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Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit zwei Themen aus der Statistik, die sich der
Frage widmen, wie valide Inferenz-Ergebnisse angesichts von Unsicherheit beziiglich des
gewahlten statistischen Modells erreicht werden konnen.

Das erste Teilprojekt ist im Gebiet Kausale Inferenz angesiedelt und hat zum Ziel, Kon-
fidenzintervalle fiir den kausalen Effekt zwischen den Groflen in einem linearen System
bestehend aus zwei Variablen zu finden. Zunachst werden die bendtigten Begrifflichkeiten
eingefithrt und grundlegende Annahmen, wie Fehlerterme mit gleicher Varianz, anhand
derer die Identifizierbarkeit des Modells gewéhrleistet wird, vorgestellt. Daraufhin wird
veranschaulicht, dass der naive Ansatz, Modellwahl und Schatzung von Konfidenzinter-
vallen in zwei separate Schritte zu zerlegen, oftmals zu falschen Ergebnissen fiihrt. Aufler-
dem zeigt sich anhand zweier Beispiele, dass Resampling-Methoden, wie Bootstrapping
oder Subsampling, ebenfalls nicht angewendet werden konnen.

Aus diesem Grund entwickeln wir einen neuen Ansatz, der auf der Dualitat von Hy-
pothesentests und Konfidenzintervallen aufbaut. Es wird eine Familie von Tests mit
Hilfe von Constrained Statistical Inference Theory entwickelt, von der wir Konfidenzin-
tervalle ableiten. Abschliefend werden die Ergebnisse der vorgestellten Methoden sowohl
an kiinstlich erzeugten Datensétzen als auch an Benchmarks aus realen Anwendungen
untersucht.

Das zweite Teilprojekt befasst sich mit Inferenz in einem Modell, das unter Beriicksichti-
gung der vorliegenden Daten durch HSIC-Lasso ausgewahlt wurde. Es wird zunachst das
Polyhedral Lemma eingefiihrt, auf dessen Grundlage ein Hauptstrang der Forschung auf
dem Gebiet der Selektiven Inferenz basiert und das auch in dieser Arbeit Anwendung
findet. Als zweiten theoretischen Eckpfeiler stellen wir nachfolgend das Hilbert-Schmid
Unabhangigkeitskriterium vor, das erlaubt die Abhangigkeit zweier Zufallsvariablen ohne
Verwendung weitergehender Annahmen zu quantifizieren.

Auf dieser Grundlage wird eine Methode fiir korrekte Inferenz nach Modellwahl durch
das HSIC-Lasso Verfahren entwickelt. Dartiber hinaus werden verschiedene potentielle
Inferenz-Grolen vorgestellt und es wird ebenfalls auf Probleme bei der Anwendung auf
hochdimensionale Datensatze eingegangen. Daraufhin wird mittels verschiedener kiinstlich
generierter Daten analysiert, wie sich die Wahl von bestimmten Parametern auf die erziel-
ten Ergebnisse auswirken. Zuletzt wird mit zwei Benchmark-Datensatzen die praktische
Anwendbarkeit des vorgestellten Ansatzes unter Beweis gestellt.
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1 Introduction

Model uncertainty is a theme which pervades statistics as a whole. In a broad sense, it
addresses the central question of working out a reasonable model for observed data and
is thus present in exploratory data analysis, hypothesis testing for nested models and
the development of non-parametric methods among many others. This work, however,
understands model uncertainty as a data-driven choice of model preceding an inference
procedure. In such a situation we have to account for the decision made in the selection
stage to ensure that the results of hypothesis testing and confidence interval calculation
are valid. In particular, the fields of causal and selective inference, which have attracted
a lot of research activity in the last years, are concerned with the ramifications of model
choice and subsequent inference.

Causal inference typically addresses low-dimensional settings where both the direction
and the strength of causal relationships among the involved variables are unknown. It
goes beyond the bread and butter concept of correlation inasmuch not only coordinated
behaviour between two variables is captured, but also the underlying dependence struc-
ture, in other words the data generating process, is investigated in more depth. For
instance, the statement that coronary heart disease is caused by dietary fat intake pro-
vides considerably more insight than the claim that coronary heart disease and dietary
fat intake are just associated, c.f. (Maathuis et al. 2019).

In order to examine causal dependencies, randomised control trials have been established
as the gold standard. They are used in an experimental setting where interventions on
variables can be performed and provide researchers with a powerful framework to inves-
tigate their hypotheses. Despite the power of randomised control trials, it is not always
possible to conduct such experiments due to inter alia the involved costs, ethical princi-
pals or physical constraints. Moreover, it might be interesting to ask questions concerning
causality on datasets that were collected without regard to the examination of causal re-
lationships. For this reason, we follow the less assuming principal of observational data
which assumes a given dataset whose collection was not influenced by the researcher, see
for example (Spirtes et al. [2001]).

Causality is an inherently multi-disciplinary topic and it is thus not surprising that vari-
ous mathematical frameworks were developed which emphasise different aspects of causal
relationships. The earliest formalisations go back to (Wright 1921)) and (Sptawa-Neyman
1923), albeit their pioneering work was not followed up until the 1970s and 1980s. Their
initial ideas were elaborated to become three different terminologies for causality that
are equivalent but suited for different purposes. We briefly outline them according to
(Spirtes et al. 2001)), (Pearl 2009) and (Maathuis et al. [2019)). Modelling causal relation-
ships with directed edges between the nodes of a graph is a very intuitive and easy to
visualise way of describing causality. However, only the existence but not the strength of
causal relationships can be described well in this framework. This issue does not occur in
the terminology of structural equation models which represent causality as a collection of
assignments. It is important to note that these assignments describe the data generating
process and can therefore not be treated as mere equations. In practice, there is often the
risk of confusing the language of structural equation models with the notation of classical
regression. The third framework that evolved in the context of causality are potential
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outcomes or rather counterfactuals. They can become particularly complex for large sys-
tems but provide an easy language to describe interventions where some variables in the
data generating process are set to a certain value.

Since we are interested in inference on causal effects but do not consider interventions, we
use the framework of structural equation models in this work. More specifically, we con-
sider a two-variable system and assume a linear relationship, a situation which is covered
in much detail in (J. Peters et al. 2017). In this setting, we incorporate the uncertainty
regarding the direction of the causal relationship into the causal effect. For instance, if
X5 has influence on X of strength 0.5, the causal effect of X5 on X7 is 0.5 but the causal
effect of X; on X5 is 0 because the relationship is directed opposite.

In such a situation, the identifiability of the direction of the causal relationship is key.
It was shown that unique identification is possible under following assumptions: non-
linearity with additive errors, linearity with non-Gaussian errors, and linearity with errors
of equal variance, cf. (Heinze-Deml et al. 2018) or (Maathuis et al. 2019). We concentrate
on the latter setting which was analysed by (Jonas Peters and Biithlmann [2014) and (Loh
and Biithlmann 2014)).

In this framework, we undertake the construction of confidence intervals for the causal
effect which, to the best of our knowledge, was not previously done. We show that a
naive approach as well as resampling methods, such as bootstrapping or subsampling,
surprisingly fail. For this reason, we use the duality of hypothesis tests and confidence
intervals, and the framework of constrained statistical inference to construct suitable tests.

Unlike causal inference, selective inference treats classification and regression settings
and thus implicitly assumes that the direction of causality is clear. Nevertheless, model
uncertainty is a common theme, especially when the number of covariates exceeds the
sample size; this is called a ’small n, large p problem’. In such a situation, we need to
select a subset of variables to enter the model in order to ensure identifiability. Moreover,
model selection serves the endeavour of a parsimonious and interpretable model.
Statistical research produced an extensive literature on different selection methods, of
which we mention only a few. (Hocking |1976) proposes the algorithmic forward stepwise
selection procedure and (Akaike (1974) puts forward the Akaike information criterion,
which relies on the log-likelihood and degrees of freedom of a model. (R. Tibshirani
1996)) pioneered the class of regularisation methods with his least absolute shrinkage and
selection operator (Lasso). In the spirit of his proposal, a huge variety of different reg-
ularisation procedures were developed, e.g. ridge regression, elastic net, Group Lasso or
SCAD. For a review of the latter see (Hastie et al. 2015).

In this work we treat the HSIC-Lasso selection procedure which was introduced in (Makoto
Yamada, Jitkrittum, et al. 2014) and, as the name suggests, is based on the Hilbert-
Schmidt independence criterion (HSIC) (Gretton, Bousquet, et al. 2005). This is a kernel
based method that allows to detect dependence between any two random variables and
marks the culminating point of a line of research concerning the use of reproducing kernel
Hilbert space in machine learning. It found many applications due to its universality
and lack of necessary assumptions. The HSIC-Lasso selection procedure uses the Hilbert-
Schmidt independence criterion as a measure for the degree of dependence. It selects
covariates, which influence the response and exhibit little dependence on other covariates,
in a Lasso-type optimisation. Thus, it provides a way to harness the computational and



theoretical advantages of quadratic optimisation and the universality of model-free de-
pendence estimation.

Traditional statistical theory assumes that a model is given a priori and only its parame-
ters are object of inference. Yet, if we conduct a data-driven model choice which precedes
the inference stage, we have to account for the selection as the covariates entering the
model are overly significant. Otherwise, they would not have been selected. (Leeb and
Potscher [2005) and (Leeb and Potscher [2006) among many other papers investigate how
dramatic the effects of neglecting the selection process are and how valid post-selection
inference can be carried out. For instance, they show that the implications of model choice
carry over into the limit n — oo. Roughly speaking, it became clear that model selection
can greatly distort inference results and that this problem poses considerable difficulties
for statistical research.

Two major paradigms regarding the treatment of model choice evolved. (Berk et al.2013)
developed a post-selection inference method which is protected against distorting effects
of any selection procedure. By design, this method is very robust but, in practice, often
leads to overly conservative confidence intervals. In contrast, (Jason D. Lee et al. 2016)
and (Ryan J. Tibshirani, J. Taylor, et al. [2016)) only account for the actual selection out-
come by conditioning on it in the inference step. This requires control over or at least
insight into the model choice which, however, is usually the case. Their seminal insight
is the formulation of the selection event as a restriction on the distribution of the infer-
ence target. Under the assumption of Gaussianity, it is even possible to derive a pivotal
quantity for finite sample sizes. In the following, we refer to this framework as truncated
Gaussian setting. Due to its low computational costs and relative generality in terms of
the inference target, several adaptations and generalisations were proposed.

This work shows how the theory based on truncated Gaussians can be applied to the
HSIC-Lasso selection procedure for different inference targets. Moreover, issues, such as
hyperparameter choice or computational costs, which are crucial in real-world applications
are addressed.
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2 Causal effect inference

This section is organised as follows. In the first Subsection the framework of linear
structural equation models is introduced and the causal effect of one variable on another
is defined. In the subsequent Subsections and [2.3] we show that a naive approach
as well as resampling methods in general fail to construct valid confidence intervals. For
this reason, we develop a method which uses the duality of confidence intervals and
hypothesis testing and the framework of constrained statistical inference to get valid
confidence intervals in Subsection [2.40 We conclude with experimental evaluations both
on artificial and benchmark data in 2.5

2.1 Two-variable linear structural equation models

2.1.1 Structural equation models

Although structural equation models do not require the notion of graphs, it is instruc-
tive to introduce them in correspondence to directed graphs as they provide an intuitive
understanding of causality.

Definition 2.1. Let V = {1, ...,d} be aset of vertices and € C {(j,k) : j,k € {1,...,n},
J # k} be a set of directed edges joining the vertices. Then the tuple G = (V, £) is called
directed graph.

Considering an edge 7 — k, j is referred to as parent and k is called child. The sets of
parents and children of a node j are denoted by pa(j) and ch(j) respectively.
Considering a directed path 7 — --- — k, j is said to be an ancestor of k and k is a
descendant of j. The corresponding sets for a node j are an(j) and de(j). If j = k, the
path is referred to as cycle and a directed graph that does not have cycles is said to be
acyclic.

We want to model the causal dependence structure among the components of a random
vector X = (X3,...,Xy) by linking it to a directed acyclic graph G, abbreviated DAG.
The nodes of G are represented by the components of X and the edges depict the causal
relationships among them. A priori, both the structure of the graph and the degree of
influence among the variables are unknown and subject to statistical inference.
Additional to the direction of causal relationships, the framework of structural equation
models (SEMs), as described in (Maathuis et al. [2019) with earlier work by (Pearl |1995)),
allows to quantify their strength.

Definition 2.2. Let X = (X,...,X ) be a random vector with a causal structure that
is linked to a DAG G. A structural equation model for X on G assumes for each node
J € V that X is a function of its graphical parents and possibly a random variable ¢},

Xj = fj(Xpa(j)7€j)7 Vj e {177d} (21>

Note that in the definition above the operator := was used instead of the equals sign in
order to point out that we want to express an asymmetric assignment of the value of f; to
X;. This reflects the idea of a sequential data generating process. Consequently, a node
has influence on its descendants but not on its ancestors. Making additional assumptions,
we define a smaller, more manageable class of models.
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Definition 2.3. Let X = (X3,..., Xy) be a centred random vector with a causal structure
that is linked to a DAG G. A linear structural equation model (LSEM) is given by

d
Xj = Zﬁijk + €5, Vj e {1,. .. ,d},
k=1

where {€;};cq1,...4y are independent random variables with mean zero and {8;i}; req1,...a}
are unknown parameters. For all of them we require

Bi; =0 and B =04k ¢&pa(j).

In the definition above, we could equally use the formula

Xj = Z ﬁijk—i-é"]’, VjE{l,...,d},
k € pa(j)

which is more in line with the general definition. However, using the given framework
is more convenient as it describes both the causal structure and the degree of influence
among the variables in terms of {ﬁjk}j,ke{17.__7d}. Hence, 3;; = 0 encodes the absence of
a causal relationship j < k whereas 3;;, # 0 establishes its existence and simultaneously
quantifies its strength. Therefore, the dependence structure is described by a d x d
matrix B = (Bjr);kef1,...qp- Dealing with asymmetric assignments rather than a symmetric
equality relation gives rise to the definition of conditional expectation in the context of
causality.

Definition 2.4. In the SEM-framework the causal conditional expectation of X; given
X = xy, is defined by

E[X;[| Xy = zx] = E[Xj| Xk = @] Lixjedenyy + E[X] Lix; gde)
where E[-|-] denotes the usual conditional expectation.

With this definition at hand, one can investigate how X, changes in mean when z; is
modified. This is precisely the causal influence of X} on X; we want to quantify. For
linear models it can be expressed by a single number, cf. (Pearl [2009)).

Definition 2.5. In a LSEM the causal effect of X;, on X; is given by

d
d_xkE (X1 Xk = ] - (2.2)

Remark 2.1. We can directly deduce from the definition of the causal conditional expec-
tation that the causal effect of X on Xj is zero if X is not a descendant of Xj.
Remark 2.2. In the more general setting the causal effect of X}, on X is contained
in f; and its dependence on Xj;. This makes it necessary to consider more than the single
quantity %E [X;]| Xk = zx] to adequately describe the causal relationship.

As we have seen, the direction of the causal relationship between two random variables
X, and X}, enters into the causal effect of Xj on X,. Therefore, we have to assure that
the graph is identifiable. In accordance with (W. Chen et al. 2019) and (Jonas Peters
and Bithlmann 2014), we assume that {&tj}je{l,_“,d} have a common variance o2 > 0 which
allows us to express X and its covariance matrix 3 in terms of ¢ = (e1,...,&4) and B,

X = (Id - B) ¢,
Y=E[XX"] =0*Ild-B)"'1d-B)~". (2.3)
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2.1.2 Two-variable system

In the following, we consider a two-variable LSEM further assuming that ¢; and €, have
the same variance o2 > 0 and treat, without loss of generality, only the causal effect of
X5 on X;. In this framework there are only three possible models

(M1) X; =f1aXo+e, Xo=e,

(M2) X; =e¢y, Xy = B X1 + €9,

(MB) Xl = &1, XQ = &9,
where the third can be seen as a special case of either the first or the second with f15 = 0
or 391 = 0 respectively.

Under the equal variance assumption, (W. Chen et al. 2019) shows how the model can be
identified: The child variable has a higher variance than the parent variable.

FExample 2.1. If the true model is

X1 = B2 X + €1,
X2 = &9,

computing the variance of X; and X5 directly yields

var (X1) = var (B2 Xy +€1) = B0 + 02 = (B3, + 1),
var (X3) = var (e9) = o’ < 02(5122 +1),

which shows that the child X; has larger variance.
Using this insight and ([2.2)), we can compute the causal effect of X5 on X; as follows.

d d
—E[X]| X, = 29) = — (E [X1| X2 = 2] 1(x,cde(2)) + E[X1] 1{x1¢de<2>}>
dl’g de
d
== (E [B12Xs + 1| Xy = o] 1{X16de(2)}>
X2
d
= <ﬁ12$21{X1€de(2)})
= BlQl{Var(X1)>Var(X2)} (24)

Assuming that one of the models (M1), (M2) and (M3) holds constrains the covariance
of (X1, X5). We identify the general space of 2 x 2 covariance matrices with the cone

C= {(01170127022) ceR?: o11, 092 > 0, 0%2 < 011012}, (2.5)

where we choose the strict inequalities as we want to exclude almost surely constant and
perfectly correlated random variables. We find that only subspaces of C' are coherent with
the corresponding models: Assuming (M1), we calculate the covariance matrix of (X7, X5)
denoted by ¥ according to . To abbreviate the notation, we use var (X;) = o3,
var (X3) = 099 and cov (X, Xy) = 012, and get

Y =E[XXT] =2 (14‘5%2 ﬁu) _ <011 012)‘

512 1 012 022
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This establishes the identities
012 011
P2 = —, 1+ 5 = —, (2.6)
0922 022
from which an additional constraint on the structure of ¥ ensues,
0'%2 + 0'32 — 011022. (27)

Undertaking similar computations for (M2) and (M3) yields the covariance spaces

Cy = {(011,012,092) € C: 01y + 03y = 011092}, (2.8)
Cy := {(011,012,02) € C: 0}, + 0, = 011022}, (2.9)
C3 = {(0‘11,0'12,0'22) e C: 012 = O, 011 = 022}a (210)

for the respective models. Closely checking the constraints imposed in C3, we notice that
C3 C C; and C3 C Cy. Using (2.2)) and ([2.6)), we can characterise the causal effect of X,

on X; as a function of the covariance matrix entries.

Definition 2.6. In a two-variable LSEM satisfying the equal variance assumption the
causal effect of X, on X is given by

g
T Cl U Cz — R, (0'11,0'12,0'22) — 0_—121{011>022}, (211)
22

where C; and C, are defined as in (2.8) and ([2.9)) respectively.

Thus, the causal effect becomes a parameter that only relies on second-order information
but does not require the assumption of a particular distribution or family of distributions.
Moreover, it is straightforward to use a plug-in estimator to find a point estimate for the
causal effect of a data sample. In the following, we use the notations T'(o11, 012, 092) and
T'(¥) interchangeably.

Lemma 2.7. T is continuous but cannot be extended to a continuously differentiable
function on an open set containing C; U C,.

Proof. As a composition of continuous functions, T is obviously continuous for o1 # 099
as g99 > 0. For the case 017 = 099, we use the identities . In the limit 017 — 099,
1 + B2, = 011/02 becomes 1 + %, = 1. Consequently, 3o = 012/095 — 0 which proves
that 7" is continuous on the whole domain.

In order to show that T" cannot be continuously differentiably extended, we consider an
arbitrary open set O D C; U Cy. Therefore, partial derivatives for points within O are
well-defined. Hence, we can consider the derivative

oT 1

901 (011,012, 092) = 0—221{011>022}
and the sequence ((1+ 2, \/Lﬁ, 1))nen € C1 € O. We easily find that ;2 (1+ 2, T =1
for all n € N whereas 2-(1,0,1) = 0. O

In the ensuing sections, we follow different approaches to construct confidence intervals for
the causal effect of X5 on X; in a two-variable LSEM under the equal variance assumption.
Throughout, we assume that the data X" = (X, X", ... (X™, X)) created by the
model satisfies the usual assumptions of independence and identical distribution.
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2.2 Naive approach

Following a naive approach, we split the task of building a confidence interval under model
uncertainty into two steps.

First, we determine the direction of the causal relationship and hence the model. As seen
in the previous section, this can be easily done by comparing the empirical variances,
denoted by 611 and G99, as the dependent variable has larger variance. 611 < g9 implies
the causal relationship X; — Xy, whereas 617 > G99 indicates X; < Xs.

Second, we condition on the model choice made and find that for the former case we can
only use {0} as confidence interval for the causal effect of X5 on X;. In the latter case
we obtain the linear regression equation

X1 = (12 Xo + €1,

where the causal effect is f15. According to (Fahrmeir et al. 2013), we may use a standard
confidence interval for regression coefficients

(512 + SAd : Zl—%) )

which is based on the ordinary least square estimates (1o and 6. Here, sd = &/||X2|-
is the estimated standard deviation of 312 and z, denotes the y-quantile of a standard
normal distribution. This confidence interval is asymptotically valid; however, under the
assumption of normal errors, we can use the exact confidence interval

<612 + sd - tl—%;n—l) .

We denote the number of samples as n and ¢, is the y-quantile of a t-distribution with
m degrees of freedom.
In summary, we constructed the (1 — «)-confidence interval

[ {0}, if 011 < G99
B (312 + sd - Zpg) , if 011 > 09o.

Splitting the construction of confidence intervals into two steps, we tacitly condition on
the model choice. Hence, the obtained interval is only valid under a correctly specified
model. Suppose, for instance, that the causal relationship X; < X5 holds and |512] < 1
meanwhile having a small to moderate number of samples. Consequently, the true vari-
ances of Xy and Xy, 017 and 09, are very close, cf. Example[2.1, Therefore, their empirical
estimates are similar and with probability close to 0.5 the confidence interval constructed
from the data becomes I = {0}. Yet, this obviously does not contain the true parameter.
This case demonstrates that the naive approach of estimating the model and the strength
of the causal relationship in a stepwise procedure is impracticable. Not including the
uncertainty regarding the underlying model into the length of the confidence interval is
particularly detrimental in situations with feeble causality. Therefore, we need to investi-
gate approaches which simultaneously assess the direction and the strength of the causal
relationship.
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2.3 Resampling techniques

As stated in Definition [2.6] the causal effect of X5 on X is a function of the parameters
of the model space. This gives rise to the approach of using resampling techniques, such
as bootstrapping and subsampling, in order to approximate the distribution of a root
quantity depending on 7T'(3) and ultimately deduce confidence intervals. First, we briefly
outline bootstrapping and subsampling, and subsequently apply these methods to the
causal effect.

2.3.1 Bootstrapping and subsampling

Following (Politis et al.|1999), we consider a statistical model {P: P € P} and assume that
independent and identically distributed observations X" = (XM, ... X™) are given. P
can represent a parametric and non-parametric set of distributions alike. We want to study
the real-valued quantity ¢g(P), where g is a known function depending on P, and denote its
estimate g(]f”n) In non-parametric models P, may be the empirical distribution, whereas
parametric models can leverage ordinary least square or maximum likelihood estimation
among others.

In order to construct confidence intervals, one frequently considers a pivotal quantity
R,(X,, g(P)), also referred to as root. Its distribution for a sample of size n is denoted by
J,,(P) and its cumulative distribution function by J,,(-,[P). The commonly chosen quantity

Ry(X", g(P)) = 7 (9(2) = 9(P)) (2.12)

with normalising constant 7,, allows to easily derive confidence intervals if its distribution
is known. Resampling methods provide an approximation to J,(P), that does not require
R to be a (asymptotically) pivotal quantity, which makes them applicable in a wide range
of problems.

Definition 2.8. Let R, be the root as stated in (2.12)) and J,(P) its distribution. The
bootstrap approximation of J,(P), denoted by J,(IP,), is the empirical distribution of the
B values

Ry(X", g(B,)) = 7 (9(B) - g(B,)), i€ {l,...,B}.

Here ]13>j1 denotes the i-th estimate of P, calculated from the dataset X™* which is obtained
by resampling n values of X" with replacement.
A bootstrap confidence region for g(P) of nominal level 1 — « can be deduced by

Ba(l = a,X") = {g(®): 7 (5.B2) < RuX,g(B) < It (1= 5. |-
Remark 2.3. From the viewpoint of computational statistics one can equally regard boot-
strapping as a Monte Carlo approximation of J, (P).

While abstract, sufficient conditions for the equivalence of the bootstrapped and true
distribution in the limit n — oo are known, in many applications a differentiability
assumption on g is vital. In the following, F' and F, denote the cumulative distribution
functions, abbreviated cdf, of P and P, respectively and F is the set of cdfs corresponding
to P.
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Definition 2.9. The functional g defined on F is Fréchet differentiable at F' with respect
to || - || if there exists a function hp such that [ hpdF =0 and for any G € F,

9(C) = g(F) + / he d(G — F) + o(|G — FJ))

holds as |G — F|| — 0. The function hp is called Fréchet derivative of g at F.

Theorem 2.10. Assume F contains distributions with finite support and g has Fréchet
derivative hp at F' with respect to ||-||s. Also, assume that 0 < [ hEdF < oo and choose
7o = n'/? in . Then with probability one

pr(Ju(F), Jn(ﬁn)) — 0, asn— oo,
for the Lévy metric pr, and
P(g(P) € Bo(1 —a,X")) - 1—a, asn— oco.

In a two-variable LSEM assuming equal variance, F contains all distributions whose co-
variance matrices lie within C; U Cs. Hence, in an attempt to leverage Theorem [2.10] we
investigate the Fréchet differentiability of T'(X(F')). Applying the chain rule, we quickly
see that T has to be totally differentiable with respect to its arguments. However, accord-
ing to Lemma T cannot be extended to a larger domain such that it is continuously
differentiable and consequently has no total derivative. Therefore, Theorem [2.10| cannot
be applied to assert the validity of bootstrap confidence intervals.

Nevertheless, further following this approach is sensible as in many cases, where the
standard bootstrap fails, modifications which ensure a correct approximation are known.
(Andrews 2000) illustrates some of them with a short example and gives references to
other works concerned with the same or similar issue.

Definition 2.11. Let R, be the root as stated in (2.12)) and J,(P) its distribution. The
subsampling approzimation of J,(-,P), denoted by L, is the empirical distribution of
the B values

Bo(X", g(B,)) = 7 (9(B,,) = 9(Ba)) . i€ {1,.... B},

Here I@’;’lb denotes the i-th estimate of P, calculated from the dataset X™» which is
obtained by resampling b values of X" without replacement.
A subsampling confidence region for g(P) of nominal level 1 — « can be deduced by

%) < Ru(xng() < L3 (1- 5}

Bup(1—a.X") = {g(P): L} (5 >

As for bootstrapping, results on the validity of the confidence intervals in the limit n — oo
are known.

«

Theorem 2.12. Assume that J(F,,) converges weakly to a non-degenerate limit law J(F)
as n — oo. Also assume that 7,/1, — 0, b — 00, b/n — 0 and B — 00 asn — oco. If x
is a continuity point of J(-,P), then

Lyy(x) = J(z,P), asn— oo.
Moreover, if J(-,P) is continuous at the respective quantiles,

P(g(P) € Bop(l — , X)) = 1 -, asn — oo.
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Note that Theorem does not pose requirements on g and can, in this sense, handle a
larger class of problems than bootstrapping. However, in scenarios in which both proce-
dures yield asymptotically correct confidence intervals the bootstrap approximation often
converges faster than subsampling.

Both methods rely on the basic assumption that J(F),) converges weakly to a non-
degenerate limit law. In the case of bootstrapping, Theorem does not state this
underlying assumption explicitly but rather ensures it with stronger conditions. There-
fore, we will aim to define an appropriate root for the causal effect of X, on X; and
investigate its asymptotic distribution in the following sections.

2.3.2 Continuous extension

A straightforward choice for the root is
m(T(E0) - T(D), (2.13)

where ¥, denotes the empirical covariance matrix and which is defined by
~ ] — ) . 611 6
En — X(z) X(l) T — All A12 )
n ZZI ( ) 012 022

However, the root is not-well defined as T only takes values in C; U Cy and f]n is
only restricted to the space of general 2 x 2 covariance matrices C. Two solutions for this
issue come to mind.

First, instead of using the empirical covariance matrix one can attempt to construct an
estimator ¥, that leverages the underlying structure of the model and takes values only
in C; U Cy. Since we have to verify the convergence of the root distribution to a limiting
law, this approach, though, is less feasible as it is unclear how the asymptotic distribution

of
™ (T(in) _ T(E))

can be derived. )
Second, one can extend T to T" which is defined on the whole domain C and use the root

R(X",%) =1, (T(in) - T(z)) . (2.14)

This approach does not harness the structure of the model and consequently looses power.
Yet, it is possible to derive the asymptotic distribution of R(X", ¥J) using results on asymp-
totic normality of the empirical covariance matrix. Therefore, we follow this approach
and focus on continuous extensions of T" as we want to guarantee that for estimates 3,
close to C; U Cy the assigned causal effect is also close to the real causal effect. In the
following, we present two examples for such continuous extensions.

Ezample 2.2. Choosing T} of the form Tl(an, 012,022) = f(011,012,022) {51, 500, fOr some
continuous function f ensures that the causal effect on Cs is 0. In order to fulfil the
continuity requirement and the correct representation of the causal effect on Cy, f has to
satisfy

f(o11,012,022) = 0 for o11 = 09, (2.15)

f(O'll, 012, 0'22) = 0'12/0'22 fOl" 0'%2 + 0'32 = 0110922. (216)
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We propose

f(011; 012, 022) = Sign(012) %/0%2(011 - 022)/032

and directly see that (2.15)) is fulfilled. Using (2.7]), we can also verify (2.16|) as

. o2 —1—02
f(f71170127022) = Slgn(aw)f/‘f%z <u - 022) /032

= sign(oyy) Y/ 01y/085 = 012/ 099.

Moreover, we note that sign(cis)y/|o12| is a continuous function of o1, and o9y only
takes positive values. Hence, f is continuous and satisfies all required conditions which
demonstrates that

T1(011, 012, 022) = SigH(Uu) %/052(011 - 022)/032 1{011>022}

is a possible continuous extension on C.

FExample 2.3. Since 099 < o011 on Cy and 099 > o017 on C,, it is reasonable to look for
a continuous extension reflecting the two different models by considering min{oy;, o92}.

Using the definitions (2.8)) and (2.9)), we see

2 : ) if ) ) eC ;

) if (011,012, 092) € Co.

Harnessing this finding, we propose

. 2
~ sien(o1s) 4/0 ,
Ty(011, 012, 092) = M\/% min{oyq, 092 } (011 — 022) + 0%y

022

as extension of the causal effect on C. T} is well-defined as only non-negative values occur
in the root and positive values in the denominator. In addition, 7} is continuous as a
composition of continuous functions and we can use to verify that T, takes the
value 015/099 on C; and 0 on Cy. For this reason, Tg is a valid continuous extension of
the causal effect on C.

2.3.3 Asymptotic distribution

The asymptotic validity of both bootstrapping and subsampling relies on the assumption
that the distribution of the root converges to a non-degenerate limit law. In order to
establish such an asymptotic behaviour, we first examine the convergence of the estimator
Y. Assuming finite fourth moments, which is equivalent to centred fourth moments in
our scenario, we define

Ojklh = E [XJXleXh]

and denote its estimator

. Lm0 () 1 (1) () 1o
Ojklh:EZX]()X,g)Xl()X}(L).
i=1
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(Steiger and Hakstian |[1982) examine the asymptotic normality of the empirical covariance
estimator in great generality. For our case their work yields

\/ﬁ ((511,5127522)T - (01170127022)T) R> N(QF)’ as n — oo, (2-18)

with
01111 — 0%1 01112 — 011012 01122 — 011022
I'=| o112 — 011012 01122 — U%g 01222 — 012022
01122 — 011022 01222 — 012022 02222 — 0%2

In the following, we investigate the asymptotic distributions of Ti and T in order to

find sequences (7, )nen such that the root defined in (2.14) converges to a non-degenerate
random variable.

Ezample 2.2 (Continued). We distinguish three cases for the true (011, 012, 092) according

to @  E10).

First case: (011,012,022) € C; \ C3. Since 017 > 090 and f is continuously differen-

tiable, so is 7. Therefore, 1} allows us to apply the delta method, Theorem m, to
T1 which yields

Jn (Tl(fln) - :fl(z)) Dy N (0,0%), asn — oo,

where 0% = (Vf(X))'T(Vf(X)). Detailed calculations can be found in the Appendix
2.A.2l Consequently, we find that 7, = O(n'/?).

Second case: (011,012,092) € Cq \ C3. In this case, 017 < 092 holds which induces
T1(X) = 0. We prove that 7,(71(3,) — T1(X)) — 0 in distribution as n — co.

To this end, let g be a continuous, bounded, R-valued function on the real numbers and
(Tn)nen be an arbitrary real-valued sequence. According to the strong law of large num-
bers, 11 and 99 converge a.s. to 11 and gy respectively implying P(61; < d99) — 1.
Therefore, we can estimate

‘E [g (T f (611,012, 022)) 1{&11>&22}} | < P(611 > G22)E[||g]loc] = 0, asn — o0,
as g is bounded. Using this interim result, we find

E g (m(T(®) - Ti2)| =B (nTiD)] = B o (uf (611, 012, 62) Liors 0]

=9(0) - P(611 < 622) + E [g(7 f (611, 612, 622)) L (54, 5600}
—g(0)-1+0=g(0), asn — oc.

Hence, the root converges to 0 in distribution, regardless of the chosen (7;,)nen, and is
consequently degenerate in the limit.

Third case: (011,012,092) € C3. In order to investigate the asymptotic distribution of

the root (2.14)), we define the helper function h as

h(6117 012, &22) = Sigﬂ(ém) \4/ 6%2|511 - &22|1{&11>a22}‘
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Clearly, it is continuous in all arguments and, as 015 = 0 and 017 = 099, We can perform
the manipulations

A oA A . N A 3 A
n®/8 h(0117 012, 022) = Slgn(Ulz) Z\1/0%2 (\/ﬁ) \011 - 022\ 1{&11>&22}

=sign (\/ﬁ@m - UlQ)) il/(\/ﬁ(&m - 012)2 |(\/ﬁ(&11 - 011)) - \/5(522 - 022))‘

1{\/5(511—011)>\/77(&22—022)}

=h (\/ﬁ(&n - 011), \/5(312 - 012)7 \/5(622 - 022)) .

Therefore, we can apply the continuous mapping theorem [2.24] in the following abbrevi-
ated as CMT, which yields

P h(S,) = h(vn (S, - %)) 2 h(N(0,T)), asn— occ.

Moreover, G99 L 092 holds due to the weak law of large numbers and the CMT [2.24
proves that 62_23/ 5 02_23/ * £ 0 as well.

Combining the results for A and 695 with Slutsky’s Theorem [2.25, we see
3B T(E,) = 0?65, h(E,) 2, 02_23/4h(./\/(0, '), asn— oo.

As continuous, non-constant function of a Gaussian random variable the limit law is in-

deed non-degenerate. Since Ty (X) = 0, we have derived that (2.14)) can only have a valid
limit distribution if 7,, = O(n%/®).

Summarising the upper findings, we have shown that (o1, 012, 022) € C; \ C3 demands
7. = O(n'/?) and Cj requires 7, = O(n%?®), whereas on Cy \ C3 no sequence can fulfil the
condition of a non-degenerate limit law. Since the true value of ¥ is unknown, we cannot
choose a valid sequence (7, ),en Which renders a resampling approach based on T, and the

root ([2.14)) theoretically unjustified.

Ezample 2.3 (Continued). Commensurate with the first example, we distinguish three

cases for (o711, 012, 022) according to (2.8) — (2.10]).

First case: (o11,012,022) € Cp \ Cs. T, is continuously differentiable on C4 \ Cs be-
cause 1} implies that only positive values enter the absolute value expression of T,
which is the only potential source for non-differentiability. Therefore, we can apply the

delta method using ([2.18)) and obtain

NG (TQ(in) - T2(2)> DN (0,0%), asn— oo,

where 02, = (VIy(X))" T(V13(X)). Detailed calculations can be found in the Appendix
2.A.2l Consequently, we find that 7, = O(n!/?).

Second case: (011,012,092) € Cq \ C3. Investigating the limit distribution, we restrict
our attention to the set {17 < 022} which implies min{dy1, 92} = 611. This is justified
by the almost sure convergences 617 — 011 and 699 — 099, according to the strong law of
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large numbers, and 011 < 099 which leads to P(611 < d92) — 1 as n — o0o. As in the third
case of the first example, we define a continuous helper function by

4
h(x1, Ta, T3, 74) 1= \/}xl — Tg — T3 +$4|-

Making use of the relationship 011099 — 0}, — 03y = 0, we rewrite parts of T, as follows:

— - - A o A 1/4
n'/® €/|011(011 — Gg2) + | = n'/® “(U% — 011) = (611622 — 011022) + (61, — Ufz)‘]
=n'/® [‘(511 —011)(011 +011) — 022(011 — o11)
R . . 1/4
— 011(G22 — 092) + (612 — 012) (12 + 012)‘]
= h((&ll + ou)Vn(d1 — o11), Gaav/n(011 — 011),
011\/5(522 - 022), (612 + 012)\/5@12 - 012)>-

The weak law of large numbers implies 617 + 011 — 20711, G223 — 099 and 12 + 019 —> 20712
in probability. Further, and Slutsky’s theorem prove that the arguments of h
converge to a Gaussian random variable N (0,T’) in distribution.

Besides, the weak law of large numbers and the CMT show that

14 . n —— -1 P o_1/4 . _
2711 sign(d1a)\/|019]09 — 2 e sign(012)V/ [o12|0,',  as n — oo

Finally, according to Slutsky’s theorem [2.25 we find

n'/8 T2(§n) =271/ sign(12)v/[012] 572_21 n'/® %/!511(511 — 092) + 5%2|
D, 9-1/4 sign(o12)v/|o12| 055 R(N(0,T)), asn — oo.

Since T5(X) = 0 on Cy \ Cs, we have shown that 7, in (2.14)) has to be of order O(n!/?)
to obtain a non-degenerate limit law.

Third case: (011, 012,022) € C3. Again, we define a continuous helper function

. 1
h(xq, g, w3, 24) := sign(xy) il/?ﬁ }332 — X3+ T4

In the following, we heavily use 011 = 099 and 015 = 0 to derive

713/8 T2(611,&12,&22)

_ 51 sign (ﬁ%‘ >) [Wﬁ(&u — o))’

05 2

1/4
X ‘ min{d11, 622 }v/n((611 — 011) — (622 — 092)) + G12v/n(012 — 012)”
= h<6522\/ﬁ(&12 - 012),min{&11, &22}\/5(?711 - 011),
miﬂ{&n, 522}\/5(622 - 022), &12\/5(&12 - U12)>.



16 2 CAUSAL EFFECT INFERENCE

The weak law of large numbers and the CMT [2.24] establish 65,7 — 045, min{d1;, Gas} —
min{oy1, 09} and 15 — 012 in probability. Combmmg these findings with (| -, Slut-
sky’s theorem proves that the arguments of i converge in distribution to a Gaussian
random variable A/(0, f) Finally, we apply the CMT and obtain

3 Ty(8,) 2 h(N(0,T)), asn— oco.

Analogously to the first example, since TQ(E) = 0 holds, the root |2 can only have a
valid limit distribution if 7,, = O(n?/%).

Summarising the upper findings, we have shown that (o1, 012, 022) € C; \ C3 demands
7. = O(n'/?), Cy \ C3 requires 7, = O(n*/®) and C3 imposes 7,, = O(n'/%). As in the first
example, the choice of (7,)nen depends on the unknown value (o711, 012, 092) which renders
a resampling method based on Ty and theoretlcally unjustified.

We have encountered that the seemingly obvious idea of using bootstrapping or subsam-
pling to construct confidence intervals for the causal effect of X; on X5 emerges as rather
intricate. Using a common choice of root, we have shown that for both continuous ex-
tensions of the causal effect from C; U Cy to C that we proposed the convergence rates
depend on the unknown value of . For this reason, we cannot choose an appropriate
normalising sequence (7, ),en for the root which deprives the presented approach of any
theoretical foundation.

While we have only investigated two examples, our findings can be the starting point of a
more in-depth analysis of the interplay between causal effect estimation and convergence
rates.

2.4 Inverting tests

Since the approach of using resampling techniques is not successful, we develop a distinct
method which relies on the dual relationship of hypothesis tests and confidence intervals.
In order to construct such tests, we harness the theory of constrained statistical inference,
otherwise called order restricted inference.

2.4.1 Duality of testing and confidence regions

According to (Lehmann and Romano [2005)), we consider a generic statistical model
{Pp: (0,\) € © x A} and a quantity s(f) that depends on . For each attainable
S0, the acceptance region of a level-ar test Ho: s(0) = sg against Hy: s(0) # so is denoted
by A(so). If we define a confidence region by

C(z) ={so:z € A(s0)},

then
S0 € C(x) & x € A(sp),

holds and hence
]P)g)\ (8(0) S C(X)) >1l—«a V(Q,/\) €6 x A.
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Thus, any family of level-a acceptance regions leads to a family of confidence sets of con-
fidence level 1 — . Note that the there are no further requirements on the test procedure
and it can vary for different values of s.

We want to make use of this flexibility and aim to develop statistical tests for all pos-
sible values of the causal effect. In this respect, the model parametrisation (3,02 m) €
R x (0,00) x {0,1}, where m decides on the direction of the causal relationship, seems
natural. However, constrained statistical inference, as introduced in the next section,
relies on the likelihood ratio statistic and assumes that all its parameters are continuous.
This clearly conflicts with the discrete parameter m.

Enlarging m to a continuous parameter with values in [0, 1], which could be interpreted
as interpolating between the two directions of the causality, is conceivable, albeit its ram-
ifications on the model and its interpretation are not straightforward. For this reason, we
use the parameter space C' and express the causal effect of X5 on X; as

012
—1{011>022}. (2.19)
022

In this setting we neglect some of the given structure and thus loose power, but likelihood
ratio methods to construct test statistics become applicable.

2.4.2 Constrained statistical inference

The theory of constrained statistical inference is briefly explained here relying on (Silva-
pulle and Sen [2005)). It makes use of likelihood ratio statistics and consequently requires
further assumptions compared to the initially distribution-free setting of the considered
two-variable LSEM. We introduce relevant results in this subsection and apply the theory
in the following two.

Definition 2.13. Let XM, X be independently and identically distributed random
variables with common probability density function f(x;6),0 € © C RP, where x can be
uni- or multivariate. The log-likelthood and the entries of the Fisher information matrix
for one observation are defined by

0a(0) = i log f(X;0),
=1

200 =8| (g 10s10x:0)) (o060 o] i€ (1,

respectively. Let ©* C ©. The mazimum likelihood estimator O is given by

fo- = argmax (,,(0).
9eo*

We require the following regularity conditions.
Assumptions 2.14. In the setting of Definition[2.13, the following is assumed.
1. é@* is v/n-consistent whenever the true parameter 6y is contained in ©*.

2. Distinct values of 8 correspond to distinct distributions.
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3. The first three partial derivatives of log f(x;0) with respect to 0 exist almost every-
where.

4. There exists a G(y) such that [ G(y)dy < oo and the absolute values of the first
three partial derivatives of log f(x;0) with respect to 0 are bounded by G(y) in a
neighbourhood of 0.

5. The Fisher information matriz Z(0) is finite and positive definite.

These conditions are not minimal but facilitate developing the theory without concerning
oneself with technical details.

Definition 2.15. Assume the framework stated above and let ©y C ©; C © be nested
models. The likelihood ratio statistic A, for a sample of size n is defined as

An =2 (Sup 0,(8) — sup en(e)) —9 (zn(éel) - en(éeo)) .

0O, 96@0

In the well-studied case where O is a linear subspace and ©; = O, that is the general
alternative, the limiting distribution of the likelihood ratio statistic is known.

Theorem 2.16. Let R € R™*? and r = rank(R). Testing Hy : RO = 0 against H; : 0 € ©

implies N\, KN X2 as n — oo under the null hypothesis, where x? denotes the Chi-squared
distribution with d degrees of freedom.

If the hypothesis to be tested cannot be represented as a linear space, the limiting distri-
bution of ), is more intricate. It involves the local geometry at 6y, which is expressed in
the tangent cone and its regularity.

Definition 2.17. Let ©* C R? and 0, € ©*. The tangent cone to ©* at 6y, denoted
by T(0%;6y), is the set of all vectors w for which a sequence of positive numbers (¢, )en
converging to zero and (6,,),eny C ©* converging to fy exist such that

t 10, —0y) — w, asn — oco. (2.20)

T (0% 60y) is Chernoff-reqular if for all its elements and all such (t,),en a corresponding
(0n)nen can be found such that (2.20)) holds.

Remark 2.4. The tangent cone 7T (0% 6y) is closed and a cone in the sense that, if
w € T(0*%6y) holds, then Aw € T(0*;6y) for all A > 0.

The importance of the concept of Chernoff-regularity was first discovered by (Chernoff
1954) and was later interpreted in the context of different definitions of approximating
cones, see e.g. (Geyer|1994)). While it is not immediately obvious how the upper definition
can be verified for a given hypothesis ©*, (Drton [2009)) establishes Chernoff-regularity for
a wide class of spaces.

Lemma 2.18. If ©* C R? is a semi-algebraic set, i.e. a finite union of sets defined by
polynomial equations and inequalities, then ©* is Chernoff-reqular everywhere.
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Furthermore, under the Mangasarian-Fromowitz constraint qualification (MF-CQ) and
continuous differentiability we can directly compute 7 (©*;6y) with the following propo-
sition.

Proposition 2.19. Suppose that © C RP is open and let ©F be given by
O*={0eO: hf)=...=n0O)=0,h;1(0) >0,..., ht(6) >0},

where hy, ..., hy are continuously differentiable. Let 0y € ©* and let a; = (0/00)h;(6y)
fori=1,....k and J(0y) = {i: hi(6y) = 0,1+ 1 <1 < k}. Assume that the MF-CQ is
satisfied at 0y, i.e. there exists a non-zero b € RP such thatalb=...=alb=0, ay,...,q
are linearly independent and alb > 0 for i € J(0y). Then T (0%;6y) is equal to

{6eRP:a]0=0Vi=1,....1;a]0>0 Vie J(b)}.

Remark 2.5. Loosely speaking, a condition given by h;(#) > 0,7 € {{+1,...,k}, only
effects the tangent cone if 8y fulfils it with equality.

We consider the general testing problem
Hyp:0 € ©y against H;:0 € 0,
for nested models ©y C ©; C O. Let 6, be the true parameter and define the norm || - ||

on RP as
|z|| = \/2TZ(0)x, forxz € RP.

For ©* C R? and x € RP, we use the abbreviation

|z — O] = inf ||z — 0.
ee*

Theorem 2.20. Let ©y C ©; C O be nested models and assume that © is open. If the
null hypothesis holds and ©q is Chernoff-reqular at 0y, the distribution of the likelihood
ratio statistic A\, in the limit n — oo is equal to

1Z = T(©0:00)I* = 1Z = T (13 00) |, (2.21)
where Z ~ N(0,Z(6y)7").

Remark 2.6. Results on the asymptotic distribution of ), are also available when © is
not open but require additional assumptions.

Although Theorem provides an elegant characterisation of the limiting distribution,
the testing problem remains complicated as is dependent on the true parameter 6,
and, in general, the distribution cannot be explicitly characterised.

Under further assumptions on ©¢ and 04, however, a closed form asymptotic distribution
can be derived. We turn our attention to testing problems that use the general alternative,
i.e. ©; = O, which causes the second term in to vanish. If © fulfils additional
conditions, (Wolak 1989) and (Silvapulle and Sen [2005)) state the following result.
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Theorem 2.21. Let KM () and h®) () be continuously differentiable, vector-valued func-
tions which characterise the null hypothesis in the testing problem

Hy:0€0y=1{0: "V(6) >0, hP(0) =0} against H,:0c O CRP.

Assume that 0y lies on the boundary of ©¢ and that the MF-CQ is fulfilled. Let a; denote
(0/00)hV (8o) and let {jy, ..., jm} denote {i: hi(6y) = 0}. Set HO(6,) = (ay,, ..., a;, )"
and m = m(0y) = rank(HM(6y)). If h? is not specified, set r = 0; otherwise,

H®(0y) = VR (0y) and assume that the matriz has full row-rank r = rvank(H® (6,)).
If r+m < p, then

P(Ay >0 =00) = > wm_i(m,V(60) P(x}1; =), asn— oo, (2.22)
=0

where

V(60) = HV(66)Z(6p) " H™ (6p)"
— HW(00)Z(60) " H® (60)" (HP(60)Z(60) " H® (66)™) " HP (60)Z(60) " H™ (6)""

77777

weights such that > ,- wy, = 1 and x3 denotes a Chi-squared distribution with d degrees
of freedom.

Remark 2.7. If 6 lies in the interior of Og, the tangent cone at 6y is R which induces the
limiting statistic (2.21)) to be zero almost surely.

Remark 2.8. The distribution (2.22)) is a mixture of y?-random variables and is also
referred to as Chi-bar-squared distribution and denoted by ¥*(©y, V). In general, its
weights w;(q, V') depend on the positive definite matrix V' and thus in also on 6.
For small ¢, closed form representations are known:

1. Let ¢ =1. Then
’wo(l, V) = wl(l, V) = 0.5.

2. Let ¢ = 2. Then

wo(2,V) =057 1 cos H(p12), wi(2,V)=0.5,
w(2,V) =0.5— 057" cos (p12),

where py, is the correlation coefficient vy (vy1v9) 712

Explicit results for ¢ € {3,4} are known; for higher dimensions, however, the weights can
only be obtained by simulation.

The limiting distribution stated in Theorem still depends on 6, through m(6y) and
V(6p). When conducting a test at significance level «, we consider the asymptotic distri-

bution
m

sup Zwmfz(mv V() P(xrri > )
0€BOg i=0

in order to secure that, regardless of 0y, the type-I error is at maximum «. The value of
0y for which the supremum is attained is called least favourable null value.
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2.4.3 Standard approach

Building on the two previous sections, we construct testing procedures for different values
co of the causal effect of X5 on X;. Conducting these tests for a range of values allows us
to derive confidence regions covering the true causal effect at a given level 1 — a.

To this end, we assume that the log-likelihood /,, satisfies the regularity conditions stated
in the previous section and use the cone C' as defined in , which is clearly an open
set, as parameter space ©. Moreover, we only consider testing subspaces given by semi-
algebraic sets against the general alternative. Therefore, we do not have to worry about
Chernoff-regularity, cf. Lemma [2.18] can calculate tangent cones using Proposition [2.19
and derive asymptotic distributions for different values of the null hypothesis according
to Theorem 2.211

We use the likelihood ratio statistic

A% =2 <£n(§n) — sup Mz)) : (2.23)

YeH?

where Hi” denotes the null hypothesis for testing ¢y and in is the unrestricted maximum
likelihood estimate. Depending on ¢y the subspace of C' that is associated with the null
hypothesis differs which makes it necessary to distinguish three scenarios.

First case: |co| > 1. A value different from 0 indicates that X is the dependent variable
which corresponds to 017 > 099 and o13/092 = ¢, according to . Yet, if |co| > 1
holds, applying the strict Cauchy-Schwarz inequality, which is enforced by the definition
of C', and inserting the equation o5 = ¢ 09y yields

g %2 2
011 > —= = (3022 = O22.
022
Consequently, the inequality condition is automatically fulfilled and thus not part of the
null hypothesis. Hence, we test

H(C)o 1012 = Cy 022 against H1 DINS C. (224)

Since the null hypothesis is a linear subspace of C, the classical theory of likelihood ratio
tests applies. We use Theorem to obtain the asymptotic distribution of the likelihood
ratio statistic

PAY<-)=P(xi<-), asn— oo

Second case: |co] € (0,1). Similar to the first case, the constraints o1; > o9y and
012 = Cg 099 have to be satisfied, however, the first does not automatically hold. Hence, it
is part of the null hypothesis as well. We conduct the test

H(C)O 1012 = Cp 022, 011 > 029 against H1 DINN O} (225)

The limiting distribution of A depends on the tangent cone at the unknown, true
(011,012, 022) leading to two possible situations.

If 017 > 099 holds, the tangent cone is {(z,y, z) € R® : y = ¢z} according to Proposition
In this case, the limiting distribution is, similar to the first case, x?.
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If 011 = 099, the tangent cone is {(z,y,2) € R® : y = ¢pz, * > z}. Since this is not a
linear subspace but a half-space, we resort to Theorem [2.21] stating that the asymptotic
distribution is a mixture of 7 and x3. The weights are 0.5 each according to Remark [2.8]
The last favourable null value satisfies 011 = 099 as the Chi-bar-squared distribution of
the second case is larger than x?%; hence, we obtain

sup P (A° §~)—>1P(X%§-)+1P(Xg§-), as n — 00.
SeH 2 2

Third case: ¢y = 0. In the representation of the causal effect of X, on X; given by ,
a value of 0 indicates that either 17 < 099 or g2 = 0 holds. Considering , we see
that the assumptions of a two-variable LSEM establish 011 = 095 <& 012 = 0 which implies
that 015 = 0 is a special case of the first inequality. Therefore, it suffices to test

Hg co11 < o9 against Hp: ¥ e C. (2.26)

As in the case of |co| € (0, 1), the limiting distribution of A2 depends on the true, unknown
value of (0'11, 012, 0'12).

If 011 < 099, the tangent cone is just R? according to Proposition which implies that
AV is equal to zero almost surely.

If 011 = 099 however, the tangent cone is given by {(z,y,2) € R® : x < z}. Following
Theorem , the asymptotic distribution is a mixture of x2 and x? with the weights 0.5
each, where x2 = 0.

Consequently, the least favourable null value clearly has to satisfy o1y = 099 which is
equivalent to

sup P (A §~)—>1]P’(Xg§')+lﬂ”(x%§‘), as n — 00.
YeH] 2 2

Considering the intricate general asymptotic distribution of Theorem [2.21} it is remarkable
that we could derive rather simple limit distributions. This is mainly due to the fact
that the weights are independent of the true but unknown (o711, 092, 012) as we only deal
with linear and half-spaces. This greatly facilitates our analysis and lets us avoid overly
conservative bounds for (2.22).

In order to compute a confidence interval for the causal effect of X5 on X; we carry out
tests for different co-values which are equally spaced with distance h and lie in the interval
[biows brign). For each cq, we calculate the maximum likelihood statistic A% and compare it
to the (1 — a)-quantile of the respective limit distribution. For each of the three scenarios
we collect the cp-values that pass the test and construct intervals from them, heuristically
adding the length h/2 at both sides. In the case |¢o] > 1 & ¢ € (—o0, —1] U [1,00), we
have to build an interval for positive and negative cp-values, for |cg| € (0,1), only a single
interval suffices and, for ¢y = 0, the contribution to the confidence region is either () or
{0}. The detailed procedure is laid out in Algorithm [1}

Since the limit distributions differ among the three scenarios and the obtained confidence
region is a union of intervals, it is not guaranteed that it is in fact an interval. Later
simulations show that, depending on the sample size and causal effect, holes and other
discontinuities may occur frequently.
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Algorithm 1: Standard approach for log-likelihood ¢

Input: observations X", level o, boundaries b, bpign, step length h
Output: (1 — a)-confidence region

1 Co + biow

2 51,595,535 + )

3 q1 FX’%l(l —a)

4 ¢y < (0.5F2 +0.5F3) (1 —a)

5 g3 < (0.5Fz +0.5F2)" (1 — a)

6 while ¢y < bp;q, do

7 if |¢o| > 1 then

8 A0 — Q(En(in) — SUDy— (- n(, Y, 2))
9 if A% < ¢ then

10 | S S1U{co}

11 | else if || € (0,1) then

12 AR 4= Q(En(in) = SUPy=cz, 2>z ln(,y,2))
13 if A% < g9 then

14 L Sy < Sy U{eo}

15 else

16 A0 — 2(€n(§]n) —sup,<. ln(2,y, 2))
17 if A\ < g3 then

18 | S35 S3U{co}

19 co—co+h

I + [min(S1 N [biow, —1]) — h/2, max(S1 N [biow, —1]) + h/2]
Umin(Sy N [1, brign]) — h/2, max(S1 N [1, brign]) + h/2]

21 [y < [min(Sse) — h/2, max(Ss) + h/2]

22 return [, U I, U Ss

2

o

=
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2.4.4 Two-step approach

In the previous section, we used the largest possible asymptotic distribution for the
cases |co| € (0,1) and ¢y = 0 to ensure that the type-I error is controlled. However,
if (011,012, 092) is not the least favourable null value, the real limit distribution of A% is
smaller which leads to overly conservative confidence regions. Figure [1] illustrates that,
even for small sample sizes and common values of 312 and ¢2, the limit law deviates from
the least favourable null distribution considerably. For both |co| € (0,1) and ¢y = 0, the
limit distribution depends on the value of 11 — 099 as explained above.

n=10 n =20

1.04 1.04
0.84 0.84
0.6 0.6
0.4 0.4
CDF CDF

— 2 — 2
0.2 X1 0.2 X1

—— 0.5x}+0.5x3 —— 0.5x}+0.5x3
0.01 —— empirical 0.01 —— empirical

0 2 4 6 8 10 0 2 4 6 8 10
n =50 n =100
1.04 1.04
0.84 0.84
0.6 0.6
0.4 0.4
CDF CDF

0.2 —x 0.2 1 —x

—— 0.5} +0.5x3 —— 0.5x+0.5x3
0.01 —— empirical 0.01 —— empirical

0 2 4 6 8 10 0 2 4 6 8 10

Figure 1: Empirical cdf of A\ for different sample sizes n € {10,20,50,100}. The model
parameters are set to f12 = 0.5, 02 = 1 and for each n the empirical cdf is based on 200 simulated
datasets. As n grows, the law of A% deviates from the least favourable null distribution, 0.5y +
0.5)@, and approaches X%-

In the following, we summarise a two-step procedure, first presented by (Silvapulle 1996)),
which tackles the general problem of the influence of nuisance parameters on hypothesis
testing and subsequently apply the result to our testing problem.

We consider a statistical model for a random variable X parametrised by (0, ) € © x A
and the hypothesis test

Ho:0 =6, against H;:0€ ©" C 0.

Let T\ be a test statistic for a given A, where large values of T are evidence against Hy,
let t5(X) be the observed value and denote the true value of the nuisance parameter Ag.
Consequently, the p-value is given by

pO(X) = IP>90,>\0 (T)\O > tAo(X)|X)‘
Since \g, however, is unknown, we resort to

p(X) = iungO’A(T)\ Z tA(X)|X)
S
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While rejecting Hy, if p does not exceed a certain significance level «, clearly controls the
type-1 error, this testing procedure might often be too conservative as the whole range of
possible nuisance parameters is accounted for, regardless of the data.

(Silvapulle |1996)) first estimates a (1 — ay)-confidence region C(ay) for the nuisance pa-
rameter, where 0 < a; < a. Second, the p-value is computed as

p (X)) =01 + su(p )Pgo)\(T)\ > (X)) X).
AeC(an

Theorem 2.22. For a given o € (0,1) and 0 < oy < «, rejecting Hy if p*(X) < «
ensures that the type-I error does not exceed o.

Proof. We estimate the type-I error as follows

o0 (0" (X) < @) = Pz, (p7(X) < 0, Ao € Clan)) + Py, (p7(X) < 0, Ao & Clarn))

(p
< Py, ,\0< sup Py (Th > tA(X)|X) <a—ag, Ao € C(a1)> + o
AeC(ar)

<P90A0(P90A0(Tko>t>\o( )|X) a_a1)+a1
= Poyro (Po(X) <a—a1) +
=(a—a)+o =a.

The two inequalities are a direct consequence of the monotonicity of the probability mea-
sure and the last equality ensues from the uniform distribution of p-values, as stated in
(Lehmann and Romano 2005)). O

The outlined procedure improves the straightforward approach of using p as p-value be-
cause the supremum only considers values of the nuisance parameter that are realis-
tic in view of the data. The envisaged type-I error rate « is divided up into «q, the
error probability for the confidence region of )y, and a — «;, the maximal value of
SUPec(ro,an) PA(TH > t) which Hy is rejected for.

The asymptotic distribution of A% in the cases |¢o] € (0,1) and ¢y = 0 depends on
the nuisance parameter 1{, ,—,,,} as the tangent cones at the true value (011,012, 022)
are different for 011 = 099 and oy; # 099 as explained in the previous section. In order
to apply the outlined two-step procedure, we first have to construct (1 — a4 )-confidence
regions for the nuisance parameter. Since 1;,,,—4,,} only takes two values and the supre-
mum is consequently only taken over two limit distributions at most, it is enough to build
a confidence interval for o1; — 099 and verify if 0 is contain/e\d.

To this end, we make use of the asymptotic normality of ¥, stated in , as well as
the linear transformation

011 — 022 = (1, 0, —1) (011,012,022)T
and obtain

\/ﬁ((é’ll — 6'22) — (0'11 — O'QQ)) R) N (0,0'go) s as n — o9, (227)
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where
2 2 2 ( )
05 = 01111 + 02222 — 2071122 + 2011092 — 011 — O3. 2.28

Replacing the exact fourth and second moments in (2.28) by their estimates yields an
estimator 6% which, according to the law of large numbers, converges in probability to
0% as n — oco. Applying this finding on (2.27), we can deduce with Slutsky’s theorem

o0

[2.25] that

Jn (011 — 22) — (011 — 022) B N(0,1), as n— oco.

~

Ooo

This allows us to construct the approximate (1 — aq)-confidence interval

. /05
((011 - 022) =+ 7 Zl—a1/2>7 (229)

where 2z, denotes the y-th quantile of a standard normal distribution.

If 0 is contained in the confidence interval , we have to consider both possible limit
distributions. For |cy| € (0,1) they are x? and 0.5x3 + 0.5x3, and for ¢y = 0 they are
given by x2 and 0.5x2 + 0.5x7 respectively, as explained in the previous section. Since for
both |cg| € (0,1) and ¢o = 0 the latter distribution is larger, we take this law as the limit
distribution.

If 0 is not contained in the confidence interval , we only have to consider the limit
distributions for o1 # 099 which are X% and xg = 0 respectively.

Having completed the first step, we test different values of ¢q in the same way the standard
approach does, yet, we use the (1 — (o — «))-quantile of the limit distribution chosen by
the first step. Algorithm [2] lays out the details of the two-step procedure.

The parameter «; gives an additional degree of freedom that can be used to tune the
confidence intervals. However, for the case |cg| € (0, 1), the two-step procedure can only
be superior to the standard approach if the (1 — «)-quantile of 0.5y +0.5x3 is larger than
the (1 — (a — ay))-quantile of 3.

2.5 Experiments

We investigate the behaviour of the standard and two-step approach, presented in Sub-
section for simulated data. Moreover, we apply Algorithm [I] and [2] to benchmark
datasets, for which the direction of the causal relationship is known, in order to examine
their performance on real world data.

2.5.1 Toy problem
We use the toy model

X1 = BXQ -+ €1, X2 = &9, (51, 62)T ~ N(O, O'QId), (230)

whose log-likelihood clearly fulfils the Assumptions 2.14 Sampling data for different
values of o2 and 3, we use (Kraft 1988)’s sequential least squares programming algo-
rithm as implemented in Python’s SciPy package as optimisation routine. Details on the
parametrisation of the log-likelihood and the optimisation constraints can be found in
Appendix and the source code is also available as a Jupyter Notebook on |Github.
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Algorithm 2: Two-step approach for log-likelihood /¢

Input: observations X", level «, level oy for nuisance parameter,

boundaries bjoy, brign, step length h
Output: (1 — a)-confidence region
1 ¢y < biow
2 Sl, SQ, Sg +— 0

3 q1 FX_%l(l —a)

02, 4 01111 + 02220 — 201192 + 2611622 — 07y — 03y
if 0 € (611 — 022 £ /0% /N 21-4,/2) then

@2 < (0.5F2 +0.5F3) (1 — (@ — 1))

g3 < (0.5F 2 +0.5F2) (1 — (a — a1))

else

G2 < F)Zfl(l — (@ —m))

I

© W g o w«

10 | ¢3¢0

11 while ¢y < by, do
12 if |¢o| > 1 then

13 A0 — 2(€n(§]n) — SUDy—c, - lo(x,y, 2))
14 if A\ < ¢ then

15 L Sl < Sl U {CQ}

16 | else if || € (0,1) then

17 )\%0 — 2(671(%71) - Supy:coz,zzz gn(l’, Y, Z))
18 if A < g9 then

19 L Sy +— Sy U {CO}

20 else

21 A0 — 2(€n(§]n) — sup,<, ln(z,9, 2))
22 if \% < ¢5 then -

23 L 53 < 53 U {CQ}

24 co—co+h

2

(S

U[m1n(51 N [1, bhigh]) — h/Q, maX(Sl N [1, bhigh]) + h/2]
26 o < [min(Sy) — h/2, max(Ss) + h/2]
27 return [, U I, U Ss

I + [min(S1 N [biow, —1]) — h/2, max(S1 N [biow, —1]) + h/2]

// 1st step

// 2nd step
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Since o2 appears as scaling factor, it does not qualitatively affect the variety of possible

scenarios. On this account, we set 02> = 1 throughout all simulations and further fix
a = 0.05. We consider the standard and two-step approach, for the latter of which we
use a1 € {0.01,0.02}. Moreover, we only need to examine non-negative values of 3 due
to symmetry.

standard two-step, a; =0.01 two-step, a; =0.02
1.0 1.0 1 1.0
0.8 0.8 0.8
0.6 1 —— covering Cl's 0.6 1 —— covering Cl's 0.6 1 —— covering Cl's
—— torn Cl's —— torn Cl's —— torn Cl's
0.4 - — l-a 0.4 — l-a 0.4 — 1-a
0.2
OO 1 T T T T 00 1 T T T T OO 1 T T T T
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
sample size sample size sample size

Figure 2: Share of covering and torn confidence intervals for 8 = 0.5 and X; < Xs. The
percentage of instances where the confidence interval covers the causal effect and where it is
discontinuous (torn) are calculated on 500 simulated datasets. Potential values ¢y were tested
with step length 0.01 in the range [—1,2].

First, we study the behaviour of the proposed approaches for a value of the causal ef-
fect that is away from the critical points —1,0 and 1 where the least favourable null
distribution changes. Therefore, we set the direction of causality as X; < X5 and run a
simulation for 5 = 0.5 whose results are depicted in Figure[2] We see that, even for small
sample sizes, all approaches yield slightly conservative confidence intervals; the two-step
approach with a; = 0.01, however, comes closest to the envisaged coverage of 1 — a.
We further observe that, while discontinuous confidence intervals are common for small
sample sizes, their occurrence rapidly decreases as n grows.

standard two-step, a; = 0.01 two-step, a; =0.02

1.0 1 1.0 1.0 1

0.9 0.9 1 0.9

0.8~ 0.8~ 0.8

0.2 0.2 1 0.2 P
—— covering Cl's —— covering Cl's —— covering Cl's
—— torn Cl's —— torn Cl's —— torn Cl's

0.14 0.1 0.14
— l-a — l-a — l-a

0.0 /E 0.0 0.0 \

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
sample size sample size sample size

Figure 3: Share of covering and torn confidence intervals for 8 = 1.1 and X; < X2. 500 datasets
were simulated to calculate the respective shares and potential values ¢y were tested in the range
[—0.4,2.6] with step length 0.01.

Next, we consider values of the causal effect that are close to 0 and 1 where we expect
discontinuous, or rather torn, confidence intervals to be found more frequently. Figure
exhibits that all approaches achieve the desired coverage and torn confidence intervals are
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standard two-step, a; =0.01 two-step, a; =0.02

o _— 1.0 1 1.0

0.8 0.81 0.8

0.6 1 0.6 1 0.6

0.4 0.4 0.4

0.2 - covering Cl's 0.2 - covering Cl's 0.2 - covering Cl's
—— torn Cl's —— torn Cl's —— torn Cl's
— 1l-a — l-a — 1l-a

00 1 T T T T 00 1 T T T T 00 1 T T T T

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
sample size sample size sample size

Figure 4: Share of covering and torn confidence intervals for § = 0.2 and X; < X5. 500 datasets
were simulated to calculate the respective shares and potential values cy were tested in the range
[—1.3,1.7] with step length 0.01.

rare. This finding is corroborated by simulations for § = 1 and 8 = 0.9. Contrary to
this, Figure [4 shows that the percentage of discontinuous confidence intervals for small
|B| sharply rises and stays at a high level, even for larger sample sizes. Additionally, we
undertook simulations for 8 = 0.1, which exhibits a slower growth to the peak level, and
for f = 0.3, where a decline of the share of torn confidence intervals can be observed
for smaller sample sizes than for § = 0.2. These phenomena can be traced back to the
likelihood of inclusion of {0} into the confidence interval which causes a potential discon-
tinuity. Therefore, the share of torn confidence intervals eventually decreases, albeit this
may only occur for very large sample sizes.

standard two-step, a; =0.01 two-step, a; =0.02
1.0 1 1.0 1.0 1
—— covering Cl's —— covering Cl's —— covering Cl's
091 — torn Cl's 091 — torn Cl's 091 — torn Cl's
— l-a — l-a — l-a
0.8~ 0.8~ 0.8~
0.2 0.2 o 0.2 —~

0.1 /\/\,\/_—\/_ 0.1 0.1
/\//\/\’\

W
0.0 1 0.0 0.0 1
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
sample size sample size sample size

Figure 5: Share of covering and torn confidence intervals for 5 = 0. 500 datasets were simulated
to calculate the respective shares and potential values ¢y were tested in the range [—1.5,1.5]
with step length 0.01.

Moreover, we conduct an experiment for independent random variables X; and X5 which
is equivalent to 8 = 0. As illustrated by Figure [5 the occurrence of torn confidence
intervals stays below 10% throughout all tested approaches and sample sizes while all
calculated confidence intervals are clearly conservative with an almost constant coverage
of 100%.

Finally, we examine the performance of the confidence intervals for the causal effect of
X5 and X; when the true causality is directed opposite. To this end, we set 5 = 0.5
and switch the roles of X; and X5 in . Figure |§| illustrates that the share of torn
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standard two-step, a; =0.01 two-step, a; =0.02
1.04 1.01 1.04
0.8 1 0.8 0.8 1
0.6 1 - covering Cl's 0.6 1 - covering Cl's 0.6 1 - covering Cl's
—— torn Cl's —— torn Cl's —— torn Cl's
0.4 — 1l-«a 0.4 — 1-a 0.4 — 1l-«a
0.2 1 0.2
00 1 T T T T 00 1 T T T T 00 1 T T T T
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

sample size sample size sample size

Figure 6: Share of covering and torn confidence intervals for § = 0.5 and X; — Xs3. The
percentage of instances where the confidence interval covers the causal effect and where it is
discontinuous (torn) are calculated on 500 simulated datasets. Potential values ¢y were tested
with step length 0.01 in the range [—1,2].

confidence intervals decreases analogously to Figure [2] while the coverage stays constantly
at 100% as in Figure |5l Simulations for 8 = 0.2 and § = 0.1 corroborate that the share of
torn confidence intervals behaves similar to the corresponding experiments with X; < Xo
and that the obtained confidence intervals are conservative.

In summary, we find that both the standard and two-step approach show a similar per-
formance yielding valid, often conservative confidence intervals which are achieved even
for small sample sizes. Moreover, the likelihood of obtaining a discontinuous confidence
interval highly depends on the value of S and can be considerable even for large sample
sizes.

2.5.2 Benchmarks

In order to evaluate the performance of the standard approach and the two-step approach
for different values of a; on real-world data, we use the CAUSEEFFECTPAIRS dataset
presented in (Mooij et al. 2016). It consists of data for 100 different cause-effect pairs
from various fields for which the ”ground-truth” causal directions were determined by
domain knowledge. The source code for the following inference is available on Github.
We specifically consider pairs that render the assumptions of a linear relationship as well
as the equal variance assumption plausible. In particular, we use the pairs 0066 and 0067,
alias stockl and stock?2, which contain the daily stock returns of companies and indices.
In the former pair, one enterprise holds a large portion of another company; in the latter
pair, one stock is a typical representative in a subindex. Moreover, we consider the pairs
0089 and 0090, alias root1 and root2, which describe the degree of root decomposition in
forests and grasslands respectively six months and one year after the start of observation.
Furthermore, we use pair 0076, alias food, containing the average annual rate of change
of population and total dietary consumption. All of these pairs account for the size of
the observed quantities by considering shares instead of absolute values. Hence, assuming
equal variance of the error terms is justified.

Having identified valid pairs, we centre the data and scale it such that the causal effect
among the different pairs is of comparable size. For each pair, we scale both X; and X,
by the inverse of the standard deviation of X;. It is crucial to use the same scaling factor
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as we could not identify the direction of the causal relationship otherwise.

Since the approach of inverting tests requires the knowledge of the underlying distribu-
tion, we need to find a reasonable suggestion. The probability plot in Figure [7] shows that
the ordered data points match the theoretical quantiles of a Gaussian distribution for all
pairs in question. Hence, assuming an underlying normal distribution is plausible.

stockl - X3 stockl - X, stock2 - Xy stock2 - X3
54
’ / o 0
0
_5< .
DAE—— S SN P S
-2 0 2 -2 0 2 -2 0 2 -2 0 2
rootl - X; rootl - X, root2 - Xy root2 - X3

N
N
[ ]
L
N
N
L

Ordered values
|
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-2 0 2 -2 0 2 -2 0 2 -2 0 2
food - X3 food - X,

|
[ NN}
o
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Theoretical quantiles

Figure 7: Gaussian probability plot of the five pairs. The ordered values for each pair and each
X1 and X, are plotted against an approximation of the medians of the respective quantiles of a
fitted normal distribution.

Having verified all requirements and identified a reasonable log-likelihood, we proceed to
calculate confidence intervals for the causal effects of Xy on X;. We set « = 0.05 and
use both the standard approach and the two-step approach with «; € {0.01,0.02,0.03}.
Drawing from Figure |8 we notice that the estimate of the causal effect could actually

I standard
1.24 two-step, a; =0.01
B two-step, a; =0.02
1.01 I two-step, a; =0.03

0g{ Il
0.61
0.4
0.2

0.01 o o d Lo o e o d

stoEkl sto'ck2 roétl roétz fobd

Figure 8: 95% confidence intervals for the causal effect of X5 on X;. The black lines are the
point estimates of the respective causal effects. Potential values ¢y were tested with step length
0.005 in the range [—3, 3].
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recover the true direction of the causal relationship between X; and X, as stated in Table
[ Moreover, the two-step approach with a; = 0.01 exhibits the best performance, albeit
only for some data pairs a substantial difference could be observed.

pair | direction of causality
stockl X; = Xy
stock?2 X; = Xy
rootl X« Xy
root?2 X« Xy

food X1 — X2

Table 1: Data pairs and true causal direction

Finally, we calculate the confidence intervals for the causal effect in the opposite direction
X1 — Xs. Considering Figure [9] we find that the tested approaches yield overall similar

1.24 I standard

-I—I—I- two-step, a; =0.01

two-step, a; =0.02
two-step, a; =0.03

1.0
0s{ +HH +H
0.6
0.4
0.21

0.01 eoee E o=se

stockl stock2 root1 root2 food

Figure 9: 95% confidence intervals for the causal effect of X7 on Xs. The black lines are the
point estimates of the respective causal effects. Potential values ¢y were tested with step length
0.005 in the range [—3, 3].

confidence intervals. Commensurate with Figure [8| we observe that the confidence inter-
vals for stockl are discontinuous by a large margin. This phenomenon can be explained
by taking the small difference between the empirical variances of X; and X5 into account.
As the (scaled) values 1.00 and 1.01 are very close, the ambiguity in the decision on the
causal direction is considerable. While the point estimate chooses correctly, the confi-
dence interval estimate, designed to reflect uncertainty, reflects the difficulty of the task
as a discontinuous interval.
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Appendix 2.A Asymptotic distribution of continuous extensions

2.A.1 Convergence theorems

The delta method, the continuous mapping theorem and Slutsky’s theorem are essential
tools to characterise asymptotic distributions. We state them as presented in (Lehmann
and Romano 2005).

Theorem 2.23 (Delta method). Suppose (X,,)nen are random vectors in R* and assume

Tn(Xpn — 1) N N(0,%) where p is a constant vector, ¥ is a positive definite matriz and
(T )nen 18 a sequence of constants T, — oo. Suppose g is a function from R* to R which
1s differentiable at p, then

Tn(Q(Xn) - Q(M)) 5N (0, (Vg(p)* E(Vg(,u))) . asmn — oo.

Theorem 2.24 (Continuous mapping theorem). Suppose X, RN X,Y, LY and let g be
a continuous map from R¥ to R*. Then g(X,,) N 9(X) and g(Yy,) L g(Y).

Theorem 2.25 (Slutsky’s theorem). Suppose (X,,)nen s a sequence of real-valued random
variables such that X, 2ox. Further, suppose (Ap)nen and (By,)nen satisfy A, 2 a and
B, i b, where a and b are constants. Then A, X, + B, DX +b.

2.A.2 Calculations of limit variance

We use Mathematica to facilitate the computation of the gradients of T, and Tg, and the
asymptotic variance g% . In the following we state the notebooks used for the T, and T,
respectively. The code used is also available on Github.

Calculations for Example 2.2

GammaM = {{o1111 — 0112, 01112 — 011 * 012, 01122 — 011 * 022},

{01112 — 011 ¥012,01122 — 012A2, 01222 — 012 * 022} )

{01122 — 011 * 022, 01222 — O12 * 022, 02292 — 022”2} };
TraditionalForm [t = Sign [012] * (01272 * (011 — 022) /022" 3) (1/4)]

1] 0%5(011—022)
3

- sgn (012)
22

grad = Grad [¢t, {011, 012,022}];

grad = Replace [grad, Sign’ [o12] — 0, All];

TraditionalForm|

Simplify [gra.d, o11 > 0 && 099 > 0 && 0‘12/‘2 < o011 * 020 && 012 75 0 && o011 > 0'22]]


https://github.com/tobias-freidling/causal-effect-inference

34 2 CAUSAL EFFECT INFERENCE

911922
o12 4 3 sgn(alz)
O'%QSgn(O'lz) 4 . 0%2 (3011—2022)sgn(o12)

4((011—022)0922)3/4012[3/27 2|012[3/2 ’ 4(011_022)3/40544|012‘3/2

sigmalnf = (GammaM.grad).grad,;
TraditionalForm|
Simplify [sigmalnf, 011 > 0 && 022 > 0 && 0122 < 011 * 022 && 012 # 0 &&

011 > 022 && 01111 > 0 && 01122 > 0 && 02922 > 0 && 011222 < 01111 * T2222]]

(035((9022020F, — 6022 (01122 + 202222) 011 + 035 (01111 + 4 (01122 + 02222))) 0%
— 4 (011 — 022) 022 (301101222 — 022 (01112 + 201222)) 012 + 4 (011 — 022) 20’%20’1122))

/ (16 (011 — 022) ¥ 203)” |o12] 3)

Calculations for Example [2.3
GammaM = {{o1111 — 061172, 01112 — 011 * 012, 01122 — 011 * T2},
o - — 012,01 -

01112 — 011 * 012, 01122 — 0122, 01222 — 012 * 022},

A .
{01122 — 011 ¥ 022,01222 — 012 * 022,02222 — 022 2}},

TraditionalForm[t = Sign [0'12] [o22 * (0‘12/\2/ 2 % Abs [0‘22 x (011 — 022) + 0'12/\2]) A(]./4)]

Vot 4{/‘0%24‘(011—022)022|Sgn(012)
V2022

grad = Grad [t, {011, 012, 022}];
grad = Replace [grad, Sign’ [012] — 0, All];
grad = Replace [grad, Abs' [012"2 + (011 — 022) * 022] — 1, All] ;

TraditionalForm|
Simplify [gra.d, o11 > 0 && 099 > 0 && 0‘12/‘2 < 011 * 020 && 012 75 0 && o011 > 0'22]]

\|o12|sgn(oi2) 012 (20%2+(011 70’22)0’22)Sgn(0'12) _ (40%2+(3011 72022)022)\ /|o12]sgn(o12)
4 %(U%Q+(011 *022)022)3/4 " 232022 (0%2+(011*022)0220%2)3/4 ’ 4203, (af2+(011 *022)022)3/4

sigmalnf = (GammaM.grad).grad;
TraditionalForm|
Simplify [sigmalnf, 611 > 0 && 022 > 0 && 012"\2 < 011 * 090 && 012 #0 &&

011 > 022 && 01111 > 0 && 01122 > 0 && 02922 > 0 && 01122"2 < G111 * 02222]

6 5 4
(1609222009 — 3202201222075 + 8022 (022 (01122 — 202222) + 301102222) 079
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+ 803, (022 (01112 + 401222) — 501101222) 05 + 035(902222071 + 2022 (501122 — 602222) 11
+ 03y (01111 — 12071120 + 409222) 025 — 4 (011 — 022) 055 (301101220 — 022 (01112 + 201222)) 012

+ 4(011 — 092)%05501122) /(1672055 (03 + (011 — 092)092)%/?|012])

Appendix 2.B Simulation details

Using the model (2.30)), we assume normally distributed data and thus consider the neg-
ative log-likelihood

(%) = %(27@ In(27) 4+ nin(det(3)) + i xJTE_lxj)

for a data sample (z1,...,2,), x; € R? for all j € {1,...,n}. The Algorithms || and
rely on the minimisation of —¢ for the different sets of constraints given by - (2:26).
To this end, we use (Kraft 1988)’s sequential least squares programming algorithm that
requires the derivatives of —¢ with respect to ¥. Since the inverse of > appears in the
sum which compounds the derivation of —0¢/0%, we choose the concentration matrix
K = Y71 as parametrisation of the negative log-likelihood.

oo (Fro ke o 1 (2 o (2.31)
ko k3 0110922 — 0j \ 012 011

Employing the following identities, cf. (Minka |[1997)),

O(zTKx) T JlIn(det(K)) S
_— —_— Y = K

oK oK SR
we compute the derivative

O—UK)  n..4 I~ o
BYe = 2K +2;x39€j.

As last step before applying the optimisation routine, we have to express (2.24) — ([2.26))
in terms of the new parametrisation. Using (2.31)), we find

012 =Cp02 & —ko=cok,
o1 = 022 < ks > ki,
o1 < 092 < ks < K.
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3 Post-selection inference with HSIC-Lasso

This section is organised as follows. The Subsections and |3.2] introduce post-selection
inference and the Hilbert-Schmidt independence criterion (HSIC) as the two main corner-
stones of this work. The following Subsection combines both these fields of research
to obtain an asymptotically valid approach for inference after selection with HSIC-Lasso.

Subsequently, the performance of this procedure is evaluated both on artificial and bench-
mark data in the Subsections [3.4] and [3.5| respectively.

3.1 Post-selection inference

Taking the effects of a preceding selection procedure into account when doing inference
is an idea that can be traced back as early as (Fisher 1956), (Cox 1975) and (Pdtscher
1991). However, it was not until 2005 that this issue gained traction and established
post-selection inference (PSI) as a field in its own right with several branches and lines of
research.

3.1.1 Different approaches

Throughout this subsection, we use the model
Y ~ N(XB,0°1d)

with iid. data, known o and (R. Tibshirani|1996))’s Lasso-selection procedure with tuning
parameter A as a running example to illustrate different approaches for PSI. The sample
size is denoted by n and the number of covariates, or rather the dimension of £, by p
respectively.

(Cox (1975)) proposed to randomly split the dataset into two folds, one on which the
selection is carried out and one which is used for inference. Hence, under the common
iid. assumption both procedures are independent and do not need to be adapted in or-
der to guarantee correct inference results. Although this approach is strikingly simple
and guaranteed to be valid for any kind of selection procedure, it outright disregards the
selection-data on the inference stage which leaves space for improvement.

Two standard approaches to deduce p-values and confidence intervals for selected vari-
ables are Bayesian methods and bootstrapping. As laid out by (Park and Casella [2008)),
a Bayesian Lasso can be realised by considering [ a random quantity with exponential
prior
©(B]o,\) = H 2 -2
T i 20 ‘
Hence, we can infer the posterior distribution of 5, e.g. with Gibbs sampling, which allows
for hypothesis testing and confidence interval estimation.
Following a non-parametric bootstrap approach, cf. (Efron|1979)) and (Efron and Robert
J. Tibshirani |1993)), we sample datasets of size n with replacement from the original data,

carry out the selection procedure and use the empirical distribution of § for inference.
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This method can be further refined using a parametric bootstrap and is also applicable
when A is not fixed and, for example, chosen by cross-validation.

(Hastie et al. 2015)) points out that the Bayesian approach is of complexity O(p?), whereas
bootstrapping only exhibits O(p). Nevertheless, both methods are not suitable for high-
and ultra high-dimensional problems as they heavily rely on computationally expensive
repeated sampling.

Debiased Lasso is a method that lies on the edge of what is considered post-selection
inference but is included in this short compendium due to its wide reception. It was de-
veloped by several authors, for instance (C.-H. Zhang and S. S. Zhang 2014), (Biithlmann
2013), (van de Geer et al. 2014) and (Javanmard and Montanari [2014])), and is tailored for
high-dimensional (p > n) linear models. In the case p > n, fitting the full linear model
Y = X +¢, where ¢ ~ N(0,0%1d), and using the traditional confidence intervals for the
regression coefficients is not feasible. Instead, using a debiased version Bd of the Lasso
estimate BA,\ is suggested and defined by

5 - 1 N 1 R
B=Pit OXT(y—XB) =B+ 0XTe + A

The matrix © is an approximate inverse of 3 = %X TX that is chosen such that A =
(Id — %@XTX)(B,\ — f3) vanishes as n — co. Hence, the approximation

B~ N (B %29 ser)

can be used to derive confidence intervals for 5. Note that this approach aims at inference
on the model that includes all covariates, the so called full model, putting its main focus
on enlarging the traditional linear regression approach. Hence, the results will differ from
techniques that consider models with a subset of selected covariates, hereinafter partial
models.

As described in (Jason D. Lee et al. 2016)), the inherent difficulty of PSI is the depen-
dence of the inference target on the selection procedure. Denoting a model estimator by
M c {1,...,p}, the regression coefficients in the selected (partial) model are given by

Y = (XX XY,

where X, only contains the columns of X with index in M. Commensurate with classical
linear regression, we might require ]P’(B]M € CJM ) > 1 — « for a confidence region CJM :
However, the event inside the probability measure is not well-defined as, for a fixed model
M, BJM is undefined if j ¢ M. The PoSI approach, put forward by (Berk et al. 2013),
solves this issue by demanding

(B ecivjed)>1-a VAL (3.1)
Here, M is not a deterministic subset of {1,...,p} but refers to any model selection

procedure. The requirement (3.1)) exhibits two major characteristics: First, the coverage
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property of the confidence interval is family-wise for all selected variables j € M:; second,
confidence intervals are universally valid, i.e. correct regardless of the selection procedure.
In analogy with the classical theory,

(B K \J(XT X ), )

is suggested as confidence interval where ¢ is an estimate of the standard deviation in the
full model and K is chosen depending on X, the level o, the degrees of freedom in ¢ and
the space of considered models such that universal validity is achieved. For more details,
we refer to the original paper.

PoSI is especially useful in situations where the selection procedure is unknown or account
of it is not trustworthy because valid inference is still guaranteed. However, accounting
for all possible selection procedures often yields very conservative confidence intervals. In
fact, it is shown that K can grow as quickly as O(p'/?). Moreover, PoSI is computationally
very expensive which renders it infeasible for high-dimensional situations.

3.1.2 Truncated Gaussians and polyhedral lemma

Contrary to PoSI, (Jason D. Lee et al. 2016 drop the universal validity requirement and,
instead of family-wise coverage, propose conditional coverage which amounts to

P(BM e CMIM=M)>1-a Yje M.

Conditioning on {M = M} is sensible as a confidence interval CM is calculated if and
only if M is selected. This also lifts the need for comparing regression coefficients across
different models, as demanded by 'Vj € M’ in .

Following the principal of conditional coverage, the distribution of a large class of statistics
given a selection procedure can be captured. We assume that Y ~ AN (u,X), where p is
unknown and ¥ is known, and the quantity of interest for inference is given by n¥,u. The
vector n,, is fixed and can depend on the selected model. Taking linear regression as an
example, p is modelled by X3 and we set ny = e;(X 1, Xy) "' X1, for inference on BJM
In order to deduce valid confidence intervals, characterising the distribution of

mrY {M = M}

is essential. The selection procedure M (Y) is inherently dependent on the response and
we assume that the selection event can be expressed in terms of Y in an affine linear
fashion, i.e.

{M=M}={Y eR": AIM)Y <b(M)} =: {AY < b},

for A(M) € R*™ and b(M) € R*. Geometrically, {AY < b} describes a polyhedron which
leads to the name polyhedral lemma. (Jason D. Lee et al. 2016) show that the selection
event of Lasso can indeed be characterised this way if one additionally conditions on the
signs of the selected variables. The seminal insight of the authors is that {AY < b} can

be disentangled rewriting Y in terms of n,Y and a component Z that is independent of
T
MY
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Lemma 3.1 (Polyhedral lemma). Let Y ~ N (p, X) with p € R™ and ¥ € R™", n € R",
A€ R and b € R*. Then Z, defined by

Z:=(ld—Cn")Y, C:=(n"Ln) 'Ly,
and nTY are independent. Furthermore,

{AY <b} = {V7(2) <"V <V (2),V°(2) > 0},

where
~ b, — (AZ),
Z) = NCASE st £ 2
ViZ) = e ey, (32)
VH(Z) = max M7 (3.3)

jacy; >0 (AC);
V(Z):= max b;—(AZ);.
(2) = max_ b= (AZ);
Drawing from this understanding, we see that the selection procedure has an effect on the

inference inasmuch as it restricts the values the quantity of interest can assume. Against
this backdrop, we define a truncated Gaussian distribution as follows.

Definition 3.2. Let 4 € R, 02 > 0 and a,b € R such that a < b. Then the cumulative
distribution function of a Gaussian distribution N (u, 0?) truncated to the interval [a,b] is
given by

O(8) — (2
Fiti(a) = q)igﬁ))_ q)é )

where ® denotes the cdf of N(0,1).

Concluding the presented line of thought, we are now able to state a pivotal quantity that
can be used for inference.

Theorem 3.3. Under the assumptions of Lemma[3.1] it holds that

FY- @Y DN Ty Y LAY < bY ~ Unif (0, 1), (3.4)

nTpnTn
where V= and V' are given by and respectively.

(Ryan J. Tibshirani, J. Taylor, et al. 2016|) describes how one- and two-sided hypothesis
testing and confidence interval calculation can be done. Suppose we want to test

Ho:nip =0 against Hy:niu>0. (3.5)

Then the statistic

V=(Z)V+(Z
T=1-F 5V DyTy)

is a valid p-value for Hy conditional on {AY < b}. Further, defining d,, for 0 < a < 1
such that

V—(2),vt(Z
1 FY @@y g
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yields a valid one-sided confidence interval [d,, c0) conditional on {AY < b}.
Likewise, we consider the two-sided hypothesis testing problem

Ho:nlpu=0 against Hy:nlu#0
and use the statistic

. - + - n
T = 2 min { FY @@ty g — p OV (Z)]<77Ty)} _

Again, T is a valid conditional p-value and defining d,/2 and 6;_,/2 such that

V=(2)Vt(Z
1- Fga/zfnT)En ) (UTY) =a/2,

V(YT (D)) Ty _
1-— Félfa/g,nTEn MY)=1-—q«a/2

yields a valid confidence interval [64/2,61-q/2] conditional on {AY < b}.

The polyhedral lemma in combination with Theorem sparked an entire branch of
research within PSI as it has many favourable traits. Since it does not rely on compu-
tationally costly operations, it is suitable for high-dimensional settings. In addition, it is
not tailored to a specific target or selection procedure but can be applied as long as the
quantity of interest can be written as nl,u and the selection event can be represented as
{AY < b}. Furthermore, it is remarkable that Theorem is non-asymptotic in that it
exactly holds for finite sample sizes. Even if the assumption of normality is violated, gen-
eralisations for asymptotically Gaussian quantities are often possible. This is harnessed
in section [3.3]

Concurrent to the development of the polyhedral lemma, (Ryan J. Tibshirani, J. Taylor,
et al. 2016) introduced the spacing test, tailored to PSI for the last angle regression algo-
rithm which calculates the Lasso regularisation path, cf. (Efron, Hastie, et al. [2004). It
also builds on the core elements of polyhedral selection events and truncated Gaussian dis-
tributions. Since then, numerous generalisations and adaptations of this framework have
been proposed. For instance, (Ryan J. Tibshirani, Rinaldo, et al. 2018) and (Tian and J.
Taylor 2017) drop the assumption of normality and investigate large sample properties for
n > p and n < p respectively. (Tian, Loftus, et al. 2018]) tackle the issue of incorporating
the estimation of 3, (Hyun et al. 2018) use the generalised Lasso as selection procedure
and (J. Taylor and R. Tibshirani 2018) present applications to logistic regression and the
graphical Lasso.

3.2 Hilbert-Schmidt independence criterion (HSIC)

Detecting dependence between random variables via kernel-based approaches and repro-
ducing kernel Hilbert spaces (RKHS) was a very active field of research at the beginning
of the new millennium producing several proposals, such as (Bach and Jordan [2003),
(Achard et al.2003)) or (Fukumizu et al.|[2004). This effort culminated in the introduction
of the Hilbert-Schmidt independence criterion (HSIC) by (Gretton, Bousquet, et al. 2005)
and its subsequent examination and application.
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3.2.1 Theoretical derivation

The main incentive to develop advanced techniques to describe dependence relations be-
tween two random variables X and Y arises from the fact that the covariance

cov(X,Y) =E[XY] - E[X]E[Y]

is designed for linear relationships only. If the dependence structure, however, is of non-
linear nature, the covariance can only partly capture the relationship between X and Y
or completely fails to do so. Nevertheless, general, or rather model-free, independence
can be expressed in terms of the covariance as follows, cf. (Gretton, Alexander Smola,
et al. 2005)).

Proposition 3.4. The random variables X and Y are independent if and only if
cov (f(X),g(Y)) =0 for each pair (f,qg) of bounded, continuous functions.

There are two lines of thought leading to the Hilbert-Schmidt independence criterion, one
presented in (Gretton, Bousquet, et al. 2005) regarding HSIC as the Hilbert-Schmidt norm
of a cross-covariance operator and one thinking of HSIC as mean maximum discrepancy
on product spaces according to (Q. Zhang et al.|2018)). In this work, we follow the latter
derivation and link it with the first approach and Proposition at the end.

First, we introduce the concept of reproducing kernel Hilbert spaces.

Definition 3.5. Let H be a Hilbert space of real-valued functions defined on D with
scalar product (-, ). A function k: D x D — R is called a reproducing kernel of H if

1. k(-,z) e’ H Vze D,
2. (f k(- 2)y = f(x) Yre DVfeH.

If H has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).

Remark 3.1. As an immediate consequence of the upper definition, we get

k(z,y) = (k(-,2), k(- y)n Yo,y € D.

The following theorem, proved by (Aronszajn 1950), provides sufficient conditions for a
function k to be a reproducing kernel.

Theorem 3.6 (Moore-Aronszajn). Let k: Dx D — R, be symmetric and positive definite,
that is -
ZZaiajk(xi,xj) >0, Vn>1VaeR"VreD"
i=1 j=1
Then there is a unique RKHS Hy, with reproducing kernel k.
Against this backdrop, we may ask how properties of the kernel k£ translate into charac-

teristics of Hy. The notion of a universal kernel, introduced by (Steinwart 2002), helps
to shed light on this issue.

Definition 3.7. A continuous kernel k on a compact metric space (D, d) is called universal
if Hy, is dense in C'(D), the space of continuous functions on D, with respect to ||-||oc-
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It is shown that both the Gaussian and exponential kernel, defined by

2
k(x,y) = exp <——HJIj yH2> . 02 >0,

202

k(x,y) = exp <_—Hx — y||2> , >0

20

respectively, are universal.
Second, we introduce the particularly useful framework of embedding distributions into
Hilbert spaces according to (Alex Smola et al. 2007)).

Definition 3.8. Let k be a bounded kernel on D and P a probability measure on D. The
kernel embedding of P into the RKHS Hy, is ux(P) € Hy such that

EUMHZLﬂ@ﬂhﬁﬂﬂm@Mm X ~ P, Vf € Hy

Remark 3.2. Alternatively, u(P) can be defined by

(®) = [ k(.2)dPG)

Definition [3.8] allows us to use Hilbert space theory on distributions which gives rise to the
definition of maximum mean discrepancy (MMD), see for example (Borgwardt et al.2006))
and (Gretton, Borgwardt, et al. 2012), which measures the distance between probability
measures.

Definition 3.9. Let k be a bounded kernel and P and QQ probability measures on D. The
mazximum mean discrepancy (MMD) between P and Q with respect to k is defined as

MMDy (P, Q) = || (P) — 11x(Q)|I3,, -

Lemma 3.10. In the setting of definition[3.9, MMDy, is a metric on probability measures
if k 1s a universal kernel.

Proof. (Alex Smola et al. 2007) show that P +— p(IP) is injective for universal k. Hence,
any two different measures have two distinct embeddings. The statement directly follows
from the norm properties of ||-||3,- O

The maximum mean discrepancy can be used to test whether two given data samples
stem from the same distribution. Since our goal is to find a measure for the dependence
between two random variables X and Y, we use MMD to compare the joint distribution
Pxy and the product of the marginals PxPy.

To this end, consider any two kernels k£ and [ on the domains Dy and Dy. It is easy to
verify that K = k ® [ given by

K((z,y), (@,v)) = k(z,2") l(y,y), =z,2" € Dx, y,y € Dy

is a valid kernel on the product space Dx x Dy. Employing Remark [3.2] we can define a
dependence measure between X and Y based on RKHSs.
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Definition 3.11. Let X and Y be random variables and k& and [ be bounded kernels
on the domains Dy and Dy respectively. The Hilbert-Schmidt independence criterion
HSICy (X, Y) for X and Y based on the kernels k and [ is given by

HSIC, (X, Y) = MMDye(Px .y, PxPy )
= [|Exy [k(, X) @ U(-, V)] = Ex [k(-, X)] By [l(, V)] |3, - (3.6)

The name of HSIC stems from the point of view held by (Gretton, Bousquet, et al. |[2005)).
The term within the norm in (3.6) can be identified with the cross-covariance operator
nyi Hk — Hl for which

(f,Cxyg)n, =cov(f(X),9(Y)) VfeH,VgeH (3.7)

holds. Consequently, HSIC is the squared Hilbert-Schmidt norm ||Cxy||%s-

Coming full circle, we see that using universal kernels k£ and [, which causes k ® [ to
be universal as well, has two important implications. First, Lemma [3.10] states that
HSIC is indeed a valid metric to measure dependence between random variables. Second,
Definition [3.7] yields that H; and H; are dense in C(Dx) and C(Dy ) respectively. Hence,
directly reflects the characterisation of independence given in Proposition .

It can be shown that HSIC can be expressed in terms of kernels which is a more convenient
perspective to develop estimators.

Lemma 3.12. Assuming the setting of Definition let X" and Y' be independent
copies of X and Y. The Hilbert-Schmidt independence criterion has the representation

HSIC, (X, Y) = Ex.x vy [K(X, X') 1Y, Y")] + Ex x [k(X, X")] Eyys [I(Y, Y")]
—2Exy [Ex [k(X, X")] Eys [I(Y,Y")]] .

3.2.2 Estimators

Since the introduction of the Hilbert-Schmidt independence criterion several estimators
have been proposed. We assume that a data sample {(z;,y;)}7_; is given and that the
kernels k£ and [ are universal and w.l.o.g. bounded by 1. (Gretton, Bousquet, et al. 2005)
propose a simple estimator, which, however, exhibits a bias of order O(n™!), whereas
(Song et al. |2012)) correct this unfavourable trait putting forward an unbiased estimator.

Definition 3.13. Let K and L be defined by Ki; = k(x;,x;) and Li; = I(x;, ;) for
1 <4,j<nandset K=K —diag(K), L =L —diag(L) and T' = Id — 2117, where
1 € R"™ has one at every entry. The biased and unbiased HSIC-estimators @b(X, Y)
and H/SEH(X ,Y') are defined as

ASIC,(X,Y) = ;1)2 tr(KTLT),

(n—
—— 1 - 1TK117L1 2 s

For both estimators the respective authors state concentration inequalities.
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Theorem 3.14. Forn > 1 and all 0 with probability of at least 1 — ¢

[HSIC, (X, Y) — HSIC(X, V)| < log(6/0) | €

an n’
[HSIC, (X, Y) — HSIC(X,Y)| < 8 w,

where o® > 0.24 and C are constants.

Regarding the asymptotic distribution of ﬁSI\Cb and H/SI\CU, (Q. Zhang et al. 2018) sum-
marise that both estimators scaled by n'/? converge to a Gaussian distribution if X and
Y are dependent. However, for X 1 Y, the asymptotic distribution is not normal. This
is a cumbersome property as we do not know the true dependence between X and Y. For
this reason, we turn our attention to estimators that are asymptotically normal in either
case.

In the following, it proves advantageous to use the framework of U-statistics in order to
develop and establish properties of estimators. More details on this topic can be found in
Appendix . (Song et al. 2012) prove that H/SEu indeed has an according representa-
tion.

Theorem 3.15. Using the notation of Deﬁmtz'on ﬁSI\Cu is a U-statistic of degree

4 with kernel
1 (4,3,q,r)

Wi g, qr) =57 > KalLat + Luy = 2Lau).

(stuv)

The sum is taken over all 24 quadruples (s,t,u,v) that can be selected without replacement
from (i,7,q,7r) and the notation of h was reduced to only contain the indices.

(Q. Zhang et al. 2018) and recently (Lim et al. [2020)) suggested new estimators for the
Hilbert-Schmidt independence criterion.

Definition 3.16. Let B € N and subdivide the data into folds of size B, {{(z?,y?)}2, Zg;
The block estimator HSICy, o with block size B is given by

n/B

ASIChoe (X, Y) = H/LB S HSIC, (X!, V), (3.8)

where HSIC, (X, Y?) denotes the unbiased estimator on the data {(z%, y?)}Z,.
Let S,4 be the set of all 4-subsets of {1,...,n} and let D be a multiset containing m
elements of S, 4 randomly chosen with replacement. Further, suppose m = O(n) and

define [ := lim, ;oo m/n. The incomplete U-statistics estimator HSIC;,. of size [ is
defined by
HSIC, (X, Y) Z h(i,j,q,r (3.9)
(z 7,q,r)ED

We show that both estimators are asymptotically normal and prove a multidimensional
version of the central limit theorem.
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Theorem 3.17. Let {( o g ),y]) L be an iid. data sample and define

Hy = (HSIC(XW,Y),... HSIC(X ))T, and Hyoa and Hiy,e accordingly. Assume
that B and | are the same for all entrz’es of Hyoax and Hi,. respectively, let n/B — oo
and choose D for all elements of Hi,. independently. Then

v/n/B(Hpioac — Ho) 2 N (0, Zpiock), (3.10)
Vm(Hine — Ho) 2 N(0, Sine), (3.11)

with positive definite matrices Xpocc Nd Line.

Remark 3.3. It is possible to derive formulas for ¥y ,qc and ;... Nevertheless, we omit
these considerations as they are technical and are not used in the following work.

Proof. The statement for Hyoq is a direct consequence of the multidimensional Central
Limit Theorem. The LHS of (3.10)) can be written as

n/B TSIC WXyt HSIC(X®M,Y)
BZ o - :
=1 \ HSIC,(X>®),Y?) HSIC(X®),Y)

The n/B random variables in the sum are independent and identically distributed due to
the iid. assumption and data subdivision. Moreover, the involved estimators are unbiased
and n/B — oo.

The proof for Hj,. is deferred to Appendix [3.A] O]

3.2.3 HSIC-Lasso

We consider a re ressmn or classification setting for an independent identically distributed
data sample {( , . g ), y;)}j—1- The task of detecting covariates that are influential
on the response is a common problem but particularly difficult without additional as-
sumptions, such as linearity or p < n. (Makoto Yamada, Jitkrittum, et al. 2014)) propose
a method for this setting which is based on the Hilbert-Schmidt independence criterion,

does not require any assumptions on the model and scales well for high-dimensional data.

Definition 3.18. Let {( , o ,:L'g-p), y;)}j—, be an iid. data sample. Using the notation
of Definition with the respective kernels, set L = I'LI' and K® = T K®T for
ke {l,...,p}. Let 8 be given by

5—31%111111—“[/ ZﬂkK [Frob + All B
BeRY.

where A > 0 is the tuning parameter of the Lasso penalty and R, denotes the non-negative
real numbers. The HSIC-Lasso selection procedure picks covariates whose corresponding
[-entries are positive.
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Remark 3.4. The good computational properties of HSIC-Lasso mainly stem from the
fact that the Frobenius norm can be rewritten as L?-norm by vectorisation of L and
K® k € {1,...,p}. This yields a common case of a restricted Lasso problem for which
many off-the-shelf algorithms are available.

The functioning of HSIC-Lasso can be best understood considering an alternative repre-
sentation.

Lemma 3.19. In the setting of Definition[3.18, it holds that

P P
b = argmin— 3" 4, ASIC, (XM, V) + % S A TSIC, (XM, XO) + 8] (3.12)

BERL ko1 k=1

We see that the dependence between response and covariates is captured by estimates of
the Hilbert-Schmidt independence criterion which renders HSIC-Lasso model-free.
Moreover, it becomes apparent that three competing components are present in the op-
timisation problem. Considering the first and third term together, a highly influential
covariate X* yields a large value of H/Sﬁb(X (¥)'Y") which also induces Bk to become
large in order to minimise the whole expression. Conversely, an uninfluential covariate
leads to an HSIC-estimate close to zero and the respective entry in B tends to be forced
to zero by the regularisation term. As for the second term, we note that the dependence
structure among the covariates is also taken into account pushing the B—entries of highly
dependent covariates to zero.

We expect two different effects arising. Among influential covariates, highly dependent
and thus redundant variables tend to be sorted out which leads to a more parsimonious
model. In the case of an uninfluential covariate being highly dependent on an influential
covariate, the first term is able to correctly assess the independent variable in the limit
n — oo. For small or moderate sample sizes however, strong dependence on an influential
variable can lead the selection procedure astray. In this situation, the second term is able
to mitigate this effect by punishing dependence among covariates in the selection process.
(M. Yamada et al. 2018) and (Climente-Gonzdlez et al. [2019) develop algorithms for
HSIC-Lasso that scale well for ultra high-dimensional data. (Takahashi et al. 2020)’s
work constitutes a good reference for a case study.

The idea of HSIC-Lasso is further generalised and analysed by (Poignard and Makoto
Yamada [2020)) considering other regularisations terms, e.g. bridge or SCAD penalties,
and establishing the oracle property.

3.3 Post-selection inference with HSIC-Lasso

Bringing together the results of Subsections [3.1] and [3.2] we develop an approach of post-
selection inference for the HSIC-Lasso selection procedure.

3.3.1 HSIC-Lasso adaptation

Taking the representation (3.12]) of HSIC-Lasso as a starting point, we make two changes
in order to satisfy the requirements of Theorem [3.3] Since Gaussianity is demanded, we
replace the biased HSIC-estimator with an asymptotically normal one, namely the block
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or incomplete U-statistics estimator, see Definition |[3.16| Moreover, it is possible to use a
weighted Lasso penalty without complicating the coming considerations.

Definition 3.20. In the setting of Definition [3.18, the normal weighted HSIC-Lasso se-
lection procedure is given by

p p
. 1 -
3 = argmin — § B HXWY) + 3 § BB HX®, XO) 4+ X gTw

BERL k=1 k=1

1
—=: argmin —TH + 3 BTMB + X T w,

p
BERE,

where H is an asymptotically Gaussian and H any HSIC-estimator, A > 0 is the tuning
parameter of the regularisation term and w € RY is a fixed weight vector.

Assuming that M is positive definite, we can reformulate the upper representation in
terms of a Lasso-problem as follows

- 1
[ = argmin §HY —UB|5+ X w. (3.13)

P
BERY.

U is determined by the Cholesky decomposition M = UTU and Y is the solution to
H = UTY. This formulation facilitates the computation of the estimate as there is a
variety of efficient algorithms and software packages for Lasso problems available.

Having developed a selection procedure that relies on asymptotically normal random
variables, there is the need to establish an asymptotic version of Theorem [3.3] Moreover,
we estimate the covariance matrix Y and do not assume it as given. Hence, a statement
of the following kind is desirable in order to theoretically underpin the coming steps:

FYTEY L T Y LAy Y, < bag, b 2 Unif (0,1),  as n — oo,
May, B Mgy, 20 My n

where (Y},)nen converges to a normal distribution, (in)neN to its covariance matrix and
(M,)nen denotes the sequence of selected models. (Ryan J. Tibshirani, Rinaldo, et al.
2018) concern themselves with a similar asymptotic statement; however, their set-up
differs from ours inasmuch a standard linear regression model as well as knowledge of the
true covariance matrix is assumed.

While the simulations of Subsection strongly hint that the upper statement is actually
true, the proof of such a theorem is beyond the scope of this work.

3.3.2 Selection and inference

Having introduced a HSIC-Lasso version that is suitable for post-selection inference based
on truncated Gaussians, we proceed to define the quantities of interest for hypothesis
testing, confidence interval construction and the like. They are referred to as inference
targets in the following. Moreover, we introduce a new notation for a matrix A € R7*¢
and index sets I,.J C {1,...,q}. I°:={1,...,q} \ I and A;; € RIXIVI is given by the
rows and columns of A whose indices are contained in I and J respectively. Furthermore,
we abbreviate Ay == Ay g1
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Definition 3.21. Let S = {j: Bj > 0} be the model selection random variable associated
with a normal weighted HSIC-Lasso according to Definition [3.20, Suppose it assumes the
model S and let 7 € S. Inference targets are defined by

HSIC-target: H, := e;‘-FH,

Hpar

partial target: () = G?MSTSlHS:

full target: Bj““ = e]TM_lH,
carved target: Af}r = eJTMI_IlHI, if jel,
hecar . T —1 o
f} =6 Mlu{j},lu{j}HIU{j}7 ifjé¢l,
where e; is the j-th unit vector and I C {1,...,p} is a model selected for a larger

regularisation parameter \.

The inference targets defined above follow two different rationale: the HSIC-target H;
characterises the dependence of X; and Y regardless of other covariates, whereas the 3-
targets adjust to the entire dependence structure of a model. The difference among the
latter targets is the size of the model that is taken into account.

Revisiting the general notation 1%, Y|[{M = M}, (Fithian et al. 2014) point out that
conditioning on the entire set {M = M} is not necessary in situations where 7, does not
depend on all of the information captured by this event. In fact, the more information is
contained in a selection event the wider confidence intervals tend to get. For this reason,
it is advisable to only include the selection information affecting the inference target.
Against this backdrop, we take a closer look at the -targets.

The partial target is closely connected to regression coefficients in linear regression which
becomes apparent by rewriting it in terms of the Lasso-representation :

e = eI (UFUs) UL Y.

It accounts for the dependence structure in the selected model S and is thus a natural

choice. However, Bﬁgr depends on the entire information of selected and not selected vari-

ables, which renders the minimal conditioning event {5‘ = S} quite large.

The full and carved target are based on the ideas of (Liu et al. 2018) who propose the same
quantities for linear regression. They can be interpreted as approximations of the partial
target originating in the observation that confidence intervals for the partial regression
coefficient are often unacceptably long.

The full target tackles this issue by accounting for the dependence structure among all
variables, regardless of whether they were selected. Hence, the only selection information
that B;“H relies on is that j was included into the model and it consequently suffices to

consider ﬂA]fuuH j € 8} for valid PSI.

The carved target reduces the information conditioned on by selecting a model I with a
larger regularisation parameter A and consequently fewer contained variables. This ap-
proach can be interpreted as identifying the most important covariates. A;f}r only accounts
for the dependence structure between the most influential variables I and j. Therefore,
inference on A;f}r only needs to consider the selection information {f =1,jesS }.

Based on these considerations, we derive the truncation points associated with the differ-

ent selection events.
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Theorem 3.22. Let S = {j: Bj > 0} be the model selection of a normal weighted HSIC-
Lasso according to Definition assume that M is positive definite and let n € RP.
Then {S = S} = {A(Hgs, Hs:)" < b} with

1 Mgs | 0) ( —Mgg wg
A=—= S5 , b= S50 : 3.14
A <MSCSMSS1 | 1d wse — MgesMgg wg (3.14)

where 0 denotes a matriz filled with zeros. The formulae of the respective truncation points
Vg and V§ are stated in the polyhedral lemma .
The truncation points for the event {j € S} are given by

vy (Z)

J

=7 [eJTMB_j —el Z + /\wj] : VHZ) = o0, (3.15)
J

where C = (n"Xn)™'%n and Z = (Id — Cn")H.

Proof. Statement (3.14]): W.l.o.g. we assume that the first |S| covariates of {X1,..., X}
were included into the model. The KKT conditions, see Definition [3.26 provide an
equivalent characterisation of the solution to the Lasso-optimisation as M is positive
definite and Slater’s condition is clearly fulfilled, cf. Theorem We obtain

0=—H+ M3+ \w—u,

In order to characterise {S’ = S}, we partition the upper inequalities along S and S¢ and
obtain

Bs = Mgs(Hs — Aws), (3.16)
0 < Hge + (MB)se — Awse. (3.17)

These results translate into two set of inequalities. First, all entries of B must be non-
negative which implies

0< Mgi(Hs —Aws) & =X (Mgg|0)H < —Mggws.

Second, M B = MSBS holds by definition of S, Hence, we can plug 1) into |D and
obtain

0 S HSC —|—M55c(M§§(HS - )\wg)) - )\wSc
D (MSSCMSTS:! ‘ Id) H <wge — MSSCMSTS% ws.

Both these set of inequalities describe the selection in an affine linear fashion. In this
setting, we can use the polyhedral lemma to get the truncation points Vg and VJ.

Statement : We decompose H into a component in direction of n and one per-
pendicular to n
H=n"H)-C+Z
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Again, we apply the KKT conditions and obtain
0=n"H)-C—Z+MB+\w—u,
with v € RE. Since j ¢ S e Bj = 0 holds by definition of S, the inequality

0<el [(nTH)~C’—Z+MB_j +/\w], (3.18)

where the j-th entry of B—j is set to zero, ensues for this case. Rearranging 1) we

find

1 R
H < < e MBoy — ] Z + Dy (3.19)
J

Consequently, for the event {j € S} the lower truncation point V; (Z) is the RHS of

and V(Z) = . O

Concluding this subsection, we summarise the truncation points for the proposed targets.

Proposition 3.23. We use the terminology of Theorem[3.23 and assume w.l.o.g. that the
first |S| covariates of {X1,...,X,} were included into the model. The truncation points
and n-vectors of the different inference targets given in Definition |53.21| are

target %8 1% n
HSIC Vi 00 €j
partial Vg Vd eJT(MS_S1 |0)
full Vi 00 eJT]W*1
el'(MF0), ifjel
carved | max{V:,V, Vi g A I Ees L
{ U J ! e?(M]UI{j}Ju{j} 10), ifj¢l

Proof. The n-vectors of the targets’ representation as n’ H are a direct result of Definition
adding zero-entries where necessary.

The HSIC- and full target only depend on the information that j was selected by the
normal weighted HSIC-Lasso. Hence, it suffices to condition on {j € S } and Theorem
provides the suitable truncation points.

In contrast, the partial target depends on the entire information {5' = S}. We use the
affine linear representation of the selection procedure as stated in the first half of Theorem
in combination with the polyhedral lemma [3.1] to get the truncation points.

The carved target is a combination of the previous two cases having the conditioning set
{f =1,7 ¢ S }. Consequently, we have to take the maximum of the lower truncation
points V;” and V; and the minimum of the upper truncation points V;“ =ooand V;. [
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3.3.3 Practical application

While the previous subsection has established the theoretical framework for valid post-
selection inference with a normal weighted HSIC-Lasso selection procedure, we now con-
centrate on developing an algorithm that handles difficulties arising in practical applica-
tion.

Positive definiteness Throughout the foregoing arguments it was assumed that the matrix
M defined by My; = H(X® X@) i 5 € {1,...,p}, where H is a HSIC-estimator, is pos-
itive definite. This was needed to ensure that the KKT conditions provide an equivalent
characterisation of the solution of the optimisation problem. In the original formulation
of HSIC-Lasso with the biased HSIC-estimator, see Definition [3.18] this requirement is
fulfilled because the function to be optimised is convex. However, there is no theoretical
guarantee for other estimators.

For this reason, we use a positive definite approximation M as proposed by (Higham
1988). The spectral decomposition of M is computed and all negative eigenvalues are
replaced with a small positive value € > 0. In many applications the approximation turns
out to be very close to M.

High computational costs A strong point of using HSIC-Lasso is its applicability to prob-
lems where the number of covariates p exceeds the sample size n. However, treating
high-dimensional or ultra high-dimensional data poses considerable computational costs.
These can be traced back to the calculation of the HSIC-estimates where H grows as O(p)
and M as O(p?).

A straightforward solution to this problem is the introduction of a screening stage be-
fore the model selection procedure developed in the previous subsection is applied. In
this upstream step, a subset of potentially influential covariates is determined so that the
HSIC-Lasso procedure only has to deal with these variables. (Makoto Yamada, Umezu,
et al. 2018)) propose a simple selection procedure that can be used for screening. HSIC-

estimates H/SE(Y, X®) ke {1,...,p}, are computed and a pre-fixed number P < p
of the covariates having the highest HSIC-estimates is selected. In order to ensure valid
inference results, we have to adjust for the screening step as well because it is a type of
model selection.

Two solutions come to mind. (Makoto Yamada, Umezu, et al. 2018) show that the se-
lection in the screening step allows for an affine linear representation. Consequently, we
can apply the polyhedral lemma to derive additional truncation points that possibly
restrict an inference target. This approach is based on the same idea as (Jason. D Lee and
J. E. Taylor 2014)’s work where a combination of marginal screening and post-selection
inference for a linear regression setting is investigated. The presented procedure enjoys
the advantage of using the entire data for the screening step. Yet, one has to compromise
on the detection capabilities of the HSIC-estimates as only asymptotically normal esti-
mators can be used.

Another, simple approach is splitting the data into two folds, one dedicated to screening,
the other dedicated to HSIC-Lasso selection among the screened variables, cf. (Cox |[1975)).
Thus, we avoid taking the screening step into account for post-selection inference. For
this reason, we can use the unbiased HSIC-estimator which is more precise than the block



54 3 POST-SELECTION INFERENCE WITH HSIC-LASSO

or incomplete U-statistics estimator. However, both screening and HSIC-Lasso selection
can only operate on a part of the data.

Hyperparameter choice Until now we treated the regularisation parameter A and the
weight vector w as given. In practice, however, a good choice of these quantities is
indispensable for meaningful results. Since we do not know the data generating process,
we have to make a data-dependent choice, or rather estimate the hyperparameters. Sim-
ilar to screening, this is a type of model selection which we consequently have to account
for to guarantee valid inference results.

(Loftus 2015)) addresses this issue for cross-validation by deriving a conditioning set of
quadratic constraints that describes the selection procedure of A. Yet, this does not fit
our framework of affine linear inequalities and is thus more suitable for truncated y>*-
distributions than Gaussians. (Markovic et al. 2017) are concerned with post-selection
inference for a family of hyperparamter selection methods, including cross-validation, see
for example (Stone [1974), and the Akaike information criterion put forward by (Akaike
1974)), and shows how to obtain an asymptotic pivot. Yet, this approach is intricate and
relies on assumptions that might not be fulfilled in some applications.

Continuing the idea of sample splitting for the screening step, we can use the first fold
for hyperparameter selection as well. In doing so, we do not have to restrict ourselves to
certain selection methods for the regularisation parameter and get an easy to implement
and valid procedure.

Moreover, we can employ (Zou 2006)’s adaptive Lasso penalty, that uses the weight vector
w = 1/|8|7. ~ is typically set to 1.5 or 2 and 3 is a \/n-consistent estimator, e.g. the
ordinary least square estimator. Contrary to the vanilla Lasso, this method is shown to be
asymptotically consistent for variable selection because the adaptive nature leads to less
penalisation for influential covariates and more penalisation for non-influential variables.
As major drawback, this property was only proven for a covariance matrix ¥ = o2Id.
Hence, we have to evaluate the usefulness of the adaptive Lasso in simulations.

We summarise our proposed PSI method for a normal (weighted) HSIC-Lasso selec-
tion procedure in Algorithm [3] For the sake of brevity, we only state the procedure
for one-sided hypothesis testing and the HSIC- and partial target. In addition,
several choices, like the covariance estimator or the hyperparameters of estimators, are
suppressed.

3.4 Investigation on artificial data

In this subsection we examine the performance of Algorithm [3] for different parameters
on artificial data and, ultimately, compare it with other methods for model-free PSI. The
source code for the experiments carried out was implemented in Python and is available
on Github. It harnesses (Lim et al. 2020)’s mskernel-package for the calculation of the
HSIC-estimates and makes heavy use of the Lasso optimisation routines of scikit-learn.
The latter package uses the cyclical gradient descent algorithm, see for example (Friedman
et al.|2007), and the least angle regression algorithm (LARS) proposed by (Efron, Hastie,
et al. 2004).


https://github.com/tobias-freidling/hsic-lasso-psi

3.4 Investigation on artificial data

Algorithm 3: Post-selection inference for HSIC-Lasso selection

Input: data (X", Y™), level «, inference target t, split ratio s, number of
screened variables P, screen-, M- and H-estimators e, ey, eqy

Output: significant variables I;,
1 (X ynl) (Xm2 Y ™2) «— split((X™,Y™), s)

// 1st fold
2 H' + estimatey (X™!, Y™ e,)
3 I, < screening(H!, P)
a M+ estimateM(X?s’i, es)
5 M < positive-definite-approximation(M")
6 Uy < cholesky(M'); Yy + U TH}
7 A\ < cross-validation(Uy,Yy) // or AIC
8 w < weights(Uy, Y1)
// 2nd fold
o H? « estimatey (X7, Y% ep)
10 M? « estimaten (X772, en)
11 M?  positive-definite-approximation (M ?)
12 3 ¢ estimatey,(H?)
13 Uy < cholesky(M?); Yy < Uy TH?
14 B+ lasso-opimisation(Y3, Us, A, w)
15 S+ non-zero-indices(3)
16 gy < 0
17 if t is partial target then
LGB | oY, (12 ws
w | A (o | i) 0 (bt )

19 foreach 5 € S do
20 if t is HSIC-target then

21 n < e

22 C+— (TSn)'Sy;  Z«+ (Id— Cn")H?

23 Vi (eTO) | M6y — el Z + )\wj] ; Vo0
24 else if t is partial target then

s || né el ((12)|0) A

26 V=, V1 «+ truncation-points(A, b, n, X)

27 ... // full and carved target

28 | p+1-— F[vi’vﬂ(nTH)

0,7 Sn
29 if p < a then
30 L Isig — ]sig U {]}

31 return [,
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Throughout the experiments, we use the toy model

Y = (X; — 1) tanh(X5 + X3) + sign(Xy) + ¢,

X ~ N(0s00,Z), €~ N(0,0?), (3.20)

where 0599 € R and = € R?9%590 t5 generate data. This is a clearly non-linear and
high-dimensional setting which is prone to overfitting due to the large number of non-
influential covariates. We choose o2 such that the variance of ¢ is a fifth of the variance
of the X-dependent terms of ¥ amounting to a noise-to-signal ratio of 0.2. For the co-
variance matrix = three different cases are considered: we either set = = Id, use decaying
correlation, ie. =Z;; = 0.3/ for i,5 € {1,...,500}, or constant correlation, that is
=i =0.1+0.90;; for 4,5 € {1,...,500}.

In the following, we use Gaussian kernels where we choose the bandwidth parameter ac-
cording to the median heuristic, cf. (Scholkopf and A. J. Smola 2018). For Algorithm ,
we fix @ = 0.05, use a quarter of the data for the first fold (s = 0.25) and screen 50
covariates using the unbiased HSIC-estimator. For the estimation of the matrix M on the
second fold we use the block estimator with B = 10 as it is computationally less expensive
than the unbiased estimator and leads to similar results. We estimate the covariance ma-
trix 3 of H based on the summands of the block and incomplete U-statistics
estimator respectively. To this end, we use the oracle approximating shrinkage (OAS)
estimator, which was presented in (Y. Chen et al. [2010) and is particularly tailored for
high-dimensional Gaussian data. Running the following experiments with the empirical
covariance estimator instead, however, leads to very similar results.

The first experiment investigates different methods of selecting the hyperparameter A
and the weight vector w. To begin with, we assure ourselves that choosing only a quarter
of the data for the first fold and thus for screening is actually sufficient to include the in-
fluential covariates into the set that is further considered with high probability. Figure
shows that for all three considered covariance settings, identity, decaying correlation and
constant correlation, the screening procedure is usually successful. This justifies choosing
s = 0.25.
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Figure 10: Rate of influential covariates detected by screening. For each of the three covariance
settings and each sample size n € {250,500, 1000, 1500, 2000} the true positive screening rate
was calculated on 200 simulated datasets.

In this experiment we calculate H with the block estimator with size B = 10. For the
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selection of the hyperparameter \, we investigate two widely used methods, the Akaike
information criterion and cross-validation. The former approach relies on the number of
degrees of freedom which is estimated according to (Zou et al. 2007)). For the latter ap-
proach, we use standard 10-fold cross-validation. Moreover, we can set the entries of w to
1 resulting in a standard Lasso-penalty or we can choose them adaptively. In this case, we
use the ordinary least squares estimator 3 and v = 1.5 to calculate w = 1/|3]". Figure
shows that the average number of selected covariates decreases with increasing sample size
across all considered covariance settings and methods for choosing A and w. Moreover,
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Figure 11: Average number of variables selected where A is either chosen by cross-validation or
AIC and w is either non-adaptive or adaptive. For each of the three covariance settings and
each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.

we observe that setting w in an adaptive way leads to an overly sparse selection as fewer
than the actually four influential variables are selected on average. This finding disquali-
fies the adaptive Lasso penalty. In contrast, non-adaptive AIC and cross-validation entail
reasonable selection and often behave similarly; only for the constant correlation setting
a major difference can be observed.

In the following experiments, we use non-adaptive cross-validation as it is the most com-
mon technique for hyperparameter selection and the estimation of degrees of freedom for
the Akaike information criterion is subject to some debate, see further (Kaufman and
Rosset 2014)) and (Janson et al. [2015).

The second experiment is concerned with assessing the performance of different estima-
tors for H. To this end, we use the set-up of the first experiment but now consider block
estimators of size 5 and 10 and incomplete U-statistics estimators with [ = 1 and [ = 5.
In order to evaluate the estimators we use the false positive rate (FPR) and true positive
rate (TPR) that they exhibit for the HSIC-, partial, full and carved inference targets. Let
S be the set of selected indices, let ¢ be any of the stated inference targets and consider
testing Ho: t; = 0 against Hy: ¢; > 0 for j € S. We define [ := {j € S:t; = 0},
I :={jeS:t; >0} and R := {j € S: Hy rejected}. Then, the false positive and true
positive rate are given by

1o N R

FPR =E
{ | Zo]

} , TPR=E [—”1 i R'}

| 11]

Since FPR quantifies the rejection of true null hypotheses, we expect to observe values
close to the type-I error a. In contrast, TPR indicates the power of a procedure, or rather



58 3 POST-SELECTION INFERENCE WITH HSIC-LASSO

the probability of avoiding type-II errors. Figure shows that, even for small sample
sizes, all estimators lead to false positive rates close to the desired value of 0.05 for the
partial inference target. Noticeably, the incomplete U-statistics estimator with [ = 5
exhibits the most volatile FPR. We do not present the plots for the other three targets
because they show very similar results.
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Figure 12: FPRs of different estimators for the partial target. For each of the three covariance
settings and each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.

Proceeding to the analysis of the true positive rate, we consider the Figures [13] and [I4]
For the sample size n = 250, we notice that some data points are missing which can be
attributed to influential variables not being selected and a lack of null hypothesis rejec-
tions. Both figures show a clear ranking of the examined estimators in terms of their
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Figure 13: TPRs of different estimators for the HSIC-target. For each of the three covariance
settings and each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.

power. The incomplete U-statistics estimator with [ = 5 performs best by a considerable
margin but is also costly in its computation. For this reason, the block estimator of size
10 emerges as a good choice in order to strike a balance between power and computational
efficiency. We omit the plots for the full and carved inference targets as they are in line
with the results for the HSIC- and partial target respectively.

The third experiment takes a closer look at the functioning of the HSIC-Lasso selec-
tion procedure which is designed to punish picking covariates that are dependent. To this
end, we use the identity and constant correlation setting from the previous experiments
and additionally correlate certain pairs of variables by setting the respective entries of =
to 0.7. Figure [15]| depicts the selection rates of individual covariates when = = Id.
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Figure 14: TPRs of different estimators for the partial target. For each of the three covariance
settings and each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.
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Figure 15: Selection rates of single variables for = = Id and different correlated pairs. For each
of them and each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.

Correlating two actually influential variables, X; and X5, or X5 and X3, we get a seemingly
ambiguous result. In the first case, both selection rates drop compared to the uncorrelated
setting. In the second case, the rates for both X5 and X3 rise. This can be explained by
the way how X5 and X3 influence the response. Since they appear in the term X5 + X3,
positively correlating both summands induces the sum to take more extreme values and
thus leads to stronger influence on Y. This is reflected in the increased selection rate.
Similarly, the structure of leads to lower selection rates of X; and X, when they
are positively correlated.

Correlating an influential variable, such as X; and X4, with the non-influential variable
X5, we observe that the selection rates of X; and X, are unaffected, whereas the selection
rate of Xj5 is noticeably larger compared to the uncorrelated setting. Yet, Xj5 is selected
less often than influential covariates.

In our experiments we find that the structure of the underlying data generating pro-
cess outweighs the punishing effect of HSIC-Lasso selection among influential variables.
However, unwanted picking of uninfluential covariates is moderately subdued. Figure
corroborates these results.
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Figure 16: Selection rates of single variables for Z;; = 0.1 4+ 0.9;; and different correlated
pairs. For each of them and each sample size n € {250, 500, 1000, 1500,2000} 200 datasets were
simulated.

Next, we examine testing outcomes for different targets against the backdrop of correlated
pairs of covariates. The null hypothesis Hy states that the respective target is zero; the
alternative assumes a positive value. In the interest of brevity, we only show the plots for
the setting = = Id and omit the graphics for Z;; = 0.1 + 0.96;; as the latter corroborate
the findings of the former in every situation. The Hy-rejection rate of the HSIC-targets
matches the respective selection rates of the associated covariates as Figure shows.
This finding is not surprising as the HSIC-target captures the dependence between a cer-
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Figure 17: Hy-rejection rates of single HSIC-targets for = = Id and different correlated pairs. For
each of them and each sample size n € {250, 500, 1000, 1500, 2000} 200 datasets were simulated.

tain covariate and the response, and the selection is mainly driven by this relationship.
Therefore, this target is highly susceptible to confounding.
To the contrary, the partial, full and carved targets take the dependence structure of the
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covariates into account which render them more natural choices for inference than the
HSIC-target as the HSIC-Lasso selection procedure was developed to reduce confound-
ing. As a note of caution, similarly to partial regression coefficients in a standard linear
setting, the partial and carved targets are only sensible within the frame of the chosen

model. Hence, they cannot be interpreted across models. For instance, ﬁp T > 0 might

hold true in a correctly specified model .S, but pe}r can be zero in a model S that does not

include some influential variables. For this reason the rates presented in the following
should be interpreted with a grain of salt.

Considering correlated pairs of influential covariates, namely X; and X, as well as X5
and X3, Figure shows that for the latter pair the dependence does not find expres-
sion in higher Hy-rejection rates of the corresponding partial targets. In the former case,
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Figure 18: Hyp-rejection rates of single partial targets for = = Id and different correlated pairs.
For each of them and each sample size n € {250,500, 1000, 1500,2000} 200 datasets were simu-
lated.

the rates of 5par and B;’ ‘¢ drop compared to the setting where no correlation is present.

Moreover, the null hypothesis rejection rate of Bgf) ‘¢ rises in this situation. In the scenario
where an influential and a non-influential variable are correlated, the picture is clearer.
The Hg-rejection rates of ﬁp ¢ and 5 > do not decrease when Xj is correlated with X; and
X, respectively. Meanwhlle, despite belng selected in roughly 20% of the cases when cor-
related, the partial target associated with Xj5 is almost always not considered significant.
Since the plots for the full and carved target yield the same results, they are omitted.

Ergo, we have found that, on the stage of hypothesis testing, targets considering the de-
pendence structure among the covariates are effective in detecting uninfluential covariates
that are correlated with influential ones. However, the manner how Hy-rejection rates ma-
terialise in the case of two influential covariates that are correlated is not so obvious.

The fourth experiment compares the developed approach with other methods for post-
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selection inference. To this end, we additionally use the logistic toy model

exp(Z)

Y ~B i | ———F—=
ernoulli (1 +exp(Z)

5
) . Z=) Xi X ~N(Os0,1d), (3.21)
i=1
and a standard linear model
5
Y= Xit+e, X~N(0s01d), &~ N(0,15) (3.22)
i=5

for data generation.

(Makoto Yamada, Umezu, et al. |2018) were the first to present a PSI-method for a
selection procedure based on HSIC-estimates. An asymptotically normal estimator is
used to calculate the values Hy, ..., H,, they are ordered by size and a predefined number
k of the covariates with the largest HSIC-estimates is selected. In the following, we refer
to this selection procedure as HSIC-ordering. Then, the pivotal quantity is used to
determine which of the chosen H-values are significant. Hence, the HSIC-targets of HSIC-
Lasso and the inference targets of HSIC-ordering are identical. Building on the latter
selection procedure, (Lim et al. [2020)) apply a multiscale bootstrap method to carry out
inference. This resampling approach was introduced by (Shimodaira 2004) and adapted
for post-selection inference by (Terada and Shimodaira [2017, 2019)). Ergo, multiscale
bootstrapping is an alternative to the framework of truncated Gaussians and shown to
be more powerful for HSIC-ordering, however, computationally expensive as well. In the
following, we abbreviate this approach by Multi.

Moreover, when treating data from the linear toy model, it is justified to use a linear
regression model, select a subset of covariates via Lasso and test the partial regression
coefficients for significance with truncated Gaussians. This is precisely the set-up of (Jason
D. Lee et al. 2016). According to (Negahban et al. 2012), we determine the regularisation
parameter as follows

A=30E[[|X"E]e], &~ N(0,Idnxy),

where 02 = 1.5 and n denotes the sample size. In doing so, we provide the selection proce-
dure of the linear regression model with information about the variance of the error term
that HSIC-Lasso and HSIC-ordering do not have. For this reason, the linear regression
model, as used here, cannot be easily applied in practice and, therefore, merely serves as
a benchmark.

In the following we consider four different data generating mechanisms: the non-linear
problem (3.20) with = = Id and =;; = 0.1 + 0.96;; for 4,5 € {1,...,500}, the logistic
(3.21) and the linear toy model. In each of these settings, we apply Algorithm
with both a block estimator, B = 10, and an incomplete U-statistics estimator, [ = 1,
and set the remaining parameters as in the previous experiments. Moreover, we use the
Multi procedure with a block and incomplete U-statistics estimator and set £ = 30. For
linear data, we additionally assess the performance of the linear regression model.

In our simulations we find that the false positive rates of the HSIC-target are close to
the envisaged value of @ = 0.05 for Algorithm [3| and lower for Multi, see Figure [19] For
other targets of the HSIC-Lasso selection procedure as well as for the partial regression
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Figure 19: False positive rates of different selection procedures for the HSIC-target. For each
of the different data-generating processes and each sample size n € {250, 500, 1000, 1500, 2000}
100 datasets were simulated.

coefficient of the linear model, FPR is close to 0.05.

Turning to true positive rates, we observe that Algorithm [3]and Multi show a similar per-

formance for the HSIC-target, albeit, in the case of logistic or linear data, the former is

slightly superior for small sample sizes. The simulation results are depicted in Figure [20]
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Figure 20: True positive rates of different selection procedures for the HSIC-target. For each
of the different data-generating processes and each sample size n € {250, 500, 1000, 1500, 2000}
100 datasets were simulated.

the block estimator with B = 10 yields better results than the incomplete U-statistics
estimator with [ = 1 across all data generating models, see Figure 21} Moreover, the
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Figure 21: True positive rates of different selection procedures and [S-targets. For each of the
different data-generating processes and each sample size n € {250,500, 1000, 1500,2000} 100
datasets were simulated.

full target has a higher true positive rate than the partial or carved target. In the case
of logistic and linear data, the TPR considerably grows with the sample size, whereas
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for the non-linear experiment this effect is feeble. In the setting of linear data, the TPR
of the partial regression coefficient in a linear model is almost at 100%, even for small
sample sizes. However, as n grows, all targets of Algorithm [3] reach high TPR-values as
well which underlines the power of the presented model-free approach.

3.5 Performance on benchmark data

In order to conclude the analysis of the approach developed in this work, we apply it to
two benchmark datasets from the UCI Repository and compare its performance to the
Multi procedure, described in the previous subsection.

Turkish student dataset This dataset contains 5820 course evaluation scores provided
by students from Gazi University, Ankara, see further (Gunduz and Fokoue [2013). Each
student answered 28 questions on a Likert scale, meaning that the values are taken from
{1,2,3,4,5}. For our experiment we use the the perceived difficulty of the course taking
values in {1,2,3,4,5} as response variable.

This data was previously evaluated by (Makoto Yamada, Umezu, et al. 2018) where a
block estimator of size 10 was used to select 10 covariates with HSIC-ordering. Contrary
to Multi, the subsequent inference was not based on multiscale bootstrapping but on the
familiar framework of the polyhedral lemma and truncated Gaussians. Therefore, we de-
note this procedure Poly and report the obtained p-values together with our results. We
employ Multi with the same parameters as Poly and also use Algorithm [3] where we set
s = 0.2 and choose the Lasso regularisation parameter with 10-fold cross-validation. Since
the number of features (p = 28) is manageable, we do not carry out screening. Moreover,
we use the unbiased HSIC-estimator to calculate M and a block estimator of size 10 to
get H. Table 2| summarises our findings.

First, we notice that Multi and Poly pick different features despite sharing the same
selection procedure. We suspect that this is due to some randomisation carried out in
(Makoto Yamada, Umezu, et al. 2018) which leads to different values of H. Moreover,
we observe that HSIC-Lasso chooses a very parsimonious model with only four covariates
whose associated HSIC-targets are highly significant. Among the tested approaches, there
is moderate agreement on the influential covariates where Q17 and Q28 stand out as they
are unanimously chosen and found to be significant.

For feature selection with HSIC-Lasso, we can additionally examine the significance of the
[-targets that are associated with the four chosen features. Table 3| depicts the respective
p-values. We see that only the partial, full or carved target linked with Q17 is found
significant where Q11 exhibits low p-values as well.

Divorce predictors dataset This dataset consists of 170 samples with 54 features each,
was collected by (Yontem et al. 2019) and previously analysed with HSIC-based methods
in (Lim et al. 2020). Participants of this study rated statements about their marriage on
a scale from zero to four based on which we want to predict divorces. Since the response
is consequently categorical, Gaussian kernels typically exhibit a bad performance. For
this reason we use the the delta kernel on the Y-data which is tailored for classification
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Feature description p-value

Algo. 3 Multi Poly
Q2: The course aims and objectives were clearly | 0.021 - 0.452
stated at the beginning of the period.
Q3: The course was worth the amount of credit as- - 0.782 -
signed to it.
Q11: The course was relevant and beneficial to my | 0.004 - -
professional development.
Q13: The Instructor’s knowledge was relevant and up - - 0.018
to date.
Q14: The Instructor came prepared for classes. - 0.001 -
Q15: The Instructor taught in accordance with the - 0.095 -
announced lesson plan.
Q17: The Instructor arrived on time for classes. < 0.001 | < 0.001 | 0.033
Q18: The Instructor has a smooth and easy to follow - - 0.186
delivery/speech.
Q19: The Instructor made effective use of class hours. - < 0.001 -
Q20: The Instructor explained the course and was - 0.004 0.463
eager to be helpful to students.
Q21: The Instructor demonstrated a positive ap- - 0.032 0.033
proach to students.
Q22: The Instructor was open and respectful of the - < 0.001 | 0.042
views of students about the course.
Q23: The Instructor encouraged participation in the - - 0.037
course.
Q25: The Instructor responded to questions about - 0.002 -
the course inside and outside of the course.
Q26: The Instructor’s evaluation system effectively - - 0.176
measured the course objectives.
Q28: The Instructor treated all students in a right | 0.004 0.041 | < 0.001
and objective manner.

Table 2: p-values of the HSIC-target for selected features of the Turkish student dataset
calculated with different selection and inference procedures. (A hyphen signifies that a
certain feature was not select.)

Associated feature p-value
partial | full carved
Q2 0.557 | 0.169 0.119
Q11 0.121 | 0.057 0.008
Q17 0.008 | 0.044 | < 0.001
Q28 0.94 | 0.190 0.994

Table 3: p-values of different targets for features of the Turkish student dataset which
were selected by HSIC-Lasso.
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problems and given by

I/n, ify=1vy
l , / = ? Y
:9) {O, otherwise,

where n denotes the sample size. More details on kernels for classification problems can
be found in (Song et al. 2012). Opposed to the Turkish student data, the analysis of
the divorce predictors dataset is much harder as the sample size is rather low and the
number of covariates comparatively high. We try the incomplete U-statistics estimator
with a comparatively large size of [ = 15 in order to increase detection power, and a block
estimator with a low size of B = 5 to ensure that asymptotic normality can be assumed.
Apart from this change, we use the same set-up of Algorithm [3|as for the Turkish student
data and increase the number of selected variables for Multi from 10 to 15. Since the block
estimator yields more plausible results for HSIC-Lasso, we only report these findings, see
Table [l

Considering HSIC-targets, we see that the features selected by Algorithm 3| and Multi
respectively have a small overlap. Only the covariates "We share the same views about
being happy in our life with my spouse.” and "We're just starting a discussion before
I know what’s going on.” are chosen and found significant by both procedures. The
covariate "My spouse and I have similar ideas about how roles should be in marriage.’,
which is also selected and found significant by the same PSI methods with the incomplete
estimator, however, is not selected by Algorithm [3| with the block estimator. Among the
p-targets, only the partial and carved target associated with "When I discuss with my
spouse, to contact him will eventually work.” reject the null hypothesis.

The diverging results can be explained by the inherent complexity of sociological data as
well as the low sample size. It is likely that further hyperparameter tuning of Algorithm
and including domain-specific knowledge will improve the results.
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Feature description p-value

Algo. 3 Multi

When I discuss with my spouse, to contact him will eventually | < 0.001 -

work.

The time I spent with my spouse is special for us. - 0.029

We don’t have time at home as partners. 0.398 -

I think that one day in the future, when I look back, I see - < 0.001

that my spouse and I have been in harmony with each other.

We share the same views about being happy in our life with | < 0.001 | 0.002

my spouse.

My spouse and I have similar ideas about how marriage should - 0.671

be.

My spouse and I have similar ideas about how roles should be - < 0.001

in marriage.

I know my spouse very well. - 0.210

I feel aggressive when I argue with my spouse. < 0.001 -

I can use negative statements about my spouse’s personality - 0.003

during our discussions.

I can insult my spouse during our discussions. - < 0.001

I can be humiliating when we have discussions. - < 0.001

My discussion with my spouse is not calm. - 0.077

I hate my spouse’s way of opening a subject. - 0.002

Our discussions often occur suddenly. - 0.320

We're just starting a discussion before I know what’s going | < 0.001 | < 0.001

on.

When I talk to my spouse about something, my calm suddenly - 0.004

breaks.

Sometimes I think it’s good for me to leave home for a while. | < 0.001 | 0.058

When I discuss with my spouse, I stay silent because I am | 0.001 -

afraid of not being able to control my anger.

Table 4: p-values of the HSIC-target for selected features of the Divorce predictors dataset
calculated with Algorithm [3| and Multi based on block estimates, B = 5. (A hyphen
signifies that a certain feature was not select.)
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Appendix 3.A U-statistics

U-statistics are a broad class of estimators pioneered by (Hoeffding |1948)) that provide a
framework to establish useful properties for a multitude of estimators. In the following,
we use (A. J. Lee [1990)) as a reference.

Definition 3.24. Let Xi,..., X, be independent random variables, which take values
in a measurable space (4,.A) and share the same distribution, and let h: A¥* — R be a
symmetric function. We denote S, as the set of all k-subsets of {1,...,n}. For n >k,

U — (Z)_l S h(Xs.. . X)

(41,++0k ) ESn &
is a U-statistic of degree k with kernel h.

In order to prove the second statement of Theorem [3.17], we use an adaptation of the one-
dimensional proof of asymptotic normality for an incomplete U-statistics estimator using
random subset selection. Before commencing the proof, we state an auxiliary lemma.

Lemma 3.25. Let (a;)ien be a sequence having the properties limy_soo N7 Zfil a; =0
and limy_oo N1 le\il a? = % and the let the random variables Zy, ..., Zx have a multi-

nomial distribution Mult(m; N=%, ..., N=1). Then as m, N — oo
N
1
m™2 Y a;(Z; —m/N) 2 N(0,0?).

=1

Proof of . In order to prove multidimensional convergence, we fall back on the
Cramér-Wold device, i.e. it suffices to prove that

\/EVT(Hinc _H)

converges to a one-dimensional Gaussian distribution as m — oo for any v € R?.
We introduce the independent random vectors ZU), j € {1,...,p} and index their entries

with S,,4; hence, their elements are {Z g ). S ¢ Spat. All of them follow a multinomial
distribution Mult(m; N7*,..., N~!) where N = ('}). Hence, we can write

mz v (Hye — H) =m™ 20" Y Zs(h(S) — H), (3.23)
SeSna

where the sum as well as the product within is to be understood componentwise, and
Z =(ZW, ..., Z®) as well as h are used in a vectorised way, slightly abusing notation.
In order to derive the asymptotic distribution of , we consider its characteristic func-
tion ¢,. In the following manipulations we drop the indices for the summation ) ¢, Sna’

introduce the notation X)) = (X{j), o ,qu,j)),j € {1,...,p}, and Y accordingly, and de-
note the p-dimensional vector of (complete) U-statistics by U,, that is the vector of
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unbiased HSIC-estimators.
on(t) = E [exp (ztm 2y ZZS S) — H))}
=B B [exp (itm™v" " Zs(h(S) - H)) ‘X(l), X0 y]]

— E{exp (itm? > ¥

x E [eXp (itm—% Z vy 3 (29— m/N) (hy(S) — Hj)> ‘X(l), . ,X<P>,Y} }
_E {exp (itm% ijlij,gﬂ)

<IT_E exp (itm =4y, > (28 = m/N) (hy(S) = Hy) )| KO, X9, Y] ]

In the manipulations above we used the tower law of conditional expectation and the
independence of the Zg),j € {1,...,p}. Moreover, we inserted m U, = m/N > h(S5).
Having separated the randomness coming from the data and the subset selection, we treat
the second factor in the product above. Standard U-statistics theory implies that

lim N~ (hj(S) = Hj) =0 and lim N°' Y (h(S) — Hy)* =07

N—oo N—o0
SESTLA S€$n74

almost surely where (Song et al. 2012) state a formula for 0]2-. Ergo, the requirements

of Lemma [3.25| are fulfilled and applying it together with the dominated convergence
theorem yields

lim ¢,(t) = lim E [exp (it me leijT(lj)ﬂ ﬁexp (—(ojv5)*t%/2)

n—o0 n—oo
j=1
p
— L - 2
= 1}1_)rr010E [exp (zt m/nv’( )] I_I —(ojv,)%t%/2).

Using the multidimensional Central Limit Theorem for U-statistics, cf. (Korolyuk and
Borovskikh [1994), and Slutsky’s theorem [2.25] we arrive at

p
. _ _ T 2 (242
lim ¢, (t) = exp (~(vVrv"E0) £#/2) _Hlexp (~(ov)°t/2),
j:
where ¥ is a positive definite matrix. The limit of ¢, is clearly a Gaussian characteristic
function which proves asymptotic normality. O]

Appendix 3.B Karush-Kuhn-Tucker conditions

In order to find a suitable representation for selection events, the Karush-Kuhn-Tucker
(KKT) conditions, which were independently found by (Karush 1939) and (Kuhn and
Tucker [1951), are an essential tool. In the following, we use (Boyd and Vandenberghe
2004) as a reference and consider a reduced set-up that suffices for our intended applica-
tion.
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Definition 3.26. Let fo,..., fm: D — R, D C R", int(D) # (), be differentiable func-
tions and consider the optimisation problem

minimise fo(x),

3.24
subject to  fi(x) <0, ie{l,...,m}. (3:24)

The Karush-Kuhn-Tucker (KKT) conditions are given by

V fo(x) + lel w;Vfi(x) =0
filz) <0, u; >0, wfi(x)=0, Vie{l,...,m}.

The KKT conditions provide a handy characterisation of the solution of the optimisation
problem ((3.24]).

Theorem 3.27. In the situation of Definition|3.26, assume that fy is convex and Slater’s
condition holds, i.e. there exists & € int(D) such that f;(z) < 0 for all i € {1,...,m}.
Then the Karush-Kuhn-Tucker conditions are sufficient and necessary for optimality.
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