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a b s t r a c t 

In this work, we study the interface deformation during the early-stages of breakup of a water column in 

an ambient flow field by high-resolution numerical simulation. The compressible Navier–Stokes equations 

govern the motion of the two fluids, and capillary forces and viscous effects are considered. We model 

the multiphase flow with a level-set based sharp-interface method with conservative interface interac- 

tion. The governing equations are discretized with a finite-volume approach with low-dissipation flux 

reconstruction at cell faces based on a fifth-order WENO scheme, and a third-order Runge–Kutta TVD ex- 

plicit time integration scheme. We validate our numerical simulations by comparison with experimental 

reference data. 

We achieve an accurate prediction of wave dynamics and interface deformation of the liquid column. Both 

flattening of the cylinder (first stage) and shearing of the sheet at the droplet equator (second stage) are 

reproduced. We show that a distinct pressure-wave pattern forms in the supersonic flow region near the 

cylinder equator after shock passage. These waves interact with the phase interface, resulting in local 

interface disturbances that coincide with the onset of the second stage. Resolving these waves is essen- 

tial for the prediction of the hat-like structure at the upstream face of the cylinder during the second 

stage of the breakup, which so far only has been observed in experimental visualizations of this partic- 

ular breakup mode. Our results support the connection of the sheet-stripping mechanism with the local 

formation of recirculation zones. Extending previous work, our high-resolution results indicate that recir- 

culation zones appear at multiple locations along the interface, and are directly linked to the growth of 

water sheet-forming interface disturbances. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The breakup of a spherical liquid drop into smaller fragments

s of fundamental importance for many technological applications

nd environmental phenomena, ranging from internal liquid-fuel

ombustion engines to manufacturing of medical drugs and splat-

er of rain drops on supersonic aircrafts ( Villermaux, 2007 ). The

nitial deformation of the drop is driven by the relative velocity

ith respect to the ambient flow field, which may be realized by

njection into a crossflow or sudden acceleration by shock waves,

ventually resulting in drop breakup. The characteristics of the
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reakup process are determined by the relation of inertial forces,

iscous forces, and capillary forces acting on the drop. 

The breakup process can be classified by two non-dimensional

umbers: the Weber number and the Ohnesorge number, which

escribe the ratio of inertial to capillary forces and the ratio of

iscous to capillary forces, respectively. Different breakup modes

ave been observed in experimental investigations upon variations

f these two parameters, resulting in the postulation of five fun-

amental breakup regimes: vibrational, bag, multi-mode, sheet-

tripping, and catastrophic breakup ( Guildenbecher et al., 2009 ). At

mall Ohnesorge numbers ( Oh < 0.1), vibrational and bag modes

ave been observed for small Weber numbers, and sheet-stripping

nd catastrophic modes for high Weber numbers. The multi-mode

reakup has been assumed to be a transitional mode from bag

reakup to sheet-stripping ( Dai and Faeth, 2001 ). It occurs either

s bag/plume or plume/sheet-stripping breakup. Theofanous et al.
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Table 1 

Material parameters for the stiffened-gas equation-of-state for 

water and air. 

Fluid γ [-] p ∞ [GPa] μ [Pa s] σ [ 10 −3 N/m] 

Water 6.12 0.343 1 . 0 × 10 −3 72.75 

Air 1.4 0.0 1 . 8 × 10 −5 
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(2004) suggested a re-classification of the breakup mechanisms,

which is motivated by fundamental physical mechanisms that

dominate the breakup process: Rayleigh-Taylor piercing (RTP) and

shear-induced entrainment (SIE). RTP is the main instability mode

for small Weber numbers, and SIE is the terminal instability mode

for increasing Weber numbers. The RTP regime is characterized

by ambient fluid penetrating the liquid bulk of the drop. The SIE

regime, in comparison, exhibits a shearing of liquid material from

the “edge” of the drop. 

Systematic experimental and numerical investigations of drop

breakup for wide parameter ranges have improved the un-

derstanding of the breakup process, we refer to reviews by

Guildenbecher et al. (2009) and Theofanous (2011) . With regard

to numerical investigations, Khosla et al. (2006) were among the

first to consider a fully three-dimensional setup. They investigated

the breakup process in the low Weber number regime. Since then,

further three-dimensional studies of the breakup process in the

different regimes have been performed, assuming incompressible

flow in the RTP regime ( Yang et al., 2017 ) and fully compress-

ible fluid flow in the SIE regime ( Meng and Colonius, 2018 ). Nu-

merical studies often apply (quasi) two-dimensional setups to de-

crease the required computational cost for breakup simulations.

Supporting this simplification, previous experimental studies ob-

served phenomenological similarity of early-stage interface de-

formation for (quasi) two-dimensional water columns and three-

dimensional spherical drops in crossflow in the shear breakup

regime ( Igra et al., 2002; Igra and Takayama, 2001a ), in particu-

lar regarding the flattening of the drop / cylinder and shearing at

the equator. Experimental results of shock-column interaction ( Igra

and Takayama, 20 01c; 20 03; Sembian et al., 2016 ) often have been

used in two-dimensional numerical studies for model validation

on shock-interface interaction ( Garrick et al., 2017; Igra and Sun,

2010; Ireland and Desjardins, 2016; Nonomura et al., 2014; Schmid-

mayer et al., 2017; Terashima and Tryggvason, 2009; Wan et al.,

2019; Wang et al., 2018; Xiang and Wang, 2017; Yang and Peng,

2019 ). Also, more detailed physical investigations of the sheet-

stripping process have been performed ( Aslani and Regele, 2018;

Chen, 2008 ). More specifically, the experimental setup of Igra and

Takayama (2001c) has been used in the seminal work of Meng and

Colonius for two-dimensional simulations of the breakup of a liq-

uid column in the SIE regime ( Meng and Colonius, 2015 ). Later,

they presented fully three-dimensional simulation results of the

breakup of a spherical liquid drop at the same flow conditions

( Meng and Colonius, 2018 ). Analyzing both the breakup of the liq-

uid column and the transient flow field, the important role of near-

interface recirculation zones in the sheet-stripping process was re-

ported. These zones appeared at the drop equator and in the wake

of the drop. Due to the high Weber number and the low Ohnesorge

number of the setup, viscous and capillary forces were explicitly

suppressed in these simulations. 

In the current work, we consider effects of viscous and capil-

lary forces during breakup of a liquid column in the SIE regime.

The setup follows that of Igra and Takayama (2001c) . We ap-

ply a finite volume approach with low-dissipation shock capturing

based on WENO reconstruction ( Jiang and Shu, 1996 ) for an accu-

rate representation of small-scale flow structures, and a third-order

strongly-stable Runge–Kutta scheme for explicit time integration

( Gottlieb and Shu, 1998 ). A level-set sharp interface method rep-

resents the liquid-gas phase interface, and conservative interface-

exchange terms determine the interaction of the two phases ( Hu

et al., 2006; Luo et al., 2015 ). A block-structured multiresolution

scheme with adaptive local timestepping allows for full spatial

and temporal adaptivity ( Han et al., 2014; Kaiser et al., 2019 ). The

multiresolution compression enables high computational efficiency

even at late stages of the interface deformation, as the mesh adapts

to the ongoing liquid-column deformation. 
The structure of the paper is the following: in Section 2 , we

riefly discuss the physical model. The numerical model is de-

cribed in Section 3 . In Section 4 , we study the results of the

hock-induced breakup of a liquid column with an initial diam-

ter of D 0 = 4 . 8 mm at a shock Mach number of Ma S = 1 . 47 . We

ompare our results to experimental data of Igra et al. (2002) , Igra

nd Takayama (2001b,c) and Theofanous et al. (2012) , and investi-

ate the influence of viscous and capillary effects. We discuss the

ormation of a hat-like structure on the upstream face of the cylin-

er which is known from experimental investigations and link it to

he interaction of pressure disturbances with the phase interface

uring the early deformation stages. For quantitative comparison,

e introduce the skewness of the axial deformation to quantify

mall scales during the ongoing deformation and the main breakup

tages. We conclude the work in Section 5 . 

. Physical model 

The governing equations including viscous and capillary forces

ead in vector notation 

∂U 

∂t 
+ ∇ 

T · F + ∇ 

T · F ν = X (1)

ith 

 = 

( 

ρ
ρu 

E 

) 

, F = 

( 

u ρ
ρu � u + pI 

u (E + p) 

) 

, and F ν = 

( 

0 

T 

T · u 

) 

enoting the vector of conservative states, the convective flux vec-

or, and the viscous flux vector, respectively. Here, ρ denotes the

ensity, t the time, u the velocity vector, p the pressure, I the iden-

ity matrix, T the Cauchy stress tensor, and E the total energy 

 = ρe + 

1 

2 

ρu · u , (2)

omposed of the internal energy ( ρe ) and the kinetic energy

1/2 ρu · u ). The vector X denotes exchange terms between the

wo phases air and water including capillary and viscous effects,

or more details see the following Section 3 . The system of equa-

ions is closed by the stiffened-gas equation-of-state (EOS) 

p = (γ − 1) ρe − γ p ∞ 

, (3)

here the ratio of specific heats γ and the background pressure

 ∞ 

are empirically determined parameters. The stiffened-gas EOS

as been widely used in simulations with multiple immiscible

ompressible fluids. We use this EOS for both fluids air and water,

or model parameters see Table 1 . Note that for the gas phase with

p ∞ 

= 0 , the stiffened-gas EOS degenerates to the ideal-gas EOS.

he parameters for water are calibrated for the given setup follow-

ng the procedure described in Johnsen and Colonius (2007) with

he experimental data of Gojani et al. (2016) , see also Meng and

olonius (2015) . Note that the stiffened-gas EOS is an incomplete

OS, providing an inaccurate prediction of the temperature. Since

e neglect heat transfer, this deficit is not relevant. For a more de-

ailed discussion as well as an extended EOS the reader is referred

o Hawker and Ventikos (2012) . 

As mentioned above, the breakup behavior during aerody-

amic fragmentation is dominated by inertial, viscous, and cap-

llary forces. Inertial forces result in a deformation of the drop,
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Fig. 1. Schematic finite-volume discretization of the domain � on Cartesian square cells. The green line denotes the exact solution, the blue line the linearized approximation 

by the level-set function. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ventually causing its disintegration, while viscous forces retard

he deformation, and capillary forces cause the drop to preserve

ts spherical shape. Two non-dimensional numbers characterize the

reakup process: the Weber number We and the Ohnesorge num-

er Oh . They describe the ratio of inertial to capillary forces and

he ratio of viscous to capillary forces, respectively, and are defined

s 

 e = 

ρg,s u 

2 
g,s D 0 

σ
(4) 

h = 

μl √ 

ρl d 0 σ
(5) 

ith the post-shock density of the gas phase ρg,s , the post-shock

elocity of the gas phase u g,s , the initial droplet diameter D 0 , the

urface-tension coefficient σ , the dynamic viscosity of the liq-

id phase μl , and the density of the liquid phase ρ l . Other non-

imensional numbers used to classify secondary atomization are

he Reynolds number 

e = 

ρg,s u g,s D 0 

μg 
(6) 

escribing the surrounding flow field, the Mach number Ma S of the

hock wave that initiates the breakup process, and the density ra-

io ε = ρl /ρg,s . 
. Numerical model 

.1. Finite-volume based sharp-interface model with conservative 

nterface interaction 

The governing equations (1) are discretized by a finite-volume

pproach on Cartesian square cells in the domain �, which is

ivided into two subdomains �l (liquid phase) and �g (gaseous

hase) by a time-evolving interface 	. Fig. 1 shows a sketch of the

wo subdomains with a sharp interface. We integrate Eq. (1) in

ach computational cell 
i,j of each subdomain �m 

and apply

auß’ theorem to obtain 

t (n +1) ∫ 
t (n ) 

d t 

∫ 

i, j ∩ �m 

d 
i, j 

∂U 

∂t 
+ 

t (n +1) ∫ 
t (n ) 

dt 

∮ 
∂(
i, j ∩ �m ) 

(F + F ν ) · n d 
(
∂
i, j 

)

= 

t (n +1) ∫ 
t (n ) 

dt 

∮ 
	

X · n 	d	 (7) 

here 
i, j = 
x 1 
x 2 denotes the cell volume in two dimensions,

i,j ∩ �m 

each cell volume of phase m , ∂( 
i,j ∩ �m 

) the cell face,

 the cell-face normal unit vector, and n � the interface-normal
nit vector. We replace 
i,j ∩ �m 

by 
i,j αi,j , where αi,j is the time-

ependent volume fraction of phase m , with 0 ≤ αi,j ≤ 1. The cell
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Fig. 2. Sketch of the simulation domain, including an exemplary multiresolution 

mesh. The water column is sketched in blue, the shock in red. Note that the water 

column is not drawn to scale. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
face ∂( 
i,j ∩ �m 

) can be approximated by the cell-face apertures A ,

0 ≤ A ≤ 1, and the segment of the interface 	 inside this cell, 
	i,j .

Eq. (7) is then rewritten for a single forward-time integration step
of phase m as 

α(n +1) 
i, j 

U 

(n +1) 
i, j 

= α(n ) 
i, j 

U 

(n ) 
i, j 

+ 


t 


x 1 

[
A (n ) 

i −1 / 2 , j 

(
F (n ) 

i −1 / 2 , j 
+ F (n ) 

ν,i −1 / 2 , j 

)
− A (n ) 

i +1 / 2 , j 

(
F (n ) 

i +1 / 2 , j 
+ F (n ) 

ν,i +1 / 2 , j 

)]
+ 


t 


x 2 

[
A (n ) 

i, j−1 / 2 

(
F (n ) 

i, j−1 / 2 
+ F (n ) 

ν,i, j−1 / 2 

)
− A (n ) 

i, j+1 / 2 

(
F (n ) 

i, j+1 / 2 
+ F (n ) 

ν,i, j+1 / 2 

)]
+ 


t 


x 1 
x 2 
X 

(n ) 
i, j 

(
	i, j ) (8)

where 
t denotes the timestep size, U i,j the cell-averaged state

vector of the considered phase in cell ( i, j ), and F i,j the fluxes in

or out of this cell. The term X i,j describes momentum and energy

exchange between the two fluids in a cell cut by the interface (“cut

cell”), and includes inviscid, viscous and capillary effects. 

Convective fluxes at cell faces are approximated by the fifth-

order WENO (Weighted Essentially Non-Oscillatory) scheme on

characteristic fluxes, split by the global Lax-Friedrich (GLF) scheme

( Jiang and Shu, 1996; Roe, 1981 ). Viscous fluxes are discretized

with a fourth-order central scheme. For temporal discretization, we

use a strongly stable third-order Runge–Kutta scheme ( Gottlieb and

Shu, 1998; Harten, 1983 ). The maximum admissible timestep size

is determined from a Courant–Friedrichs–Lewy (CFL) stability crite-

rion considering the maximum wave speed, viscous diffusion, and

propagation of capillary waves at the interface 


t = CFL · min 

( 


x ∑ | u i ± c| ∞ 

, 
3 

14 

(
x ) 2 ρ

μ
, 

√ 

ρl + ρg 

8 πσ

x 3 

) 

(9)

where c is the speed of sound ( Sussman et al., 1994 ). In all simu-

lations we use CFL = 0 . 5 . Advancing the flow field by this timestep

size may lead to an unstable fluid state in cells with small volume

fraction α. Therefore, we apply a mixing procedure in cells with

α < 0.5 to maintain numerical stability ( Hu et al., 2006 ). 

3.2. Multi-phase treatment 

The interaction of the two fluids is solved with the

level-set-based conservative interface-interaction model of

Hu et al. (2006) with the extension for viscous and capillary

forces of Luo et al. (2015) . The water-air phase interface is de-

scribed by a level-set function φ. The level-set represents the

interface as the zero-crossing of a multi-dimensional continuous

function. The liquid subdomain �l is indicated by the negative

level-set φ( x ) < 0, the gaseous subdomain �g by the positive

level-set φ( x ) > 0, and the interface 	 by the zero-level-set

φ(x ) = 0 . The absolute value of φ( x ) describes the normal signed

distance of the cell center x to the interface 	. The level-set is

evolved in time with the advection equation 

∂φ

∂t 
+ u φn 	 · ∇φ = 0 , (10)

with u φ being the level-set advection velocity. 

In cut-cells, the level-set advection velocity is equal to the

interface velocity u 	 , which is the contact-wave solution of

a two-material Riemann problem at the phase interface, see

Luo et al. (2015) . The interface velocity u 	 and the interface pres-

sures p 	, l and p 	, g are obtained from a linearized two-material Rie-

mann solver 

u 	 = 

ρl c l u l + ρg c g u g + p l − p g − σκ

ρl c l + ρg c g 
(11)

p 	,l = 

ρl c l (p g + σκ) + ρg c g p l + ρl c l ρg c g (u l − u g ) 

ρl c l + ρg c g 
(12)
p 	,g = 

ρl c l p g + ρg c g (p l − σκ) + ρl c l ρg c g (u l − u g ) 

ρl c l + ρg c g 
. (13)

f capillary effects are neglected, i.e. the pressure jump at the in-

erface due to surface tension vanishes, the interface pressures

oincide p 	,l = p 	,g = p 	 . The curvature κ is the divergence of

he interface-normal vector κ = ∇ · n 	, and is numerically ob-

ained from n 	 = ∇ φ/ |∇ φ| . The curvature is evaluated at the

ell center and then subjected to a subcell correction step to

ake into account the distance between the cell center and the

nterface 

	 = 

(D − 1) κ

D − 1 − φκ
, (14)

here D is the number of spatial dimensions ( Luo et al., 2015 ).

n non-cut cells, the level-set advection velocity is equal to the

xtrapolated interface velocity ˜ u 	, which is determined from the

teady-state solution of the extension equation 

∂ ̃  u 	

∂τ
+ n 	 · ∇ ̃

 u 	 = 0 . (15)

The numerical solution of the level-set advection does not

aintain the signed-distance property |∇φ| = 1 . Therefore, the re-

nitialization equation 

∂φ

∂τ
+ sign (φ0 ) ( |∇φ| − 1 ) = 0 (16)

s iterated in pseudo time τ to steady state to restore the signed-

istance property after each timestep ( Sussman et al., 1994 ). Here,

0 is the level-set field prior the re-initialization step. 

Similarly to the interface velocity extrapolation from cut cells

o adjacent bulk cells, the fluid states are extrapolated across

he interface to define a “ghost” fluid within the opposing phase

 Fedkiw et al., 1999 ). These ghost-fluid states are used in the re-

onstruction of the cell-face fluxes near the interface. This ap-

roach assures the sharp-interface property of the method. 

Momentum and energy exchange across the interface are mod-

led for phase m by explicit exchange terms 

 m 

= X p,m 

+ X ν (17)

here 

 p,m 

= ( 0 , p 	,m 


	n 	, u 	 p 	,m 


	) T (18)

epresents the inviscid exchange including the pressure jump due

o capillarity in liquid ( m = l) and gas ( m = g), and 

 ν = ( 0 , F ν
	n 	, (F ν
	n 	) · n 	u 	) T (19)
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Fig. 3. Normalized streamwise velocity (top) and numerical schlieren images (bottom) of the breakup of a water cylinder with diameter D 0 = 4 . 8 mm, initiated by a shock 

wave with Ma S = 1 . 47 . Shown are different time instants t ∗ ∈ {0.00, 0.02, 0.11, 0.19, 0.26, 0.44, 0.54, 0.76, 0.98} for the subfigures (a)–(i) (left to right, top to bottom). 
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odels the viscous exchange. Here, F ν = [ τxx , τxy ; τyx , τyy ] is the

iscous stress tensor. The length of the interface segment in each

ut-cell 
	i,j is computed from the cell-face apertures following 

	i, j = 
x 

√ (
A i +1 / 2 , j − A i −1 / 2 , j 

)
2 + 

(
A i, j+1 / 2 − A i, j−1 / 2 

)
2 (20) 

 Lauer et al., 2012 ). Note that more details on the model and in

articular generic test cases for model validation can be found in

u et al. (2006) for the base model and in Luo et al. (2015) for

he extended model including capillary and viscous

ffects. 
s  
.3. Wavelet-based multiresolution approach with adaptive local 

imestepping 

High grid resolution is required to resolve the interface defor-

ation and the surrounding flow field accurately. A coarser reso-

ution is sufficient further away from the cylinder. Therefore, spa-

ial and temporal adaptation techniques are necessary to efficiently

olve the breakup process numerically. 

We apply a block-structured wavelet-based multiresolution ap-

roach based on the work of Harten (1994) to adapt the mesh

o the deforming phase interface and the evolving flow field ( Han

t al., 2014; Hoppe et al., 2019; Rossinelli et al., 2011 ). The proce-

ure is described in detail in Hoppe et al. (2019) . The cell-averaged

olution is represented in a hierarchical data structure. Two basic
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Fig. 4. (a) Pressure field around the deforming cylinder at t ∗ = 0 . 13 . Pressure fluctuations appear near the equator on the upstream side of the secondary wave system, 

which is where interface instabilities grow. (b) Temporal evolution of the pressure disturbances. The first frame is at t ∗ = 0 . 033 , subsequent frames follow with 
t ∗ = 0 . 022 

from left to right and top to bottom. The white line denotes Ma = 1 . 
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operations enable data transfer between successive refinement lev-

els: projection and prediction. The projection operation is applied

to obtain data on a refinement level l from the finer level l + 1 and

corresponds to averaging the cell-states on the finer level. The pre-

diction operation approximates data on level l + 1 from level l , and

corresponds in our work to a fifth-order interpolation. Projection

and prediction are local and consistent, but not commutative: ap-

plying first prediction to send data from level l to level l + 1 and

afterwards projection to send data from level l + 1 to level l re-

sults in exactly the same solution on level l . To the contrary, ap-

plying first projection to send data from level l + 1 to level l and

afterwards prediction to send data from level l to level l + 1 results

in an error on level l + 1 . This motivates the definition of the so

called details as the deviation between the exact solution and the

predicted solution on any level l . The exact solution on any level l

can thus be represented by the exact solution on the coarsest level

and the details of all successively finer levels. 

Implicit mesh adaption is performed by considering only those

details that are larger than a level-dependent threshold 

ε = ε · e ( −D ·( l max −l) ) , (21)
l ref 
here l max denotes the maximum level to which the mesh is re-

ned, and εref is the admissible relative error on this level. We ap-

ly a dyadic refinement strategy, where each cell can be refined

nto 2 D smaller cells, with a reference error ε ref = 0 . 01 . 

Efficient time integration is obtained by applying a local

imestepping approach, where each refinement level is advanced

ith its level-dependent timestep size ( Osher and Sanders, 1983 ).

e use an improved version of this local timestepping scheme

hich allows for adapting the timestep size after each full Runge–

utta cycle on the finest refinement level ( Kaiser et al., 2019 ). 

. Results 

.1. Configuration and simulation setup 

The numerical domain of the water-cylinder breakup simulation

s shown in Fig. 2 , together with a schematic multiresolution block

tructure for this case. Note that we simulate the full cylinder

 D 0 = 4 . 8 mm), as our previous work indicated asymmetric flow-

eld patterns in the wake of the cylinder already at early breakup

tages ( Kaiser et al., 2017 ). We prescribe zero-gradient boundary
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Fig. 5. Positive (orange) and negative (purple) z -vorticity streams that interact and form multiple recirculation zones at various instants. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. The flow field in the vicinity of the water column for resolutions of 50 ((a1) – (b1)), 100 ((a2) – (b2)), 200 ((a3) – (b3)), and 300 ((a4) – (b4)) cells per initial diameter 

at t ∗ = 0 . 11 and t ∗ = 0 . 53 . The upper half of each image shows the normalized axial velocity, the lower half numerical schlieren images. 
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Fig. 7. (a)–(d): Comparison of deformed cylinder interface for resolutions of D 0 / 
x = 50 , 10 0, 20 0 and 30 0. The time interval between two subsequent interface contour 

lines is 
t ∗ = 0 . 11 . (e)–(f): the deformed cylinder for these resolutions at t ∗ = 0 . 11 (e) and t ∗ = 0 . 55 (f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

W  

w  

p  

d  

t  

m  

t  

o

 

a  

a  

 

a  

4

 

conditions at all external boundaries. The domain size is chosen

sufficiently large to prevent spurious effects of wave reflections at

the domain boundaries. 

The ambient uniform flow field is generated by a shock wave.

This wave interacts with the cylinder at t = 0 . Pre-shock air and

water are at rest at standard conditions ( ρg = 1 . 20 kg/m 

3 , ρl =
10 0 0 . 0 kg/m 

3 , p g = p l = 1 . 0 atm). Post-shock conditions follow from

the Rankine-Hugoniot relation for a shock Mach number of Ma S =
1 . 47 ( ρg,s = 2 . 18 kg/m 

3 , p g,s = 2 . 35 atm, u g,s = 225 . 9 m/s). Material

parameters for air and water are given in Table 1 . The Weber num-

ber of this case is W e = 7 . 3 × 10 3 , the Ohnesorge number Oh =
1 . 7 × 10 −3 , the Reynolds number Re = 1 . 3 × 10 5 , and the density

ratio ε = 459 , thus SIE is expected to be the dominating breakup

mode. We first perform simulations including viscous and capil-

lary forces with a grid resolution of 200 cells per initial cylinder

diameter, which relates to an effective resolution of 8192 × 8192

cells in the entire domain. Grid-resolution effects are analyzed by

varying the resolution from 50 to 300 cells per initial cylinder

diameter, which relates to effective resolutions of 2048 × 2048,

4096 × 4096, 8192 × 8192, and 12288 × 12288 cells. Note that a
 s  
ull resolution of capillary waves with 

 e 
 = 

(ρl + ρg,s ) u 

2 
g,s 
x 

4 πσ
� 1 , (22)

here We 
 is the cell Weber number ( Popinet, 2018 ), would im-

ly a resolution of approximately 3 × 10 5 cells per initial cylinder

iameter. Thus, our simulations do not resolve the terminal disin-

egration of the liquid sheet due to capillary effects. Good agree-

ent with experimental and numerical reference data indicates

hat the numerical resolution suffices to capture the early stages

f the breakup process (see Sections 4.3 and 4.4 ). 

We non-dimensionalize our results using the initial cylinder di-

meter D 0 , the post-shock velocity u g,s , the pre-shock pressure p g ,

nd the characteristic time by Ranger and Nicholls (1969) given by

(D 0 

√ 

ε ) /u g,s . All non-dimensionalized quantities are denoted by an

sterisk ( ∗). Flow direction in all contour plots is from left to right.

.2. Overall breakup evolution 

Fig. 3 shows the temporal evolution of the numerical breakup

imulation results for a resolution of 200 cells per initial diameter,
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Fig. 8. Evolution of the normalized upstream stagnation point drift (a), the normalized center-of-mass drift (b) and the skewness (c) for various grid resolutions. Where 

applicable, present results are compared to experimental data of Igra et al. (2002) and Igra and Takayama (2001c) (symbols) and numerical data of Meng and Colo- 

nius (2015) (dashed line). 
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t time instants t ∗ ∈ {0.00, 0.02, 0.11, 0.19, 0.26, 0.44, 0.54, 0.76,

.98} (left to right, top to bottom). In each subfigure, the upper

alf domain displays the streamwise velocity field, and the lower a

umerical schlieren image. Following Quirk and Karni (1996) , the

umerical schlieren images are computed with 

= e −k | ∇ρ| / max ( | ∇ρ| ) , (23) 

here the parameter k is used for scaling the schlieren of differ-

nt fluids. Here, we use k = 40 and k = 400 for the air and water

hase, respectively ( Johnsen and Colonius, 2007; Meng and Colo-

ius, 2015 ). 

The wave patterns in the vicinity of the cylinder agree well with

urrent state-of-the-art simulation results in literature ( Meng and

olonius, 2015 ). Initially, the cylinder is unaffected by the shock

assage, as the shock-passage time is much shorter than the relax-

tion time of the cylinder ( Aalburg et al., 2003 ). The shock wave

s partially reflected at the upstream side of the cylinder. Once

he angle between the initial shock wave and the water-air inter-

ace exceeds a critical value, the reflected shock wave transforms

o a Mach reflection ( Igra and Takayama, 2001a ). The Mach stems

erge once the incident shock wave has passed the cylinder and
orm a secondary wave system, which eventually travels further

pstream along the cylinder’s surface ( Fig. 3 (a)–(c)). 

The non-uniform pressure field along the interface results in

he flattening of the cylinder ( Fig. 3 (c)–(e)). At the same time,

egular wave-like interface disturbances develop at the equator

 Fig. 3 (d)). Interface disturbances are related to small pressure fluc-

uations at the phase interface. These fluctuations are detailed in

ig. 4 (a), and their temporal evolution is shown in Fig. 4 (b). We

bserve the formation of a supersonic flow region near the cylin-

er equator from the location of the sonic line (isoline for Ma =
| u || /c = 1 in white). The pressure fluctuations appear once this

upersonic zone reaches the windward side of the cylinder, but

o not form on the leeward side. These characteristic waves do

ot travel upstream with the progressing secondary wave system,

ut remain at the same location until they merge with the sec-

ndary wave system. The pressure waves finally vanish once the

econdary wave system detaches from the cylinder interface, and

he supersonic flow region disappears. The pressure fluctuations

oincide with the onset of the interface waves. We believe that the

nteraction of these local pressure waves with the phase interface

enerates small disturbances that trigger interface waves. The in-
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Fig. 9. (a)–(b) Comparison of experimental visualizations of Igra and Takayama (2001b) (upper half) and numerical schlieren images (lower half) at t ∗ = 0 . 035 ((a); t = 

16 . 18 μs) and t ∗ = 0 . 07 ((b); t = 32 . 14 μs). (c) Flow field in the vicinity of the attached secondary wave at t ∗ = 0 . 07 . Shown are results for simulations with resolutions of 200 

cells ((a1)–(c1)) and 300 cells ((a2)–(c2)) per initial cylinder diameter. Reprinted from Igra and Takayama (2001b) with permission from Springer. 
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terface disturbances eventually develop cusps, which merge into

a single large water sheet and are stripped off from the cylinder

equator ( Fig. 3 (e)–(h)). The thin sheet is advected further down-

stream, where it is subjected to strongly fluctuating forces in the

unsteady wake of the cylinder and, eventually, breaks up. Our sim-

ulations do not resolve this terminal breakup of the sheet. The

smallest sheet dimension is limited by the smallest computational

cell size. 

The simulation confirms the development of a hat-like shape

( Fig. 3 (f)–(i)) with a smooth windward region and two distinct

cusps near the edge, which so far has been reported only in exper-

imental investigations ( Theofanous et al., 2012 ). It is further dis-

cussed in the following Section 4.4 . 

Moreover, multiple recirculation zones establish around the

cylinder interface forming during the simulated time until t ∗ =
0 . 98 , whereas Meng and Colonius (2015) have reported a single re-

circulation zone each in the wake of the cylinder and at the cylin-

der equator. They play an important role during the deformation

and sheet-stripping process, and are initiated by unsteady vortex

shedding at the cylinder equator. Fig. 5 shows the z -vorticity at

various time instants. Unsteady vortex shedding after the shock

passage results in the formation of the wake recirculation zone

( t ∗ = 0 . 10 ). The shed vortex originating from the cylinder equa-

tor is diverted at the downstream stagnation point of the cylin-

der. It interacts with the vorticity stream near the cylinder equator,

which leads to the formation of the equatorial recirculation zone

( t ∗ = 0 . 14 ). We extend these observations, which agree well with

that of Meng and Colonius, by the detection of additional recircu-
 a  
ation zones along the interface, which can be related to local un-

teady vortex shedding at the deformed interface. Previously men-

ioned interface disturbances upstream of the cylinder equator are

inked to the formation of a recirculation zone on the upstream

ide of the cylinder near the equator ( t ∗ = 0 . 26 ), which occurs at

ater time instants between the hat-like structure on the upstream

ide and the developing liquid sheet ( t ∗ = 0 . 54 ). Another recircula-

ion zone forms at the tip of the liquid sheet due to the interaction

f multiple vortices in this area, and contributes to the observed

apping of the sheet in the wake of the cylinder ( t ∗ = 0 . 65 ). 

.3. Grid resolution 

We have investigated the effect of the spatial resolution on the

umerical results for the cylinder deformation. Fig. 6 depicts con-

our plots for resolutions of 50 ((a1) – (b1)), 100 ((a2) – (b2)), 200

(a3) – (b3)), and 300 ((a4) – (b4)) cells per initial cylinder di-

meter at t ∗ = 0 . 11 and t ∗ = 0 . 53 . The upper half of each image

hows the normalized axial velocity, the lower half shows numeri-

al schlieren. 

At t ∗ = 0 . 11 , recirculation zones have formed in the wake of

he cylinder and at the equator. Flattening and shift of the up-

tream stagnation point are similar for all four resolutions. The

rimary wave system, which consists of the incident and the re-

ected shock wave, is at the same position for all investigated res-

lutions. The secondary wave system, which forms near the rear

tagnation point once the Mach stems on both sides converge, is

ttached to the cylinder interface downstream of the equator up
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Fig. 10. Qualitative comparison of the interface deformation process. The experimental figures are obtained from online-available videos. Reprinted from 

Theofanous et al. (2012) , with the permission from AIP Publishing. 
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o a resolution of 20 0 cells per diameter. With 30 0 cells, more de-

ails of the local wave-interface interaction are reproduced, and the

econdary wave system crosses the cylinder equator slightly ear-

ier ( Fig. 6 (a4)). This also affects the development of the pressure

aves, that are visible in the Schlieren image. They only appear

or a resolution of at least 100 cells. For a resolution of 300 cells,

he secondary wave system moves further upstream, the super-

onic flow region is about to disappear, and pressure waves almost

anish. The resolution of the interface disturbance at the equa-

or requires more than 100 cells per initial diameter ( Fig. 6 (a1)

nd (a2)). From grid resolutions of 200 cells per cylinder diame-

er, interface waves are resolved that are responsible for hat for-

ation and denote the onset of the sheet stripping ( Fig. 6 (a3)

nd (a4)). 

A similar behavior is found for the results at t ∗ = 0 . 53 . Gen-

ral features such as the recirculation zones are reproduced for all

esolutions. Resolutions of at least 200 cells per diameter repro-

uce the hat-like structure on the upstream side of the cylinder

 Fig. 6 (b3) and (b4)), while simulations with coarser resolutions

xhibit a smooth interface ( Fig. 6 (b1) and (b2)). Only with suffi-

ient grid resolution, implying sufficiently small numerical dissi-

ation, interface disturbances are accurately resolved and the hat

hape develops. This is also the case for the formation of the sheet,

hich is strongly affected by proper resolution of interface distur-

ances. With increasing resolution, the sheet exhibits finer details,
 t
ee for example the multiple cusps at the edges, each of which is

ssociated with a local recirculation zone ( Fig. 6 (b2)–(b4)). 

Fig. 7 shows the evolution of the phase interface for resolu-

ions of D 0 / 
x = 50 , 10 0, 20 0 and 30 0 ((a)–(d)), and overlapping

t times t ∗ = { 0 . 11 , 0 . 55 } ((e)–(f)). The plots are centered at the re-

pective centers-of-mass 

 

∗
com 

= 

∫ 
�l 

x 

∗ρ dV ∫ 
�l 

ρ dV 

= 

∑ 

i 

x 

∗
i 
ρi V i ∑ 

i 

ρi V i 

, (24) 

here x ∗ stands for the cell-center location and �l denotes the

iquid subdomain. The time interval between two subsequent grid

ines is 
t ∗ = 0 . 11 . At the coarsest resolution ( Fig. 7 (a)), flattening

s reproduced, while stripping at the droplet equator is underesti-

ated. The liquid sheet appears for the finer resolution of D 0 / 
x =
00 ( Fig. 7 (b)). For resolutions of D 0 / 
x = 200 , 300, ( Fig. 7 (c) and

d)) additionally the hat-shaped structure is observed. The overlap-

ing contour lines in subfigures (e) and (f) indicate that coarser

rids have a minor effect on typical geometrical parameters. At

oth instants, the interface overlaps near the upstream and down-

tream stagnation points, and the extend in streamwise direction

s similar. Yet, interface waves are more pronounced for finer res-

lutions ( Fig. 7 (e)), and result in a more detailed representation of

he sheet and the hat-like structure ( Fig. 7 (f)). 
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Fig. 11. Evolution of the normalized upstream stagnation point drift (a), the normalized center-of-mass drift (b) and the skewness (c) for simulations with and without 

capillary and viscous forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

n  

a  

w  

d  

i  

o  

f  

d  

(  

t  

s  

l  

T  

d  

d

 

t  

T  

f  

s  

a  
A quantitative comparison of the normalized upstream stagna-

tion point drift 
x ∗sp , the normalized center-of-mass drift 
x ∗com 

,

and the third moment of the axial displacement μ3 /μ
3 / 2 
2 

is shown

in Fig. 8 . Higher-order moments are computed following 

μk = 

∫ 
�l 

(x ∗ − x ∗com 

) k ρdV = 

∑ 

i 

(x ∗
i 
− x ∗com 

) k ρi V i ∑ 

i 

ρi V i 

. (25)

The second moment ( k = 2 ) μ2 is the variance, and the normal-

ized third moment ( k = 3 ) μ3 /μ
3 / 2 
2 

the skewness of the mass

distribution. The skewness measures the asymmetry between the

upstream and the downstream side of the cylinder. For the up-

stream stagnation point drift, we also show experimental results

of Igra et al. (2002) and Igra and Takayama (2001c) , and numer-

ical results of Meng and Colonius (2015) for comparison. For the

center-of-mass drift, numerical reference data of Meng and Colo-

nius are included. In the study of Meng and Colonius, the authors

apply a volume-of-fluid (VOF) approach, and the results are given

for a volume faction of αT = 0 . 5 . 

The upstream stagnation point drift 
x ∗sp ( Fig. 8 (a)) is con-

verged for the considered resolutions, and agrees well with refer-

ence numerical data of Meng and Colonius (2015) and experimen-
al data of Igra et al. (2002) and Igra and Takayama (2001c) . The

ormalized center-of-mass drift 
x ∗com 

( Fig. 8 (b)) is converged for

 resolution of 200 cells per initial cylinder radius, and agrees well

ith the reference solution of Meng and Colonius (2015) . This un-

erlines that such integral parameters are insensitive to small scale

nterface structures which are resolved only for finer meshes. The

verall evolution of the cylinder drift is well captured already for

airly coarse resolutions, and remains unaffected by the artificial

issipation of the applied numerical scheme. The skewness plots

 Fig. 8 (c)) overlap for 200 and 300 cells per initial cylinder diame-

er, indicating grid convergence. At the higher resolutions, different

tages of the drop deformation can be related to the skewness evo-

ution. The initial increase is related to the flattening of the drop.

he onset of the hat-like structure at t ∗ ≈ 0.3 results in a strong

ecrease of skewness. From t ∗ ≈ 0.75, the liquid sheet is advected

ownstream, which increases skewness. 

In summary, cylinder flattening is least dependent on resolu-

ion, and appears already at the coarsest resolution of D 0 / 
x = 50 .

he most resolution-critical features are interface waves and the

ormation of the hat shape at the upstream side, which is re-

olved with D 0 / 
x = 20 0 , 30 0. Geometrical parameters are less

ffected by resolution. However, the normalized third moment
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Fig. 12. The flow field in the vicinity of the water column for simulations with capillary and viscous forces ((a1) – (e1)) and without ((a2) – (e2)) for a mesh resolution of 

200 cells per initial cylinder diameter at t ∗ ∈ {0.11, 0.19, 0.26, 0.44, 0.76}. The upper half of each image shows the normalized axial velocity field, the lower half numerical 

schlieren images. 

(  

t  

o  

g  

t  

c  

t  

b  

s

4

 

a  

t  

(  

T  

p  

h  
skewness) appears to deliver a good integral measure to detect

he evolution of small-scale features. Our findings extend previ-

usly published results ( Meng and Colonius, 2015 ), which showed

rid convergence for a resolution of 100 cells per initial diame-

er. Our results indicate that higher resolutions of at least 200

ells per initial diameter are required, along with low-dissipation

emporal and spatial discretization schemes, for resolving detailed

reakup features, such as the formation of the upstream hat-shape

tructure. 
.4. Comparison with experimental visualizations 

In the following, we compare our numerical results with avail-

ble experimental visualizations. Schlieren images reveal wave pat-

erns around the cylinder, as shown in Fig. 9 at times t ∗ = 0 . 035

 Fig. 9 (a); t = 16 . 18 μs) and t ∗ = 0 . 07 ( Fig. 9 (b) and (c); t = 32 . 14 μs).

he experimental images of Igra and Takayama (2001b) are de-

icted in the upper half, numerical schlieren images in the lower

alf. Fig. 9 (a1)–(c1) give results for a resolution D 0 / 
x = 200 , and
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Fig. 9 (a2)–(c2) for D 0 / 
x = 300 . The time instants are chosen as

described by Meng and Colonius (2015) . At t = 16 . 18 μs, the numer-

ical simulation accurately reproduces the propagation of the pri-

mary wave system (initial and reflected shock), independent of the

chosen resolution. The propagation of the secondary wave system,

which consists of the converged Mach stems, is slightly underes-

timated for both resolutions. This delay has been reported pre-

viously in literature for this case, e.g. Meng and Colonius (2015) .

At t = 32 . 14 μs, the primary waves are accurately predicted by the

simulation. The propagation of the wave system close to the in-

terface shows a dependency on the chosen mesh resolutions (see

the area marked by the blue arrows in Fig. 9 (b), and the fo-

cus on this area in Fig. 9 (c)). For the higher-resolved simulation

( D 0 / 
x = 300 ), the interaction of the upstream-travelling wave

with the increasingly disturbed interface results in a faster progres-

sion of the wave in comparison to the simulation with D 0 / 
x =
200 , and, thus, in a better agreement with the experimental

data. 

Igra et al. (2002) and Igra and Takayama (2001a) reported

phenomenological similarities for the interface deformation

and breakup of two-dimensional liquid columns and three-

dimensional spherical drops in the shear breakup regime. With

this motivation, we show in Fig. 10 snapshots of the deformed

interface from our numerical study of two-dimensional liquid-

column breakup ( Fig. 10 (a)), and qualitatively similar visu-

alizations of three-dimensional drop-breakup experiments of

Theofanous et al. (2012) ( Fig. 10 (b)). The experimental visualiza-

tions are taken from a breakup configuration in the SIE regime,

with W e = 7 . 8 × 10 2 , Oh = 2 . 4 × 10 −3 , and Re = 2 . 2 × 10 4 (run

W2 in Theofanous et al. (2012) ). We consider the main flow

characteristics as precise flow conditions and time information do

not match, see also Meng and Colonius (2018) for a corresponding

discussion. Nevertheless, the characteristic interface deforma-

tion patterns agree well in both visualizations. At t ∗ = 0 . 14 , the

cylinder flattens due to the non-uniform pressure distribution

along the interface. The downstream side is nearly planar, with

two small cusps near the equator. At t ∗ = 0 . 23 , interface waves

appear on the upstream side. These disturbances later form the

hat-like structure and the liquid sheet, which is typical for this

breakup mode ( t ∗ = 0 . 76 ). The capillary breakup of the sheet in

the wake of the cylinder cannot be observed in our simulation,

most likely due to resolution limits (see Section 4.1 ). In summary,

the main characteristics of the drop evolution agree with the

experiment: 

(i) hat-like upstream structure with smooth windward region and

two cusps at the edge, 

ii) transition region between hat and sheet, and 

ii) sheet deformation in the wake of the cylinder. 

4.5. Capillary and viscous forces 

Capillary and viscous forces may be negligible at high We-

ber and low Ohnesorge numbers. We assess the significance of

these forces on overall breakup evolution and on interface defor-

mation for the given set of physical and numerical parameters.

Fig. 11 shows the temporal evolution of the upstream stagnation

point drift, the center-of-mass drift, and the skewness of the de-

formation in x -direction for simulations with and without capillary

and viscous effects for a resolution of 200 cells per initial diame-

ter. The upstream stagnation point drift 
x ∗sp ( Fig. 11 (a)) and the

center-of-mass drift 
x ∗com 

( Fig. 11 (b)) overlap, indicating that cap-

illary and viscous effects are insignificant at the considered We and

Oh . Generally, also the skewness ( Fig. 11 (c)) shows similar evolu-

tion through the main stages: increase during the flattening stage,
ecrease during the hat-formation, and subsquent increase during

heet stripping. However, for t ∗ < 0.5, the skewness differs more

ignificantly, indicating that small scale interface structures at early

eformation stages indeed are affected by surface tension and vis-

ous forces. With progressing interface deformation, inertial forces

ominate and overwhelm capillary and viscous effects. 

Fig. 12 shows contour plots at time instants t ∗ ∈ {0.11, 0.19, 0.26,

.44, 0.76} (top to bottom) for the cases with ((a1) – (e1)) and

ithout ((a2) – (e2)) capillary and viscous forces. The upper half

omain shows the normalized axial velocity, the lower numerical

chlieren images. The general flow-field and interface-deformation

volution agree well qualitatively for both cases. However, the for-

ation of the two small water sheets on the leeward side of the

ylinder is delayed ( t ∗ = 0 . 19 , 0 . 26 ) when neglecting capillary and

iscous effects. Also, interface disturbances at the equator appear

o be sharper ( t ∗ = 0 . 19 , 0 . 26 ), which has some effect on the shape

f the sheet at later instants ( t ∗ = 0 . 76 ). Nonetheless, flow field

haracteristics such as the recirculation zones are well reproduced

n both cases. At t ∗ = 0 . 76 , both cases exhibit the hat-shape struc-

ure at the upstream side and the liquid sheet at the downstream

ide. 

. Conclusion 

We have analyzed interface deformation of shock-induced

reakup of a liquid column by simulation with a high-resolution

umerical scheme. The numerical model has beed validated by

omparison with experimental results of Igra et al. (2002) , Igra and

akayama (2001b,c) and Theofanous et al. (2012) . The analysis fo-

uses on the unsteady deformation of the water cylinder for differ-

nt mesh resolutions, and on comparison of results for simulations

ith and without capillary and viscous forces. 

The simulations accurately predict wave dynamics and inter-

ace deformation of the liquid column, reproducing the flatten-

ng of the cylinder (first stage) and the stripping of the sheet

second stage). Pressure waves form in a supersonic region up-

tream of the cylinder equator after shock impact and interact

ith the phase interface. This results in local interface distur-

ances, coinciding with the onset of the second stage. Resolving

hese interface waves is essential for a numerical prediction of

 hat-shape structure at the upstream side of the cylinder dur-

ng the second stage of the breakup, which is found in experi-

ental results of Theofanous et al. (2012) for this breakup mode.

o our knowledge, this structure has not been reproduced by nu-

erical simulations in previous works. We assume that the pres-

ure waves initiate the interface disturbances, since these pressure

aves also appear for a coarser resolution of 100 cells per ini-

ial diameter, for which the interface remains smooth due to nu-

erical dissipation. The results confirm the relation between the

heet-stripping mechanisms and the local formation of recircula-

ion zones, as reported by Meng and Colonius (2015) . Extending

heir findings, we find that additional recirculation zones appear

t multiple locations near the interface, and are directly linked

o the evolution of liquid sheets from interface disturbances. At

ery early stages of the shock-column interaction, correct predic-

ion of the interaction between the secondary wave system and

nterface instabilities is critical for qualitative agreement between

imulation and experimental results of Igra and Takayama (2001b) .

 comparative study shows that capillary and viscous forces have

mall effect on integral parameters for the considered Weber and

hnesorge numbers and for the early stages of breakup. Late

tages of breakup evolution increasingly develop three-dimensional

ow structures. Simulations and analyses of three-dimensional

onfigurations at late breakup stages are subject of ongoing

ork. 
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