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Abstract

Designing motions for legged robots is a computationally challenging problem due to the

fact that their mathematical models are expressed as highly coupled nonlinear systems of

equations subject to unilateral constraints. In order to counter this shortcoming this thesis

introduces the utilization of databases/libraries of Motion Primitives. These motions are

created offline through an optimization process and are later pre-processed in order to

allow for online computations while retaining a degree of optimality. The feasibility and

advantages of this approach are validated on different application scenarios.

At first, we tackle the challenge of online motion planning for walking robots with point

feet on uneven terrain. For that, this thesis introduced an online motion planning algorithm

and a motion generation methodology which uses a database of Motion Primitives as

training examples for a Gaussian Process Regression. The regression is used when there is

no match between the terrain variation and the Motion Primitives in the database. The

key points that allowed our approach to be utilized online is the fact that the motion

planning algorithm is based on a best first graph search approach and that the regression

has a small inference time. Finally, the dynamic feasibility of the motions generated by

the regression methodology is checked in the zero dynamics of the robot.

As a next step, the thesis introduces a novel way to improve the settling time of tran-

sitions between different periodic walking motions of an underactuated robot. The slow

convergence is credited to the unactuated degree of freedom which prevents the state of the

system from entering the domain of attraction of the target orbit close to the fixed point

of the Poincaré Map. At first the problem is introduced with the help of the Hybrid Zero

Dynamics framework and Optimal Control. Later a Markov Decision Process is formu-

lated and solved with Reinforcement Learning in order to learn multi-step transitions that

reduce the settling time. The experimental results suggest that the proposed methodology

performs better than a one-step transition for 84.34% of all the considered transitions for

a simulated walking robot.

The final contribution and proof of concept comes from the field of balancing, where

motions are usually designed using simplified models of the Center of Mass and feedback

control without accounting for energy efficiency. For that, a Motion Primitive switching

methodology is introduced where samples of optimal motions are chosen online based on a

Euclidean distance metric. The chosen sample is used to provide the reference trajectories,

torques and Ground Reaction Forces to be tracked. In order to satisfy all of the model-

ing assumptions while tracking the reference values, a Quadratic Program is solved online

where the dynamics of the robot, friction cone, Center of Pressure and torque and state

bounds are treated as constraints. Convergence to the desired trajectories is dictated by

a Control Lyapunov Function constraint which is introduced in the Quadratic Program.

The methodology is evaluated on a four-link simulated robot where is shown that switching

between Motion Primitives provides energy efficient balancing motions for different distur-

bance situations. At the same time the methodology provides more efficient motions for

different disturbance forces when compared to a non-switching approach, where a Motion

Primitive is chosen only once based on the post-impact robot state.
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Zusammenfassung

Der Entwurf von Bewegungen für Roboter mit Beinen ist ein rechnerisch anspruchs-

volles Problem, da ihre mathematischen Modelle als hoch gekoppelte nichtlineare Glei-

chungssysteme mit einseitigen Nebenbedingungen ausgedrückt werden. Um diesem Man-

gel entgegenzuwirken, wird in dieser Promotion die Verwendung von Bewegungsprimitiven

Datenbanken/Bibliotheken vorgestellt. Diese Bewegungen werden offline durch einen Op-

timierungsprozess erzeugt und später vorverarbeitet, um Online-Berechnungen unter Bei-

behaltung einer gewissen Optimalität zu ermöglichen. Die Machbarkeit und die Vorteile

dieses Ansatzes werden an verschiedenen Anwendungsszenarien validiert.

Zuerst stellen wir uns der Herausforderung der Online-Bewegungsplanung für Laufrobo-

ter mit Spitzenfüßen auf unebenem Gelände. Für diese Dissertation wurde ein Online-

Algorithmus zur Bewegungsplanung und eine Methodik zur Bewegungserzeugung ein-

geführt, die eine Datenbank mit Bewegungsprimitiven als Trainingsbeispiele für eine Gauß-

Prozess-Regression verwendet. Die Regression wird verwendet, wenn keine Übereinstimmung

zwischen der Geländevariation und den Bewegungsprimitiven in der Datenbank besteht.

Die Schlüsselpunkte, die es uns ermöglichten, unseren Ansatz online zu nutzen, sind die

Tatsache, dass der Bewegungsplanungsalgorithmus auf einem Best First Graph Suchansatz

basiert und dass die Regression eine kleine Inferenzzeit hat. Schließlich wird die dynami-

sche Machbarkeit der durch die Regressionsmethode erzeugten Bewegungen in der null

Dynamik des Roboters überprüft.

Als nächster Schritt stellt die Dissertation eine neue Art zur Verbesserung der Beru-

higungszeit von Übergängen zwischen verschiedenen periodischen Laufbewegungen eines

unterbetätigten Roboters. Die langsame Konvergenz wird dem unbetätigten Freiheitsgrad

zugeschrieben, der verhindert, dass der Zustand des Systems in die Anziehungsdomäne des

Zielumlaufbahns nahe dem Fixpunkt der Poincaré-Karte gelangt. Zuerst wird das Problem

mit Hilfe des Hybriden Nulldynamischen Rahmens und Optimaler Steuerung vorgestellt.

Später wird ein Markov-Entscheidungsprozess formuliert und mit Reinforcement Learning

gelöst, um mehrstufige Übergänge zu lernen, die die Beruhigungszeit verkürzen. Die expe-

rimentellen Ergebnisse deuten darauf hin, dass die vorgeschlagene Methodik besser funk-

tioniert als ein einstufiger Übergang für 84,34% aller betrachteten Übergänge für einen

simulierten Laufroboter.

Der letzte Beitrag und Machbarkeitsnachweis stammt aus dem Bereich des Balanzierens,

wo die Bewegungen in der Regel mit vereinfachten Modellen des Massenschwerpunkts und

Rückführung ohne Berücksichtigung der Energieeffizienz gestaltet werden. Für diese Bewe-

gung wird eine Schaltmethode von Primitiven eingeführt, bei der Stichproben von optima-

len Bewegungen online auf der Grundlage einer euklidischen Entfernungsmetrik ausgewählt

werden. Die ausgewählte Stichprobe wird verwendet, um Referenztrajektorien, Drehmo-

mente und Bodenreaktionskräfte bereitzustellen, die verfolgt werden sollen. Um alle Model-

lierungsannahmen bei der Verfolgung der Referenzwerte zu erfüllen, wird ein quadratisches

Programm online gelöst, bei dem die Dynamik des Roboters, Reibungskegel, Druckmittel-

punkt und Drehmoment- und Zustandsgrenzen als Nebenbedingungen behandelt werden.

Die Konvergenz zu den gewünschten Trajektorien wird durch eine Control Lyapunov Funk-

tion Nebenbedingung bestimmt, die im Quadratischen Programm eingeführt wird. Die

Methodik wird an einem Vierkörper simulierten Roboter evaluiert, wo gezeigt wird, dass
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das Umschalten zwischen Bewegungsprimitiven energieeffiziente Balanzierbewegungen für

verschiedene Störungssituationen bietet. Gleichzeitig bietet die Methodik effizientere Be-

wegungen für verschiedene Störkräfte im Vergleich zu einem nicht schaltenden Ansatz, bei

dem ein Motion Primitive nur einmal basierend auf dem Zustand nach dem Aufprall des

Roboters ausgewählt wird.
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Γα,Γβ Controller corresponding to the Bézier coefficients α and β
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1 Introduction

Legged robots are electromechanical systems which use limbs in order to interact with

their environment. Their design draws inspiration from nature and most specifically from

the biomechanical properties of the human and animal body. Until now most of the legged

robots are research platforms in order to advance control and perception algorithms, but

the ultimate objective of the current research in legged robots is to be able to deploy

them in real-world applications and assist or replace humans in different tasks. The most

prominent examples are Search and Rescue missions in human unfriendly environments

(Fig. 1.1a), planet exploration (Fig. 1.1b) and human care-taking (Fig. 1.1c).

(a) Lauron V developed by FZI suitable for
Search & Rescue applications. [1]

(b) Crawler robot designed by DLR capable
for planetary exploration. [2]

(c) Asimo by Honda with the potential of as-
sisting elderly people. [3]

Fig. 1.1: Legged robots with the potential of assisting in human unfriendly environments and
care-taking.

A special category of legged robots are the humanoid robots (like ASIMO in Fig. 1.1c).

This kind of robots combine the mobility of legs - that theoretically allow them to maneuver

on different terrains - and the manipulation capabilities of arms. There has been special

1



1 Introduction

interest for humanoids robots during the last years and special benchmark contests have

been established in order to push forward their capabilities, such as the DARPA Robotics

Challenge [4]. In this contest humanoid robots shall perform a rescue scenario which

among others involves using a cutting machine, turning a valve and even driving a vehicle.

Interesting competitors are the ATLAS robot which is used by various teams in the USA

and the humanoid of the WALK-MAN project from the Italian Institute of Technology [5]

(see Fig. 1.2).

In the real world applications, robots are expected to operate without failures or at

least be able to overcome failures. In addition, robustness is expected with respect to

model and sensor uncertainties. Due to this prioritization, energy efficiency on real world

applications is often not taken into account during the description of the robot behavior

or receives minor importance. Another reason for not prioritizing energy efficiency is the

fact that online solutions of the robot and task dynamics are computationally expensive

and the inclusion of efficiency will lead to an increase in the computational overhead. That

is also a prominent reason why simplified models of the Center of Mass (CoM) have been

introduced for humanoid robots, which exclude the dynamic coupling of the robot links

through the joints [6, 7].

(a) ATLAS [8] (b) WALK-MAN [9]

Fig. 1.2: Representative competitors of the 2016 DRC.

In order for legged robots to operate, a task description is necessary. This task descrip-

tion (for example walking with a desired velocity or reaching an object while not falling)
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is fed to a task planner which will provide desired trajectories on the chosen task space or

torque/force inputs which solve the task. Typical task spaces are the joint space and the

Cartesian space. In order for the task planner to provide a plan, a robot representation is

necessary, i.e. a robot model. In case of walking, simplified models of the CoM are accept-

able, but in reaching tasks a multi-body model of the robot shall be used. Afterwards, the

task plan and - if necessary - the robot model are forwarded as inputs to a controller that

will compute the necessary commands to the robot joints such that the task is realized.

These commands are computed by combining the task plan and feedback from the state

of the robot in order to compensate for model and sensor uncertainties. If necessary the

robot state can also be fed back to the task planner, in case the task planner needs this

information in order to decide the next or a new task. This is the typical operation scheme

of legged robots and it is summarized in Fig. 1.3.

Task
description

Task planner

Model

Controller
Command

State feedback

Fig. 1.3: Typical operational scheme of legged robots

Regarding the most common tasks that need to be undertaken by legged robots, these

are walking and balancing. A walking task plan can be encoded as desired torque inputs

and/or trajectories of the actuated robot joints that will propel the robot body towards

the desired direction with a desired velocity and/or a final kinematic configuration. In

addition, the walking plan can be defined as desired trajectories of the CoM, Zero Moment

Point (ZMP) or Center of Pressure (CoP) [10, 11]. Similarly, a balancing task plan can

also be encoded as desired trajectories and/or generalized forces for the joints or as desired

trajectories of the CoM and ZMP or CoP, but with the difference that they will bring the

robot to an equilibrium state. The manipulation of the ZMP or CoP consists of keeping

it within the base of support of the robot and is necessary in order to prevent foot tilting

and falling. If the manipulation of the ZMP or the CoP is not successful, the manipulation

of the Capture Point (CP) can be utilized which will lead to a stepping strategy [12]. For

these purposes, the knowledge and manipulation of the Ground Reaction Forces (GRFs)

are necessary. Further common tasks are overtaking obstacles [13] which is an extension

of walking with the additional task of clearing an obstacle twice with the current swing

leg. There is also the task of running which can be defined as an extension of walking

with an aerial face [14, 15]. For robots with point feet, the balancing task with both feet

in place cannot be realized since the ZMP and CoP cannot be defined for such robots.

Finally, the ATLAS robots by Boston Dynamics recently demonstrated the execution of
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1 Introduction

highly dynamic tasks, such as parkour and gymnastic maneuvers [16].

As already hinted above, there are two approaches for the modeling of legged robots:

The utilization of simplified models of the CoM and the use of multi-body models. The

simplified models of the CoM assume that the total mass of the robot is concentrated on

the CoM which moves at a constant height. Well known representatives of this category are

the Linear Inverted Pendulum (LIP) (Fig. 1.4a) and the Reaction Wheel Linear Inverted

Pendulum (RWLIP) (Fig. 1.4b) [6, 7].

m
y0

τankle

(a) Linear Inverted Pendulum

m, IRW

y0

τhip

τankle

(b) Linear Inverted Pendulum with flywheel

In these two simplified models m is the total mass of the robot which is assumed to be
concentrated on the CoM, y0 is the constant height of the CoM, τankle is the torque around
the ankle joint and τhip is the torque around the hip which can model the upper body angular
momentum of the robot. Finally, IRW is the inertia of the flywheel.

The multi-body dynamic models, on the other hand, are based on the assumption that

the robot links are rigid bodies. With such models and depending on the task, the plan can

be defined on the joint level and/or the task space. Once the desired positions and velocities

have been computed, the corresponding accelerations can be provided through a derivation

of the velocities. These three inputs can be used as inputs to the multi-body dynamic model

in order to ensure that the desired trajectories are dynamically feasible. This will be done

by checking if the resulting nominal torque inputs and GRFs are respecting specified

modeling assumptions.

Once a task has been defined and a model representation has been chosen, the task

planner will compute the reference motion that executes the task. There are three main

approaches regarding the task planner: simplified model based approaches, optimization

based approaches and the utilization of learning methods. Simplified model based ap-

proaches are combined with simplified models of the CoM. In the case of dynamic walking,

a desired ZMP trajectory is computed and its tracking will yield the CoM trajectory. If

static walking is used, the task planner will directly provide the CoM trajectory. Regard-

ing the trajectory of the foot of the swing leg, it has been pre-defined. The solution of the

inverse kinematics and differential kinematics of the CoM and the foot in swing motion

will yield the desired trajectories of each Degree of Freedom (DoF) (Part A , Chapter 1

in [17]). If the robot has servo motors, the desired joint positions and velocities can be

commanded to the servo-motor drive. Otherwise, if the robot is torque-driven the desired
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trajectories can be tracked with a PID controller.

An interesting approach for applying torque commands on robots which are driven by

servo motors has been proposed in [18], where the concept of the torque transformer is

introduced. With that approach the desired joint torques can be transformed into joint

position command signals, given that the time constants of the servo motors are known.

The optimization based approaches use multi-body models with which they can compute

feedforward inputs for the robot joints. Common approaches are the utilization of Optimal

Control [19] or static optimization where the desired joint trajectories are expressed as

parametrized polynomials [20]. These two approaches usually take place offline since they

are computationally expensive. However, if the optimization problem can be brought in a

computationally efficient form, like a Quadratic Program (QP), it can be potentially solved

online, i.e. while the robot executes its motion [21, 22]. If parametrized polynomials are

used for the desired trajectories, the approach of input-output feedback linearization with

a PD feedback controller can be used to track the desired trajectories (Ch. 5 in [23]). If

the optimization outcome is feedforward torque inputs, they can be directly commanded

to the robot together with a PD feedback controller.

The utilization of learning approaches does not necessarily require the equations of

motion of the robot, since a simulation environment is adequate. It could be argued that

these models are extensions of the optimization based approaches, since they converge to

a solution by searching for a minimum of an objective function, but we decided to consider

them in a different category due to the stochasticity involved in learning approaches. In

the case of neural networks the objective function to be minimized is the error between the

training data and the current output of the network [24, 25]. In the case of Reinforcement

Learning a reward function needs to be maximized [26, 27]. The desired trajectories and

inputs can be tracked, respectively applied, with the techniques described above. Learning

approaches can also be combined with each other, such that the weights of a neural network

can be learned through evaluationary apporoaches [28]. Worth mentioning is also the case

of the Central Pattern Generators (CPGs) where different parts of the robot are modeled

as an oscillator whose parameters can be learned through Reinforcement Learning [29, 30].

As it is shown in this section, there are many approaches for generating motions for

legged robots. However, as we will see in the next section, there is a challenging problem

that still remains to be alleviated: Even though there are different kind of humanoids that

can perform various tasks, when it comes to online motion generation, the vast majority

of them is confined in quasi-static motions, since dynamic motions involve a great amount

of computations that have to be performed online. This is due to the fact that humanoids

possess highly nonlinear and non-convex dynamics and are subject to different kind of

physical constraints as well as unilateral constraints that are imposed on the GRFs [31].

As a result, integrating the equations of motion online in order to compute a motion for the

robot - as for example when using Optimal Control [32] - is computationally difficult if not

impossible. And due to the computational overhead accompanying the integration of the

equations of motion and the online solution of an optimization problem, valid joint torques

that will lead to an energy efficient motion cannot be calculated online. However, despite

this challenge, the research community has been able to make contributions towards the

online motion generation for legged robots.
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1 Introduction

1.1 State of the Art

So far, considerable progress has been made towards the online generation of robot motions

with the utilization of simplified models of the CoM like the LIP and the RWLIP, such

that humanoids were able to walk on different even and uneven terrains, as well as perform

stepping strategies for rejecting severe perturbations [33, 34]. Even though these models

have proven very useful for the online motion generation since they allow for fast compu-

tations, they result in unnatural hip motions, since the ZMP has to be transferred from

the previously supporting foot to the next one during the double support phase. Another

limitation is that as already suggested, these models are oversimplifications. That means

they cannot be used to design energy efficient motions, since they do not take into account

the torque inputs to each actuated joint. In addition, even though the RWLIP has been

successful in simplifying balancing studies by utilizing a reaction wheel as a representation

of upper body angular momentum, a motion designed with it is not easily transferred on a

real humanoid, but as suggested in [7] this topic is currently under work. Finally, there is a

simplified model of the CoM, namely the Spring Loaded Inverted Pendulum [35], which has

been used for the design of running motions for simulated robots and analysis of running

[36, 37].

Further approaches for the online motion planning utilize the full body dynamics of the

robot and can provide energy efficient motions which are easily transferable to robots. The

only drawback is that online optimization approaches like Model Predictive Control (MPC)

are more likely to be successful with robot models that possess few DoFs. When it comes to

robots with more DoFs the application of MPC would require a linearization of the robot

dynamics and the tuning of many parameters. Unfortunately, the linearization of multi-

body systems is only valid within a very small vicinity around the point of linearization

and therefore require very small control times. As a consequence, the online solutions

of the underlying QP that will provide the joint inputs for the next control step shall

take place in a very short time, which is computationally very challenging. A work worth

mentioning towards this direction is the concept of Sequential Action Control (SAC) [38],

which computes online an improvement of the nomimal control input. Additionally, the

work on Nonlinear Model Predictive Control (NMPC) [39] might evolve and allow for its

successful application on robots with multiple DoFs. Nonetheless, linear MPC has been

applied by Powell et al. [40] in an intelligent way using a lower state representation of a

5-link biped robot without feet, namely the Hybrid Zero Dynamics (HZD). An alternative

approach to confront the computation overhead inherent in MPC problems, is to make

the prediction horizon equal to 0. That means that robustness is compromised in favor

of feasibility, since in that case only one and smaller QP shall be solved for the current

control step. Due to the lower dimensionality, this approach has been successful on the

motion stabilization of simulated humanoids [22].

A different approach that allows for motion generation in an online fashion and is

suitable for force controlled robots is the utilization of compliant methodologies which

calculate the joint torques in order to comply with desired forces applied on different

points of the robot. One of the first representatives of this category is the Virtual Model

Control (VMC), where a fictional force is applied on the robot and through the Jacobian

transformation a torque command for each DoF is calculated [41]. In the work of Stephens
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1.2 Contributions

et al. [42] a dynamic balance force controller applies a pseudo-inverse approach on the

desired CoM forces and momenta as well as the GRFs in order to calculate the joint

torques. Another methodology is the Dynamics Filter proposed by Yamane [43] where

reference and initially infeasible motions are tracked by human figures using the pseudo-

inverse approach. Finally, Cheng et al. [44] proposed a passivity-based approach for

disturbance rejection.

Another solution to the problem of online motion generation is the introduction of

motion libraries/databases. These databases include motions that fulfill different task

objectives, e.g. walking with a desired average velocity or balancing after a specific dis-

turbance force is applied on a specific point of the robot body. This approach has the

advantage that it uses the full body dynamics of the robot and can include energy effi-

ciency terms in the design phase of the motion, since the construction of the database

takes place offline. In order to be able to endow reactive characteristics to the robots or

allow for generalization and - when possible - energy efficiency, these motions can be used,

tracked, combined or even modified online. The main focus and contribution of this thesis

are centered around these reactive and generalization capabilities that can be achieved

through the use of motion libraries and are elaborated on the next section.

1.2 Contributions

This thesis proposes a methodology to overcome the computational overhead of designing

motions online, especially for legged robots which are nonlinear systems with non-convex

dynamics and multiple DoFs. In addition, we deal with both underactuation and full

actuation, more specifically walking with point feet and balancing tasks. The approach

suggests the utilization of motion databases that have been computed offline through an

optimization process and each motion, alternatively Motion Primitive, fulfills a specific

task objective. In contrast to other approaches that utilize motion databases and focus

on the sequencing problem, i.e. how to solve a kinematic problem with them, this thesis

focuses on generalization to new and unknown task objectives using the motion database.

In addition, we investigate how to enhance the capabilities of the system with respect to

the already known tasks and - when possible - retain energy efficiency.

The generalization is achieved with the use of machine learning techniques such as Gaus-

sian Processes (GPs) and Reinforcement Learning, as well as by employing a Euclidean

distance metric. The generalization of course shall not compromise the dynamic feasibility

of the generated motion, therefore the dynamic feasibility is checked every time a new

motion is generated or a new motion command is calculated. In order to demonstrate the

generalization better, example applications are investigated, like underactuated walking

on uneven terrain and balancing. In addition, the problem of Settling Time Reduction

when switching between different walking periodic orbits is introduced from an Optimal

Control perspective and as a later step, we use Reinforcement Learning to demonstrate

how a database can provide a faster switching strategy than conventional approaches.

In more details, we contribute to the online generation of dynamically feasible motions

and the enhancement of the robot system capabilities in the followings ways:
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Motion primitives as training examples for learning models. The general

problem of using reference motions as training examples for generating new motions

online is investigated. More specifically, we use the parameters that define the trajectories

of the Motion Primitives as training examples and are able to generate stable periodic

motions online for a wide range of kinematic configurations.

(i) The parameters of the Motion Primitives are used as training examples for a Gaussian

Process. The input to the GP is the desired final stride length and height of the

robot. With this approach we demonstrate how Motion Primitives can be used to

generalize to new and unknown task objectives. This is a novel methodology for

trajectory generation through parameter inference and a novel application of GPs.

Even though other learning models could be used, the GPs were favored due to their

fast prediction time for the mean of the inferred parameters and their precision.

(ii) For aperiodic walking a best-first planning algorithm is introduced in order to allow

the robot to traverse uneven terrain with step variations not corresponding to any

Motion Primitive in the training examples. In comparison to other works like [45],

the new terrain height specification is always satisfied since if no primitive with such

specification exists within the training examples, a new one will be created to match

the new terrain height. The dynamic feasibility of each generated primitive is checked

online. If the check is negative, the generated primitive is not considered in the plan.

The robot is assumed to not have full knowledge of the terrain, but only a limited

one, therefore it can plan its actions in a receding horizon. After each step, the

algorithm is executed again and a new plan is calculated.

The methodology of motion generation using a database of Motion Primitives and

GP regression was first published in the IEEE International Conference on Robotics and

Automation (ICRA) article [46].

Sequencing of Motion Primitives for Settling Time Reduction. The problem of

Settling Time Reduction for a transition between two periodic orbits for underactuated

walking is investigated. Instead of trying the difficult approach of minimizing the

maximum eigenvalue of the Poincaré Map of the target periodic orbit, we employ a

database of Motion Primitives to compute multi-step sequences that bring the robot state

close to the fixed point of the Poincaré Map of the target periodic orbit.

(i) The problem of Settling Time Reduction is formulated as an Optimal Control prob-

lem. We demonstrate a novel approach of bringing the Hybrid Zero Dynamics frame-

work into an Optimal Control formulation as equality and inequality constraints. The

cost function to be minimized is the distance to the fixed point of the target peri-

odic orbit and the solution of the problem provides an aperiodic transition motion

between the initial and target periodic motion.

(ii) After the problem has been defined, we utilize Reinforcement Learning in order to find

multi-step sequences that provide faster convergence to the target periodic orbit than

an one-step transition. This is a new methodology for combining Motion Primitives

and solving the Settling Time Reduction problem. Since we have Motion Primitives
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in our disposal, we use them to formulate the Markov Decision Process needed for

computing the multi-step sequences and later solve it with a Q-Learning algorithm.

The reward function is always checking if the transition from the current state of

the robot to the target periodic orbit is more advantageous than performing an

intermediate transition towards another periodic orbit. The solution of the problem

demonstrates that in many of the possible cases where the multi-step sequences can

outperform one-step traditional approaches [47, 20], this is indeed the case.

The definition of the Settling Time Reduction problem was first published in the

International Journal of Humanoid Robotics with [48]. The multi-step sequences approach

using Reinforcement Learning was first published in the 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) article [49].

Online switching of Motion Primitives for balancing. The problem of bal-

ancing with respect to new and unknown disturbances is investigated. For that, a Motion

Primitive database is generated for rejecting disturbances of different sizes which are

applied on the middle of the robot torso. The motions are optimal with respect to the

effort for bringing the robot back to the upright posture. After their computation, the

primitives are tokenized in small samples and at a predefined rate the sample closest

to the current robot state is chosen. Once a sample has been selected, the primitive

owning the chosen sample, is tracked for a predefined time. After this time elapses, the

samples are checked again with respect to their distance from the current robot state

and if necessary a new one is chosen. This novel approach allows to reject new and

unknown disturbances, continuous pushes, as well as multiple pushes by tracking always

the currently optimal primitive and leads to efficient balancing motions. In addition, a

robustness study is conducted to demonstrate that the approach is also suitable in cases

of pushes under model uncertainties.

(i) Balancing motions are extracted in a novel way by parametrizing the robot trajec-

tories with Bézier polynomials and formulating the balancing problem as a static

optimization problem. The cost function minimizes deviations from the upright pos-

ture and the integral of the squared applied torques. The CoP and friction cone

constraints are included as inequality constraints.

(ii) Each motion is split/tokenized in small samples, transforming the database of Motion

Primitives into a collection of samples. This novel approach allows to track the

primitive whose sample is nearest to the current state. When the switching is not

needed anymore the robot tracks an optimal trajectory, therefore the rest of the

motion is close-to-optimal with respect to the cost function minimized during the

database extraction process, as described above. The tracking problem is formulated

as a QP where a Control Lyapunov Function (CLF) Constraint is included. The

violation of the CLF is included in the cost function of the QP, such that the robot

state converges exponentially to the chosen primitive, when possible. The violation

of the CLF is also used to turn off the switching.

(iii) The approach is successfully validated in different scenarios of new and unknown dis-

turbances. Among others, we compare our switching methodology to a non-switching
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one, where the closest primitive is chosen based solely on the post-impact state of

the robot and tracked thereafter. The evaluation demonstrates that our switching

methodology results in more efficient balancing motions than the non-switching ap-

proach.

The methodology of Motion Primitive switching for balancing with respect to new and un-

known disturbances was first published in the International Journal of Humanoid Robotics

with [50].

The methodologies that led to the aforementioned contributions are summarized graph-

ically in Fig. 1.5.

1.3 Thesis Outline

Following the introduction, Chapter 2 discusses the modeling of legged robots as hybrid

systems. For that, the Lagrangian formulation for deriving the equations of motion is

presented and the relevant constraints on the GRFs are defined.

The theory of Hybrid Zero Dynamics for underactuated walking robots is presented in

Chapter 3. In the same chapter we present the static optimization problem which yields the

periodic Motion Primitives for chapters 4 and 5. We also discuss interesting characteristics

of Bézier polynomials which define the desired outputs to be tracked and lead to the HZD.

In Chapter 4 we present our methodology with respect to online motion generation

using Gaussian Processes. A short introduction to the Gaussian Process is given as well

as the presentation of the best first algorithm for motion planning on uneven terrain.

Chapter 5 defines the Settling Time Reduction problem using an Optimal Control for-

mulation. In addition, the Markov Decision Process for multi-step sequences is defined

and later solved with Reinforcement Learning.

Chapter 6 demonstrates the Motion Primitive switching methodology for balancing. The

optimization problem for generating balancing motions is presented as well as the theory

of Rapidly Exponentially Stabilizing Control Lyapunov functions. In addition, the overall

Quadratic Problem is formulated and the approach is validated in different scenarios.

The thesis concludes with Chapter 7 where we use the achieved contributions as a

starting point for possible future research.

10



1.3 Thesis Outline

Offline generation of the
database of Motion Primitives

Sequencing TokenizingLearning

Online

Gaussian Process Regression
Motion Planning Algorithm

(Chapter 4)

Settling Time Reduction
Reinforcement Learning

(Chapter 5)

Primitives switching
(Chapter 6)

Torque commands / state feedback

Database of
Motion Primitives

Fig. 1.5: Graphic representation of the methodologies which led to the contributions of this
thesis and their corresponding chapters. The arrowheads towards the robots denote
the torque commands and the arrowheads originating from the robots denote the
state feedback.
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2 Modeling of Planar Legged Robots

This chapter introduces the dynamic modeling for walking and balancing robots. The

motion is analyzed in the sagittal plane and we further assume that the robots consist

of rigid links. Regarding the legs, we can assume that they include feet or not. Walking

without feet is suitable for studying and designing gaits that exploit the natural dynamics

of the robot which is the case during the heel and toe roll phases of underactuated walking.

Walking is described as a sequence of single and double support. Single support denotes

the phase when only one leg - the stance leg - is in contact with the walking surface. At

the same time the other leg - the swing leg - performs a swinging motion from the back of

the stance foot to the front of it. The single support is succeeded by the double support,

which is initiated when the swing leg impacts the walking surface. The double support

can be assumed to have finite or infinitesimal duration.

For each walking phase different conditions and modeling assumptions have to be im-

posed in order for the equations of motion to remain valid. Such conditions include the

satisfaction of the friction cone constraint, such that slip is avoided and in the case of

robots with feet, the prevention of foot rolling if an underactuated walking phase is not

desired. In addition, the position of the tip or the foot of the swing leg needs to be checked

against the height of the walking surface in order to switch between the different phases

of walking.

Since walking is a sequence of different phases its modeling and analysis can be facilitated

by the use of a hybrid, event-based system modeling approach. In that case, a system of

differential equations is introduced for the single support phase, another one for the double

support and a switching condition which decides when each phase is active. In this thesis,

however, we are studying walking with an instantaneous double support, therefore we will

use an impact model for this phase, instead of a system of differential equations.

Contrary to walking, balancing in place does not require a hybrid system formulation

in order to be described, since it does not consist of a sequence of different phases. In that

kind of balancing the feet of the robot are required to retain a flat contact with the ground

and avoid foot rolling which leads to underactuation. The other balancing approach allows

the robot to perform a stepping sequence in order to dissipate kinetic energy with each step

through the impact with the ground and finally come to a stop. In that case, foot rolling

is allowed. In this thesis we are dealing with balancing in place and for that we require

only a system of differential equations for the balancing model and an impact model to

initialize its state after a disturbance.

The structure of this chapter is as follows: In section 2.1 we will introduce the hybrid

system approach used in this thesis. In section 2.2 we will derive the governing equations

of motion for walking and balancing and we will present the impact model. In section 2.3

we will elaborate on the role of the Ground Reaction Forces for walking and balancing.

Finally, section 2.4 will introduce the robot models used in this thesis.
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2 Modeling of Planar Legged Robots

2.1 Hybrid Systems

Hybrid systems have been used to describe systems that experience both discrete and

continuous dynamics. In this section we will give a brief introduction of the terminology of

hybrid systems. More information regarding the theory of hybrid systems can be acquired

from [51, 52, 53, 54, 55, 56, 57].

A hybrid system is defined as a dynamical system which is subject to continuous and

discrete dynamics. As a consequence the state vector of a hybrid system σ is described by

a vector of continuous variables x ∈ R
n and a discrete mode xd ∈ N

∗.

σ =

(
x

xd

)

∈ R
n × N

∗ (2.1)

Similarly to the state, a hybrid system can have both a discrete input ud(t) and continuous

ones u(t). The same holds for the outputs which are determined by an output vector

function h (
y

yd

)

= h(x,u, xd, ud, t) (2.2)

The continuous dynamics are also referred to as flow and are described by ordinary

differential equations (ODEs)

ẋ = di(x,u, t), (2.3)

where di is a smooth vector field and is valid for a given discrete mode xd = i. Neglecting

the discrete inputs for the rest of the section since they are not applicable in our case, the

continuous dynamics can be written in the form of

ẋ =







d1(x,u, t), xd = 1

d2(x,u, t), xd = 2

· · ·

dN(x,u, t), xd = N

(2.4)

A transition from a discrete mode xi to xj will cause a switching of the continuous

dynamics. Such a transition occurs when the transition surface Si→j is crossed. The

transition surfaces are functions of the discrete mode, continuous states and the continuous

inputs

Σ : Si→j (x,u) = 0, i ∈ Id, j ∈ Id, i 6= j, (2.5)

where Id ∈ Z is a finite index set. Please note that in Eq. (2.5) the discrete modes xi and

xj are dropped since they are implied by the subscript of the transition surface i→ j.

When a transition i→ j takes place, the initial state of the system for the vector field

dj will be given by a transition function ∆i→j. This function depends on both the discrete

mode and continuous states as well as the continuous inputs and is allowed to cause a

discontinuous jump in the continuous state x of the system. Therefore, the state x+ after

crossing the new transition surface Si→j is defined as

x+ = ∆i→j

(
x−,u

)
, (2.6)
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2.2 Equations of Motion

where x− is the state before crossing Si→j. Again, the discrete modes xi and xj are omitted

in Eq. (2.6) since they are implied by the subscript of the transition function i→ j.

Finally, the formal notation of a hybrid system is as follows:

ẋ = di(x,u, t), xd = i ∧ Si→j (x,u) 6= 0, ∀j ∈ Id, j 6= i (2.7)

y = h(x,u, t) (2.8)

x+ = ∆i→j

(
x−,u

)
, Si→j (x,u) = 0 (2.9)

Legged Robots as Hybrid Systems

The modeling approach of walking robots with the help of hybrid systems assumes two

discrete modes for the single support with each leg. Each of these two discrete modes has

its own continuous dynamics. It is also possible to have discrete modes for the double

support, where the differentiation between these two modes is made by identifying which

leg established contact with the ground as last. However in this thesis the double support

is always assumed to be instantaneous and as a consequence there is no need to introduce

any continuous dynamics for this phase. Instead, a transition matrix will be enough to

model the discontinuous jump in the velocities at the time of impact. The transition

surfaces, which dictate when the impact matrix has to be applied, are defined as the states

of the robot where the currently swinging leg touches the walking surface. As we will see

later, symmetries between the discrete modes of single support can be exploited in order

to reduce the number of discrete modes. In Fig. 2.1 we provide a graphical representation

of the hybrid model of a compass robot [58]. In order to simplify our representation, foot

scuffing is neglected and the continuous input u is omitted in the transition functions,

since such a dependency does not hold for this model.

x1 : Leg 1 in support
ẋ = f1(x,u, t)

x2 : Leg 2 in support
ẋ = f2(x,u, t)

Transition from leg 2 to 1
x+ = ∆2→1 (x

−) , S2→1 = 0

Transition from leg 1 to 2
x+ = ∆1→2 (x

−) , S1→2 = 0

Fig. 2.1: Hybrid model of a compass robot.

2.2 Equations of Motion

This section develops the mathematical modeling of planar bipedal walking robots where

the legs are symmetric and connected to a common point which we will identify as the
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2 Modeling of Planar Legged Robots

q1

q2

m1m2

px1

py1

x

y

Fig. 2.2: Compass gait biped with actuation on the hip joint.

hip. The inertial frame is assumed to be oriented such that the y-axis points upwards

while the gravity vector points downwards. A further assumption is that the height of the

walking surface is zero with respect to the inertial frame. For clarification purposes we

will accompany the modeling of walking robots with the academic example of a compass

gait biped depicted in Fig. 2.2 which resembles the simplest walking machine introduced

in [58] with the difference that the masses are not concentrated on the hip and leg tips but

they are distributed on the leg links. In addition, the hip joint is assumed to be actuated.

Single Support Phase

During the single support phase the robot can be modeled as an open kinematic chain.

Let Θs denote the configuration space of the robot and θ = [q1 · · · qn px1 p
y
1]

⊤
denote a

vector of generalized coordinates where qi, i = 1, ..., n refer to the rotational DoFs and

p1 = [px1 p
y
1]

⊤
refer to the x − y Cartesian coordinates of a point of the robot. For this

thesis we will assume that this point is the tip of the stance leg.

The equations of motion will be derived using the Lagrangian method and the assump-

tion of rigid bodies [59]. According to the method of Lagrange, the first step is to define

the Lagrangian equation as

L
(

θ, θ̇
)

= K
(

θ, θ̇
)

− V (θ) , (2.10)

where K is the sum of the kinetic energies of each link and V is the sum of potential

energies of each link. As a consequence, K and V can be assumed as the total kinetic and

potential energy, respectively, of the robot. As a next step, the formulation of Lagrange’s

equation
d

dt

∂L

∂θ̇
−
∂L

∂θ
= U (2.11)

will yield the equations of motion for the robot. Please note that the term U in Eq. (2.11)
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2.2 Equations of Motion

refers to the vector of generalized torques and forces acting on the robot.

Applying the method of Lagrange and taking into account the assumption that the

stance leg should remain pinned on the ground, the equations of motion are given as

De(θ)θ̈ +Ce(θ, θ̇)θ̇ +Ge(θ) = Seu+ J⊤
1 (θ)F (2.12a)

J1(θ)θ̈ + J̇1(θ)θ̇ = 0, (2.12b)

where De(θ) ∈ R
(n+2)×(n+2) is the mass-inertia matrix, Ce(θ, θ̇) ∈ R

(n+2)×(n+2) is the

matrix of centrifugal and Coriolis terms,Ge(θ) ∈ R
n+2 summarizes the gravitational terms,

u ∈ R
n is the vector of generalized torques and Se ∈ R

(n+2)×n is the input matrix. Finally,

F = [Fx Fy]
T is the vector of Ground Reaction Forces (GRFs) and J1(θ) ∈ R

2×(n+2) is

the Jacobian matrix of the tip of the stance leg.

Since we assume that p1 are the Cartesian coordinates of the tip of the stance leg the

Jacobian of the tip is given as

J1 =
∂p1

∂θ
=

[
0 · · · 0 1 0

0 · · · 0 0 1

]

=
[
0n I2

]
(2.13)

Solving Eq. (2.12b) for p̈1 will result in p̈1 = 0. In addition, since the tip of the stance

leg shall remain pinned on the ground, we have ṗ1 = 0. Let us now re-write Eq. (2.12a)

as [
D11 D12

D21 D22

] [
q̈

p̈1

]

+

[
C11 C12

C21 C22

] [
q̇

ṗ1

]

+

[
G1

G2

]

=

[
S1

S2

]

u+

[
0

I

]

F , (2.14)

where we omit the arguments of the matrix and vector functions for brevity. For a robot in

single support it holds that S2 = 0. Using this information and substituting p̈1 = ṗ1 = 0

in Eq. (2.14) will yield the constrained dynamics of the robot, i.e. the first line of Eq.

(2.14)

D11q̈ +C11q̇ +G1 = S1u (2.15)

Using the second line of Eq. (2.14) we acquire the expression for the GRFs

F = D21q̈ +C21q̇ +G2. (2.16)

Impact

The impact is assumed to be inelastic and instantaneous and takes place when the swing

leg of the robot touches the walking surface, i.e. when py2 = 0. When the swing leg impacts

the ground the previous stance leg lifts from the ground without interaction. The impact

between the swing leg and the ground results in externally applied forces and causes a

discontinuity in the velocities, but not the positions. In order to find the externally applied

forces at the impact and the post-impact velocities we have to utilize Eq. (2.12a) with

S2 = 0 and include the externally applied forces δF 2, such that

De(θ)θ̈ +Ce(θ, θ̇)θ̇ +Ge(θ) = Seu+ J⊤
2 (θ)δF 2, (2.17)
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2 Modeling of Planar Legged Robots

where J2(θ) =
∂p2

∂θ
denotes the Jacobian of the tip of the swing leg. During the impact

the conservation of momentum holds and it will yield

∫ t+

t−

{

De(θ)θ̈ +Ce(θ, θ̇)θ̇ +Ge(θ)
}

dt =

∫ t+

t−

{
Seu+ J⊤

2 (θ)δF 2

}
dt, (2.18)

where t− and t+ are the times just before and after the impact, respectively. Keeping in

mind that during the impact the positions do not change and setting the integral of the

actuators equal to 0 since they cannot generate impulses we get

De(θ
−)
(

θ̇+ − θ̇−
)

= J⊤
2 (θ

−)F 2, (2.19)

where F 2 is the impulsive impact force acting on the tip of the swing leg at the moment

of the impact.

Another assumption that holds for the impact is that it does not result in any rebound

or slipping of the swing leg. This can be expressed as

J2(θ
−)θ̇+ = 0 (2.20)

The system of Eq. (2.19) and Eq. (2.20)

[
De(θ

−) −J⊤
2 (θ

−)

J2(θ
−) 02

] [
θ̇+

F 2

]

=

[
De(θ

−)θ̇−

02

]

(2.21)

provides n+4 equations which when solved gives the post-impact velocities θ̇+ and impact

force F 2. Given that the tip of the stance foot is pinned on the ground, i.e ṗ−1 = 0, we can

use an alternative expression for Eq. (2.21) which maps the pre-impact joint velocities q̇−

to the post-impact velocities and impulse forces at the impact

[
De(θ

−) −J⊤
2 (θ

−)

J2(θ
−) 02

] [
θ̇+

F 2

]

=




De(θ

−)

[
In×n

02×n

]

02



 q̇− (2.22)

Solving this system results in the impact forces

F 2 = −
(
J2D

−1
e J

⊤
2

)−1
J2

[
In×n

02×n

]

q̇− = ∆F q̇
− (2.23)

and the post-impact velocities

θ̇
+
=

(

D−1
e J

⊤
2 ∆F +

[
In×n

02×n

])

q̇− = ∆qq̇
− (2.24)

In order to avoid introducing a new discrete mode after the impact where the roles of

the stance and swing legs swap, we introduce a relabelling matrix R ∈ R
n×n to relabel the

coordinates such that only Eq. (2.15) is used for both single support phases. Please note

that R must be a circular matrix, i.e. RR = I. With this relabelling, the post-impact
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2.2 Equations of Motion

joint positions are given as

q+ = Rq− (2.25)

and the post-impact joint velocities are given as,

q̇+ = [R 0n×2]∆q

(
q−
)
q̇− (2.26)

q̇+ = ∆R
q

(
q−
)
q̇− (2.27)

Hybrid Model of Walking

The hybrid model of walking includes the single support continuous dynamics and the

reset map for the state of the system which is employed at the impact. As state of the

system x we define the joint positions and velocities such that x =
[
q⊤ q̇⊤

]⊤
. In that case

and by introducing D11 = D, C11 = C, G1 = G and S1 = S the accelerations q̈ during

the single support can be written in affine form with respect to the inputs u as

q̈ = D−1 (−Cq̇ −G) +D−1Su (2.28)

Using that, the state space system equations that describe the state evolution during the

single support are given as

ẋ =

[
q̇

D−1 (−Cq̇ −G) +D−1Su

]

(2.29)

or in affine form

ẋ =

[
q̇

D−1 (−Cq̇ −G)

]

+

[
0

D−1S

]

u = f (x) + g(x)u (2.30)

Regarding the state resetting it is given as

x+ =

[
R 0

0 ∆R
q

]

x− = ∆x− = ∆
(
x−
)

(2.31)

and it is applied when the swing leg touches the ground and is in front of the stance leg.

With this condition the switching surface can be defined as the set

S = {x|py2(x) = 0, px2(x) > 0} (2.32)

and the complete description of the hybrid system of walking is given as

ẋ = f (x) + g(x)u, x− /∈ S

y = h(x,u) (2.33)

x+ = ∆x−, x− ∈ S
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2 Modeling of Planar Legged Robots

α

Fx

Fy

C

F

Fig. 2.3: Graphic representation of the friction cone constraint.

2.3 The Role of the Ground Reaction Forces

The GRFs determine the interaction between the robot and the standing or walking surface.

This interaction can be verified by checking the validity of different conditions imposed on

the GRFs. For this thesis, the important conditions are the unilateral contact constraint,

the no slipping and the no rotation condition.

Unilateral Contact Condition

The unilateral contact constraint Fy ≥ 0 denotes the mechanical constraint that prevents

penetration between the robot foot and the surface. In order to enforce a constant contact

between the two bodies, the constraint can be stricter by using only the inequality Fy > 0.

No Slipping Condition

Slipping is an undesired phenomenon for walking robots. As a consequence, the friction

cone constraint which states that the resultant GRF shall stay within the friction cone C
(see Fig. 2.3) has to be respected during a walking or balancing motion. This is formally

defined as

−µsFy ≤ Fx ≤ µsFy (2.34)

where µs is the Coulomb static friction coefficient of the walking or standing surface. In

Fig. 2.3 the friction angle (or angle of repose) α is equal to the inverse tangent of the

Coulomb static friction coefficient such that α = tan−1 µs.

No Rotation Condition

This condition ensures that the robot foot retains a flat contact with the ground. Retaining

a flat contact with the ground is the main objective of balancing, unless stepping is also

accepted as a balancing strategy. This condition shall also be checked and respected if a
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2.3 The Role of the Ground Reaction Forces

Mz

−pℓ prFy

x

y

Fig. 2.4: Contact force Fy and contact moment Mz.

three phase walking strategy is followed. More specifically, during a three phase walking

strategy (which resembles human walking) the heel strike event, is followed by a flat contact

and then a toe roll phase [60]. During the flat phase the no rotation condition shall hold.

The no rotation condition can be expressed with the help of the Center of Pressure

(CoP) [11] and/or the Zero Moment Point (ZMP) [10].

The CoP is defined as the point on the standing/walking surface where the GRF is

acting. The ZMP is defined as the point where the total moment acting on the robot due

to gravity and inertia forces is zero. On flat ground the ZMP and the CoP coincide with

each other if the robot is balancing. If the robot foot is rotating, then the CoP still exists,

but the ZMP does not.

Focusing on the case of a flat contact being already established, the no rotation condition

requires that the CoP or the ZMP lies within the foot surface. In that case, the robot

motion is assumed to be dynamically stable. If the robot has both feet on the ground,

then the condition requires that the CoP or the ZMP lies within the convex hull formed

by the feet.

For the definition of the CoP/ZMP we will restrict ourselves to the sagittal plane and

assume a contact between the robot foot and the standing/walking surface. Given that

the tangential component of the GRF Fx does not generate any moment around the foot,

the moment balance around the foot can be expressed as

Mz = Fy · CoP (2.35)

where Mz is the contact moment and the CoP is defined with respect to the ankle as the

point where the GRF is acting (see Fig. 2.4). Therefore, the CoP is defined as the fraction

CoP =Mz/Fy and the stability condition is expressed as

−pℓ < CoP < pr (2.36)

where pℓ is the distance from the ankle to the left foot edge and pr is the distance from

the ankle to the right foot edge . If CoP = −pℓ, then the robot will start rotating around

the left foot edge. Similarly, if CoP = pr, the robot will start rotating around the right

foot edge. Finally, if Fy = 0, the robot is in the air where neither the CoP nor the ZMP

are defined.

As an alternative to the ZMP and the CoP, the Foot Rotation Indicator (FRI) was
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2 Modeling of Planar Legged Robots

introduced by Goswami [61] as the point on the walking/standing surface where the net

GRF would have to act in order to keep the foot stationary. The stability criterion is

similar to the one for the CoP and ZMP. In order for the robot to balance, the FRI must

remain within the surface of the foot or the support polygon formed by both feet. In

contrast to the ZMP, however, the FRI still exists if the robot rotates around the foot. In

addition, the distance of the FRI to the rotating foot edge serves as an indication of the

severity of the destabilizing moment around the rotating foot edge. If the FRI remains

within the foot (or the convex hull of both feet), then it coincides with the CoP and as a

consequence with the ZMP.

2.4 Models Used in this Thesis

As already discussed in section 1.2, this thesis uses undeactuated walking and balancing

as benchmarks to demonstrate the advantages of motion databases with respect to online

motion generation and generalization to new and previously unknown task objectives. For

all the walking related studies within this thesis a planar walking robot with point feet

was used whose parameters match those of RABBIT [62] (see Fig. 2.5 and Table 2.1). The

reason was the fact that RABBIT is a robot capable of underactuated dynamic walking

on even as well uneven terrain. In addition, due to the fact that RABBIT contains a

torso link, it can utilize its angular momentum to control its walking speed in an easier

and faster way in comparison to robots without a torso. The equations of motion were

generated using the software AUTOLEV [63]. For the balancing experiments, feet were

x

y

q5

θ

q3 q2

q4q1(px2 , p
y
2)

(0, 0)

Fig. 2.5: Kinematic model of the biped under study. The unactuated DoF is the torso angle
q5, but other modeling options are valid as well.

introduced to the planar biped in Fig. 2.5 and the assumption was made that the ankle,

knee and hip joints of each leg execute the same trajectories. Therefore, the femur, tibia

and feet were modeled as one. The mass and inertia of each new resulting link is the sum

of the mass and inertia of the corresponding individual links (see Fig. 2.6 and Table 2.2).
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2.4 Models Used in this Thesis

Tab. 2.1: Robot parameters for the walking studies

Tibia Femur Torso
Mass (kg) 3.2 6.8 12
Length (m) 0.4 0.4 0.63
Inertia (kg·m2) 0.2 0.47 1.33

Mass Center (m)
0.16 0.29 0.24
(from ankle) (from knee) (from hip)

q1

q2

q3
x

y

Fig. 2.6: Model of the planar robot used for balancing. The Newtonian reference frame is
assumed to be fixed on the ground at the tip of the foot.

Tab. 2.2: Robot parameters for the balancing studies

Foot Tibia Femur Torso
Mass (kg) 0.4 6.4 13.6 12

Length (m)
0.2
(0.05 from heel to ankle)

0.4 0.4 0.63

Inertia (kg·m2) 0.1 0.4 0.94 1.33

Mass Center (m)
0.12 0.16 0.29 0.24
(from tip) (from ankle) (from knee) (from hip)
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3 Hybrid Zero Dynamics of Walking Robots

Task objectives can be fulfilled by designing a set of desired outputs for each actuated DoF

and then providing a control law in order to track these outputs. A very popular method for

tracking control of such outputs is the computed torque control [64, 65]. This methodology

uses the concept of input-output feedback linearization [66] and leads to a control law that

will force the outputs to asymptotically converge to zero. Once the outputs are tracked

or zeroed, the dynamics of the system will evolve on the zero dynamics manifold, which is

the internal dynamics of the system that are compatible with the outputs being zero.

The dimension of the zero dynamics is defined as the difference between the dimension

of the vector output relative degree of the system and the dimension of the state vector. As

we will see later, walking robots with one degree of underactuation have a vector relative

degree which is smaller than the dimension of the state vector. As a consequence, additional

equations are required in order to create a coordinate transformation and proceed with

input-output feedback linearization. In addition, the zero dynamics need to also be defined

at the impact and of course be checked for stability.

This chapter presents the concept of the Hybrid Zero Dynamics for walking robots,

which was originally introduced in [67]. The description of the Hybrid Zero Dynamics

(HZD) in section 3.1 follows our narrative, which compared to the initial definition, it

describes the Hybrid Zero Dynamics concept in a compact form which focuses also on the

Langrangian formulation of the zero dynamics. Besides the introduction of the Hybrid

Zero Dynamics, [67] introduced a methodology to design outputs for periodic walking

while at the same time checking the feasibility and stability of the whole motion in the

lower dimensional zero dynamics manifold. As we will see in section 3.2, the outputs

are expressed as virtual constraints, which are functional relations on the configuration

variables of the robot that are dynamically imposed through feedback control [68, 69].

The design of the virtual constraints is realized by parametrizing the desired trajectories of

the actuated DoFs with Bézier polynomials and finally computing the Bézier coefficients

through the solution of a nonlinear static optimization problem, which is presented in

section 3.3. The chapter concludes with a brief summary in section 3.4.

3.1 Zero Dynamics of Underactuated Walking

The design of periodic orbits requires conditions which ensure that the orbits are dynami-

cally feasible and stable. Such conditions can be provided in the HZD framework. We show

that the zero dynamics allow for a Lagrangian formulation which facilitates the derivation

of these conditions. Furthermore, we define the Poincaré Map and its corresponding fixed

point in the zero dynamics manifold. In order to do so, however, we need to start with the

computation of the output relative degree of our system.
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3 Hybrid Zero Dynamics of Walking Robots

3.1.1 Output Relative Degree

As mentioned in the introduction of this chapter, the outputs will be designed using the

concept of virtual constraints, which will be defined as desired trajectories hd for the

actuated DoFs, such that the outputs y are zeroed as long as the desired trajectories hd

are tracked with the help of a feedback controller. The outputs y are formally defined as

y = h(q) =H0q − hd, (3.1)

where q ∈ R
n, hd ∈ R

n−1 and

H0 =
[
In−1 0(n−1)×1

]
. (3.2)

Differentiating the output vector y twice will result in

d2y

dt2
=

[
∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] [
q̇

q̈

]

︸ ︷︷ ︸

ẋ

(recall Eq. (2.30))

=

[
∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] [[
q̇

D−1 (−Cq̇ −G)

]

+

[
0

D−1S

]

u

]

=

[
∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] [
q̇

D−1 (−Cq̇ −G)

]

+
∂h

∂q
D−1Su,

(3.3)

showing that each output has a relative degree r of 2 and therefore the vector relative

degree of the system is (n − 1)r = 2n − 2 6= 2n (Ch. 5 in [23]). As a consequence, we

will need two additional equations to be able to find a coordinate transformation that

brings the system (2.33) into an input-output linearizable form. These two additional

equations together with the output vector y and its first order time derivative ẏ will lead

to a diffeomorphism and its inversion will yield the state x.

3.1.2 Swing Phase Zero Dynamics

The coordinate transformation z = T (x) can be chosen as

z =























z1
z2
...

zn−1

− − −
zn
...

z2n−2

− − −
z2n−1

z2n























=























h1
h2
...

hn−1

− − −

ḣ1
...

ḣn−1

− − −
ξ1
ξ2























(3.4)
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3.1 Zero Dynamics of Underactuated Walking

where in the z coordinates the system will be brought into the input-output linearizable

form

ż =





















ż1
...

żn−1

− − −
żn
...

ż2n−2

− − −
ż2n−1

ż2n





















=























zn
...

z2n−2

− − − − −

[
∂
∂q

(
∂h
∂q
q̇
)

∂h
∂q

] [
q̇

D−1 (−Cq̇ −G)

]

+ ∂h
∂q
D−1Su

− − − − −

ξ̇1
ξ̇2























(3.5)

In order to linearize the system we need to apply the appropriate zeroing input u. Therefore

we will solve d2y

dt
= 0 for u and find the nomimal input

u∗ = −







∂h

∂q
D−1S

︸ ︷︷ ︸

Au







−1







∂

∂q

(
∂h

∂q
q̇

)

q̇ +
∂h

∂q
D−1 (−Cq̇ −G)

︸ ︷︷ ︸

bu








u∗ = −A−1
u bu

(3.6)

However the stabilization of the first n − 2 lines of (3.5) will require the consideration of

a feedback input v(z) in the nominal input u∗ such that

u = A−1
u (v(z)− bu) (3.7)

Applying the input (3.7) will yield the input-output linearized system

ż =





















ż1
...

żn−1

− − −
żn
...

ż2n−2

− − −
ż2n−1

ż2n





















=





















zn
...

z2n−2

− − − − −

v(z)

− − − − −

ξ̇1
ξ̇2





















(3.8)

Choosing v as a PD term

v(z) = −Kdḣ−Kph, (3.9)
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3 Hybrid Zero Dynamics of Walking Robots

with Kd > 0, Kp > 0 being derivative and proportional gain matrices, respectively, of

appropriate dimension will force the outputs h and their time derivative ḣ to converge

asymptotically to zero and the state x will evolve on the zero dynamics manifold

Z =

{

x

∣
∣
∣
∣
∣
h(q) = 0,

∂h

∂q
q̇ = 0

}

, (3.10)

Since we know that on the zero dynamics manifold the outputs, the variables z1 to z2n−2

are known to be zero and the focus is shifted towards z2n−1 and z2n. These two coordinates

have to be chosen such that an invertible diffeomorphism z = T (x) is built. That means,

knowledge of z will automatically provide knowledge for x. Another constraint when

choosing z2n−1 and z2n is that the input u does not appear in their time derivatives. This

can be formally defined as ∂z2n−1

∂x
g(x) = ∂z2n

∂x
g(x) = 0, since

ż2n−1 =
∂z2n−1

∂x
ẋ =

∂z2n−1

∂x
(f(x) + g(x)u) (3.11)

Equation (3.11) holds for ż2n as well. A valid choice is

ξ1 := z2n−1 = c
Tq =: θ(q)

ξ2 := z2n = γ(q, q̇) = γ0(q)q̇ =: σ̄n(q, q̇),
(3.12)

where γ0(q) is the n−th line of the mass-inertia matrix D and ξ2 is the conjugate angular

momentum around the unactuated DoF qn. The vector c has to be chosen such that its

n−th element is nonzero. Within this thesis and with respect to Fig. 2.5, c is chosen as

c = [0 0 − 1 − 0.5 − 1]. The variable θ is marked on Fig. 2.5 which is the robot model

used in the thesis when the HZD framework is utilized.

Furthermore, the variable θ in (3.12) is chosen to be monotonically increasing and with

that it can replace the time variable t, which results in an autonomous closed-loop system.

By using θ as a replacement of time, the original coordinates can be reconstructed as

q =H−1

[
hd

θ

]

and q̇ =H−1

[
∂hd

∂θ

1

]

θ̇, (3.13)

where H =

[
H0

c

]

.

Now that we established a control law to steer the state x on the zero dynamics manifold,

we have to check the zero dynamics for stability.

3.1.3 Form of the Zero Dynamics

The zero dynamics can be brought into a form that facilitates the derivation of Lagrangian

dynamics through the identification of a potential and a kinetic energy function. In turn,

the definition of these two functions will allow us to impose a feasibility condition for

periodic and aperiodic walking.

In order to be able to introduce Lagrangian dynamics for the zero dynamics we ma-
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3.1 Zero Dynamics of Underactuated Walking

nipulate the expression for ξ2 from Eq. (3.12) to come up with an expression of the form

ξ̇1 =
1

I(ξ1)
ξ2, where I(ξ1) 6= 0. For that we write

γ0q̇ = ξ2 ⇒ (recall Eq. (3.13))

γ0H
−1

[
∂hd

∂θ

1

]

θ̇ = ξ2
θ̇=ξ̇1⇒

I(ξ1)ξ̇1 = ξ2 ⇒

ξ̇1 =
1

I(ξ1)
ξ2.

(3.14)

For z2n = ξ2 we can derive an expression of the form ξ̇2 = κ2(ξ1) as follows:

ξ̇2 =

[
∂γ

∂q

∂γ

∂q̇

] [
q̇

D−1(−Cq̇ −G)

]

(recall γ(q, q̇) = γ0(q)q̇)

= q̇T
∂γT

0

∂q
q̇ + γ0D

−1(−Cq̇ −G)

= q̇T
∂γT

0

∂q
q̇ −Cnq̇ −Gn.

(3.15)

Now, Cn = q̇T
∂γT

0

∂q
− 1

2
q̇T ∂D

∂qn
and since qn is cyclic, i.e. ∂D

∂qn
= 0, we get Cn = q̇T

∂γT
0

∂q
. With

that,

ξ̇2 = −Gn = −
∂V

∂qn
= κ2(ξ1), (3.16)

where V is the potential energy function of Eq. (2.29).

3.1.4 Lagrangian Dynamics in the Zero Dynamics Manifold

If we differentiate the expression (3.14) for ξ̇1 we get

ξ̈1 =
ξ̇2
I(ξ1)

− ξ2
∂I(ξ1)

∂ξ1

1

I2(ξ1)
ξ̇1 ⇒

I2(ξ1)ξ̈1 +
∂I(ξ1)

∂ξ1
I(ξ1)ξ̇

2
1 − κ2(ξ1)I(ξ1) = 0

(3.17)

In this expression of Lagrangian dynamics, we can identify a kinetic energy function

Kzero(ξ1) =
1

2
I2(ξ1)ξ̇

2
1 (3.18)

or

Kzero(ξ2) =
1

2
ξ22 (3.19)

and a potential energy function

Vzero(ξ1) = −

∫ ξ1

θ+
I(ξ)κ2(ξ)dξ (3.20)
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3 Hybrid Zero Dynamics of Walking Robots

As a next step we will consider the impact in the zero dynamics description.

3.1.5 Impact Invariance

The zero dynamics remain invariant under the impact event of the swing leg with the

ground if the state of the system after the application of the impact matrix ∆ remains on

the zero dynamics. This can be formally expressed as

∆ (S ∩ Z) ⊂ Z (3.21)

where S is the impact surface. The intersection S ∩ Z is the pre-impact system state on

the zero dynamics manifold z−. Please recall that as shown with Eq. (2.31) the impact

matrix ∆ is a function of x and through the diffeomorphism T can also be written as a

function of z once the system state is on the zero dynamics manifold.

Now that the impact invariance has been established we can write the hybrid zero

dynamics model of the system (2.30) as

ż = fzero(z), z
− /∈ S ∩ Z

z+ = ∆
(
z−
)
, z− ∈ S ∩ Z

and we can proceed with finding conditions such that a walking motion is dynamically

feasible and stable.

3.1.6 Feasibility and Stability

The feasibility condition states that the post-impact kinetic energy in the zero dynamics

manifoldKzero(ξ
+
2 ) has to be greater than the maximum value V MAX

zero of the potential energy

function. Given that during the impact an exchange of kinetic energy takes place we can

write Kzero(ξ
+
2 ) = δzeroKzero(ξ

−
2 ), where δzero is the kinetic energy exchange expressed in

the zero dynamics. With that, the feasibility condition can be expressed as

δzeroKzero(ξ
−
2 ) > V MAX

zero (3.22)

where the minus superscript in ξ−2 denotes the value of ξ2 at the end of the motion (before

the impact). The constant δzero has an analytic expression and can be computed a priori

according to the following equation (with the help of (2.27)):

δzero =

(

γ0

(
q+
)
∆R

q

(
q−
)
[

∂h
∂q

(q−)

γ0 (q
−)

]−1 [
0n−1

1

])2

(3.23)

At the end of each step the pre-impact kinetic energy Kzero(ξ
−
2 ) is given by:

Kzero(ξ
−
2 ) = Kzero(ξ

+
2 )− Vzero(ξ

−
1 ) (3.24)

Now a return map P (namely Poincaré map) [70] can be defined which will map the zero

dynamics on a surface or section (namely Poincaré section) transverse to the zero dynamics
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3.1 Zero Dynamics of Underactuated Walking

flow after each step. The Poincaré section will be chosen to be a section of the walking

surface and since the zero dynamics are of dimension 2, their intersection with the Poincaré

section will be of dimension 1. With that in mind, we can manipulate Eq. (3.24) in order

to map the pre-impact kinetic energy of the k−th step Kk
zero(ξ

−
2 ) to the pre-impact kinetic

energy of the next step, such that

Kk+1
zero (ξ

−
2 ) = P(K

k
zero(ξ

−
2 ))⇒ (recall that Kzero(ξ

+
2 ) = δzeroKzero(ξ

−
2 )) (3.25)

Kk+1
zero (ξ

−
2 ) = δzeroK

k
zero(ξ

−
2 )− Vzero(ξ

−
1 ) (3.26)

The fixed point of the Poincaré map P is defined as its point of convergence where

K∗
zero(ξ

−
2 ) = P(K∗

zero(ξ
−
2 )) and is obtained by setting Kk+1

zero (ξ
−
2 ) = Kk

zero(ξ
−
2 ) = K∗

zero(ξ
−
2 )

and solving for K∗
zero(ξ

−
2 ). Following this approach yields,

K∗
zero(ξ2) =

Vzero(ξ
−
1 )

δzero − 1
(3.27)

or in terms of ξ2

ξ∗2 = (·)

√

2
Vzero(ξ

−
1 )

δzero − 1
(3.28)

and the domain of definition D of P is given by

D =
{
ξ−2 |δzeroKzero(ξ

−
2 ) > V MAX

zero

}
. (3.29)

The (·) in Eq. (3.28) denotes that the sign is based on the angle notation used (in corre-

spondence to Fig. 2.5 it should be ”-”). Finally, if 0 < δzero < 1 the orbit is exponentially

stable and its domain of attraction is D, the whole domain of definition of P.

Please note that the Poincaré map P can also be defined using the post-impact state of

the robot. In that case, the Poincaré map P is given as:

Kk+1
zero (ξ

+
2 ) = δzero

(
Kk

zero(ξ
+
2 )− Vzero(ξ

−
1 )
)

(3.30)

and the fixed point as:

Kzero(ξ
∗
2) =

δzeroVzero(ξ
−
1 )

δzero − 1
⇒

ξ∗2 = (·)

√

2
δzeroVzero(ξ

−
1 )

δzero − 1

(3.31)

Now that the feasibility and stability conditions for periodic walking have been defined,

we can proceed with feasibility checks for transitions between periodic orbits as well as

aperiodic walking.
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3 Hybrid Zero Dynamics of Walking Robots

3.1.7 Transition between Periodic Orbits

Assume we are given two stable periodic orbits φi(t) and φf(t) and the fixed points of

their Poincaré Maps correspond to x−, i.e. the state of the robot before the impact. These

orbits are periodic solutions of the robot hybrid dynamics described by Eq. (2.33) which

include the impact at the end of the motion and fulfill different task objectives. Assuming

that

δzero,iKzero(ξ
−
2 ) > V MAX

zero,i→f (3.32)

a transition φi→f(t) between these two orbits is feasible when the post-impact state x+

of the system after the transition is inside the domain of attraction of the target orbit.

In the zero dynamics manifold and in a similar fashion to Eq. (3.22) and Eq. (3.32) this

condition is expressed as

δi→f
zeroKzero(ξ

−
2 ) > V MAX

zero,f (3.33)

Kzero(ξ
+
2 ) > V MAX

zero,f (3.34)

The convergence to the target periodic orbit is guaranteed, since 0 < δzero,f < 1.

3.1.8 Aperiodic Walking

If the robot transitions between two periodic orbits, but does not settle to any of them, then

the robot executes aperiodic walking. The condition that has to be checked in that case is

similar to Eq. (3.34) and evaluates if the post-impact kinetic energy in the zero dynamics

is greater than the maximum value of the potential energy of the aperiodic motion in the

zero dynamics. Assuming that the transition is between the initial kinematic configuration

of the periodic orbit φi(t) and the final kinematic configuration of the periodic orbit φf (t),

the feasibility condition can be expressed as

Kzero(ξ
+
2 ) > V MAX

zero,i→f . (3.35)

In addition, the energy evolution of the system in the zero dynamics manifold is given as:

Kk+1
zero (ξ

+
2 ) = δi→f

zero

(
Kk

zero(ξ
+
2 )− V

i→f
zero (ξ−1 )

)
(3.36)

Now that we have presented the theory of the HZD, we can proceed with the presentation

of the virtual constraints and how they facilitate the design of output functions which

respect the feasibility and stability conditions we described within this section.

3.2 Bézier Polynomials as Virtual Constraints

The virtual constraints used commonly within the HZD framework are the desired trajec-

tories qd of the output functions h which are parametrized as Bézier polynomials of order
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3.2 Bézier Polynomials as Virtual Constraints

M with coefficients α, such that

qdi (s) =
M∑

k=0

αi
k

M !

k!(M − k)!
sk(1− s)M−k, i = 1, ..., n− 1, k = 0, ...,M (3.37)

where s ∈ [0, 1] is a phase variable and is defined as s(q) = θ(q)−θ+

θ−−θ+
. Please note that s(q)

is monotonically increasing and therefore replaces time. With that, the desired trajectories

qd become state-dependent.

The Bézier polynomials come with interesting and useful properties:

• They allow for an analytic expressions for the derivative of the desired trajectory
∂qd

i (s)

∂s
.

• The first and last Bézier coefficients can be easily computed by the initial and final

desired configuration of the corresponding DoF

qdi (0) = αi
0 and qdi (1) = αi

M .

In addition, the computation of the initial and final joint positions and velocities is

straightforward with the help of the Bézier coefficients:

• Initial joint positions

q+ =H−1

[
α0

θ+

]

(3.38)

• Final joint positions

q− =H−1

[
αM

θ−

]

(3.39)

• Initial joint velocities

q̇+ =H−1

[
M

θ−−θ+
(α1 −α0)

1

]

θ̇+ (3.40)

• Final joint velocities

q̇− =H−1

[
M

θ−−θ+
(αM −αM−1)

1

]

θ̇− (3.41)

Other important relations are the ones that guarantee the impact invariance of the zero

dynamics. These relations are defined with the help of the relabelling matrix R and the

impact matrix with relabelling included ∆R
q as follows:

[
α0

θ+

]

=HRH−1

[
αM

θ−

]

(3.42)

α1 =H0∆
R
q ω

− θ
− − θ+

M

(
c∆R

q ω
−
)−1

+α0 (3.43)

33
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where

ω− =H−1

[
M

θ−−θ+
(αM −αM−1)

1

]

(3.44)

In order, however, for (3.43) to hold,
(
c∆R

q ω
−
)
6= 0 must be true. In addition, since α0

and α1 are a function of αM−1 and αM , the order of the Bézier polynomials has to be

chosen as M ≥ 3.

As a next step we will show how transition motions can be designed with the help of

the Bézier coefficients of the initial and target periodic orbits.

Bézier Coefficients for a Transition Motion

A transition motion between two periodic orbits connects the zero dynamics of each pe-

riodic orbit. Assume that the initial periodic orbit of the robot is characterized by the

Bézier coefficients α, the target periodic orbit is characterized by the Bézier coefficients

β and the transition motion by the coefficients (α → β). In addition, the corresponding

controllers that will zero the outputs which are defined through these Bézier coefficients

are denoted as Γα, Γβ and Γ(α→β). The switching to the controllers Γβ and Γ(α→β) will be

synchronized with the impact events.

The objective of the controller Γ(α→β) is to map a subset of the one-dimensional manifold

∆ (S ∩Zα) into a subset of the one-dimensional manifold S ∩ Zβ. The zero dynamics

manifoldZ(α→β) defined by the Bézier coefficients (α→ β) and parameters θ+(α→β), θ
−
(α→β):

(α→ β)0 = α0

(α→ β)1 =
Mα

M(α→β)

θ−β − θ
+
α

θ−α − θ
+
α

(α1 −α0) +α0

(α→ β)M(α→β)−1 =
Mβ

M(α→β)

θ−β − θ
+
α

θ−β − θ
+
β

(

βMβ−1 − βMβ

)

+ βMβ

(α→ β)M(α→β)
= βMβ

θ+(α→β) = θ+α

θ−(α→β) = θ−β

(3.45)

will satisfy

Z (α→β) ∩∆(S ∩Zα) = ∆ (S ∩Zα) (3.46)

and

∆
(
S ∩Z(α→β)

)
= ∆(S ∩Zβ) (3.47)

Equation (3.46) states that when switching to Γ(α→β) at the beginning of the transition

motion, the state of the robot belongs to the manifold ∆ (S ∩Zα). Equation (3.47) states

that when switching to Γβ after the impact event, the post-impact state of the robot will

belong to the manifold ∆ (S ∩Zβ). Please note that it was assumed that the initial and

final periodic orbits have the same switching surface, but the same results and conclusions

hold also for the case when the two periodic orbits have different switching surfaces.
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The intermediate coefficients can be chosen as

(α→ β)i =
αi + βi

2
, i = 2, ...,M(α→β) − 2 (3.48)

or can be calculated through optimization.

3.3 Designing Virtual Constraints through Nonlinear

Static Optimization

The virtual constraints can be computed by solving a static optimization problem. In

this thesis we used the optimization problem proposed in [20, 67] to calculate the walking

primitives which are used later in chapters 4 and 5. The optimization variables are the last

M−1 coefficients of the Bézier polynomial of each actuated DoF, since the first two can be

computed by Eq. (3.42) and Eq. (3.43). For the optimization problem there are different

constraints to be taken into account with respect to the dynamic feasibility, stability, style

of motion and task objective which are presented below.

Constraints

• The vertical component of the GRFs should be positive Fy > 0, i.e. the tip of the

stance leg is not penetrating the walking surface.

• The friction cone constraint has to be respected, such that the robot is not slipping

on the walking surface −µsFy ≤ Fx ≤ µsFy.

• The same has to hold for the impact forces too, i.e. F y
2 > 0 and −µsF

y
2 ≤ F x

2 ≤ µsF
y
2 .

• The tip of the swing leg starts behind the tip of the stance leg and concludes its

motion in front of the tip of the stance leg. Since the reference frame of the robot is

fixed on the stance leg, this constraint can be expressed as

px+2 < 0 < px−2 (3.49)

where the superscript ”+” denotes the beginning of the motion and ”-” the end of

it.

• The height of the swing leg has to be greater than 0 during the motion and 0 at the

beginning and end of the motion. In a compact form this constraint can be expressed

as

py2 ≥ 0 (3.50)

The condition py+2 = py−2 = 0 can be satisfied by solving py+2 = py−2 = 0 for q5.

• The post-impact velocity of the vertical component of the tip of the swing leg has to

be positive ṗy+2 > 0

• A fixed point shall exist, which means that (3.22) has to hold.
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3 Hybrid Zero Dynamics of Walking Robots

• The periodic orbit has to be exponentially stable, i.e. 0 < δzero < 1 has to hold.

• A task objective can also be imposed as a constraint. In this thesis two different task

objectives have been used:

– the average walking velocity

vdes =
px−2
T
, (3.51)

with T the total duration of the motion

– and a fixed final configuration p−2 = p−2,des.

Cost Functions

In this thesis the squared sum of the torques per step is used as a cost function

J =
1

p
−

2 (α)

∫ T

0

‖u(t,α)‖22dt, (3.52)

where the contribution of each torque input can be optionally scaled by a weighting matrix

W .

As an alternative the mechanical power per step can also be used

Jmech =
1

p
−

2 (α)

∫ T

0

q̇⊤(t,α)Sudt, (3.53)

where the mechanical power of each joint can also be scaled through W .

3.4 Summary

This chapter presented the theory of hybrid zero dynamics and their usefulness in designing

stable gaits for biped robots. The theory is general for different walking robot systems with

one degree of underactuation. As it was shown, the zero dynamics can be defined with the

help of Lagrangian dynamics, which facilitate the understanding of the theory. Since the

zero dynamics manifold is two dimensional, the Poincaré Map becomes one dimensional

and together with the domain of attraction and the fixed point they receive an analytic

expression. This is a very important property, since usually for arbitrary systems the

Poincaré Map can only be arithmetically computed and for that, the integration of the

robot dynamics in order to calculate the robot state trajectory is mandatory.

Interesting works for gait analysis can also be found in the works of Zutven and Dehghani

et al.[71, 72]. In addition, one can use the alternative approach of Djoudi et al. for designing

periodic orbits for underactuated walking [73]. In our thesis, however, we decided in favor

of the HZD framework since in comparison to [73], this framework provides the stabilizing

control law once the virtual constraints have been defined.
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Generation

Underactuated walking robots are trading off control authority with more efficient and

human-like locomotion. In order to achieve these objectives, careful understanding of the

dynamics underlying their motion is necessary. By that, the natural dynamics of such a

robot can be exploited and utilized in the synthesis of sophisticated feedback controllers,

which in turn are able to cope with the aforementioned reduced control authority.

However, the dynamics of such robots are highly nonlinear due to the dynamic coupling

of the rotational degrees of freedom. Thus, designing walking motions online is compu-

tationally costly. As an alternative, a repertoire of walking primitives can be computed

offline and employed online in order to steer the motion of the robot based on different

terrain specifications.

The idea of utilizing a database of Motion Primitives in order to plan the motion of

a robot has been studied in the literature for different kinds of tasks like balancing and

motion planning for an aerial vehicle [74, 75]. In the field of walking robots, an early work

can be found in [76], where a database of walking primitives was employed in order to

navigate JOHNNIE, a fully-actuated humanoid robot. In [77], a compass gait robot was

steered through an environment with obstacles using only 3 asymptotically stable walking

primitives. Furthermore, in [45] it was shown how a database of Motion Primitives can be

used for motion planning on uneven terrain for a compass gait and a 5-link walking robot.

In that work however, the authors assume that the feedback terms of the controller can

compensate for an error between the encountered terrain and the final stride height of the

chosen primitive.

Depending on the size of the database and the knowledge of the terrain, different motion

planning techniques can be used. For cases with full knowledge of the environment, classic

graph search algorithms can be utilized, like in [76], [77]. If a large database renders graph

search intractable, online predictive approaches can be utilized so that the search horizon

is limited to a few steps and new plans can be generated in each step very fast. The

challenge however is to know which sequences of Motion Primitives are feasible, since in

underactuated walking robots there is always the risk that the robot does not have enough

kinetic energy to overcome the potential energy barrier. Concrete guaranties whether a

sequence of such primitives is feasible or not are given in subsection 3.1.8. In addition,

worth mentioning is the work on LQR-trees [78], where reachable sequences of controllers

can be generated, even though the region of attraction for each controller is estimated in

a conservative way using Sum-of-Squares optimization.

Another challenge is that, even with a very large database of Motion Primitives, there

will always be cases in which there is no primitive corresponding to the current terrain

height [45]. In this chapter we alleviate this limitation. In order to do so, a regression

technique for the generation of walking primitives is introduced and utilized when the
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database does not contain a primitive which corresponds to the specific terrain variation.

This is achieved by designing a database of primitives for walking, ascending and descend-

ing stairs and then training a Gaussian Process which can generate new gaits. Thus, we

are able to reduce the cardinality of the database, in order to use efficient motion planning

techniques and still react to unforeseen terrain variations. An interesting evaluation of dif-

ferent regression methodologies (including the Gaussian Process Regression) with respect

to constraint violation for a fully actuated biped can be found in [79].

The Motion Primitives which we will use are generated with the help of the Hybrid Zero

Dynamics framework. With this methodology we will be able to evaluate the feasibility

of transition motions between Motion Primitives. Another advantage is that the motion

planning utilizes the 2-dimensional state representation of the zero dynamics instead of

the full system state which is always higher-dimensional and with that the planning can

be executed online. As already mentioned in section 2.4, the robotic model under study

is the 5-link biped, which constitutes a minimalistic model capable of walking on uneven

terrain. Please note that the methodology can be generalized to any robotic system with

one degree of underactuation.

The structure of this chapter is as follows: In section 4.1 the structure of the Motion

Primitives is introduced. In section 4.2, the learning process is explained and evaluated.

In section 4.3, the motion planning algorithm is introduced which is based on a best first

approach. Section 4.4 presents two sample cases that validate our approach. Section 4.5

concludes the chapter with a summary.

4.1 Motion Primitives

For the definition of the Motion Primitives we are using the virtual constraints which were

described in section 3.2. These virtual constraints are parametrized as Bézier polynomials

of orderM and have been already presented in section 3.2. Nonetheless, they are presented

once more here for clarity:

qdi (s) =
M∑

k=0

αi
k

M !

k!(M − k)!
sk(1− s)M−k, (4.1)

where s is a phase variable and is defined as s(q) = θ(q)−θ+

θ−−θ+
. Please note that s(q) is

monotonically increasing and therefore it replaces time.

The coefficients α are obtained using the optimization process described in section 3.3

and are used in the definition of the Motion Primitives.

4.1.1 Database of Motion Primitives

The number of primitives in the database is dependent on the expected terrain variations

and possibly on the computational resources available. For the proposed methodology, the

cardinality of the database does not need to be large, since the regression technique - as is

going to be presented in section 4.2 - is able to enrich the capabilities of a small database

by generating new primitives when they are needed.
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4.2 Regression Method

The important quantities in the Motion Primitives and their explanations are presented

in Table 4.1. After defining the role of each term in Table 4.1, a Motion Primitive P is

formally defined as the tuple

P =
{
α, θ−, Vzero, V

MAX
zero , δzero, ℓ

−, h−
}

(4.2)

and describes both periodic and aperiodic primitives.

Tab. 4.1: Structure of a Motion Primitive

Quantity Explanation

α

The Bézier coefficients, which describe the
desired trajectories and the feedforward con-
trol input (3.6)

θ−
Pre-impact value of θ. It is used to define
s(q)

Vzero

Used for the computation ofK+
zero during mo-

tion planning according to (3.30) (periodic
walking) or (3.36) (aperiodic walking)

δzero

Used for the computation ofK+
zero during mo-

tion planning according to (3.30) (periodic
walking) or (3.36) (aperiodic walking)

V MAX
zero

Necessary in order to evaluate the feasibility
of a transition according to (3.32) and (3.33)
(periodic walking) or (3.35) (aperiodic walk-
ing)

ℓ−

Final stride length. Even though it can be re-
constructed by the Bézier coefficients α and
the value θ−, it is desirable to be included in
the primitive definition in order to facilitate
the motion planning and primitive genera-
tion. For brevity ℓ− is used instead of px−2

h−
Final stride height. The justification is the
same as for the stride length ℓ−. For brevity
h− is used instead of py−2

In this work, the cost J from Eq. (3.52) associated with each primitive is not included

in the definition (4.2), since it describes the total cost of the associated periodic orbit and

during aperiodic walking the state x does not evolve necessarily on the periodic orbit.

4.2 Regression Method

In this section, the regression method is presented, which enables the online generation of

walking patterns, when there is no primitive in the database which matches the terrain

variation.

39



4 Learning with Primitives for Online Motion Generation

For walking on uneven terrain the input is the desired final stride length ℓ− and height

h−. The outputs are the Bézier coefficients α, except the first two, since according to

(3.38) and (3.40) they depend on the post-impact state of the robot x+ and can be easily

determined by solving these two equations for α0 and α1. In this work, the learning model

employed is the Gaussian Process Regression, due to its fast learning and inference time

and the fact that it was able to learn the nonlinear dependencies between the gaits in a

very satisfying way. A brief introduction to the Gaussian Process follows.

4.2.1 Gaussian Process

The Gaussian process GP [80] is a stochastic process in which any linear combination of

the input variables ϕi, i = 1, ..., N has a joint Gaussian distribution N . In our case, each

of the Bézier coefficients α1:n−1
2:M will be predicted from a Gaussian process GP which can

be written as

α1:n−1
2:M (ϕ) ∼ GP(m(ϕ), κ(ϕ,ϕi)), (4.3)

where ϕ = [ℓ− h−]
⊤
is the input, m the mean function and κ the covariance function. The

mean and covariance functions can also be defined as

m(ϕ) = E[α1:n−1
2:M ] (4.4)

κ(ϕ,ϕi) = cov[m(ϕ), m(ϕi)]. (4.5)

The joint Gaussian distribution N (µ,K) is defined by a covariance matrix Kij = κ(ϕi,ϕj)

of dimension N × N , where N is the number of existing primitives and a mean µ =

[m(ϕ1), m(ϕ2), ..., m(ϕN)]
⊤. The behaviour of the output functions is determined by the

covariance kernels. It is common practice to employ a zero mean function µ and a squared

exponential covariance kernel given by

κ(ϕ,ϕi) = σ2
fexp

(

−
1

2
(ϕ− ϕi)

⊤Σ−1(ϕ− ϕi)

)

, (4.6)

where σ2
f is the length scale and Σ = σ2

ϕI the standard deviation with I the identity

matrix. The quantities σf and σϕ are combined in λ = [σf σϕ]
⊤ and are referred to

as the hyperparameters of the Gaussian Process which are estimated through maximum

likelihood methods.

4.2.2 Evaluation of the Regression Method for Periodic Gaits

The regression method is trained offline and can be utilized online for motion planning. The

task constraints which were used for the computation of the Motion Primitives according

to the optimization problem described in section 3.3 are the final step length ℓ− and the

height h− of the swing foot. The optimization was utilized for a grid from 0.4 to 0.7 m for

ℓ− and from -0.15 to 0.10 m for h−. The step increment for ℓ− is 0.05 m and for h− it is

0.01 m. With these specifications, the database contains 182 periodic primitives as well as

all the transitions between them, where the transitions coefficients are chosen according to

the methodology described in section 3.2.
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Fig. 4.1: The range of values for which the regression method can generate feasible gaits.
Yellow color indicates feasible gaits, while red indicates infeasible ones.

The important quantities when a generated gait is employed are δzero, Vzero, V
MAX
zero and

the justification is the same as in Table 4.1. The verification of the feasibility condition

for periodic walking described by Eq. (3.22) is illustrated in Fig. 4.1 and the quantity δzero
is presented in Fig. 4.2 for a densely sampled grid of points corresponding to the stride

length and height of the Motion Primitives in the database. For a gait to be periodic and

exponentially stable, Eq. (3.22) as well as 0 < δzero < 1 must hold. Since, the latter holds

for the whole grid, the interest is shifted towards Fig. 4.1. There, it is obvious that the

regression method can generate periodic gaits for a very large range of ℓ− and h− values.

A limitation arises for stair descent with a very large or small step length. At this

range, the nonlinear relations between the Bézier coefficients of the periodic gaits are

highly uncorrelated and cannot be easily captured by the Gaussian Process. This finding

was expected, since during stair descent the robot is taking advantage of gravity and

utilizes more of its natural dynamics. Therefore the range of solutions is very small for

these gaits. This finding is also supported by the fact that as the height decreases, the

range of step lengths corresponding to periodic gaits decreases.

4.2.3 Online Generation of Motion Primitives

After the description and analysis of the regression methodology, it is time to discuss its

online capabilities. In order to obtain the value of the unactuated DoF q5 at the end of the

gait, we only need to equate the vertical component ys of the swing leg with the desired

final stride height h−, i.e. solve the equation ys(αM , q
−
5 ) = h− for q−5 . This ensures that the

generated gaits will always match the encountered terrain variations. In order to compute

Vzero and V MAX
zero very fast, the function Vzero is computed on a sufficiently dense grid of

points of ξ1, so that it can be numerically integrated using the cumulative sum. Since the

function Vzero corresponds to potential energy, it is concave which makes the computation
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Fig. 4.2: The quantity δzero for the generated walking gaits.

of V MAX
zero very easy and fast. The computation of δzero requires only a simple evaluation of

Eq. (3.23).

More precisely, regarding the computational cost, the Gaussian Process prediction of the

mean has an algorithmic complexity of O(N), where N in this case is the total number of

training examples. Regarding the dynamic feasibility, the cumulative sum for integrating

the function Vzero is a linear operation which depends on the size of the grid of ξ1 points.

Finding the maximum V MAX
zero is also a linear operation.

On the other hand, finding a feasible solution online using optimization constitutes a

very difficult problem. The decision variables are (M − 1)× (n− 1) and we have nonlinear

constraints regarding the feasibility and the stability of the gait. Even if the optimization

is only with respect to the constraints, i.e. finding a set of decision variables that respects

the terrain variation and satisfies the constraints, the Gaussian Process is going to produce

a gait much faster.

Finally, for aperiodic walking an evaluation of the feasibility of transitions is not helpful,

since it is subject to the post-impact state of the robot, which is based on the history of

transitions executed so far. A solution to this problem is presented in section 4.3, where

the feasibility is checked online with the aid of a look-ahead approach.

4.3 Motion Planning Algorithm

The motion planning algorithm takes as input the terrain description and gives as an

output a sequence of primitives which can traverse this terrain. It is based on a best first

approach. This is due to the limited computation time, which is dictated by the duration

of the gait. In a few words, we want the motion planning algorithm to terminate before

the robot concludes its current step. The sketch of the algorithm is presented in Fig. 4.3.

The search node of the list ’TREE’ is assumed to have the structure described in Table

4.2.

Initially the structure TREE contains the currently executed node p. At each execution

step we choose the best node in TREE. The evaluation criterion assumed for selecting the
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4.3 Motion Planning Algorithm

Tab. 4.2: Structure of a search node

Quantity Justification

P Associated primitive as described in table 4.1

K+
zero

Necessary for checking the feasibility of tran-
sitions and choosing primitives

predecessor Father of current node in the search tree
k Depth of the current node in the search tree

(x,y)
Cartesian coordinates of the swing leg on the
terrain

ID
Takes discrete values from the set {’N’,’G’},
denoting nominal and generated node respec-
tively

best node d is defined as

d← argmaxi{K
+
zero,i} (4.7)

The motivation behind this comes from Eq. (3.35). That is, with a greater value of K+
zero,

the number of available primitives gets larger. The maximum allowed depth of the TREE

is D and thus we check if the best node is within this depth.

• If this is true, we backtrack in TREE to find the predecessor f of d in depth 1.

If the execution of f will bring the robot past the goal value ”terrainX”, then the

algorithm is terminated. Otherwise, the structure TREE is re-initialized when the

robot concludes its current step with the node f , whose primitive is going to be

executed.

• If this is not true, we check further the database for suitable primitives to populate

the structure TREE.

This is done by iterating along all the (ℓ−, h−) combinations corresponding to primitives

in the database in order to find the ones that match the terrain variations. For that, the

ID information of the best node d is important.

• If the best node is a nominal one, the primitives Pi that correspond to the terrain

variations already exist in the database.

• If the best node is a generated one, the quantities δzero, Vzero and V MAX
zero of the

”connecting” primitives Pi whose final kinematic configuration corresponds to the

terrain variations need to be calculated online, since they do not exist in the database.

If there is no primitive in the database that matches the terrain variations, we utilize

the Gaussian Process to generate primitives. This procedure is executed for a grid of Λ

equally distributed step lengths ℓ− in the range
[
ℓ−MIN, ℓ

−
MAX

]
. The desired value h− is equal

to the terrain variation in a distance ℓ− from the stance leg of the robot.

The dynamic feasibility of the generated primitives is checked by computing the quan-

tities Vzero and V MAX
zero as described in subsection 4.2.3 and then evaluating Eq. (3.35).

In any case, dynamically feasible primitives are appended in TREE. Finally, it should be
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Fig. 4.3: Flow diagram describing the motion planning algorithm. The dynamic feasibility is
checked for each primitive that is either chosen from the database or generated from
the Gaussian Process.
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Fig. 4.4: Walking sequence produced with the algorithm proposed in section 4.3. The black
configurations correspond to gaits that match the aforementioned grid, while the red
ones do not.

noted that D and Λ are design parameters that dependent on the computational resources

available.

4.4 Simulation Evaluation

This section presents an evaluation of the algorithm proposed in section 4.3.

In Fig. 4.4 a horizon of D=3 steps ahead is utilized and the total amount of primitives

which are allowed to be generated by the Gaussian Process is L=7. The red configurations

denote final robot poses with a [ℓ− h−]⊤ specification that does not belong to the afore-

mentioned grid and the regression technique had to be utilized for the transition to them.

Since the algorithm involves only lower dimensional dynamics and the inference time of

the Gaussian Process is small, the proposed methodology can be utilized for online motion

planning. An interesting result arises when the second generated gait shows that the robot

leans forward in order to gain more momentum and overtake a big step.

In Fig. 4.5 another evaluation is presented for a more challenging terrain. For this case,

the robot has to take an initial step with a height equal to 0.099 m followed by a step with

a height equal to -0.148 m. The step down generated transition (2nd red configuration)

has a final stride length ℓ− of 0.4039m and a final stride height h− of −0.148m. According

to Fig. 4.1 a periodic gait with this specification cannot be generated. This example shows

that even though the generation of such a periodic gait is infeasible, a feasible transition

that ends up in a pose with the specified ℓ− and h− values can be generated.
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Fig. 4.5: Walking sequence for a terrain with a challenging transition at the beginning. The
Gaussian Process has to be employed to take a transition from a step with a height
of 0.099 m to another one with a height of -0.148 m.

4.5 Summary

This chapter proposed an online motion planning algorithm for walking on uneven terrain,

using Motion Primitives which are extracted based on the Hybrid Zero Dynamics approach.

The key idea is that, when there is a mismatch between the final stride height of the

Motion Primitives in the database and the terrain height, a regression technique can be

used to generate a primitive that matches the terrain variation. The regression method is a

Gaussian Process and it uses the Motion Primitives in the database as training examples.

The motion planning algorithm is shown to be efficient since it uses the HZD of the robot

which are 2-dimensional and the inference time of the Gaussian Process is very small.

Simulation studies are presented in section 4.4.
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5 Settling Time Reduction Using Sequences of

Motion Primitives

Underactuated robots are systems that possess less actuators than degrees of freedom

(DoFs). In that case the controller design becomes a challenging task, since the control

signals to the actuated DoFs need to induce a motion that stabilizes the whole system.

Despite this challenge, there are numerous successful applications for a wide range of

systems using various techniques. In the case of academic example systems, there is the

swing-up control of the Acrobot which uses partial feedback linearization and LQR control

[81]. For free-flying mechanical systems like quadrotors, there is a successfully applied

framework for position control and trajectory tracking based on backstepping and sliding

mode control [82]. In addition, recent interesting applications emerged from the field of

ship-mounted cranes where stabilizing control is achieved through a nonlinear controller

design based on the method of Lyapunov [83, 84]. Last but not least, as we will see in the

sequel, there are also different approaches in the field of walking robots, which is the main

focus of this thesis.

Periodic walking for an underactuated robots is dictated by a periodic orbit. Stable

periodic orbits have a domain of attraction where any deviation from the nominal orbit

can be compensated by the dynamics of the system and the feedback terms of the control

law. As a consequence, for the feasibility of a transition between two periodic orbits, it is

sufficient that the state of the system enters the domain of attraction of the target orbit.

When that happens, convergence is guaranteed and its rate is dictated by the maximum

eigenvalue of the Poincaré Map. The time until convergence to the target periodic orbit is

defined as the settling time.

Even though convergence can be guaranteed, it might be desired to improve its rate. In

the case of velocity control, for example, one might want the state of the robot to converge

to the target periodic orbit as soon as possible, such that the target velocity is acquired

very fast. Another reason might be that the target periodic orbit is optimized with respect

to an energy criterion and fast convergence to it allows the robotic system to comsume less

power. In general, a target periodic orbit is usually designed to satisfy a task objective

and faster convergence to the periodic orbit means that the task is fulfilled faster. In such

cases, a possible solution is to try to minimize the maximum eigenvalue of the Poincaré

Map associated with the target periodic orbit, as was done for a running robot model and

a somersaulting simulated robot [14, 85]. In these two related works, the cost function

to be minimized is the maximum eigenvalue of the Poincaré map itself. As suggested

however in the mentioned works this minimization constitutes a difficult problem. One of

the reasons is that the maximum eigenvalue function of the non-symmetric Jacobian matrix

of the Poincaré Map is non-differentiable and possibly even non-Lipschitz at points where

multiple eigenvalues coalesce. In addition, different modifications of existing optimization

algorithms were required for the success of this optimization. Another issue is that this
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5 Settling Time Reduction Using Sequences of Motion Primitives

minimization objective might be used against the satisfaction of other objectives such as

torque consumption and/or minimum foot clearance.

Another possible solution to improve the settling time could be given by the concept of

Virtual Model Control (VMC), where the virtual force could be used to make the robot

transition between different walking cycles [41]. Despite the fact that the VMC is generally

applicable and very promising, it is not accompanied by concrete stability properties. In

addition, with this methodology we do not converge to a desired periodic orbit per se, but

instead allow the robot to walk in a fashion that satisfies the task objective encoded in the

virtual force. Finally, this methodology might induce high torques, such that the motion

is energy inefficient or it violates the actuator limits. A recent methodology which can also

employ virtual forces can be found in the work of Veer et al. but as it can be seen the

settling time is slow [86].

In this chapter we introduce with section 5.1 the Settling Time Reduction problem

with the help of Optimal Control. As a later step in section 5.2 we propose a Reinforce-

ment Learning algorithm in order to find sequential controllers which enforce multi-step

sequences that can minimize the settling time of different transitions within a database of

Motion Primitives. Finally, section 5.3 concludes this chapter with a short discussion.

5.1 Optimal Control Formulation

One alternative to Settling Time Reduction without the shortcomings of the VMC and

the minimization of the maximum eigenvalue is to enter the domain of attraction of the

target periodic orbit very close to the fixed point of the Poincaré map. Then, convergence

to the periodic orbit will require less crossings of the Poincaré section, i.e. less time (see

Fig. 5.1). If such an alternative is to be undertaken, a concrete feasibility guarantee is

required which in order to be provided, knowledge of the domain of attraction of the

target periodic orbit is required. The reason for this requirement is due to the fact that

this condition characterizes a transition as feasible if and only if the state of the robot is

in the domain of attraction of the target periodic orbit after the impact with the ground.

In general, computing the domain of attraction of a periodic orbit is challenging. In order

to overcome this challenge we utilize the framework of HZD. One more reason why we utilize

the HZD is because we want to compare our approach with the transition methodology

proposed within the HZD [47], which is also described in section 3.2.

The assumption is made that the periodic orbits are given and we focus on the problem

of transitioning between them in a way that reduces the settling time to the target periodic

orbit. In order to compute this aperiodic transition motion, we employ Optimal Control to

formulate and solve the Settling Time Reduction problem. The Optimal Control approach

is adopted since it allows us to easily impose all the constraints that ensure a feasible,

valid and natural motion and there are already examples of its successful utilization in

walking robots [76, 13]. The initial state of the robot, state and actuators limits as well as

modeling assumptions are treated as constraints. The feasibility condition is introduced as

an inequality constraint imposed at the end of the motion taking into account the impact

that occurs when the swing leg touches the ground. The cost function penalizes deviations

from the fixed point of the Poincaré Map of the target periodic orbit in the zero dynamics
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S φ1(x)
φ2(x)

φ3(x)
φ4(x)

φ∗(x)
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x4
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x2

x1

Fig. 5.1: Different orbits around an arbitrary periodic orbit φ∗(x) marked with the dashed line.
The fixed point of the periodic orbit is denoted with x∗ and the Poincaré section
with S which in case of walking robots is usually chosen to be the walking surface,
i.e. the state of the robot when the tip of the swing leg impacts the ground (either
pre- or post-impact state). In addition, the domain of attraction is denoted with the
curled brackets on the Poincaré section S. As is shown, if we are able to enter the
domain of attraction closer to the fixed point x∗, less iterations towards the periodic
orbit will be required until convergence.
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manifold and avoids torques with large magnitude, while keeping the transition time low.

The results are compared - as mentioned above - against the one-step approach proposed

by Yang et al. [47] (see Fig. 5.2) where the transition motion is designed with the help of

the Bézier coefficients of the initial and target orbits and show that our methodology of

optimizing a transition improves the settling time. Even though we demonstrate the use-

fulness of our approach with the example of a 5-link underactuated robot, the methodology

for Settling Time Reduction can be applied to any underactuated walking robot with one

unactuated DoF. Of course, our approach of Settling Time Reduction is not only limited to

the case study of walking, but can also be extended to the case of running [36, 87, 88, 89].

The section is structured as follows: In subsection 5.1.1 we introduce the OPC and in

subsection 5.1.2 we present our numerical results. The section concludes with a discussion

in subsection 5.1.3 regarding alternative ways to construct transition motions.

θ

ξ2 φi

φi→f

φf

Fig. 5.2: Example one-step transition according to [47]. A transition motion φi→f is taken
towards the target periodic orbit φf . Once this transition is executed, the state of
the robot will iterate towards φf until convergence to the periodic orbit.

5.1.1 Settling Time Reduction as an Optimal Control Problem

The objective of the Settling Time Reduction is to find a transition motion φi→f(t) (from

the initial periodic orbit φi to the final/target periodic orbit φf ) s.t.
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5.1 Optimal Control Formulation

• (3.33) is fulfilled, i.e. δi→j
zeroKzero(ξ

−
2 ) > V MAX

zero,f

• its overall duration T is relatively small and

• the distance ‖q̇i→f(T )− q̇f (T )‖ is minimized.

Such a transition motion will bring relatively fast the state of the system x inside the

domain of attraction of φf and is expected to drive the state very close to the fixed point

K∗
zero or ξ∗2 of the HZD Poincaré Map of φf .

Please note that for the Optimal Control approach the fixed point is chosen with respect

to the pre-impact state of the robot. This decision was made, because since we are working

with the robot equations of motion and not the HZD, a multiplication of the terminal joint

velocities q̇i→f(T ) with the impact matrix ∆q would be necessary in the formulation of

the cost function as it will be shown later. This multiplication would however introduce

additional and unnecessary complexity in the problem formulation and therefore it was

rejected.

In order to solve the Settling Time Reduction problem with Optimal Control, we first

have to define constraints that have to be fulfilled by the transition motion and a cost

function which when minimized attaches the desired characteristics to the motion.

Constraints

In an Optimal Control Problem (OCP) different equality and inequality constraints are

imposed involving the system state and controls. These constraints can be either linear

or nonlinear. The ones related to the Settling Time Reduction are listed and described

below:

• The OCP is always subject to the dynamics of the system that are described by

(2.29)

• The initial state of the transition is the initial state of φi(0) such that

x0 = φi(0). (5.1)

• The terminal state is constrained only in terms of the joint positions qT , i.e.

qT = qf (T ) (5.2)

which correspond to the terminal joint positions of φf . The joint velocities q̇ are

not included because of the underactuation that makes it difficult to reach them

exactly, preventing us from forming a 2 point boundary value problem. Instead, we

leave them free and penalize their deviation from the desired ones q̇f(T ) in the cost

function.

• Since we are dealing with systems with impact effects, we have to impose a constraint

that ensures that the impact is valid. In order to so, the impact force F 2 has to

respect the friction cone constraint

−µsF
y
2 ≤ F x

2 ≤ µsF
y
2 (5.3)
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5 Settling Time Reduction Using Sequences of Motion Primitives

and the vertical impact force component F y
2 has to be positive

F y
2 > 0. (5.4)

According to (2.23) the matrix ∆F is a function of the terminal configuration of the

robot. As a consequence, since we know the desired terminal joint positions qT = qf
and the Cartesian coordinates of the foot of the swing leg px2 = 0 and py2 = 0, we can

compute the desired elements of the matrix ∆F at the end of the transition motion.

With that, the constraints on the impact force F 2 can be expressed linearly in q̇T . In

order to express the constraint (5.4) linearly to q̇T , we decompose the desired impact

matrix to its lines as ∆F =
[

∆⊤,1
F ∆⊤,2

F

]⊤

. In such a way, the constraints on the

impact force F 2 can be written as

−
(
µs∆

2
F −∆1

F

)
q̇T ≤ 0 (5.5)

−
(
µs∆

2
F +∆1

F

)
q̇T ≤ 0 (5.6)

∆2
F q̇T > 0. (5.7)

• The friction cone constraint that holds for the impact force F 2 has to hold also for

the ground reaction forces F during the transition, i.e.

−µsFy ≤ Fx ≤ µsFy (5.8)

and the vertical force component Fy has to be positive:

Fy > 0. (5.9)

• The transition must bring the state of the robot inside the domain of attraction of

the target orbit as dictated by (3.33). This condition can be expressed linearly to

the terminal joint velocities q̇T in the following way: At first, the maximum value of

the potential energy at the zero dynamics manifold V max
zero,f is known. In addition, we

need to multiply the last line of the mass-inertia matrix Dn with the post-impact

joint velocities q̇+. Using (2.24) and excluding the last two lines, the post-impact

joint velocities are given as q̇+ = ∆R
q q̇T . The matrix ∆R

q is a function of the terminal

configuration of the robot and therefore the desired elements of∆R
q can be computed.

This is due to the fact that the desired terminal configuration qf(T ) is known and

for the tip of the stance leg it holds that px2(T ) = py2(T ) = 0. Finally, as already

mentioned we need the last line of the mass-inertia matrixDn which can be evaluated

using the post-impact joint positions q+ whose desired values are qf(0). Bringing

everything together yields

Dn(qf (0))∆
R
q (qf(T ))q̇T < −

√

2V max
zero,f . (5.10)
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• The swing foot has to be above the ground during the transition motion:

py2(q) > 0. (5.11)

The desired final and initial posture of the robot guarantees that py2 = 0 for t = 0

and t = T .

• The state x, input u and total duration of the motion T should satisfy the following

box constraints:

xmin ≤ x ≤ xmax (5.12)

umin ≤ u ≤ umax (5.13)

Tmin ≤ T ≤ Tmax (5.14)

The constraint on the state x is imposed to ensure the satisfaction of physical and

style constraints. The input u is constrained such that we do not exceed any imposed

actuator limits. Finally, the time duration T is constrained to prevent the solution

search space from unreasonably increasing.

Cost function

As already described, the terminal joint velocities q̇T are free and we penalize their de-

viation from the pre-impact joint velocities q̇f(T ) of the orbit φf . At the same time, we

want to penalize the final time T such that we enter the domain of attraction of the target

periodic orbit not only close to the fixed point, but also fast. Finally, we want the magni-

tude of the torques to be low, such that ”energy” criteria are also taken into account and

a smooth transition motion is produced. Therefore the employed cost function is given by

JSTR(u, T ) =
(
q̇f − q̇T

)⊤
Γ
(
q̇f − q̇T

)

︸ ︷︷ ︸

‖ξ∗2 − ξ2‖2

+αJT +

∫ T

0

u⊤Wu (5.15)

where Γ = γ⊤
0 (qf (T ))γ0(qf(T )). The first term is equal to ‖ξ∗2 − ξ2‖2 and penalizes

deviations from the fixed point of the target periodic orbit, but through ξ2 instead of

Kzero. The use of ξ2 retains the information of the fixed point and prevents the term

from becoming unnecessarily complicated. The constant αJ penalizes large values of the

total time duration T and the matrixW has weighting and scaling purposes and favors or

disfavors ”energy” consumption against convergence error and total time duration. These

weighting factors assist in determining how much different control inputs are penalized or

how much the deviation from the desired fixed point is penalized.
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5 Settling Time Reduction Using Sequences of Motion Primitives

Optimal Control Formulation

The problem of finding a transition motion between two periodic orbits such that the

settling time to the target periodic orbit is minimized can be formulated as an OCP as

min
u,T

JSTR(u, T )

s.t. dynamics model (2.29)

equality & inequality constraints (5.1)− (5.14)

For the solution of this OCP we used the ACADO software [90]. This software implements

a direct multiple shooting algorithm with an equidistant grid for control discretization.

In such a way, the dynamic optimization problem is transformed into a static Nonlinear

Program. For more details on multiple shooting algorithms, refer to further readings [91].

5.1.2 Numerical Results

In this section we provide numerical results by solving the presented problem for a tran-

sition from a periodic orbit corresponding to a velocity of 1 m/s to one that enables the

robot to walk with a velocity of 1.5 m/s. The robot model used is the 5-link biped as

depicted in Fig. 2.5 and the periodic orbits that dictate walking with the aforementioned

velocities have been designed using the optimization methodology as described in section

3.3.

In Tab. 5.1 we compare the convergence error between the transition methodology from

Yang et al.[47] and our OCP approach for the transition under study. For this comparison,

we use different combinations of the weighting factors in the cost function JSTR (5.15),

where we choose a diagonal W matrix with the same diagonal value w. The convergence

error is defined as

eK = |K−
zero −K

∗
zero|. (5.16)

and as expected, the less we penalize the magnitude of the torques, the less the convergence

error of the OCP approach gets in comparison to the one of the approach of Yang et al.

The penalization of the total time duration αJ has not the same impact as w but we can

observe an advantageous behavior for αJ = 10. In the sequel, we will discuss the behavior

Tab. 5.1: eK,OCP/eK,one−step − 1

❛
❛
❛

w

αJ

0.001 0.01 0.1

1 −22.67% −8.90% −2.78%

10 −24.93% −9.25% −2.76%

100 −24.38% −6.64% −2.59%

Relative difference of the convergence error when using the OCP approach and one step ap-
proach. The relative difference is presented with respect to the weighting constants αJ and wi.

of the transition motion for the values αJ = 50 and w = 0.05. Regarding the torques,
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Fig. 5.3: Joint torques for the considered transition which is the outcome of the solution of
the OCP with αJ = 50 and w = 0.05.

in Fig. 5.3 we see that the lowest torque requirements are for the knee of the swing leg

u1, since it has to manipulate only the relatively smaller mass of the tibia of the swing

leg and the greatest effort is taken by the hips, i.e. u2 and u3 where the peak values are

observed at the beginning of the motion. This behavior shows that the robot is trying to

generate enough momentum at the beginning of the motion to reach a higher velocity fast.

The torque profile of the knee of the stance leg u4 exhibits also a similar behavior. A nice

feature of the generated motion is that all torques settle close to zero at the end of the

motion. As also seen in Fig. 5.3, the peak torques are always inside the assumed limits of

±100 N·m. Finally. as shown in Fig. 5.4, the friction cone constraint is always respected

for the assumed static friction coefficient of µs = 0.7.

We also provide a stick diagram animation of the motion (Fig. 5.5) where it can be seen

that the robot in order to accelerate fast to the desired velocity of 1.5 m/s is utilizing the

inertia of its torso and concludes the transition with the torso leaned forward. Finally, we

show the values of the matrix Γ (see (5.15))

Γ =











0.0011 0.0016 0.6073 0.3094 0.7512

0.0016 0.0023 0.8897 0.4532 1.1004

0.6073 0.8897 339.7983 173.1101 420.2884

0.3094 0.4532 173.1101 88.1909 214.1158

0.7512 1.1004 420.2884 214.1158 519.8447











where it is shown that most of the non-diagonal elements have large values and as a

55



5 Settling Time Reduction Using Sequences of Motion Primitives

Friction cone constraint
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Fig. 5.4: Friction cone constraint for the considered transition which is the outcome of the
solution of the OCP with αJ = 50 and w = 0.05.
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Fig. 5.5: Stick diagram animation of the considered transition which is the outcome of the
solution of the OCP with αJ = 50 and w = 0.05.
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consequence there is a coupling between the corresponding deviations of the terminal joint

velocities. The stronger coupling however is between the deviation for the DoFs of the

stance leg (q3 and q4) and the unactuated DoF q5, both between themselves and each

other. This finding is expected since q3 and q4 belong to the stance leg which manipulates

the whole mass of the robot and together with q5 they have a major contribution in the

determination of the pre-impact state of the robot and its distance from the desired fixed

point ξ∗2.

5.1.3 Discussion

As was presented in section 3.2, a transition between two stable periodic orbits can be

designed with Bézier polynomials ofM−th order which are employed for each actuated DoF

[47]. In this Bézier polynomial based approach, the first two and the last two coefficients of

each actuated DoF are determined such that the initial and terminal state of the transition

are valid with respect to the pre-impact and post-impact states of φi and φf , respectively.

The remainingM−3 coefficients are calculated by averaging the corresponding coefficients

of the two periodic orbits (4 × (M − 3) coefficients in total). As stated in the literature,

they can also be found through optimization. We decided against such an approach due

to the following reason.

As stated in the book of Agoston (Chapter 11) [92], when employing Bézier polynomials,

the further a control point is from a point on the curve, the smaller its effect on that point

is. By fixing the first and last two coefficients of each polynomial, we have less freedom

on shaping the desired trajectories such that they satisfy the aforementioned constraints

(especially (5.3) - (5.10)). As a consequence, this approach provides limited user influence

on the distance from the fixed point ξ∗2 of φf and by that, on the settling time to the

periodic orbit of φf .

5.2 Reinforcement Learning Approach

Another way of dealing with the problem of Settling Time Reduction is to consider a

sequence of steps that will enable the system to enter the domain of attraction of the

target orbit closer to its fixed point, than if a one-step transition was taken as suggested in

[47] and section 3.2. When such methods are utilized, the feasibility of the step sequence

has to be investigated, in order to ensure that the sequence will indeed drive the state of

the system in the domain of attraction of the target orbit.

The feasibility problem has been treated in [78] and [93]. In [78], the idea of LQR-

Trees is introduced, where the state space is partitioned in different regions. Each region

corresponds to the domain of attraction of a LQR controller which is computed based on a

conservative approach using Sum-of-Squares optimization. Thus, the system can be driven

to a final state from any initial one by finding a sequence of LQR controllers. This idea

is claimed to be extendable to walking robots as well. In [93] the framework of Sequential

Composition Control is introduced. The idea is more generic than the LQR-Trees, since

it describes how any kind of controllers can be composed into a sequence in order to

accomplish a high-level plan. The feasibility condition states that a transition between
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5 Settling Time Reduction Using Sequences of Motion Primitives

different controllers is feasible only when the image of the funnel of one controller belongs

to the domain of attraction of the other one.

In related work [94], the idea of Sequential Composition Control was used to define

feasibility conditions for transitions between different controllers. When a transition was

not feasible, a connecting controller was learnt online. Despite the fact that these ideas

describe ways to create a composite controller as a concatenation of different ones, they

do not take into account any optimality criteria for the way this composite controller is

generated, but only focus on feasibility. In this thesis we overcome this limitation by

expressing the problem of controller composition as a Markov Decision Process and by

introducing a reward function that takes into account optimality criteria related to the

task under study, which is the Settling Time Reduction.

In our case study we assume a set of walking motions and consider the problem of

reducing the settling time of a transition between different periodic orbits. Due to the

underactuation, the feasibility of a transition is not pre-determined but rather has to be

verified at each impact event (i.e. swing leg establishing contact with the ground). The

Markov Decision Process for finding composite controllers is solved with a realization of

Reinforcement Learning and leads to multi-step transition motions. A contribution of

using the Hybrid Zero Dynamics framework is that the proposed methodology can be

extended to any walking robot with one degree of underactuation. In addition, due to

the utilization of the Hybrid Zero Dynamics the state of the Markov Decision Process has

lower dimensionality than the one of the robot system.

The section is structured as follows: In subsection 5.2.1 we formulate the problem

of finding multi-step transitions as a Markov Decision Process and the Reinforcement

Learning algorithm is presented. The simulation results are presented in subsection 5.2.2.

5.2.1 Learning for Settling Time Reduction

The purpose of this work is to find a sequence of controllers/motions in order to reduce

the settling time of a transition from an initial periodic φinit to another one φtarget. In

order to do so, we formulate the problem of finding multi-step transitions which can reduce

the settling time of the aforementioned transition as a Markov Decision Process, which we

solve with Reinforcement Learning. For this work, each orbit corresponds to a desired

average walking velocity.

One-step Transition

In the one-step approach and under the assumption that Eq. (3.32) holds, a transition

between two different periodic orbits is realized by checking first if Eq. (3.34) holds. If

this is the case, the transition motion is executed and then the state of the robot will

enter the domain of attraction of the target orbit. Otherwise if Eq. (3.34) does not hold,

an intermediate transition is taken towards the orbit whose domain of attraction can be

reached by the initial orbit and is closest (in terms of fixed point) to the target one. If

the target orbit is still unreachable, this process can be repeated. In any case, once in the

domain of attraction of the target orbit, the convergence to the fixed point is dictated by

the quantities δzero and Vzero(θ
−), thus it is possible that convergence requires a lot of time
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and steps.

Multi-Step Transition

In this work, this slow convergence is confronted by requiring that the transition to the

target orbit φtarget does not have to be realized following the one-step approach, since

there might be a sequence of transitions which is enforced by a composite controller and

can potentially reduce the settling time (see Fig. 5.6). More formally, assume that in the

multi-step transition the state of the robot is commanded towards the target orbit φtarget

at time t⋆ and K∗
zero denotes the fixed point of the periodic orbit φtarget which is chosen as

the post-impact kinetic energy in the zero dynamics manifold. Since the robot might be

executing a step at time t⋆ under the one-step transition, we allow it to conclude the step

and measure K+
zero at time to > t⋆.

Definition 5.2.1 A composite controller is successful if and only if

|K+
zero(t

⋆)−K∗
zero| ≤ |K

+
zero(t

o)−K∗
zero|, (5.17)

�

This evaluation criterion is adopted because it is desirable to evaluate the two differ-

ent transition strategies on the pre-impact state of the robot. Since though, the impact

events between the two strategies are not synchronized, the one-step strategy is allowed to

complete the currently executed step and get closer to the fixed point K∗
zero.

A sequence of transitions is equivalent to a composite controller, since - as seen in section

3.2 - each transition φi→j is commanded by a controller Γ(αi→αj), where (αi → αj) the

Bézier coefficients of the transition motion.

If the state of the system under a multi-step transition crosses the Poincaré section

of the target orbit closer to the fixed point than the one-step transition, the principle of

optimality can be utilized and claim that convergence is achieved faster. In order to find

such multi-step transitions, we use Reinforcement Learning.

Reinforcement Learning

Reinforcement Learning has been proposed as a semi-supervised optimization method [95]

and has been extensively used in the field of Robotics [96]. An optimization problem in the

context of Reinforcement Learning can be defined as a Markov Decision Process described

by the tuple P(S,T,F, ρ, χ), where S is the state space, T is the action space, F : S×T → S

is the state transition function, ρ is the reward function and χ ∈ [0, 1] is a discount factor.

The state transition function F returns the state sk+1 when applying the action τk at state

sk. The reward function returns a scalar value ρk after such a transition. The action

selection is dictated by a policy π, such that π : S→ T.

The idea behind Reinforcement Learning is to find this policy π such that the expected

discounted sum of future rewards is maximized. This expected discounted sum is repre-

sented by a state-action value function Qπ : S× T → R, such that

Qπ(sk, τk) = E

(
∞∑

i=0

χirk+i+1

)

, (5.18)
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θ

ξ2

φi

φi→j

φj→target

φtarget

Fig. 5.6: Example multi-step transition with only one intermediate transition. Instead of having
a transition motion φi→target, an intermediate transition is taken towards the periodic
orbit φj. Once the transition motion φi→j is executed, the state of the robot does
not iterate towards φj , but executes another transition towards the target periodic
orbit φtarget. Once this transition is executed, the state of the robot will iterate
towards φtarget until convergence to the periodic orbit.
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where E the expectation operator. In other words, we are trying to find an optimal policy

π∗ such that

π∗ ∈ argmaxτ Q
∗(s, τ) (5.19)

where Q∗(s, τ) = maxπ Q
π(s, τ).

Different realizations have been proposed in the literature for finding such a policy.

When dealing with large state-action spaces, a practical solution is to use approximation

techniques in order to learn the Qπ function. In this work, a Q-learning method is adopted

with linear parametrization such that Qπ(sk, τk) = ϕ
T (sk, τk)υ and ǫ-greedy action selec-

tion, where a random action is taken with probability ǫ and an optimal one with probability

1− ǫ. In this linear parametrization of Qπ, the parametrization of the state is given by the

vector ϕ = [ϕ1, ϕ2, ..., ϕZ ]
T , where each ϕi corresponds to a basis function and Z is the

total number of basis functions. The parameter vector to be learnt is υ ∈ R
Z .

In the Reinforcement Learning framework, the state-action space has to be defined for

the Settling Time Reduction:

• The state space S = [K+
zero,min, K

+
zero,max]× {1, ..., card(Φ)}, where

Φ = ∪iφi, i = 1, ..., total number of periodic orbits (5.20)

the set of periodic orbits . For this representation, K+
zero is already defined and ”card”

denotes the cardinality of the set of periodic orbits Φ. The discrete set {1, ..., card(Φ)}
describes the periodic orbit towards which the robot currently moved. The limits of

K+
zero are determined by the set of orbits Φ.

• The action space T = {1, ..., card(Φ)} corresponds to the periodic orbit towards

which we want the robot to take an intermediate transition.

Note that if the state K+
zero was replaced with the average velocity of the robot, the integra-

tion of the equations of motion would be necessary in order to calculate the time duration

of the motion and with that the average velocity which requires a considerable amount of

time. When utilizing the HZD framework though, an integration is not necessary.

In addition, Eq. (3.36)

Kk+1
zero (ξ

+
2 ) = δi→f

zero

(
Kk

zero(ξ
+
2 )− V

i→f
zero (ξ−1 )

)

will serve as the state transition function F.

For each transition, a different parameter vector υ is learnt. An outline of the Rein-

forcement Learning algorithm is presented in Algorithm 1. Once the learning is concluded,

actions are selected in a greedy way according to

τ ← argmax
τ̄
ϕ⊤(s, τ̄)υ

Details regarding the convergence proof of this algorithm can be found in [97] (Ch. 3.4).
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Algorithm 1 Q-Learning with linear parametrization

1: for all transitions φi → φj do
2: for all epochs do
3: Initialize learning rate η0
4: Initialize ǫ
5: Initialize state s0 =

[
K∗

zero,i, i
]

6: Initialize randomly the parameter vector υ
7: for all episodes do

8: τk ←

{

uniform random action in T with probability ǫ

argmaxτ̄ ϕ
⊤(sk, τ̄)υk with probability 1− ǫ

9: Apply τk, measure sk+1 and reward ρk+1

10: υk+1 ← υk + ηk
[
ρk+1 + χmaxτ ′(ϕ

⊤(sk+1, τ
′)υk)−ϕ⊤(sk, τk)υk

]
ϕ(sk, τk)

11: Reduce learning rate η and ǫ
12: end for
13: end for
14: end for

Reward Function for Settling Time Reduction

Assuming that the fixed point K∗
zero corresponds to the target periodic orbit φtarget, the

reward function ρ is chosen as

ρ(K+
zero, i, j) = exp(−ϑ|K+

zero(k + 2)−K∗
zero|), (5.21)

where

K+
zero(k + 1) = δi→j

zero

(
K+

zero − V
i→j
zero

)
(5.22a)

K+
zero(k + 2) = δj→target

zero

(
K+

zero(k + 1)− V j→target
zero

)
(5.22b)

The justification behind this reward function follows from the fact that the target periodic

orbit φtarget is pre-determined. The reward function accounts for the distance between the

fixed point of the target orbit K∗
zero and the value of K+

zero, if at first a transition towards

the intermediate orbit φj and then to the target orbit φtarget is taken. In a few words, we

are interested in how the transition φi→target is influenced by an intermediate transition

towards the orbit φj . If the transition is not feasible, the reward is equal to −1.

5.2.2 Experimental Evaluation

This section presents the evaluation of the learning scheme proposed in the previous sub-

section. The set of periodic orbits Φ is populated by 81 orbits corresponding to average

desired velocities ranging from 0.7 to 1.5 m/s with a step of 0.01 m/s. Each orbit is

determined by the optimization procedure as described in section 3.3 where the desired

walking velocity was imposed as a task constraint. The one-step transitions between them

are pre-computed according to the methodology described in section 3.2 and stored. The

parameter ϑ in the reward function (5.21) is 0.2. Regarding the learning algorithm itself,

62



5.2 Reinforcement Learning Approach

 

 

 

 

C
on

tr
ol
le
r
in
d
ex

Steps

e+K

Time

multi-step

one-step

40

60

80

2

2

4

4

6

6

8

8 10 12 14 16 18

20

20

50

100

150

200

0
0 1 3 5 7

Fig. 5.7: The multi-step policy and the error convergence for a transition from a velocity of
1.37 m/s to that of 1.14 m/s (φ68 → φ45).

the discount factor χ is 0.7 and the probability of taking a random action ǫ is 30%. The

learning procedure lasts for 30000 epochs, while each epoch lasts for 40 episodes. The

aforementioned parameters were experimentally chosen.

Learning a single transition

This paragraph presents the experimental results obtained for learning a single transition

from a velocity of 1.37 m/s to that of 1.14 m/s. As illustrated in Fig. 5.7, the multi-step

policy tries to decelerate the robot by commanding it to walk with a much lower velocity

than the target one. Then, it commands the robot to take a transition towards the target

periodic orbit after two more steps. The validity of our approach can also be justified

by plotting the convergence of the velocity error ev = |v̄ − vtarget|, where v̄ is the average

velocity of the robot during a step and vtarget is the target velocity. As shown in Fig. 5.8,

there is a high correlation between the way the velocity and K+
zero converge to their desired

values.

The superiority of the multi-step transition is clearly highlighted when the error e+K =

|K+
zero −K

∗
zero| is taken into account. The multi-step policy takes a transition towards the

periodic orbit φ45 at time t⋆ ≈ 1.1 s (see Fig. 5.8) with an error e+K = 1.85, while at time

to ≈ 1.3 s (see Fig. 5.8) the one-step transition has an error e+K = 34. The error ev following

the multi-step policy becomes negligible in approximately 2.2 s, while for the one-step it

requires approximately 3.8 s.
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Fig. 5.8: The convergence of the velocity error for the transition φ68 → φ45

Dealing with non-stationary policies

When it comes to Reinforcement Learning, one might end up dealing with policies that

oscillate around the desired terminal state or in our case the orbit index that corresponds

to the desired target velocity. In order to overcome this situation, once the policies for all

the transitions are learnt, a post-processing procedure is initiated to detect such repeating

patterns. An example of such a policy can be seen in Fig. 5.9 for a transition from a

velocity of 0.84 m/s to that of 1.39 m/s. As shown there, the policy dictates to take a

transition towards an orbit which corresponds to a larger velocity than the target one and

then decelerates the robot towards the desired velocity, but does not eventually reach it,

rather it oscillates between the orbits that correspond to the velocities of 1.38 m/s and

1.40 m/s. Since the target velocity is known, once such policies are detected, the pattern

can be removed by fixing the action τ to the orbit corresponding to the target velocity as

illustrated in Fig. 5.10.

Overall performance

When evaluated on all possible transitions φi→j, i 6= j, the proposed methodology has a

success rate of 84.34%, meaning that 84.34% of the overall transitions are performed faster

with this framework. For the remaining 15.66% of the transitions, the one-step approach

can be utilized, since it is known that it will perform better. There is always the possibility

to fine tune the policies that perform worse than the one-step approach, but it is desired

to have a uniform framework. Fig. 5.11 presents the overall performance of the proposed

methodology. Finally, Fig. 5.12 gives a ”heat” map, which shows how much better the
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Fig. 5.9: An exemplary oscillating policy. The desired transition is from 0.84 m/s to 1.39 m/s.
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Fig. 5.10: The solution to the problem of the non-stationary policy. When the pattern 71 →
69 → 71 is discovered, the policy is fixed to the target orbit φ70.
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Fig. 5.11: The overall score for the proposed methodology. Yellow denotes that the multi-step
policy performs better than the one-step approach, while red suggests the opposite.
The periodic transitions (secondary diagonal) are not taken into account.

proposed methodology can perform in comparison to the one-step approach. The ”heat”

corresponds to the value ∆e+K = |K+
zero(t

⋆)−K∗
zero| − |K

+
zero(t

o)−K∗
zero|.

It is evident that the proposed methodology cannot outperform the one-step approach

in cases where a transition is taken between ”neighboring” orbits, i.e. transitions close to

the secondary diagonal. For these cases, a sequential controller is not expected to offer

much, since the fixed points of the initial and target periodic orbits are in general close to

each other. On the other hand, learning the one-step transition for these cases depends

strongly on the randomly selected actions at the beginning of each epoch.

The second big class of cases where the one-step approach has better performance,

comprises transitions where the target orbit index is close to the limits (1 or 81). In that

case, a multi-step transition cannot perform better than an one-step transition, since a

possible deceleration or acceleration below and above the target velocity is not possible.

5.3 Summary

This chapter dealt with the problem of Settling Time Reduction for transitions between

periodic orbits. We defined this problem with the utilization of Optimal Control and

proposed a Reinforcement Learning approach for learning multi-step transitions which can

reduce the settling time.

The cost function to be minimized in the Optimal Control Problem takes into account

the convergence error to the fixed point of the target periodic orbit, the torque consump-

tion and the total time duration of the motion. The feasibility condition is stated as an

inequality constraint and further constraints regarding the transition and the style of mo-

tion are imposed. For the numerical evaluation we utilize a 5-link biped robot and present
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Fig. 5.12: A ”heat” map showing how much better the proposed methodology performs in
comparison to the one-step approach. The evaluation criterion is ∆e+K . For the
purpose of facilitating the illustration, differences above the value of 50 have been
truncated.

the effect of different weighting of the terms in the cost function for a sample transition

motion. As shown by the results, optimizing such a transition is advantageous in terms of

entering the domain of attraction of the target periodic orbit closer to the fixed point in

comparison to the one-step transitioning approach that is usually utilized.

In the Reinforcement Learning approach we expressed the problem of finding multi-

step transitions as a Markov Decision Process. Using the HZD framework assisted in

reducing the state representation for the Markov Decision Process. The experimental

results demonstrate that the proposed framework can perform better for 84.34% in a total

of 6480 assumed transitions for the 5-link biped which was used in this study.
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6 Achieving New Tasks with Online Switching

of Motion Primitives - Balancing

In the last years a lot of effort is targeted towards endowing humanoid robots with capabili-

ties for outdoors operation and human assistance. In both cases, the humanoid is expected

to be able to retain its balance, i.e. be able to reject or handle external disturbances such

that a fall is avoided. An unforeseen disturbance force to a robot does not constitute a

rare case, since an only partially observed environment can lead to collisions. In such a

case, a control input has to be computed online in order to balance the robot. Also, in

assistive tasks like human-robot collaborative object transportation, the robot should be

able to counteract or comply with the forces applied by the human partner. In order to

reduce the effort from the human side the appropriate control inputs have to be computed

online.

Both cases demonstrate the need for fast computations online. One way to do so is

through the utilization of simplified models, like the Linear Inverted Pendulum or variations

of it, which assume that the mass of the system is concentrated on the Center of Mass

and is constrained to move at constant height [6, 7]. In that case, the dynamics become

linear and the derivation of a control input is simplified. Using such models, different

balancing strategies can be achieved like the ankle, the hip, the squat or the stepping

strategy [98, 99]. Also, since the dynamics are linear online optimization approaches can be

utilized to derive balancing and walking motions and to choose between different balancing

strategies [100, 101, 102].

Unfortunately, designing balancing motions using these simplified models does not con-

sider energy consumption since an online optimization using the nonlinear equations of

motion of a humanoid is computationally intractable. However, it has been shown that

energy consumption is part of the optimization process utilized by humans when perform-

ing balancing motions [103]. Another limitation of using simplified models, is that even

though the LIP with Reaction Wheel model [7] has been frequently used in studies of

humanoid balancing, the direct application of the resulting motion to the humanoid itself

is not straightforward.

Approaches towards the utilization of nonlinear systems of equations, suggest the lin-

earization of the system equations around the state of the robot and the use of an LQR

controller in the vicinity of the state. For this approach to be used, an estimation of the

area of validity of the linearization of the system is necessary. Additionally, the domain of

attraction of this LQR controller has to be computed using optimization methods [104].

Following this process offline for different state instances, the whole state space of the

robot can be partitioned in disjoint areas based on the validity of the linearization and the

domain of attraction of the corresponding LQR controller leading to the form of an LQR

tree [78]. Humanoid robots however are subject to unilateral constraints on the contact

forces, like the friction cone and the Center of Pressure constraints [11], which are difficult
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

to be taken into account in the LQR tree approach. If these constraints are violated, the

modeling assumptions are not valid anymore and slipping or underactuation might occur.

A possible solution is to use a database of Motion Primitives, that satisfy all the mod-

eling assumptions. These Motion Primitives are the outcome of an offline optimization

process which takes into account task objectives as well as energy criteria. Each Motion

Primitive corresponds to a trajectory/controller that balances the robot with respect to

a specific disturbance force. For the online utilization, it is only necessary to properly

select the most suitable primitive. Related work regarding balancing with a database of

Motion Primitives has been done by Liu et al. where local policies around trajectories are

extracted using Differential Dynamic Programming [74]. In their work however, informa-

tion of the push magnitude and application point is required for the selection of the local

model.

An important aspect when utilizing Motion Primitives is robustness to a wide range of

new disturbances, i.e. the ability to balance the robot with respect to disturbances that

were not considered during the extraction of the database of the Motion Primitives. For

that, online approaches can be utilized to correct any mismatch between the reference

values and the measured ones. An example is the Dynamic Balance Force Control [42]

where valid GRFs are found through the solution of a QP. As a next step, dynamically

feasible accelerations and torques are generated with the use of a weighted pseudo-inverse

approach. Another methodology using pseudo-inversion for animated characters is the

Dynamics Filter [43] and the approach for full body passivity based control as proposed

in the work of Cheng et al. [44] As an alternative, in the work of Lee et al. the balancing

motion is generated by solving many QPs sequentially while at the same time desired

accelerations are taken into account [105]. An additional methodology that employs QPs

in order to provide motions which satisfy multiple tasks can be found in the work of Herzog

et al., where the solution of the proposed QP sequence can achieve rates of 1 kHz [106, 107].

Worth mentioning is also the work of Escande et al., where the solution of a hierarchical

QP can provide control rates of 1 kHz as well [108]. In addition, Kuindersma et al. solved

a QP in order to apply a motion generated by a LIP model to the ATLAS humanoid

in a simulated environment [21]. In the same fashion, in the work of Hopkins et al. a

QP was used to render the motion generated using the Divergent Component of Motion

dynamically feasible and consistent [109, 110].

In this thesis, the reference balancing motions are provided by Motion Primitives. For

that, we apply numeric optimization using the nonlinear equations of motion of the robot,

while at the same time we take both the CoP and the friction cone constraints into ac-

count. For this chapter, we work with the four link robot model (see section 2.4) which

is a minimalistic approach of a humanoid robot employing its upper body for angular

momentum regulation. Such a model can demonstrate all the balancing strategies, i.e.

ankle, hip and squat strategy, but not stepping. In order to create Motion Primitives for

different balancing situations, we apply pushes on the middle of the torso with different

push strengths.

Afterwards, equidistant samples of each trajectory with their corresponding accelera-

tions, torques and GRFs are stored, leading in a database of Motion Primitive Samples.

During balancing we apply a Euclidean distance metric on the state to choose the best
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sample, forming in the end a Motion Primitive switching methodology. By using only the

state of the robot, we gain also the advantage that we do not depend on information about

the size and strength of the push. Otherwise we would need to implement an estimator like

the Extended Kalman Filter, such that information regarding the strength and the size of

the push could be provided [74]. We also do not need to apply intesive pre-processing of

the data, as was done in the work of Liu et al. [74] The reason for that is that in [74],

due to the lack of any online optimization, a global controller has to be designed such

that any control signal applied to the robot can ensure that the modeling assumptions on

the GRFs are satisfied. In our QP formulation, such an issue is not the case, since we

can online provide balancing motions that satisfy these assumptions. Finally, designing a

global controller scales badly with the size of the state of the system in comparison to a

static QP.

The robustness to disturbance scenarios not considered during the design of the Motion

Primitives is achieved by solving a single QP online where the adopted cost function

penalizes deviations from the nominal accelerations, torques and GRFs that are provided

by the chosen Motion Primitive. At the same time, torque limits and constraints on the

GRFs (friction cone and CoP) are treated as inequality constraints and a Control Lyapunov

Function constraint is used in order to provide exponential convergence - when posible -

to the desired trajectories at a pre-specified rate [111]. In that way, the solution of the

QP provides an optimal compromise between the tracking of optimized trajectories, the

dynamic feasibility of the motion and the satisfaction of the modeling assumptions. We

adopted a QP approach instead of a pseudo-inverse one due to the fact that we need

to include a CLF constraint. In addition, even though a pseudo-inverse approach can

yield solutions that respect the system dynamics, the resulting torques might violate the

assumed actuator limits.

The main contribution of this chapter lies in the switching between pre-computed Mo-

tion Primitives in order to provide reference balancing solutions to the robot that bring

it back to the rest posture while at the same time they provide robustness to unknown

disturbance forces and energy efficient motions. The Motion Primitive switching is pro-

posed, since the solution of the QP might steer the robot state closer to a sample that

belongs to another Motion Primitive. An important characteristic of our approach that

allows us to monitor the tracking performance is the use of a CLF constraint in the QP.

By applying such a switching mechanism, we were able to have a more efficient motion

than by committing to a single Motion Primitive from the beginning, something which in

our opinion is a finding of major interest.

The remainder of the chapter is structured as follows: In section 6.1 balancing is for-

mulated as a numeric optimization problem and we explain the procedure for creating the

balancing motions and then the database of Motion Primitive Samples. In section 6.2 we

demonstrate how a CLF constraint can be used for tracking. Section 6.3 presents the QP

that we solve online in order to ensure the satisfaction of the constraints that will provide

a dynamically feasible and convergent motion, as well as the selection methodology. The

simulation results are illustrated and discussed in section 6.4. Section 6.5 concludes the

chapter.
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

6.1 Motion Primitives for Humanoid Balancing

In this section we describe the static optimization problem that leads to the design of the

Motion Primitives. Afterwards, we explain how each primitive is sampled and stored in

the memory in order to form a database of Motion Primitive Samples.

6.1.1 Balancing as an Optimization Problem

For this thesis we choose to formulate the balancing problem as a trajectory optimiza-

tion problem. As we already did for walking, we parametrize each joint trajectory as a

Bézier polynomial. In order to facilitate the analysis we repeat the definition of the Bézier

polynomial, but this time as a function of time t, i.e.

qi(t) =
M∑

k=0

αi
k

M !

k!(M − k)!

(
t

T

)k (
T − t

T

)M−k

, (6.1)

where M is the order and αi
k the coefficients of the Bézier polynomial. The total duration

of the balancing motion T is fixed. We do not include in the trajectory optimization the

position of the tip and the orientation of the foot, since they have to be constantly zero

in order to satisfy Eq. (2.12b), i.e. the contact constraint. In addition, in Fig. 6.1 we

depict once more the 4 link planar robot model used for the balancing studies in order to

facilitate the presentation. The cost function to be minimized is adopted by the work from

q1

q2

q3
x

y

Fig. 6.1: Model of the planar robot used for balancing. The Newtonian reference frame is
assumed to be fixed on the ground at the tip of the foot.
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Atkeson et al.[98] and is given by

Jbal(α
1,α2,α3) =

∫ T

0

{

(q − qT )
⊤
W 1 (q − qT ) + q̇

⊤W 2q̇ + u
⊤W 3u

}

dt (6.2)

where αi ∈ R
(M+1) are the Bézier coefficients of each joint trajectory andW i are weighting

matrices of appropriate dimensions. Note that q, q̇ and u depend onαi but in the definition

this notation is suppressed for brevity. Finally, qT corresponds to the desired rest posture

of the robot. The cost function minimizes deviations from the rest posture, while at the

same time it keeps the joint torques relatively low, such that energy efficiency is also taken

into account. The weighting between these two objectives is determined by the matrices

W i. It should be noted that this cost function can provide motions that use the ankle,

hip and squat strategies.

During the optimization the following constraints have to be imposed such that the

modeling assumptions are satisfied, foot tilting is avoided as well as actuator and joint

limits are respected.

• Center of Pressure (CoP) constraint: The CoP [11] has been defined in section 2.3.

To facilitate the presentation we cite here the definition again which is

CoP =
Mz

Fy

(6.3)

In this equation Mz is the ground reaction moment and Fy the vertical component

of the Ground Reaction Force. As long as the CoP is inside the base of support, foot

tilting is avoided and the CoP is equivalent to the Zero Moment Point [10]. With

correspondence to Fig. 6.1 the CoP constraint can be stated as

−ℓfoot < CoP < 0 (6.4)

where ℓfoot is the length of the foot, equal to 0.2 m.

• Friction Cone Constraint: In order to ensure that the foot is not sliding, the following

relation must be satisfied:

−µsFy ≤ Fx ≤ µsFy, (6.5)

where µs ∈ R is the coefficient of static friction.

• Positive vertical contact force:

Fy > 0 (6.6)

• Joint position and joint velocity limits:

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max (6.7)

• Input torque saturation:

umin ≤ u ≤ umax (6.8)
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

This optimization process is directly applicable to fully actuated robots. The advantage

of using parametrized trajectories is that the accelerations q̈, control inputs u and GRFs

F have analytical expressions. On the other hand, Bézier polynomials have the advantage

that the first two coefficients ai0 and a
i
1 of each DoF i are determined by the initial state of

the robot and the last two coefficients aiM−1 and aiM are determined by the terminal state

of the robot. Another advantage of the Bézier parametrization is that the control inputs u

are smooth in contrast to the controls inputs returned from an Optimal Control algorithm,

which are in principle piecewise linear or piecewise constant. Of course, one can assume

that the control inputs are states and the new control inputs are the torque derivatives.

As a consequence though, the dimensionality of both the system and the optimization

problem is increased and convergence is more difficult to be achieved. More insight on how

Optimal Control could have been used to generate motions for humanoids can be found in

the work of Denk et al. [76] and Koch et al [13].

Alternatives include Machine Learning approaches like Reinforcement Learning [27, 26,

112] or the use of Dynamical Movement Primitives (DMPs) which have been widely used

for robotic applications [113, 114, 115]. In comparison to the Bézier parametrization, they

are described by more coefficients which correspond to each basis function and its weight.

In lack of demonstration data, these weights can be learned by Reinforcement Learning

approaches, which in principle require more computational time [116]. However, the DMPs

are in general characterized by better scaling properties both spatial and temporal.

6.1.2 Database of Motion Primitives Samples

In order to generate the database of Motion Primitives, we apply impact forces on the

middle of the torso and use Eq. (2.19) to find the initial state of the robot. Solving Eq.

(2.19) for θ̇
+
and keeping in mind that θ̇

+
= 0 will yield,

θ̇+ = D−1
e (θ−)J⊤

push(θ
−)F push, (6.9)

where F push is the applied impulsive force and Jpush is the Jacobian matrix at the middle

of the torso. After the post-impact state is determined, we solve the aforementioned static

optimization problem (subsection 6.1.1) using the fmincon function in MATLAB and a

database of balancing motions (Motion Primitives) is generated.

As a next step, each Motion Primitive is sampled every Ts seconds. For each Motion

Primitive the important quantities that are stored in the database of Motion Primitive

Samples are the joint positions, velocities and accelerations, as well as the control inputs

and GRFs at each time step kTs, k = 0, ..., T
Ts
. The time step kTs that corresponds to the

sample is also needed as well as the index j of the current Motion Primitive. The Motion

Primitive with index j will be used to generate the reference values until we choose a new

sample or until the end of the balancing motion in the case where the switching is shut

off, as no other primitive is used. Summarizing, a Motion Primitive Sample is formally

defined as the tuple

P[j,k] =
(

θ(kTs), θ̇(kTs), θ̈(kTs), u(kTs), F (kTs)
)

(6.10)
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Therefore, the database DB of Motion Primitives Samples is defined as the collection

DB = ∪j ∪k P[j,k]. By keeping the index j constant and iterating through all the samples

with k values from k = 0 to k = T
Ts

we can reproduce a Motion Primitive.

Please note, that as an alternative we could store only the Bézier coefficients αi and

generate the reference trajectories online. Then, by computing the system matrices we can

compute the input torques and the GRFs. This is a trade-off between memory and CPU

power. In this thesis we do not want to introduce any computational overhead and as a

consequence we avoid storing only the Bézier coefficients αi.

6.2 Control Lyapunov Function for Trajectory Tracking

In this section we briefly introduce the concept of the CLF which is utilized to provide

feedback policies such that the desired trajectories will be tracked exponentially [117, 118].

The CLF is utilized because we do not want to explicitly determine any feedback gain

matrices, but allow them to be decided online. The reason for that is that predetermining

the gains might lead to undesired behavior. Low gains can lead to poor tracking, while

large gains can lead to large accelerations that as a consequence can induce GRFs that

violate the modeling assumptions or can produce large torques that exceed the actuator

constraints.

6.2.1 Motion Primitive Tracking

For trajectory tracking we define outputs y of the form

y = θ − θdes (6.11)

where θdes are the desired trajectories that are designed using the methodology that was

described in subsection 6.1.1.

In order to zero the outputs we choose the Computed Torque Control (CTC) [64] scheme

which is based on Input-Output Feedback Linearization. In CTC the control input is

defined using the dynamics of the robot (2.12) as

[

u

F

]

= De

(

θ̈des +
1

ε
Kd

(

θ̇des − θ̇
)

+
1

ε2
Kp (θdes − θ)

)

+Ceθ̇ +Ge (6.12)

where Kd and Kp are positive definite constant diagonal matrices (gain matrices) and Se

is omitted since it is equal to the identity matrix I. Then, we define

θ̈ = θ̈des +
1

ε
Kd

(

θ̇des − θ̇
)

+
1

ε2
Kp (θdes − θ)

θ̈ = θ̈des +w (6.13)
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and then the closed loop dynamics become

[

ẏ

ÿ

]

=

[

0 I

0 0

][

y

ẏ

]

+

[

0

I

]

w ⇒

⇒ η̇ = Aη +Bw (6.14)

Considering the continuous time algebraic Riccati equation

A⊤P + PA− PBB⊤P +Q = 0 (6.15)

where the solution is P , we can use the solution P to construct a Rapidly Exponentially

Stabilizing (RES)-CLF that can stabilize (6.14) at a rate 0 < ε < 1. Note that P and Q

are positive definite symmetric matrices.

The Lyapunov function VLyap has a quadratic form

VLyap (η) = η
⊤

[
1
ε
I 0

0 I

]

P

[
1
ε
I 0

0 I

]

η = η⊤P εη (6.16)

and as defined in the work of Ames et al. [111] it is a RES-CLF if the following two

conditions hold:

• The CLF is bounded as:

c1‖η‖
2 ≤ VLyap (η) ≤

c2
ε2
‖η‖2, (6.17)

where c1 > 0 and c2 > 0.

• The CLF is exponentially decreasing:

V̇Lyap (η) ≤ −
c3
ε
VLyap (η)

η⊤
(
A⊤P ε + P εA

)
η + 2η⊤P εBw ≤ −

c3
ε
VLyap (η)

η⊤
(
A⊤P ε + P εA

)
η +

c3
ε
VLyap (η) + 2η⊤P εBw ≤ 0

ψ0 +ψ
⊤
1w ≤ 0 (6.18)

where c3 is defined as

c3 =
λmin (Q)

λmax (P )
> 0 (6.19)

and λmin (·) and λmax (·) denote the minimum and maximum eigenvalues, respectively,

of a given symmetric matrix.

For the derivation of (6.18) we made use of (6.14) and the fact that P ε is symmetric.
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6.2.2 Feedback determination through QP with CLF Constraint

The auxiliary input w can be determined online through the solution of a QP. A simple

version of it finds the minimum norm w which satisfies (6.18) with a tolerance δ and can

be formulated as

argmin(δ,w)

{
pCLFδ

2 +w⊤w
}

s.t. ψ0 +ψ
⊤
1w ≤ δ

where pCLF is a positive scalar that penalizes the violation δ of (6.18). The CLF constraint

is relaxed because otherwise it can lead to a feedback w that in order to be realized needs

torques that exceed the actuator limits or GRFs that violate the modeling assumptions.

As shown in the work of Ames et al., this formulation can satisfy bounds on the torques

and GRFs [22] which we will introduce in the sequel.

6.3 Robustness to Unknown Disturbances

The purpose of using a database of Motion Primitives Samples is to be able to provide an

energy efficient and dynamically feasible reference balancing motion that satisfies all the

modeling assumptions for a wide range of impact situations. At the same time it assists

in steering the motion of the robot towards the rest posture, after it being disturbed with

an impact force that was not considered during the generation of the Motion Primitives.

As a consequence, our approach will be able to balance the robot with respect to un-

known situations, demonstrating robustness characteristics. For this thesis, disturbances

correspond to impact forces with a magnitude and/or an application point which was not

considered during the generation of the Motion Primitives, as described in subsection 6.1.2.

In principle, robustness is achieved by choosing a suitable Motion Primitive Sample, then

solving a QP at each time step to ensure that the constraints on the GRFs F and control

inputs u which were introduced at the static optimization problem in subsection 6.1.1 are

satisfied and that the resulting motion is dynamically feasible and stabilizing according to

the CLF (6.16).

6.3.1 Selection of New Samples - Motion Primitive Switching

The selection methodology takes place every Tn seconds, where Tn is greater or equal to

the sampling time Ts. This relation is important because if Ts is small and Ts ≈ Tn, the

frequent switching of the reference trajectories might give rise to a chattering behavior.

After these two time constants are chosen, we apply every Tn seconds a weighted Euclidean

distance metric on the current state of the robot x(kTn) =
[
q⊤(kTn) q̇

⊤(kTn)
]⊤

and the

samples in the database DB, i.e.

P ∗ = argmini,k

(
P[i,k] − x(kTn)

)⊤
L
(
P[i,k] − x(kTn)

)
(6.20)

Here, the matrix L is a weighting matrix.
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P[i,0]

x(0)

P[j,0]

P[i,k1]
x(kTn)

P[j,k2]

x1

x2

samples of

primitive i

samples of

primitive j

resulting

trajectory

Fig. 6.2: Graphic representation of the switching approach. The initial state x(0) is closer
to the state of the sample P[i,0], but after kTn seconds we find that the sample of
another Motion Primitive is closer to x(kTn) and for that reason we choose to track
the Motion Primitive with index j. Afterwards, either the trajectory of the j−th
Motion Primitive is always the closest in terms of Euclidean distance or the CLF
constraint violation at time Tn was below the user defined threshold δthr and we
shut off the switching. The dummy states x1 and x2 are introduced for presentation
purposes and (0,0) is the equilibrium state.

The reason for the switching is due to the fact that the tracking might have poor

performance at the expense of satisfying the modeling assumptions or the torque limits.

Therefore, it might be preferable to find a better Motion Primitive to track.

If switching is preferable, for the next Tn seconds the index j of P ∗ will be used to

generate the desired joint positions, velocities, accelerations, torques and GRFs for the

QP. The QP is solved at each execution step, i.e. every Ts seconds. The switching is

turned off at a time t∗ when the CLF violation δ is smaller than a user defined threshold

δthr and for the remaining T − t∗ seconds the desired values are generated from the last

selected Motion Primitive. In Fig. 6.2 we provide a graphic representation of the switching

methodology.

6.3.2 Quadratic Program for Motion Primitive Tracking and

Constraint Satisfaction

The tracking of a Motion Primitive is expressed as a QP, allowing to be solved online. For

the QP, we have to define a quadratic cost function and express all the necessary equality

and inequality constraints in a linear way. In this thesis we choose to give more freedom

to the optimization problem by allowing it to manipulate not only the violation δ of the

CLF constraint (6.18), the torques u and the GRFs F , but also the accelerations q̈, as
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opposed to the work of Ames et al. [22] The cost function Ψ to be minimized is defined as

Ψ =


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(6.21)

and is penalizing deviations from the reference values provided by the selected primitive

which is given by the index j of P ∗. In the function above, WQP is a positive definite

weighting matrix, where the diagonal elementWQP7,7 equals pCLF and controls the penalty

δ on the violation of the CLF constraint (6.18). Regarding the linear constraints introduced

in the QP, they are listed below with a brief description of their purpose.

Dynamically Feasible Motion

The motion that is required to be performed by the robot should be dynamically feasible.

In order to ensure this, we express the dynamics of the robot (2.12) as

[

De 0 −Se −J
⊤
1

J1 0 0 0

]

︸ ︷︷ ︸

Aeq









θ̈

δ

u

F









=

[

−C −G

−J̇1θ̇

]

︸ ︷︷ ︸

beq

which will be imposed in the QP as an equality constraint.

Control Lyapunov Function Constraint

The CLF constraint has been already discussed in section 6.2 and here is re-written in a

form that is suitable for the proposed QP. To that end, Eq. (6.18) can be brought in the

form of

[

ψ⊤
1 −1 0 0

]

︸ ︷︷ ︸

A1
in









θ̈

δ

u

F









≤ −ψ0 +ψ
⊤
1 θ̈des

︸ ︷︷ ︸

b1in

,

since w = θ̈ − θ̈des.
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

Constraints on the Contact Forces

The constraints imposed on the contact forces can be expressed as inequality constraints

which are linear to the forces. This can be expressed as follows











0 0 0 1 −µs 0

0 0 0 −1 −µs 0

0 0 0 0 −1 0

0 0 0 0 0 1

0 0 0 0 −ℓfoot + ̺ −1











︸ ︷︷ ︸

A2
in









θ̈

δ

u

F








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

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

0

0

−̺

−̺

0











︸ ︷︷ ︸

b2in

where ̺ is a small positive number. The first two lines correspond to the friction cone

constraint. The third one ensures that the ground is pushing instead of pulling. The

last two lines correspond to the CoP constraint and the variable ℓfoot is the length of the

foot. The last three columns of A2
in are expanded to shift the focus towards the GRFs

F = [Fx Fy Mz]
⊤.

Torque Limits

Finally, we impose a linear inequality constraint for the torque limits such that unaccept-

able joint torques are avoided.

[

0 0 I 0

0 0 −I 0

]

︸ ︷︷ ︸

A3
in


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


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δ
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





≤

[

umax

−umin

]

︸ ︷︷ ︸

b3in

6.3.3 Overall Quadratic Program

For brevity, the optimization variables can be concatenated in κ =
[
q̈⊤ δ u⊤ F⊤

]⊤
and

then the overall QP is formulated as

argminκ Ψ

s.t. Aeq κ = beq





A1
in

A2
in

A3
in




κ ≤






b1in

b2in

b3in






This QP finds a compromise between staying close to the reference acceleration, torques

and GRFs provided by the primitive which corresponds to the sample P ∗ and keeping

the CLF violation δ close to zero (or optimally zero) such that we achieve good tracking

performance. At the same time, we avoid unacceptable torques u and GRFs F that violate

the modeling assumptions or accelerations θ̈ which in combination with the torques u and
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6.3 Robustness to Unknown Disturbances

Tn

Database DB

Ts
QP Section 6.3

u

x

Selection Eq. (6.20)

P ∗

Fig. 6.3: Schematic diagram of the overall proposed architecture. The working frequency of
the QP block is Ts seconds while a new sample is selected every Tn seconds. The
selection block is shut off if the CLF violation δ is smaller than a threshold δthr. If
this is the case the index of the last selected sample dictates the Motion Primitive
that provides reference values to the QP for the remaining of the balancing motion.

the GRFs F will give rise to dynamically infeasible motions. In Fig. 6.3 we depict the

complete architecture of the proposed methodology.

At this point we would like to mention that the QP approach can provide balancing

solutions for disturbance scenarios where the offline optimization presented in subsection

6.1.1 fails. This is due to the fact that the offline optimization utilizes Bézier polynomials

which are smooth and as a consequence provide smooth control inputs u and GRFs F .

In contrast, the QP provides control inputs and GRFs that do not necessarily have to be

fitted by any spline since they are computed at every time step Ts. As a consequence the

QP allows for more arbitrarily shaped control inputs and GRFs to be generated that in

turn can provide balancing motions that are capable of dealing with a wider variety of

disturbance scenarios.

One might have been successful in generating balancing solutions for the case where

the offline Bézier based approach fails by using Optimal Control with piecewise constant

or linear parametrization for the control inputs. Finally, an enhancement of the Bézier

polynomials is possible by increasing their order M or allowing for non-equally spaced

control points, but an increase in the complexity of the offline optimization problem is

expected.
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

Tab. 6.1: Parameters and variables used for the extraction of the Motion Primitives

Cost function Jbal

W 1

W 2

W 3

diag([1 1 1])

diag([1 1 1])

diag([0.002 0.002 0.002])

Total Time (s) T 3

Order of Bézier polynomial M 5

Static Friction Coefficient µs 0.7

6.4 Simulation Evaluation

This section presents the evaluation of the aforementioned methodology on the simulated

four-link robot. We first list the values of the parameters and the variables used in the

simulation experiments in order to facilitate the reproducibility of the results reported

here. Later, we show different evaluation scenarios.

6.4.1 Database Extraction - Values and Parameters

The balancing motions are generated by solving the static optimization problem in section

6.1 for impact forces of the form F push = [F x
push 0]⊤ with F x

push = 1, ..., 80 N and an interval

of 1 N. The application point of the impact force is at the middle of the torso. Therefore,

we have a total of 80 optimization problems to solve offline. After that, each primitive is

sampled every Ts seconds leading to a database DB of
(

T
Ts

+ 1
)

×80 = 3001×80 = 240080

Motion Primitive Samples. Note that in the sequel the application point of an impact force

will be described by a number between 0 and 1, where 0 means the hip and 1 the end-point

of the torso. Based on this notation, the application point for the generation of the Motion

Primitives was 0.5.

The parameters of the static optimization problem are presented in Table 6.1 and the

ones of the QP and the selection methodology in Table 6.2. For the solution of the QP in

the online phase we used the open source software qpOASES [119].

In Table 6.2 the zero elements of L correspond to the tip position and foot orientation

as well as the tip velocity and foot angular velocity, which are always zero. The nonzero

elements correspond to the joint positions q and velocities q̇. The rest of the values of

the weighting matrix L are experimentally tuned. In principle, however, for L and Q we

use higher penalties for elements that correspond to DoFs that are closer to the foot. The

reason for that is that they have to manipulate the masses and inertia of all the links above

them in the kinematic chain, therefore they influence the balancing motion to a greater

extend than the DoFs away from the foot.

6.4.2 Trajectory switching

In this experiment we apply an impact force F push = [40 25]⊤ with an application point

of 0.7. The nominal cost Jbal (see Eq. (6.2)) of the overall produced motion is 7.1755. For
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6.4 Simulation Evaluation

Tab. 6.2: Parameters and variables used in the Motion Primitive Sample selection and in the
Quadratic Program

Selection method

L

Ts (ms)

Tn (ms)

δthr

diag([1 5 10 0 0 0 0.1 0.5 1 0 0 0])

1

10

0.001

CLF Constraint

ε

pCLF

Q

0.04545

100

diag([1 5 10 10 10 10 10 50 100 100 100 100])

Cost function WQP
diag([1 1 1 1 1 1 pCLF 0.002 0.002 0.002 0.002

0.002 0.002])

Torque Limits
umax (N· m)

umin (N· m)

[60 60 60]⊤

[−60 − 60 − 60]⊤

comparison purposes, we also used the offline optimization process described in section

6.1 for the same impact force. Remarkably, the offline optimization for this disturbance

scenario gave a solution with an overall cost of 7.1740, initialized from different Bézier

coefficients randomly. This is a very interesting finding, since the QP solution was able to

come up with a balancing motion that is very close to the optimal one, only by switching

between optimized balancing motions. As shown in Fig. 6.4, the robot returns finally to

the rest posture. In addition, the torques (Fig. 6.5) stay always in the limits and after

a transition phase at the beginning, they remain smooth. The constraints on the GRFs

(Fig. 6.6) are satisfied since the CoP stays between −ℓfoot = −0.2 and 0 and the friction

stays between the limits, since −µs ≤
Fx
Fy
≤ µs, where µs equals 0.7.

We compared our methodology with a classic non-switching approach where we apply

Eq. (6.20) only once at the post-impact state of the robot and the reference values of

the initially chosen primitive are tracked for the whole motion. The cost Jbal using this

approach was 52.6697, much higher than what the trajectory switching offers.

The sequence of best fitting Motion Primitives is presented in Fig. 6.7. As is shown, at

0.13 s the switching is shut off since the CLF constraint violation is below the assumed

threshold of δthr = 0.001. Before that, it is shown that different Motion Primitives were

chosen and tracked for either shorter or longer time.

Finally, in Fig. 6.8 we provide the final posture of the robot after an impact force of

F push = [60 25]⊤ with an application point of 0.7. As is shown, the trajectory switching

methodology allows for balancing while the approach of following only one primitive chosen

at the beginning is not able to bring the robot to the rest posture in the allotted time.

Regarding the cost Jbal of the motion, it is 14.8088 for the switching methodology and

122.41 for the non-switching approach mainly due to the fact that the deviation between

the desired and the actual terminal state of the robot is very large.

As is shown, our system is able to reject disturbances that were not presented during the
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

t = 0 s t = 0.43 s t = 0.86 s t = 1.29 s

t = 1.7 s t = 2.14 s t = 2.6 s t = 3.016 s

Fig. 6.4: Snapshots of the resulting balancing motion.
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Fig. 6.5: Torques of the resulting balancing motion.
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Fig. 6.6: CoP and friction associated with the resulting balancing motion. The dashed hori-
zontal lines mark the limits for the CoP.
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Fig. 6.7: Motion Primitives that choose the reference values to be forwarded to the QP. The
red dashed line indicates when the CLF constraint violation becomes smaller than
the threshold δthr and the switching is shut off.
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6 Achieving New Tasks with Online Switching of Motion Primitives - Balancing

Trajectory switching No switching

Fig. 6.8: Final posture of the robot after an impact force of F push = [60 25]⊤ with an appli-
cation point of 0.7 when following the switching approach (left) and when following
the non-switching approach (right).

offline optimization phase by employing the trajectory switching approach. This switching

methodology allowed to generate balancing motions online which provide a lower cost in

comparison to a non-switching approach. Even for larger impact forces like in Fig. 6.8, our

switching approach provides a balancing motion which is able to bring the robot closer to

the upright posture in comparison to the non-switching approach. At the same time, all

the constraints imposed on the GRFs and torque limits are satisfied.

6.4.3 Double Impact Experiment

This experiment aims to demonstrate how the proposed methodology is able to balance

the robot when it is further disturbed while not in the rest posture yet. For that, we start

by applying an impact force F 1
push = [20 5]⊤ with an application point of 0.68. After 1

s, while the robot has not reached the rest posture yet, we apply a second impact force

F 2
push = [20 10]⊤ with an application point of 0.65. The resulting balancing motion has an

overall cost of 4.457.

By storing the database in terms of samples and applying such a switching approach

we are able to endow reactive characteristics to our approach. In order to detect the

second impact we can take advantage of the fact that an impact will cause a considerable

discontinuity in the joint velocities. If we have not chosen to switch again after the second

impact, we would have to deal with a great deviation between the reference values provided

by the primitive chosen at t = 0.13 s (when switching is shut off in Fig. 6.12) and the ones

corresponding to the robot. Finally, if we chose one trajectory at t = 0 s and then another

one at t = 1 s (after each impact) the cost is 6.9969, greater than our switching approach.

As is shown in Fig. 6.9, the robot is able to return to the rest posture while at the same

time the torque limits (Fig. 6.10) and the CoP and friction constraints (Fig. 6.11) are all

satisfied. Finally, Fig. 6.12 shows the Motion Primitive switching that takes place during

the double impact experiment.
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6.4 Simulation Evaluation

t = 0 s t = 0.52 s t = 1.05 s t = 1.58 s

t = 2.1 s t = 2.63 s t = 3.15 s t = 3.68 s

Fig. 6.9: Snapshots of the resulting balancing motion in the double impact experiment.
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Fig. 6.10: Torques during the double impact experiment.
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Fig. 6.11: CoP and friction associated with the double impact experiment. The dashed hori-
zontal lines mark the limits for the CoP.
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Fig. 6.12: Motion Primitives that choose the reference values to be forwarded to the QP for the
double impact experiment. The red dashed lines indicate when the CLF constraint
violation becomes smaller than the threshold δthr and the switching is shut off.
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t = 0 s t = 0.43 s t = 0.87 s t = 1.30 s

t = 1.73 s t = 2.16 s t = 2.60 s t = 3.03 s

Fig. 6.13: Snapshots of the resulting balancing motion in the continuous push experiment.

6.4.4 Continuous Push

In this experiment we demonstrate that our approach can also deal with continuous pushes.

For this purpose we apply for the first 400 ms a force F push = [15 0] with an application

point of 1, i.e. at the tip of the torso. What is interesting in this experiment is that as

we can see in Fig. 6.13 the robot is able to return to the upright posture when applying

a continuous push even though the database of primitives is generated for instantaneous

impact forces. This is due to the fact that we have stored each primitive in samples and

we can switch between samples of different trajectories at each time step, enhancing in

that way the capabilities of the database and our approach. In addition, even though the

switching is turned off after 130 ms, for the remaining 270 ms the robot is still able to

withstand the push, due to the fact that after this point the motion dictated by the push

and the one of the selected primitive are in good accordance with each other. Finally, if we

discard the switching and try to balance the robot only with one trajectory chosen at the

beginning of the motion, we are not able to bring the robot back in the upright posture

(see Fig. 6.17).

6.4.5 Model Uncertainties - Noisy Measurements

This experiment is intended to demonstrate the capabilities of our approach to handle

model uncertainties and noisy measurements. For that purpose we assume that the robot

model differs from the one we used in our offline optimization phase. More precisely, we

assume that the inertia of the torso is 5% more, i.e. instead of 1.33 it is 1.3965 and the

inertia of the femur is 2% less, i.e. instead of 0.94 it is now 0.9212 (compare also with
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Fig. 6.14: Torques during the continuous push experiment.
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Fig. 6.15: CoP and friction associated with the continuous push experiment. The dashed
horizontal lines mark the limits for the CoP.
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Fig. 6.16: Motion Primitives that choose the reference values to be forwarded to the QP
for the continuous push experiment. The red dashed line indicates when the CLF
constraint violation becomes smaller than the threshold δthr and the switching is
shut off.

Fig. 6.17: Final posture of the robot that corresponds to the continuous push experiment when
a non-switching approach is used.
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Tab. 6.3: Cost of different trials of the model uncertainty and measurement noise experiment

Trial 1 2 3 4 5 average

Non-switching 18.1472 12.2432 16.3817 14.9073 13.0104 14.938

Switching 7.2763 9.2084 7.7048 8.4291 8.2057 8.2476

Table 2.2). At the same time we assume that the information from the joint velocities is

noisy and for this purpose we add Gaussian white noise with a variance of σ2 = 0.01. We

use the same disturbance scenario as in experiment 6.4.2, i.e. F push = [40 25]⊤ with an

application point of 0.7.

In Fig. 6.18 we see that the robot is able to return to the upright posture by applying

the switching methodology. In Fig. 6.19 and Fig. 6.21 we see that the torques stay inside

the assumed bounds and that the CoP and friction cone constraints are both satisfied.

The torques and the GRFs, however, have spikes which is expected, since we have severely

changed the parameters of our model and have included noise. The chattering phase of

the torques and the constraints on the GRFs between 0.5 s and 1 s corresponds to high

noise in the joint velocities. For that reason, we also plot the joint velocities during the

uncertainty experiment in Fig. 6.20.

In order to get an estimate of the cost, we ran this experiment ten times, five times

with the switching approach and five with the non-switching one. The cost of each trial

is shown in Table 6.3, where the average cost for the switching approach is 8.2476 and

14.938 for the non-switching one. The figures correspond to the fourth trial which has a

cost of 7.7048, which is close to the one during the experiment without any uncertainties

and noise. As is shown, the parameters in Table 6.2 provide satisfactory results in case

of model and measurement uncertainties. A positive aspect of the values adopted in our

L matrix of the selection process is that we rely more on the joint positions in comparison

to the joint velocities, since in a practical application the joint velocities are more noisy

than the positions.

6.4.6 Overall Evaluation

This experiment is intended to demonstrate how the switching methodology can enhance

the performance of the system in comparison to the classic approach of choosing a prim-

itive only at the beginning of the motion in order to provide the reference motion. The

comparison is performed in terms of cost Jbal (Eq. (6.2)). The chosen grid consists of

impact forces with a tangent and normal component and an application point of 0.7. As

shown in Fig. 6.23, the cost difference is in favor of the trajectory switching methodology,

showing that in terms of efficiency there is a direct advantage in performing trajectory

switching rather than committing to only one trajectory chosen at the beginning of the

motion. The advantage is more evident as the normal component of the impact force F x
push

increases since the difference between the post-impact state of the robot and the state

provided by the initially chosen Motion Primitive Sample increases. As a consequence,

the non-switching policy will need time to converge to the optimal values provided by the
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t = 0 s t = 0.43 s t = 0.85 s t = 1.28 s

t = 1.71 s t = 2.13 s t = 2.56 s t = 2.985 s

Fig. 6.18: Snapshots of the resulting balancing motion in the model uncertainty experiment.
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Fig. 6.19: Torques during the model uncertainty experiment.
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Fig. 6.20: Joint velocities during the model uncertainty experiment.
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Fig. 6.21: CoP and friction associated with the model uncertainty experiment. The dashed
horizontal lines mark the limits for the CoP and the friction.
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Fig. 6.22: Motion Primitives that choose the reference values to be forwarded to the QP for
the model uncertainty experiment. The red dashed line indicates when the CLF
constraint violation becomes smaller than the threshold δthr and the switching is
shut off.
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Fig. 6.23: An overall evaluation of the cost of the proposed methodology J switch
bal compared

to the cost of the classic non-switching approach Jclassic
bal where we use the same

primitive during the whole motion. As shown, the switching methodology can
provide more efficient balancing motions for a wide range of impact forces Fpush.

chosen Motion Primitive. In contrast, the switching policy has the opportunity to choose

a Motion Primitive Sample P ∗
[i,k] that has a smaller Euclidean distance to the current state

of the robot and - once switching is shut off - converge to the optimal values of the i−th
Motion Primitive faster.

6.5 Summary

This chapter introduced a balancing methodology based on Motion Primitives Samples.

At first, different balancing motions are calculated. Each motion brings the robot back

to the rest posture after a different impact force is applied. As a further step, the trajec-

tories, accelerations, torques and Ground Reaction Forces associated with each balancing

motion are sampled and form a database of Motion Primitive Samples. When the robot

is disturbed with an unknown impact force, a Motion Primitive switching algorithm takes

place. Every Tn seconds the database is searched and the sample closest to the current

state of the robot - in terms of a Euclidean distance metric - is chosen. In such a way,

for the next Tn seconds reference trajectories, accelerations, torques and Ground Reaction

Forces to be tracked are generated by the Motion Primitive which corresponds to the last

selected sample.

In order to ensure that the tracking will not result in a motion that violates the mod-

eling assumptions, we solve a Quadratic Program online every Ts ≤ Tn seconds were all
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these modeling assumptions are treated as constraints. The cost function penalizes the de-

viation from the input torques, Ground Reaction Forces and accelerations dictated by the

current Motion Primitive. In addition, a Control Lyapunov Constraint is introduced that

ensures exponential convergence to the desired positions and velocities at a pre-defined

rate 0 < ε < 1. The violation of the Control Lyapunov Constraint is penalized in the

cost function and when it becomes lower than a user defined threshold the switching is

discarded and the reference values to be tracked are generated by the Motion Primitive

which corresponds to the last selected sample. The results show that this methodology

can provide solutions for different impact scenarios in a robust fashion with a smaller cost

in comparison to a non-switching approach where only one Motion Primitive is chosen

right after the impact. Additionally, it can provide balancing motions for impact forces

for which an offline optimization fails to calculate a motion.
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The thesis presented different ways of utilizing a database of Motion Primitives to enrich

the capabilities of walking and balancing robots. We focused on different learning methods

as well as optimization approaches to allow the robots to achieve generalization with respect

to new task objectives. The databases were calculated offline and the generalization was

achieved both online and offline. Our methodology allowed the robots to traverse uneven

terrain with terrain variations which do not necessarily match the specification of the

Motion Primitives in the database. In addition, our approach was able to outperform classic

approaches on the task of reducing the settling time of the transition between different

periodic primitives. Finally, we endowed a balancing robot with the ability to reject new

and unknown disturbances by switching between the motion/balancing primitives in the

database.

The focus of this thesis was walking and balancing robots, since the control of such

robots is challenging and can serve as a benchmark for demonstrating the capabilities of

our approach. The ideas presented within this thesis can be extended to other robotic

systems, as well.

This chapter serves as a summary of the achievements of this thesis and provides future

research directions.

7.1 Conclusions

The main conclusion of this thesis is that motion databases is a viable and beneficial

approach to allow robots react to new task objectives as well as retain a degree of optimality.

This was demonstrated through various studies performed in a simulation environment.

The simulation studies are realized with the use of robot models, which are described in

chapter 2. In this thesis, in order to facilitate the analysis, planar robot models were used

which were extracted based on the assumption of rigid bodies. A rigid contact model with

the ground was used which played an important role in defining constraints for avoiding

slip and foot tilting. The robot model for walking was finally defined as a hybrid system,

where the dynamics of the robot undergo a discontinuous velocity jump when the swing

leg impacts the ground. In order to avoid an unnecessary additional model for the swing

phase with the other leg in support, the technique of coordinates relabelling was used. The

models used in this thesis are a 5-link biped with point feet and a 4-link balancing robot.

A walking robot with point feet is an underactuated system. In our thesis, the 5-link

biped has 5 DoFs, but only 4 actuators. Outputs can be defined only for the actuated DoFs,

in the form of desired trajectories. When the outputs are zeroed, the dynamics evolve on

the zero dynamics manifold. As shown in chapter 3, this manifold is of dimension 2 and

facilitated the analysis of the robot motion and the dynamic feasibility of a walking motion,

taking into account the impact event as well. The desired trajectories were expressed as
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Bézier polynomials, which were easily integrated in the mathematical formulation of the

stability and feasibility conditions. In addition, they facilitated the optimization problem

for calculating walking and balancing Motion Primitives.

Online motion generation for biped robots with point feet is a challenging task, since the

motion needs to be computed and checked for dynamic feasibility. Our approach to this

problem was the introduction of a motion database which serves as a set of training exam-

ples for learning a regression model in order to generate new motions online. In chapter 4

we showed how a Gaussian Process can be used in order to calculate online new reference

motions for such robots. This approach enabled the robot to traverse uneven terrain with

terrain variations that did not match any motion in the database. The inputs to the Gaus-

sian Process were the desired terrain variation, i.e. step height and length and the outputs

were the necessary Bézier coefficients for defining the desired trajectories of the actuated

DoFs. The results were presented for both periodic and aperiodic walking. Especially for

aperiodic walking, in order to be able to traverse diverse terrains, we introduced a best first

planning algorithm that provided a plan for a pre-defined planning horizon. The dynamic

feasibility was checked on the two-dimensional zero dynamics manifold of the robot.

With chapter 5 we introduced the problem of Settling Time Reduction, which mini-

mizes the convergence time to a target periodic orbit. This problem is interesting since

convergence to orbital stable periodic orbits is dictated by the maximum eigenvalue of the

Poincaré Map, whose minimization constitutes a difficult optimization problem. In gen-

eral, if the state of the robot enters the domain of attraction of a stable periodic orbit, it

will converge to the periodic orbit after some steps. However, a maximum eigenvalue with

a great value will require the robot to take many steps before converging to the periodic

orbit.

In this thesis we introduced the Settling Time Reduction problem with the help of

Optimal Control. Later, we used Reinforcement Learning in order to compute composite

controllers (multi-step transitions), which reduce the setting time. An important lesson

from this approach was that Motion Primitives can be used as actions in a policy improve-

ment methodology, given that the state space has a reasonably low dimension. In our

thesis, this was achieved by using a function approximation for the state of the robot in

its 2-dimensional zero dynamics. Another lesson is that multi-step sequences of Motion

Primitives towards a periodic orbit can outperform a direct transition towards this periodic

orbit in terms of speed of convergence.

Finally, in chapter 6 we demonstrated how to make good use of motion sample databases

of high cardinality in terms of optimality preservation and generalization, but also in terms

of robustness against model uncertainties. Our case study was balancing and we were able

to endow a balancing robot with the capability to react to new and previously not known

objectives while keeping a degree of optimality. In order to achieve this, we broke Motion

Primitives down into samples and applied a Euclidean distance metric to choose the sample

closest to the current state of the robot. The motion was tracked by solving a Quadratic

Program where the constraints on the Ground Reaction Forces were imposed. In addition,

the robot dynamics and the state and torque constraints were included in the formulation

of the Quadratic Program. A Control Lyapunov Function constraint was introduced as

well, in order to exponentially track the selected Motion Primitive and its violation was pe-
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nalized. Once the Control Lyapunov Function constraint violation undershot a threshold,

the switching between primitives was shut off. The methodology was successfully evaluated

on different scenarios and was successfully compared to a non-switching methodology, i.e.

a methodology where the Euclidean distance metric was applied only at the post-impact

state of the robot.

7.2 Directions for Future Work

This thesis contributed towards allowing legged robots to respond to new and previously

not known task objectives through the use of motion databases. After demonstrating the

advantages of such an approach, different research directions can be followed to achieve

further enhancements in the concept of Motion Primitives databases. We suggest the

following directions:

• Application of the method to other robotic systems: The methodology of

motion databases can find application in other domains as well. Such a methodol-

ogy is attractive for systems that need to compute motions in order to solve new

task objectives fast while keeping a degree of optimality. Our best candidate is the

automotive field where energy efficiency plays an important role. There the method-

ology of switching between Motion Primitives can be applied to compute collision

avoidance or overtake maneuvers that can be tracked by a driving assistance system.

• Extending the Motion Primitive switching with Model Predictive Control:

The introduced approach was myopic in order to be computationally efficient. An

interesting approach would be to extend our methodology by solving more than

one QPs in a sequential manner. As a consequence, we will introduce a prediction

horizon in our approach. This extension can allow to converge to one of the optimized

trajectories in the database faster.

• Real robot application: Our thesis focused on simulation experiments, since the

focus laid on the methodology. The application to real robots is an interesting step.

For that, the methodology of Motion Primitive switching seems promising, since

it can counteract model inaccuracies. In addition, the regression methodology and

the Optimal Control formulation of the Settling Time Reduction problem could be

accompanied with a robustness metric to also account for model inaccuracies.

• Extending the regression methodology to counteract slip: The regression and

motion planning methodology could be accompanied with a QP approach similar to

the one of chapter 6 in order to be able to counteract for slip. As a consequence, the

regression methodology will be generating reference motions for the QP. With this

approach, however, special care is needed in order to make sure that the motion will

conclude with a pre-impact state that matches the terrain variation.

• Regression with different models: In this thesis we worked with Gaussian Pro-

cesses due to their fast inference time. Of course there are other alternatives worth

investigating. Among them, Deep Learning is of outermost interest. With such kind
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of learning, the primitives of a database could still be used as training examples,

but now the expectation would rise towards generating motions which are feasible

for a wider range of stride lengths and heights than in chapter 4, while at the same

time they respect the friction cone constraint. Another interesting topic would be

an investigation on how optimality could be retained in the generated motions.
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of mass offset on the disturbance rejection of running robots. International Journal

of Humanoid Robotics, 10(02):1350004, 2013.

[89] Yang Yi, Zhiyun Lin, and Gangfeng Yan. Variable speed running on kneed biped

robot with underactuation degree two. International Journal of Humanoid Robotics,

11(02):1450015, 2014.

[90] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source Frame-

work for Automatic Control and Dynamic Optimization. Optimal Control Applica-

tions and Methods, 32(3):298–312, 2011.

109



Bibliography

[91] M. Diehl, H.G. Bock, H. Diedam, and P.-B. Wieber. Fast Direct Multiple Shooting

Algorithms for Optimal Robot Control, pages 65–93. Springer Berlin Heidelberg,

2006.

[92] Max K. Agoston. Computer Graphics and Geometric Modelling: Implementation &

Algorithms. Springer-Verlag New York, Inc., 2004.

[93] R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of dynam-

ically dexterous robot behaviors. The International Journal of Robotics Research,

18:534–555, 1999.

[94] E. Najafi, G.A.D. Lopes, and R. Babuska. Reinforcement learning for sequential

composition control. IEEE 52nd Annual Conference on Decision and Control, pages

7265–7270, 2013.

[95] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[96] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:

A survey. The International Journal of Robotics Research, 32:1238–1274, 2013.

[97] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-

ment learning and dynamic programming using function approximators. CRC press,

2010.

[98] C. G. Atkeson and B. Stephens. Multiple balance strategies from one optimization

criterion. IEEE-RAS International Conference on Humanoid Robots, pages 57–64,

2007.

[99] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture point: A step toward

humanoid push recovery. IEEE-RAS International Conference on Humanoid Robots,

pages 200–207, 2006.

[100] Juan Alejandro Castano, Zhibin Li, Chengxu Zhou, Nikos Tsagarakis, and Darwin

Caldwell. Dynamic and reactive walking for humanoid robots based on foot place-

ment control. International Journal of Humanoid Robotics, 2015.

[101] Z. Aftab, T. Robert, and P. B. Wieber. Ankle, hip and stepping strategies for

humanoid balance recovery with a single model predictive control scheme. IEEE-

RAS International Conference on Humanoid Robots, pages 159–164, 2012.

[102] B. J. Stephens and C. G. Atkeson. Push recovery by stepping for humanoid robots

with force controlled joints. IEEE-RAS International Conference on Humanoid

Robots, pages 52–59, 2010.

[103] A.D. Kuo. An optimal control model for analyzing human postural balance. IEEE

Transactions on Biomedical Engineering, 42(1):87–101, 1995.

110



Bibliography

[104] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. Dissertation, California Institute of Tech-

nology, 2000.

[105] Sung-Hee Lee and Ambarish Goswami. A momentum-based balance controller for

humanoid robots on non-level and non-stationary ground. Autonomous Robots,

33(4):399–414, 2012.

[106] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan Schaal,

and Ludovic Righetti. Momentum control with hierarchical inverse dynamics on a

torque-controlled humanoid. Autonomous Robots, 40(3):473–491, 2016.

[107] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal. Balancing

experiments on a torque-controlled humanoid with hierarchical inverse dynamics.

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 981–

988, 2014.

[108] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical quadratic

programming: Fast online humanoid-robot motion generation. The International

Journal of Robotics Research, 33(7):1006–1028, 2014.

[109] J. Englsberger, C. Ott, and A. Albu-Schäffer. Three-dimensional bipedal walking
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