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Abstract

Simulating 3D waves crashing against large 3D solid structures, such as ship hulls, piers,
or large coastlines in the case of a tsunami, require a large number of cells even for a low-
accuracy simulation. Traditional methods using the Navier-Stokes equations with a high
number of cells require considerable amount of computational resources, and are, often,
unfeasible. The 2D Shallow Water Equation (SWE) model delivers satisfactory simulations
for the same scenarios, using a much lower number of cells, and therefore, at a lower cost.
However, as a 2D model, it fails to resolve the 3D effects (e.g. near obstacles). This leads
us to think of a solver in which we could combine the low cost of SWE with the capability
of the Navier Stokes Equations to capture 3D effects.

Previous research [14

.

] proposed a solver in which the domain is partitioned into 2D and
3D subdomains solved by OpenFOAM and coupled using the same framework to con-
struct the global solution. In this thesis, we build upon this idea and develop a similar
environment, moving the SWE computations outside of the OpenFOAM framework to a
solver developed at the TUM SCCS [17

.

], written in C++. On the 3D side, we continue to
use interFoam as the driving solver. We implement the coupling of the solvers using the
preCICE library by developing a new preCICE adapter for the SWE solver and by extend-
ing the preCICE adapter for OpenFOAM.

This thesis builds the foundations of 2D-3D fluid-fluid simulations using preCICE, fo-
cusing on breaking-dam and open-channel-flow scenarios as validation cases. We com-
pare partitioned to monolithic simulations, and observe qualitatively good results, with
the error depending on the direction of the coupling, which in turn depends on the char-
acterization of the flow (supercritical or subcritical).
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1. Introduction

1.1. Introduction

Multi-physics problems have been a research field of great interest in the past decade,
offering numerous visions, formulations and approaches. The development of tools for
multi-physics simulations aims to bring these simulations into a simpler implementation
for the user, without compromising computational resources and precision. In the liter-
ature we can find a spectrum of approaches for multi-physics simulations, ranging from
fully partitioned to fully monolithic simulations. A literature review can be found in the
dissertation[21

.

] of Benjamin Uekermann. On the one hand, the monolithic approach aims
to solve a coupled system of equations on a single solver, and on the other hand, the
partitioned approach aims to decouple the system of equations into their single-physics
properties and equations, to an extent of data exchange between specialized software for
each of the physical domains of a multi-physics application.

The partitioned approach allows us to treat each domain of the multi-physics problem
independently; therefore, it is possible to have independent simplifications, assumptions
and even solution methods for each domain with minimum invasion on the remaining
domain.

In regard to fluid dynamics applications, Florian Mintgen’s dissertation[14

.

] takes advan-
tage of the partitioned approach by reducing (computational) complexity on solutions for
environmental free-surface flows by coupling a simple, yet general, 2-D model to a more
exact, yet expensive and more complicated, 3-D model within critical sections across the
whole domain. Continuing with this idea, this thesis will seek to extend such a partitioned
approach for coupling a free-surface flow solution for specifically aimed solvers between
a 2D and 3D domain. Furthermore it will serve as an investigation and collaboration line
to preCICE as the multi-physics open-source coupling tool.

1.2. Free-Surface Flow

Free-surface flow refers to the flow of liquids open to the atmosphere or in partially filled
conduits, and is characterized by the presence of a liquid-gas interface called the free-
surface. Most natural free-sufcace flows include flow around ships, floods, river flows,
aqueducts, hydroelectric dam spillways, interaction of waves with piers, soil erosion, etc.
Human-made free-surface flow systems include irrigation systems, sewer lines, drainage
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1. Introduction

ditches, and gutters, and the design of such systems is an important application area of
engineering. [4

.

].

Simulations for 3D free-surface flows are characterized not only by their degree of com-
plexity for its derivation and implementation, but they also demand considerable compu-
tational power for large domains. The are also subjected to a number of considerations,
that dictate how the flow should be treated. Among these considerations we find:

• domain’s spatial dimensions

• interaction with irregularities upstream and downstream, such as obstacles along the
flow or narrowing of the flume’s edges

• interaction with external forces

• energy exchange

• sea-floor conditions, etc.

In general, to the interaction of the fluid with the surroundings is referred as boundary con-
ditions, and in some cases they could be unknown.

The mathematical model that describes 3D free-surface flows, or any fluid motion, is
constituted by the Navier-Stokes equations, a set of 3D, non-linear, partial differential equa-
tions (PDEs). By the complex nature of the 3-dimensional PDE system, an analytical solu-
tion is not available, so domain decomposition and space and time discretization methods
constitute an alternative numerical solution. The accuracy of the numerical solution re-
lies on the order of the discretization scheme, and more significantly, on the number of
cell/nodes/elements of the mesh , which grows exponentially with the number of dimen-
sions. In the case of large 3D domain scales, the computational complexity would make it
infeasible to obtain a numerical solution.

1.3. Shallow Water Equations

Aiming to decrease the computational complexity concerning the number of nodes, the
Shallow Water Equations (SWE) model reduces the 3D Navier-Stokes equations to a 2 di-
mensional set of equations. The SWE are a set of partial differential equations, derived
from the physical conservation laws for mass and momentum, that provide an accurate
solution under the assumption that the longitudinal dimensions are much greater than
the vertical dimension. The model detaches the calculation of the vertical velocity from
the equations system, and focuses on the longitudinal velocities instead, resulting in a 2D
equations system. Mintgen provides a description for the properties, characteristics and
limitations of SWE in a detailed manner, some of which will be further addressed and

2



1.4. Motivation for this thesis

extended for a deeper analysis in Section 2.2

.

. For now, it suffices to remark that the afore-
mentioned assumption about longitudinal and vertical scales will not be valid for flow
across critical sections (such as irregularities or obstacles on the stream), and in this case,
the 3D Navier-Stokes equations would need to be solved at their full extension for obtain-
ing meaningful simulation results.

1.4. Motivation for this thesis

Being aware of the limitations and advantages of free-surface flow simulations under both
the 3D-Navier Stokes Equations model and the Shallow Water Equations model, it follows to
explore the possibility of coupling both approaches, so the simulation for larger 3D free-
surface flows becomes feasible.

1.4.1. Previous work

In his dissertation [14

.

], Florian Mintgen developed shallowInterFoam as a free-surface flow
solver, that makes use of the advantages of SWE and the Reynolds Averaged Navier Stokes1

.

(RANS) models in a partitioned fashion. The solver’s implementation uses the 2D SWE
model, where the spatial assumptions for SWE hold and therefore allowing minimal com-
putational demand, and exchanges the calculated variables, usually the pressure and ve-
locity, with the 3D RANS solver when the assumption of SWE model does not hold any-
more. Such a Fluid-Fluid (FF) coupling scheme2

.

used in shallowInterFoam has been de-
veloped in OpenFOAM (Open-source Field Operation And Manipulation), a numerical
solver toolbox developed mainly for Computational Fluid Dynamics (CFD) applications,
further discussed in Section 3.3

.

.

The implementation of shallowInterFoam uses its own coupling techniques, making the
solver efficient, accurate and robust under the OpenFOAM framework with a Finite Vol-
ume Method discretization scheme and with unstructured meshes. This means, however, a
lack of flexibility for exporting this particular Fluid-Fluid coupling scheme for free-surface
flows to different solvers, toolboxes, engines, or even new implementation techniques out-
side from the OpenFOAM framework.

The work done by Mintgen serves as a good reference, from the mathematical and con-
ceptualization point of view, to implement such a coupling scheme to different frame-
works, other than OpenFOAM, offering the 2D - 3D free-surface solution more extension
and flexibility.

1Navier-Stokes equations for modelling turbulent flows.
2In contrast to the usually used terms of Conjugate Heat Transfer (CHT) or Fluid Structure Interaction (FSI),

where temperature and deformation are the variables of interest respectively in a multi-physics problem,
Fluid-Fluid coupling refers usually to the pressure and velocity as the variables of interest.

3



1. Introduction

In order to be able to use solvers from different frameworks as a partitioned approach
for Fluid-Fluid coupling, a third-party coupling tool between the solvers ought to be im-
plemented. Such is the case of the work [7

.

] done by Christian Osse, where the shallow-
InterFoam solver was de-coupled into their base-solvers, shallowFoam and interFoam, both
under the OpenFOAM framework . In this case, the coupling is carried out externally with
preCICE, a multi-physics coupling library developed at the Technical University of Mu-
nich, the University of Stuttgart and the Eindhoven University of Technology. A further
implementation[6

.

] of preCICE as the driving coupling tool for Fluid-Fluid applications is
done by Chourdakis et al., where flow from 3D and 1D domains were coupled together,
also under the OpenFOAM framework.

1.4.2. Objectives of this thesis

The previously mentioned works demonstrate the feasibility of coupling Fluid-Fluid ap-
plications from different dimensional domains. They also show the feasibility of using
preCICE as the driving coupler, which has proven its usefulness under minimum inva-
sion implementation and showing its flexibility. The aforementioned implementations
are, however, under the OpenFOAM framework, and so far there is no implementation
that has been carried out on a different framework. Therefore, this thesis will take one step
further and show that Fluid-Fluid coupling across different dimensions using preCICE as
the driving coupling tool can be carried out in different frameworks, other than Open-
FOAM solely, hence providing a more flexible approach.

The implementation of this thesis will rely mostly on some of the formulations and re-
sults found in Mintgen’s dissertation, and will focus on coupling the 2-dimensional SWE
model with the 3-dimensional Navier-Stokes equations model. In case of the 3D domain, it
makes sense to continue using OpenFOAM’s free-surface 3D solver, interFoam, since it has
proven accuracy and robustness as will be seen in Section 3.3

.

. For the 2D domain case, an
SWE solver written in C++ will be used. More about the 2D SWE solver will be mentioned
in Section 3.2

.

Using preCICE as the driving coupling tool for this topic has considerable benefits. To
this date, preCICE has ready-to-use adapters for OpenFOAM, a high-level API for C++,
and it is rapidly increasing not only its bindings to different languages, but also its capa-
bility for addressing diverse multi-physics problems, thus making it a more flexible viable
tool for this research field. Therefore, choosing preCICE as the driving coupler for Fluid-
Fluid coupling will contribute considerably to the development of preCICE, and conse-
quently to the multi-physics research field. A formal introduction to preCICE is presented
in Section 3.1

.

.

4



2. Theory

This chapter will introduce the theoretical foundations for obtaining solutions for surface
flow, previously introduced in Section 1.2

.

. The chapter is divided into two main sec-
tions: Section 2.1

.

, introducing the Navier Stokes equations, the foundation basis for fluid
mechanics, and Section 2.2

.

, that presents a basic derivation of the Shallow Water Equa-
tions model from the Navier-Stokes equations. For the former, a detailed description of
the terms of the equations is presented, together with the description of the classification
of the fluids that shall be used for this work, and lastly a description of the method used
for solving such system of equations. For the latter, the specific steps and assumptions
that hold the SWE model as valid will be described, including a description of the solving
method.

2.1. Navier-Stokes and 3D free-surface flows

The 3D Navier-Stokes equations are mainly conformed by the mass conservation equation,

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

and the momentum conservation equations,

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+ µ∇2u +

1

3
µ∇(∇ · u) + ρg (2.2)

where u is the vector velocities, p is the pressure, ρ is the density, ∇ is the gradient op-
erator, ∆ is the Laplacian operator, µ dynamic viscosity and g represents the gravity as a
volume force only in the z direction. In this work, an incompressible Newtonian fluid, and
a transient and laminar flow will be considered. Thus, Equation 2.1

.

simplifies to

∂ u

∂x
+
∂ v

∂y
+
∂ w

∂z
= 0 (2.3)

5



2. Theory

and Equation 2.2

.

simplifies to

∂ u

∂t
+ u

∂ u

∂x
+ v

∂ u

∂y
+ w

∂ u

∂z
+

1

ρ

∂ p

∂x
= ν

[
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

]
∂ v

∂t
+ u

∂ v

∂x
+ v

∂ v

∂y
+ w

∂ v

∂z
+

1

ρ

∂ p

∂y
= ν

[
∂2v

∂x2 +
∂2v

∂y2 +
∂2v

∂z2

]
(2.4)

∂ w

∂t
+ u

∂ w

∂x
+ v

∂ w

∂y
+ w

∂ w

∂z
+

1

ρ

∂ p

∂z
= ν

[
∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2

]
+ g

where u v w the velocity in the x y z directions respectively and ν = µ/ρ is the kinematic
viscosity.

2.1.1. Navier-Stokes Free-Surface Multi-phase Solver

The Navier-Stokes equations model all kinds of fluid motion, and for every kind there is a
method that is derived based the most remarkable features of the flow type we deal with.
In the case of free-surface flow, the Volume-of-Fluid Method (VOF) is chosen for this the-
sis, and corresponds to a volume tracking method. Further references to different approaches
for solving free-surface flows, and also different types of flow, can be found at Mintgen’s
dissertation [14

.

].

The Volume of Fluid (VOF) Method was presented by Hirt & Nichols [10

.

], and started
a new trend in multi-phase flow simulation. It relies on the definition of an indicator
function, that allows us to know whether the cell is occupied by one fluid or another, or
a mix of both. Let us consider a function f that can be defined as having a value of 1 at
any cell that is occupied by a fluid, and 0 otherwise. The average value of f would then
represent the fractional volume of the cell occupied by a fluid. Particularly, a value of 1
would indicate a cell full of fluid, and a value of 0 would mean no fluid on that cell at all.
Therefore, values ranging from 0 to 1 shall represent a free-surface [19

.

]. Such function f
is referred to as a volume indicator function α, representing the volume fraction between
two immiscible fluids, Fluid A and Fluid B, and can take the following values

α(x, t) =


0, Fluid A
1, Fluid B
0 < α < 1, at the interface between Fluid A and Fluid B

Fluid A and Fluid B are typically water(liquid) and air(gas) respectively, hence the solver
is considered to be a multi-phase solver. The VOF method includes a transport equation for
calculating the volume indicator α, expressed as

∂α

∂t
+∇ · (αu) +∇ · (α(1− α)ur) = 0

6



2.2. Shallow Water Equations in 2D free-surface flows

where the third term is considered to be an artificial compression term that acts only in the
interface (0 < α < 1), counteracting the diffusion of α and leading to a well defined repre-
sentation of the interface. The compression velocity ur acts perpendicular to the interface,
and is obtained by multiplying the velocity magnitude |u| at the interface with the normal
vector n∗ of the interface

ur = Cαn
∗|u|

where Cα is a compression coefficient that allows adjustment of the compression magni-
tude [14

.

]. The remaining step is coupling the value of α to the momentum conservation,
Equation 2.1

.

. This is done through the next constitutive equations for the density and the
dynamic viscosity as a function of the volume indicator α as

ρ(α) = αρl + (1− α)ρg (2.5)
ν(α) = ανl + (1− α)νg (2.6)

where the subscripts l and g refer to liquid and gas respectively.

2.2. Shallow Water Equations in 2D free-surface flows

As mentioned in Section 1.3

.

, the Shallow Water Equations (SEW) model aims to reduce
3D Navier-Stokes equations to a 2D system of equations model by following the derivation
discussed in this section in this section.

The SWE are a set of PDEs that describe flow problems, and are derived from the phys-
ical conservation laws for mass and momentum. The SWE hold valid for problems in
which vertical dynamics can be neglected, compared with horizontal effects. The SWE
also constitute a 2D model that is derived from considering ratios between spatial dimen-
sions, depth averaging techniques and special boundary conditions, all of which will be
shown in Section 2.2.1

.

.

Some of the most common applications of SWE include:

• Tsunamis prediction

• Atmospheric flows

• Storm surges

• Flow around structures

On the other hand, the SWE model would not hold as valid when

• 3D effects become essential, such as rotational flow

• viscous effects become considerable

• waves become either too big or too small

7



2. Theory

2.2.1. Shallow Water Equation derivation - Hyperbolic PDEs

This section shows the derivation of the SWE from the 3D Navier-Stokes equations. The
constitutive equations of the SWE model form a system of Hyperbolic partial differential
equations, and as such they provide an expression for calculating the flow velocity in the
form of waves (also referred to as celerity) that will have an influence on the open channel
flow regime, which is essential for the implementation of this work.

We outline the most representative steps and assumptions from the full derivation [8

.

]
[15

.

] of the SWE model. In the full derivation, an incompressible Newtonian fluid and a
transient turbulent flow is considered, in addition to Coriolis forces and sea-bed frictional
and wind frictional effects. For this thesis, however, a simpler model shall be addressed, as
the SWE solver that will be implemented ( Section 3.2

.

) does not take into account viscous
effects, turbulence nor Coriolis forces effects. Therefore, an inviscid incompressible fluid
under a transient and laminar flow will be considered. From these assumptions Equation
2.1

.

simplifies to

∂ u

∂x
+
∂ v

∂y
+
∂ w

∂z
= 0 (2.7)

and Equation 2.2

.

simplifies to

∂ u

∂t
+ u

∂ u

∂x
+ v

∂ u

∂y
+ w

∂ u

∂z
= −1

ρ

∂ p

∂x

∂ v

∂t
+ u

∂ v

∂x
+ v

∂ v

∂y
+ w

∂ v

∂z
= −1

ρ

∂ p

∂y
(2.8)

∂ w

∂t
+ u

∂ w

∂x
+ v

∂ w

∂y
+ w

∂ w

∂z
= −1

ρ

∂ p

∂z
+ g

Equation 2.7

.

can be approximated as U
L + V

L + W
H ≈ 0, where U, V,W are the averaged

horizontal and vertical velocities, and L,H are the averaged horizontal and vertical di-
mensions. We approximate that U ≈ V , hence obtaining

2U

L
+
W

H
≈ 0

The underlying assumption for SWE model is considering that the horizontal dimensions,
x and y, are much greater than the vertical dimension, z thus L� H . From these assump-
tions it then follows

W ≈ −2U
H

L

so W becomes negligible. This assumption allows us to vanish the terms that include the

8



2.2. Shallow Water Equations in 2D free-surface flows

velocity w from Equation 2.8

.

as follows

∂ u

∂t
+ u

∂ u

∂x
+ v

∂ u

∂y
= −1

ρ

∂ p

∂x

∂ v

∂t
+ u

∂ v

∂x
+ v

∂ v

∂y
= −1

ρ

∂ p

∂y
(2.9)

0 = −1

ρ

∂ p

∂z
+ g

The z component of the momentum conservation equation provides a direct solution for
the pressure p as a function of the water height z, including sea floor elevation b (Figure
2.1

.

), and the gravity g. This expression leads to the fundamental formulation of the hydro-
static pressure. Moreover, the vertical velocity component w is not considered anymore,
consequently a 3D equation system becomes a 2D equations system.

Figure 2.1.: Shallow water equations variables. Black surface refers to the sea floor eleva-
tion.

Based on the previous derivation, we observe that the Shallow Water Equations model
holds only where horizontal dimensions are much greater than the vertical dimensions.
An appropriate relation for holding the SWE model as valid is given by H/L = 0.05 [20

.

].

Mass Conservation Equation Depth-Averaging

Integrating Equation 2.7

.

over the depth, following the Leibniz Theorem, the Fundamen-
tal Rule of Integration, the kinematic boundary conditions at the free surface (see [15

.

]),
and assuming that there is no flow across the normal direction of the sea floor, the mass
continuity equation results in∫ b+h

b

(
∂ hu

∂x
+
∂ hv

∂x
+
∂ w

∂z

)
∂z =

∂ hu

∂x
+
∂ hv

∂y
+
∂ h

∂t
= 0 (2.10)

9



2. Theory

Two new variables hu and hv result from depth-integrating the continuity equation, and
they are referred to as discharges on the x and y directions respectively, since it measures
the flow rate of water past a point. Equation 2.10

.

is referred as the depth-integrated
continuity equation and it shows that the difference between the flow into and out of a
volume-control of water happens with a change of the water depth.

Pressure Gradient Depth-Averaging

From Equations 2.9

.

, a differential solution for the pressure was obtained. By integration
from z to H , the following expression for the pressure results as

p = ρg(H − z) (2.11)

where H = b+ h (see Figure 2.1

.

). From the RHS of Equation 2.9

.

, the pressure gradient
shall be obtained. For the x component, it follows as

∂ p

∂x
=
∂ ρg(H − z)

∂x

Performing a depth-averaged integration on the RHS of the obtained expression, and by
means of the chain rule we get∫ H

b
−1

ρ

∂

∂x
ρg(H − z) ∂z = −g∂ H

∂x
(H − b)

= −g∂ b
∂x
− g∂ h

∂x
h

= −g∂ b
∂x
− g ∂

∂x

(
1

2
h2

)
(2.12)

The similar process is followed for the y component. Equation 2.12

.

shows that the pressure
gradient is independent of the variable z, and further on the momentum equation it will
be noted that such gradient is responsible for the horizontal accelerations.

Momentum Conservation Equation Depth-Averaging

The modification for the momentum conservation is similar as for the mass continuity
equation, as previously seen. Once more depth-averaged integrating Equation 2.9

.

, and
substituting Equation 2.12

.

, it yields

∂ hu

∂t
+
∂

∂x

(
hu2 +

1

2
gh2

)
+
∂ huv

∂y
= −gh∂ b

∂x
(2.13)

∂ hv

∂t
+
∂ huv

∂x
+
∂

∂y

(
hv2 +

1

2
gh2

)
= −gh∂ b

∂y
(2.14)

10



2.2. Shallow Water Equations in 2D free-surface flows

where b is the sea floor elevation, also known as bathymetry. The previous equations show
that the momentum is dependent on the height of the flow, plus some source terms from
the bathymetry. It can be found in literature[15

.

] a more detailed derivation for these ex-
pressions.

Hyperbolic PDEs System

Hyperbolic PDEs are known to model conservative laws (also denoted as the advection
equation) in the form of

qt + f(q)x = 0 (2.15)

for 1-dimensional problems. The derivation of the equations from the previous section
constitute the Shallow Water Equations model, and they represent a conservative law.
Equations 2.10

.

, 2.13

.

and 2.14

.

can be organized in a matrix form as in
h

hu

hv


t

+


hu

hu2 + 1
2gh

2

huv


x

+


hv

huv

hv2 + 1
2gh

2


y

=


0

−gh bx
−gh by

 (2.16)

resembling the conservation form from Equation 2.2.1

.

with one extra dimension in the
form of

qt + fx + gy = s (2.17)

Note the subscripts that indicate partial derivatives. We can observe a non-linear depen-
dence of the state variables h, hu, hv on the fluxes f and g.
Non-linear hyperbolic systems are typical of producing shockwaves and rarefaction waves,
which under the nature of the SWE, shockwaves are rather denoted as hydraulic jumps, dis-
cussed in Section 2.4

.

. For a better insight of the behaviour and properties of the system, the
quasi-linear form is prefered. This means representing the equations system from Equa-
tions 2.16

.

and 2.17

.

in the form of qt + Aqx + Bqy = 0, where A = f ′(q) and B = g′(q) are
known as flux jacobians.
Calculating the eigenvalues of A and B, we obtain

λx1 = u− c, λx2 = u, λx3 = u+ c

and
λy1 = v − c, λy2 = v, λy3 = v + c

respectively. Both sets of eigenvalues are real numbers, in accordance to the definition of
hyperbolic PDEs, and they represent the propagation speed of the waves that compose the
system given by the eigenvectors of matricesA andB. The variable c in this case is referred

11



2. Theory

to as the celerity, which is the speed of the gravity waves, and is defined as c =
√
gh. For

further reference on previous derivation refer to literature [12

.

].

It is worth mentioning that Equation 2.16

.

includes source terms on the RHS denoted by
b. These source terms describe the sea floor elevation. In this thesis, however, such source
terms will be omitted, and consequently omitted as well in the derivation of the solving
methods for the SWE model in the following section.

2.3. Solving Methods for Shallow Water Equations

This section provides an introduction and derivation of the solving methods used for the
Shallow Water Equations model as a hyperbolic PDE system. The content is mainly taken
from the literature from Leveque et al. [1

.

] [12

.

], and only the most fundamental concepts
for a proper understanding of the problem are mentioned. Should specific details on the
derivation want to be revised, refer to the literature.

The Shallow Water Equations represent a conservation model that is constructed from
the basis of the Euler Equations (mass, momentum, and energy conservation). As such, it
has its foundation on the integral form of conservation laws, namely

d

dt

∫ x2

x1

q(x, t)dx = f(q(x1, t))− f(q(x1, t)) (2.18)

Equation 2.18

.

states that total quantity q between any two points can change only due to
the flux past the endpoints, plus some source and sink terms (not shown) which will not
be considered for this thesis. Classical solutions for decoupled equations in a differential
form are well known and easily derived, provided that the flux functions f(q) are smooth.
Coupled and non-linear conservation laws, however, are typical of shockwaves (compres-
sion) and rarefaction (expansion) waves, hence the smoothness is lost and one must resort
to numerical methods.

2.3.1. Finite Volume Methods

Discontinuities lead to computational difficulties. Classical finite difference methods, in
which derivatives are approximated by finite differences, can be expected to break down
near discontinuities in the solution where the differential equation does not hold. Finite
Volume Methods (FVM) are based on the integral form of conservative laws(Equation 2.18

.

)
instead of differential forms (in the case of finite differences). Rather than pointwise ap-
proximations at grid points, the domain is broken into grid cells and the total integral of
q is approximated over the cell average of q, which is this integral divided by the volume
of the cell. These values are modified in each time step by the flux through the edges of
the grid cells, and the primary focus is to determine good numerical flux functions that

12



2.3. Solving Methods for Shallow Water Equations

approximate the correct fluxes reasonably well, based on the approximate cell averages.
[12

.

]. Essentially, a finite volume method evaluates exact expressions for the average value
of the solution over some cell volume, and it uses this data to construct approximations of
the solution within cells. After averaged integration of Equation 2.18

.

, the FVM is obtained
in the form yields

Qn+1
i = Qi +

∆t

∆x

[
Fni+1/2 − F

n
i−1/2

]
(2.19)

where

Qi =
1

∆x

∫ x2

x1

q(x, t)dx (2.20)

Fi−1/2 =
1

∆t

∫ tn+1

tn

f(q(xi−1/2, t))dt (2.21)

The FVM consists on somehow determining the value of the integrals of Equations 2.20

.

and 2.21

.

. If Equation 2.21

.

can be approximated with the values of Qn, then a fully dis-
cretized model can be implemented. See Figure 2.2

.

for a schematic of this process.

Figure 2.2.: Finite volume method for updating the cell average Qn i by fluxes at the cell
edges [12

.

]
.

The Finite Volume method together with the Riemann Problem approach allows us to ac-
count discontinuities across cells. Such discontinuities across cells are typical of non-linear
conservation laws. Therefore, choosing FVM for the solving the Shallow Water Equations
provides a reliable solution.

2.3.2. The Riemann Problem and F-Wave method

Finite Volume Methods provide a solving scheme that considers cell averages calculated
through flux functions, in contrast to cell points in finite differences methods though dis-
cretized derivatives. Whether the FVM delivers a reliable solution, depends on finding

13



2. Theory

reliable solution for Equation 2.21

.

. To this end, FVM resorts to the Riemann Problem for-
mulation. An overview of the Riemann problem and the way to treat the flux function will
be treated in this section.

The Riemann Problem is a fundamental tool in the development of finite volume meth-
ods that solves the hyperbolic equation conservation law with special piecewise constant
initial data at some point x = 0 as

q(x, t) =

{
ql, if x < 0

qr, if x > 0
(2.22)

Essentially, if Qi−1 and Qi are the cell averages in two neighbouring grid cells on a finite
volume grid, then by solving the Riemann problem with ql = Qi−1 and qr = Qi , we
can obtain information that can be used to compute a numerical flux and update the cell
averages over a time step. For hyperbolic problems, the solution to the Riemann problem
typically consists of a finite set of waves that propagate away from the origin at certain
wave speeds. For linear hyperbolic systems, finding a solution for ql and qm, can be found
by calculating the eigenvalues and eigenvectors of the constant matrixA. This method also
holds for non-linear systems of equations (with some transformation to a quasi-linear state,
see Section 2.2.1

.

), and the exact solution (or good approximations) to the Riemann problem
can be constructed. Therefore, we aim to express Equation 2.21

.

as Fi−1/2 = F (Qni−1/2, Qi)

for obtaining a discretized solving method. In this case, Equation 2.19

.

becomes

Qn+1
i = Qi +

∆t

∆x

[
F (Qni , Q

n
i+1)− F (Qni−1/2, Q

n
i )
]

(2.23)

This represents the essence of the Riemann problem, and the method we choose for solv-
ing it depends on how we choose to treat Fi−1/2 based on type of hyperbolic system we
are dealing with.

For the classical Riemann problem solution, q ∈ m × 1 is usually expressed as a linear
combination of its eigenvectors multiplied by a functionw, referred sometimes in literature
as eigen-coefficients. For obtainingw, Equation 2.15

.

can be expressed in its quasi-linear form
and, provided that matrix A is diagonalizable, w can be expressed as

qt +Aqx = 0

wt + Λwx = 0 (2.24)

where

A = RΛR−1 ∈ m×m
w = R−1q ∈ m× 1 (2.25)

14



2.3. Solving Methods for Shallow Water Equations

Equation 2.24

.

decouples the system into m waves given by the eigenvalues and eigenvec-
tors as

wpt + λp wpx = 0

allowing us to find the trivial solution for the waves as a typical decoupled advection
equation. The solution for wp is then

wp(x, t) = wp(x− λpt, 0) (2.26)

Equation 2.26

.

indicates that wp will remain constant along its characteristic line given by
x−λpt, and will be equal to the initial condition at time t = 0, see Figure 2.3

.

. Having com-
puted all components wp(x, t), we can combine them into the vector w(x, t) and, according
to Equation 2.25

.

, we can multiply it by the right eigenvectors R for obtaining q

q(x, t) = Rw(x, t)

This yields a solution for the state variables q as a linear combination of m superposed
simple waves that constitute the system. This solution is a weighted average of the state
variables in the vicinity of x, denoted as

q∗(x, t) =
m∑
p=1

wp(x, t)rp (2.27)

The solution of q(x, t) provided by Equation 2.27

.

is calculated depending on the range of
influence of each p−characteristic, together with the condition from Equation 2.22

.

. Special
care must be taken into account in regard of the regions that the characteristics delimit in
order to calculate discontinuities appropriately to Figure 2.4

.

. It can be shown[12

.

] that the
value of q∗ across the cell edges corresponds to the difference of the left and right values
of q at the initial state

q∗ = W p = αprp (2.28)

where α can be obtained from
Rα = qr − ql

Lastly a final expression for q can be derived as

q(x, t) = ql +
∑

p: λp<x/t

W p (2.29)

Equation 2.29

.

represents the solution to Equation 2.21

.

as the flux across the interface at
xi−1, namely

Fi−1/2 =
1

∆t

∫ tn+1

tn

f(q(xi−1/2, t))dt = f(qi−1/2)

15



2. Theory

Figure 2.3.: The solution to the advection equation is constant along characteristics given
by the equation x− λpt, taking the initial value at t = 0 [12

.

].

Figure 2.4.: The pth characteristic is traced back to determine the value of wp from the
initial data. The value of q is constant in each wedge of the xt plane: ql =
w1
l r

1 +w2
l r

2 +w3
l r

3 q∗l = w1
rr

1 +w2
l r

2 +w3
l r

3 q∗r = w1
rr

1 +w2
rr

2 +w3
l r

3 qr =
w1
rr

1+w2
rr

2+w3
rr

3. Note that the jump across each discontinuity in the solution
is an eigenvector of matrix A [12

.

].

F-Wave Method

The flux function f(q, x) from Equation 2.15

.

can be discretized with respect to x in some
manner consistent with a finite-volume interpretation. For a given grid, two possible dis-
cretizations can be considered: cell-centered flux functions or edge-centered flux functions[1

.

].
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2.3. Solving Methods for Shallow Water Equations

In the previous subsection, the derivation for solving the Riemann problem followed a
cell-centered flux functions approach. By this approach, the derivation yielded a flux func-
tion fi(q) that holds throughout the ith grid cell. In this case, it was a function fi(q) =
fi(q, xi) that, if the variation of f is sufficiently smooth, this methods holds sufficiently
good. The derivation, together with Equation 2.22

.

, can be summarized as

qt + Fi − 1/2(q, x)x = 0

where

Fi−1/2(q, x) =

{
fi−1(q), if x < xi−1/2

fi(q), if x > xi−1/2

An alternative approach is to assume that a distinct flux function fi−1/2(q) is associated
with each cell interface xi−1/2, rather than with each cell center. This is referred to as
cell-edge flux functions approach. In this approach, it is the flux at the cell interface that is
ultimately required to implement a finite-volume method based on flux differencing, and
so associating flux functions with interfaces often makes sense. Under this approach, the
Riemann problem at xi−1/2 is now a classical Riemann problem for the single equation
qt + fi−1/2(q)x = 0 with the data from Equation 2.22

.

. Note the disctiction on the subscript
with the cell-centered flux approach. In cell-edge flux approach, it is the flux difference
between cells that is decomposed into waves. This algorithm is based on an approximate
Jacobian matrix Ai−1/2 (e.g. Roe Average1

.

) that must be defined at the cell edge. The
original non-linear Riemann problem is then replaced by the linear Riemann problem

qt +Ai−1/2qx = 0 (2.30)

The classical Riemann problem for a constant-coefficient system can be applied to Equation
2.30

.

, and apply the same procedure as shown in Equation 2.29

.

. However, using waves W
from Equation 2.28

.

will not yield algorithm in general, unless the condition

Ai−1/2(qi − qi−1) = fi(qi)− fi−1(qi−1)

is satisfied. In essence, the novel feature of this cell-edge flux functions algorithm is not
solving the classical Riemann problem by performing a classical decomposition in the form
depicted in Equation 2.29

.

, instead a flux based decomposition is used. With this approach,
the flux difference fi(qi)− fi−1(qi−1) is directly decomposed in a linear combination of the
eigenvectors rpi−1/2 as

fi(qi)− fi−1(qi−1) =

m∑
p=1

βpi−1/2r
p
i−1/2 =

m∑
p=1

Zpi−1/2 (2.31)

1Roe Average Jacobian matrix refers to a matrix such that represents an avergage flux across the edge between
two grid cells[18

.

] [11

.

]
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2. Theory

where

β = R−1
i−1/2(fi(qi)− fi−1(qi−1))

For spatially varying fluxes this represents a more natural decomposition. The vectors
Zp = βprp are called f-waves, as they are analogous to the waves W p from Equation 2.28

.

,
but carry flux increments rather than increments in q.

The cell-edge flux functions, or F-Wave method, has some desirable features and hence
implemented on this thesis. The method is conservative and second-order accurate re-
gardless of what approximate Jacobian matrix is used. This may be useful where a Roe
average cannot easily be computed, and a simpler expression such as the arithmetic av-
erage could instead be used. Another advantage of the F-Wave approach is that it is not
necessary to determine the jumps in the conserved variables q that typically arise across
the interface in solving the Riemann problem with a spatially varying f(q, x). Since the
flux is assumed to be continuous across the interface, decomposition of the flux difference
into eigen-components immediately yields the propagating waves that are needed for the
high-resolution wave-propagation algorithm[13

.

].

2.4. Free-surface flow

In Section 4

.

, we addressed the concept of free-surface flow. Theory for free-surface flow
is quite extensive, as there exist a vast number of engineering applications that deal with
free-surface flows. One of the most basic concepts within free-surface flow theory, is the
flow characterization, depending on the Froud number.
In free-surface flows, the Froud Number Fr is an important dimensionless parameter that,
depending on its value, characterizes the flow into three categories

Fr < 1 Subcritical
Fr = 1 Critical
Fr > 1 Supercritical

The Froud Number is expressed as

Fr =
V

c
=

V√
gh

where V is the flow speed, g is the gravity, and h is the representative height of the free
surface. The Froud number expresses the ratio between the flow speed to the wave speed,
as an analogy to the Mach number that expresses the ratio between the flow speed to the
sound speed. The Froud number can also be expressed of as the square root of the ratio of
inertia (or dynamic) force to gravity force (or weight) as

Fr =
2(1

2ρ
2A)

mg
∝ inertia force

gravity force

18



2.5. Summary

It follows that in subcritical flow, i.e. at low flow velocities (Fr < 1), a small disturbance
travels upstream (with a velocity c0 − V relative to a stationary observer) and affects the
upstream conditions. In supercritical flow, i.e. at high flow velocities (Fr > 1), a small
disturbance cannot travel upstream (in fact, the wave is washed downstream at a velocity
of V − c0 relative to a stationary observer) and thus the upstream conditions cannot be
influenced by the downstream conditions, and the flow in this case is controlled by the
upstream conditions. Therefore, a surface wave travels upstream when Fr < 1, is swept
down stream when Fr > 1, and appears frozen on the surface when Fr = 1 [4

.

]. As will
be seen in Section 4

.

, the Froud number is of great importance for determining boundary
conditions, as it acts as an indicator of flow conditions across a (coupled) domain.

As in compressible flows, a liquid can accelerate from subcritical to supercritical flow.
Certainly, it can also decelerate from supercritical to subcritical, but it can do so by under-
going a shock. The shock in this case is called a hydraulic jump, Figure 2.5

.

, which corre-
sponds to a normal shock in compressible flow. Shockwaves are typical of non-linear hy-
perbolic systems and they represent abrupt changes in state, or discontinuities. In case of
the Shallow Water Equations as non-linear hyperbolic systems, the discontinuity is man-
ifested as a hydraulic jump. The steepness of the hydraulic jump is proportional to the
discontinues between states. A typical scenario with strong discontinuities is the breaking
of a dam, which will be part of the implementation of this work.

Figure 2.5.: Hydraulic jump and regions of flow type with sub/supercritical heights

2.5. Summary

This section introduced Navier-Stokes equations and the Shallow Water Equations models,
as well as their solving methods. For solving the Navier-Stokes equations the Volume-Of-
Fluid method will be implemented and considered an incompressible Newtonian fluid.
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2. Theory

For solving the SWE model, the Finite Volume Method will be used and solved as a Rie-
mann problem with the F-wave method without accounting for the source terms. The
model considers the fluid to be an incompressible inviscid fluid, and holds valid as long
as the horizontal dimensions are much greater than the vertical ones. Note that the SWE
model does not account for the viscous effects, as the solver that will be used and described
in Section 3.2

.

disregards such effects.

The influence of the Froud number is of great importance in the sense of being able to
predict results and behaviours in accordance to free-surface flow conditions. Because of
this predictions, we can approach and model the problem accordingly, and construct an
appropriate formulation of the problem, specially when setting the boundary conditions
on the domain’s interface, as will be seen in chapter 4

.

.

Both, the SWE and NS model reach a solution for free-surface problems. In case of the
SWE, it reaches a solution under a 2-dimensional formulation, leading to a lower number
domain cells which is always a desirable advantage. However, it fails on representing the
3D effects. If we choose the NS formulation, the 3D effects will certainly be represented,
at a higher computational cost, however. Consequently, paradox leads us to thinking of
having a solver which could combine the advantages of both solvers. By partitioning the
domain into regions where the 3D effects(e.g. waves colliding against solids) could or
could not be neglected, we could assign a particular methodology for each region, and
eventually coupling their solutions. This inter-dimensional coupling allows more flexibil-
ity to the overall problem, and it is the centerpiece of this thesis. The upcoming sections
will describe the coupling in detail.
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3. Tools

In Section 2

.

, we discussed the derivation of two methods for solving free surface problems.
We reviewed the characteristics of each method, and we highlighted their advantages and
limitations; based on these, we addressed domain partitioning as a flexible approach for
free-surface problems. In this section we describe the solvers that shall implement the
methodologies from Section 2

.

, and shortly introduce the necessary tool needed for cou-
pling these solvers as a partitioned simulation.

3.1. preCICE

preCICE (Precise Code Interaction Coupling Environment) is a coupling library for par-
titioned multi-physics simulations, where partitioned refears to puple solvers, capable of
simulating a subpart of the complete physics within a simulation [3

.

]. preCICE is designed
to be used on cartesian grid solvers, offering an application programming interface (API)
over a wide range of solvers, including C++ and frameworks such as OpenFOAM[9

.

].

As a general overview, we can couple two solvers by calling the preCICE API through
the adapters. preCICE takes care of the communication and data mapping between the
participants (solvers). By calling preCICE through our solvers, we let preCICE orches-
trate the coupling by only setting the parameters in the preCICE configuration file. Some
of these parameters include the variables we want to exchange, the coupling scheme (ex-
plicit or implicit), the time stepping, the end time of simulation, etc. Figure 3.1

.

shows an
overview of preCICE as the coupling tool. A deep analysis of the capabilities and devel-
opment of preCICE is available in literature[21

.

] [9

.

], as well as in the preCICE repository1

.

.

This approach allows the user a high degree of flexibility for building partitioned sim-
ulations, as it makes it possible to couple solvers from different frameworks, fields in
physics, and even solvers formulated in different dimensions.

1https://github.com/precice
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3. Tools

Figure 3.1.: An overview of preCICE as a coupling tool. The rectangles on the sides rep-
resent the coupling solvers. The adapter (green “T”) is implemented in the
solver, letting preCICE drive the simulation, and manage the communication
and the data mapping between solvers.

3.2. SWE Solver

The Shallow Water Equations solver “is an education-oriented code that implements sim-
ple Finite Volumes models that solve the Shallow Water Equations” [16

.

]. It was developed
at the TUM Scientific Computing and Computer Science Chair for teaching on different
parallel programming models for computational science and engineering.

An article [2

.

] about the SWE solver design and its content was published by IEEE2

.

. The
article contains a detailed description of the solver’s implementation and capabilities. The
article also contains short but concise theory about different Riemann Problem methods,
given that the solver’s implementation allows the user to choose a particular method for
approximating the fluxes. For this thesis, we chose the f-wave as the Riemann Problem
solver, as discussed in Section 2.3.2

.

.

The code for SWE solver can be found on GitHub3

.

. A Doxygen documentation4

.

is also
available; note that the documentation does not contain the implementation done in this
thesis.

2Institute of Electrical and Electronic Engineers
3https://github.com/TUM-I5/SWE/tree/e80170a445e8d1896a8b59bc6d5669ac7ce7d465

.

.
The link points to the the commit from which we implemented upon.

4https://www5.in.tum.de/SWE/doxy/

.
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3.3. OpenFOAM

3.2.1. SWE implementation

The solver provides an algorithm for computing the solution on a discretized mesh on
specified time steps for the height h, and the horizontal and vertical discharges hu and hv,
as seen in Equation 2.17

.

. The solver also includes a collection of scenarios, from which the
RadialDamBreakScenario was chosen as the base scenario class for some of the case scenar-
ios that will be simulated in this thesis. The other case scenario, open-channel flow, was
implemented for this solver. Both scenarios are discussed in Section 4

.

.

In order to exchange data across the solver, we implemented an adapater with the pre-
CICE library. In a very general overview, the adatpter will control the communication,
the data exhange and the data mapping. The exchange details can be set in the preCICE
configuration files. We will address a closer view to the data exchange in Section 4

.

3.3. OpenFOAM

OpenFOAM5

.

(Open-source Field Operation And Manipulation) is a toolbox for the de-
velopment of numerical solvers, and pre- and post-processing utilities for the solution of
(prominently) Computational Fluid Dynamics (CFD) problems [19

.

]. OpenFOAM is dis-
tributed under an open-source licence, thus allowing modifications and adaptation to the
collection solvers and utilities that comprise the toolbox[14

.

].

3.3.1. interFoam

Within the collection of solvers for CFD applications, OpenFOAM supports incompress-
ible and compressible flows, laminar and turbulent flows, multi-phase flows, and buoyancy-
driven flows [5

.

]. For this thesis, we focus on multi-phase flow solvers, particularly in
interFoam.

As a multi-phase solver, interFoam is a solver for two incompressible, isothermal im-
miscible fluids, that utilizes the Volume-Of-Fluid (VOF) method. As discussed in Section
2.1.1

.

. VOF’s most recognizable feature is the implementation of a volume fraction indi-
cator, that distinguishes between two different fluids, usually water and air, for solving
the Navier-Stokes equations. Consequently, it results convenient to use interFoam as the
solver for free-surface problems.

For free-surface problems, the variables of most interest are, generally, the pressure, the
velocity and the flow depth. Similarly for this thesis, we focus our attention on these
variables, as they become fundamental for coupling solutions between the SWE and the

5www.openfoam.org

.
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3. Tools

Navier-Stokes models. interFoam provides a solution for the pressure, the velocity and the
volume fraction indicator. It is possible to calculate the flow depth from the values of the
volume fraction indicator, as will be further discussed in Section 4

.

.

As an open-source framework, we can adapt and interface to OpenFOAM’s implemen-
tation in accordance to a particular goal: in this case, we aim to exchange data from inter-
Foam to other solvers. Therefore, it is possible to add the preCICE library to OpenFOAM,
and let preCICE drive the exchange of information and the algorithm for the computation.
For this, we resort to the OpenFOAM adapter for preCICE, allowing us to easily set the
variables we want to exchange, previously indicated in the preCICE configuration file. A
full description[5

.

] of the OpenFOAM adapter is available, and it can be downloaded from
the preCICE repository6

.

.

6https://github.com/precice/openfoam-adapter/tree/FF-OF7

.

. Commit 383a18a is the commit
from which we build our implementation.
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4. Implementation

Coupling multi-dimensional domains has fundamental considerations that must be taken
into account, and they will be addressed in this chapter. In this work, two domains will be
considered for coupling. They are referred to as Left and Right domain, and each of them
solves either a 2-dimensional or 3-dimensional system.
As a first step for the implementation on this work, a combination of 2D and 3D systems on
each domain must be assigned. The setups and case scenarios of this combination will be
described in Section 4.2

.

. Whether the coupling is from higher to lower dimension, lower to
higher or it is in the same dimension, has different treatments in regard of the exchange of
variables. Information across dimensions must be consistent, so as a second step, proper
data mapping has to be established. Once data has been mapped to the boundaries of a
neighbouring domain, one must know how to treat it. As a third step, this is done by
establishing appropriate boundary conditions that are consistent with the phenomena that
we are dealing with, based upon the flow characterization, i.e. whether the flow is super-
critical or subcritical. This is discussed in section 4.1

.

. Data mapping and the treatment of
boundary conditions depending on the flow characterizations will be discussed in Section
4.3

.

. We can find the implementation and the upcoming test cases in GitHub1

.

, and general
instructions for reproducing the cases in Appendix A.1

.

.

It is worth mentioning that this approach allows us an extended flexibility for coupling
more than two domains across different dimensions, e.g. we can add an intermediate do-
main. As long as we can set the appropriate values on the boundaries and have a consistent
mapping across the domains, the coupling is possible.

4.1. Boundary conditions for free-surface flow

The theory and deduction of the Shallow Water Equations model, as a hyperbolic PDE
system, is closely related to the free-surface flow description, seen in Section 2.4

.

. Recall
from Section 2.2.1

.

the eigenvalues of the SWE system,

λx1 = u− c, λx2 = u, λx3 = u+ c

where c =
√
gh represents the wave-speed (celerity) of the m-waves that compose the sys-

tem given by its eigenvectors. Figure 4.1

.

depicts a picture on how each of the m-waves
1 https://github.com/pachesp/2d3dcoupling

.

or
https://github.com/precice/openfoam-adapter/tree/SWE-interFoam

.
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would look like depending on the flow characterization. Figure 4.1a

.

shows a supercrit-
ical flow, while Figure 4.1b

.

depicts a subcritical flow. For the supercritical case, it was
discussed that no information from downstream can travel upstream and any disturbance
would be washed by the flow velocity u. This means that the flow conditions are entirely
determined upstream. Figure 4.1a

.

shows that all of the m-waves come from the left side of
the origin, i.e. upstream, and as the Riemann problem states, q is determined entirely from
the ql side. For the subcritical case, waves downstream do propagate upstream, meaning
that the flow conditions are influenced from the downstream conditions. Figure 4.1b

.

de-
picts one of the m-waves taking information from the right side of the origin, that is from
the qr side, therefore the actual state variable q is determined from both sides.

(a) Supercritical characteristics (b) Subcritical characteristics

Figure 4.1.: Supercritical and subcritical characteristics [14

.

]. Values C+, C0, C− correspond
to λx1, λx2, λx3 respectively. Each characteristic has a different slope that cor-
responds to their speed of propagation (given by eigenvalues). Positive eigen-
values mean positive slopes, and the flow speed u is greater than c and waves
can not travel upstream. This is supercritical flow (Figure (a)). If an eigenvalue
is negative, then the slope is negative, meaning that c is bigger than u, and
waves can travel upstream. This is a subcritical case (Figure (b)).

One can see the relation of the Froud number to the speed of the waves given by the
eigenvalues. In the case where the flow velocity u > c the Froud number Fr > 1, hence
resulting in supercritical flow. In case where u < c, the flow is subcritical according to
the Froud number Fr < 1. We can set two types of boundary conditions across domains
according to the flow characterization [14

.

], which is based on the direction of its character-
istics (Figure 4.1

.

):

1. Supercritical flow (Fr > 1) - composed only by outward characteristics, i.e. informa-
tion leaving the domain. In this case, outflow boundary conditions are considered,
i.e. Neumann-zero boundary conditions.
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2. Subcritical flow (Fr < 1) - includes an inward characteristic, i.e. information entering
the domain. In this case, inflow boundary conditions are considered, and they are
treated as Dirichlet boundary conditions.

4.2. Cases Setup

In this section, the test cases will be proposed by assigning a combination of 2D and 3D
systems to the left and right domains. These combinations can be found in Table 4.1

.

. So-
lutions of the 2D domain will be carried out by the SWE solver, while solutions of the 3D
domain will be performed by interFoam, as seen in Section 3

.

. In this section, “interFoam”
and “OpenFOAM” will be used interchangeably as the solver for the 3D domain.

Left / Right 2D 3D

2D SWE→ SWE SWE→ OF

3D OF→ SWE OF→ OF

Table 4.1.: Solver used for data exchange across domains.

The entries of Table 4.1

.

show the direction in which the domains shall be ordered. SWE
and OF refer to the 2D Shallow Water Equations Solver and to the 3D Navier-Stokes solver
driven by OpenFOAM, respectively. Each case will be implemented under subcritical and
supercritical conditions, resulting in a total of 8 cases to simulate. Tables 4.2

.

and 4.3

.

show
a collection of scenarios for the supercritical and subcritical cases, respectively.

The following bullet points briefly explain why the cases from Tables 4.2

.

and 4.3

.

were
chosen according to the flow characterization we want to simulate.

• Supercritical cases - The fluid is expected to travel from the left to the right domain,
without any information or wave travelling back to the left domain. This is a typ-
ical feature of supercritical flow, as seen in the previous section. In case of SWE →
SWE, the scenario is constituted by a column of water over fluid at rest at time t = 0.
For t > 0, the perturbations waves are expected to travel to all directions, crossing
to the right domain. In case of SWE → OF, the scenario is similar to the previous
case, just adding a second water column at the original position, with the intention
to see more clearly the wave crossing to the right domain. For the OF→ SWE case,
we have a similar scenario as the last two. The disturbances are expected to cross
to the right domain and continue their way without any disturbances travelling up-
stream. Lastly for the OF → OF case, a modified breaking-of-a-dam example from
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Case / Domain Left domain Right domaing

SWE→ SWE Radial breaking
dam

Surface at rest

SWE→ OF Radial breaking
dam x2

Surface at rest

OF→ SWE Radial breaking
dam

Surface at rest

OF→ OF Breaking dam Empty domain

Table 4.2.: Scenarios for each setup on supercritical flow.

Case / Domain Left domain Right domaing

SWE→ SWE Radial breaking dam Radial breaking dam

SWE→ OF Flow to the right Surface at rest with wall

OF→ SWE Flow to the right Surface at rest with wall

OF→ OF Breaking dam Empty domain with wall

Table 4.3.: Scenarios for each setup on subcritical flow.

OpenFOAM tutorials2

.

is used, with an additional second domain coupled on the
right side.

• Subcritical cases - In this case the setup becomes a bit more elaborated, since the
intention is that perturbations travel back upstream from the right domain to the
left domain. For the SWE → SWE case, this is done by setting a second column of
water on the right domain at time t = 0. The perturbations from the right domain
are expected to interact with the perturbations of the left domain. For the SWE →
OF and OF → SWE cases, an inflow velocity on the left boundary is set. The flow
is intended to cross to the right domain, and reflect back after reaching a wall on
the right boundary on the right domain, travelling upstream crossing once more

2https://cfd.direct/openfoam/user-guide/v6-damBreak/

.
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the interface between domains with an opposite direction. For the OF → OF case,
the setup is the same as in the supercritical case with an additional wall boundary
condition on the right boundary of the right domain.

4.3. Mapping and Dirichlet boundary conditions

As seen in Section 3

.

, the Shallow Water Equations solver obtains a solution for the height
h and discharges hu and hv. On the other hand, interFoam provides a solution for the
velocity u, the pressure p and the volume indicator α. In order to exchange this informa-
tion across solvers in a consistent way, an appropriate mapping has to be implemented.
Mintgen proposes mapping methods for the previously mentioned variables depending
on the test case. These methods, some with slight modifications, will be discussed in the
upcoming sections.

4.3.1. 2D→ 3D mapping

Referring to Table 4.1

.

, a description of the 2D→ 3D case will be addressed in this subsec-
tion. This implies having SWE as the left domain and OF as the right domain, and the flow
going from the left to the right domain. Depending on the flow characterization (super-
critical or subcritical), data will be exchanged either uni-directionally or bi-directionally.
In a uni-directional coupling, information flows only from one solver to another, e.g. from
the left to the right domain. In a bi-directional coupling, information is exchanged in both
directions. Figure 4.2

.

depicts an overview on how data is exchanged between domains.
The exchange happens from the cell edge from one domain on the boundary to cell edge
on the interface on the neighbouring domain. In this case, we set the same resolution on
the z direction (pointing outside of the screen) for both domains.

Mapping height h and volume indicator α

As seen in Section 2.1.1

.

, α indicates the cells that occupy liquid; a cell full of liquid is set to
1, a cell full of gas is set to 0, and a cell with both liquid and gas indicates the free surface,
and it is set to a value between 1 and 0. Consequently, there is a direct relationship between
α and h. Both variables relate differently depending on the flow characterization we are
dealing with:

1. Supercritical case

Height exchange is happening from the left domain to the right domain. The indi-
cator function α is expressed as a function of h, and it is set as a Dirichlet boundary
condition on the boundary of the 3D domain Γ3D. α is set to 0 for the cell faces on
the 3D domain, whose lower edge is above the water level from the 2D domain hΓ2D

.
α is set to 1 in case the cell’s lower edge is below hΓ2D

. For cell faces that lie on the
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(a) Mapping 2D to 3D domain (b) Mapping 2D to 3D domain

Figure 4.2.: 2D↔ 3D mapping

interface between water and air, a linearly interpolated value is assigned to α. Thus,
an expression for α can be expressed as

α(Γ3D) = f(h)

α(Γ3D) =


0, if hΓ2D

≤ hΓ3D
− 0.5∆hΓ3D

1, if hΓ2D
≤ hΓ3D

− 0.5∆hΓ3D

hΓ2D
− hΓ3D

∆hΓ3D

+ 0.5, otherwise

2. Subcritical case

In this case, the height from the 3D domain is directly mapped to the height on the
2D domain as Dirichlet boundary condition.

hΓ2D
= hΓ3D

(α)

Velocity Mapping

The velocity profile on the 3D domain hΓ3D
is set as a Dirichlet condition on Γ3D in subcrit-

ical and supercritical flow conditions. As a simplistic approach, hΓ3D
is set as a constant

value over the flow depth based, on the velocity values of the 2D domain uΓ2D
. This is

expressed as

uΓ3D
= uΓ2D

αΓ3D
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4.3. Mapping and Dirichlet boundary conditions

where uΓ2D
= hu/h. This approach provides an acceptable mapping between domains

as will be seen in Section 5

.

, however, such profile implies a high velocity gradient near
the bottom, leading to overestimation of the wall shear stress. Consequently, more energy
would be necessary to mantain the discharge, eventually leading to an increase in water
level [14

.

], thus, breaking the conservation of mass principle. Mintgen proposes mapping
the velocity profile by adding a logarithmic term to counteract the previously mentioned
effects. Such an implementation can be found in his dissertation. Essentially, the logarith-
mic profile depends on the friction velocity at the bottom of the wall, and it is a function
of the wall shear stress τb at the bottom. In the case of interFoam, τb is calculated from
the 3D solver. Given the capabilities of the 2D solver, calculating a shear stress for the 2D
domain, from the velocity gradients on the vertical direction, resulted in a cumbersome
implementation, and the results were not satisfactory. Therefore, the simplistic approach
was preferred.

Mapping of the SWE → OF case has been addressed for subcritical and supercritical
flow. Figures 4.4

.

and 4.5

.

show the preCICE configuration files3

.

. Figure 4.3

.

shows an ex-
ample of the preCICE configuration file. In the configuration file, the user specifies the de-
tails to carry out the coupling. Some of the settings include choosing participants (solvers)
and the exchanged variables. Within these fields, we specify the direction in which the
coupling should be. In this case, we set the SWE and interFoam as the first and second
participants, respectively, and the Velocity and Alpha as the exchanged variables from SWE
to interFOAM using a nearest neighbour mapping. The end time and, the time stepping
and coupling scheme (implicit or explicit) must be also defined in the configuration file.

Figure 4.3.: preCICE configuration file for supercritical case. This setup corresponds to
Figure 4.4

.

3The naming on the preCICE configuration files on the images has been modified for presentation purposes
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Figure 4.4.: SWE-OF supercritical preCICE configuration file. As information does not
need to be sent back to the SWE, the coupling is uni-directional.

Figure 4.5.: SWE-OF subcritical preCICE configuration file. The volume fraction indicator
α is sent back to SWE.

4.3.2. 3D→ 2D mapping

Continuing with the cases from Table 4.1

.

, the mapping from the 3D to the 2D domain is
now addressed in this subsection. In this case, the 3D domain will be on the left side, with
flow going from the left to the right domain. Similarly as in the 2D→ 3D case, data will
be exchanged uni-directionally or bi-directionally depending on the flow characterization
(see, Figure 4.2b

.

). The implementation for data mapping on each case is shown next.

Mapping height h and pressure p

In this case, the treatment of the pressure for interFoam must be taken into consideration
to achieve a well-posed set of initial conditions for the Volume-of-Fluid method. Addi-
tionally, this serves as means for calculating the water level on the 3D domain, as further
described. Once again, supercritical and subcritical flows are considered.

1. Supercritical case

Mapping the height for this case is done exactly as in 2D→ 3D for subcritical flow in
Section 4.3.1

.

, i.e.

hΓ2D
= hΓ3D

(α)

2. Subcritical case
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The constitutive equation for pressure for SWE is given by Equation 2.11

.

as a function
of height. Thus, pressure can be calculated from the height downstream (from the
2D domain) and can be set as a Dirichlet boundary condition on Γ3D. This is done
via

pΓ3D
= ρΓ3D

g hΓ2D
(4.1)

where ρΓ3D
is given by Equation 2.5

.

as a function of α , g is gravity and hΓ2D
is the

water level on the 2D domain.

By setting the pressure on Γ3D from the downstream pressure, interFoam automat-
ically adjusts the water level [14

.

]. On this thesis, the quantity ghΓ2D
from Equation

4.1

.

is firstly calculated and later exchanged with the OF solver, where it is finally
multiplied by the density term ρΓ3D

. See Figure 4.7

.

.

Mapping discharge hu

The discharge hu on the SWE domain is directly mapped from the OF domain and set as
a Dirichlet boundary condition on Γ2D for both supercritical and subcritical flow. That is

qΓ2D
= qΓ3D

where qΓ3D
= uΓ3D

hΓ3D
(α).

Mapping for the state variables for subcritical and supercritical flow for the 3D → 2D
case has been addressed. Figures 4.6

.

and 4.7

.

show the preCICE configuration files, where
the details of the coupling between both solvers are summarized.

Figure 4.6.: OF-SWE supercritical preCICE configuration file. In supercritical flow only
information from upstream (left domain) is exchanged.
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Figure 4.7.: OF-SWE subcritical preCICE configuration file. The term g hΓ2D
from Equation

4.1

.

is exchanged from the right to the left domain for setting the pressure on
the OpenFOAM adapter.

4.3.3. SWE→ SWE

In this case, data exchange happens across domains on the same dimension: 2D. Therefore,
data exchange can be performed directly. The problem is solved across two 2D domains.
For the supercritical case, data on the left domain is exchanged to the boundaries on the
right domain, and set as Dirichlet boundary condition. For the subcritical case, additional
to the information from the left domain, information on the right domain must be ex-
changed with the left domain. For the subcritical case, this is done as a gradient that has
to be firstly calculated on the right domain with previously sent data from the left domain.
Once the gradient has been calculated, it is sent back to the left domain and added to its
state. This implementation implies bi-directional coupling. The gradient is calculated as
follows

∂ h

∂n
= hleft − hright

∂ hu

∂n
= huleft − huright

∂ hv

∂n
= hvleft − hvright

This implementation resulted to work as well for the supercritical case and therefore im-
plemented. It could be possible, however, to only exchange data uni-directionally from
the left to the right domain in order to save computations, however, this was not imple-
mented. The preCICE configuration file, shown in Figure 4.8

.

, is the same for both cases,
and it summarizes the details of the coupling.
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4.3. Mapping and Dirichlet boundary conditions

Figure 4.8.: OF-SWE supercritical preCICE configuration file.

4.3.4. OpenFOAM→ OpenFOAM

Supercritical Flow

In this case, the problem is solved within two 3D domains. For the supercritical case, the
variables α and u are set as Dirichelt boundary conditions on the right domain, while the
pressure is set as Dirichlet condition on the left domain.

Figure 4.9

.

shows the preCICE configuration file for the supercritical case.

Figure 4.9.: OF-SWE supercritical preCICE configuration file.

Subcritical Case

For the subcritical case, we could not reach a configuration that yields satisfactory results.
We experimented with Dirichlet and Neumann boundary conditions, and still obtained
meaningless results. We tried similar settings to the subcritical case, shown in Figure 4.9

.

,
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and we observed results from which we can do a better analysis, yet still unsuccessful. In
Section 5.4

.

we show a precise configuration of this case and present our conclusions.

4.3.5. Neumann boundary conditions

The previous section provided mapping functions and Dirichelt boundary conditions for
the inward characteristics for supercritical and subcritical flow (refer to Figure 4.1b

.

). For
having a well-posed solution, the outward characteristics also need to be treated. As dis-
cussed in Section 4.1

.

, the outward characteristics shall be treated as Neumann boundary
conditions, as this represents information leaving the domain. The gradient of the vari-
ables on the Neumann boundaries with respect to the normal direction, ∂/∂n is set to 0,
meaning that the value at the boundary is equal to the one on the cell face in the inner
domain. According to Mintgen [14

.

], “it would be possible to calculate the actual gradient
between the solutions on the 2D and 3D domain, resulting in higher accuracy, but it has
been found that setting a gradient equal to 0 results in a stable choice”. Table 4.4

.

shows a
review of the boundary condition across domains for supercritical and subcritical flow.
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4.3. Mapping and Dirichlet boundary conditions

h and q on Γ2D α, p and u on Γ3D

Supercritical
& Subcritical
SWE→ SWE

hleft = hleft + ∂h/∂n

huleft = huleft + ∂hu/∂n

hvleft = hvleft + ∂hv/∂n

Supercritical
SWE→ OF

∂h/∂n = 0

∂q/∂n = 0

α = f(h)

∂p/∂n = 0

u = f(q, u)

Subcritical
SWE→ OF

h = hΓ3D

∂q/∂n = 0

∂α/∂n = 0

∂p/∂n = 0

u = f(q, u)

Supercritical
OF→ OF

h = hΓ3D

q = qΓ3D

∂α/∂n = 0

∂p/∂n = 0

∂u/∂n = 0

Subcritical OF
→ SWE

∂h/∂n = 0

q = qΓ3D

∂α/∂n = 0

p = f(h)

∂u/∂n = 0

Supercritical
OF→ OF

αright = αleft

uright = uleft

pleft = pright
Subcritical OF
→ OF

discussion in Section 5.4

.

Table 4.4.: Dirichlet and Neumann boundary conditions for the inter-dimensional combi-
nations and flow characterization [14

.

], and for the cases on the same dimension.
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In Section 4

.

we discussed the details of exchanging information and of the boundary con-
ditions across domains, depending on the cases shown in tables Tables 4.2

.

and 4.3

.

. In this
section, we present the specific configuration and parameters that were used for simulat-
ing each case, as well as an analysis of the results, including our most important observa-
tions. Keep in mind, we used an explicit coupling for all of the cases.

5.1. SWE→ SWE

As the first case, two 2D SWE solvers are coupled together for supercritical and subcritical
flow. Figure 5.1

.

shows a simple schematic of the domains at time t = 0, and Table 5.1

.

shows the parameters used for the simulation of the left and right domains for both types
of flow. The types of boundary conditions used for this configuration, also discussed in
Section 4.3.1

.

, are shown in Table 5.2

.

.

For the supercritical case, a column of water at t = 0 is set on the left domain, sur-
rounded by water at rest. At t > 0, the waves are expected to cross to the right domain in a
continuous way. For the subcritical case at time t = 0, a water column is set in the left and
right domains. At t > 0, waves from both domains are expected to interact continuously
with each other across domains. The positions of the columns of water are chosen to be
close to the interface, such that the perturbations cross the interface in a relatively short
execution time.
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Figure 5.1.: Schematic for the SWE → SWE case at t = 0. The top-left and bottom-left
figures show the top and side views, respectively, for supercritical flow. The
right side shows the views for subcritical flow.

SWE→ SWE Supercritical Subcritical

Left Domain
2D

Right Domain
2D

Left Domain
2D

Right Domain
2D

x length [m] 1000

z length [m] 1000

x resolution 120

z resolution 120

water at rest
height [m] @t = 0

10

water column
height [m] @t = 0

15 - 15 20

Table 5.1.: Parameters for the left and right domains for supercritical and subcritical flow
for SWE→ SWE. Water at rest height refers to the level of water surrounding the
water column.
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Edge
Supercritical & subcritical

2D left 2D right

Left
h h
hu outflow hu inflow couple
hv hv

Right
h h
hu out inflow couple hu outflow
hv hv

Top
h h
hu outflow hu outflow
hv hv

Bottom
h h
hu outflow hu outflow
hv hv

Table 5.2.: Boundary conditions for SWE → SWE supercritical and subcritical flow. The
naming of the boundary conditions (b.c.) corresponds to the naming convention
for each solver. In this case, both scenarios use the same type of b.c, based on
the way the implementation was done; out inflow couple b.c. is a special imple-
mentation, so that the solver automatically handles outflow or inflow boundary
conditions depending on the flow characterization.
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Figure 5.2

.

shows the results for the height h for the SWE→ SWE supercritical case. The
graphs show a comparison between the partitioned approach (two domains coupled) and
the monolithic approach. On the middle graph at t = 8.4, a difference between both solu-
tions is observed. The relative error is plotted in Figure 5.4

.

. This discrepancy is probably
due to an implementation error that could not be tracked, rather than a coupling error.
This assumption is based on observing that the difference is still within the left domain,
while a smooth transition of the solution across the interface can be observed. Later on
t = 36s this difference vanishes.

Figure 5.3

.

shows the results for the height for the SWE→ SWE subcritical case. Similarly
as in the supercritical case, the graphs on the right show a slight difference between the
monolithic and partitioned approaches. The relative error is shown in Figure 5.4

.

. At later
times (not shown) both differences vanish, as in the supercritical case. The assumption for
this difference is probably, again, an untracked error in the implementation as the solution
across the domains behaves smoothly.
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Figure 5.2.: SWE → SWE supercritical. Figures on the left show the results for the height
h from the 2D solution, with a vertical projection. Notice a line and a plane
delimiting the left and right domains. Top-most left figure shows simulation
at time t = 0, and t increases downwards. The graphs compare monolithic and
partitioned approaches. on the right side correspond to the images on the left,
and include a comparison between the monolithic and partitioned approach.
A square shows a difference between both approaches. The vertical projection
is done with glyphs (the tip of the glyph is displayed, do not confuse as part of
the solution).
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Figure 5.3.: SWE → SWE subcritical. Left figures show the 2D solution for the height h
and a vertical projection at different times. Graphs on the right side show the
corresponding comparisons between the monolithic and partitioned approach
with a squares highlighting differences between both approaches. Note the
interface line defining the left and right domains. The vertical projection is
done with glyphs (the tip of the glyph is displayed, do not confuse as part of
the solution).
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Figure 5.4.: Relative error, e = |partitioned−mono|
mono , of the supercritical and subcritical cases.

Left: supercritical case at t = 8.4s. Right: supercritical case at t = 31.2.
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5.2. SWE→ OpenFOAM

For the next case, we address inter-dimensional coupling from a 2D to a 3D domain for
supercritical and subcritical cases. The schematic for both cases is shown in Figure 5.5

.

. In
this case, the left domain corresponds to the 2D solver, while the right domain corresponds
to the 3D solver. For the supercritical case, we set a water column at the middle of the left
domain at t = 0, where the waves are expected to travel in all directions, crossing to the 3D
domain. For the subcritical case, we simulate open-channel flow by setting inflow velocity
and height on the left boundary of the 2D domain. We expect the flow to travel to the
3D domain, where wall-boundary conditions are set downstream. The flow is expected to
reach the wall and flow back as a left-moving hydraulic jump, increasing the water level
and crossing back to the 2D domain. Notice the two walls on the right domain: the inten-
tion for this is to create an area where the incoming fluid would not be affected in case of
spilling occurs. This situation would not add significant information to the behaviour, but
would rather add computation time. An alternative would be to implement outflow con-
ditions, however, results show that no spilling occurred, so for future simulations this can
be ignored, and we could consider the 3D domain until the first wall. The parameters for
each solver are shown in Table 5.3

.

, and Tables 5.4

.

and 5.5

.

show the boundary conditions
for supercritical and subcritical flow, respectively.

SWE→ OF Supercritical Subcritical
Left Domain

2D
Right Domain

3D
Left Domain

2D
Right Domain

3D
x length [m] 10
y length [m] - 10 - 10
z length [m] 10
x resolution 30
y resolution - 30 - 30
z resolution 30
water at rest

height [m] @t = 0
5

water column
height [m] @t = 0

20 - - -

Table 5.3.: Parameters for the left and right domains for supercritical and subcritical flow
for SWE→ OF.
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5.2. SWE→ OpenFOAM

Figure 5.5.: Schematic for the SWE → SWE case at t = 0. The top-left and bottom-left
figures show the top and side views, respectively, for supercritical flow. The
right side shows the views for subcritical flow, where the horizontal arrows
represent an initial velocity.
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5. Results

Supercritical
Edge 2D 3D

Left
h α fixedValue*: 0
hu outflow u fixedValue*: 0
hv p rgh fixedFluxPressure: 0

Right
h α zeroGradient
hu outflow u fixedGradient: 0
hv p rgh fixedFluxPressure: 0

Top
h α inletOutlet: 0
hu outflow u pressureInletOutletVelocity: 0
hv p rgh totalPressure: 0

Bottom
h α zeroGradient
hu outflow u noSlip
hv p rgh fixedFluxPressure: 0

Front
α

- u empty
p rgh

Back
α

- u empty
p rgh

Table 5.4.: Boundary conditions for SWE→ OF supercritical flow. The naming of the b.c.
corresponds to the naming for each solver. Boundary conditions marked with
( * ) will be replaced by the exchanged data from preCICE.
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5.2. SWE→ OpenFOAM

Subcritical
Edge 2D 3D

Left
h inflow: 5 α zeroGradient
hu inflow: 2 u fixedValue*: 0
hv inflow: 0 p rgh fixedFluxPressure: 0

Right
h passive α zeroGradient
hu outflow u noSlip
hv outflow p rgh fixedFluxPressure: 0

Top
h α inletOutlet: 0
hu wall u pressureInletOutletVelocity: 0
hv p rgh totalPressure: 0

Bottom
h α zeroGradient
hu wall u noSlip
hv p rgh fixedFluxPressure: 0

Front
α

- u empty
p rgh

Back
α

- u empty
p rgh

Table 5.5.: Boundary conditions (b.c) for SWE → OF subcritical flow. The naming of the
b.c. correspond to the naming for each solver. passive b.c. means that the
variable will be updated when the exchange from the preCICE adapter takes
place, rather than update them through the solver globally. Boundary condi-
tions marked with a a (*) will be replaced by the exchanged data from preCICE.
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5. Results

Figure 5.6

.

shows the results for supercritical flow case. At t = 0.45s, we can see the
perturbations reaching the 3D domain. The graph shows the height profiles for both do-
mains, along the coupling interface (z axis pointing out of the screen). We observe that the
height profiles are the same before and after the interface. At t = 2.35s, a second water
column has fallen, and again perturbations are crossing again to the 3D domain, while the
perturbations from the first water column continue their way downstream.

For the subcritical case, Figure 5.7

.

shows the perturbations from the initial conditions
from the inlet travelling to the 3D domain. The grading of colour indicates the increment
in water level as t increases. At t = 1.7s, we observe the water travelling back to the 2D do-
main, as it got reflected from the wall on the 3D domain. The left-moving-hydraulic jump
can be observed at t = 2.1 (better depicted in Figure 5.8b

.

, enclosed by the red square). The
hydraulic jump continues to the left, as seen in Figure 5.8c

.

, however, on its right side, the
water level slightly decreases, and for t > 2.5 the water level oscillates around a certain
height. These behaviours are not expected to happen, and they possibly mean some faults
in the implementation.

Figure 5.8

.

shows the height across the interface between dimensions (along the x axis)
in the middle of the domains. Black rectangles enclose discontinuities on the interface.
On figure 5.8a

.

the gap is small compared to those at later times, shown on Figures 5.8b

.

and 5.8c

.

. This behaviour certainly represents some flaws in the implementation for this
case. However, aside from the discontinuities, we can observe a consistent concavity of
the curve across the interface. This means that the computations of each solver could have
present some sort of lagging.
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5.2. SWE→ OpenFOAM

Figure 5.6.: SWE → OF supercritical. Images on the left show the solution for the height
travelling to the 3D domain. The 2D domain is on the left side, with a vertical
projection of the solution. Image at t = 0s shows the 3D enclosed in a cube,
while for the remaining images, only the free-surface is depicted. Graphs on
the right correspond to the images on the left, and depict the height profile on
the 2D and 3D domains along their interface on the z axis (out of the screen).
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5. Results

Figure 5.7.: SWE→OF subcritical. Sequence of the solution for the height. The 2D domain
is on the left side of the images, and a vertical projection of the solution is
shown. The 3D domain is on the right side. On the top-left figure we can see
gray planes defining the 3D domain; for the resting images, only a contour
indicating the free-surface is shown. At t = 0 flow starts from the left on the
2D domain towards the 3D domain on the right side. At t = 0.36s, we observe
a color grading towards the 3D domain, indicating an increase of the water
level. At t = 1.7s, the color grading occurs towards the left side, back to the 2D
domain after reaching the wall at the right end.
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5.2. SWE→ OpenFOAM

(a) Height at t = 0.9s (b) Height at t = 2.1s

(c) Height at t = 2.5s

Figure 5.8.: SWE → OF subcritical. Graphs show the height values across the 2D and 3D
dimensions at different times. Black rectangles enclose discontinuities on the
interface. The red rectangle points the developing left-moving hydraulic jump.
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5. Results

5.3. OpenFOAM→ SWE

The last inter-dimensional case is coupling a 3D domain with a 2D domain. In this case,
the 3D domain is on the left side, while the 2D domain on the right side. The setup for
supercritical and subcritical flow cases are the same as shown in Figure 5.5

.

, with the dif-
ference that in this case the 3D domain is on the left side and we different height for the
water column. Details about these parameters are shown in Table 5.6

.

, and the boundary
conditions for both cases are shown in Tables 5.7

.

and 5.8

.

.

OF→ SWE Supercritical Subcritical
Left Domain

3D
Right Domain

2D
Left Domain

3D
Right Domain

2D
x length [m] 10 7
y length [m] - 10 7 -
z length [m] 10 5
x resolution 30 30 20
y resolution 30 - - 15
z resolution 30 40
water at rest

height [m] @t = 0
5 2

water column
height [m] @t = 0

10 - - -

Table 5.6.: Parameters for the left and right domains for supercritical and subcritical flow
cases for OF→ SWE.

54



5.3. OpenFOAM→ SWE

Supercritical
Edge 2D 3D

Left
h α fixedValue: 0
hu passive u noSlip
hv p rgh fixedFluxPressure: 0

Right
h α zeroGradient
hu outflow u fixedGradient: 0
hv p rgh fixedFluxPressure: 0

Top
h α inletOutlet: 0
hu outflow u pressureInletOutletVelocity: 0
hv p rgh totalPressure: 0

Bottom
h α zeroGradient
hu outflow u noSlip
hv p rgh fixedFluxPressure: 0

Front
α

- u empty
p rgh

Back
α

- u empty
p rgh

Table 5.7.: Boundary conditions for OF→ SWE supercritical flow. The naming of the b.c.
corresponds to the naming for each solver.
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5. Results

Subcritical
Edge 2D 3D

Left
h
hu passive see Table 5.9

.

hv

Right
h α zeroGradient
hu wall u fixedGradient: 0
hv p rgh fixedValue: 0

Top
h α inletOutlet: 0
hu wall u pressureInletOutletVelocity: 0
hv p rgh totalPressure: 0

Bottom
h α zeroGradient
hu wall u noSlip
hv p rgh fixedFluxPressure: 0

Front
α

- u empty
p rgh

Back
α

- u empty
p rgh

Table 5.8.: Boundary conditions for OF → SWE subcritical flow. The naming of the b.c.
correspond to the naming for each solver. The left wall for the 3D case is divided
on two sections: left air and left water, so as to have an open-channel scenario
with constant inflow velocity.

left air
α zeroGradient
u fixedValue: 0
p rgh fixedFluxPressure: 0

left water
α fixedValue: 1
u fixedValue: (2.6,0,0)
p rgh fixedFluxPressure: 0

Table 5.9.: Boundary conditions for the left side on the 3D domain for OF→ SWE subcriti-
cal flow. The left side is divided in two sections: left air and left water in order to
have an open-channel scenario with constant velocity.
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5.3. OpenFOAM→ SWE

Figure 5.9

.

shows the result for the supercritical case. The scenario initially starts from
a water column surrounded by water at rest. After one second, the waves from the water
column crossed to the 2D domain. Later at t = 7.2s, the reflection of the waves on the left
boundary of the 3D domain travel across the interface. From the graphs, we can observe
some discontinuities in the solution. We also observe a different concavity on the solutions.

For the subcritical case, Figure 5.10

.

shows a sequence of the flow crossing to the 2D do-
main, and later reflected back to the 3D domain, similarly as in the SWE→ OF subcritical
case. We can observe some discontinuities from the graphs on the right side of the figure.
Initially, when the fluid goes from the 3D domain to the 2D domain, the jump in the dis-
continuity seems relatively small. Later, after being reflected as the fluid crosses back to
the 3D domain, the jump increases notably, and for later times the gap seems to reduce.
We can therefore assume that the boundary conditions and mapping from the 2D to the
3D domain might contain some flaws on the implementation.
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5. Results

Figure 5.9.: OF→ SWE supercritical. Solution of the height at different times. Graphs on the right
show the water level across the 3D and 2D domains, and correspond to figure on the
left. Black rectangles show discontinuities of the height level on the interface. Note
that image at t = 0s shows the 3D domain, while the rest of the images depict the free-
surface. The solution on the 2D domain (right) uses glyphs for better visualization (the
tip of the glyph is displayed. Do not confuse as part of the solution).
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5.3. OpenFOAM→ SWE

Figure 5.10.: OF → SWE subcritical case. Solution of the height. Image at t = 0 shows the 3D
dimension on the left side, displaying the boundaries in gray color. An open-channel
scenario is considered in this case. Flow going from the left(3D) to the right(2D)
domain. At t = 1.5s the flow crosses to the 2D domain. At time t = 4.6s, the flow
travels back to the 3D domain after being reflected. At time t = 5s, the flow has
crossed back to the 3D domain. Black rectangles in the graphs on the right side depict
the discontinuities on the height. For better visualization we use glyphs (the tips of
the glyphs are displayed. Do not confuse as part of the solution).
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5. Results

5.4. OpenFOAM→ OpenFOAM

5.4.1. Supercritical

As a final case, we address the OF→ OF case for supercritical flow. For this scenario, we
consider a modified breaking-dam case scenario by adding a water column on top. The
schematic for the initial configuration is shown in Figure 5.11

.

. There is no particular reason
for choosing this setup, other than slightly modifying the setup from the OpenFOAM tuto-
rial1

.

with preCICE as the coupling resource. We aim to compare this partitioned approach
with monolithic approach. The parameters and boundary conditions for the partitioned
configuration are shown in Tables 5.10

.

and 5.11

.

, respectively.

Figure 5.11.: Schematic for the OF → OF case at t = 0. The top and bottom figures show
the top and side views respectively for supercritical flow.

1https://cfd.direct/openfoam/user-guide/v6-damBreak/

.
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5.4. OpenFOAM→ OpenFOAM

OF→ OF Supercritical

Left Domain
2D

Right Domain
3D

x length [m] 10

z length [m] 10

x resolution 20

y resolution 20

z resolution 20

water at rest
height [m] @t = 0

10

water column
height [m] @t = 0

10 -

Table 5.10.: Parameters for the left and right domains for supercritical and subcritical flow
for SWE → SWE. Water at rest height refers to the level of water surrounding
the water column.
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5. Results

Supercritical
Edge 3D left 3D right

Left
α zeroGradient α fixedValue: 0
u noSlip u fixedValue: 0
p rgh fixedFluxPressure: 0 p rgh fixedFluxPressure: 0

Right
α zeroGradient α zeroGradient
u fixedGradient: 0 u fixedGradient: 0
p rgh fixedValue: 0 p rgh fixedValue: 0

Top
α inletOutlet: 0 α inletOutlet: 0
u pressInOutVelocity: 0 u pressInOutVelocity: 0
p rgh totalPressure: 0 p rgh totalPressure: 0

Bottom
α zeroGradient α zeroGradient
u noSlip u noSlip
p rgh fixedFluxPressure: 0 p rgh fixedFluxPressure: 0

Front
α α fixedValue: 0
u empty u fixedValue: 0
p rgh p rgh fixedFluxPressure: 0

Back
α α fixedValue: 0
u empty u fixedValue: 0
p rgh p rgh fixedFluxPressure: 0

Table 5.11.: Boundary conditions for OF → OF supercritical flow. The naming of the b.c.
correspond to the naming for each solver.
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5.4. OpenFOAM→ OpenFOAM

Figure 5.12

.

shows the results for the supercritical case. At t = 1.7s, we see that the
fluid has already crossed to the right domain. Figure 5.13

.

shows a comparison of the state
variables between the monolithic and partitioned approaches at t = 1.7s. We observe that
the solutions are slightly different, and they keep the same shape most of the time.

Figure 5.12.: OF→ OF supercritical. Simulation results at t = 0s and t = 1.7s of the parti-
tioned approach.
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5. Results

Figure 5.13.: OF → OF supercritical graphs. Comparison of the state variables p, u, α be-
tween the monolithic and partitioned approach at t = 1.7s.

5.4.2. Subcritical

For this case, we selected the same scenario as for the supercritical case, shown in Figure
5.11

.

. For enforcing subcritical flow, this time we imposed wall boundary conditions on
the right side of the right domain. In this way, the incoming flow would be reflected back
towards the interface. In this case, we lack of a solid theoretical foundation for setting the
correct boundary conditions on the interface. We tried a number of combinations, among
Dirichlet and Neumann boundary conditions, resulting in unphysical results. We also
tried setting the boundary conditions based on the configuration of the already-working
OF-SWE and SWE-OF subcritical cases, however, we mostly ran into incompatibilities for
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5.4. OpenFOAM→ OpenFOAM

the boundary conditions in the OpenFOAMs adapter. Lastly, we tried the same boundary
conditions configuration as in the supercritical case. In this case, we observed that the
solvers would continue to execute normally, delivering consistent results as the simulation
was executing. However, after the flow was reflected back and reaching the interface, the
adaptive time stepping from OpenFOAM would decrease to the order of 10−19, resulting
unfeasible to obtain any conclusive results. Figure 5.14

.

shows a screenshot of the output
of the solver.

Figure 5.14.: Output for OF → OF case for both solvers. Time step in the order of 10−19

for the right solver (below the green line). Other parameters, like the Courant
number, are displayed.
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6. Conclusions

In this thesis, we have coupled a 2-dimensional Shallow Water Equations (SWE) model
with a 3-dimensional Navier-Stokes model for free-surface flow. The 2D model was solved
using a Riemann Problem solver written in C++ and developed at the TUM Scientific Com-
puting Chair, while the 3D model used Volume-Of-Fluid method implemented by Open-
FOAM, a CFD open-source framework. Both models were coupled with the preCICE cou-
pling library.

The methods and experimentation discussed and developed in this thesis, contributed to
the multi-physics simulation field, particularly for Fluid-Fluid interaction problems. Tra-
ditional Fluid-Fluid interaction problems are solved as a domain-partitioned approach,
and are performed within the same dimension. Our simulations make use of the domain-
partitioned approach, however, in this case, the domain-partitioning is done across dimen-
sions.

In this thesis, we designed simulations for 4 cases that resulted from a combination of
two domains of different dimensions: 2D-2D, 2D-3D, 3D-2D, 3D-3D. Because of the nature
of free-surface flow, each of the simulations was performed for supercritical and subcritical
flow, giving a total of 8 scenarios to simulate. We prepared an appropriate environment
for coupling the 2D and 3D solvers together. On the 3D side, we extended the preCICE
adapter for OpenFOAM, by adding new variables for data mapping across dimensions.
On the 2D side, we developed a preCICE adapter in such a way that the methods from the
adapter are decoupled from the general solver implementation. This feature allows us for
future research to treat each case independently, without affecting the implementation of
the remaining cases, and also allows us to add more cases relatively easily.

One of the main variables of interest in free-surface flow is the fluid level. Our ex-
periments focused on obtaining a solution for the free-surface height in each domain. In
the 2D-2D, 2D-3D and 3D-2D, results are qualitatively good and overall consistent with
expected physical behaviour, with potential for improvement. In some cases, we encoun-
tered discontinuities at the interface between the domains, and some of these show a con-
sistent behaviour before and after the interface, that is, the height curves show the same
concavity across the interface. We observe that discontinuities are more prominent de-
pending on the flow characterization; in this case, subcritical cases represent the bigger
challenge.
For the 3D-3D case, we implemented a number of configurations for coupling the domains.
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6. Conclusions

In some cases, the results would show unphysical results. In other cases, OpenFOAM
would adapt the time step to the order of 10−19, making the simulation unfeasible, thus
lacking of conclusive results. In none of the attempts we could obtain a successful simu-
lation for this case. For future research, taking a deeper look into appropriate boundary
conditions on the the interface might take us a step closer to a successful simulation.

From our results and observations we can conclude that it is possible to successfully
couple at least two different solvers across different dimensions, therefore adding more
simulation options and flexibility for Fluid-Fluid interaction problems. From the presented
methodology, and from the resorted tools, we also conclude that it is possible to add even
more flexibility, by adding adding more than two domains, with more than two solvers on
more than two different dimensions.

6.1. Future research

The aforementioned discontinuities are certainly undesirable and some propositions can
be made for resolving them for future research. For instance, the SWE model omitted the
viscosity, thus disregarding bottom and wall roughness. OpenFOAM, on the other hand,
does consider it. We see a clear inconsistency across models that could be addressed.

In terms of mapping data across dimensions, we only considered exchanging informa-
tion along a common edge with the same resolution. Developing mapping techniques
across edges with different resolutions, or even across different elements (e.g. surface to
edge), would add more flexibility for coupling a broader set of scenarios.

In the direction of making full use of the SWE capabilities, it is possible to add source
terms such as sea-floor elevation as new scenarios. In this work, the floor elevation was set
to 0. Proposing interesting sea-floor elevation profiles can be another direction for future
research.
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A. Detailed Descriptions

A.1. Running the Code

In this section, we describe the general steps for building and running the simulations.

Once OpenFOAM, a GCC compiler and SCons(as the building interface), have been in-
stalled, we can download the implementation repository1

.

, and follow the next steps. For
this thesis, we used OpenFOAM7.

1. Install the preCICE library2

.

2. Build the OpenFOAM adapter 3

.

3. In the repository, go to tutorials/FF/dambreak. We will find a list of directories con-
taining the cases. In the cases for running 2D-3D and 3D-2D scenarios, we will find
the runSWE and runIF scripts for running the cases. Run each of them on separate ter-
minals. For running cases for 2D-2D, the scripts runSWE1 and runSWE2, and for the
3D-3D cases, the scripts runIFLeft and runIFRight. Once the simulation has finished,
we can find the results under the IF<case> and SWE output<case> subdirectories.
We used Paraview4

.

to visualize the results.

1 https://github.com/pachesp/2d3dcoupling

.

or
https://github.com/precice/openfoam-adapter/tree/SWE-interFoam

.

2https://github.com/precice/precice

.

3https://github.com/precice/openfoam-adapter/wiki/Building

.

4https://www.paraview.org/

.
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