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Abstract

Modern particle accelerators and detectors like Belle II are complex machines
that produce large amounts of data.

To enable the study of scattering events, particle tracks have to be composed
and reconstructed from many individual measurements. The first part of this thesis
covers the development of a toolkit for track fitting, Genfit. This open-source
software can be easily adapted to various experiments, and is, among others, being
used in the Belle II and panda experiments.

Reconstructed track parameters form the starting material for further analyses.
In the second part of this thesis, the decay of neutral D mesons into four charged
pions is studied. The decay occurs via many possible intermediary states, which
interfere quantum-mechanically. With a partial wave analysis, the relative inten-
sities and phases of the intermediary states can be determined. For that purpose,
eligible events are extracted from the Belle data set. The decay with its possible
intermediary states is modeled in the isobar formalism. The model parameters are
determined with a fit to the data.

Zusammenfassung

Moderne Teilchenbeschleuniger und Detektoren wie Belle II sind komplexe
Maschinen, die eine große Menge an Daten produzieren.

Um die Streuereignisse untersuchen zu können, müssen zunächst die Teilchen-
spuren aus vielen Einzelmessungen zusammengesetzt und rekonstruiert werden.
Der erste Teil dieser Arbeit behandelt die Entwicklung einer Software zu Spurrekon-
struktion, Genfit. Diese quelloffene Software kann einfach für verschiedene Ex-
perimente adaptiert werden, und wird u.a. bei Belle II und panda eingesetzt.

Rekonstruierte Spurparameter bilden das Ausgangsmaterial für weitere Ana-
lysen. Im zweiten Teil dieser Arbeit wird der Zerfall von neutralen D Mesonen
in vier geladene Pionen untersucht. Der Zerfall läuft über viele mögliche Zwi-
schenzustände ab, die quantenmechanisch miteinander interferieren. Mit einer
Partialwellenanalyse kann man die relativen Intensitäten und Phasen der Zwi-
schenzustände bestimmen. Dazu werden zunächst geeignete Ereignisse aus dem
Datensatz des Belle Experiments extrahiert. Der Zerfall mit seinen möglichen
Zwischenzuständen wird im Isobar-Formalismus modelliert. Die Modellparameter
werden schließlich mit einem Fit des Modells an die Daten bestimmt.
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Motivation

The discovery of the electron by J. J. Thomson in 1897 marks the beginning of a
new era in physics. He realized that atoms are not at all indivisible, but instead
are built from more fundamental building blocks.

Figure 1: Geiger and Rutherford [1].

From 1908 to 1913, H. Geiger, E.
Marsden and E. Rutherford conducted
their famous scattering experiments [30].
They involved a particle beam (from an
alpha emitter in a lead collimator), a tar-
get (a thin gold foil) and a particle detec-
tor (a fluorescent screen). By measuring
the deflection angles of the alpha parti-
cles, they did a basic form of track recon-
struction, and by analyzing the scattering
pattern of many events, they concluded
that the positive charge of the atom must be concentrated in a tiny volume in its
center.

Figure 2: The Belle II detector [2].

Since then, nuclear and particle
physics have made an incredible progress.
Today, particle accelerators are kilometer-
sized machines, detectors are many sto-
ries high and produce petabytes of data,
which are stored and analyzed in large
computing centers. These experiments
can only be realized by joint efforts of in-
ternational collaborations. Our theoreti-
cal understanding of the building blocks
of matter and their interactions has also
come a long way, and is condensed into
the Standard Model of particle physics.

Nevertheless, today’s experiments still follow the very same basic principles as
Rutherford’s scattering experiments: Particles (from radioactive decays, cosmic
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Motivation

radiation or accelerators) interact with other particles (in a static target or from
another particle beam), and the reaction products are recorded or visualized with
particle detectors. From their output, tracks and vertices are reconstructed. The
tracks and vertices of many interactions are in turn the basic material for further
analysis (e.g. discovering new particles; measuring form factors, cross sections, or
branching fractions; partial wave analysis, etc.).

Figure 3: Particle tracks from the Big
European Bubble Chamber [3].

Until the 1970s, track reconstruction
was a laborious manual task. For exam-
ple, ten thousands of photographs of the
Big European Bubble Chamber had to be
analyzed by dozens of scanners every day.
These women measured the curvature of
charged tracks, calculated their momenta
and reconstructed the decay chains of
each event.

Progress in detector technology, sig-
nal processing and computing allowed to
build a new generation of particle detec-
tors, like multi-wire proportional cham-
bers and solid state detectors. They record electrical signals, which are digitized.
Algorithms like the Hough-transform, conformal mapping, and Kalman filters en-
able a completely automated event reconstruction by computers.

The Kalman filter was first applied for track fitting in the late 80s. It is an
algorithm to fit track parameters like position and momentum from a series of
noisy measurements. Unlike with a helix fit, tracks in arbitrary magnetic fields
and in the presence of material can be fitted precisely.

My thesis is divided into two distinct parts. The first part covers the devel-
opment of a software framework for track fitting with Kalman filters and related
algorithms. This framework, Genfit, is now being used, among others, in the
Belle II and panda experiments.

The second part covers the partial wave analysis of the decay of D0 mesons
(which were first discovered with the Big European Bubble Chamber) into four
charged pions, with data from the Belle experiment.

2



Part I

Development of the track-fitting
toolkit Genfit
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Chapter 1

Motivation for an
experiment-independent
track-fitting toolkit

Track reconstruction, or tracking, is the process of extracting track and vertex
parameters, like positions and momenta, from detector measurements.

Modern particle detectors like Belle II [16] record voltage signals that are gen-
erated by particles passing through them. E.g. an ionizing particle passing a
semiconductor detector produces electron-hole pairs. These pairs are separated
by an electric field and travel towards electrodes, where they induce a voltage. In
a similar manner, signals are produced in a drift chamber, where gas is ionized,
producing electrons that accelerate towards a wire and create an avalanche that
induces a voltage pulse in the wire.

These signals are amplified, digitized and further processed into measurements
of position with uncertainty. A measurement can be one-dimensional, e.g. a line
measured by a semiconductor strip detector; two-dimensional, e.g. a position on
a semiconductor pixel detector or a drift isochrone of a wire detector;1 or three-
dimensional, e.g. a point in space measured by a time projection chamber (TPC).
It can also contain a measurement of the particle’s momentum.

Because there are many particles, measurements that are likely to originate
from one particle have to be grouped together. This step is called track finding.
Track fitting then reconstructs track parameters and their covariances at any given
point along the track from such a group of measurements.

1A drift isochrone is a surface from where electrons have an equal drift time towards the
wire. For a pure radial electric field, the drift isochrone is cylindrical, with a radius proportional
to the drift time.
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Chapter 1: Motivation for an experiment-independent
track-fitting toolkit

Most high-energy-physics experiments implement their own track fitting pro-
grams, using the same standard Kalman filter algorithms. This is laborious, re-
dundant, and error-prone. The high-energy particle physics community greatly
benefits from an open-source, modular, and extensible framework for track-fitting
and other related tasks, that can easily be adapted to various experimental setups.
It is especially useful for smaller experiments, that do not have the manpower to
develop their own track fitter, or new experiments, that need a working tool to do
research and development.

Genfit–a track-fitting toolkit

Genfit [39] is an experiment-independent track-fitting toolkit. It was originally
developed for the GEM-TPC project [27] and the panda experiment [49]. Genfit
is open-source software and is hosted on GitHub [40].

It is now used in Belle II, panda, and other experiments, and is maintained
by the Belle II group of the Karlsruhe Intitute of Technology. An example of its
usage in Belle II is shown in Fig. 1.1.

Genfit natively supports many detector types like silicon strip and pixel detec-
tors, drift chambers, wire detectors, and TPCs. Tracks can be fitted with different
Kalman filter implementations, and a deterministic annealing filter (DAF). The
DAF can reject outlier measurements and resolve detector ambiguities, e.g. from
multiple hits in strip detectors, or the left-right ambiguities of wire detectors. The
track extrapolation can use the full detector geometry to calculate material effects,
and propagate through arbitrary magnetic fields. Multiple particle hypotheses can
be fitted in parallel. The fitted tracks can easily be stored in ROOT [20] files, and
can be visualized with a 3D display. Genfit provides an interface for detector
alignment with the general broken lines (GBL) method [43]; and GFRave, an inter-
face to Rave.2 Rave is a detector-independent toolkit for vertex reconstruction,
originally developed for CMS [24]. GFRave takes full advantage of the Genfit
material model, as well as of the sophisticated algorithms of Rave, allowing for
precise and fast vertex reconstruction.

Part of the work shown here has been published in [51]. In the first part of
this thesis, I present a revised version of Genfit. We improved the design and
implementation, based on experience gathered in the development of software for
the Belle II and panda experiments.

2Reconstruction (of vertices) in Abstract, Versatile Environments)[58]
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Figure 1.1: Tracking in the Belle II experiment [42]. Measurements (red, with
covariance in yellow) are combined into track candidates and fitted with Genfit
(blue).
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Chapter 2

The basics of track fitting

Before going into the implementation details of Genfit, I want to outline the
basic mathematics of track fitting with a Kalman filter, and how the track states
and measurements are parameterized.

2.1 Track parameterization

The state of a particle track, s, and its corresponding covariance matrix C, can be
parametrized with 5 coordinates in a local plane coordinate system, as shown in
Fig. 2.1. The plane with origin o is spanned by two orthonormal vectors u and v.
The track intersects the plane at the Cartesian position x, with direction a. The
state s is defined as

s =
(
q/p, u′, v′, u, v

)ᵀ
(2.1)

with

u′ =
a · u
a · n

v′ =
a · v
a · n

u = (x− o) · u

v = (x− o) · v,

(2.2)

where q/p is the particle’s charge over its momentum, u and v are the Cartesian
coordinates of the point x in the planar coordinate system, and u′ and v′ are the
direction tangens.

9



Chapter 2: The basics of track fitting

Figure 2.1: Track parametrization. The particle track (lime) with direction a
intersects the plane (gray) at point x. The plane has origin o and is spanned by
the orthonormal vectors u and v.

2.2 Kalman filter

The Kalman filter [41] is an iterative algorithm that can be used to estimate the
state s and covariance C of a system from a series of measurements mk with covari-
ances Vk. The Kalman filter can be applied in real time, and the measurements
do not need to describe the full state. The system needs to be modeled, so that
its state and covariance can be extrapolated through space or time.

An example application from every-day life is navigation with a car or smart-
phone. The state is the 2D position- and speed-vector on the map. The device has
several sensors, e.g. an accelerometer and a GPS receiver. None of these sensors
measure the full state. Integrating over the accelerometer’s output would yield a
speed vector that drifts over time, while the GPS position would jump around and
be updated infrequently.

The Kalman filter solves these issues. Each time we get a new measurement
from one of the sensors, we can improve the estimate of the state. First, we have to
extrapolate the last known state to the time of the measurement: We multiply the
speed vector with the time interval from the last measurement and add it to the
position vector. This is the prediction step. Then the predicted state is corrected
or updated. The Kalman filter calculates the optimal state estimation from the
predicted state and the measurement (and their covariances). If we could measure
the full state of the system, the updated state would simply be the weighted

10



2.2 Kalman filter

mean of the state prediction and the measurement. This is generally not the case,
though, but the effect is similar.

In particle tracking, the Kalman filter is not applied in real time. Rather,
we get a collection of n measurements from the track finding stage. For each
measurement mk, a prediction of the state (sk|k−1) at the same position has to
be calculated. A new updated state sk|k is then calculated from measurement and
prediction. We have to start with estimates for s0|0 and C0|0, and after repeating
this procedure for every measurement, we get the final state sn|n with covariance
Cn|n.

Single indices (e.g. mk) indicate an entity defined for or at measurement k.
Double indices (e.g. sk|l) indicate an entity, that is defined at measurement k,
and takes into account the information of measurements 0 to l. sk|k−1 is the state
prediction at measurement k. It takes into account the information of all previous
measurements up to k − 1. sk|k is the state update at measurement k. It takes
into account the information of all measurements up to k.

State predictions and updates are calculated with the following formulae, which
are adapted from [32]:

Prediction:

sk|k−1 = Fk sk−1|k−1 + ck

Ck|k−1 = Fk Ck−1|k−1 Fᵀ
k + Nk.

(2.3)

Fk and ck are the Jacobian and the ∆ of the state (due to the material effects) for
an extrapolation from measurement k − 1 to measurement k. In our application,
they are numerically calculated by extrapolating the state sk−1|k−1 to the position
of the measurement mk, through the magnetic field and detector material. The
noise covariance matrix Nk describes the added uncertainty due to the material
effects (cf. Sec. 3.3).

Update:

sk|k = sk|k−1 + Kk

(
mk −Hk sk|k−1

)
Ck|k = (I−Kk Hk) Ck|k−1

with

Kk = Ck|k−1 Hᵀ
k

(
Vk + Hk Ck|k−1 Hᵀ

k

)−1
.

(2.4)

11



Chapter 2: The basics of track fitting

The prediction is updated with the product of the Kalman gain Kk and the residual
of the projected state prediction from the measurement mk. The covariance matrix
is calculated in a similar way, where I is the unit matrix. Since the measurement
generally has a lower dimensionality than the state, we need an observation model
Hk. It is a matrix that projects the track state and covariance into the coordinate
system of the measurement. The optimal Kalman gain Kk is calculated from the
covariance matrices of the state and the measurement.

2.3 Measurements and observation model

In the update step of the Kalman filter, s and C have to be projected into the
measurement coordinate system of m and V. This projection is described by the
observation model H.

For example, let’s take a silicon strip detector, whose strips are parallel to u.
It measures the coordinate v in the local plane system:

m = (v) . (2.5)

The H matrix now simply has to project out the v component of s:

H =
(
0 0 0 0 1

)
. (2.6)

Now, Hs is the projected state, and HCHᵀ is the projected covariance.
For a detector which measures u and v, the following applies:

m =
(
u v

)ᵀ
(2.7)

H =

(
0 0 0 1 0
0 0 0 0 1

)
. (2.8)

12



Chapter 3

Genfit

Genfit centers around the track data structure, where everything from raw mea-
surements to fit results is stored.

The measurements provide a detector plane, their measurement coordinates
and covariance in that plane, and the H matrices necessary for the Kalman update
step.

Track representations define a particle hypothesis and handle the extrapolation
of states and covariances through the detector material and magnetic field.

The fitting algorithms use the measurements and track representations to cal-
culate state predictions and updates, and store them in the track points.

3.1 The track data structure

The track object (Track, cf. Fig. 3.1) holds a sequence of track points (TrackPoint),
which can contain any type of data relevant to the track fit. Currently, this can
be measurements and thin scatterers.1 Each track point can also have one fitter
information (FitterInfo) per track representation, which are filled by the fitter.

A track contains one or more track representations (TrackRep), representing
the particle hypotheses which should be fitted. One of them has to be selected
as the ‘cardinal’ track representation. This can either be done by the user, or by
Genfit, where the track representation is selected, which fits the measurements
best.

Furthermore, the track contains general information, like the type of fitter used,
the number of fit iterations, if the fit succeed and converged; χ2, number of degrees
of freedom (NDF), and p-value of the fit; track length, etc. (FitStatus).

1The interaction with the material between two measurements can effectively be described
by an interaction with a thin layer of material at the position of each measurement. These thin
scatterers are used in the GBL fitter.

13
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Figure 3.1: Genfit UML class diagram. This diagram is not complete, it illustrates the inheritance structure and
dependencies of the classes related to the Track.
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3.2 Measurements

3.1.1 Constructing tracks from track candidates

The track candidate (TrackCand) is a lightweight helper class for the track finding
stage. Indices of raw detector hits are stored in a track candidate hit (TrackCandHit).
Derived classes can store additional information. E.g. track candidate hits for wire
measurements (WireTrackCandHit) can store how the left-right ambiguity should
be resolved.

Once a track candidate has been composed, it can also be sorted after assigning
a sorting parameter to each hit.

A factory class (MeasurementFactory) can then be used to build Track objects
from track candidates.

Alternatively, Track objects can be created and filled with measurements di-
rectly without the intermediary step of a track candidate.

3.1.2 Pruning

After fitting, Track objects contain a lot of data: Track representations, track
points with measurements, fitter infos, etc. Usually, not all of this information
is needed for further processing, or to store fitted tracks in ROOT files. To save
memory, the user can decide what data to keep; e.g. only the fitted state of the
first track point, and only for the cardinal track representation.

3.2 Measurements

A measurement contains measured coordinates from a detector. It provides func-
tions to construct a detector plane and to provide the measurement coordinates
m and covariance matrix V in that plane.

The measurement base class (AbsMeasurement) defines the interface. Genfit
comes with predefined measurement classes for various detector types, e.g. planar
detectors, drift-chambers, or TPCs.

3.2.1 (Virtual) detector planes

In Genfit, state vectors s and measurements m are given in local coordinate sys-
tems, which are defined by detector planes (implemented in DetPlane, cf. Fig. 2.1).

For planar detectors, the detector plane is determined by the detector geometry.
For spacepoint- and wire-measurements, so called virtual detector planes have to
be constructed by extrapolating the track to the point of closest approach (POCA)
to the spacepoint or wire:
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• Extrapolate to point finds the POCA of the track to a given spacepoint.
The virtual detector plane contains the spacepoint and the POCA and is
perpendicular to the track.

A weight matrix G can be used as a metric, defining the space in which the
POCA will be calculated. Thereby the weighted distance

√
δᵀGδ, where δ

is the three vector pointing from the spacepoint to the POCA, will be mini-
mized. By default, the inverted 3D-covariance of a spacepoint-measurement
is used as a metric, which gives correct fitting results also for spacepoints
with arbitrary covariance shapes. The virtual detector plane contains the
spacepoint and the POCA, and is perpendicular to the track in the space
defined by the metric.

• Extrapolate to line finds the POCA of the track to a given line or wire,
respectively. The virtual detector plane contains the line and the POCA.
This routine is used for fitting wire measurements.

Further arbitrary information can be used, allowing e.g. to correct detector
deformations like plane bending, wire sag, and misalignments. Also drift-time
corrections are possible.

The intersection of the virtual detector plane with the 3D-covariance gives the
2D-covariance.2 For wire-measurements, the intersection of the drift isochrone
with the detector plane gives two lines, reflecting the left-right ambiguity of such
detectors.

3.3 Track representations

Track representations combine track parameterization with extrapolation code.
The state s and the covariance matrix C can be extrapolated through material
and magnetic field, to detector planes; to the POCA to points, lines, cylinders,
and cones; or by a certain distance. The state and covariance can be converted to
and from a state defined in the global Cartesian coordinate system, (x p), where
x is the position, and p is the momentum vector.

The track-representation base class (AbsTrackRep) defines the interface, and
Genfit comes with the Runge Kutta track representation (RKTrackRep) as a
concrete implementation.

22D measurement positions and covariances are stored in MeasurementOnPlane objects.
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3.3.1 Runge Kutta track representation

The Runge Kutta track representation (RKTrackRep) parameterizes the track state
as described in Sec. 2.1, and can extrapolate the state through arbitrary magnetic
fields and materials. It is based on a Runge Kutta extrapolator from Geant 3 [23],
which has been ported to C by I. Gavrilenko. It is also used in the PHAST
analysis package [7] of the Compass experiment [6], which served as a basis for
our development.

Material handling

The Runge Kutta track representation uses an abstract interface class to inter-
act with the detector geometry. An implementation using Root’s TGeoManager
is available. During fitting, material properties are used to calculate the follow-
ing material effects: Energy loss and energy-loss straggling for charged particles
according to the Bethe Bloch formula, multiple scattering (according to [29] or
using the Highland formula3), where the full noise matrix is calculated, and soft
Bremsstrahlung energy loss and energy-loss straggling for electrons and positrons.

Adaptive step size calculation

The step sizes used for the Runge Kutta extrapolation should be as large as pos-
sible, to save unnecessary computations, while still being small enough too keep
errors reasonably small. Therefore, an adaptive step size calculation is done in the
Runge Kutta track representation, which takes magnetic-field inhomogeneities and
track curvature into account. To calculate material effects correctly, extrapolation
stops at material boundaries, and steps can only be so large that a maximum
relative momentum loss in the material is not exceeded.

3.4 Fitting algorithms

A fitting algorithm uses the measurements and track representations to calculate
fit results.4 Usually a start value is needed for the fit, which has to be provided
by the user and can come e.g. from the track finding stage.

Currently, four different track-fitting algorithms are implemented in Genfit:
Two extended Kalman fitter implementations, one which linearizes the transport

3The Highland formula [37] uses a logarithmic term to correct for the non-Gaussian distribu-
tion in thin scatterers. Detailed information about the implementation in Genfit can be found
in [47]

4Fit results are stored in FitterInfo objects in the TrackPoint objects, and in the
FitStatus object in the Track.
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around the state predictions (cf. Sec. 3.4.4) and one which linearizes around a
reference track (cf. Sec. 3.4.5). Moreover, a deterministic annealing filter (DAF)
(cf. Sec. 3.4.6) and a general broken lines (GBL) fitter [43] are implemented.

Each fitter inherits from an abstract base class (AbsFitter) and implements
a function (processTrackWithRep), which fits the track with the given track rep-
resentation (i.e. particle hypothesis). The base class can then processes all track
representations consecutively, starting with the cardinal track representation.

3.4.1 Smoothing

Smoothing [31] is a standard technique: The track is fitted in forward and back-
ward direction, where predictions and updates are saved at each track point. With
both of these, smoothed track states can be calculated: The weighted average
between forward and backward prediction gives the unbiased state, whereas the
average between prediction in one direction and update of the opposite direction
results in the biased smoothed state. This smoothed states give a better estimate
of the true state than either forward or backward updates alone.

Calculating the difference of the measurement and the corresponding smoothed
states gives biased and unbiased residuals.

3.4.2 Handling of multiple measurements in one Track-
Point

Wire detectors measure a drift isochrone (a cylinder in the simplest case). Inter-
sected with the detector plane, this gives two (one dimensional) measurements,
since the particle could have passed on either side of the wire. Genfit provides
the possibility to store several measurements of the same type in one track point,
mainly for using the DAF to assign weights to them. These tracks can also be
fitted with the Kalman fitter, therefore Genfit provides several options how to
handle multiple measurements:

• Average: The average of the individual measurements is calculated. This
option is primarily used for the DAF.

• Closest to prediction: The measurement which is closest to the state predic-
tion is selected.

• Closest to reference: The measurement which is closest to the reference track
is selected. This can only be used with the Kalman fitter with reference track
(cf. Sec. 3.4.5).
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3.4 Fitting algorithms

• Closest to prediction/reference for wire measurements: If the TrackPoint

has one WireMeasurement, the side that is closest to the prediction or ref-
erence is selected; otherwise the average is selected.

The average weighted measurement m and its covariance V are calculated from
the individual measurements i with weights wi as follows:

m = V
∑
i

(
wiV

−1
i mi

)

V =

(∑
i

(
wiV

−1
i

))−1
.

(3.1)

3.4.3 Iterations and convergence criteria

In order to reduce bias of the final fit result due to inaccurate start values, usually
several fitting passes are made until the fit converges. The last backward update
of one iteration is usually taken as start value for the next iteration. In order to
minimize bias of the start values, their covariance has to be very large. However,
if it is too large, numerical problems can arise. It is practical to multiply the
covariance of the start value with a factor of 500 to 1000 between the iterations.

The fitter has a minimum and maximum number of iterations, which are 2 and
4 by default. As soon as the minimum number of iterations have been done, it is
checked if the p-value has changed less than 1× 10−3 with respect to the previous
iteration. However, tracks with a p-value close to zero are often considered as
“converged” with this criterion, while the χ2, albeit big, is still changing signifi-
cantly, indicating that the fit is still improving. This occurs often for tracks which
are given bad start values. To cure this issue, a non-convergence criterion has been
introduced: If the relative change in χ2 from one iteration to the next is bigger
than 20 %, the fit will continue.

The number of iterations and convergence criteria values can be adjusted by
the user.

3.4.4 Kalman fitter

The Kalman fitter implements the formulae described in Sec. 2.2. Fk and ck are
not explicitly calculated. The predictions are rather obtained by extrapolating the
previous update to the current measurement with the track representation.

Our Kalman fitter also supports an implementation based on a square-root
formalism, which is adapted from [12]. It provides greater numerical stability at
the expense of execution time.
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3.4.5 Kalman fitter with reference track

Propagating a track state through arbitrary detector material and an inhomo-
geneous magnetic field is a non-linear problem. However, for the Kalman filter
prediction step, the transport has to be linearized, resulting in the Jacobian F.

The choice of the linearization point can significantly affect the performance of
the track fit. In particular, if the first few measurements lead to a large misesti-
mate of the curvature, the prediction may stray very far from the measurements.
As a consequence, the linearization is not optimal, and material- and magnetic-
field-lookup will be done at the wrong place. It is therefore common to use an
alternative linearization strategy, where the trajectory estimated from the track-
finding code is used as initial choice of linearization point for the track fit [32].
At later iterations, the smoothed trajectory from the previous iteration is used as
point of linearization. The formulae for calculating the predictions are:

Prediction:

sk|k−1 ≈ Fk sk−1|k−1 + ck

Ck|k−1 ≈ Fk Ck−1|k−1 Fᵀ
k + Nk

(3.2)

Since the predicted state generally does not lie exactly on the reference track,
sk|k−1 and Ck|k−1 can only be approximated. In contrast to the Kalman fitter, Fk

and ck are stored for each track point (in ReferenceStateOnPlane) and describe
the reference track:

sk,r = Fk sk−1,r + ck. (3.3)

For the update step, equations 2.4 are used.
In practice, the track is prepared first, i.e. the initial state is extrapolated from

measurement to measurement with the track representation, and all Fk and ck are
calculated. At this stage it is also possible to sort the measurements along the
reference track, which can improve fitting accuracy.

For the following iterations, the smoothed states of the previous iteration are
taken as new reference states. A χ2 value is calculated according to

rk = sk|n − sk,r

χ2
k =

∑
i

rk|n,i
Vk|n,i,i

,
(3.4)

where sk|n is the smoothed state, and i are the indices of the elements of the state

vector. If the χ2 is below a certain value (default is 1), the corresponding reference
state will not be updated to reduce computing time.
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3.4 Fitting algorithms

After preparing the track, predictions and updates are calculated with formulae
3.2. The same convergence criteria as for the Kalman fitter are used. Additionally,
the fit is converged if the reference states do not change anymore, according to
Eq. 3.4.

3.4.6 Deterministic annealing filter

The deterministic annealing filter (DAF) is a powerful tool for rejecting outliers
and resolving ambiguities of wire measurements or double-sided strip detectors. It
is a Kalman filter which uses a weighting procedure between iterations, based on
the measurement residuals, to determine the proper weights.

The Kalman fitters weigh all measurements according to their covariances, but
otherwise treat them equally. Measurements from noise signals or other particles
that were added to the track by the track finder mistakenly can bias the fit. A
DAF [33] can lower the weight of these measurements by introducing an annealing
scheme: The track is fitted with a Kalman fitter several times, beginning with
a high temperature, i.e. a factor that the covariances of the measurements are
increased by. The user can select between Genfit’s two Kalman implementations
and specify the annealing scheme, i.e. a series of decreasing temperatures.

After one fitting pass, the weights of all measurements are updated. The weight
depends on the distance to the track (in terms of the measurement’s covariance)
and looks like a Fermi-Dirac distribution. For small distances, it has a value close to
1, and for large distances the value goes to 0. For high temperatures, the transition
from 1 to 0 is smooth, and becomes more step-like for lower temperatures.

The temperature is lowered, and the track is fitted again. In the end, a low
temperature of e.g. 0.1 is reached, and the weight function has almost become a
step function. Therefore, each measurement has now a weight either close to 1 or
0.

Competing measurements can be stored in one track point, e.g. two or more
planar measurements in the same detector.

After the iteration with the last temperature of the annealing scheme, conver-
gence is checked: If the absolute change of all weights is less than 1× 10−3 (user
configurable), the fit is regarded as converged. Otherwise more iterations with
the last temperature are done, until the fit converges or a maximum number of
iterations is reached.

Weight initialization for wire measurements

The DAF is also perfectly suitable to resolve the left-right ambiguities of wire
measurements. However, the following problem can occur: The weights of all wire
measurements have to be initialized, the basic solution is to initialize both left and
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right measurements with a weight of 0.5. Effectively the wire positions are taken
as measurements in the first iteration, and their covariance is twice the mean of the
individual covariances (cf. Eq. 3.1). This means that all the wire positions now have
the same covariance, no matter how far from the actual trajectory they are. This
systematic false estimate of the covariances can bias the fit. Genfit implements a
technique to initialize the weight w, which helps to improve fitting efficiency when
using the DAF to resolve left-right ambiguities of wire measurements:

w =
1

2

(
1− rdrift

rdrift, max

)2

, (3.5)

where rdrift, max is the maximum possible drift radius. Measurements with larger
drift radii rdrift get assigned smaller weights, which in turn lead to bigger covari-
ances, since the wire position is expected to be farther away from the trajectory.
In contrast, measurements with small drift radii, which will be closer to the tra-
jectory, get higher weights.
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Performance and visualisation

4.1 Performance study

Genfit’s performance will depend on many parameters like hardware and com-
piler, number and types of measurements, momentum, geometry, magnetic field,
number of iterations, convergence settings, and so on. Nevertheless, a small study
was conducted in the Belle II analysis framework (basf2), to give an idea of the
performance one can expect from Genfit.

The execution time of basf2’s GenFitter module was measured on an early
2010s office PC with a quad-core 3.4 GHz CPU in single threaded operation. All
code was compiled with -O3 optimization settings.

The module does the fitting and a few more things, like producing the Gen-
fit track from a track candidate and storing the fitted track in an output array,
resulting in an overhead of a little less than 1 ms. Tracks are generated with an
azimuth angle of 100◦ and a momentum of 0.9 GeV in a constant magnetic field.
The resulting tracks have 72 track points on average. Genfit is configured to do
three to ten iterations with default convergence criteria.

From the results shown in Tab. 4.1, one can see that the Kalman fitter is always
converged after three iterations. One iteration without material effect calculation
takes only 0.8 ms. Material lookup takes around 2.2 ms per iteration.

Without material effects, the Kalman fitter with reference track is slower than
the Kalman fitter, since the reference track has to be prepared and stored first.
However, the material effect calculation takes less time, around 2.0 ms per iteration,
since the reference states are not recalculated if they are close to the smoothed
states of the previous iteration. This is also the reason why the Kalman fitter with
reference track often converges after two iterations. The reference track is already
so close to the smoothed track, that it would not change in subsequent iterations
(cf. Sec. 3.4.5).
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Fitter w/o matFX w/ matFX ∅ iterations

Kalman 3.4 ms 10 ms 3
Reference Kalman 4.0 ms 8.2 ms 2.13
DAF 7.0 ms 11 ms 4.03

Table 4.1: Execution time of the GenFitter module in basf2, without and with
material effect calculation, and average number of iterations.

If no material effects need to be calculated, the Kalman fitter is the fastest
option. To make it even faster, the minimum number of iterations can be lowered
to two or even one.

With a complex detector geometry, the material lookup can be the bottleneck.
Since the Kalman fitter with reference track needs less material lookup, it can be
faster than the Kalman filter, and also give more accurate fit results.

The DAF also uses a reference track. An annealing scheme with four tempera-
tures was used. The calculation of the weights adds a small overhead. Nevertheless,
it is not much slower than the other fitters.

4.2 Event display

Genfit features a sophisticated 3D event display, which visualizes fitted tracks
(cf. Fig. 4.1). Detector geometry, measurements, detector planes, reference track,
forward- and backward-fits (predictions and updates), smoothed track and covari-
ances of measurements and track can be drawn. Tracks can be refitted with the
different algorithms and settings, and fit results can be viewed instantly.

24



4.2 Event display

(a) Measurements with covariance (yellow),
planar detectors and drift isochrones, respec-
tively (cyan) and reference track (blue).

(b) Detector planes (gray). For the
spacepoint- and wire-measurements, virtual
detector planes have been constructed.

(c) Forward (cyan) and backward (magenta)
fit with covariances of the state updates.

(d) Smoothed track with covariance (blue).

Figure 4.1: Genfit event display screenshots. The fit of a set of measurements
with the Kalman fitter with reference track is shown. For demonstration purposes,
the different measurement types supported by Genfit are used (starting from the
origin): Planar pixel measurement, spacepoint measurement, prolate spacepoint
measurement, two perpendicular planar strip measurements, double sided planar
strip measurement, wire measurement, and wire measurement with second coor-
dinate measurement.
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Conclusion and outlook

From the inception of Genfit, the goal was to develop a modular, experiment-
independent framework for track fitting. With the revised version of Genfit I
worked on, these ambitious objectives are accomplished better than ever.

Genfit is a well tested and proven open-source framework, with an active user
and developer community. Our publication [51] has over 30 citations.

Genfit is the standard track fitter in two large particle physics experiments,
Belle II and panda. The SπRIT TPC [53] uses Genfit and Rave to study heavy
nuclear collisions. Two future neutrino experiments, Baby-MIND [13] and DUNE
[34], integrated Genfit into their reconstruction software. Genfit is even used
in the medical field, in the FOOT experiment [11] which aims to improve cancer
treatment with hadron therapy.

Genfit has a firm place in many experiments of all scales and is a vital part to
enable new measurements, discoveries and achievements for many years to come.
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Part II

Analysis of D0 → π+π−π+π−
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Chapter 6

Introduction

In this part of my thesis, I analyze the decays of neutral D mesons into four charged
pions. The basic material are the parameters of reconstructed charged pion tracks.
They were recorded with the Belle detector, which is described in Chap. 7, and
reconstructed with Kalman filters and other techniques similar to those described
in Part I.

Particle decays are quantum-mechanical, statistical processes. They can pro-
ceed via various intermediate short-lived resonances, until eventually only long-
lived particles remain, which are recorded by the tracking detectors. Neutral D
mesons can decay in numerous modes, and in about 0.76 % of all decays [48], the
final state particles are four charged pions.1 Considering the conservation laws of
the weak and strong interactions, there are many possible intermediary resonances.

These resonances cause interference effects, which materialize in the phase-
space distribution of the final state particles. In order to reveal this pattern, we
need to consider many decay events. In Chap. 8, I describe how events are selected
from the Belle data set.

From the interference pattern we can learn about the intermediary resonances.
We need a mathematical description of all possible decay chains and their interfer-
ence. Then we can fit this model to the data and determine the relative strengths
and phases. This technique is called partial wave analysis (PWA) and is described
in Chap. 9.

The results of the PWA are presented and discussed in Chap. 10.

1Pions are not stable particles, but they live long enough to pass the tracking detectors, even
at low momenta.

31





Chapter 7

The Belle Experiment

The Belle experiment was located at the High Energy Accelerator Research Or-
ganisation (KEK) in Tsukuba, Japan. Between 1999 and 2010, it collected more
than 1 ab−1 of data. Among the most notable results of the experiment is the ob-
servation of CP violation in the neutral B system, which confirmed the Cabibbo-
Kobayashi-Maskawa (CKM) theory and yielded the 2008 nobel price for Makoto
Kobayashi and Toshihide Maskawa. The experiment consists of the KEKB accel-
erator and the Belle detector, which is described briefly in the following sections.
More detailed descriptions can be found in [9] and [8].

7.1 The KEKB accelerator

KEKB is an assymmetric-energy collider (cf. Fig. 7.1). Electrons and positrons
are accelerated in a linear accelerator (LINAC) to maximum energies of 8 GeV
and 3.5 GeV, respectively. The electrons are inserted into the high-energy ring
(HER), the positrons into the low-energy ring (LER). The two storage rings have
circumferences of 3016 m and cross at the interaction point in Tsukuba hall. The
center-of-mass energy of the electron and positron can be adjusted to different Υ
resonances.

The energy asymmetry leads to a Lorentz boost of the BB system. Due to the
good spacial resolution of the silicon vertex detector (SVD), the displacement ∆z
of the decay vertices of the two B mesons can be measured and converted into a
decay time measurement.

KEKB reached a peak luminosity of 2.1× 1034 cm−2s−1 in 2009, making it the
highest luminosity machine up to date.
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Figure 7.1: The KEKB B factory [57]. Electrons and positrons are accelerated in a
LINAC and stored in the HER and LER. The Belle detector covers the interaction
point in Tsukuba hall.
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Figure 7.2: Cutaway view of the Belle detector and its subdetectors [59].

7.2 The Belle detector

The Belle detector (cf. Fig. 7.2) was located around the collision point in Tsukuba
hall. It is a large-solid-angle magnetic spectrometer, covering an azimuthal angle
from 17◦ to 150◦. Charged particles follow helical paths in the 1.5 T magnetic field
generated by the superconducting solenoid coil. The SVD and a 50-layer central
drift chamber (CDC) deliver tracking information. The CDC also measures the
energy loss per distance, dE/dx. An array of aerogel threshold Cherenkov coun-
ters (ACCs), time-of-flight (TOF) scintillation counters, and the electromagnetic
calorimeter (ECL) are used for particle identification (PID). The K0

L and µ de-
tector (KLM) is located outside of the solenoid coil.

7.3 Particle identification

For the analysis of D0 → π+π−π+π−, charged pions have to be identified. They
have to be distinguished from other long-lived charged particles, i.e. electrons,
muons, protons and kaons.
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Figure 7.3: Integrated luminosities over time of the B factories KEKB (Belle), and
PEP-II (BaBar) [17].

Electrons are identified by their energy deposit and shower shape in the ECL,
a match with a track in the CDC, momentum and dE/dx measurement in the
CDC, light yield in the ACC, and time-of-flight measurement in the TOF.

Muons are identified in a similar way. Due to their larger mass, they do not
produce a shower in the ECL, and are tracked by the KLM detectors.

Protons and pions are distinguished by their pulse height in the ACC, dE/dx,
and time of flight.

Charged kaons and pions are distinguished by dE/dx, time of flight, and the
number of photoelectrons produced in the ACC.

7.4 Data sample

The integrated luminosity of the data sample recorded by the Belle detector is
around 1 ab−1.

The major part (711 fb−1) of the data was recorded at a center of mass (CM)
energy of 10.58 GeV. This corresponds to the mass of the Υ(4S ) resonance, a
bound bb state that decays dominantly into neutral or charged B meson pairs.
Belle and its competitor experiment BaBar are therefore often referred to as the
B factories. However, the cross section for non-resonant cc production at a CM
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energy of 10.58 GeV is 1.3 nb, larger than the resonant bb cross section of 1.1 nb.
The cc states decay into various D meson pairs, also including charged D∗ mesons,
which are the basis for this analysis.

Another 155 fb−1 of data were recorded at other Υ resonances, and about
100 fb−1 were recorded off resonance (cf. Fig. 7.3).

7.5 Monte Carlo samples

Several streams of simulated data are provided by the Belle collaboration. One
stream of Monte Carlo (MC) data resembles the Belle data set and has the same
integrated luminosity. A total of six streams are used for this analysis.

Events are generated with EvtGen [44] and Pythia [54], based on known branch-
ing fractions and cross sections. Final state radiation is simulated with PHOTOS
[15]. The generated particles are propagated through the detector material and
magnetic field with Geant3 [23], and the detector response is simulated.

The decay D0 → π+π−π+π− is simulated as a 4-particle decay with even dis-
tribution in the available phase space. The same final state can also be reached
indirectly via other decay chains. e.g. via K0

S K0
S or ρ0K0

S . However, these decays
are not summed coherently, since only one decay channel at a time is randomly
picked, based on the given branching fractions.
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Event selection and classification

The Belle experiment recorded about one billion events. This corresponds to more
than one PB of data, which are stored at the KEK computing center. For the
analysis, events with D0 candidates have to be selected from this data set.

The event selection is done in two stages. The goal of the first stage is to
retain as many of the D0 → π+π−π+π− events as possible, while bringing the
amount of data down to a more manageable amount. Since the complete Belle
data set has to be skimmed, the selection procedure has to be fast. Therefore,
a cut-based event selection is performed at the KEK computing center. It yields
8.6 million events, containing about 0.5 million signal events, and is described in
Sec. 8.2. This data sample, about 4 GB in size, is then transferred to Technische
Universität München (TUM) for further analysis.

The goal of the second stage is to extract a large and pure sample of signal
events. For this purpose, the events are classified with boosted decision trees
(BDTs), which are trained with the MC data. A sample of 150 thousand events
with more than 90 % purity is obtained for PWA. This is described in Sec. 8.4.

8.1 Flavour tagging

It was originally planned to search for CP violation in the D0 decay, which however
turned out to be beyond of the scope of this thesis. For such an analysis, it is
necessary to determine the flavour of the D0 , i.e. whether it is a D0 or D0 . This
can be achieved by selecting D0 candidates from D∗ decays. The charged D∗

decays into a D0 and a charged pion.

The D∗ has a rest mass of 2010.26± 0.05 MeV, the D0 has a rest mass of
1864.83± 0.05 MeV, and the pion has a rest mass of 139.57 MeV [48]. This means
only 5.86 MeV of kinetic energy are available in this decay. The pion is therefore
called ‘soft pion’. Its charge determines the flavour of the D0 at the moment of
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the D∗ decay:

D∗+ → D0 + π+

D∗− → D0 + π−.

The selection scheme was kept, and selecting D0 candidates from D∗ decays
also yields more possibilities to suppress background.

8.2 Cut-based event selection

The cut-based event selection is developed with the Belle MC sample (cf. Sec. 7.5).
The distribution of various variables can be analyzed separately for signal and
background events. This allows to chose appropriate variables and cut values,
which are described in the following sections.

8.2.1 PID and impact parameter cuts

Since the D∗ decays into 5 charged pions, at least 5 charged particles which are
likely to be pions are required. The PID system (cf. Sec. 7.3) gives likelihoods of
the particle being an electron, a muon, a proton vs. a kaon, and a pion vs. a kaon.
Electrons, muons and protons have likelihoods that sharply peak at 100 %, so a
conservative cut at 99 % discards them, and leaves mostly pions and kaons. They
are harder to distinguish: In the pion vs. kaon likelihood, the kaons peak at 0 %,
the pions peak at 100 %, but they have a smooth overlap. Particles with a pion
likelihood greater than 60 % are kept.

The D∗ decays promptly via the strong interaction, and the D0 has a decay
length of about 0.2 mm, so all pions should originate from close to the interaction
point (IP). This is achieved by cutting on the impact parameters, which are the
distance of the point of closest approach (POCA) of the pion to the IP in radial
(∆r) and in axial direction (∆z) of the z-axis, which is in the opposite direction
of the e+ beam. Cut values of 2 cm for ∆r and 4 cm for ∆z are used to cut away
pions from cosmic rays and secondary vertices from long lived resonances.

8.2.2 Mass and vertex cuts

The invariant mass is calculated for every possible π+π−π+π− combination. If it
is within a 100 MeV window around the nominal D0 mass [48]—the full width at
half maximum (FWHM) of the D0 peak is about 27 MeV—an unconstrained (uc)
and a mass-constrained (c) vertex fit are performed. If the pions do not originate
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8.3 Fits of signal and background shapes and yields

from the same point, the p-value of the vertex fits will be very small. Therefore, a
minimal p-value is required to reject combinatoric background.

D∗ candidates are formed by combining the D0 candidates with the remain-
ing pions, and again the invariant mass is calculated. A cut is performed on
∆m = mD

∗ −m
D
0 . A vertex fit with a constraint to the IP is done. The D∗ has

a very short lifetime and decays promptly. The IP-constraint therefore reduces
background and contribution from D∗ which are not directly produced from cc

pairs. For further analysis, the quantity
√
q =

√
∆m−m

π
± , where m

π
± is the

nominal mass of a charged pion, is defined.

xD∗ =

∣∣∣pD∗,CMS

∣∣∣√
s
4
−m2

D
∗

(8.1)

is the momentum of the D∗, in terms of the fraction of its maximum possible mo-
mentum in the center-of-mass system (CMS). A cut on xD∗ reduces combinatoric

background and also helps to suppress D∗ which do not originate from an initial
cc pair, but rather from decays of B mesons. Preferably selecting D∗ mesons
that are directly produced from cc pairs would reduce the bias from possible CP
asymmetries in intermediate resonances for the intended CP studies.

The cuts used for the event selection are summarized in Tab. 8.1. The cuts
are rather loose in order to keep as much signal events as possible. We also need
a window around m

D
0 and

√
q for the fits of signal and background shapes and

yields, which are described in the next section. The training of the BDT, which is
performed with the MC data subjected to the same cuts, also needs a significant
amount of background events.

A total of 8 592 981 events remain after the event selection.

8.3 Fits of signal and background shapes and

yields

We now have a selection of 8.6 million events, consisting of the signal and several
background components. In order to quantify each component, their distributions
are modeled based on the MC sample, and then fitted to the data sample. The
signal and background contributions of the MC sample after the cut-based event
selection are shown in Fig. 8.1. The one-dimensional distributions can also be
seen in Fig. 8.3. The signal shows up as a very clear peak in both m2

D
0 and

√
q.

There is a slight tail in m2

D
0 towards lower masses, which is caused by additional
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Chapter 8: Event selection and classification

PID cuts

electron < 0.99
muon < 0.99
proton-pion < 0.99
pion-kaon > 0.6

Impact parameter cuts

∆z < 4 cm
∆r < 2 cm

Mass and vertex cuts

m
π
+
π
+
π
−
π
− [1815, 1915] MeV

m
D
0 after vertex fit [1815, 1915] MeV

∆m = mD
∗ −m

D
0 [142, 149] MeV

xD∗ [0.25, 1]

p-value of D0 and D∗ vertex fits [0.001, 1]

Table 8.1: Event selection cuts.

photons produced in the D0 decay. The combinatoric background has a very
smooth distribution. The m-peaking background consists of correctly identified D0

particles, which however have no D∗ as a mother, or have a random pion assigned
as the soft pion. The

√
q-peaking background consists of correctly identified D∗

particles, which either did not decay via a D0 , or had the wrong pions assigned to
the D0 . Its amount is negligible.

The binned distribution of signal candidates in m2

D
0 and

√
q is fitted with

the Bayesian Analysis Toolkit (BAT) [21]. The shapes are selected to match the
distributions obtained from the MC sample.

The signal shape is modeled as the product of a double Crystal Ball (DCB)
function in each dimension. The DCB function has a Gaussian core and power-law
tails. When normalized, it has 6 free parameters: The mode (i.e. m2

D
0 and

√
q),

the width of the Gaussian, and for both sides the position where the power law
functions take over, and their exponents. A bivariate Gaussian is added to this
2D-DCB function. It has 5 parameters: Two modes and widths and the correlation
coefficient. Also the weight with respect to the 2D-DCB function is fitted.

The sum of these two functions is normalized and multiplied with the signal
yield, which is also fitted.

The combinatoric background is fitted with a linear function in m2

D
0 and a

quadratic function in
√
q. Again, they are normalized and multiplied with the
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8.3 Fits of signal and background shapes and yields

Figure 8.1: MC event distributions of signal and background contributions in
√
q

over m2

D
0 . 43



Chapter 8: Event selection and classification

m2

D
0

√
q scaling

Signal DCB (6) DCB (6) signal yield (1)
bivariate Gaussian (5) relative weight (1)

Combinatoric bg. linear (1) quadratic (2) yield (1)
Mass-peaking bg. ≡ signal (0) ≡ combinatoric bg. (0) yield (1)

Table 8.2: Number of parameters for the signal and background components and
scaling.

m2

D
0

√
q

Range/GeV2 # bins Range/GeV # bins

Fit region 3.317 to 3.630 37 0.050 to 0.096 36
Signal window 3.432 to 3.531 24 0.070 to 0.086 24

Table 8.3: Ranges and number of bins of the fit and signal region.

combinatoric background yield, which is also fitted.
The mass-peaking background is described by a projection of the signal shape

in m2

D
0 , and the quadratic shape of the combinatoric background in

√
q. Only the

yield is fitted. Since both signal and mass-peaking contributions are formed by D
decays, the distributions in m2

D
0 look very similar. Leaving the parameters free

does not give satisfactory fit results, so this approach is chosen.
The
√
q-peaking background has only very few events and is therefore omitted

in the fit.
In total, the fit has 24 free parameters, an overview is given in Tab. 8.2. The

probability-density for each parameter, as well as their correlations, are obtained
by a Markov-chain. The data are binned, with a higher density of bins in the
signal window (cf. Tab. 8.3).

8.3.1 Signal- and background-yield results

The results of the fit to the MC data can be seen in Fig.s 8.2 and 8.3. The plots
show the normalized number of events for data and fit over m2

D
0 (left) and

√
q

(right). The bin contents are always normalized to the bin area. The fit describes
the data well. The tails of the signal are slightly underestimated (cf. Fig. 8.3a).
The mass-peaking background is overestimated a bit (cf. Fig. 8.3b), due to slight
differences between the projected shape of the signal component and the actual
shape of the mass-peaking background.
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Figure 8.2: Fit of the signal and background shapes to the MC data set. Normal-
ized number of events for data and fit over m2

D
0 (left) and

√
q (right).

The fit to the real data (cf. Fig. 8.4) is also very good. The results of the
fit are summarized in Tab. 8.4. A total of 500 071± 4335 signal events could be
reconstructed. The number of detectable D∗ events per MC stream is around 3.2
million (cf. Tab. 8.5). Assuming an equal amount of detectable D∗ events in the
real data, the reconstruction efficiency is around 16%. The signal to background
ratio in the signal window is 67%.

Total Signal window

Total events 8 592 981 1 353 720
Non-peaking background 8 060 876± 71 604 939 627± 8346
M-peaking background 31 409± 3873 10 658± 1314
Signal events 500 071± 4335 426 232± 1343
S/B 0.6671± 0.0032

Table 8.4: Fitted signal and background yields of the data set.
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(c) The background.
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(d) The combinatoric background component.

Figure 8.3: Signal and background components of the fit to the MC data set.
Normalized number of events for data and fit over m2

D
0 (left in each sub-figure)

and
√
q (right in each sub-figure).

Generated Detectable
D∗+ D∗− D∗+ D∗−

All 10 380 589 10 382 087 1 626 896 1 625 509
From cc 5 806 349 5 808 270 1 029 516 1 023 787

Table 8.5: Average number of generated and detectable D∗ per stream from MC
simulations.
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Figure 8.4: Fit of the signal and background shapes to the real data set. Normal-
ized number of events for data and fit over m2

D
0 (left) and

√
q (right).

8.4 Boosted Decision Trees

The simple cut-based event selection works well for making a preselection, but
will not give an optimal signal-to-background ratio needed for the PWA. Consider
the signal distribution in Fig. 8.1: With cuts on

√
q and m2

D
0 , a rectangle around

the signal peak would be selected, whereas e.g. an elliptical selection—taking into
account the correlation of the signal distribution in

√
q and m2

D
0 —would cut away

more background events, and therefore result in a better signal-to-background
ratio.

BDTs provide a way to consider the correlations of the signal distribution in
all event-selection variables. In other words: With simple cuts, events in an N -
dimensional hypercube (where N is the number of event-selection variables) will be
selected. With BDTs, events in a much smaller hypervolume, which is determined
to maximize the separation between signal and background events, will be selected.

The Toolkit for Multivariate Data Analysis with ROOT (TMVA) [38] provides
numerous classification algorithms. I used decision trees with adaptive boosting,
which turned out to have superior classification power, and modest computational
demands.

A BDT must be trained on events for which it is known whether they are signal
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Figure 8.5: Example of a decision tree. To classify an event, its parameters like
m2

D
0 and

√
q need to be calculated. Starting from the top, they are compared

against the given values, until a leaf node is encountered.

or background. An example of a decision tree is depicted in Fig. 8.5. Nodes are
created so that they give the best separation power between signal and background,
by dividing the sample along one input variable. This is done in an iterative way,
until the remaining fraction of events in a node falls below a minimum percentage,
or a maximum depth of the tree is reached. This procedure yields one decision
tree.

Before creating the next tree of the decision forest, the weights of all events
are adjusted. The weighting, or boosting, can be done in different ways, the most
popular being the adaptive boost: The new weights for misclassified events, α, are
derived from the misclassification rate, err, of the previous tree:

α =
1− err

err
(8.2)

The boosting gives misclassified events a higher weight for the next iteration. After
normalization, the procedure is repeated.
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BDTs are prone to overtraining. During the training process, the misclassifica-
tion rate will always decrease, but at some point the algorithm will start to learn
the statistical fluctuations of the training sample. This means that the misclas-
sification rate for a statistically independent sample will then start to rise again.
Therefore, the algorithm splits the dataset in halves. Only the first half (the train-
ing sample) is used for the actual training. The second half (the test sample) is
used to monitor the training process. As soon as the misclassification rate for the
test sample rises again, the training is stopped.

The trees can then be used to classify events. Given the same number of signal
and background events, a classifier value of 0 means that it is equally likely that
the event is signal or background. Higher values indicate that the event is more
likely to be a signal event, and vice versa.

8.4.1 Input variables

We use every signal event, and every 12th background event (in order to get a
similar number of signal and background events) of MC stream 1 for training.
The following BDT input variables are used:

• m2

D
0 ,
√
q, and the logarithms of the p-values of the D0 and D∗ vertex fits,

each for the unconstrained and the constrained vertex fits.
• xD∗ .
• The transverse momenta pT of the 5 pions.
• The impact parameters ∆z and ∆r, µ likelihood, K -π separation, and p-π

separation. For each of those variables, the maximum of the values of the
four pions from the D0 and the value of the πs are used.

The distributions for some of these variables, which offer good discrimination be-
tween signal and background, are shown in Fig. 8.6.

8.4.2 Results

The BDT output distributions are shown in Fig. 8.7. The MC signal (green) and
background (red) distributions have been scaled to the fitted yields from Tab. 8.4.
Thus, we can compare the MC distribution (pink) to the BDT distribution for the
data (blue). Below a BDT value of 0.06, the data is slightly shifted towards higher
BDT values. Above 0.08, MC and data align well.

For further analysis, a BDT cut is performed: Events with a lower BDT value
(which are more likely to be background events) are discarded, and events with a
higher BDT value (which are more likely to be signal events) are kept.

A low BDT cut yields a high signal efficiency, but a low background rejection.
With an increasing BDT cut, more background is cut away, so the background
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Figure 8.6: Input variable distributions of the MC training set, which is used
to train the BDTs with TMVA. The signal is drawn in blue, the background
in hatched red. Statistically independent input variables with preferably small
overlap between signal and background are key for a good classification power of
the BDTs.
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Figure 8.7: Distribution of the BDT response for MC and data. MC signal and
background are well separated, and MC and data align well.

BDT cut # events after BDT cut # events after K cut expected purity

0.10 259 647 225 632 0.88
0.12 174 486 152 490 0.92
0.15 79 817 70 405 0.96

Table 8.6: Number of events and expected purity of the data for different BDT
cuts.

rejection goes up. Eventually, more and more of the signal is cut away, so the
signal efficiency goes down. Thus, a reasonable tradeoff between signal efficiency
and background rejection has to be made.

The yield after the BDT cut and K cut (cf. Sec. 8.5) for different BDT cuts, as
well as the expected purity from scaled MC, are summarized in Tab. 8.6. A BDT
cut of 0.12 was used for most fits, it yields more than 150 000 events with a purity
over 90 %.
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8.5 Kaon cut

The D0 can also decay into one or two K mesons, which can decay into two
charged pions. However, the line width of the K decays is much smaller than
the detector resolution, and the fit can therefore not treat these decays correctly
without further complication. We decided to reject all events where an invariant
mass of a π+ π− pair is within a range of 11.92 MeV around the K0 mass.

The Kaons have strangeness and therefore decay weakly into two pions. The
K0 is a mixture of the flavour eigenstates K0

S and K0
L . The K0

S decays primarily
into π+ π−, with a branching fraction of (69.20 ± 0.05)%. The π+ π− branching
fraction for the K0

L is much smaller, only (1.967± 0.010)× 10−3 [48].
The K0

S has a mean life of around 10−10 s, which translates into a line width in
the order of 10−5 eV. This is many orders of magnitude smaller than the detector
resolution: A gaussian fit of the K peak in the π+ π− invariant mass spectrum
gives a width of 3.97 MeV.

In reality, the smearing due to the detector resolution happens after the inter-
ference of the partial waves. In the fit, the unsmeared model is compared to the
smeared data and the detector resolution is neglected. This can only work well
if the detector resolution is small compared to the widths of the partial waves.
This is indeed the case for all resonances in our model, which decay strongly, and
therefore have much smaller lifetimes and line widths in the order of 100 MeV.
Only the f0 (980 ) has a sharp peak where the detector resolution has a somewhat
noticeable effect.

In order to treat the Kaons correctly, the model would have to be smeared
after calculating the intensity. This would be complicated and computationally
very demanding.

52



Chapter 9

Partial Wave Analysis

We now have a selection of events, where an initial state, the D0 , decays into a
final state, π+ π− π+ π−. This decay has many possible intermediary states, which
quantum-mechanically occur at the same time, and interfere with each other. The
final state, i.e. the kinematics of the four pions, is described unambiguously by
five parameters (cf. Sec. 9.2), and one event corresponds to a seemingly random
point in this 5-dimensional phase space. However, when we look at a large number
of events, their distribution in said phase space clearly exhibits a non-random
structure. This is the interference pattern of the intermediary states, illustrated
in Fig. 10.1.

With a partial wave analysis (PWA), we try to find out about the intermedi-
ary states, and their relative intensities and phases. PWA, in a strict sense, is a
technique to decompose a total scattering amplitude into its constituent angular
momentum components. In our sense, the decay amplitude of the D0 is decom-
posed into two-body decay amplitudes via the isobar formalism (cf. Sec. 9.3). Once
a model (a set of decay amplitudes) has been composed, the best fit of the free
amplitudes and model parameters to the data can be obtained with a maximum
likelihood fit (cf. Sec. 9.7).

9.1 YAP – Yet Another Partial Wave Analysis

Toolkit

We developed a toolkit for PWA, YAP [25]. It implements all the formalisms
and amplitude components described in this chapter, and provides a framework
to compose models in the isobar formalism, handle data and interface to fitting
software, e.g. the Bayesian Analysis Toolkit (BAT).
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9.2 Parameterization of the phase space

We need five parameters to describe the kinematics of a four body decay with a
spin-0 initial state. Each final state particle has a four-momentum, so we have 4×
4 = 16 parameters. The masses of the final state particles are known (determining
4 parameters) and the total four-momentum has to be conserved (determining
another 4 parameters). Since the spin of the initial state particle is 0, the whole
system is rotation-invariant (discarding 3 parameters).

In Dalitz plot analyses with three final state particles a, b, and c, there are two
degrees of freedom (DoF). The invariant-mass squares m2

ab and m2
bc are chosen to

fill 2-dimensional histograms, so called Dalitz plots. Analogously, we choose five
invariant-mass squares, m2

12, m
2
14, m

2
23, m

2
34, and m2

14 as parameters to describe
the kinematics of the decay. All other kinematic variables, like the helicity angles
(cf. Sec. 9.4.2), can be derived from these five invariant-mass squares.

9.3 Isobar formalism

In the isobar formalism, a decay into a final state is looked at as subsequent
two-body decays. It was originally used to model pion-nucleon, nucleon-nucleon,
and antinucleon-nucleon interactions [55], where the intermediate resonances are
isobars of a particular nuclear state. It was later generalized to three-body final
states [36], and can be expanded for N-body final states. The complex amplitude
of a specific decay chain is

Ar = arFrTrWr

∏
d

Ad. (9.1)

The free complex amplitude of the decay, ar, defines the magnitude and phase of
the decay chain, and can be determined by a fit.

Fr is the Blatt-Weisskopf barrier factor, which describes the centrifugal-barrier
effect caused by the relative angular momentum L in the isobar decay. It is de-
scribed in Sec. 9.5.

The dynamical function Tr describes the mass shape. The mass shapes used
in this analysis are described in Sec. 9.6.

Wr is the spin amplitude resulting from the spin coupling of the decay. It is
described in Sec. 9.4.
Ad are the amplitudes of the daughter particles d, which are calculated recur-

sively with the same formula. Final-state particles have an amplitude of 1.
Amplitudes of all decay chains are summed coherently:

A =
∑
r

Ar. (9.2)
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9.4 Spin amplitudes

9.3.1 Admixtures

The data contain some amount of background events. Most of them are uncorre-
lated pions which can be described by a flat wave. But also other contributions,
where two or three pions have a common mother, and the other is uncorrelated,
can occur. The signal and background components have to be added incoherently,
i.e. their intensities have to be summed up:

I =
∑
adm

Iadm (9.3)

Iadm = A∗admAadm. (9.4)

9.3.2 Bose-Einstein symmetrization

If two or more final state particles are indistinguishable, the amplitude of a decay
is the sum over the amplitudes of all indistinguishable permutations of the final
state particles. Let’s take the decay D0 → ρ0ρ0 as an example. Each ρ0 decays
into a π+-π− pair. We have recorded the four-momenta of four charged pions,
which are labeled as

π+π−π+π− ≡ π1π2π3π4. (9.5)

There are four possible ways for the pions to form the ρ mesons:

D0→ (ρ0→ π1π2)(ρ
0→ π3π4) (9.6)

D0→ (ρ0→ π3π2)(ρ
0→ π1π4) (9.7)

D0→ (ρ0→ π1π4)(ρ
0→ π3π2) (9.8)

D0→ (ρ0→ π3π4)(ρ
0→ π1π2). (9.9)

The Bose-Einstein symmetrization is performed automatically in YAP.

9.4 Spin amplitudes

The spin amplitudes are described in the nonrelativistic helicity formalism. The
helicity spin amplitude Wr depends on the helicity angles and angular momenta of
the particles in an isobar decay and is calculated from Clebsch-Gordan coefficients
and Wigner D functions.
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9.4.1 Clebsch-Gordan coefficients

Clebsch-Gordan coefficients are expansion coefficients used in angular momentum
coupling.

Consider a system with angular momentum J and wave function ψjm. The

eigenvalue of the squared total-angular-momentum vector operator J2 is j(j + 1),
and the eigenvalue of Jz, the z component of J, is m:

J2ψjm = j(j + 1)ψjm (9.10)

Jzψjm = mψjm. (9.11)

The direct product of the eigenfunctions of two systems with angular momenta
j1 and j2 is called the uncoupled representation:

ψj1m1
ψj2m2

. (9.12)

It can be shown that the commutation rule is also valid for the sum of angular
momenta:

[Jx, Jy] = iJz. (9.13)

Therefore a coupled representation ψJM has to exist, where J2 and Jz (with eigen-
values J(J + 1) and M), as well as J2

1 and J2
2 are diagonal. It is connected with

the uncoupled representation by a unitary transormation

ψJM =
∑
m1m2

C(j1,m1, j2,m2, J,M)ψj1m1
ψj2m2

, (9.14)

with the Clebsch-Gordan coefficients C(j1,m1, j2,m2, J,M). Since M is the sum
of m1 and m2, this argument can be omitted.

A more detailed derivation and the calculation of the Clebsch-Gordan coeffi-
cients can be found in [52]. Tabulated values can be found in [48].

9.4.2 Helicity angles

The helicity angles are needed to calculate the Wigner D function of the helicity
spin amplitude.

The helicity angles of a decay are the polar and azimuth angles θ and φ of a
daughters’ momentum vector of a two-particle decay, in the rest frame of the parent
particle, with respect to an orthonormal helicity frame. The daughter particles are
emitted back-to-back in the parent’s rest frame, so a convention has to be made
which of the daughters’ momenta to chose to define the helicity angles.
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9.4 Spin amplitudes

Figure 9.1: In the helicity frame (x0, y0, z0), the helicity angles of a decay are the
polar and azimuth angles θ0 and φ0 of a daughters’ momentum vector p̂. The
helicity frame (x, y, z) for a subsequent decay is also defined by p̂

The orientation of the helicity frames is defined by the decay kinematics. The
helicity frame for the initial D0 decay can be chosen arbitrarily, since it has spin 0
(in this case the spin amplitude is always 1). For a subsequent decay of a particle
with momentum ~p in the D0 rest frame, and the (arbitrary) z-axis of the D0 rest
frame, z0, the helicity frame is defined as follows (cf. Fig. 9.1):

z ≡ p̂ (9.15)

y ≡ z0 × z (9.16)

x ≡ y × z. (9.17)

After a Lorentz boost of the helicity frame into the rest frame of the particle,
its daughters have momenta ~q and −~q, and the helicity angles are

cos θ ≡ q̂ · z (9.18)

cosφ ≡ q̂ · x/ sin θ. (9.19)

A sign convention is chosen so that θ is in the range from 0 to π, and φ is in the
range from −π to π.

An example for the decay D0 → ρ0ρ0 is depicted in Fig. 9.2. If the x-axis of
the initial helicity frame, x0, is chosen as shown, φ1 is 0.
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D0θ1 θ2

ϕ2x0

Figure 9.2: Helicity angles of a decay into two isobars. Every decay is drawn in
its own helicity frame, which has already been boosted into the rest frame of the
mother particle. The daughter momenta are therefore back-to-back.

9.4.3 Wigner D functions

The Wigner D function gives the matrix elements of the rotation operator with
Euler angles α, β, γ in the jm-representation [56]:

D (j,m, n, α, β, γ) = e−imαd (j,m, n, β) e−inγ (9.20)

d(j,m, n, β) =
∑
k

(−1)k
√

(j +m)!(j −m)!(j + n)!(j − n)!

(j − n− k)!(j +m− k)!k!(k + n−m)!

× cos2j+m−m
′−2k β

2
sin2k+m

′−m β

2
.

(9.21)

9.4.4 Helicity spin amplitude

Now we can calculate the helicity spin amplitude Wr. Consider a parent particle
with spin J and spin projection M decaying into two daughter particles with spins
j1 and j2, and spin projections m1 and m2. The daughters have a total spin S and
relative angular momentum L which satisfy

|j1 − j2| ≤ S ≤ j1 + j2 (9.22)

|J − S| ≤ L ≤ J + S. (9.23)

58
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The spin amplitude for a given spin configuration is

Wr = D (J,M,m1 −m2, φ, θ, 0)

√
2L+ 1

2J + 1

× C (L, 0, S,m1 −m2, J)C (j1,m1, j2,−m2, S) .

(9.24)

D is the complex conjugate of the Wigner D function, the first Clebsch-Gordan
coefficient describes the spin-orbit coupling, the second describes the spin-spin
coupling, and φ and θ are the helicity angles of the decay.

9.5 Blatt-Weisskopf barrier factors

The Blatt-Weisskopf barrier factor Fr describes the centrifugal-barrier effect caused
by the relative angular momentum L in the isobar decay. It depends on the relative
angular momentum L between the daughters:

L = 0 : F (z) = 1 (9.25)

L = 1 : F (z) =

√
2z

z + 1
(9.26)

L = 2 : F (z) =

√
13z2

z(z + 3) + 9
(9.27)

L = 3 : F (z) =

√
277z3

z(z(z + 6) + 45) + 225
(9.28)

with
z = R2q2, (9.29)

where R is the radial size of the resonance, and q is the breakup momentum of the
daughters (cf. Eq. 9.32).

9.6 Mass Shapes

The mass shape Tr is the mass-dependent part of the decay amplitude. The
intensity T 2

r can be considered as probability density of the invariant mass of the
daughter particles of the decay. It peaks around the nominal mass of the resonance
mr, and its width Γ is related to the lifetime of the resonance via the uncertainty
principle.
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A resonance also involves a phase motion of 180◦ over the mass range. The
trajectory of the mass shape in the complex plane is called Argand plot. For a
Breit-Wigner resonance, it is a circle with center 0.5i and radius 0.5. It starts at
the origin and goes around one turn anti-clockwise.

The mass shapes (except for the a1 ) are normalized so that Tr(mr) = i.

9.6.1 Breit-Wigner

The dynamical function Tr is often described by a Breit-Wigner shape [19]. This
parameterization resembles the formula of a driven harmonic oscillator and can
work well for narrow resonances. It is calculated as

Tr =
Γab

m2
r −m2

ab − imrΓab
(9.30)

Γab = Γr

(
qab
qr

)2J+1(
mr

mab

)
F 2(R2q2ab)

F 2(R2q2r)
. (9.31)

Here, mr is the nominal mass of the resonance, mab is the invariant mass of the
daughter particles, Γab is the mass-dependent width, and Γr is the nominal width.
F are Blatt-Weisskopf factors. qab and qr are breakup momenta of the daughter
particles. They are calculated as

q =

√(
m2
p − (ma +mb)

2) (m2
p − (ma −mb)

2)
4m2

p

. (9.32)

For qab, the parent mass mp is taken as the measured invariant mass of the daugh-
ters, mab; for qr, the parent mass mp is taken as the nominal mass of the resonance,
mr.

9.6.2 Flatté

The Flatté coupled-channel form [28] can describe resonances that lie close to the
threshold of one or more other channels c:

Tr =
2ΓR

mr

(
m2
r −m2

ab − 2i
mr

∑
c gcqc

) . (9.33)

gc and qc are the coupling constants and breakup momenta of the channels c. This
form is used for the f0 (980 ), which decays to ππ and K K .

The resulting mass shape has a very sharp and narrow peak, due to the opening
of the K K channel. In the data, the peak is slightly smeared, due to the limited
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Figure 9.3: Phase of the f0 (980 ) mass
shape (Arg(Tr) in degrees over mass).
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Figure 9.4: Argand plot of the f0 (980 )
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Figure 9.5: Intensity of the f0 (980 )
mass shape (|Tr|2 over mass). Nominal
(black), and smeared (red).

detector resolution. To take this effect into account, we numerically convolute the
intensity with a Gaussian with a width of 3.97 MeV (cf. Fig. 9.5). This value is ob-
tained from a Gaussian fit to the K0 peak in the π+ π− invariant-mass distribution
(cf. Sec. 8.5).

This approach is not quite correct, since in reality the smearing due to the
detector resolution happens after the interference of the partial waves, and not
before. However, smearing the total amplitude A would be disproportionately
laborious and computationally demanding. Since the difference of the unsmeared
and the smeared mass shape is small—essentially only the peak is smoothened a
bit—smearing only the mass shape is better than not taking the detector resolution
into account.

9.6.3 Gounaris-Sakurai

Broad vector resonances like the ρ0 (770) can be described with a parameterization
proposed by Gounaris and Sakurai [35]. Our parameterization is derived from [45].
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The resulting mass shape of the ρ0 is shown in Figures 9.6 and 9.7. It is calculated
as

Tr =
m2
r + d0mrΓr

M2 −m2
ab − iM0Γ

(9.34)

with

Γ = Γr
mr

mab

(
m2
ab − s0

m2
r − s0

)3/2

(9.35)

d0 =
1

π

mr√
m2
r − s0

(
1− s0

m2
r − s0

(
2− 3h

(
m2
r, s0

)))
(9.36)

M2 = m2
r +

Γ0m
2
r

π

m2
ab − s0(

m2
r − s0

)3/2
(

2h
(
m2
ab, s0

)
−
(

2 +
s0

m2
r

m2
ab −m2

r

m2
ab − s0

)
h
(
m2
r, s0

)
− m2

r − s0
m2
r

m2
ab −m2

r

m2
ab − s0

)
(9.37)

where

s0 = (ma +mb)
2 (9.38)

h(m2, s0) =

√
m2 − s0
m

ln

(
m+

√
m2 − s0√
s0

)
. (9.39)
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9.6.4 a1

The a1 is described as a Breit-Wigner resonance with a mass-dependent width:

Γ
a1
tot(s) = Γ

a1

2π
0
π
+(s) + Γ

a1

2π
+
π
−(s) + g2

K
∗
K

Γ
a1
K
∗
K

(s). (9.40)

The total width is the sum of the partial widths of the decays into 2π0π+, 2π+π−,
and K ∗K . The partial widths into 2π0π+ and 2π+π− are assumed to be equal and
proportional to the integral over the a1 Dalitz plot at a given invariant mass s:

Γ
a1

2π
0
π
+(s) = Γ

a1

2π
+
π
−(s) (9.41)

Γ
a1

2π
+
π
−(s) ∝ 1

s3/2

∫
ds1ds2

∣∣Aa1
(s1, s2)

∣∣2 . (9.42)

In the so-called Bowler parametrization, only the dominant decay a1 → ρ0π+

(S-wave) is taken into account. In our model, we also integrate over the a1 →
ρ0π+(D-wave) and a1 → (ππ)S π

+ components. If any free amplitude changes, the
integral is re-evaluated. The mass dependent width, phase motion, argand plot,
and intensity distribution of the a1 mass shape for a given set of free amplitudes
are shown in Fig.s 9.8 to 9.11.

9.6.5 (ππ)S

The decay into two pions in a relative S state is described according to [10]. It
is based on a parametrization of the (ππ)S-wave from [14], which they extracted
from π π elastic scattering data. The f0 (980 ) is removed from the amplitude (and
treated as a separate resonance, cf. Sec. 9.6.2). The phase motion, argand plot,
and intensity distribution of the (ππ)S mass shape are shown in Fig. 9.12, 9.13,
and 9.14.
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9.7 Maximum likelihood fit

The previous sections detailed how a decay amplitude and its components are
described mathematically. After a model has been compiled from several signal
and background components, we want to determine the parameters which yield
the best fit to the data. The parameters are the complex free amplitudes of each
component, the admixtures of signal and background, and possibly others like
masses and widths.

The figure of merit how well the model fits the data is the likelihood L (cf.
Sec. 9.7.1). We use ROOT’s MINUIT to maximize it. MINUIT is basically a
gradient follower. At a given point in the parameter space, it numerically calculates
the gradient of the likelihood by varying each parameter slightly. It then performs
a line search along the steepest gradient for the maximum likelihood. From this
new point it starts over, until it converges towards a maximum. Depending on the
starting point, it might be a local maximum. A simple approach to find the global
maximum is to do many fits with random starting points.

Admittedly, there are more sophisticated methods to find the global maximum,
like Markov chain Monte Carlo (MCMC) methods. With BAT, the user can easily
switch from MINUIT to various MCMC methods, but they turned out to be too
computationally demanding.

9.7.1 Likelihood

The likelihood L is the product of the intensities I (cf. Eq. 9.3) of all data points
i divided by the integral I (cf. Sec. 9.7.2). With a high number of data points, the
likelihood can easily exceed the range of a double-precision floating point number.
Maximizing the natural logarithm of the likelihood yields the same fit results, since
it is a strictly monotonic function, but makes its numerical calculation manageable.
The natural logarithms of the intensities have to be summed up. The numerical
accuracy of this summation is increased by using the Kahan summation algorithm.

L =
∏
i

Ii
I

(9.43)

lnL =
∑
i

(ln Ii − ln I) . (9.44)
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9.7.2 Integration

The integral I is the normalized sum of intensities I (cf. Eq. 9.3) of the events i
of an integration sample (cf. following section) with N points:

I =
1

N

N∑
i=1

Ii. (9.45)

Calculating this integral during the PWA fit takes about a second. However, if
only the values of the free amplitudes ar are changed, the integral can be evaluated
fast without summing over the events i. With Eq.s 9.3, 9.4 and 9.2 we get∑

i

Ii =
∑
i

∑
adm

Iadm(i, ~p) =
∑
adm

∑
i

Iadm(i, ~p) (9.46)

∑
i

Iadm(i, ~p) =
∑
i

A∗adm(i, ~p)Aadm(i, ~p) (9.47)

=
∑
i

(∑
r

A∗r(i, ~pr)
∑
r

Ar(i, ~pr)

)
(9.48)

=
∑
i

∑
r,s≥r

2A∗r(i, ~pr)As(i, ~ps). (9.49)

~p and ~pr are the parameters of the model and a single resonance r, respectively, like
masses and widths. With Ar(i, ~pr) ≡ arAr(i, ~pr), we can pull the free amplitudes
a out of the sum over the events i.∑

i

Iadm(i, ~p) =
∑
i

∑
r,s≥r

2a∗rA
∗
r(i, ~pr)asAs(i, ~ps) (9.50)

=
∑
r,s≥r

a∗ras
∑
i

2A∗r(i, ~pr)As(i, ~ps) (9.51)

≡
∑
r,s≥r

a∗rasIrs(~p). (9.52)

The values Irs are stored in a matrix, and only have to be reevaluated if ~p is
changed. We can now rewrite the integral I in terms of free amplitudes a and
matrix elements Irs:

I =
1

N

∑
adm

∑
r,s≥r

a∗rasIrs(~p). (9.53)
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Integration sample

The integration is performed with phase-space-distributed D0 → π+π−π+π− events
from the Belle MC data. The same event-selection cuts, BDT cut and K cut as
for the data sample are performed (cf. Chap. 8). From the remaining events,
D0 → π+π−π+π− decays are selected based on MC information. This yields
1.52× 106 events.

Since the integration sample is processed in the same way as the data sample,
acceptance effects of the detector and event selection are incorporated.

9.7.3 Fit fractions

The complex amplitudes yielded by the fit depend on the choice of normalizations,
phase conventions, and choice of mass shapes. Therefore, they are not necessarily
comparable between different experiments and analyses. Fit fractions, on the
other hand, are straightforward to calculate and typically quoted in PWAs. They
allow to compare different analyses and estimate the branching fractions of the
decay modes. A total fit fraction of more than one means there is destructive
interference between the components of the model, and a total fit fraction of less
than one means there is constructive interference between the components of the
model.

The fit fraction FF of a component j is defined as

FFj =
Ijj
I
, (9.54)

where Ijj is the integral of the component j, and I is the total integral, according
to Sec. 9.7.2, both calculated with the fit fraction sample.

Fit fraction sample

Unlike the integration sample, the fit fraction sample must not include any accep-
tance effects. Therefore, 107 events with an even distribution in the phase space
were generated with ROOT’s TGenPhaseSpace.

9.7.4 Goodness of fit

The quality of the fit is assessed by a χ2 test. The data are binned with an adaptive
binning scheme: The phase space is repeatedly divided along five mass axes, such
that each bin i contains the same number of events Ni. The number of expected
events 〈Ni〉 is the weighted number of events j from the integration sample in the
bin. The events are weighted with their intensities wj. The weighted total number
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of events from the integration sample is normalized to the total number of events
in the data sample, N . The total χ2 is the sum of the χ2 of each bin.

χ2 =
∑
i

(Ni − 〈Ni〉)
2

〈Ni〉
(9.55)

〈Ni〉 =
N∑
iwi

wi (9.56)

wi =
∑
j∈i

wj. (9.57)

The statistical uncertainty of 〈Ni〉 is taken into account by adding the normal-
ized sum of the squared intensities in the denominator.

χ2 =
∑
i

(Ni − 〈Ni〉)
2

〈Ni〉+ σ̄2
i

(9.58)

σ̄2
i =

N∑
iwi

w2
i . (9.59)

In order to get a comparable measure of the goodness of fit, the χ2 has to be
divided by the number of degrees of freedom (NDF). The NDF is the number of
bins i minus the number of free parameters of the fit.

A perfect fit has a reduced χ2 of 1. Values lower than 1 indicate over-fitting,
and values much larger than 1 indicate a poor fit.

9.8 Overlap integrals

Normalized overlap integrals are a way to quantify how similar two components
are. The overlap integral O of two components r and s is defined as

Ors =
Irs√
IrrIss

. (9.60)

Components with a large a overlap integral are hard to distinguish by the fit, which
can create large destructive interferences if no countermeasures are taken.

9.9 Model selection

A good model should achieve two goals: It should describe the data well; and it
should do so with few parameters, which means that the correlations between the
parameters should be minimal.

69



Chapter 9: Partial Wave Analysis

The maximum-likelihood fit, however, only tries to achieve the first goal. It can
create large destructive interference between similar components as a side effect.
The amplitudes of the interfering components will have large correlations, and the
total fit fraction can become quite large.

There are many components which can possibly contribute to the model. Adding
more components can lead to a higher likelihood value, at the cost of more param-
eters.

To achieve the second goal as well, the likelihood can be modified, so that
solutions with smaller total fit fractions (and less components) will be favored.
Two common approaches are LASSO [50] and biggest conceivable model (BCM)
[18].

LASSO: ∆L = −
∑
i

fi/Γ (9.61)

BCM: ∆L = −
∑
i

ln(1 + fi/Γ
2) (9.62)

LASSO penalizes the likelihood with the sum over all fit fractions fi divided by
a scaling factor Γ. The BCM approach is similar, but the penalty is logarithmic,
so that single large contributing components are not penalized as much as in the
LASSO approach.

I use BCM for the fits with model selection, with Γ = 0.75.
For components where the two previous analyses by FOCUS [46] and CLEO-c

[26] give comparable results, Gaussian priors are used for the fit fractions:

Components Mean Width

a+
1 π
−, a+

1 → ρ0π+ (S-wave) 40 5
a+
1 π
−, a+

1 → (ππ)S π
+ 9.6 3

ρ0ρ0 24 5
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PWA fit results

I performed several maximum likelihood fits, with different models, with and with-
out model selection, and with different BDT cuts. The PWA has been performed
with YAP, BAT, and MINUIT. The results are presented in the following sections.
I will discuss and compare the results with previous measurements in Sec. 10.6.

10.1 Phase space plots

Before going into the quantitative details of the fits, I want to picture the data
and fit results. Fig. 10.1 shows the event distribution of the data in all possible
combinations of two- and three-pion invariant masses. The ρ0 peak is clearly visible
in all two-pion invariant masses, and also the cusp of the f0 (980 ) is evident. The
Kaon cut leaves a gap in the invariant masses of oppositely charged pion pairs
(e.g. in m12, but not in m13). The plots also illustrate the phase space boundaries.
E.g. in m12 vs. m23, the populated area is a triangle, since the sum of the invariant
masses of the two pion pairs cannot exceed the invariant mass of the D0 . Due to
the Bose-Einstein symmetrization (cf. Sec. 9.3.2), there are several sets of plots
which are identical, disregarding statistical fluctuations.

Similar plots can be obtained for the fit results. Events from the integration
sample (cf. Sec. 9.7.2) are weighted with their intensity in the fitted model. The
result of the baseline fit is shown in Fig. 10.2, and it looks very similar for all other
fits.

The fit has more events towards the phase space boundary, because the in-
tegration sample has more events overall. The ρ0 looks slightly attenuated and
shifted towards higher masses, but overall, data and fit look very similar.
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Figure 10.1: The data. Event distribution of the data in all possible combinations of invariant masses of two- and
three-particle subsystems.
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Figure 10.2: The fit. Phasespace-distributed events weighted with the baseline fit results (A), in all possible combi-
nations of invariant masses of two- and three-particle subsystems.73



Chapter 10: PWA fit results

10.2 Model components

The D0 decays weakly, so its daughter particles must be strange or unflavored.
Since the Kaons are cut out (cf. Sec. 8.5), we are left with the unflavored daughter
particles. The D0 can either decay into a charged resonance and a pion, where the
charged resonance then decays into a neutral resonance and a pion; or into two
neutral resonances. The neutral resonances always decay into two pions. Due to
energy conservation, we must consider charged resonances in a mass range from
three pion masses (419 MeV) to the D0 mass minus one pion mass (1725 MeV),
and neutral resonances in a mass range from two pion masses (280 MeV) to the D0

mass minus two pion masses (1585 MeV). We can also observe the low-mass tails
of resonances above these thresholds. Charge, spin, isospin and parity must also
be conserved, and of course the resonances must have the required decay mode
into charged pions.

The model components, together with the relative angular momenta J of the
decay daughters are summarized in Tab. 10.1. For the remainder of this chapter,
the model components are denoted with their short-hand notation. For the decays
into a charged resonance and a pion, the charge conjugate decays are also added.
The neutral unflavoured resonances ρ0, f0 and f2 all decay into π+π− pairs. The
(ππ)S wave is a parameterization of a π+π− pair in a relative S wave (cf. Sec. 9.6.5).
π(1800)+ and f2 are above threshold.

Every model component is a decay chain from D0 → π+π−π+π− with defined
resonances and relative angular momenta. The a+1 , P, ρ

0, S component always has
a fixed amplitude of 1, and the other free amplitudes are fitted relative to it.

The masses, widths, and parameters of the resonances that were used in the
fit are summarized in Tab. 10.2.

The background is modeled as a direct D0 → π+π−π+π− decay.

10.3 Fits

I performed fits with different models, with and without model selection, and with
different BDT cuts. A brief overview of all fits is given in Tab. 10.3.

10.3.1 Fits without model selection

The baseline model contains all decays with relative angular momenta up to D,
and omits the tensor mesons π2(1670)+ and a2(1320)+. Events with a BDT value
above 0.12 are selected.

In fit (A), the free amplitudes are fitted.
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10.3 Fits

J J short-hand notation

D0 → a+1 π
− P a+1 → ρ0π+ S a+1 , P, ρ

0, S

D a+1 , P, ρ
0, D

(ππ)Sπ
+ P a+1 , P, (ππ)S, P

f2π
+ P a+1 , P, f2, P

F a+1 , P, f2, F
a1(1420)+π− P a1(1420)+ → f0π

+ P a1(1420)+, P, f0, P

a1(1640)+π− P a1(1640)+ → ρ0π+ S a1(1640)+, P, ρ0, S

D a1(1640)+, P, ρ0, D
f2π

+ P a1(1640)+, P, f2, P
F a1(1640)+, P, f2, F

a2(1320)+π− D a2(1320)+ → ρ0π+ D a2(1320)+, D, ρ0, D
π(1300)+π− S π(1300)+ → (ππ)Sπ

+ S π(1300)+, S, (ππ)S, S

ρ0π+ P π(1300)+, S, ρ0, P
π2(1670)+π− D π2(1670)+ → (ππ)Sπ

+ D π2(1670)+, D, (ππ)S, D

ρ0π+ P π2(1670)+, D, ρ0, P

F π2(1670)+, D, ρ0, F
f2π

+ S π2(1670)+, D, f2, S
D π2(1670)+, D, f2, D

π(1800)+π− S π(1800)+ → f0(1500)π+ S π(1800)+, S, f0(1500), S

D0 → ρ0ρ0 S ρ0, ρ0, S

P ρ0, ρ0, P

D ρ0, ρ0, D
(ππ)S(ππ)S S (ππ)S, (ππ)S, S
(ππ)Sf0 S (ππ)S, f0, S
(ππ)Sf2 D (ππ)S, f2, D
f0f0 S f0, f0, S
f2f2 S f2, f2, S
f2f2 P f2, f2, P
f2f2 D f2, f2, D
f2f2 F f2, f2, F

Table 10.1: Model components used in the fits. The neutral mesons decay into π+

π− pairs, so each row represents one decay chain from D0 to π+ π− π+ π−, with
defined resonances and relative angular momenta J . The components are referred
to via the short-hand notation throughout this section.
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Chapter 10: PWA fit results

Resonance mass/GeV width/GeV other parameters

a+1 1.2299 0.459 g2
K
∗
K

: 0.06

a1(1420)+ 1.4105 0.1606
a1(1640)+ 1.647 0.254
a2(1320)+ 1.3145 0.1066
π(1300)+ 1.3 0.04
π2(1670)+ 1.642 0.3111
π(1800)+ 1.812 0.208

ρ0 0.775 26 0.1478
f0 0.970 09 0.0055
f2 1.2755 0.1867

Table 10.2: Masses, widths and parameter values used in the fits.

Fit Model Model sel. BDT cut Description

A Baseline 0.12
B Baseline 0.12 Fixed amplitudes, free parameters
C Baseline 0.12 Free amplitudes, free parameters
D Baseline BCM 0.12 Starting with amplitudes from fit (A)
E Baseline BCM 0.12 Starting with normalized fit fractions
F Baseline BCM 0.12 Starting with amplitudes from fit (E)
G Baseline+ 0.12 Rel. angular momenta J up to F
H Extended 0.12
I Reduced BCM 0.12 Normal BDT cut
J Reduced BCM 0.15 Increased BDT cut
K Reduced BCM 0.10 Decreased BDT cut
L Extended+ BCM 0.12 Free amplitudes, free parameters, J up to F

Table 10.3: Overview of the different fits.
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10.4 Fit results

In fit (B), the amplitudes are fixed to the results from fit (A). Instead, some
of the parameters of the resonances are fitted. These are the mass, width, and K ∗

K coupling of the a1 mass shape; the mass of the f0 (980 ) Flatté mass-shape; and
the mass and width of the ρ0 (770) Gounaris-Sakurai mass-shape (cf. Sec. 9.6).

In fit (C), both the amplitudes and parameters are fitted.

In fit (G), decays with relative angular momenta up to F are included (except
f2f2), and the free amplitudes are fitted.

In fit (H), the tensor mesons π2(1670)+ and a2(1320)+ are added to the model,
and the free amplitudes are fitted.

10.3.2 Fits with model selection

Fits (D), (E), (F), (I), (J), (K), and (L) employ the BCM approach for model
selection (cf. Sec. 9.9), and the free amplitudes are fitted.

Fit (D) uses the resulting free amplitudes from fit (A) as start values.

For fit (E), the start values are scaled, so that all components have similar fit
fractions.

Fit (F) uses the results from fit (E) as start values.

Fit (I) uses a model with less components, and decays with relative angular
momenta up to D. Fits (I), (J), and (K) differ only in the BDT cuts.

Fit (L) uses the extended model of fit (H), plus additional f2, f2 components
with relative angular momenta up to F . An additional ρ0 background component
is added. The free amplitudes and free parameters (like in fit (B)) are fitted.

10.4 Fit results

10.4.1 Fit results without model selection

The fit results are illustrated in Fig. 10.3 and summarized in Tab. 10.4. The
resulting fit fractions for the fits without model selection are very similar. The
total fit fraction is around 10 (1000 %), so there is a lot of destructive interference
between the model components.

The background admixture is estimated to be 35 %. From the model selection
and the given BDT cut, we would expect a background of around 8 % (cf. Tab. 8.6).
In fits (C) and (H), with additional free parameters and more model components,
respectively, the background admixture lowers to 29 % and 31 %, respectively.

The additional components in fit (H) have fit fractions up to the percent level,
and it is the best fit, with a reduced χ2 of 2.71.
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Chapter 10: PWA fit results

The (ππ)S, (ππ)S-like components1 all have large fit fractions above 1. Fig.
10.4 shows that these four components have particularly large overlap integrals
between 0.76 and 0.95. These components look almost identical and cannot be
clearly distinguished by the fit.

The same holds for the a+1 , P, ρ
0, S-like components,2 which have an overlap

integral of 0.74.
These components account for the large total fit fraction, as you will see in the

next section.

10.4.2 Fit results with model selection

Fit (D) yields results very similar to fit (A). The reason might be that the result
of fit (A) still forms a local maximum in the parameter space for fit (D), and
MINUIT is stuck in this local maximum.

In fit (E), the total fit fraction is 0.91. The model selection works well, and
the fit is now generating more constructive than destructive interference. The fit
fractions of components with large mutual overlap integrals ((ππ)S, (ππ)S-like; and
a+1 , P, ρ

0, S-like) now all have fit fractions around 0.01 and below.
Fit (F) yields similar results.
For fit (I), some smaller components were added, but the π(1300) was omitted.

The reduced χ2 is 4.08, indicating a worse fit. Fits (I), (J), and (K) are discussed
in Sec. 10.5.2.

In fit (L), the additional ρ0 background changes the results drastically. The
flat background component now has a fit fraction of only 8 %, consistent with the
prediction from the model selection. The ρ0 background, however, has 28 % fit
fraction. The (ππ)S, (ππ)S-like components are suppressed, similar to fits (E) and
(F), but a+1 , P, ρ

0, S still has 25 % fit fraction, and also a1(1640)+, P, ρ0, S is not
suppressed as much. Most other components have results similar to the baseline
fit (A). The fit quality is the best of the model-selection fits, but slightly worse
than in fit (H), which is expected due to the model selection.

1(ππ)S , f0, S; (ππ)S , (ππ)S , S; f0, f0, S; π(1300)+, S, (ππ)S , S
2a+1 , P, ρ

0, S; a1(1640)+, P, ρ0, S
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10.4 Fit results

Figure 10.3: Fit fractions of the components of all models and fits. The top
plot shows the fits without model selection. The bottom plot shows the fits with
model selection, and fit (A) for reference. The components are ordered by their fit
fractions in fit (A) and (H). Lines connecting the points are guides to the eye.
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(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L)

total fit fraction 11 11 9.1 11 0.91 1.7 11 12 1.3 1.5 0.93 1.6
flat background 0.35 0.35 0.29 0.35 0.45 0.54 0.35 0.31 0.40 0.41 0.58 0.080

ρ
0

background 0.28

a
+
1 , P, ρ

0
, S 0.34 0.34 0.49 0.34 0.012 0.0046 0.34 0.27 0.19 0.12 0.073 0.25

a
+
1 , P, ρ

0
, D 0.031 0.029 0.042 0.029 0.012 0.093 0.030 0.031 0.040 0.026 0.013 0.0032

a
+
1 , P, (ππ)S , P 0.37 0.36 0.46 0.36 0.22 0.31 0.37 0.28 0.44 0.44 0.000 011 0.50

a
+
1 , P, f2, P 0.0016 0.0013 0.000 93 0.0013 0.016 0.039 0.000 43 0.000 12 0.012 0.0032 0.0035 0.0036

a
+
1 , P, f2, F 0.000 040 0.000 080 0.000 61

a1(1420)
+
, P, f0, P 0.0017 0.0017 0.000 63 0.0017 0.0019 0.0070 0.0016 0.0017 0.0026

a1(1640)
+
, P, ρ

0
, S 0.30 0.29 0.28 0.29 0.0080 0.015 0.30 0.25 0.19 0.12 0.16 0.054

a1(1640)
+
, P, ρ

0
, D 0.000 22 0.000 22 0.000 18 0.000 22 0.0030 0.000 87 0.000 19 0.0037 0.019 0.016 0.043 0.029

a1(1640)
+
, P, f2, P 0.000 15 0.000 15 0.000 069 0.000 15 0.0061 0.048 0.000 12 0.000 79 0.013 0.0015 0.000 63 0.0094

a1(1640)
+
, P, f2, F 0.000 82 0.000 63 0.000 44

a2(1320)
+
, D, ρ

0
, D 0.000 19 0.000 016 0.000 22 0.0021 0.000 054

π(1300)
+
, S, (ππ)S , S 1.3 1.3 1.0 1.3 0.0018 0.003 1.3 1.2 0.0077

π(1300)
+
, S, ρ

0
, P 0.041 0.04 0.029 0.040 0.011 0.017 0.041 0.033 0.045

π2(1670)
+
, D, (ππ)S , D 0.044 0.025 0.0061 0.0034 0.053

π2(1670)
+
, D, ρ

0
, P 0.0088 0.0049 0.000 90 0.071 0.048

π2(1670)
+
, D, ρ

0
, F 0.011 0.0063

π2(1670)
+
, D, f2, S 0.0016 0.0030 0.000 015 0.0045 0.0025

π2(1670)
+
, D, f2, D 0.0021 0.0059 0.020 0.0068 0.0029

π(1800)
+
, S, f0(1500), S 0.036 0.035 0.021 0.035 0.027 0.019 0.035 0.046 0.14 0.10 0.014 0.053

ρ
0
, ρ

0
, S 0.13 0.13 0.11 0.13 0.45 0.69 0.13 0.14 0.32 0.59 0.15

ρ
0
, ρ

0
, P 0.000 64 0.000 63 0.000 13 0.000 63 0.0032 0.021 0.000 59 0.014 0.026 0.037 0.014 0.000 63

ρ
0
, ρ

0
, D 0.23 0.23 0.16 0.23 0.073 0.20 0.23 0.19 0.24 0.28 0.0040 0.15

(ππ)S , (ππ)S , S 2.9 2.8 2.2 2.8 0.0011 0.0016 2.9 2.9 0.076 0.069 0.000 76 0.0018
(ππ)S , f0, S 3.4 3.3 2.7 3.3 0.013 0.048 3.4 3.9 0.023 0.29 0.0033 0.064
(ππ)S , f2, D 0.002 0.002 0.0027 0.0020 0.020 0.0049 0.0020 0.0096 0.017 0.0099 0.0017 0.014
f0, f0, S 2 1.9 1.5 1.9 0.014 0.10 2.0 2.1 0.066 0.18 0.019 0.11
f2, f2, S 0.015 0.015 0.010 0.015 0.0091 0.036 0.015 0.015 0.016
f2, f2, P 0.000 19
f2, f2, D 0.000 96
f2, f2, F 0.000 005

ln L 50016.82 50135.60 50489.97 50016.82 41078.51 41136.89 50035.58 51540.20 45597.58 22199.46 48505.45 50309.30

χ
2

NDF
3.13 3.09 2.96 3.13 3.12 2.71 4.08 4.48 5.44 3.07

Table 10.4: Fit fraction results and goodness of fit.
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1.000

1.000 0.109

1.000 0.337 0.166

1.000 0.225 0.239 0.061

1.000 0.021 0.037 0.044 0.011
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1.000 0.095 0.186 0.085 0.236 0.123 0.130 0.131 0.057 0.087 0.220 0.103 0.388

1.000 0.001 0.001 0.001 0.194 0.250 0.063 0.002 0.002 0.000 0.001 0.001 0.001 0.001

1.000 0.002 0.027 0.162 0.500 0.234 0.417 0.384 0.124 0.124 0.033 0.177 0.541 0.578 0.195

1.000 0.062 0.001 0.055 0.056 0.060 0.023 0.053 0.097 0.675 0.674 0.564 0.173 0.087 0.091 0.019

1.000 0.038 0.014 0.001 0.075 0.018 0.046 0.052 0.037 0.061 0.042 0.044 0.017 0.054 0.032 0.010 0.061

1.000 0.029 0.950 0.068 0.001 0.038 0.045 0.061 0.019 0.051 0.117 0.740 0.739 0.693 0.145 0.086 0.093 0.010

1.000 0.898 0.033 0.748 0.066 0.001 0.025 0.034 0.052 0.016 0.044 0.102 0.764 0.763 0.807 0.075 0.078 0.085 0.011

(ππ)ₛ, (ππ)ₛ, S

(ππ)ₛ, f₀, S
(ππ)ₛ, f₂, D

f₀, f₀, S
ρ⁰, ρ⁰, S

ρ⁰, ρ⁰, P
ρ⁰, ρ⁰, D

f₂, f₂, S
a₁⁺, P, ρ⁰, S

a₁⁺, P, ρ⁰, D

a₁⁺, P, (ππ)ₛ, P

a₁⁺, P, f₂, P
π(1300)⁺, S, (ππ)ₛ, S

π(1300)⁺, S, ρ⁰, P

π(1800)⁺, S, f₀(1500), S

a₁(1420)⁺, P, f₀, P

a₁(1640)⁺, P, ρ⁰, S

a₁(1640)⁺, P, ρ⁰, D

a₁(1640)⁺, P, f₂, P

0.109

0.337

0.225

0.021

0.575

0.492

0.088

0.252

0.194

0.151

0.076

0.095

0.001

0.002

0.062

0.038

0.029

0.898

0.166

0.239

0.037

0.034

0.576

0.075

0.160

0.417

0.176

0.029

0.186

0.001

0.027

0.001

0.014

0.950

0.033

a₁(1640)⁺, P, f₂, P

a₁(1640)⁺, P, ρ⁰, D

a₁(1640)⁺, P, ρ⁰, S

a₁(1420)⁺, P, f₀, P

π(1800)⁺, S, f₀(1500), S

π(1300)⁺, S, ρ⁰, P

π(1300)⁺, S, (ππ)ₛ, S

a₁⁺, P, f₂, P

a₁⁺, P, (ππ)ₛ, P

a₁⁺, P, ρ⁰, D

a₁⁺, P, ρ⁰, S

0.061

0.044

0.240

0.034

0.036

0.030

0.133

0.153

0.097

0.085

0.001

0.162

0.055

0.001

0.068

0.748

0.011

0.067

0.061

0.409

0.019

0.052

0.039

0.162

0.236

0.194

0.500

0.056

0.075

0.001

0.066

0.019

0.250

0.183

0.143

0.015

0.201

0.023

0.123

0.250

0.234

0.060

0.018

0.038

0.001

0.074

0.543

0.260

0.112

0.026

0.020

0.130

0.063

0.417

0.023

0.046

0.045

0.025

0.239

0.564

0.078

0.182

0.002

0.131

0.002

0.384

0.053

0.052

0.061

0.034

0.162

0.294

0.109

0.087

0.000

0.124

0.675

0.061

0.051

0.016

0.306

0.503

0.743

0.105

0.057

0.002

0.124

0.097

0.037

0.019

0.052

0.159

0.076

0.220

0.001

0.033

0.674

0.042

0.117

0.044

0.147

0.103

0.001

0.177

0.564

0.044

0.740

0.102

0.388

0.001

0.541

0.173

0.017

0.739

0.764

0.001

0.578

0.087

0.054

0.693

0.763

0.195

0.091

0.032

0.145

0.807

0.019

0.010

0.086

0.075

0.061

0.093

0.078

0.010

0.085

0.011

f₂, f₂, S

ρ⁰, ρ⁰, D

ρ⁰, ρ⁰, P

ρ⁰, ρ⁰, S

f₀, f₀, S

(ππ)ₛ, f₂, D

(ππ)ₛ, f₀, S

(ππ)ₛ, (ππ)ₛ, S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.4: Overlap integrals of the components used in the baseline fit (A). Large overlap integrals close to 1 imply
that the components look very similar.
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10.5 Uncertainties

The statistical uncertainties of the fit fractions are evaluated with a MCMC study.
The systematic influence of the BDT cut on the fit fractions is studied.

10.5.1 Statistical uncertainties

The statistical uncertainties for the fit fractions can be determined as follows: MI-
NUIT gives statistical uncertainties for the real and imaginary parts of the free am-
plitudes. They are interpreted as Gaussian probability density functions (PDFs)
and used as priors for a MCMC. It samples from the priors, i.e. it repeatedly
draws the free amplitudes from the Gaussian PDFs, and histograms the resulting
fit fractions. These histograms now represent the PDFs of the fit fractions. A
Gaussian fit to these PDFs yields the statistical uncertainties.

The correlations between the free amplitudes are not taken into account, so
this procedure yields an upper bound, and the mean values can be slightly shifted
when compared to the original fit fraction results.

The results are summarized in Tab. 10.5. The uncertainties are in the single
digit percent range for the larger fit fractions, and increase to 100 % or more for
the smallest fit fractions. Keep in mind that a fit fraction of 0.001 corresponds
to only 140 events. The statistical uncertainties are small in comparison to the
variations of the fit fractions between the different fits.
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(A) (C) (D) (E)

a+1 , P, ρ
0, S 0.3485 ± 0.0095 0.499 ± 0.020 0.3522 ± 0.0063 0.012 17 ± 0.000 08

a+1 , P, ρ
0, D 0.0305 ± 0.0033 0.0403 ± 0.0083 0.0296 ± 0.0017 0.012 18 ± 0.000 33

a+1 , P, (ππ)S , P 0.369 ± 0.016 0.469 ± 0.017 0.3765 ± 0.0089 0.2298 ± 0.0024

a+1 , P, f2, P 0.002 46 ± 0.001 40 0.0015 ± 0.0011 0.001 42 ± 0.000 43 0.016 65 ± 0.000 59

a1(1420)+, P, f0, P 0.002 16 ± 0.000 62 0.000 68 ± 0.000 23 0.0030 ± 0.0029 0.0019 ± 0.0001

a1(1640)+, P, ρ0, S 0.298 ± 0.014 0.276 ± 0.020 0.3012 ± 0.0083 0.008 08 ± 0.000 17

a1(1640)+, P, ρ0, D 0.000 36 ± 0.000 36 0.000 27 ± 0.000 33 0.000 24 ± 0.000 15 0.003 07 ± 0.000 14

a1(1640)+, P, f2, P 0.000 49 ± 0.000 39 0.000 21 ± 0.000 18 0.000 51 ± 0.000 43 0.006 21 ± 0.000 22

π(1300)+, S, (ππ)S , S 1.325 ± 0.072 1.038 ± 0.052 1.329 ± 0.024 0.001 92 ± 0.000 15

π(1300)+, S, ρ0, P 0.0414 ± 0.0036 0.0323 ± 0.0035 0.0420 ± 0.0016 0.0112 ± 0.0011

π(1800)+, S, f0(1500), S 0.0366 ± 0.0044 0.0209 ± 0.0030 0.0364 ± 0.0014 0.027 20 ± 0.000 39

ρ0, ρ0, S 0.1312 ± 0.0075 0.1139 ± 0.0079 0.1370 ± 0.0043 0.4613 ± 0.0033

ρ0, ρ0, P 0.001 00 ± 0.000 63 0.000 24 ± 0.000 25 0.000 82 ± 0.000 45 0.003 06 ± 0.000 37

ρ0, ρ0, D 0.2338 ± 0.0094 0.1624 ± 0.0083 0.237 ± 0.030 0.0741 ± 0.0012
(ππ)S , (ππ)S , S 2.89 ± 0.12 2.23 ± 0.13 2.919 ± 0.052 0.001 087± 0.000 065
(ππ)S , f0, S 3.38 ± 0.24 2.61 ± 0.24 3.447 ± 0.063 0.013 41 ± 0.000 59
(ππ)S , f2, D 0.002 13 ± 0.000 49 0.002 83 ± 0.000 51 0.002 10 ± 0.000 22 0.020 66 ± 0.000 54
f0, f0, S 1.98 ± 0.10 1.571 ± 0.083 1.991 ± 0.037 0.013 77 ± 0.000 28
f2, f2, S 0.000 69 ± 0.000 23 0.000 35 ± 0.000 12 0.000 698± 0.000 099 0

Table 10.5: Statistical uncertainties of the fit fractions.
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10.5.2 Fits with different BDT cuts

The systematic uncertainties due to the choice of the BDT cut are evaluated. Fit
(I) is repeated wit a higher BDT cut of 0.15 (Fit (J)), and with a lower BDT cut
of 0.10 (fit (K)). The results are shown in Fig. 10.5.

Fit (I) and (J) yield similar results for the components with fit fractions greater
than 0.1, except for the (ππ)S, f0, S component, which is an order of magnitude
larger in fit (J). The fit fraction of the background increases slightly in fit (J), even
though there should be less background in the sample with the higher BDT cut.
Most of the smaller components have smaller fit fractions in fit (J), but they suffer
from larger statistical uncertainties, since the higher BDT cut yields only half as
many events. Fit (J) has a larger reduced χ2 than fit (I).

In fit (K), the background has a higher fit fraction of 0.58. While it should
contain more background than fit (I), the value is still much higher than the 12 %
expected from the event selection (cf. Tab. 8.6). The (ππ)S, (ππ)S-like components
are strongly suppressed, and the a+1 , P, (ππ)S, P component seems to vanish almost
completely. The goodness of fit is poor, with a reduced χ2 of 5.44.

This study shows that a BDT cut of 0.12 is a reasonable choice. A higher BDT
cut does not change the results significantly, but yield much less events, while a
lower BDT cut seems to add more background which disturbs the fit drastically.

10.6 Discussion

I will discuss the results and compare them to previous measurements: Two PWAs
by the FOCUS [46] and CLEO-c [26] collaborations, which are based on 6360±115
events, and 7250 ± 56 (stat) ±46 (syst) events, respectively; and results from
diffractive production of π− π− π+ final states from the COMPASS collaboration
[10], which are based on 6.4× 109 events.

10.6.1 Background

The fitted background admixture (except in fit (L)) is around 5 times as large
as expected from the event selection. This points out that part of the signal is
mistaken as background, or the model is missing a flat component. On the other
hand, fit (C) and (H) show that the issue can be partly remedied, and the goodness
of fit can be improved, by freeing additional parameters of the components, and
by adding more components to the model.

Fits (J) and (K) suggest that the description of the background as a single flat
component is simplistic, and some components of the background are mistaken as
signal components.
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Figure 10.5: Fit fractions for fits with different BDT-cut values. Lines connecting
the points are guides to the eye.
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A MC study shows that the background consists of many components, but
often pions have a common mother resonance. E.g. around 5 % of the pion pairs
originate from a ρ0 decay.

Adding such an incoherent ρ0 background (fit (L)), brings down the flat back-
ground to a level perfectly consistent with the expectation from the event selection.
However, the ρ0 background contribution is now too large. It has a fit fraction of
28 % instead of the expected 0.4 %. This suggests that there is now significant leak-
age of signal components to the ρ0 background. The total amount of background
is still overestimated.

I also tried to deduce an effective background distribution from events with
low BDT values. However, the BDT cut affects the background distribution, and
different slices of BDT values look different.

10.6.2 a1

The a+1 , P, ρ
0, S should be the dominant component with around 40 % fit fraction,

according to previous analyses. In the fits without model selection, the fit fractions
are between 27 % and 49 %, which is more or less compatible with the FOCUS
and CLEO-c results ((43.3 ± 2.5 ± 1.9)% and (36.7 ± 2.4)%). COMPASS, which
measured the relative intensities of three-pion final states, measured a relative
intensity of 32.7 % for the ρ0πS component.

However, the a1(1640)+, P, ρ0, S has to be included in this discussion. It has
a large overlap integral with the a+1 , P, ρ

0, S, and therefore these components look
very similar. In the fits without model selection, it has a similar fit fraction as the
a+1 , P, ρ

0, S. In the fits (E) and (F), the fit fraction of both components are strongly
suppressed by the model selection, in spite of the prior for the a+1 , P, ρ

0, S fit
fraction.3 This suggests that a large part of the fit fraction of the a1(1640)+, P, ρ0, S
in the fits without model selection originates from destructive interference with the
a1(1640)+, P, ρ0, S.

On the other hand, in fit (L), the a+1 , P, ρ
0, S fit fraction is 25 %, while the

a1(1640)+, P, ρ0, S fit fraction is only 5.4 %. Part of the signal in fit (L) might also
have leaked to the ρ0 background component.

The a+1 , P, ρ
0, P component is suppressed with respect to the S component by

about a factor of 10 in most fits, which is also consistent with the results from
FOCUS and COMPASS.

3cf. Sec. 9.9. The actual lnL penalties for small fit fractions are O(10). This is small in
comparison to the total lnL, and the differences in lnL between the fits.
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The a+1 , P, (ππ)S, P has a fit fraction of around 37%. This result is quite
consistent across all fits, and in the same region as the a+1 , P, ρ

0, S fit fraction. In
the other measurements, the a+1 , P, (ππ)S, P is always significantly smaller than
the a+1 , P, ρ

0, S. FOCUS and CLEO-c measured fit fractions of (8.3± 0.7± 0.6)%
and (10.9 ± 1.5)% for a+1 , P, σ, P . However, the σ or f0 (500 ) is not very well
defined, therefore we replaced it with the more general (ππ)S. COMPASS, which
used the same (ππ)S paremeterization, also measured a small relative fit fraction
of only 8.0 %.

All other a1 components, as well as the heavier a1(1420)+ and a1(1640)+, have
comparably small fit fractions, which is also consistent with the other measure-
ments.

In conclusion, the a1 results are comparable—by their order of magnitude—
with other analyses, except for the a+1 , P, (ππ)S, P , which seems to be too large.

10.6.3 (ππ)S, (ππ)S-like

(ππ)S, f0, S; (ππ)S, (ππ)S, S; f0, f0, S; and π(1300)+, S, (ππ)S, S have either large
fit fractions greater than 100 %, which is unphysical, or very small fit fractions when
the model selection is enabled. This makes is hard to discuss their fit fractions
quantitatively.

10.6.4 ρ0

The ρ0, ρ0 components have a total fit fraction around 34%, while FOCUS and
CLEO-c measured (24.5± 1.3± 1.0)% and 22.7%, so the results are comparable in
this regard. FOCUS measured in the transversity basis, so we can only compare
the perpendicular component (which corresponds to the P component). FOCUS
and CLEO-c measured (6.4 ± 0.6 ± 0.5)%) and (7.1 ± 0.5)%, while I measured
below 0.1%. This is a significant discrepancy.

The D wave is not suppressed with respect to the S wave, as one would expect
due to the higher relative angular momentum. In most fits, it even has the larger
fit fraction. This is consistent with the CLEO-c results, where the D wave is also
enhanced.

10.6.5 Heavier resonances

The π2(1670)+ is just below threshold, the π(1800)+ and f2, f2, S are above thresh-
old. π2(1670)+ and f2 also have a large spin of 2. Therefore we expect them to
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have small fit fractions. The resulting fit fractions are in the percent range and
below, are consistent across the fits, and consistent with CLEO-c results.
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Conclusion and outlook

I performed two classes of fits, with and without model selection. There are two
groups of similar components with large overlap integrals: The (ππ)S, (ππ)S-like
components, and the a+1 , P, ρ

0, S-like components. These components, especially
the (ππ)S, (ππ)S-like, have large fit fractions in the fits without model selection.
This is because the fit cannot distinguish them well enough, and creates large
destructive interference between those components, which yields slightly larger
likelihood values, but also large total fit fractions O(10).

The model selection penalizes large fit fractions, so mostly the (ππ)S, (ππ)S-like
and a+1 , P, ρ

0, S-like components get much smaller fit fractions, which also brings
the total fit fractions much closer to 1.

In this regard, all fit results are reasonably consistent with each other, and the
differences between the fits with and without model selection are comprehensible.

The other components are effected much less by the model selection, and get
similar fit fractions in both classes of fits. When compared to previous measure-
ments, my results are in the same ballpark, except for the a+1 , P, (ππ)S, P , for which
I measure a larger fit fraction, and the ρ0, ρ0, S, which is strongly suppressed in
my fits.

The model of the decay is not perfect. This is most apparent from the fit
fraction results of the background. It is inconsistent with the expectations from
the model selection. Even after adding another background component, the total
background fit fraction is still too high. On the other hand, this implies that a
significant portion of the signal is fitted as background. The model could possibly
be improved by adding more signal and background components, but also the
existing components could be improved. The Breit-Wigner mass shape is suited
to describe narrow resonances, but the heavier charged resonances are relatively
broad.
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PWA is a complex analysis technique, and very hard to master. Consider the
two previous analyses of the same channel: They roughly agree on the fit fractions
for the a1 and the ρ0ρ0 components, but otherwise their results are incompatible,
if only due to their different choice of model components. The COMPASS data
show that already the three-pion subsystem has a very rich resonant structure.
Even with several billion events, it is not straightforward to analyze.

The model obviously has a big influence on the results. To eliminate any
bias from the experimenter, every component which is possible according to the
conservation laws should be included, and the fit and the model selection should
figure out which components to take into account. But even then, not all possible
resonances are well established, and some have large uncertainties of their masses
and widths. Moreover, the mathematical description of the mass shapes is not
trivial. Possible openings of other channels and varying partial widths in the
mass range have to be taken into account. Another approach would be a model-
independent fit, where the mass shapes are fully determined by the fit. This,
however, comes at the cost of many more model parameters, and ambiguities
which would otherwise be resolved by the isobar model.

In the first part of my thesis it became clear that an open-source framework
like Genfit, with a strong user and developer base, and validated and tested code,
brings great benefits for the whole community. The same is true for PWA. While
YAP certainly is not as successful as Genfit in this regard, there are other PWA
frameworks, like ROOTPWA [4] or ComPWA [5], which are actively developed
and maintained. In hindsight, it might have been more profitable—for our own
analyses and the PWA community—to use and contribute to an existing PWA
framework instead of writing our own from scratch.

The Belle II experiment is already running, and in within a few years it will
collect 40 times more data than its predecessor. This makes it even more important
to have a set proven tools and accurate models for physics analyses. At the same
time, it will enable much more precise measurements, and searches for new physics
beyond the standard model.
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Own contributions

Genfit

My work on Genfit started as a technical student in 2010, when I developed the
Runge Kutta track representation (RKTrackRep), based on a Runge Kutta code
used in Compass, and material effect calculation from GEANE [22]. This work
was supervised by Christian Höppner (Technische Universität München (TUM)).

During my Diploma thesis at TUM, I wrote GFRave, an interface to the vertex
fitting framework Rave.

From the start of my doctoral thesis in 2012 until 2016, I was the maintainer
of Genfit and a member of the Belle II tracking group.

Driven by the requirements of Belle II, I started working on Genfit 2 together
with Tobias Schlüter (Ludwig-Maximilians-Universität München). I did the main
work of designing and implementing the new software and many new features, like
the Kalman fitter with reference track.

We also adapted the Belle II analysis framework (basf2) tracking code to work
with the new version, and in 2014 Belle II successfully switched to Genfit 2.

I presented Genfit at the following conferences:

• DPG Frühjahrstagung, Frankfurt, Germany, 2014.

• DPG Frühjahrstagung, Mainz, Germany, 2014.

• 16th International workshop on Advanced Computing and Analysis Tech-
niques in physics research (ACAT), Prague, Czech Republic, 2014.

Together with T. Schlüter, I published a conference proceeding, which has over 30
citations:

• J. Rauch and T. Schlüter. GENFIT – a Generic Track-Fitting Toolkit.
J. Phys. Conf. Ser., 608(1):012042, 2015.
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I am co-author of the following papers:

• T. Bilka, G. Casarosa, R. Frühwirth, P. Kodys, P. Kvasnicka, J. Lettenbich-
ler, E. Paoloni, J. Rauch, and T. Schlüter.
Demonstrator of the Belle II online tracking and pixel data reduction on the
High Level Trigger system.
2014 19th IEEE-NPSS Real Time Conference, pages 1–4, 2014.

• T. Bilka, N. Braun, T. Hauth, T. Kuhr, L. Lavezzi, F. Metzner, S. Paul, E.
Prencipe, M. Prim, J. Rauch, J. Ritman, T. Schlüter, and S. Spataro.
Implementation of GENFIT2 as an experiment independent track-fitting
framework. 2019.
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YAP

Together with Daniel Greenwald (TUM), I developed Yet Another Partial Wave
Analysis Toolkit (YAP). The bulk of coding was done from 2015 to 2017, and I
contributed about half of the code.

We presented YAP at the DPG Frühjahrstagung, Hamburg, Germany, 2016.

D0 → π+π−π+π−

D. Greenwald developed frameworks for event selection and analysis on top of the
Belle analysis framework (basf). Based on them, I developed the event selection,
fits of the signal- and background-shapes and the event selection with boosted
decision trees (BDTs).

I developed a signal model in YAP, used the Bayesian Analysis Toolkit (BAT)
for fitting, and further modified YAP according to my needs during the analysis.

I presented my analysis at the following conferences:

• 53rd International Winter Meeting on Nuclear Physics, Bormio, Italy, 2015.

• DPG Frühjahrstagung, Wuppertal, Germany, 2015.

• 9th Annual Meeting of the Helmholtz Alliance “Physics at the Terascale”,
Hamburg, 2015.

• DPG Frühjahrstagung, Hamburg, Germany, 2016.

• DPG Frühjahrstagung, Münster, Germany, 2017.

I am a co-author of this conference proceeding:

• D. Greenwald, A. Hönle, D. Levit, S. Paul, J. Rauch, and A. Tsipenyuk.
Singly Cabibbo Suppressed Charm Decays: CP Violation and Amplitude
Analysis.
PoS, Bormio 2015(054)
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[41] R. E. Kàlmàn. A New Approach to Linear Filtering and Prediction Problems.
Trans. ASME, 82(Series D):35–45, 1960.

[42] Kim, Doris Yangsoo. The Software Library of the Belle II Experiment. ICHEP
2014, Valencia, Spain.

101

https://github.com/GenFit/GenFit
https://github.com/GenFit/GenFit


BIBLIOGRAPHY

[43] C. Kleinwort. General Broken Lines as advanced track fitting method. Nucl.
Instr. Meth. Phys. Res. A, 673:107–110, 2012.

[44] D. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum.
Meth., A462:152–155, 2001.

[45] Peter Lichard and Martin Vojik. An Alternative parametrization of the pion
form-factor and the mass and width of rho(770). 2006.

[46] J. M. Link et al. Study of the D0 → π−π+π−π+ decay. Phys. Rev. D,
75:052003, 2007.

[47] Moritz Nadler. Material estimation and low momentum tracking in Belle II.
Dissertation, Institut für Hochenergiephysik, 2013.

[48] K. A. Olive et al. Review of Particle Physics, volume 38. 2014.

[49] panda Collaboration. panda: Technical Progress Report. GSI FAIR, 2005.

[50] Trevor Park and George Casella. The Bayesian Lasso. Journal of the American
Statistical Association, 103(482):681–686, 2008.
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Besonderer Dank gilt auch den Kollegen vom KIT, die Genfit weiter pflegen,
allen voran Markus Prim und Nils Braun.
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