuator lines is obtained by coupling the

CFD solver with the aeroservoelastic simulator FAST 8 (Jonkman and Jonkman, 2018). For improved accuracy, the airfoil

polars of the G1 are tuned based on experimental operational data (Bottasso et al., 2014b; Wang et al., 2020a).

Finally, an immersed boundary (IB) formulation method (Mittal and Iaccarino, 2005; Jasak and Rigler, 2014) is employed

to model the effects of the turbine nacelle and tower.290

4.2 Turbulent inflow

Experiments with the G1 turbine took place in the large boundary layer test section of the wind tunnel at the Politecnico di

Milano, where a turbulent flow is generated passively by the use of trapezoidal spires. Without the spires, the flow at the inlet

has a turbulence intensity (TI) of about 1-2% and a small horizontal variability caused by the presence of 14 fans and internal

transects upstream of the chamber. The non-uniform blockage caused by the spires decelerates the flow close to the wind tunnel295

floor, generating an initial vertical shear; furthermore, large vortical structures develop around the edges of the spires, which

then break down as the flow evolves moving downstream.

Two setups are considered, with two different TI levels. To mimic a typical medium-turbulence offshore condition, 14 type-B

spires were placed side by side 1 m from each other, 1 m downstream of the test chamber inlet. A type-B spire consists of an

equilateral trapezoid and a supporting board. The height of the trapezoid is 2.0 m, while the widths of the bottom and top edges300

are 0.26 m and 0.1 m, respectively. The developed turbulent flow where the turbine is located (19.1 m downstream of the inlet)

has a vertical shear with a power coefficient equal to 0.12, a small horizontal shear and hub-height speed and TI of 5.75 ms−1

and 5%, respectively. A second higher-turbulence inflow was generated using 9 spires of 2.5 m of height, a base of 0.8 m,

placed at a distance of 1.55 m from each other. In addition, 24 rows of 0.23 × 0.23× 0.1 m bricks were placed on the ground,

with 12 bricks in odd rows and 13 bricks in even ones, resulting in a staggered brick distribution. This second configuration305

resulted in a vertical shear with a power coefficient equal to 0.19, a small horizontal shear, and hub-height speed and TI of

5.75 ms−1 and 14%, respectively.
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The same process of passive turbulence generation was simulated by using the LES code. The mesh was generated with

ANSYS-ICEM, obtaining a structured body-conforming grid around the spires (Wang et al., 2019), while the bricks placed

on the floor for the higher turbulence case were modelled by the IB method. Figure 3 shows the mean streamwise velocity310

distribution at the chamber cross-section 3.57 D in front of the rotor. The plots on the left report the results of an experimental

mapping of the flow performed with triple hot wire probes, while the ones on the right report the numerical results for the

medium (top row) and high (bottom row) turbulence cases; notice that measurements are available only 0.2 m above the floor.

A good match between experimental measurements and simulation results can be observed over the whole cross-section of the

test chamber, including not only the vertical shear but also the slight horizontal non-uniformities.315

Figure 3. Streamwise velocity distribution on a cross section of the test chamber 3.57 D in front of the rotor. Left: experimental measure-

ments; right: numerical simulation; top: medium TI case; bottom: high TI case.

For the same plane, Fig. 4 shows the mean (i.e., time-averaged) speed and TI profiles along a vertical line directly in front

of the rotor center. Here again, a good match between experimental measurements and simulation can be observed, except in

the immediate proximity of the floor.

The results of the passive turbulence-generating precursor simulations were sampled on the plane 3.57 D upstream of the

turbine, and used as inlet for the simulations of the turbine and its wake, including the side walls and the ceiling of the320

tunnel. The chamber cross section has a width of 13.84 m and a height of 3.84 m, resulting in some vertical blockage, whose

effects were quantified by running various simulations for increasing values of the chamber height, as reported later. The wind

tunnel grid uses three zones of increasing density, the smallest cells having a size of 0.015 m (i.e., 1.4 · 10−2 D). The ALM

discretization used 108 points over the blade span, i.e. a spacing equal to 4.7 · 10−3 D.

For the full-scale machine, each inflow was scaled in space and time, as previously explained, resulting in flows with the325

same identical characteristics at the two scales. Similarly, the same LES and ALM grids were geometrically upscaled and used
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Figure 4. Mean velocity (left) and turbulence intensity (right) distributions along a vertical line 3.57 D in front of the rotor.

for the full-scale simulations; this means that also the full-scale simulations have the same slight anisotropic blockage effects

of the wind tunnel case.

5 Results

5.1 Code to experiment verification330

First, experimental measurements obtained with triple hot wire probes are compared with the corresponding numerical simula-

tions. Two operating conditions in the partial load regime (region II) are considered: one aligned with the flow and one with a

misalignment angle γ of 20 deg. Table 1 reports the experimental and simulated power and thrust coefficients in the two cases,

in medium TI conditions. Figure 5 reports a comparison of horizontal scans of the wake (Wang et al., 2019) for the aligned

case at various downstream distances for both the medium and high TI cases.335

Table 1. Experimental and simulated power and thrust coefficients for the G1 turbine, in the medium TI Case.

Coefficient CP CT

Case Experiment Simulation Experiment Simulation

γ = 0 deg 0.416 0.420 0.881 0.851

γ = 20 deg 0.364 0.358 0.810 0.742

The figure shows hub-height horizontal time-average streamwise velocity (top panel) and turbulence intensity (bottom panel)

profiles. While the match of the wake profile is excellent for all locations, the numerical results slightly overestimates turbulence

intensity in the center of the near wake region. Overall, simulation and experimental results are in very good agreement.
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Figure 5. Horizontal hub-height profiles of normalized time-average streamwise velocity and turbulence intensity, for the medium (top) and

high (bottom) inflow TI cases. Black o symbols: experimental results; blue dashed line: G1 simulations.

5.2 Scaled to full-scale comparisons

Next, having established a good correspondence between the numerical results and experimental measurements, simulations340

were conducted with the full-scale turbines to understand the effects of mismatched quantities.

Table 2 shows the turbine power and thrust coefficients for the different cases, considering the G1 and three G178 turbine

models. As expected, the power coefficient of the G1 turbine is lower than the one of all full-scale G178s, because of the

lower efficiency caused by the different Reynolds regime. On the other hand, there is a good match of the thrust coefficient,

especially for G178; the nRA and MC versions produce a slightly lower lift in the inboard section of the blade, and hence have345

a marginally lower CT .

Figure 6 gives a qualitative overview of the wakes of the G1 and G178 turbines for the aligned and misaligned cases.

The wake deficits are similar, except for the central region of the near wake, as expected. Even this qualitative view shows a

significant effect of the much larger nacelle of the G1. This difference however disappears moving downstream, and the far

wakes of two turbines appear to be almost identical.350
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Table 2. Power and thrust coefficients for the different turbine models in the two considered operating conditions.

Coefficient CP CT

Turbine model G1 G178 G178-nRA G178-MC G1 G178 G178-nRA G178-MC

γ = 0 deg 0.420 0.475 0.472 0.470 0.851 0.831 0.827 0.822

γ = 20 deg 0.358 0.421 0.418 0.417 0.742 0.731 0.727 0.723

Figure 6. Wakes of the scaled G1 and full-scale G178 turbines. Left: aligned case; right: yaw misaligned case.

A more precise characterization of the differences between the scaled G1 model and the realistic full-scale G178 turbine is

given by Fig. 7 (medium TI) and 8 (high TI), considering the misaligned case. For both figures, the first row shows the mean

speed in the longitudinal direction, while the second and third rows show the Reynolds shear stress components u′u′/u2
0 and

u′v′/u2
0, respectively, where the prime here indicates a fluctuation with respect to the mean.

Results indicate an excellent match between the scaled and full-scale wakes, for both TI levels. Some differences only appear355

in the peaks of u′u′/u2
0 immediately downstream of the rotor. However, the velocity profiles are remarkably similar already at

3 D, notwithstanding the differences around the hub and blade inboard sections between the two machines. Similar conclusions

are obtained for the aligned case.

5.3 Effects of unmatched inboard circulation and rotational augmentation

The effects of unmatched inboard circulation and rotational augmentation are quantified by computing the differences in ū/u0,360

u′u′/u2
0 or u′v′/u2

0 at different downstream locations. Results are shown in Fig. 9, where differences are computed subtracting

the G178 solution from the G178-MC or G178-nRA ones. As indicated by the figure, these effects are extremely small, and

possibly discernible from numerical noise only in the immediate proximity of the rotor.
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Figure 7. Hub-height profiles of normalized time-average streamwise velocity (top) and shear stresses (center and bottom), in the misaligned

and medium TI condition.
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Figure 8. Hub-height profiles of normalized time-average streamwise velocity (top) and shear stresses (center and bottom), in the misaligned

and high TI condition.
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Figure 9. Difference in the profiles of the normalized time-average streamwise velocity (top) and shear stresses (center and bottom) along

hub-height horizontal lines, caused by rotation augmentation (dash-dotted blue line) and by a mismatched circulation close to the root (red

solid line and ◦ symbols). Results are for the yaw misaligned and medium TI condition.

5.4 Effect of nacelle size and unmatched CP on swirl

For the wind-aligned operating condition, Fig. 10 shows the delta wake velocity field obtained by subtracting the G178-MC365

from the G1 solution, looking upstream. The panel on the left represents the near wake 1 D immediately behind the rotor disk

plane, while the panel on the right reports the far wake at 8 D. The color field represents the difference in the non-dimensional

streamwise velocity component ∆(ū/u0), whereas the arrows represent differences in the in-plane velocity vectors.

In this case, since the circulation is matched, there are only two factors that could result in non-zero difference fields: the

larger frontal area of the nacelle (and, similarly, of the tower) of the G1, and its smaller power coefficient caused by the Reynolds370

mismatch. The impacts of these two factors are clearly visible in the near wake, respectively looking at the streamwise and

in-plane velocities.

In fact, the negative streamwise velocity bubble at the center of the rotor is a result of the larger blockage of the G1 nacelle.

The effect of the tower differs from that of the nacelle. While the nacelle is almost a pure blockage in the center of the rotor

where wake recovery is the weakest, the presence of the tower wake can increase the local turbine wake recovery by increasing375

turbulence intensity. As the wake rotates counter-clockwise when looking upstream as in Fig. 10, the flow influenced by tower

is also convected towards the negative y direction.
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Figure 10. Difference in the wake velocity fields between the G1 and the G178-MC turbines, looking upstream. Color field: non-dimensional

streamwise velocity difference ∆(ū/u0); arrows: difference in the in-plane velocity vectors. Left: near wake 1 D immediately behind the

rotor disk plane; right: far wake at 8 D.

When looking upstream, the rotor spins counterclockwise, whereas the wake rotates clockwise by the principle of action

and reaction. Compared to the wake of the G178-MC turbine, the wake of the G1 rotates at a slower pace, as indicated by

the counterclockwise rotation of the difference field shown in the picture. The slower rotation of the G1 wake is a direct380

consequence of its smaller power coefficient that, for the same TSR, implies also a reduced torque coefficient. As expected,

the mismatch in the swirl rotation is only concentrated close to the hub, and decays quickly with radial position.

As the flow propagates downstream and the wake progressively recovers, differences between the velocity fields decay and

the effects of the mismatches can hardly be seen at 8 D. The only difference that can still be identified is the effect of the larger

tower. This results in some blockage close to the ground that has not yet fully recovered at this distance, resulting in about385

a 6% difference in the longitudinal velocity component immediately above the floor and, hence, in a slightly enhanced shear

below hub height. Elsewhere, differences between the two fields never exceed 3%.

5.5 Effect of wind tunnel blockage

Considering the G1 turbine, the wind tunnel test chamber has a height hwt = 3.49 D and a width wwt = 12.49 D, resulting

in a cross sectional area Awt = 43.59 D. Although the resulting area ratio Awt/A= 55.5 is relatively large, the small vertical390

ratio hwt/D can cause some anisotropic blockage. To quantify this effect, numerical simulations were conducted in domains

of increasing height from 1.75 D to 10.47 D, as shown in the left panel of Fig. 11. The actual wind tunnel height is indicated

by a red square mark in the figure.

The right panel of Fig. 11 shows the non-dimensional power increase ∆P/P∞ vs. the area ratio Awt/A, where P∞ is the

power for the largest domain —assumed to be blockage-free. Results indicate a power increase caused by blockage of about395

1.5%.
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Figure 11. Wind tunnel blockage effect. Left: cross sectional areas; right: percent power increase with respect to the unrestricted flow.

5.6 Wind farm control metrics

The previous analysis has shown that the wake of the G1 turbine has a very close resemblance to the one of the full-scale G178,

although some differences are present in the near wake region. However, it is difficult to appreciate the actual relevance of these

differences, and a more practical quantification of the accuracy of the match would be desirable. The G1 turbine is mostly used400

for studying wake interactions within clusters of turbines, and for testing mitigating control strategies. This suggests the use of

wind-farm-control-inspired metrics for judging the differences between the scaled and full-scale machines.

The first metric considered here is the available power ratio Pa(x/D)/P0 = V̄ 3(x/D)/V 3
∞ downstream of the turbine,

where P0 is the power output of the turbine, V∞ is the ambient wind speed at hub height, and V̄ (x/D) is the rotor-effective

wind speed at the downstream location x/D. The available power ratio depends on the shape of the wake, its recovery and405

trajectory, and it was computed from the longitudinal flow velocity component in the wake on the area of the rotor disk at

various downstream positions directly behind the wind turbine, as shown in Fig. 12.

Figure 12. Wake of the G1 turbine for the yaw misaligned case. The black dashed lines indicate the locations of virtual downstream turbines.

For the 20 deg misaligned case, the available power ratio results are shown in the left panel of Fig. 13. As shown in the figure,

the available power changes moving downstream because the wake expands, recovers and —since the turbine is misaligned
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with respect to the wind vector— shifts progressively more to the side of the impinged (virtual) rotors. The difference of410

the available power behind the G1 and G178 turbines is small, and decreases quickly moving downstream. The figure also

shows the effects of blockage, by reporting the results for the actual wind tunnel size using a solid line, and the ones for the

unrestricted case using a dashed line; here again, this effect is very modest.
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Figure 13. Left: available power ratio in the wake Pa/P0 as a function of downstream position x/D. Right: change of wind direction ∆Γ

caused by the curled wake as a function of downstream position x/D. Both results are for the 20 deg misaligned and medium TI case. Black

◦ symbols: G1; red � symbols: G178. Solid lines: actual wind tunnel size; dashed lines: unrestricted case (no blockage).

The second metric considered here is the ambient flow rotation in the immediate proximity of a deflected wake. By mis-

aligning a wind turbine rotor with respect to the incoming flow direction, the rotor thrust force is tilted, thereby generating a415

cross-flow force that laterally deflects the wake. As shown with the help of numerical simulations by Fleming et al. (2018),

this cross-flow force induces two counter rotating vortices that, combining with the wake swirl induced by the rotor torque,

lead to a curled wake shape. As observed experimentally by Wang et al. (2018), the effects of these vortices result in additional

lateral flow speed components, which are not limited to the wake itself but extend also outside of it. By this phenomenon, the

flow direction within and around a deflected wake is tilted with respect to the upstream undisturbed direction. Therefore, when420

a turbine is operating within or close to a deflected wake, its own wake undergoes a change of trajectory —termed secondary

steering— induced by the locally modified wind direction.

The change in ambient wind direction ∆Γ caused by the curled wake is reported in the right panel of Fig. 13 as a function of

the downstream distance x/D; even in this case, the effects of blockage can be appreciated by comparing the solid and dashed

lines. The angle ∆Γ was computed from the wake velocity components, averaging over the rotor disk areas already used for425

the analysis of the available power. Here again the difference in the change of ambient wind direction behind the G1 and G178

turbines is quite small. A non-perfect match is probably due to the slightly different strength of the central vortex generated in

response to the rotor torque. On the other hand, the two counter-rotating vortices caused by the tilted thrust are well matched

—given the good correspondence of this force component between the two models.
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5.7 Effect of integral length scale430

The ILS of the wind tunnel flow was obtained by first computing the time-autocorrelation of the wind speed at one position in

front of the turbine, and then multiplying the result by the mean wind speed. The length scales obtained from measurements in

the wind tunnel and the simulated flow resulted in nearly identical values, as already shown by Wang et al. (2019). A second

estimate of the ILS was based on the space-autocorrelation between simultaneous values of the simulated wind speed at two

points in front of the turbine. For the size of the G1 turbine, this second estimate of the ILS resulted in a full-scale value435

of approximatively 142 m. On the other hand, the IEC 61400-1 international standards prescribe space-autocorrelation-based

lengths of 170 m in Ed. 2 (IEC 61400-1, 1999) and of 340 m in Ed. 3 (IEC 61400-1, 2005). Although the ILS presents a

significant natural variability at each location and across different sites (Kelly, 2018), the value achieved in the wind tunnel

with the G1 is undoubtedly in the low range of naturally occurring scales.

To understand the effects of the partially mismatched ILS on wake behavior, two turbulent inflows were generated, differing440

only in this parameter. Unfortunately, however, the natural development of two inflows with different ILS values but exactly

the same TI and vertical shear is clearly an extremely difficult task. To avoid this complication, the code TurbSim was used,

selecting the Kaimal model and prescribing directly the turbulence scale parameter (see Eq. (23) in Jonkman (2009)). The

resulting turbulent wind time histories were specified as Dirichlet inflow conditions for the subsequent LES-ALM simulations.

The two resulting developed CFD flows are characterized by an ILS of 176 m and 335 m, and have a vertical shear exponent445

0.18 and hub-height speeds and TI of 11.3 ms−1 and 6.0%, respectively. These two different flows were used for conducting

dynamic simulations with the G178 turbine in a 20 deg yaw misaligned condition.

The ILS indicates the dimension of the largest coherent eddies in the flow. Hence, the main effect of a larger ILS is that of

inducing a more pronounced meandering of the wake. To quantify this effect, the instantaneous wake center was computed

according to the deficit-weighted center of mass method (España et al., 2011). The standard deviation of the horizontal wake450

position 5 D downstream of the rotor was found to be equal to 0.089 D for the low ILS (176 m) case, and equal to 0.12 D for

the high ILS (335 m) one, according to expectations.

The effects of a different ILS are much smaller, although still appreciable, when considering mean quantities. Figure 14

reports the profiles of speed and shear stresses at different downstream distances. The mean velocity profile is only very

slightly affected, with a maximum change of about only 2%. A clearer effect is noticeable in the shear stresses at the periphery455

of the wake.

6 Conclusions

This paper has analyzed the realism of wind-tunnel-generated wakes with respect to the full-scale case. In the absence of

comparable scaled and full-scale experimental measurements, a hybrid experimental-simulation approach was used here for

this purpose. A LES-ALM code was first verified with respect to detailed measurements performed in a large boundary layer460

wind tunnel with the TUM G1 scaled wind turbine. Next, the same code —with the same exact algorithmic settings— was
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Figure 14. Hub-height profiles of normalized time-average streamwise velocity (top) and shear stresses (center and bottom), for the low and

high ILS cases in yaw misaligned conditions.

used to simulate different full-scale versions of the scaled turbine. These different full-scale models were designed to highlight

the effects of mismatched quantities between the two scales.

Clearly, this approach has some limits and therefore falls short of providing a comprehensive answer to the realism question.

In fact, the comparison is clearly blind to any physical process that is not modelled or that is not accurately resolved by the465

numerical simulations. Additionally, it is assumed that a numerical model that provides good quality results with respect to

reality at the small scale is also capable of delivering accurate answers at the full scale.

Keeping in mind these limits, the following conclusions can be drawn from the present study:

– Overall, the far (above approximatively 4 D) wake of the G1 scaled wind turbine is extremely similar to the wake of

a corresponding full-scale machine considering all classical mean metrics, i.e. wake deficit, turbulence intensity, shear470

stresses, wake shape and path, both in aligned and misaligned conditions.

– Small differences of fractions of a degree are present in the local wind direction changes caused by the curled wake,

because of a different swirl generated by the lower aerodynamic torque of the scaled model. The trends in terms of

downstream distance and yaw misalignments (not shown here) are however extremely similar.

– The effects of blockage are very limited in the large wind tunnel of the Politecnico di Milano, with differences in power475

of about 1.5% and negligible effects on other metrics.
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– The effects of rotational augmentation, unmatched inboard circulation and nacelle size are clearly visible in the inner

near wake region. However, they decay quickly with downstream distance, and are typically small enough not to alter

the qualitative shape of the speed deficit, turbulence intensity and shear stresses distributions in this region of the wake.

– The lower ILS of the flow generated in the wind tunnel at the scale of the G1 has very modest effects on mean wake480

metrics, although it causes a reduced meandering.

In summary, it appears that the G1 scaled turbine faithfully represents not only the far wake behavior, but also produces a

very realistic near wake. This is obtained by a design of the experimental setup that matches the turbulent inflow, the rotor

vortex shedding, the geometry and strength of the helical tip vortices and the strength and shape of the speed deficit, which are

all the main physical effects dictating the near-wake evolution. The mismatches that are present in the near-wake inner core485

(due to a different swirl, inboard circulation, rotational augmentation and a different geometry of the nacelle) do leave a visible

mark, but overall do not seem to significantly alter the behavior of the wake, as expected. The larger size of the tower leaves a

more visible trace further downstream, because it affects the wake recovery by generating a local extra turbulence intensity, in

turn altering shear below hub height.

Overall, the realism of both the near and far wake justify the use of the TUM G1 (and similarly designed) scaled turbine for490

the study of wake physics and applications in wind farm control and wake mixing.

The present experimental setup can be further improved, for an even increased realism and expanded capabilities. Regarding

the inflow, several facilities have been recently designed or upgraded to generate unstable boundary layers (Chamorro and

Porté-Agel, 2010), tornadoes and downbursts (WindEEE, 2020), or for the active generation of turbulent flows (Kröger et al.,

2018). Regarding the models, a more realistic geometry and size of the nacelle and tower can be achieved at the price of a495

further miniaturization. Aeroelastic effects can be included by using ad hoc scaling laws (Canet et al., 2020) to design flexible

model rotor blades (Bottasso et al., 2014a; Campagnolo et al., 2014). Advances in 3D printing and component miniaturization

will certainly lead to advancements in the design of ever more sophisticated and instrumented models. Regarding measurement

technology, a more detailed characterization of salient features of the flow can be obtained by PIV or lidars, for example in

support of the study of dynamic stall, vortex and stall-induced vibrations.500

Although advancements in the testing of scaled wind turbines come with significant design, manufacturing, measurement

and operational challenges, wind tunnel testing remains an extremely useful source of information for scientific discovery, the

validation of numerical models and the testing of new ideas. A quantification of the realism of such scaled models is therefore

a necessary step in the acceptance of the results that they generate.

Code and data availability. The LES-ALM program is based on the open-source codes foam-extend-4.0 and FAST 8. The data used for the505

present analysis can be obtained by contacting the authors.
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