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1. Introduction

Generic visual object tracking is among the most challenging tasks in the field of
computer vision. Given the location of an object in the first video frame, the task of
generic object tracking is to estimate its position in all subsequent frames and encapsulate
it with a rectangular 2D bounding box. Thereby, trackers should not be susceptible to
illumination variation, occlusion, out-of-view, rotation, deformation, scale variation, fast
motion, background clutters, and other changes in object appearance [88]. It is related to
a wide range of applications such as video surveillance, autonomous driving, pilotless
drones that perform flight manoeuvres around persons or objects, robot manipulation etc.
The focus of this work is generic object tracking, where the objects that will be tracked
are not known in advance. While early methods in visual object tracking made use of
hand-engineered features, the recent development has shown a clear trend towards deep
Convolutional Neural Networks (CNNs), which is also the focus of this work. Visual
object tracking generally operates on RGB data. Today, several depth sensors which
capture the distance of pixels from the camera have become available, e.g. Microsoft
Kinect, Intel RealSense or LIDAR sensors. Also, modern computer vision libraries
allow to calculate the distances from multi-camera setups. As depth information by
definition provides spatial information, incorporating depth into deep visual object
trackers might have even more potential than standard RGB tracking. As there have
not been thorough analyses of how to profit from depth information, this thesis aims to
get a deeper understanding about what might work, serving as a base for the tracking
community for further work on RGBD (4 channels: red (R), green (G), blue (B), and
depth (D)) tracking. The recent publication of the VOT2019-RGBD [48] dataset provides
a corresponding dataset and is an important milestone to attract the attention of the
tracking community towards tracking with depth information. This work focuses on
long-term single object tracking to comply with the videos of the VOT dataset. Generally,
tracking splits into single and multi-object tracking, with single object tracking splitting
further into short-term and long-term tracking. The major difference is that in long-term
tracking an object may leave the field of view.

Following this introduction, developments in the field of generic visual object tracking
with and without depth information are reviewed in chapter 2. The algorithm that serves
as a base for the investigations with depth information is presented in chapter 3. Chapter
4 thoroughly explains the conducted experiments and the outcomes. In addition to the
classic supervised learning methods, section 4.8 analyses the potential of unsupervised
training methods. Results are summarized in chapter 5, before concluding the thesis
and proposing ideas for future work in chapter 6.
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2. Related Work

As the objective of this thesis is to investigate the use of depth information in deep visual
object trackers, a good knowledge about the state of the art methods in tracking as well
as approaches to use depth information in other computer vision tasks is mandatory.
The following sections cover the latest developments in both research areas, providing a
broad overview of existing algorithms. This work demands to combine these findings
and propose a novel framework to tackle the challenge of RGBD tracking. The selection
of the presented RGB trackers tries to outline the milestones in the field of tracking on
the one hand and present modern approaches on the other hand. The focus is hereby
mostly on real-time trackers as a secondary objective is to obtain a real-time RGBD
tracker. Many of them participated in the VOT2018-RT [45] challenge, which explicitly
demands trackers to process frames with a rate of at least 20 frames per second. At
the time of writing, this has been the latest real-time tracking challenge with all papers
describing the trackers being available. Furthermore, existing RGBD trackers at the time
of writing are discussed. The scope of this thesis is generic object tracking, thus the class
of objects is not known beforehand and tracking architectures have to extract features
that are beneficial for tracking of many objects on the one hand, while discriminating
against other objects at the same time.

2.1. Visual Object Tracking

Visual object tracking is a fundamental and challenging task in computer vision, which
has gained much attention in research in the last years. The approaches that modern
trackers in the domain of generic object tracking build on roughly divide into template-
matching methods and tracking-by-detection [54].

The idea of template-matching methods is to match a template of the target object
to different regions in the new image frame. Then, some similarity measure defines
the new position of the object. template-matching methods have very recently gained
much attention with the trend to deep CNNs in other computer vision tasks. While
the early approaches tried to manually develop feature extractors that are optimized
for a specific tracking environment, a shift towards using neural networks as feature
extractors is recognizable. Due to the mentioned challenges in tracking, the definition
of a similarity function is not apparent. Therefore, training a network to learn a good
matching function based on training data seems to be a reasonable approach. The
key concept of all template-matching trackers is that they do not adapt the similarity
measure online, resulting in high tracking speed. Many benchmarks such as Visual Object
Tracking Challenge (VOT) (VOT2015 [44], VOT2016 [47], VOT2017 [46], VOT2018 [45],
VOT2019 [48]), Object Tracking benchmark (OTB50 [89], OTB100 [88]) or GOT-10k [35]
have been developed to address the problem of tracking. In addition to the datasets
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2. Related Work

coherent with the challenges, large-scale tracking datasets as LaSOT [21] recently became
available and even better trackers might be developed with the growth of training data.
The results of VOT2018 show a clear trend towards template-matching methods when it
comes to real-time requirements.

Tracking-by-detection, on the other hand, performs model updates while tracking.
Most of these trackers are based on Discriminative Correlation Filters (DCFs). They
improve computational efficiency and speed by transforming convolutional operations
from time-domain to frequency-domain. Many of these filters use handcrafted features
as used in the beginnings of template-matching methods. Again, this makes finding
appropriate features challenging, as they should be invariant to occlusion etc. Some
solutions make use of CNNs to extract high-dimensional features. However, as this goes
along with a reasonable higher computational effort and a radical increase in the model
parameters, most of these trackers cannot meet real-time requirements.

2.1.1. Template-Matching Methods

To achieve fast speed and online operability, most template-matching trackers rely on
Siamese network architectures [46, 88]. Siamese Instance Search Tracker (SINT) [82]
achieved the first remarkable success in this field. It was able to deliver outstanding
performance by using a rather simple tracker built on an offline-trained Siamese archi-
tecture. Until then, tracking-by-detection algorithms have been state-of-the-art. The
significant difference in template-matching is the idea of learning object features that
are invariant to disturbing factors without explicitly modeling them. In this work, the
focus is generic object tracking. Therefore the matching function does not get trained on
a specific object category but on a dataset of videos that generally does not contain the
target object. Thus, the target appearance is not learned offline.

SINT. Tao et al. [82] proposed two different networks that were suited to learn the
similarity measure. These are variations of AlexNet [50] and VGGNet [77], which
are both initialized with the corresponding network parameters from the unmodified
ImageNet-pretrained models. According to their results, using the deeper VGGNet
significantly improved the tracking results. Figure 2.1 shows the architecture of SINT on
a high level. Fewer max-pooling layers shall help to maintain robustness against noise.
As the complexity of the target object is unknown, the architecture tries to combine CNN
features from different layers. Feature combination takes advantage of the property
that CNNs capture simple features in early layers, but build more complex features
when the layer depth increases [93]. All features contribute to the margin contrastive
loss that Tao et al. adapted in this work. It is contrastive in the way that it assigns
low loss for samples from the same category while at the same time making sure to
obtain high loss for falsely assuming that samples belong to other categories. Chopra et
al. [14] originally introduced it in a face verification setup. For training, sampled boxes
are labeled positive if they are overlapping with the ground truth box to some extent,
otherwise negative. The concept of this loss summarises as follows: If a search frame
contains the target object (is labeled positive), the distance between the corresponding
feature representations is minimized. If the search frame is labeled negative, then a
variation of the support vector machine (SVM) loss is used, thus accumulating loss if the
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2.1. Visual Object Tracking

Figure 2.1.: Overview of the SINT architecture. The algorithm starts with a bounding box
centered at the target object. Then a pretrained matching function predicts
the new location of the object at the next image frame by evaluating the best
match on different candidate boxes (dashed boxes in the left image) [82].

distance of the two representations is smaller than some margin.
SiamFC. Another milestone was the publication of the Siamese Fully-Convolutional

(SiamFC) tracker [3]. This tracker differs from SINT as the siamese architecture is fully
convolutional and therefore has a higher throughput. It uses the template as correlation
filter for a candidate image, which has a higher computational efficiency. Besides, the
network is trained from scratch and does not finetune a pretrained classification network.
Bertinetto et al. [3] applied a logistic loss to train the network. It has been the only
tracker that achieved frame-rate speed at the VOT2015 [44] challenge. According to the
authors, such a learning approach from scratch only became possible because of the
emergence of the ILSVRC (ImageNet Video) dataset [74] for object detection in video.
Before that, datasets that allowed training a full network have not been available. The
network processes two input patches:

• exemplar image z: first appearance of the target object in a 127× 127× 3 patch

• candidate image x: patch of size 255× 255× 3 in which similarities with z are
checked

The fully convolutional neural network ϕ extracts characteristic image features. It is
important to note that both images get processed by the same network with the same
weights, which is the definition of a siamese network. This produces feature vectors of
size 6× 6× 128 and 22× 22× 128, respectively. The central idea with SiamFC is adding
a cross-correlation layer, which applies a convolution of the two feature vectors. The
output is a score map of size 17× 17× 1 with a single convolution, being simple and
efficient. Figure 2.2 shows the full architecture of the SiamFC tracker . ϕ is similar to the
convolutional stage of AlexNet [50]. Noticeably, the CNN does not use padding. Because
of that, the network is fully-convolutional, stating that it commutes with translation. This
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2. Related Work

Figure 2.2.: SiamFC architecture [3].

property allows the search image to be larger than the candidate image, which leads to a
similarity score at all translated sub-windows on a dense grid (score map). SiamFC does
only search for the object in a region of approximately four times its previous size. A
cosine window is applied to the score map to penalize large displacements. In practice,
several scaled versions of the search image are used to cope with scale variation, while
any change in scale is penalized.

SiamVGG, SA-Siam. SiamVGG [57] and SA-Siam [28] are based on SiamFC. SiamVGG
modifies the baseline SiamFC method by using a variant of VGGNet [77] as a backbone
network for feature extraction. The deeper network shall tackle weak discrimination
capability. The general architecture is identical to SiamFC (see Figure 2.2), with ϕ

being the modified VGGNet. SiamVGG considers the finding in Tao et al. [82], which
states that the deeper network improves tracking performance over AlexNet-based
architectures. Thus, by using a modified version of the convolutional part of VGG-16,
more detailed semantic features shall improve tracking performance. The final tracker
outperforms SiamFC. However, it has been trained on ImageNet Video [74] as well as
Youtube-BB [72], which was not available when SiamFC was published. Furthermore,
the network was partly pretrained on ImageNet. Using even deeper architectures as
ResNet [29] or GoogLeNet [81] has not been possible as these architectures need to use
padding, which violates the property of being fully-convolutional. SA-Siam [28] takes
the SiamFC architecture but considers two feature extractors for each path in Figure 2.2.
Thus, the candidate image and exemplar image have two feature representations each.
The idea is that one feature extractor is focused on semantic (S) features, while the other
one is specialized to appearance (A). Both branches use AlexNet-like networks. The
semantic branch is pretrained on ImageNet, while the appearance branch is trained from
scratch. This learning scheme shall encourage the networks to extract complementary
image features, which shall improve tracking metrics when combined correctly.

SiamRPN, DaSiamRPN. Siamese Region Proposal Network (SiamRPN) [54] gets rid of
testing multi-scale images by extending SiamFC with a Region Proposal Network (RPN).
SiamRPN transfers the idea of Faster R-CNN [73] to the area of object tracking. This
further improves the speed and online-capability of siamese trackers. The architecture
consists of a siamese subnetwork for feature extraction and a region proposal subnetwork,
which includes a classification and a bounding box regression branch. Figure 2.3 shows
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2.1. Visual Object Tracking

the framework. The RPN uses the loss function of Faster R-CNN, which is composed
of a cross-entropy classification loss as well as a smooth L1 regression loss. For real-
time tracking, the framework performs one-shot learning, which refers to just taking
the first frame as input. That allows precomputing the detection kernel after training
the network. The training was performed on the ImageNet Video and Youtube-BB
datasets. Li et al. found out that their tracker performance was increasing when
considering more training videos. Hence, they concluded that even bigger datasets
might further improve the tracker. The feature extraction network is again based on
AlexNet [50], pretrained on ImageNet. The first three convolutional layers are fixed;
only the deeper layers are fine-tuned. The Distractor-aware Siamese Region Proposal

Figure 2.3.: The framework of SiamRPN uses a siamese subnetwork for feature extrac-
tion as well as RPN. The RPN consists of two branches, thus handling
foreground/background classification and bounding box regression. [54]

Network (DaSiamRPN) [97] tracker is mainly a modification of SiamRPN. It improves the
discrimination power of SiamRPN, thus tweaking the ability to discriminate foreground
from semantic background. This is achieved by enriching the number of training samples.
More precisely, the object detection datasets large-scale ImageNet Detection [74] and
COCO Detection [58] are utilized to generate image pairs for training the tracker. Apart
from that, negative pairs from the same category, as well as negative pairs from different
categories are generated, which makes the tracker more robust. Data augmentation
additionally includes motion blur. The tracker uses a new distractor-aware objective
function, which further improves online performance. When choosing the output
bounding box from the response map, distractors influence the final choice. Compared
to SiamRPN, the results of Zhu et al. show that their network has better discrimination
behavior against distractors of the same category as the target object.

SiamPRN++. SiamPRN++ [53] is an improvement over SiamRPN by Li et al. It
investigates the problem of siamese networks not being able to take deep networks such
as ResNet [29] as a backbone. The motivation behind this study is the success of deeper
networks in other computer vision tasks. SiamRPN++ aims to carry these milestones
over to the tracking domain. So far, template-matching based trackers did not use them
due to the violation of the fully-convolutional property [3, 28, 54, 57]. SiamRPN++
has been the first architecture that achieved end-to-end learning on a deep siamese
network for visual tracking while still performing real-time. It relies on a modified
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ResNet as feature extractor. Figure 2.4 shows the architecture. Li et al. figured out that
the restriction to networks that fulfill the strict translation invariance property could
be repealed by using a spatial aware sampling strategy. Thus, their tracker is shifting
patches in data augmentation before feeding them to the network. Shifting is performed
by a uniform distribution with a maximum shift value. Higher shift values increased the
performance on the VOT2016 [47] and VOT2018 [45] benchmark and allowed using deep
architectures. According to the authors, the other major problem that exists in SiamRPN
is the parameter imbalance of the feature extraction and the RPN path, which impeds the
training process. The reason for this is the use of an up-channel cross-correlation layer
in SiamRPN. Therefore, SiamRPN++ introduces a depth-wise cross-correlation layer. It
calculates a one-dimensional response map for every channel, reducing the number of
parameters by a factor of ten. Figure 2.5 visualizes the different cross-correlation layers.

Figure 2.4.: SiamRPN++ architecture which uses a modified ResNet as backbone feature
extractor. The network outputs a classification score as well as a bounding
box by combining outputs from multiple SiamRPN blocks. The structure
of each SiamRPN block is shown on the right. It is similar to the RPN in
Figure 2.3 but uses another type of correlation function [53].

SiamMask, SiamMask_E. In 2018 Wang et al. proposed a framework that combines
the tasks of tracking and segmentation, namely SiamMask [85]. This was motivated
by the success of siamese networks in visual object tracking and the availability of
the Video Object Segmentation dataset (YouTube-VOS) [91], which is a video set with
pixel-wise annotations. The tracker also relies on a single bounding-box initialization
but produces object segmentation masks when evaluated online. SiamMask has a
siamese network structure and can perform real-time tracking. The algorithm has been
evaluated with ResNet-like as well as AlexNet [50] architectures. Again, it turned
out that deeper networks allow better results. Identical to SiamRPN++, the ResNet
network is optimized with a random translation training strategy to overcome the
problem of not being fully-convolutional. The best-performing architecture builds upon
SiamRPN, which has been extended with a new segmentation branch (see Figure 2.6).
The overall loss function is composed of the SiamRPN loss, together with a binary
logistic regression loss over all segmentation masks. When applied to real-time tracking,
a rotated-minimum bounding rectangle approach generates bounding boxes from the
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2.1. Visual Object Tracking

Figure 2.5.: Visualization of different cross-correlation layers. (a) predicts a single similar-
ity map between a template and a search patch, as in SiamFC. (b) predicts one
similarity map for each anchor, as in SiamRPN. (c) predicts depth-wise simi-
larity maps between a template and a search patch, as in SiamRPN++ [53].

segmentation masks. Specific refinement modules are used in the backbone network to
generate a more accurate object mask by combining features of different layers. This
work revealed that the rotated-minimum bounding rectangle strategy offers a significant
advantage over popular strategies that report axis-aligned bounding boxes. Of course,
this only applies to challenges that provide rotated ground truth bounding boxes in
their datasets. Based on this finding, Chen et al. developed an ellipse fitting method
to estimate the bounding box rotation angle and size given a segmentation mask of an
object. As SiamMask produces the mask, the tracker is referred to as SiamMask_E [11].
Applying this method is fast and further improved the performance metric of SiamMask
by proposing better-matching bounding boxes when evaluated on the VOT challenges.

THOR. Tracking Holistic Object Representations (THOR) [75] is a novel framework
published in 2019. It operates on top of any template-matching based tracker, which
uses an inner product operation for similarity computation, thus all siamese trackers.
THOR improves the robustness and performance of underlying trackers by providing
a mechanism to gather representative template representations of the target object,
capturing the object’s appearance over time. The general concept is not to improve the
similarity measure for single templates as the case for other presented methods but
instead generating new templates during inference. The framework captures a fixed
amount of templates while trying to keep them as diverse as possible. Diversity is
achieved by approaching the problem similar to capturing the similarity between an
exemplar and a candidate image, thus convolving two templates with each other. Only
templates that maximize the diversity of information about the tracked object will be
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Figure 2.6.: Schematic visualization of the SiamMask architecture based on SiamRPN. ?d
denotes depth-wise cross-correlation. After the features have been correlated,
the network splits into three branches. As in SiamRPN, one branch performs
foreground/background classification (score), while another one performs
bounding box regression (box). In SiamMask, a third branch is introduced
for segmentation mask generation (mask) [85].

kept in memory. Specifically, THOR uses two different modules to store templates, a
Short-term module (STM) and a Long-term module (LTM). The STM handles abrupt
movements and partial occlusion, while the LTM captures variations of the object on a
longer time horizon. During inference, a modulation module implements the idea of
model ensembles by combining all templates to get one bounding box for STM and LTM,
respectively. An ST-LT Switch usually takes the predicted bounding box that builds on
the STM but can switch to the LTM prediction if the drift between both predictions is
too high. Figure 2.7 summarizes the architecture.

ATOM. A promising milestone in template-matching based trackers was set by Danell-
jan et al. with their tracker Accurate Tracking by Overlap Maximization (ATOM) [18]. It
revisits the main problems of siamese trackers. According to the authors, one problem
is not to explicitly include distractors in the framework as existing approaches do not
perform online learning. The other problem states that bounding box estimation cannot
completely be solved with multi-scale testing, for example, in scenarios like out-of-plane
rotation or deformation. Thus, this paper concentrates on distractor handling and
bounding box estimation. Specifically, ATOM introduces a classification component that
is learned online to guarantee high discriminative power in the presence of distractors.
The use of a two-layer CNN obtains real-time performance and prevents overfitting. A
conjugate gradient method performs online parameter updates, as this leads to faster
convergence. A novel target estimation technique in the field of tracking tackles the
second problem. Danelljan et al. utilize the IoU-Net [39], which has been introduced
for bounding box estimation in the object detection domain and adapt it to make it
suitable for generic object tracking. The original paper [39] proposed to learn one
IoU-Net per object category. As not all object categories might be present in the training
data, such an approach with object specific components cannot be realized for generic
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2.1. Visual Object Tracking

Figure 2.7.: Representation of THOR architecture. A neural network extracts features
from the input image and the initial template image. Activation maps are
produced by a dot product, which is a convolution operation for siamese
networks. THOR accumulates templates in the STM and LTM over time.
The modulation module combines the activation maps of both modules. The
ST-LT Switch takes the two predictions based on STM and LTM templates
and selects which bounding box to use for prediction. Depending on the
final prediction, both modules decide whether to capture the new template.
γ is a measure of diversity and controls the threshold of the LTM to capture
new templates [75].
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tracking. A modulation-based network component is introduced in the original network
to consider target appearance and therefore making it suitable for generic object tracking.
This allows target-specific intersection-over-union (IoU) estimates. During tracking, the
bounding box estimate that maximizes the predicted IoU with the target bounding
box determines the tracking output. Figure 2.8 shows an overview of the discussed
architecture. Although it performs some online learning to incorporate background
information, as common for tracking-by-detection frameworks, this architecture belongs
to the template-matching methods in the scope of this work. The reason is that ATOM
still uses an offline trained similarity function that does not get updated online to ex-
tract image features. The feature extracting ResNet uses the same weights for test and
template images.

Figure 2.8.: The architecture of ATOM. The framework consists of a feature extraction
network (orange), a target estimation module (blue), and a target classifica-
tion module (green). The feature extraction network is a ResNet architecture
pretrained on ImageNet. The target estimation network is trained offline
on large-scale datasets, while the target classification module is completely
trained online. The classifier outputs confidence scores for the estimated
target position. The target estimation network consists of an IoU modulation
component and an IoU predictor. The modulator incorporates target-specific
information in the offline trained model by performing feature modulation,
while the IoU predictor predicts the overlap of estimated bounding boxes
with the target [18].

In the following, the presentation of the newly available winners of the VOT2019 [48]
challenges complete the survey on template-matching based trackers. All of the presented
algorithms until this point have been short-term trackers, stating that they do not need
to perform re-detection after losing the target. In the VOT2019-ST and VOT2019-RT
challenges, the trackers are reset after drifting. The VOT2019-LT and VOT2019-RGBD
challenges require long-term trackers. Thus re-detection is mandatory and trackers do
not reset. As the VOT2019-RGBD challenge will be used for the final evaluation of
the tracker developed in this work, the requirement is to adopt a long-term tracking
approach, ideally with real-time capability. Table 2.1 and Table 2.2 show the top-
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performers in the VOT2019-RT and VOT2019-LT challenges, respectively. The Expected
Average Overlap (EAO) is used as a primary performance measure for short-term
trackers in the VOT challenges. The tracker with the highest EAO score is defined as the
best tracker. F-score is the analogous measure for long-term trackers. See chapter 3 for
more details. Interestingly, the top three performing trackers in the long-term challenge
utilize short-term trackers and extend them with a long-term detector approach [48]. This
development shows that advances in short-term tracking are meaningful and have impact
on the long-term tracking domain to some extent. All of the trackers in the tables belong
to the domain of template-matching methods. Therefore, using template-matching
methods as a base for RGBD tracking seems to be appealing. Figure 2.9 visualizes
the performance of the discussed trackers on the VOT2018-RT challenge. It is obvious
that the trackers have significantly improved within the last years. With background
knowledge about the mentioned trackers, there is also a trend of deeper backbone
networks obtaining better EAO on this challenge. In addition, the tracking-by-detection
architectures that will be discussed in subsection 2.1.2 perform inferior compared to
the others, again underlining the importance of template-matching methods in modern
visual tracker development. As not all of these reported scores on the VOT2018-RT
challenge, Figure 2.9 only contains a selection. Finally, it should be noted that all trackers
that participate in the VOT2018-RT challenge meet real-time requirements.

Table 2.1.: Winners of the VOT2019-RT challenge [48].

Ranking Tracker EAO

1. SiamMargin 0.366
2. SiamFCOT 0.350
3. DiMP [4] 0.321

Table 2.2.: Winners of the VOT2019-LT challenge [48].

Ranking Tracker F-score

1. LT-DSE 0.695
2. CLGS 0.674
3. SiamDW_LT 0.665

DiMP. Discriminative Model Prediction for Tracking (DiMP) [4] focuses on learning a
robust target-specific model that incorporates background information while tracking.
It builds on the assumption that some target-specific information is only available at
inference. Thus, the target model cannot be learned offline. In traditional siamese
architectures, the target appearance only affects the model during initialization, more
precisely at target patch extraction. Therefore, background information during tracking
is not incorporated. DiMP also tackles the problem of extracted features during tracking
not being applicable to object categories that have not been present in the training data.
The approach of Bhat et al. consists of two branches: a classification branch and a
bounding box estimation branch. DiMP reuses the IoU predictor architecture that is used
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DiMP (0.44)
ATOM (0.401)
SiamRPN (0.383)
SiamMask (0.38)
SA-Siam (0.286)
SiamVGG (0.275)
CSTEM (0.239)
SiamFC (0.182)
KCF (0.134)
CSR-DCF (0.099)
Struck (0.093)
DSST (0.077)

Figure 2.9.: Performance of all discussed trackers on the VOT2018-RT [45] challenge,
together with the publishing date of the corresponding paper. Only trackers
where results have been published are visualized. The scores are taken from
the official challenge results and papers, respectively. Whenever there have
been different results for a particular tracker, the better score was taken to
consider bugfixes and code optimizations. Trackers that belong to tracking-
by-detection are displayed in gray, template-matching architectures in color.
Best viewed in color.

in ATOM [18] as the bounding box estimation branch. The classification branch contains
a novel model predictor module. The predictor outputs the filter which gets convolved
over the extracted features of the test frame. The convolution produces a confidence
map, with its maximum value indicating the estimated position of the target object.
Figure 2.10 shows the structure, omitting the bounding box branch for clarity. The model
optimizer consists of a discriminative loss function and an optimization strategy that
allows fast convergence by applying steepest descent, enabling online optimization. The
loss function itself consists of a hinge loss in the background region and a least-squares
loss in the foreground. In that way, the optimizer does not force the model to learn
to predict zero scores in background regions but can also output negative values. The
authors conclude that this saves model capacity and encourages the model to be more
discriminative. Spatial weighting, target mask, and regularization strength parameters
are learned from the data during inference, which is a protruding property of the loss
function.

The papers of SiamMargin, Siamese Fully Convolutional Object Tracking (SiamFCOT),
long-term tracking by diving videos into successive short episodes (LT-DSE), Comple-
mentary Local-Global Search for Robust Long-term Tracking (CLGS) and SiamDW_LT
have not been published by the time of writing. However, the VOT2019 [48] results
present short descriptions of these trackers. The following shall only give a rough
overview of which approach was taken.

SiamMargin. SiamMargin (Chen et al.) builds on SiamRPN++. It improves the
handling of distractors by introducing a discrimination loss which is minimized during
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Figure 2.10.: Visualization of the DiMP tracker. The feature extraction network processes
a training set and a test frame, respectively. The novel model predictor
module consists of an initialization module and the optimizer itself. The
model predictor outputs the weights of the convolutional layer, which
produces a score prediction map with the extracted features from the test
frame. The bounding box branch, which is taken from ATOM [18], is not
shown for clarity [4].

offline training. The modified loss function shall put a margin to the decision boundary
similar to an SVM embedding. During tracking, SiamMargin updates the template
image with a moving average strategy.

SiamFCOT. Different to using anchor-based RPNs, SiamFCOT (Wang et al.) utilizes a
bounding box estimation approach from the object detection domain that does not build
on anchors. The overall architecture relies on a standard Siamese correlation network
with an AlexNet [50] as a backbone architecture. On top of that, Wang et al. adapt
Fully Convolutional One-Stage Object Detector (FCOS) [83] such that it can be applied
to object tracking. It refines the bounding box obtained by the Siamese correlation
network. FCOS is taking pixel locations as training samples rather than anchor boxes.
After applying penalizations, the tracker uses the bounding box with the highest score.
Again, this tracker utilizes a template-update technique. It is striking that SiamMargin
and SiamFCOT both perform template updating, yielding that this might be important
for improving performance on real-time trackers.

CLGS. The following trackers belong to the domain of long-term tracking (see Ta-
ble 2.2). CLGS (Zhao et al.) combines SiamMask [85], R-CNN [8], and an online verifier
based on Real-time MDNet (RT-MDNet) [41]. During regular tracking, the short-term
tracker SiamMask performs target localization and bounding box estimation. The online
verifier detects target loss and activates a global R-CNN detector to generate region
proposals on the whole image. Based on these, the verifier will re-detect the target and
re-initialize SiamMask.

LT-DSE. The components of LT-DSE (Dai et al.) are somewhat similar to the CLGS
architecture as it also uses SiamMask [85] and an online verifier based on RT-MDNet [41].
The short-term tracking part is based on ATOM [18] for target localization and SiamMask
for bounding box refinement. The feature extractor network consists of ResNet-18 [29],
with two more convolutional layers added on top. The verifier switches to a long-term
component whenever the target is detected as disappeared. The long-term component
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consists of an RPN with MobileNet [34] as feature extractor network. The network
architecture of the RPN is designed based on the MobileNet based tracking by detection
algorithm (MBMD) tracker of Zhang et al. [94], which was the winner of the VOT2018-
LT [45] challenge. Thus, the main contribution of this paper compared to [94] is a
new short-term tracking component. The RPN outputs possible target locations with
bounding boxes, while the online verifier processes the proposals and can re-initialize
the short-term component if the score of a candidate exceeds a certain threshold. LT-DSE
follows the short-term tracker long-term detector approach, dividing tracking sequences
into shorter episodes and performing short-term tracking on these.

SiamDW_LT. The SiamDW_LT (Du et al.) architecture is a follow-up work of Zhang
et al. [96], which investigated the use of deeper and wider backbone networks in siamese
trackers. [96] analyzed the problems that rise with deep networks in object trackers and
proposed guidelines to design and adapt deep CNNs to the tracking domain. This brings
the correlation of deeper networks and better performance in the object classification
domain to generic object tracking. SiamDW_LT consists of a short-term tracker, an
online correction module, and a global re-detection module. The short-term tracker
implements the design guidelines in [96] but uses an even deeper MobileNetV2 [34]
backbone. The short-term module also consists of a proposal refinement module which
is similar to the IoU architecture used in ATOM [18]. The proposal refinement module is
appended after the RPN to improve the bounding box generation. Finally, the short-term
tracker outputs a confidence score to indicate the reliability of the tracking estimate. If
the short-term tracker fails, the framework switches to the re-detection module. Finally,
model ensemble is utilized to leverage tracking accuracy and robustness.

To sum up the results of the VOT2019-LT challenge, CLGS, LT-DSE and SiamDW_LT
all have a very similar architecture. They implement a short-term tracker, a verifier
network and a re-detection module. CLGS utilizes SiamMask [85] as short-term tracker.
LT-DSE predicts bounding boxes by using ATOM [18] and then performs SiamMask
to refine those boxes. SiamDW_LT uses a RPN with a deep architecture and ATOM
to refine the results. All of these trackers have a module to detect target loss. CLGS
and LT-DSE are using a verifier based on RT-MDNet [41]. For SiamDW_LT the verifier
network is unknown by the time of writing. Each of these approaches has a global
re-detection module.

2.1.2. Tracking-By-Detection

tracking-by-detection intends to make use of additional information about the object to
be tracked that can be gathered online in subsequent frames, assuming correct target
identification. The task can be formulated as repeated detection problem in a local search
window with an online parameter updating scheme of the classifier [64]. Specifically,
correlation filters generate correlation peaks for an object of interest while yielding low
responses for background. They have attracted much attention in the beginning of visual
object tracking. This trend started with the work of Bolme et al. by introducing the
Minimum Output Sum of Squared Error (MOSSE) [7] filter. The most straightforward
approach for modeling an object’s appearance with a correlation filter is to crop a
template from the image. While generating strong peaks for the target, this approach
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is prone to respond to the background as well. Generally, correlation filters make use
of the convolution theorem. It states that circulant convolution equals to element-wise
multiplication in the frequency domain

x⊗ h = F−1(X� H∗) (2.1)

where ⊗ is circulant convolution, F−1 denotes inverse fourier transform operation,
uppercase variables indicate variables in the frequency domain and � represents element-
wise multiplication. Applied to object tracking, the input x would correspond to
preprocessed extracted features or a raw image patch while h is the correlation filter.

MOSSE. In the case of MOSSE [7], the input is a raw image patch that is multiplied by
a cosine window. Thus, the tracker emphasizes the region near the center of the tracked
object while at the same time smoothing the discontinuities at the window boundaries.
The target is tracked by correlating the filter over a search region in the next frame,
yielding to the new object’s position where the correlation output is the highest. To
train such a filter, outputs g have to be defined. In MOSSE, g is generated from the
ground truth such that it obtains a 2D Gaussian-shaped peak centered on the target in
the training image. The difference between the actual output of the convolution and the
desired output g forms the error. The sum of squared errors is minimized to obtain the
best correlation filter. Formulated in the Fourier domain, this leads to

min
H∗

∑
i
|Fi � H∗ − Gi|2 (2.2)

where Fi corresponds to a training image transformed to the Fourier domain with
Gi being its desired output counterpart. By solving this optimization problem and
formulating it as the closed-form expression

H∗ =
1
N ∑

i

Gi � F∗i
Fi � F∗i

(2.3)

Bolme et al. presented the first computationally efficient DCF-based real-time tracker.
Performing the calculations in the Fourier domain reduced the computational complexity
from O(n3) to O(n log n), considering an n-dimensional feature representation of an
input image. For every input frame, evaluation of Equation 2.3 results in a correlation
filter that minimizes the error for that frame. For online tracking, MOSSE uses separate
moving average filters for the numerator and denominator of Equation 2.3, thus expo-
nentially decaying the effect of previous frames over time. Figure 2.11 summarizes the
general workflow of correlation filter based tracking methods.

KCF, DualCF. The continuous work of Henriques et al. [31, 32] improved the MOSSE
filter by extending the framework with kernel methods, utilizing the properties of
circulant matrices to enhance the processing speed. In order to model translations of
an object, they use cyclic shifts of the base sample. Figure 2.12 shows an example of
cyclic shifting applied to an image. The effect of wrapped-around edges is not a big
problem in practice, as this effect can be mitigated by preprocessing techniques such as
applying a cosine window. When looking at cyclic shifts of an image in matrix form, it
turns out that the representation is a circulant matrix. Henriques et al. make use of the
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Figure 2.11.: Workflow of correlation filter based tracking methods. For each frame after
initialization, the current output is cropped at the previously predicted ob-
ject position. Depending on the tracker, raw pixel values or more advanced
features to better represent the object function as image features. Usually, a
cosine window is applied to the features to smoothen the discontinuities
at the boundaries before being transformed to the Fourier domain, where
the filter is trained and updated. The symbol � denotes element-wise
multiplication, FFT means Fast Fourier Transform operation while IFFT,
namely Inverse Fast Fourier Transformation, is the inverse operation. After
updating the filter, the correlation between the current image and the filter
is calculated in the Fourier domain. Applying IFFT outputs the response
map, whose peak estimates the new position of the target [13].
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property that all circulant matrices are made diagonal by the Discrete Fourier Transform
(DFT). Operations on diagonal matrices can directly be performed element-wise on
their diagonal elements. This relation allows effectively training a tracker in the Fourier
domain with all possible cyclic shifts of a sample, horizontally and vertically, without
iterating over them explicitly. Building on this, they proposed two trackers, namely Dual
Correlation Filter (DualCF) and Kernelized Correlation Filter (KCF). KCF makes use of
the kernel trick to obtain a more powerful non-linear regression function at the same
computational complexity as linear correlation filters. DualCF, on the other hand, uses
a linear kernel. Both trackers deliver better performance when using more complex
Histogram of Oriented Gradients (HOG) [16] features as image representations rather
than raw pixel values.

Figure 2.12.: Example of vertical cyclic shifting of an image. Effects from the wrapped-
around edges can be seen; however they are reduced by the multiplication
with a cosine window and padding [32].

As feature representation methods greatly influence the performance of trackers [13],
several works concentrated on finding better representations than raw pixel values or
HOG. Danelljan et al. [17] investigated the use of color features in visual object tracking,
which have effectively been used in image classification and detection tasks as well as
action recognition. They concluded that using color features does improve performance
when combined with luminance. However, a careful choice of which color features to use
is crucial to obtain a reasonable performance gain when including it in a tracker. Color
Names (CNs) [84] obtained the best results. These are linguistic color labels assigned by
humans to represent colors. Using CNs, colors split into eleven color bins, which deal as
image features.

SA, MF, SAMF, DSST, fDSST. Li et al. [55] presented the Scale Adaptive with Multi-
ple Features Tracker (SAMF), which uses KCF as a starting point for their investigations.
SAMF tries to cope with two problems of DCF trackers: handling scale variations and
solely relying on a single feature representation. Thus, SAMF combines raw pixel fea-
tures with HOG and CN. Li et al. assume that HOG and CN are complementary to each
other as HOG concentrates on the image gradient while CN focuses on color information.
By combining these, they were able to obtain a performance gain. To be able to handle
scale variations of the target object, a set of candidate templates with different scales is
resized using bilinear interpolation. Correlating these templates with the filter results in
the final response. Finally, they evaluated three algorithms: Scale Adaptive Tracker (SA),
Multiple Features Tracker (MF), and SAMF. The latter, which combines the concept of SA
and MF, was able to benefit from both approaches, leading to a significant improvement
in performance. However, exhaustive scale search strategies as implemented in SAMF

19



2. Related Work

are computationally expensive. Discriminative Scale Space Tracker (DSST) [19] copes
with this problem and investigates another approach on scale estimation by learning
separate DCFs for translation and scale estimation. The tracker is based on DualCF and
improves it by providing a better scale estimation scheme, dispensing with the need
for exhaustive search strategies. Similar to other trackers, the maximum score in the
response map determines the location of the tracked object in new frames. In addition to
this two-dimensional translation filter, Daneljan et al. introduce a one-dimensional scale
filter. After obtaining the new position, several samples of different sizes are extracted
at the object’s position and mapped to d-dimensional feature vectors. The sample with
the highest correlation score determines the new target size. An aggregation of these
samples is used as a training sample to update the filter, assuming a one-dimensional
gaussian as the desired correlation output. Figure 2.13 exemplifies the training sample
generation for the translation filter and the scale filter, respectively. They further reduce
the computational cost of DSST by sub-grid interpolation of the correlation scores and
performing Principal Component Analysis (PCA) for dimensionality reduction. The
increased speed of the calculations due to lower complexity allows to enlarge the target
search space, thus improving robustness. The extended version of DSST is referred to as
fast Discriminative Scale Space Tracker (fDSST).

Figure 2.13.: Illustration of training samples used to update DSST. The sample for the
translation filter (a) is extracted from a rectangular patch centered at the
object’s position. The sample for the scale filter (b) is an aggregation of
d-dimensional feature vectors of rectangular patches of different scales,
sampled at the estimated object’s position by applying the translation
filter [19].

Ma et al. tracker. The sophisticated results of CNNs in other visual recognition tasks
and the performance increase of DCFs that engage multiple feature representations
motivated the work of Ma et al. [64]. They have developed a discriminative tracker that
uses a pretrained VGGNet as feature extractor. Furthermore, they assumed that the
last convolutional layers represent semantics, which are rather invariant to significant
appearance variations, while lower layers encode spatial details that are more useful
for precise localization. Therefore they proposed layer-wise correlation filters. More
precisely, three correlation filters are used, processing the extracted features from the
third, fourth and fifth convolutional layer of the VGGNet. The correlation filters then
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locate the target object in a coarse-to-fine approach. The reason why this works is the
reduction of the spatial resolution when using deeper features in the network due to
pooling operations. Bilinear interpolation leads to same-sized features from the feature
extractor. Therefore in deeper layers, an object’s location can only be determined by
some accuracy, encouraging the coarse-to-fine approach. Figure 2.14 demonstrates the
algorithm. Ma et al. concluded that using hierarchical convolutional features learned
from a large-scale dataset is more effective than conventional hand-crafted features such
as HOG or CN. However, the performance increase comes at the cost of a drastic speed
reduction as the calculation of CNNs is much more computationally expensive than
other features. Another downside is the sensitivity to occlusion, which can deteriorate
the performance.

Figure 2.14.: Main steps of the algorithm proposed by Ma et al. A cropped search
window is extracted from an image frame centered at the last object’s
position. Conv3, Conv4, and Conv5 contain the target representations at
different hierarchical levels, obtained from the respective convolutional
layers in the feature extractor. Each representation is correlated with a
filter w to generate a response map whose location of the maximum value
corresponds to a location estimate. The exact position of the target object
is obtained by refining the estimates in a coarse-to-fine approach, starting
with the deepest layer [64].

CSR-DCF. A quite sophisticated DCF-based tracker has been presented by Lukežič
et al. [62] in 2018. Their tracker, Discriminative Correlation Filter with Channel and
Spatial Reliability (CSR-DCF), introduces spatial and channel reliability. It uses a spatial
prior and color segmentation to construct a spatial reliability map. That adjusts the filter
support to the target object. More specifically, the spatial reliability map encourages
the filter not to learn background which is essential for irregularly shaped objects.
Weights control the impact of different feature channels. Feature channels with high
discriminative power are assigned a higher weight. CSR-DCF uses HOG, CN and
grayscale channels. The algorithm splits into a localization and an update step. At
the localization step, the new position estimate of the target object is obtained by a
weighted sum over the response maps of all correlation filter channels. The weights of
all channels are referred to as reliability weights. They sum up to one and are affected
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by the maximum response value of the appropriate filter and by how uniquely each
channel votes for a single target position. The new target location is obtained by the
combination of all channel responses. It is then used in the update step to extract the
training region, upon which the estimate of the spatial reliability map is updated. The
spatial reliability map determines which pixels are labeled as containing the object, thus
alleviating the problem of letting the filter learn the background. Finally, the correlation
filters are updated channel-wise and new reliability weights are calculated for use in the
next frame. Figure 2.15 portrays the procedure.

Figure 2.15.: CSR-DCF tracking algorithm, consisting of a localization step (left) and
an update step (right). In the localization step, the new position of the
target object is estimated based on the weighted sum of the channel-wise
correlation filters. In the update step, the spatial reliability map estimate is
adjusted, followed by correlation filter and reliability weights updates [62].

CSTEM, RPT. Channels weighted and spatial-related Tracker with Effective response-
map Measurement (CSTEM) [95] builds on CSR-DCF. It proposes a tracker that obtains
good results even when occlusions occur. Therefore, a new occlusion measure effectively
detects such situations. As an extra correlation filter is employed to locate the object
while occlusions occur, the position estimate switches between these trackers depending
on the occlusion measure. Besides, two scaling approaches are combined to estimate
the scale of the target better. Other concepts introduce part-based strategies, such as
Liu et al. [59] or Li et al. [56]. These strategies implement several DCFs, which track
specific parts of the object, such that detection is still possible if some parts of the target
are occluded. The difficulty of part-based trackers is to define a proper mechanism
to handle multiple results from different DCFs. In [59], five independent trackers are
used to locate different parts of the object. A weighted sum of the individual response
maps forms the joint confidence map. Weighting reduces the impact of single trackers
if occlusion is probable. Reliable Patch Trackers (RPT) [56] develop a framework that
automatically selects parts to track by sampling. It introduces reliable patches, which
can be used for tracking. The reliabilities are updated online, such that the tracker only
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uses parts that are meaningful for tracking.
Struck. Other than DCF-based methods, some trackers still fall in the category of

tracking-by-detection. Structured Output Tracking with Kernels (Struck) [26] is based
on structured output prediction. The method uses a kernelized structured output
SVM, which updates online to provide adaptive tracking. SVMs have been the superior
method in object detection at that time. Hare et al. developed Struck as a tracking
framework that benefits from SVMs, obtaining benefits in terms of generalization and
robustness. Unlike the algorithms mentioned beforehand, this approach does not contain
a classification step. Thus, unlike other algorithms, no samples around the last estimated
target position are labeled and then used to update the classifier and therefore, this
integrates learning and tracking. Interestingly, Struck allowed the use of different image
feature representations by appropriately modifying the kernel function. As stated in
other trackers [55, 62], Hare et al. postulated that different feature representations are
often complementary and can improve performance when adequately combined.

Re3. Real-time Recurrent Regression-based tracker (Re3) [22] is a real-time deep object
tracker that is capable of incorporating temporal information into its model. It prioritizes
offline training on a large-scale dataset and limits online adaption to recurrent state
updates. Using a Recurrent Neural Network (RNN), Gordon et al. are utilizing previous
frames to predict the object’s position in a new video frame. More detailed, at each
timestep, two image crops centered at the last position estimate of the target are fed into
a pretrained CNN, which serves as a feature extractor. The outputs from the CNN are
stacked and fed into a fully connected layer and an RNN, specifically a Long Short-Term
Memory (LSTM) [33] network. The outputs of the LSTM lead into a fully connected
layer that regresses the upper left and lower right corner of the output bounding box.
Figure 2.16 demonstrates the network architecture. The network parameters of the CNN
are not updated at test-time in order to obtain real-time performance. Thus, no retraining
on the network is performed. However, relevant object information is collected during
tracking and gets stored in the recurrent parameters, allowing online adaption at low
computational cost.

The performance on the OTB100 [88] dataset is evaluated to provide some measure
of comparison between the presented tracking-by-detection frameworks. The choice of
this specific dataset results from the fact that it is the one where most of the trackers
published their performance. Evaluation on the OTB100 depends on the area under
curve (AUC) of the precision and success plot. The precision plot maps the percentage of
correct object locations to given pixel thresholds. Similarly, the success plot correlates the
IoU of predicted frames with the ground truth bounding boxes over all IoU thresholds.
The AUC is then simply the area under the respective curve. Thus, a good tracker should
have a high precision AUC and a high success AUC at the same time. Figure 2.17 shows
the results of the presented trackers on the OTB100 dataset. It shows a trend towards
better performance with more sophisticated architectures. However, the best performing
ones again follow the template-matching approach.

As a summary of all trackers in subsection 2.1.1 and 2.1.2, Figure 2.18 claims to
visualize the dependencies among them. Most of the tracking-by-detection frameworks
discussed in the scope of this work built on handcrafted features rather than using
CNNs. This is mostly due to the fact that online updating of deep networks is not
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Figure 2.16.: Architecture of Re3. Two image crops are fed into the feature extractor CNN.
Before every pooling operation, skip connections preserve high-resolution
spatial information. The output of the network leads into a fully connected
layer and an LSTM. The outputs of the network are the new coordinates of
the upper left and lower right corner of the bounding box estimate [22].
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Figure 2.17.: Performance of presented trackers on the OTB100 [88] dataset. Each tracker
is plotted with its specific precision and success AUC values. In addition to
the architectures that belong to tracking-by-detection, template-matching
based trackers are also shown in gray wherever results have been available.
The figure shows that the best performances are obtained by template-
matching trackers. Best viewed in color.
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possible due to performance issues. On the contrary, template-matching methods rely
on a rich feature representations. Figure 2.18 shows a clear trend from relatively small
backbones as AlexNet to deeper networks like ResNet or MobileNet. This reflects the
development in other computer vision tasks. The top-performing long-term trackers
in the VOT2019 [48] challenge seem to extend state-of-the-art short-term trackers for
enabling re-detection whenever they detect target loss.
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Figure 2.18.: Overview of all discussed visual object trackers and their dependencies.
The approaches divide into template-matching methods and tracking-by-
detection. The colors represent the backbone network that is used for
feature extraction in each framework. Because modern long-term trackers
build on short-term trackers with global re-detection strategies, most of the
presented trackers are short-term trackers. However, the top three long-term
trackers of the VOT2019-LT [48] are also portrayed with dashed lines. For
long-term trackers, the color represents the feature extractor backbone of
the underlying short-term tracker. Although this illustration only includes
a selection of approaches, it coarsely represents the evolution of state-of-the-
art trackers. The best-performing architectures rely on CNNs, with a clear
trend towards deeper backbones like ResNet [29] or MobileNet [34]. On the
other hand, tracking-by-detection approaches mostly rely on handcrafted
features and often have inferior performance compared to architectures that
profit from deep features.The top three performers on the VOT2019-LT as
well as the VOT2019-RT challenge are annotated. Best viewed in color.

2.2. Using Depth Information in Computer Vision Applications

The rise of depth cameras, which can capture distances from targets to the camera lens,
triggered investigations on how to profit from this spatial information when performing
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different computer vision tasks. The property that depth data contains information
about the object’s shape that is invariant to lighting or color variation seems appealing
for integration in existing frameworks.

Eitel et al. [20] proposed a framework to perform RGBD object detection by making
use of CNNs. Specifically, they use two separate networks that are combined with a
late fusion network consisting of a fully connected and a softmax layer. For feature
extraction, a ZF-Net [93] architecture is used, which is an improvement over AlexNet
by hyperparameter tuning. The two streams process color and depth information,
respectively. Figure 2.19 shows the architecture. Both network streams are pretrained
on ImageNet due to the lack of large-scale RGBD datasets that could have been used
for training the network from scratch. The absence of large datasets as present in the
field of object recognition might as well be a challenge in the development of an RGBD
tracker in the scope of this work. The concept for processing depth information with
CNNs applied by Eitel et al. summarizes as follows: A depth image is encoded as RGB
image, spreading the data over all three channels.

Figure 2.19.: Two-stream CNN architecture that Gupta et al. use for RGBD object de-
tection. The two inputs are the RGB color image for the first and a depth
encoded color image for the second stream. The first stream resembles an
RGB approach, while the second stream solely relies on the depth informa-
tion. Combining the outputs with a late fusion network allows weighting
the importance of the two modalities [20].

There are different possibilities for encoding depth information, such as depth-gray
encoding [20], surface normals [6], HHA encoding [24] or depth-jet encoding [20]. HHA
encodes the depth information with three channels at each pixel. These are horizontal
disparity, height above ground and the angle the pixel’s local surface normal spans with
the gravity direction [24]. It was published in 2014 and comes into effect in several
approaches in handling RGBD data [2, 24, 27, 60, 80]. Eitel et al. observed superior
behavior of their depth-jet encoding technique over HHA [20]. All of these encoding
strategies utilize different methods for rendering color images in order to be able to
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use CNNs with depth information. Another method was introduced by Zia et al. [98],
who present an architecture that combines three different models: the standard 2D
VGGNet, VGG3D, and 3DCNN. VGG3D is a modified version of the standard 2D
VGGNet, whose first layer is replaced in order to allow 3D input images. 3DCNN is a
smaller architecture compared to VGGNet. The VGGNet and VGG3D are pretrained
on ImageNet, while 3DCNN trains from scratch. It also takes 3D input images, but just
contains two convolutional layers. The 3D input images are obtained by preprocessing
the depth information to produce a 3D voxel representation, combining RGB and depth
information. At first, a third dimension is introduced based on the depth values present
in the image. This generates a 3D image-sized voxel grid. Subsequently, the RGB
pixels are placed at the same position in the voxel grid as in the original image, but at
their corresponding depth. Figure 2.20 shows an example. In that way, features that
are related to depth and color can jointly be learned rather than treating both types
of features separately. The general problem with CNNs that take 3D representations
as input is the high memory and computational overhead compared to standard 2D
CNNs [86].

Figure 2.20.: Generation of 3D representations from depth and RGB information that
are used as inputs in VGG3D and 3DCNN, exemplary for a 3× 3 input
image. Accordingly, a 3× 3× 6 voxel is produced as the depth values are
quantized into 6 intervals [98].

In 2013, Couprie et al. [15] were the first to address multi-class segmentation with
RGBD inputs with a feature learning approach. They did not rely on hand-crafted
features as it was usual by that time. Couprie et al. consider depth as an additional input
channel on top of color channels and expect the convolutional layers to extract appropri-
ate features. They state that using depth information can help to improve recognition
of objects that have mostly similar depth appearance and location. However, according
to the authors, their approach performed better when only using RGB information for
classes that contain high depth-variability. Referring to recent trends, this supports the
observations that using more sophisticated methods of including depth information in
existing frameworks delivers better results.

FuseNet. FuseNet [27] attracted attention by incorporating depth information in
CNNs to solve the semantic segmentation problem on RGBD images. It consists of
an encoder-decoder network where the encoder is composed of two branches. One
branch extracts features from the RGB image, while the other one extracts depth features.
The innovative part is the fusion mechanism. In FuseNet, performing element-wise
summation with feature maps of the depth-branch enhances the RGB feature maps. A
straightforward approach would be to stack the depth information and the RGB data to
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a four-channel input. In contrast, Hazirbas et al. [27] claim that applying their fusion
technique obtains feature maps that are more discriminant and therefore better-suited
for segmentation tasks. Compared to Eitel et al. [20], who also obtain a two-stream CNN
architecture to extract depth features, FuseNet only takes a 1D grayscale depth image
as input for the network. Both branches use parameters of a pretrained VGGNet. The
weights of the first layer are averaged along the channels for the depth branch, thus
allowing to use the pretrained weights even with a 1D input.

In 2018, Wang et al. [86] addressed the problem of doubled network parameters and
computational cost with architectures that construct two CNNs to process RGB and
depth data separately. Therefore an efficient way of bringing spatial information into
CNNs is introduced by two operations: depth-aware convolution and depth-aware
average pooling. The concept of both operations is to emphasize pixels that have similar
depth while reducing the impact of other pixels at the same time. Both layers consist
of their 2D counterparts. However, the result is weighted by some depth similarity
measure, thus constructing a depth-aware receptive field. Figure 2.21 illustrates the
calculus applied in both layers. Replacement of standard convolutional and average
pooling layers with their depth-aware variations in existing networks allows exploiting
depth information while obtaining the efficiency of CNNs. Furthermore, no additional
parameters are introduced in the network. Wang et al. observed the performance of
the CNN layers in a segmentation background. Nevertheless, the authors claim that
this framework might be useful for any computer vision task when considering RGBD
inputs.

Figure 2.21.: Illustration of the depth-aware convolution layer and the depth-aware
average pooling layer that have been introduced by Wang et al. The concept
is demonstrated with a 3× 3 convolutional filter for a single channel. For
the depth similarity maps, darker colors represent higher similarity with
the pixel in the center of the filter’s receptive field. (a) performs convolution
between the input feature map and the convolutional kernel, element-
wise multiplying the result with the depth similarity map. Likewise, (b)
performs average pooling on the input feature map, weighted with the
depth similarity [86].

Porzi et al. [71] introduced a depth-aware CNN for pixel-level classification in the
context of pose estimation. Specifically, they introduce a CNN layer that adapts the
size of the convolutional filters depending on the depth. In that way, areas of the
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image corresponding to objects that are far away are convolved with small filters, while
areas corresponding to close objects convolve with bigger filters. Implementation-wise,
convolutions are performed at different scales. The result is a weighted sum over these
feature maps, with the features being dependant on the depth value. The general idea
is that each scale is best-suited for one distance from the camera. Their architecture
improved compared to the same architecture using a standard convolutional layer when
applying this concept.

Depth information is also vulnerable for scene recognition, which combines the tasks
of semantic segmentation and detection as well as pose estimation. The overall goal is
to identify a complete scene and classify it accordingly. The common practice in this
field when including depth information was to apply transfer learning from RGB CNNs
due to the lack of RGBD datasets. Rethinking this habit, Song et al. [80] observed that
learning from scratch may obtain better results. Their studies use HHA [24] encoding
for the depth channel as input for the CNN. The main finding is that RGB and depth
images have significantly different low-level visual patterns. This fact turned out to be
a significant drawback when only finetuning a network that was pretrained on RGB
data. Finetuning does generally not affect the early layers in the network. According to
their findings, this results in a large number of low-level features not being activated
when using HHA encoded features on RGB pretrained networks. To cope with the
small datasets, Song et al. designed a network with fewer parameters that can learn
depth-specific features while training from scratch.

2.3. Advances in RGBD Tracking

In the meanwhile, there has already been some progress on tracking with RGBD images.
The following tries to present existing approaches. The selection of the RGBD trackers is
inspired by results on the Princeton Tracking Benchmark [79] and the newer VOT2019-
RGBD [48] challenge. The Princeton Benchmark was published in 2014, the participating
trackers in the years 2015 to 2017. The presentation of these trackers shall function
as overview of what approaches have been taken in considering depth information in
trackers in the past. Though, these trackers have not competed in the VOT2019-RGBD
challenge. In total, six trackers that incorporate depth information have been published
in the scope of the VOT2019-RGBD challenge, with only four being able to outperform
baseline RGB-only trackers. As the results of the VOT2019 challenges have just been
published at the time of writing, only a few papers are already available. Thus, not all
trackers are described in detail. However, the official VOT2019 [48] challenge results
include short descriptions of all trackers.

OAPF. Occlusion-Aware Particle Filter (OAPF) [68] was the first RGBD tracker that
directly included an occlusion state in the formulation of a tracker. As many RGB
trackers have difficulties in dealing with occlusions, this approach concentrates explicitly
on such situations and presents an occlusion recovery mechanism. Hand-crafted features
are used to process the depth channel, which then get fused with the features from
the color image. OAPF is based on a particle filter. Particle filters are composed of a
prediction and an update step. In the prediction step, the new target position in the
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current frame is estimated based on samples (particles) from a posterior distribution.
The update step updates the posterior according to the new observations. Long-term
occlusions have to deal with drastic changes in size, motion direction, distance from
the camera, and orientation. Meshgi et al. intend to profit from the fact that the
motion model used in the particle filter can help to re-detect the target object. For
each particle, the algorithm checks whether it is occluded. An occlusion flag is set if
the number of occluded particles exceeds the number of non-occluded ones. Setting
the flag stops model updating, and the motion model of the particles changes to a
random walk pattern. Hence, the particles scatter from the last known position of the
target, and the search area increases with the number of frames in which occlusion
is present according to that measure. If a particle is similar to the target object, that
particle replicates such that fast recovering from the occlusion state is possible and allows
continuing the regular tracking strategy. Combining multiple feature representations in
their experiments, namely HOG, Histogram of Texture [70], 3D Shape Parameters [40],
Template of Edges [36], Histogram of Depth and Adaptive Histogram of Colors [67],
obtained the best performance. Introducing a particular observation confidence mask
further improved the tracker. Many trackers utilize a kernel to emphasize pixels in the
middle of the search region. Meshgi et al. propose to assign weights to each cell in a
regular grid based on the occlusion probability distribution of their approach. They
expect further improvement when weighting the features by their discriminative power.

3D-T. Bibi et al. [5] published another particle filter based RGBD tracker. Their 3D
Part-Based Sparse Tracker with Automatic Synchronization and Registration (3D-T) is
novel in the sense that the motion and appearance model are both formulated in 3D.
Hence, 3D-T utilizes depth information directly in the particle representation. The
particle filter samples 3D cuboid candidates for representing the target object. Each
particle is represented with CN and 3D shape features. 3D-T is a part-based tracker
consisting of one centered cuboid to represent holistic object representations and eight
cuboids that only concentrate on specific parts of the object. Their experiments showed
that assigning multiple parts to an object is beneficial and provides a more robust
representation of the target object which increases the overall tracking performance.
Similar to OAPF [68], the motion model is dependant on occlusion but with a different
occlusion detection paradigm. The object is assumed to be occluded whenever the
average depth-normalized number of 3D points per cuboid drops below some threshold.
Occlusion leads to an enlarged standard deviation in the particle sampling of the motion
model, which allows re-detection after occlusion states. The motion of the particles
consider 3D rotations and translations. Unlike in the 2D case, scale estimation is not
necessary as the scale of the target in 3D is hardly changing. 3D-T is currently the best
RGBD tracker on the Princeton [79] challenge, according to their website1. Bibi et al.
introduced methods to correct synchronization and registration noise in the dataset
because of inferior performance due to some videos suffering from these problems.
Camplani et al. [9] also worked on correcting the dataset. However, they did not publish
an automatic correction scheme, as implemented in the scope of 3D-T. These problems
could be a general issue with this dataset. Thus the comparison to other trackers might

1http://tracking.cs.princeton.edu/eval.php
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not be fair. Eventually, other trackers would perform better when using the preprocessed
data as well. According to the authors, however, the problem is mostly relevant for
trackers that perform representation sampling and tracking in 3D.

DS-KCF. Camplani et al. [9] published a KCF-based (see subsection 2.1.2) RGBD
algorithm called Depth Scaling Kernelized Correlation Filter (DS-KCF). The tracker
improves its RGB counterpart with better scale and occlusion handling by using depth
information. It still obtains real-time performance. Figure 2.22 shows the block diagram.
HOG features are extracted from the depth and RGB channel and serve as input for
the KCF. A depth segmentation map is constructed by performing K-means clustering
followed by Connected Component Analysis to refine the obtained Regions of Interest
(ROIs). It serves as a basis for scale analysis and occlusion handling. The scale of the
object’s template adapts according to the object’s depth compared with its initial depth.
By updating the template size in the Fourier domain, convolutions in the spatial domain
turn into element-wise operations. Camplani et al. assume a gaussian depth distribution
of the tracked target. Regions that do not belong to this model are considered as
occluders. During occlusion, the occluder is tracked and a local search strategy recovers
from occlusion. The strategy is composed of the new and old occluding’s object position
and the best target candidate. This local search approach results in similar computational
complexity in regular operation and occlusion. The follow-up work of Hannuna et al. [25]
further extends the DS-KCF framework by a Kalman filter motion model to improve the
tracking during occlusions.

Figure 2.22.: Block diagram of DS-KCF tracker. It expands the baseline KCF tracker by
depth features. Furthermore, a clustering-based segmentation method is
applied. It is used for scale analysis and occlusion handling of the tracked
object [9].

Gu et al. [23] published a different KCF-based algorithm in 2017. They treat the RGB
picture and the grayscale depth image as separate inputs with different feature extraction
methods. The color channel uses CN, HOG, and deep features, while the depth channel
only uses HOG and deep features. A VGG-19 network pretrained on ImageNet serves as
the extractor network. All features form a set of RGBD features that serves as input for a
KCF. The response map then determines the center of the new bounding box. The major
contribution of this paper is the attempt to tackle the KCF sensitivity to scale variation of
the target object by exploiting depth information. Therefore, Gu et al. leverage the fact
that the size of the object is proportional to the distance to the camera to estimate a scale
factor for the predicted bounding box. The depth distribution in the previous frame is
the reference for the next frame. Using the underlying correlation between distance to
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the camera and size of the object in the image plane is efficient. Figure 2.23 outlines
the strategy. While short-time occlusions can be handled quite well, the main problem
of the presented method is its deficiency against long-time occlusion which leads to
tracking failure. Also, Gu et al. observed that a single tracker which fuses RGB and
depth information outperforms two separate trackers that treat both domains separately.

Figure 2.23.: RGBD tracker by Gu et al. RGB and depth information are two separate
input channels with different feature representations. The RGB features are
CN, HOG and deep features, while the depth channel uses HOG and deep
features. These features are combined and a Kernelized Correlation Filter
produces a response map with the maximum value corresponding to the
new bounding box position. The depth input is compared to the previous
frame to estimate the scale of the predicted bounding box [23].

As mentioned before, the former RGBD trackers have been evaluated on the older
Princeton [79] dataset. All of them are based on hand-crafted features. That does not com-
ply with the recent development of generic RGB object trackers, as the best-performing
architectures are using features extracted from deep CNNs (see subsection 2.1.1, Table 2.1
Table 2.2, Figure 2.9 and Figure 2.17). So far there has not been much work on RGBD
trackers due to the lack of appropriate datasets. Most recently, the VOT2019-RGBD [48]
challenge initiiated researchers to come up with novel RGBD tracking architectures. It
evaluates RGBD trackers on the Color and Depth Visual Object Tracking Dataset and
Benchmark (CDTB) [61]. It has been the first time that a separate RBGD challenge was
included in the series of VOT. It addresses long-term tracking with color images and
additional depth information. Figure 2.24 presents the newly published challenge results.
The top four trackers in the scope of the challenge leverage the power of deep features,
reflecting and profiting from the development in conventional RGB tracking. Object
Tracking by Reconstruction with View-Specific Discriminative Correlation Filters (OTR)
and CSRDCF-D have been added as baseline trackers by the authors of the challenge
for comparison with the pariticipating architectures. Therefore, they have not just been
published and thus their papers are available. Both are based on DCFs and performed
well on the Princeton dataset. Their considerably lower score compared to the others
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yields the trend towards extensively using deep feature extraction CNNs. Figure 2.24
illustrates the gap between the two baselines (rank five and six) compared to the winning
architectures (rank one to three). The performance of the top three trackers is very
similar, while SiamM_Ds cannot keep up with them. However, it still performs signifi-
cantly better than OTR and CSRDCF-D. The papers of SiamDW_D, Accurate Tracking
by Category-Agnostic Instance Segmentation for RGBD Images (ATCAIS), LTDSEd and
SiamM_Ds are not published yet. Hence, only a short description can be given based
on the official VOT2019 challenge document [48] as well as the poster session of the
CDTB [61] dataset. Noteworthy, it is not apparent how extensively the four best trackers
exploit depth information. However, it shall be assumed that the information of [48, 61]
are correct. The following paragraphs will discuss the different approaches.
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Figure 2.24.: Winners of the VOT2019-RGBD [48] challenge. Only rank one to four have
been published in the scope of the challenge. OTR and CSR-DCF have been
added as baseline architectures for comparison. The top three performers
are very close to each other. All presented trackers (rank one to four)
outperform the two baselines.

SiamDW-D. SiamDW-D (Yu et al.) implements a short-term tracker based on SiamRPN
with a modified backbone as in [96] and a component with online updates similar to
ATOM [18]. Furthermore, it consists of a global re-detection module, similar to state-of-
the-art long-term RGB trackers (see subsection 2.1.1). Re-detection is performed using
a refinement module based on IoU-Net [39]. According to the available information,
the tracker seems to be very similar to its long-term RGB counterpart SiamDW-LT (see
subsection 2.1.1). However, SiamDW-D is equipped with a multi-template-matching
module, comparing unconfident tracking results with history templates to improve
the prediction. Thus, the global re-detection strategy is only activated if the tracking
results with the current and history templates do not exceed a certain confidence level.
Depth information is specifically utilized to estimate target disappearance. At the time
of writing, it is, however, not obvious how exactly the framework incorporates the
additional information.

ATCAIS. ATCAIS (Wang et al.) combines the task of tracking with depth information
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and instance segmentation. Its short-term tracker is based on Hybrid Task Cascade
(HTC) [12] and ATOM [18]. HTC has been the winner of the 2018 evaluation of
the MSCoco [58] dataset for image segmentation and thus is a state-of-the-art image
segmentation algorithm. Being a cascade architecture, it consists of several stages with
further stages refining the bounding box and mask predictions. As bounding box
estimation and mask prediction are interlaced, the framework profits from incorporating
complementary features of both tasks in each stage during training and inference. The
predicted bounding boxes serve as an input for ATOM which refines them. The depth
information is used for the detection of occlusion and target disappearance. Again, no
details of the exact procedure are published so far. According to the paper presentation
of the CDTB dataset, ATCAIS also uses the depth information for target re-detection.

LTDSEd. In addition to ATCAIS, Wang et al. published long-term tracking using
depth information by diving videos into successive short episodes (LTDSEd) in the
scope of the VOT2019-RGBD challenge. According to the poster presentation of the
dataset, LTDSEd only uses depth for target loss detection. Refer to subsection 2.1.1 for
the description of the long-term tracker.

SiamM_Ds. The SiamM_Ds (Chen et al.) tracker is a modification of SiamMask [85]
such that it can process depth information. It enhances SiamMask by assigning the
depth of the target to the average depth of the predicted segmentation mask. In that
way, the target estimation can be constrained to only allowing small displacements in
consecutive frames. Thus, depth is incorporates as a constraint to detect tracking failure.

OTR. The baseline tracker OTR [43] uses a 3D object representation and several
view-specific DCFs to improve robustness. The DCFs are variants of CSR-DCF (see
subsection 2.1.2) with the difference that the segmentation mask is generated from RGBD
input and the estimated 3D model. This shall lead to a richer representation that e.g.
allows better modelling of out-of-plane rotation. The 3D model is initialized at the start
of tracking. During inference, rotation and translation of the model into the current
object position are calculated by cloud-matching techniques, specifically an Iterative
Closest Point method. This is used to for 3D model updating. The framework stores
a new filter whenever the view has changed. View-changes are detected as a change
of bounding-box width to height ratio of the current estimate and the 2D projection of
the model. The filter memory with filters for different views is used for re-detection
after occlusion or disappearance, thus making the whole architecture long-term tracking
approved. Therefore, all DCFs are applied to re-detect the object. The filter with the
highest response is then checked again with a scaled search region to cope with size
changes. Apart from target loss or occlusion, all DCFs are applied once every few
iterations to always choose the one that delivers the best response and therefore best
represents the current view.

CSRDCF-D. Recently, Kart et al. [42] tried to leverage the progress made in short-
term tracking to build a reasonable RGBD tracker. Therefore, their proposed generic
framework deals with the problem of short-term trackers that they tend to include
the background in their model updates in case of occlusion. This leads to drifting.
The idea is similar to OAPF in the way that the occlusion state initiates a separate
occlusion strategy. The implementation of this framework assumes the following: First,
depth information does not improve visual object tracking as it does not represent
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texture. Second, state of the art (SOTA) short-term trackers have decent performance in
scenarios without occlusion. Combining these, they propose to use depth information for
occlusion detection. The framework performs occlusion-dependant switching between
the deployed short-term tracker and a specific occlusion recovery concept. Occlusion
is detected based on a foreground segmentation mask. The mask is generated by a
graph cut algorithm that minimizes a cost function. The cost function is adapted to
the problem and incorporates depth and color information as well as a spatial prior,
which favors pixels in the middle of the estimated object center. The ratio of foreground
to background in the bounding box functions as an occlusion detector. If occlusion
is present, a recovery mode ensures to increase the search region with an increasing
number of frames that the object has been occluded. Step-wise enhancing the search
region provides advantages to a simple full-frame grid search concerning computational
efficiency. The motion history of the target defines the search region in recovery mode.
Particularly, Kart et al. assume that the object will continue moving with the last-known
velocity. Re-detection in recovery mode is performed by recognizing a response that
is similar to previous tracked frames. This assumes that the target’s appearance does
not change significantly while being occluded. As the short-term tracker itself is not
modified, progress on RGB tracking can conveniently be integrated to the RGBD domain.
Figure 2.25 shows the general structure of the framework. It has been tested with several
trackers. The best performance was obtained with CSR-DCF [62] as short-term tracker
(see subsection 2.1.2) by replacing its mask with the foreground segmentation mask of
this framework. This variant of the tracker is thus called CSRDCF-D.

Figure 2.25.: The framework of Kart et al. convert short-term RGB trackers to be RGBD
compliant. In the case of no occlusion, the RGB tracker estimates the
target position. Whenever the target object is occluded, a special occlusion
recovery mode activates until the target object is re-detected. The RGB
tracker is not modified, thus not taking depth information into account [42].

Table 2.3 lists all participants of the VOT2019-RGBD challenge and splits them up
into their components. Most of the architectures mainly use the depth information
for target loss detection. Therefore, it is not surprising that the trackers have a similar
architecture as conventional long-term trackers, consisting of a short-term tracker and
a re-detection component. In addition, Table 2.3 shows how the depth information is
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incorporated in the frameworks. The information is mostly taken from the CDTB [61]
poster presentation.

Table 2.3.: Participating trackers in the VOT2019-RGBD challenge, split up into their
components. The frameworks are divided into short-term tracker and global
re-detection module. Furthermore, the use of the depth information is anno-
tated. The trackers are sorted according to their rank in the challenge, starting
with the best entry. [48, 61].

Tracker Short-Term Re-Detection Depth

SiamDW-D ATOM, RPN, IoUNet Failure Detection
ATCAIS ATOM, HTC RPN Failure Detection,

Re-Detection
LTDSEd ATOM, SiamMask, RPN, RT-MDNet Failure Detection

RT-MDNet
SiamM_Ds SiamMask SiamMask, Failure Detection

enlarged search
OTR [43] DCF, Segmentation DCF (image-wide) 3D Model
CSRDCF-D [42] DCF, Segmentation DCF (image-wide) Segmentation

2.4. Discussion

There has been much activity in the field of visual object tracking in the last years. Bear-
ing in mind the numerous challenges that go along with tracking, many sophisticated
algorithms have been published and obtained impressive results on object tracking bench-
marks. Template-matching methods (see subsection 2.1.1) dominate the leaderboard of
today’s trackers, delivering high speed and performance. Starting with SINT [82], learn-
ing a similarity function to differentiate between objects by training a deep convolutional
network on large-scale datasets turned out to be a neat way of performing generic object
tracking. Given the similarity function, template-matching methods often take the first
frame in a video as a template and then compute a similarity score for possible positions
of the object in new frames. The highest similarity score then leads to the new prediction,
as the similarity function should learn to output high scores for the template and the
search image containing the same object, and low scores otherwise. Despite being pub-
lished in 2016, SiamFC [3] still achieves reasonable performance on current benchmarks
and serves as a starting point for many other algorithms. Specifically, SiamRPN [54],
DaSiamRPN [97] and SiamMask [85] are important milestones that build on SiamFC (see
Figure 2.18). All of these approaches focus on finding better feature embeddings and
similarity measures. THOR [75], on the other hand, focuses on finding better template
representations over time and can operate on any template-matching method. Newer
architectures like SiamMargin and SiamFCOT cope with both problems by proposing
a template updating strategy to obtain a better similarity measure. Other algorithms
implement a completely different approach named tracking-by-detection. Bolme et al. [7]
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published the first tracker (MOSSE) in 2010, long before SINT [82] in 2016, which has
been the first tracker that belongs to template-matching. Other than template-matching,
these trackers learn to discriminate the object against background online. MOSSE [7]
and KCF [32] have been important milestones. CSR-DCF introduces a weighting of
different feature channels, CSTEM [95] further modifies it by improving tracking in
occlusion scenarios. RPT [56] utilizes the concept of part-based tracking, leveraging
several DCFs and combining their predictions. Generally, most trackers operate on
hand-crafted features such as HOG or CN. Template-matching approaches often outper-
form tracking-by-detection approaches as hand-crafted features seem to obtain inferior
performance compared to deep CNNs. Some approaches (Ma et al. [64]) compensate this
by applying correlation filters on top of deep features. However, this often comes at the
cost of speed reduction, especially when adapted online. Struck [26] exploits SVMs for
tracking, Re3 [22] tries to solve tracking by applying RNNs. Recently, some algorithms
try to leverage the advantages of template-matching and tracking-by-detection. DiMP [4],
CLGS (Zhao et al.), LT-DSE (Dai et al.) and SiamDW_LT (Du et al.) combine an offline
trained siamese architecture with an online learning component. Thus, they try to profit
from prior knowledge extracted from large-scale datasets and then improve the result
by adapting a smaller component during inference. These architectures are somewhat
complex and always face the tradeoff between speed and performance. In conclusion,
in RGB tracking, there is a clear trend towards using deeper architectures to extract
characteristic features of images, similar to other computer vision tasks. This applies to
both approaches, template-matching as well as tracking-by-detection. This thesis will
concentrate on template-matching methods as the best-performing trackers belong to
this category, especially when it comes to real-time requirements (see Figure 2.9).

When working on tracking with depth information, research on how to leverage this
additional information in other disciplines could be useful for the tracking domain. In
object detection, Eitel et al. [20] propose to use two separate streams with the same
architecture for feature extraction on depth and color information, and then combine
them by a fully-connected fusion layer. The depth information is encoded as a 3D input
by applying a jet colormap. Zia et al. [98] applies the concept of model ensembles by
combining three different models. One model uses the depth information together with
the color input to create a 3D voxel as input to a CNN that is learned from scratch.
In semantic segmentation, Couprie et al. [15] considered depth as an additional input
channel without any specific treatment. Hazirbas et al. [27] introduced FuseNet, which
uses a pretrained network on color images for the depth channel by averaging the first
layer weights along the channel dimension. Wang et al. [86] try to directly make use
of the depth information in the model implementation by proposing two new layers:
depth-aware convolution and depth-aware average pooling. Incorporating depth in the
model layers reduces complexity and memory requirements compared to having two
separate architectures. In pose estimation, Porzi et al. [71] change the convolution filter
size based on depth, whereas Song et al. [80] inspect the potential of depth in pose
estimation.

In tracking with depth information, only a few algorithms exist due to the lack of
large-scale datasets and challenges. The focus of the tracking community is, therefore,
on RGB tracking. OAPF [68] and 3D-T [5] use a particle filter approach that incorporates
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depth information. The former uses the depth information to detect occlusions and
based on that changes the motion model, while the latter formulates the motion and
appearance model in 3D. OTR [43] is based on DCFs, but also saves a 3D model of
the object. DS-KCF [9] extends the identically named RGB tracker by utilizing depth
information for better scale and occlusion handling. CSDCF-D [42] presents a general
framework that could extend any RGB tracker to include depth information to switch to
an occlusion recovery mode and use the RGB tracker otherwise. All of these trackers
operate on hand-crafted features. The recent results of the VOT2019-RGBD challenge
present four new architectures: SiamDW-D (Yu et al.), ATCAIS (Wang et al.), LTDSEd
(Wang et al.) and SiamM_Ds (Chen et al.). As the papers have not been published by the
time of writing, no reference can be given. Other to the mentioned methods, these are
all complex architectures that build on their RGB tracker counterparts and extend them
by using the depth information for target loss detection. In that case, they switch from a
local search to a global re-detection strategy. All of them, except for SiamM_D, are hybrid
architectures, trying to combine tracking-by-detection and template-matching. None of
the algorithms explicitly uses the depth for training, thus motivating the investigation in
this thesis.
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This chapter explains the approach in this thesis. At first, the challenges that go along
with tracking with depth information are outlined. Secondly, the baseline RGB tracker
deployed for all subsequent experiments is introduced in detail, such that the reader is
confident about the architecture before moving to the next part.

3.1. Challenges

In general, the number of RGBD trackers is rare compared to the RGB case. Besides,
none of the state-of-the-art RGBD trackers incorporates the additional depth information
in the training process (see chapter 2). What is the reason for this situation, and what
challenges have to be faced when doing so? After performing experiments on different
strategies on how to improve tracking performance with RGBD, the three main problems
are as follows:

• Lack of large-scale datasets

• Lack of benchmarks

• Uncertainty about preprocessing and architecture

Lack of large-scale datasets. The biggest challenge that complicates the training
process of generic object tracking architectures on depth information relates to the
problem that only a few datasets are available in this domain. Many are object-specific
for performing tasks like pedestrian tracking, object pose estimation for robotics, and
others [48]. Therefore, they are not well-suited for training generic object trackers.
Additionally, the datasets are rather small compared to RGB datasets like ImageNet [74]
or the recently released RGB tracking dataset LaSOT [21]. The most popular dataset for
RGBD tracking before VOT2019-RGBD has been the Princeton Tracking Benchmark [79]
published in 2013, indicating that not much effort has been put into RGBD tracking in
the last years.

Lack of benchmarks. Another point which is in a way related to the lack of data issue
is the limited number of benchmarks for RGBD tracking. By the knowledge of the author,
only three benchmarks are available for comparing the performance of generic RGBD
trackers, namely Princeton Tracking Benchmark [79], Spatio-Temporal Consistency (STC)
dataset [90] and the recent VOT2019-RGBD challenge [48]. For comparison, there are
several yearly challenges for RGB tracking (short-term, real-time, and long-term) only by
the VOT initiative, neglecting other benchmarks such as GOT-10k [35] or OTB [88, 89].
Thus, the tracking community did not pay much attention to this research area. This now
changed with the publication of the VOT2019 and VOT2020 challenges, which motivate
modern long-term tracking approaches that utilize the additional depth information.
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Uncertainty about preprocessing and architecture. In RGB tracking, the input is
an image of shape (w, h, 3), with w and h being the width and height of the image,
respectively. The depth of the input is 3, representing the color channels (red, green, and
blue) of each pixel. Note that in literature, depth in neural networks often corresponds
to the number of layers that a specific network is composed of, whereas depth in the
context of RGBD trackers describes the distance of pixels from the camera additional to
the color information. Keeping that in mind, we have a 4D input, being red (R), green
(G), blue (B), and depth (D). Different to RGB, where the pixel intensities are scaled in a
fixed range [0, 255], the range of the depth values is dependant on the sensor. Therefore,
preprocessing here splits into two points: First, depth information should be prepro-
cessed such that the network input is independent of the depth recording hardware, and
therefore the network can be trained and evaluated on sequences recorded with different
sensors, as necessary in VOT2019-RGBD. Second, one can think of different preprocess-
ing techniques on an architecture level. So far, it is not obvious what architecture works
well for depth information. RGBD can be used as a (w, h, 4) input, which would increase
the filter size of first the convolutional layer in the neural network. However, this means
that the first layer can no longer use pretrained weights on large-scale RGB datasets
(e.g. ImageNet) as the filter size increases. Generally, it is then no longer clear whether
RGB pretraining helps, as the network learned how to extract important features from
three channel color-only inputs. Using deep neural networks pretrained on a large-scale
dataset like ImageNet (image classification dataset) and then performing finetuning on
other computer vision tasks or different datasets is a prevalent practice in modern AI
development, as training deep networks from scratch requires much data, computing
resources, and time. Unfortunately, pretrained RGBD networks are not available yet.
It is a similar situation to the tracking field, where the most effort is currently spent
on image classification with color input. Hence, another approach would be to take a
pretrained network for RGB and another network for depth, profiting from the availabil-
ity of well-performing RGB architectures and still incorporating depth information by
training a separate network and combining the features from both domains. Training
the depth network from scratch on the one channel input could be one option, encoding
the depth as color image of shape (w, h, 3) would be another. The latter again offers
different implementations, ranging from easy approaches like replicating the value to 3
channels to more sophisticated techniques as colormap encoding. Encoding to 3D might
allow leveraging pretrained networks on RGB images in the depth domain, reducing
the amount of data needed for training. Having access to pretrained networks would
be a tremendous advantage compared to training from scratch. A third idea would be
spatially encoding the image to a 4D volume of shape (w, h, z, 3) with z corresponding
to the distance from the camera, while the fourth channel is the color information.
Though, this is problematic as it requires 3D convolutions, which are computationally
expensive compared to 2D convolutions [87]. Again, pretraining can be an option here
by replicating the filter weights of a 2D pretrained RGB along the depth dimension, as
applied in [98].

Summarizing the challenges above, the lack of large-scale datasets is the main problem
when training a tracker on RGBD information. The need for big datasets follows from
the fact that deep convolutional networks, as present in all state-of-the-art approaches,
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contain millions of parameters. Extensive training with lots of data is necessary to
allow learning these. This challenge will hopefully become obsolete with the publication
of large datasets in the future that specifically address RGBD tracking. The situation
concerning the second challenge already changed, and the interest of the community is
now also on RGBD tracking. This thesis has to arrange with the constraints given by
these points and can only try to exploit the data with sophisticated data augmentation
techniques. However, this only improves the situation to some extent. For instance, the
number of object classes cannot be compensated by data augmentation, demanding
the need for large-scale RGBD datasets in the future. The experiments in chapter 4
tackle the challenges of uncertainty about preprocessing as well as uncertainty about
the architecture to exploit depth, establishing novel insights in RGBD tracking. Future
trackers can further build on these findings to improve RGBD tracking.

3.2. DaSiamRPN as baseline RGB tracker

A well-performing RGB tracker will serve as the baseline for the subsequent investi-
gations. Here, this architecture is DaSiamRPN [97], as it won the VOT2018 real-time
challenge (short-term tracking) and ranked second in the VOT2018 long-term chal-
lenge [45]. Therefore, it meets the requirements of this work, as it is state-of-the-art,
allows real-time performance, and implements a long-term strategy. Equally important,
the code is publicly available and therefore allows modifications while guaranteeing a
correct baseline implementation. This section gives a quick overview of the adapted
DaSiamRPN architecture. Understanding the structure is crucial, as the inclusion of
depth information accompanies adjustments to the baseline tracker. The interested
reader should also have a look at the original publication [97] as well as [54], which
covers everything in more detail.

3.2.1. Architecture

Figure 2.3 visualizes the architecture of DaSiamRPN. It is identical to SiamRPN, however
with some differences in the training process. Recapturing the basics from section 2.1,
template-matching based trackers compare a search frame to a template frame. For
DaSiamRPN, the template z is an (127× 127× 3) image centered at the object location
in the first frame, while the search image x is of shape (255× 255× 3) centered at the
last predicted object position. For each frame in a video sequence, the architecture
takes the template and the extracted search image as input and eventually predicts the
most probable object location. DaSiamRPN consists of a deep siamese subnetwork ϕ

for feature extraction and a RPN for bounding box proposal generation. The siamese
subnetwork transforms the information from pixel level to the feature space. It will
further be referred to as the backbone, as the RPN builds upon the generated features to
make predictions. The backbone architecture could be any CNN that allows extracting
characteristic features in images. However, the original implementation utilizes a
backbone adapted from AlexNet [50] that has already been used in SiamFC [3]. For
computational reasons, this work also utilizes an AlexNet-like architecture. However,
deeper architectures might enable better object representations, but come at the cost of
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more parameters and thus longer training times. Note that there is only one backbone
with one set of parameters for encoding deep features from the two input images – thus
being siamese. The intuition here is to find the most similar region to the template frame
in the search frame in terms of feature similarity. Hence, the feature extracting network
should be identical for both inputs.

Figure 3.1.: Visualization of anchor boxes. The red circle in each grid cell denotes the
center position of anchors located in that cell. Each grid cell contains k
anchors of different shapes. The image shows the anchors of two grid cells
for k = 3 with different aspect ratios. For visibility reasons, only the anchor
positions are displayed for the remaining grid cells.

Given these feature representations, the RPN performs the bounding box proposal
generation. Specifically, it utilizes the concept of anchors, dividing the search image
into a regular n× n grid. Each grid cell contains k different anchors of various shapes
and sizes. Figure 3.1 shows an exemplary 5× 5 grid with three anchors at each grid
position. The RPN consists of a classification branch and a bounding box regression
branch and therefore splits the tracking problem into two distinct tasks on anchor
level: Classifying each anchor whether it does contain the object on the one hand and
predicting a bounding box correction for each anchor in terms of (dx, dy, dw, dh) on the
other hand. dx and dy is an offset in the anchor position, and dw and dh a change of
the width and height of the bounding box of that anchor, respectively. The first CNN
in the classification branch of the RPN (see Figure 2.3) consists of a 3× 3 convolutional
layer, which increases the channel dimension of the template feature representation
to (2k× 256) to encode foreground and background scores on anchor level. Similarly,
another layer in the bounding box regression branch increases the channel dimension
to (4k× 256) to capture offsets in x, y, w, and h. The channel dimension of the feature
representation of the search image stays constant for both branches. The classification
branch then performs a depth-wise cross-correlation of the search image features with
the feature representation of the template image being the correlation kernel. This leads
to a (17× 17× 2k) score map, giving a score for each anchor for containing the object
or background. For the regression, the same procedure leads to a score map of shape
(17× 17× 4k), giving a correction to each anchor of each grid cell. The correlations for
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classification and regression calculate to:

Acls
w×h×2k = [ϕ(x)]cls ? [ϕ(z)]cls (3.1)

Areg
w×h×4k = [ϕ(x)]reg ? [ϕ(z)]reg (3.2)

? denotes the convolution operation with [ϕ(z)]cls and [ϕ(z)]reg being the kernels, while
A denotes the correlation output for each branch, respectively. As described earlier,
the procedure only differs in the channel upsampling convolutional layer. Note that
the convolutional layers that split the feature representations of the search image for
classification and regression do not share parameters. Although the architecture of the
RPN is similar for both branches, weight sharing only applies in the siamese backbone ϕ.

As mentioned in chapter 2, many long-term trackers follow a short-term tracking long-
term detection approach. This technique also applies to DaSiamRPN, whose structure
divides into these two components.

Short-Term Tracker

Given the discussed architecture, the short-term tracking approach is pretty straight-
forward. In the first frame of a video, the tracker precomputes the two kernels in
Equation 3.1 and Equation 3.2 as they stay fixed for an entire sequence. Then, for each
frame, the network extracts a fixed-size search region at the last predicted object position
and computes the output scores by utilizing the precomputed template features. The
search and template image sizes are defined by

(w + p) · (h + p) = A2 (3.3)

where w, h denote the width and the height of the target’s bounding box and p = w+h
2

controls the amount of context. Resizing leads to the final patch sizes of 127× 127 for
the template and 255× 255 for the search image. Penalties modify the output scores
such that scale and aspect ratio changes only prevail when leading to significantly better
scores. For every proposal, the penalty calculates to

penalty = exp
(

1− k ·max(
r′

r
,

r
r′
) ·max(

s′

s
,

s
s′
)

)
(3.4)

with r being the proposal’s ratio of height and width, and r′ that of the last frame.
s and s′ denote the scale of the proposal in the current and the last frame and k is
a hyperparameter that controls the amount of penalty for scale and ratio changes.
Furthermore, another penalty strategy applies to large displacements from the last
position by applying a hanning window to cope with outliers. Finally, the anchor
with the highest probability of containing the object predicts the estimated regressed
bounding box. The tracker outputs the position of this bounding box with the width
and height being smoothened by applying a moving average filter:

wpred = lrtrack · w + (1− lrtrack) · w′ (3.5)

hpred = lrtrack · h + (1− lrtrack) · h′ (3.6)
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where again w is the width of the predicted bounding box after penalizations and w′

that of the last frame. h and h′ denote the height of the predicted bounding box and the
one in the last frame. lrtrack calculates as the product of a learning rate hyperparameter
and the highest classification score after applying all penalizations.

Unlike the original DaSiamRPN, the distractor-aware incremental learning during
tracker execution (section 3.3 in [97]) is left out to simplify the overall architecture, as the
goal is mainly to assess the benefit of depth information in the training process, rather
than the absolute performance during evaluation. However, this might be inspected in
subsequent works.

Long-Term strategy

In long-term tracking, the object can leave and re-enter the field of view. After such
out-of-view situations, the tracker might not be able to redetect the object. These failures
happen when the search region extracted at the last detected position does not contain
the object when it re-enters the scene. The inclusion of distractor-aware training (see
subsection 3.2.2) enables reliable target loss detection by evaluating the classification
score. More precisely, a drop in the output score reflects the absence of the target in the
video, which triggers a local-to-global search strategy. In such cases, the search image
enlarges to the full image size intending to redetect the target. Once the classification
score exceeds a threshold and thus indicates target presence, the search image strategy
switches back to a local search region of smaller size centered at the object position. The
threshold for detecting target loss and re-detection are hyperparameters of the tracker
that need tuning for the specific application.

3.2.2. Training

The architecture is trained end-to-end by sampling from large-scale datasets. For tracking
datasets, the template and the search patches are extracted from the same video with
a maximum configurable sampling difference in frames. In this thesis, two frames in
the training process are a maximum of 100 frames apart. Utilization of object detection
datasets is also possible by taking the same object as template and search image; however,
with enhanced shift and scale data augmentations to simulate a tracking scenario. The
following illustrates the training procedure in more detail.

In every training iteration, the network gets a batch of input image sets containing a
template and a search image each. The training procedure equals the approach described
in [54]. Anchors only use one scale with anchor ratios of [0.33, 0.5, 1, 2, 3], thus k = 5.
The network is trained with positive and negative samples. Anchors with IoU > τhigh
are labeled positive and anchors with IoU < τlow negative. From these, numpos positive
and numneg negative anchors are selected for an image set. Two separate loss functions
define the classification and the bounding box regression error that a Stochastic Gradient
Descent (SGD) optimizer will minimize. The loss functions come from Faster-RCNN [73].
Therefore, the loss function for the classification branch is the cross-entropy loss. For
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each anchor at each grid position (compare Figure 3.1) it calculates as

Lcls(xi) = log

(
exp(xi)

∑j exp(xj)

)
(3.7)

where xi is the classification score for an anchor x belonging to class i, with the two
possible classes being containing the object or not containing the object. j iterates over
both classes. The total classification loss Lcls accumulates the respective loss values
at all anchor positions that have either been labeled positive (IoU > τhigh) or negative
(IoU < τlow). Different from [73], the bounding box regression loss is a weighted L1 loss
that takes the normalized distance of each anchor into account. With Tx, Ty, Tw and Th
being the position and the shape of the ground truth bounding box and Ax, Ay, Aw and
Ah the center position and shape of the anchor box, the normalized distances calculate
as

δ[0] =
Tx − Ax

Aw

δ[2] = log
(

Tw

Aw

) δ[1] =
Ty − Ay

Ah

δ[3] = log
(

Th

Ah

) (3.8)

The weighted L1 loss is defined as

L1(x, y) = w · |x− y| (3.9)

with x being the output and y the target score. w is a weight factor. The total regression
loss Lreg is the sum of the regression losses for all anchors that are labeled positive
(IoU > τhigh), stating that they contain the object. The regression loss for each anchor is

Lreg(x) =
3

∑
i=0

L1(x[i], δ[i]) (3.10)

where x is the anchor that the loss is calculated for, δ[i] the normalized difference
as described above, and x[i] the corresponding normalized distance for the regressed
bounding box of that anchor. Thus more loss is accumulated with bigger normalized
distances. The overall loss function is a weighted sum of the classification loss Lcls and
the regression branch loss Lreg.

L = Lcls + λ · Lreg (3.11)

The weighting factor λ is another hyperparameter that influences the training perfor-
mance. Table 3.1 summarizes the general training parameters discussed in this section.

A key concept in DaSiamRPN is the inclusion of negative pairs in the training process,
which shall increase the discriminative power of the architecture. Precisely, some image
sets utilized during training do not display the same target object. In these cases, the
network learns to classify the object as not present in the search frame. This technique is
referred to as negative sampling. The regressed bounding boxes do not contribute to the
loss in the case of negative sampling, as none of the anchors is labeled as containing the
target object.
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Table 3.1.: Training settings for DaSiamRPN.

Hyperparameter Value

k 5
anchor ratios [0.33 0.5 1 2 3]
τhigh 0.6
τlow 0.3
numpos 16
numneg 48
λ 1.2

3.3. System Overview

Figure 3.2 demonstrates the proposed framework to train a deep visual object tracker
with depth information. Utilizing two encoder networks in the supervised training part
allows to profit from pretrained RGB networks. This goes along with the need for a
fusion layer, which allows to combine and learn cross-domain features. The drawback of
this part is the need for big labeled RGBD datasets, such that the encoder networks as
well as the fusion layer can learn generic object features which are applicable for various
objects. The self-supervised pretraining part copes with this problem by enabling the
use of unlabeled RGBD data. This strategy is often referred to as pretext training in the
literature. Depending on the pretext task, the network is forced to learn features that
help to solve it. These features should allow to distinguish between different objects.
Therefore, the network parameters of the encoder network which has been trained in a
self-supervised fashion can be used for supervised training in the second step.

3.3.1. Pretraining with different RGBD datasets

Some of the existing RGBD datasets only focus on specific object categories such as cars or
pedestrians. However, as the domain of this thesis is generic object tracking, the tracker
needs to be class-agnostic and should therefore leverage datasets that contain a variety
of different objects to avoid overfitting to one category and maintain generalization
capabilities to unseen objects. Table 3.2 lists publicly available labeled RGBD datasets
that are generic in the sense that they don’t focus on one object category. To the best
knowledge of the author, no other labeled RGBD datasets of greater size are available.
All RGBD datasets except for SceneNetRGBD are captured in reality and are therefore
hand-labeled. Taking only these into account, the table shows that all of them are rather
small compared to e.g. ImageNet with several million images. The VOT2019-RGBD
dataset is the biggest dataset concerning the number of frames, while still being two
magnitudes smaller than ImageNet and representing significantly less object categories.
Only three tracking datasets are available, with the ground truth of the Princeton dataset
not being available for training. Besides, some datasets do not contain bounding box
annotations and can thus not directly be used to train a tracker. Also, others provide
the captured depth data as point clouds, and in general the acquired depth data is
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Figure 3.2.: System overview. The approach can be divided into two parts: Supervised
training and self-supervised pretraining. The former is essential, while the
latter is optional. Supervised training takes an RGBD search and template
image as input. RGB and depth information are passed through separate
encoder networks. For this work, the encoder network is a siamese network,
transforming from pixel to feature space. The fusion component learns a
cross-domain feature representation. It leads into the tracking head network
which finally outputs a prediction of the object location. Given the ground
truth position, this allows the learning algorithm to perform end-to-end op-
timization by minimizing the loss function. The self-supervised pretraining
part takes unlabeled RGBD images as input. An encoder network transforms
to feature space followed by a decoder network which is dependant on the
pretext task. The label generator component is calculating labels, such that
the encoder-decoder architecture can be trained end-to-end by minimizing a
loss function. When utilizing self-supervised pretraining in the first step, the
pretrained weights of the encoder network are used as initialization for the
encoder network in the supervised training in the second step.
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often different to the data present in the VOT2019-RGBD dataset which is the focus
in this work, e.g. in terms of noise or fragments in the depth maps. Apart from that,
videos in the VOT2019-RGBD dataset are captured with static cameras, while almost
all RGBD video datasets have moving cameras, often in static scenes, which makes the
data distribution quite different. Therefore, it is not clear whether the tracker would
profit from utilizing these datasets. Apart from that, SceneNetRGBD is significantly
bigger in terms of videos as well as images in the dataset. As McCormac et al. [66] have
rendered the videos, the dataset provides pixel-perfect ground truth annotations which
can be used for semantic segmentation, instance segmentation, object detection, and
others. In a nutshell, constructing the videos follows several steps: First, indoor scenes
are created by randomly placing objects in a room. Second, their framework calculates
a random trajectory of the camera through the room. Third, the video is captured by
calculating the view from the camera’s perspective following the pre-defined path. The
size of the dataset makes it appealing to use for training an RGBD tracker. However,
some drawbacks might complicate the situation. The dataset does only contain indoor
scenes, which might only capture a small portion of tracking scenarios. Also, depth
sensors do not provide pixel-perfect annotations, which could harm the generalization
capabilities of a network that trains on SceneNetRGBD. Apart from that, the variety of
objects is limited to static objects such as chairs, tables, etc. but do not include dynamic
objects like humans. Also, all objects in the scene are static while the camera is moving
through the room, in contrast to the VOT2019-RGBD dataset with the camera being
static and people or objects are moving while the background of the scene does not
change much. Apart from that, the diversity of object categories is significantly smaller
when compared to a "real" captured dataset. In that sense, the SceneNetRGBD has
some potential for training RGBD architectures due to its size. However, compared to
RGB tracking, it still suffers from a lack of diversity. Note that in contrast to RGBD
tracking, large scale datasets of comparable or even greater size than ImageNet exist
for the RGB tracking domain (e.g. YouTube-BoundingBoxes [72], Microsoft COCO [58],
ImagenetDetection [74], ImageNetVideo [74], LaSOT [21]).

3.3.2. Fusion Layer

Making use of networks that have been trained on ImageNet for image classification
is a common strategy, and the weights can easily be obtained by different sources. As
pretrained networks are not available for depth inputs, one strategy is to transfer weights
from the RGB to the depth domain. When considering the straight RGBD input of shape
(w, h, 4), the first layer filters of the encoder network have to be changed. Therefore,
the RGB pretrained weights can not be used for the first encoder layer and could only
be applied for the remaining ones. However, as the first layer filters directly influence
the following layers, taking a random initialization for the first layer and pretrained
weights for the following ones does not seem to be a good option. This also contradicts
with the idea of transfer learning, which builds upon the fact that lower layer filters
are general and thus task independent, while higher layer filters are task specific [92].
Therefore, taking a pretrained network on image classification and finetuning the last

1http://www.image-net.org/
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Table 3.2.: List of labeled RGBD datasets. For each datasets, the table shows whether it
contains videos and bounding box annotations. "#Vids" denotes the number of
videos, domain the computer vision task that the dataset addresses, "#Images"
the number of RGBD images. ImageNet is not an RGBD dataset and serves as
a reference. It does not contain depth information, thus "#Images" refers to
the number of RGB images in this case. All datasets except SceneNetRGBD
have been captured with cameras and been labeled afterwards. In contrast,
SceneNetRGBD has completely been rendered on computers with the goal of
producing realistic-looking images, thus the labels go along "for free".

Name Vids BBoxes #Vids #Images Domain

Active Vision [1] 3 3 20 25, 896 Detection
Berkely 3D Object [38] 7 3 - 849 Detection
RGBD Scenes [52] 3 3 8 2, 982 Detection
RGBD Scenes v2 [51] 3 7 14 11, 427 Detection
NYU Depth v1 [76] 7 7 - 2, 283 Segmentation
NYU Depth v2 [69] 7 7 - 1, 449 Segmentation
Object Disappearance [65] 3 7 3 995 Segmentation
SUN RGBD [78] 7 3 - 10, 335 Segmentation
Princeton [79] 3 3 100 20, 332 Tracking
STC [90] 3 3 36 9, 195 Tracking
VOT2019-RGBD [48] 3 3 80 101, 956 Tracking

SceneNetRGBD [66] 3 7 17, 865 5, 359, 500
Detection,
Segmentation,
and others

ImageNet [74] 7 7 - 14, 197, 1221 Classification
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layers for object tracking is reasonable. However, changing the lower layer filters due to
an additional input dimension would require to retrain the whole network. Furthermore,
the pretrained filters did not learn how to use the depth information as fourth input,
which somehow questions the sense of using RGB pretrained weights at all. Therefore,
Figure 3.2 utilizes two separate encoder networks for RGB and depth information. The
RGB network can profit from RGB pretraining. For the encoder network that extracts
features from depth information two options will be investigated:

• Averaging the ImageNet-pretrained first layer filters and keep the depth input as
1D channel

• Encoding the depth information to 3D; therefore the original ImageNet-pretrained
weights can be applied for all layers

For the second option, one strategy is to interpret the depth data as a grayscale image
and copy the depth values along three dimensions. The second strategy that is analyzed
is to use a Jet colormap encoding, as this led to better results compared to a simple
replication in an object recognition setup [20]. The motivation behind encoding depth
information and using RGB pretrained weights states that prevalent features in RGB
images such as edges, corners, etc. are also visible when looking at a grayscale encoded
depth image. Therefore, the assumption is that having learned from RGB images, this
knowledge should also improve the situation for depth. The presence of one encoder
network for each domain demands for a fusion strategy to combine the extracted features
from the color and depth domain, such that during inference, the tracker can perform
object localization based on RGBD feature embeddings.

3.3.3. Self-supervised Pretraining

Self-supervised pretraining tries to cope with the data shortage differently. In contrast to
supervised learning, where large labeled datasets are necessary, self-supervised learning
exploits labels that come with the data. The intuition behind this paradigm is that
producing big labeled datasets is expensive, and in general labeled datasets are rare
compared to unlabeled data. On the other hand, unlabeled data can easily be acquired
and is often available at much bigger scales. By convention, the task that is used for
pretraining is referred to as "pretext task". In tracking, self-supervised pretraining can
be applied by taking the backbone architecture and adding a pretext task head network
(decoder). The architecture then trains on unlabeled datasets. The decoder network is
removed after self-supervised training and exchanged by the tracking head network
(fusion if any and tracking head network). In Figure 3.2, this is equivalent to taking
the pretrained encoder weights in the supervised training in the second step. This
architecture has pretrained backbone weights from self-supervised pretraining. The
whole architecture then needs to be finetuned end-to-end for tracking, as the tracking
head and fusion components only have default intialization weights. Therefore, self-
supervised pretraining copes with the dataset problem by training an encoder on RGBD
images that do not have any labels. For the self-supervised pretraining experiments in
chapter 4, training always consists of two steps:
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3.3. System Overview

1. Self-supervised pretraining

2. Finetuning for tracking (supervised training)
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4. Results

The beginning of this chapter describes the evaluation dataset and metrics. Furthermore,
it documents the results obtained by numerous experiments concerning the integration
of depth information into the training process of a tracker, exemplary with DaSiamRPN
as baseline RGB variant. The backbone architecture for feature extraction is a modified
version of AlexNet [50], as proposed in [3]. It has a smaller total network stride to keep
the spatial resolution and implements batch normalization [37] after every convolutional
layer to speed up learning.

4.1. Evaluation

Experiments are evaluated on the VOT2019-RGBD challenge [48]. It is one of the
challenges published in the scope of the seventh annual tracking benchmark by the VOT
initiative. The dataset addresses long-term tracking with RGB and depth information.
Contrary to short-term tracking, where the target always has to stay in the camera’s
field of view, long-term tracking is even more challenging as this requirement no longer
holds true. Besides, the videos are often longer, and full occlusions might occur. During
inference, a long-term tracker has to report a confidence score of target presence on top of
the predicted target position for evaluation reasons. VOT2019-RGBD is the first dataset
that incorporates depth information in the scope of the VOT benchmarks. Performance
is measured by the long-term tracking measures introduced in [63]: tracking precision
(Pr), tracking recall (Re) and tracking F-score. Specifically, tracking precision and recall
are dependant on the tracker prediction certainty threshold τΘ. Tracking predictions
with a certainty below this threshold are ignored, thus assuming the tracker did not
predict the target in this case. The tracking F-score combines the two measures into a
single scalar, thus allowing for easy comparison among trackers

F(τΘ) =
2Pr(τΘ)Re(τΘ)

Pr(τΘ) + Re(τΘ)
(4.1)

The threshold τΘ is defined such that it maximizes the tracking F-score. Participating
trackers in the VOT2019-RGBD challenge are ranked based on their tracking F-score,
with the highest value indicating the winner. The dataset consists of 80 sequences
acquired with three different sensors for depth recording: a Kinect v2 RGBD sensor,
a pair of Time-of-Flight and RGB camera, and a setup with a stereo RGB pair [61].
Sequences are recorded indoor and outdoor, with objects containing several household
and office objects, persons, etc. The videos have various resolutions and an average
length of 1274 frames, which corresponds to approximately 42s. The VOT2020 challenge
reuses the same dataset for using depth to improve long-term RGB tracking with target
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disappearances. The obtained findings in this chapter can be used to participate in this
challenge in the future.

4.2. Proof of concept

This experiment shall ensure that depth information is beneficial in the training process
and thus serves as a proof of concept. It utilizes the VOT2019-RGBD dataset for training
and evaluation, even though in the long run, it must only be used for validation purposes
when participating at the challenge to meet their learning restrictions1. However, this
ensures that the images in both splits belong to a similar data distribution. While this
often is the case when training machine learning models on large image datasets, the
situation is different when considering depth information with significantly smaller
datasets and a variety of very different hardware for depth capturing. Training with
depth images obtained by one sensor and deploying the model in a scenario with a
different depth sensor might not lead to satisfying results. For a proof of concept, it
should be a good practice to ensure the training and validation sets are similar, thus
utilizing the VOT2019-RGBD dataset for both sets should be fine. Specifically, the dataset
is randomly split into a training and a validation set, containing 64 and 16 videos.
Generally, training the DaSiamRPN architecture on the VOT2019-RGBD training set and
then evaluating the performance on the validation set utilizing the tracking F-score (see
section 4.1) might be a reasonable approach. However, this is problematic as the results
are highly dependant on the tracker hyperparameters. Furthermore, the measure is
sensitive to drifting, as losing the target once might lead to a total loss of the target for
the rest of the sequence. Suppose there are two trackers A and B. Tracker A uses depth
information, while B does not. Both trackers have been trained on the same dataset, with
B neglecting the depth information. At frame x, A predicts the wrong location of the
target object, leading to a drift of the local search region, which ends up not containing
the object. On the contrary, B predicts the location at frame x better. However, the mean
accuracy of the predicted bounding boxes obtained by B is low, and thus the predictions
have a low overlap with the target. For all subsequent frames, A would give perfect
predictions with a high overlap, given a adequate search region. As it is, however, stuck
in a local search region which does not contain the object, A might end up with a lower
tracking F-score than B due to a single misprediction at frame x; although leading to
better predictions in the rest of the frames, given a search region that does contain the
object.

For the following experiments, the goal is to investigate the benefit of depth infor-
mation in the training process of deep visual trackers utilizing DaSiamRPN as baseline
architecture. The analysis should be robust to the mentioned misprediction issue, as this
would fit the insights to individual frames in the validation dataset, which would then
decide over the performance of an experiment. Thus, evaluating the tracking F-measure
somewhat overfits to the performance on a few frames, possibly at the cost of lower
performance on the lion’s share of the overall frames. This is especially important in
the VOT2019-RGBD dataset, as the number of sequences is limited, some are rather

1https://www.votchallenge.net/vot2020/participation.html
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4.2. Proof of concept

long, and generally drifting might happen due to the complexity of the sequences [61].
A simple yet effective strategy alleviates the mentioned problems and copes with the
misprediction issue. The evaluation technique is identical to the training process in
terms of training sample generation. For a given video, two frames centered at the
object position, which are a maximum of 100 frames apart, are given to the network
after applying shift augmentations. Shifting the images during training is necessary
to ensure that the network is not biased towards predicting the center of the image.
During validation, shifting allows to test whether that has actually been learned. Further
augmentation techniques during training might improve generalization. However, as a
proof of concept, other augmentations are not leveraged to allow faster training. Note
that for validation, no negative sampling is applied as the quality of the predicted
bounding box shall be evaluated. The network outputs the classification scores and
regressed bounding boxes for all anchors. A simple validation tracker takes the anchor
with the maximum probability of containing the object as prediction and outputs the
corresponding bounding box. Compared to DaSiamRPN, it does not implement any
penalties (scale change, aspect ratio change, displacement), as well as no moving average
to update the predicted bounding box. Hence, the output bounding box corresponds
to the unprocessed network output. The approach calculates the IoU of the predicted
bounding box with the ground truth and is, therefore, a more practical measure on how
well the present network performs compared to other approaches. Also, it allows faster
evaluation compared to tracking F-measure, which is not feasible for fast experiments.
The general setup is motivated by the common practice in image classification, where
after each epoch, the validation accuracy is calculated. From a conceptional point of
view, the mean IoU somewhat corresponds to the validation accuracy in this case, which
should allow analyzing performance in the tracking scenario. Each of the 16 validation
videos is used 300 times to extract image pairs that are fed into the network. Seeding
random number generators guarantees that the same images are presented to the net-
work after each epoch as well as during different training runs, thus providing a fair
base for comparison. The central hypothesis of this work states that depth information
should be beneficial in the training process, as it is an additional channel of information,
which should at least allow the same performance. This happens if the network learns
that it performs best when not using the additional information. However, it might also
enable better performance when leveraging depth in situations where it would have
problems to track an object with color information.

In the following, two architectures are trained on the generated VOT2019-RGBD
training split with SGD for 50 epochs. One neglects the depth information, while the
other one includes it as an additional channel. Training for each experiment is performed
seven times with different Learning Rates (LRs) and a batch size of 16 per Graphics
Processing Unit (GPU). Weight Decay (WD) is set to 0.0. Performing training on different
sets of hyperparameters minimizes the risk that these are fit to one specific architecture
and thus would not allow generalization on what is useful for depth integration. The
mean IoU of the validation tracker on the validation set is used for evaluation. Higher
LRs than 0.1 turned out to not allow learning at all, while lower learning rates than
0.0001 led to no convergence within the 50 epochs. A LR warmup increases the LR
from 1

5 LR to the target value within the first 5 epochs. After that, it is constant for the
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remaining 45 epochs. The whole network consisting of the feature extractor and the RPN
is trained from scratch utilizing Kaiming [30] initialization for the convolutional layers.
Negative sampling is set to 0.05, thus utilizing this technique on 5% of the training
pairs. Shift augmentations are performed on the image pairs presented to the network.
Table 4.1 summarizes the training hyperparameters. Training is performed on a DGX-1
station with eight Nvidia Tesla P100 GPUs.

Table 4.1.: Training settings for proof of concept.

Hyperparameter Value

Optimizer SGD
Epochs 50
Batch size 16 per GPU
LR [0.1 0.05 0.01 0.005 0.001 0.0005 0.0001]
WD 0.0
LR warmup Epochs 5

Start LR 1/5 LR
End LR LR

LR schedule Type Constant
Negative Sampling 0.05
Training Pairs per epoch 19200
Validation Pairs per epoch 4800
Augmentations shift

4.2.1. Training baseline DaSiamRPN on RGB

AlexNet

AlexNet

RPN

regression output
(17, 17, 4k)

classification output
(17, 17, 2k)

RGB

RGBtemplate image
(127, 127, 3)

search image
(255, 255, 3)

Figure 4.1.: Setup for RGB training of the DaSiamRPN architecture. The AlexNet back-
bone extracts features from template image and search image, respectively.
Based on these, the RPN predicts foreground-background classification and
bounding box regression outputs on anchor level. k reflects the number of
anchors.

The first experiment trains the DaSiamRPN architecture without modifications on the
RGB data of the training set, neglecting the additional depth channel. The number of
anchors k, as well as other parameters, are kept from the original implementation. For
details on the architecture, refer to section 3.2 or to the original paper [97]. The result
serves as a baseline for comparison with the following architectures. Figure 4.1 outlines
the setup.
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4.2.2. Training on RGBD

AlexNet*

AlexNet*

RPN

regression output
(17, 17, 4k)

classification output
(17, 17, 2k)

RGBD

RGBDtemplate image
(127, 127, 4)

search image
(255, 255, 4)

Figure 4.2.: Setup for RGBD training. Depth information is preprocessed and stacked
on top of the color information. Input vectors therefore consist of 4 chan-
nels. ∗ denotes the modifications to the first layer filters of the backbone
architecture to accept the additional channel channel.

Training is performed on all available data, including the depth channel. As mentioned
in section 4.1, the VOT2019-RGBD challenge applies depth recording with three different
sensors. Section 3.1 mentioned the problem of different value ranges for the depth
channel dependant on the acquiring hardware. Importantly, when testing the tracker on
the dataset, it does not know which sensor captured the depth data, demanding for a
suitable preprocessing method. While the minimum value of all sensors employed in the
dataset is zero, the maximum differs among chosen hardware. Figure 4.3 visualizes the
distribution of the maximum depth value in all sequences in the first frame. Note that in
tracking, we only now the object position in the first frame, therefore the information
from the first frame is all there is. One sensor in the VOT dataset can be identified by
looking at the maximum value. These are probably the outdoor sequences, as objects
might be far away and the depth data can be noisy when e.g. capturing depth for the
sky. The other two sensors output similar maximum values, which does not allow for
a simple separation based on the maximum depth value in the first frame. The same
applies when evaluating the mean depth values in the first frame. Besides, detecting
the sensor and performing different preprocessing is not desirable, as this would fit too
much to the dataset and the acquiring hardware. Thus, it would not solve the problem
for the general case. Therefore, all conducted experiments in this thesis that train with
depth information perform a simple yet effective technique that allows preprocessing
during training and evaluation of the tracker. At the start of tracking, only the first
frame is available. Therefore, rescaling fits the depth channel in the range of [0, 255].
Advantageously, all inputs to the network (pixel intensities and depth information) then
have the same range, thus choosing 255 as the upper limit for the depth channel seems
reasonable. In all subsequent frames, the scaling factor of the first frame has to be
applied. Otherwise, this could lead to a change of the object’s depth, even in a fixed
camera setup with a static object. During training, the same technique can be applied.
Every image pair that the architecture trains on will be rescaled with the information
of the template image. The same applies to the IoU testing of the validation tracker.
Figure 4.2 shows the setup. Note that the input vectors have four channels, three for
color representation, and one for depth. The first layer of the backbone is modified by
increasing the channel dimensions to accept 4-channel inputs.
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Figure 4.3.: Histogram and distribution of the maximum depth value in all sequences
of the VOT2019-RGBD dataset in the first frame. The dataset utilizes three
different sensors for depth recording. One sensor can potentially be iden-
tified, as some sequences have a maximum value of 65535. The first two
sensors have similar sensor value ranges, which makes separation based on
the maximum depth value in the first frame inappropriate. The depth values
are encoded as 16 bit integers, therefore values range from 0 to 65535.

4.2.3. Results

Figure 4.4 presents the results of training both architectures; baseline DaSiamRPN
as well as the modified version that considers depth in the training process. During
training, the mean IoU of the final predicted bounding box with the ground truth on
train and validation split are logged after each epoch. For every setup, the figure shows
the snapshot yielding the highest score on the validation set, as well as the associated
training IoU. The validation scores show that the overlap is higher for the network
that considers depth in the training process. This applies independently of different
LRs. The best validation IoU for the RGB-only architecture is 66.8% with a LR of 0.01.
The best score for RGBD is 69.8% with a LR of 0.005. Thus, the mean overlap on the
validation set is about 3% IoU better when using the additional depth information,
which is an absolute improvement of 4.6%. Obtaining better validation results for RGBD
strengthens the hypothesis that depth information might help to generalize to unseen
data in tracking when considered in the training process. At this point, it can only be
stated that the depth preprocessing works well for the training case and might also work
well in a real tracking scenario. However, this still has to be confirmed. The IoU on the
training split is similar for the RGB and RGBD case. LRs bigger than 0.01 are too high
and thus the model does not achieve good overlaps on the training split. These cases will
not be covered in the following investigations. Very small learning rates, on the other
hand, also lead to a lower IoU, indicating that the training either did not fully converge
or has been stuck in a local minimum. For the training set, the IoUs are very similar
when considering a proper lr of e.g. 0.005. Still, there is a large gap between the training
and validation split. This can basically have two reasons: Data mismatch or overfitting.
Data mismatch happens when the splits come from different data distributions. In this
case, there will always be a large gap between the performances, as the training data
is different from the validation data. Note that this does not mean that training on
data from a different distribution does not help. It can still improve the overall model
performance, however only up to a gap between training and validation which depends
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on the similarity of the distributions. Applying data augmentation techniques to increase
the overall amount of data might improve the problem. However, this is unlikely in
the present case, as it is not possible to increase the number of object categories by
augmentation, which probably is the main problem. Another solution would be to
either acquire more or different data. However, this is expensive due to additional effort
for capturing and labeling videos with depth information, and is not in the scope of
this thesis. Overfitting, on the other hand, indicates that the model captured the noise
along with the underlying pattern of the dataset and therefore the model has high
variance. Synthetically increasing the dataset size by data augmentation or applying
other regularization strategies is a common practice to cope with overfitting.
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Figure 4.4.: Best IoU on the validation (Val) set and corresponding score on the training
set obtained for different runs. RGB stands for the original DaSiamRPN
architecture which takes color images as input. The RGBD architecture
preprocesses the depth information and then stacks it to the color information
as a 4-channel input. The graphic only shows the best model during a
training run for each setup.

4.2.4. Data Distribution

Figure 4.4 showed a big gap between the validation and training IoU of more than
20%. Overfitting or data mismatch between the training and validation split have been
identified as possible reasons. This subsection will give a detailed investigation of the
observed issue. When utilizing the VOT2019-RGBD dataset for training and validation,
it turns out that the training process and thus the IoU highly depends on the split of the
data. Figure 4.5 shows the distribution of the VOT2019-RGBD dataset in terms of object
categories of target objects. When utilizing it for training, the tracker will be biased
towards correctly predicting objects that dominate the training set. By looking at the
total object category distribution, this might even be concerned as the dataset overfitting
to specific object categories, which is a severe issue for training. However, as the VOT
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datasets should generally be used for evaluation when participating in the challenge,
it is not so much of a concern. However, this also applies to other datasets with depth
information, as these are rather small and therefore have similar properties. Nevertheless,
even when not utilized for training, the dataset as it is theoretically promotes trackers
that overfit to object categories like box, human, robot etc and might rank the same
tracker that has been trained on a large variety of objects worse. It should be said that
the represented boxes in the dataset are of different shapes and sizes, which somewhat
reduces this fact, but it is still an issue. As usual in deep learning, the training, validation,
and test data should belong to the same distribution as the data in the environment that
the tracker gets deployed in. This guarantees a well-defined training setup and allows
good generalization to unseen data.

Train
64 videos

Validation
16 videos

Random Split

80 Videos

(a) Dataset split by videos.

(b) Dataset split by object category.

Figure 4.5.: Data distribution of a random split of the VOT2019-RGBD dataset into train-
ing and validation set. (a) shows the split of the 80 videos. (b) analyzes the
validation set in terms of target object categories in the videos. The dataset
is biased towards categories like box or human, as they are represented in
multiple videos, compared to e.g. cart, teapot or jug.

The first plot in Figure 4.5 visualizes the random split of all 80 videos in the dataset
into a training set of 64 and a validation set of 16 videos. The second plot furthermore
shows the object categories of the validation videos compared to the overall distribution
of object categories in the dataset. This split has been utilized for generating the results
in subsection 4.2.3. It becomes obvious that every category in the validation set is also
present in the training set at least once. Hence, the validation data is somewhat similar
to the training data.
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To further investigate whether the performance gap between training and validation
is due to the data distribution, the same experiment is conducted again with a custom
split of the data. A third split referred to as bridge set splits the training set by randomly
taking 10% of the videos. The first plot in Figure 4.6 shows the overall partitioning
of the data. The bridge set is not used for training but validation in terms of IoU as
well. Comparison of the IoUs on train, bridge, and validation set generally allows
identification of data mismatch as well as overfitting. Specifically, if the performance
on bridge and validation is comparable, and the performance on the training set is
significantly better, the difference is mainly due to overfitting. On the other hand, if the
performance on train and bridge set is similar and rather high, while it is considerably
lower for the validation set, this indicates that the gap mostly results from a data
mismatch problem. In this case, the model performs well on unseen data if it comes from
the same distribution (like the bridge set). However, it performs worse on the unseen
validation set, and thus, this indicates data mismatch. The second plot in Figure 4.6
shows the distribution of object categories in the custom validation set, the bridge set,
and the training set. Compared to (b) in Figure 4.5, the represented object categories in
the validation set have a much smaller overlap with the object categories present in the
training set. The randomly sampled bridge set, however, only contains object categories
that are also present in the training set.

Figure 4.7 shows the result of training the DaSiamRPN architecture on RGB and RGBD
data for the custom split of the dataset. The setup is identical to the prior experiment
with a random split of the data. See Table 3.1 for the training settings. However, due to
the additional split of the training set into bridge and training, this time 17400 training
pairs are utilized per epoch, while 1800 pairs of the bridge set allow calculating an
IoU. Again, 4800 pairs are used for the estimation of a corresponding mean IoU on
the validation split. The numbers result from utilizing each video 300 times per epoch
for all splits. The graph shows a similar trend for both architectures, RGB and RGBD.
Again, LRs > 0.01 lead to worse performance on the train split, indicating that the LR is
too high. The architecture that considers depth information leads to the best validation
IoU of 60.1% with a LR of 0.01. The best score for overlap for the RGB architecture is
57.0%, thus the mean overlap is again roughly 3% IoU higher when considering depth
information, giving an absolute improvement of 5.5%. This is consistent with the prior
observations with a random split of the data. Given the split of the dataset, the IoUs
are also better on the training and bridge set. The best training IoU is 89.5% with RGB
and 92.3% with RGBD, the best bridge IoU 88.2% and 90.5%, respectively. There is a
large gap between the IoU of the final predicted bounding box on the training / bridge
and the validation split. As mentioned above, this indicates data mismatch. The data
distribution of the validation set is different to the bridge set, as the model did not see
any data of these splits during training but it performs significantly better on the bridge
set. Compared to the first experiment with a random split of the data (see Figure 4.4),
the highest validation IoU of the model with depth is now 60.1%, compared to 69.8%
before, while the score on the training set is almost the same (91.2% and 92.3%). The
gap between training and validation set increased by 8.6% IoU, indicating that the data
mismatch problem has become even more prevalent with the custom dataset split. To
conclude, the data mismatch problem has been present when testing on the random
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Train
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(a) Dataset split by videos.

(b) Dataset split by object category.

Figure 4.6.: Data distribution of a custom split of the VOT2019-RGBD dataset into
training, bridge, and validation set. (a) shows the split of the 80 videos.
The training set obtained by the custom split divides further into the final
training and bridge sets. (b) analyzes the validation and bridge set from (a)
in terms of target object categories in the videos. The custom validation set
has a small overlap with objects in the training set. This is not true for the
bridge set, which again contains objects in the training set due to random
sampling.
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split (see Figure 4.5). Doing a custom split further increases the presence of the problem,
leading to a lower maximum IoU on the validation set. Recapturing the data distribution
of the splits (see Figure 4.6), all categories in the bridge set also exist in the training
set, which is not true for the validation set. The model learns to locate these categories
while it has poor prediction capabilities for unseen object categories – as present in
the validation set. Note that in generic object tracking, the amount of object classes
is unknown beforehand. Therefore, it is a crucial requirement of a tracker to adapt
to objects that have not been seen during training. More generally, this experiment
indicates that training a tracker from scratch might not be reasonable with small datasets
like the VOT2019-RGBD due to a prevalent data mismatch problem. The root cause of
this problem is a lack of sufficient object categories, which makes the training highly
dependant on the split of the dataset into training and validation. This applies to both,
RGB and RGBD trackers. However, in practice mostly RGBD trackers are affected, as
large-scale datasets are widely available for the color domain, while not a single dataset
of comparable size is available for depth and color information. Therefore, this problem
can be alleviated for RGB tracking by choosing big datasets, which are not yet available
for RGBD.
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Figure 4.7.: Best IoU on the validation (Val) set and corresponding score on the train-
ing and bridge set obtained for different runs given a custom split of the
VOT2019-RGBD dataset into training, bridge, and validation set. RGB stands
for the original DaSiamRPN architecture which takes color images as input.
The RGBD architecture preprocesses the depth information and then stacks
it to the color information as a 4-channel input. The graphic only shows the
best model for each setup.

This section presented an effective preprocessing strategy for depth information, such
that data from different depth capturing devices can effectively be used for training
visual object tracking architectures. The observations by the conducted experiments show
that training with depth information can enable trackers to achieve better performance.
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Besides, the second experiment with custom split of the data enabled insights into the
problems that occur when training an architecture from scratch on small datasets with
only a few object categories. This applies to VOT2019-RGBD, which is rather small, with
only 80 videos and a total of 18 object categories. The evaluation metric that has been
introduced in this section is the mean IoU of the predicted bounding box with the highest
probability of containing the object, averaged over all validation pairs. It turns out that
this measure allows fast comparison of different experiments. A second experiment
with a custom dataset split shows that in the case of small datasets, the performance
in terms of mean IoU is highly dependant on the partitioning of the data into training
and validation set. Specifically, when training from scratch, the main concern is a data
mismatch problem, which does not allow the model to generalize well to unseen object
categories. The next section investigates how to leverage pretraining to cope with the
problem of data mismatch and small datasets, profiting from having seen a diversity of
object categories in advance.

4.3. Pretraining on RGB(D) Input

This section investigates pretraining methods for architectures with and without depth
information. Pretraining is a common practice in deep learning that often significantly
improves the performance, especially in domains where data is either rare or hard to
acquire. Training a deep architecture from scratch on a large dataset like ImageNet can
take up to several weeks on multi GPU setups and might require careful hyperparameter
tuning. Generally, transfer learning from one task A to another task B makes sense
whenever a lot more data exists for task A compared to task B and low-level features
from one task could be helpful for learning another task. This most of the time applies to
computer vision, with pretraining on large image classification datasets. Also, detecting
low-level features such as edges in an image might be useful for many different target
tasks. Thus, using pretrained networks allows profiting from tedious work of researchers
in the computer vision field, accelerating progess on related computer vision tasks, such
as e.g. object tracking. Most people use pretrained networks that have been trained on
ImageNet [74]. This has several reasons. First, the networks are publicly available and
often integrated in deep learning frameworks. Secondly, the networks are assumed to
have learned to extract general features that are meaningful to most types of images, as
the ImageNet dataset contains over 14 million labeled images from 200 object categories.
However, ImageNet only contains RGB data, and it is therefore not clear what to use with
RGBD inputs. The most promising approach might be to have two backbones, where
one extracts features from the RGB, and the other one from the depth domain. With this
approach, the RGB extractor profits from the progress on RGB image processing as well
as pretrained RGB networks, while the second network can concentrate on depth. This
also has the advantage that both can be trained separately, such that the RGB branch
profits from the availability of large-scale datasets. This section concentrates on feature
extraction from RGB information at first, while then trying to also profit from transfer
learning with the two backbone approach. Nevertheless, it is a challenging task to
come up with a suitable pretraining strategy for tracking architectures that use depth
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information, as no pretrained networks for depth information are available. Furthermore,
it is not clear to what extent an architecture with depth information can profit from RGB
pretraining. For the following experiments, one half of the VOT2019-RGBD dataset is
utilized for training, the other one for validation. Therefore, the tracker should profit
from being finetuned on the target dataset, while not overfitting to only the few present
object categories in the training set by validating on a rather big validation set (50
percent compared to usual validation splits of 10% to 20%). This section is split into two
parts. The first part investigates pretraining effects when utilizing ImageNet pretrained
weights for color-only inputs. The second part then tries to leverage RGB pretraining
for an architecture with depth information, where pretrained models are not commonly
available.

4.3.1. RGB Input

This subsection only uses the color images as input. Therefore the feature extracting
network can use pretrained weights on any RGB dataset as initialization. Note that the
feature extracting network is also referred to as backbone. The experiment does not use
any depth information and serves as a baseline for the upcoming observations. The
network is trained with SGD for 50 epochs with a batch size of 16 on 8 GPUs. A LR
warmup is performed during the first 5 epochs, increasing the LR from 1/5 to the base
LR. For the remaining 45 epochs, an exponential LR decay with an end LR of 1/20 of
the base LR is applied. For the following experiments, some pretrained backbone layers
are finetuned. Finetuning the backbone weights starts at epoch 10 with 1/10 of the LR
that is used for the remaining network. The VOT2019-RGBD dataset is randomly split
into 40 training and 40 validation videos. Each sequence is sampled 300 times per epoch
for training and 200 times for validation. Shift and scale augmentations are applied for
template and search images. Table 4.2 summarizes the training configuration.

The upcoming experiment investigates how pretraining affects the maximum obtained
validation IoU when only considering color information. The simple validation tracker
strategy (see section 4.2) is used for validation, thus predicting the most probable
bounding box without any scale or position change penalties. It is a much simpler
version of DaSiamRPN with probably worse performance. However, it reduces the
dependance on tracker hyperparameters and is thus more suitable for the pretraining
investigations in this section. The experiment consits of two parts. The first part
investigates ImageNet pretraining. This is a common practice due to the size of ImageNet
and availability of pretrained network parameters. The second part takes a pretrained
DaSiamRPN model with an AlexNet backbone from the PySOT Model Zoo2. This
network has also used ImageNet pretrained weights as initialization. However, the
last two layers have then been finetuned on YouTube-BoundingBoxes [72], Microsoft
COCO [58], ImagenetDetection [74] and ImageNetVideo [74] on the tracking task.
Therefore, it has been trained on even more images on the one hand, and it also might
have learned specific features that are primarily useful for the tracking task on the
other hand. The PySOT network also contains pretrained weights for the RPN, thus the
network has also learned how to make use of extracted features to locate an object. Seven

2https://github.com/STVIR/pysot/blob/master/MODEL_ZOO.md
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4. Results

Table 4.2.: Training settings for pretraining experiments.

Hyperparameter Value

Optimizer SGD
Epochs 50
Batch size 16 per GPU
LR 0.01
WD 0.0
LR warmup Epochs 5

Start LR 1/5 LR
End LR LR

LR schedule Type Exponential
Epochs 45
Start LR LR
End LR 1/20 LR

Backbone Finetuning Start Epoch 10
Finetune factor 0.1

Negative Sampling 0.05
Training Pairs per epoch 12000
Validation Pairs per epoch 8000
Augmentations shift, scale

architectures have been trained for each experiment. The following description applies
to both pretrained networks. As a baseline, one architecture does not use pretrained
weights and trains from scratch. The remaining architectures utilize the pretrained
weights as initialization, which can either be from ImageNet or from the PySOT model
zoo. One of the architectures does not perform finetuning and thus keeps the backbone
fixed. The other architectures keep parts of the backbone fixed, while finetuning the last
layers. Note that the AlexNet backbone that is used as feature extractor consists of 5
layers. Finetuning the last two layers, while keeping the first three layers fixed, would be
denoted as "L45". Figure 4.8 shows the maximum training and validation IoUs obtained
by the configurations for both pretraining strategies, namely "ImageNet" and "PySOT".

For the ImageNet pretraining experiment, training from scratch leads to the highest
training IoU and at the same time to the lowest validation IoU. This seems reasonable
as generally taking pretrained weights that have been trained on another dataset might
improve generalization to unseen data as well as prevent overfitting to some extent.
Therefore, training from scratch allows to better fit the training data, at the cost of
validation performance, indicating overfitting. When using the pretrained weights, the
performance on the training set is generally lower. The IoU on the training set is the
lowest when the backbone is fixed and increases with finetuning more layers. However,
the final goal is to get a high score on the validation set. In terms of validation IoU,
the obtained score on unseen data is the lowest when training from scratch. Taking the
fixed feature extractor leads to an increase of 0.4% IoU. The performance also increases
with finetuning more layers. The best score is obtained for configuration L12345 when
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4.3. Pretraining on RGB(D) Input

finetuning all layers of the backbone, leading to an 3.0% IoU increase compared to
training from scratch, resulting in an absolute improvement of 4.6%. Generally, keeping
more pretrained layers fixed should be preferred if the performance does not increase
with more layers being finetuned to prevent overfitting. Again, the size of the target
dataset as well as the similarity to the pretraining dataset (e.g. ImageNet) also impacts
the decision on how many layers to finetune. In the present case, finetuning the last
three (L345) or all (L12345) layers might be the best option. Looking at the first layer
filters of both architectures (see Figure 4.9) shows that there are no significant changes
between both, leading to the assumptions that the extracted lower-layer features are very
similar. Therefore L12345 might be the best setting as it leads to the highest validation
IoU while not severely changing the first layer filters and thus keeping the capability of
extracting low level features.

The utilization of the PySOT pretraining shows interesting results in terms of training
as well as validation IoU. On the training set, taking the pretrained backbone also
lead to worse performance. However, this changes for L345, L2345 and L12345. These
configurations lead to a better overlap on the training score compared to training from
scratch. In terms of training IoU, even taking the pretrained weights and not finetuning
them leads to a remarkable increase of 11.0% IoU (16.7% absolute). Finetuning does
not really improve the performance except for configuration L345, which increases
the IoU another 0.7%, leading to an absolute improvement of 17.7%. The large gap
between ImageNet pretraining (4.6% increase) and PySOT pretraining (17.7% increase)
indicates that the PySOT model has learned features that are significantly better suited
for tracking, and thus using these weights as initialization leads to a huge performance
increase, even when not finetuning the backbone. Intuitively speaking, the network
already knows how to extract features that really help for tracking. In addition, the
PySOT model has already pretrained the RPN for tracking, and therefore also the RPN
profits from transfer learning. This is not true for the ImageNet pretraining, as these
networks have been trained on image classification and therefore only the weights for
the backbone might be used. In contrast, the ImageNet pretrained backbone knows how
to extract general features, but they still need to be finetuned to the tracking domain to
really profit from pretraining. However, the performance of the ImageNet initialization
is still worse compared to PySOT even with finetuning, given VOT as data.

4.3.2. Simple Approach for RGBD

Figure 4.8 showed that pretraining helps to obtain better performance on the VOT2019-
RGBD dataset with RGB inputs, neglecting the depth information. This is especially
true when the network has been pretrained for tracking. Generally, this should also be
true when considering depth and might also lead to a performance boost. However, as
mentioned in section 3.1, pretrained networks are not available for RGBD data. This
results from the lack of large-scale generic RGBD datasets compared to the RGB case
as well as a lack of challenges and general interest of the computer vision community
compared to RGB tasks. Due to the limited size of RGBD datasets and the mentioned
drawbacks of SceneNetRGBD (see Table 3.2, subsection 3.3.1), this section investigates
the use of RGB pretraining for a tracker that considers both, RGB and depth data.

67



4. Results

sc
ra

tc
h

fix
ed L5 L4

5

L3
45

L2
34

5

L1
23

45
0.84

0.86

0.88

0.9

M
ax

Tr
ai

n
Io

U

(a) ImageNet pretraining: IoU on training set
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(b) Imagenet pretraining: IoU on validation set
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(c) PySOT pretraining: IoU on training set
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(d) PySOT pretraining: IoU on validation set

Figure 4.8.: Effect of pretraining the DaSiamRPN architecture with RGB-only inputs
on training and validation performance, obtained with a simple validation
tracker. The network neglects the depth information and thus only operates
on RGB input. "Scratch" indicates no pretraining, "fixed" that no finetuning
is applied and thus the pretrained weights are kept, and "L[12345]+" denotes
which layers are finetuned, while the remaining ones are the fixed pretrained
weights. (a) and (b) have used ImageNet pretraining, while (c) and (d) have
used a pretrained network from the PySOT model zoo, which has been
finetuned on tracking with large-scale datasets.
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4.3. Pretraining on RGB(D) Input

(a) pretrained filters (b) finetuned filters (L12345)

Figure 4.9.: First layer filter visualization of the RGB ImageNet pretrained AlexNet and
the configuration L12345 from the RGB ImageNet pretraining experiment.
No significant changes can be seen in the first layer filters of architecture
L12345.

Specifically, the same ImageNet pretrained weights as in subsection 4.3.1 are used.
PySOT weights might again lead to better performance. However, it should not matter
too much in this case, as this experiments investigates how to profit the most from RGB
pretraining, rather than how to get the highest possible score. Figure 4.10 shows the
implemented DaSiamRPN architecture with a 3-channel encoded depth input. When
averaging the first layer filters, the depth inputs would consequently be (127, 127, 1) and
(255, 255, 1) for template and search images.

Fusion Strategy C1BR

For this experiment, the fusion network in Table 4.3 is implemented. The input to the
fusion layer are the stacked features from the RGB and depth domain extracted by the
respective backbones. The size of the activation maps for the depth branch is identical to
the RGB case. The RPN is not changed. The strategy is called C1BR as it consists of a
1× 1 convolution followed by a batchnorm and a rectified linear unit (ReLU) layer. Note
that this experiment is a rather simple approach. It is assumed that the same backbone
architecture is a good choice for the depth information. Also, the C1BR fusion scheme is
rather simple. It is not clear if this is sufficient to combine the information from both
domains in a meaningful and profitable way in terms of final validation IoU. However, it
allows a first estimate of whether RGB pretraining might also help for depth information.
The upcoming sections will further investigate which backbone architecture and which
fusion layers to use in order to maximize performance.

Figure 4.11 shows the results of utilizing ImageNet pretraining with AlexNet back-
bones and the C1BR fusion strategy. Both backbones make use of ImageNet pretraining.
When training from scratch, using the depth information by stacking it to RGB leads
to an 1.6% increase in IoU (2.4% absolute), thus leading to a better performance with
depth. Note that this time, the validation data is half of the VOT2019-RGBD dataset. No

69



4. Results

AlexNet2

AlexNet1 Fusion

AlexNet2

AlexNet1 Fusion

RPN

D

RGB

D

RGB

(255, 255, 3)

(255, 255, 3)

(127, 127, 3)

(127, 127, 3)

template image

search image

classification output
(17, 17, 2k)

regression output
(17, 17, 4k)

Figure 4.10.: Setup for RGBD training of the DaSiamRPN architecture utilizing ImageNet
pretrained weights for AlexNet backbones. One AlexNet is implemented
for RGB and depth data, respectively. Both use pretrained weights as
initialization. The depth data is encoded to 3 dimensions. The extracted
features from both domains are combined with a fusion layer to form an
RGBD feature embedding. "D" denotes the depth information. The RPN
performs object presence classification as well as bounding box regression
based on the RGBD features.

Table 4.3.: C1BR fusion layer. The channel map property describes the number of output
and input channels of the convolutional layer. ReLU nonlinearities follow
the convolutional layer. Batch normalization is used after every linear layer.
The extracted features (255 channels) of both backbones are stacked along the
channel dimension to form the 512-channel input.

Activation size
Layer Support Channel Map Stride For Exemplar For Candidate Chan.

6 × 6 22 × 22 ×512
conv1 1 × 1 255 × 512 1 6 × 6 22 × 22 ×256
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4.4. Backbones for Depth Information

pretrained weights are available for a 4D RGBD input, thus no pretraining can be used
for rgbd_stack. The rgb experiment shows the results from Figure 4.8 for comparison.
The maximum IoUs of the configurations rgbd_repl, rgbd_avg and rgbd_jet exceed
the ones of rgb and rgbd_stack. This indicates that the implemented architecture (see
Figure 4.10) somewhat profits from the ImageNet pretrained weights for the depth
domain. Also, increasing the number of finetuned layers in the backbone improves
the IoU for all architectures. The best performance is achieved when replicating the
depth information to 3D with the configuration L2345, which gives an increase of 2.5%
IoU (3.5% absolute) compared to training from scratch with simply stacking the depth
information to the RGB data, and an increase of 1.1% IoU (1.4% absolute) compared
to the pretrained RGB architecture. Note that the performance gap between rgb and
rgbd decreases from 1.6% IoU when training from scratch to 1.1% IoU when applying
RGB pretraining to both backbones, indicating that with the current setup, the profit of
transfer learning from ImageNet in terms of IoU increase is less than for the RGB case.
However, it is not exactly clear how much of the improvement follows from finetuning
the RGB architecture, how much from finetuning the depth backbone, and how much
from the integration of features from both domains. Taking the maximum validation IoU
as examination criterion, encoding the depth information to 3D by replicating the depth
channel along the channel dimension outperforms Jet encoding as well as averaging the
first layer filters in this experiment.

4.4. Backbones for Depth Information

The first approach of transfer learning from ImageNet on RGBD input data in subsec-
tion 4.3.2 already led to an improvement of the validation IoU. Some assumptions have
been made, which might limit the potential performance gain that might result from
RGB pretrained architectures. Specifically, the fusion strategy was rather easy, and the
same backbone architecture was taken for extracting features from depth. However, it is
not clear if the same network architecture is a good choice for depth, or if e.g. a simpler
shallower network might be sufficient to process the depth information. Therefore,
this section investigates the effect of different backbones, only concentrating on depth.
The networks again utilize half of the VOT2019-RGBD dataset for training, and the
other half for validation. No encodings are applied, the depth information is taken as
an 1D input. The objective in this section is to find an architecture that achieves low
bias, thus best fitting to the training data. Therefore, the training IoU will be used for
examination. Generally, the experiment can be summarized as examining deeper vs
shallower networks. The setup is shown in Figure 4.12, only consisting of the backbone
for depth processing and the RPN. For the training settings, refer to Table 4.2. In addition
to the augmentations in the table, half of the depth images are flipped horizontally.

Figure 4.13 shows the results for different backbone architectures. When taking an
AlexNet-like architecture as an example for a deep backbone, taking more layers and
thus implementing deeper backbones leads to better performance. When only taking an
one layer backbone "L1", the performance drops by a large margin, indicating that this
small network is not capable of learning representative features, leading to a maximum
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Figure 4.11.: Results of ImageNet-pretraining when considering RGBD inputs.
"rgbd_repl" represents the encoding of the depth information to 3D by repli-
cating the depth, "rgbd_jet" uses a Jet colormap as 3D encoding, "rgbd_avg"
averages the first layer weights and treats the depth information as 1D.
Therefore it modifies the first layer of the backbone. "rgbd_stack" only uses
one backbone architecture that processes the stacked RGBD data as a 4D
input, while "rgb" reflects the architecture without depth. The latter serves
as a reference. "rgbd_stack" does not use pretraining, as no pretrained
networks are available for RGBD inputs. Furthermore, "scratch" indicates
no pretraining, "fixed" that no finetuning is applied and thus the pretrained
weights are kept, and "L[12345]+" denotes which layers of the backbone are
finetuned, while the remaining ones are fixed.

Backbone

Backbone

RPN

regression output
(17, 17, 4k)

classification output
(17, 17, 2k)

D

Dtemplate image
(127, 127, 1)

search image
(255, 255, 1)

Figure 4.12.: Setup for searching suitable backbone architectures for feature extraction
from depth input. The backbone extracts features from template and
search image, respectively. Based on these, the RPN predicts foreground-
background classification and bounding box regression outputs on anchor
level. k reflects the number of anchors. Different architectures can be used
as backbone, indicated by "Backbone" as a placeholder
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4.5. RGB Pretraining for Depth Information

training IoU of less than 10% for (a), (b), and (c). Using two layers already leads to a
decent performance of roughly 80% IoU, with even more layers further increasing the
maximum training score. The AlexNet half architecture with half the filters in each
layer has a similar but slightly worse training IoU compared to the original AlexNet,
assuming the same number of implemented layers. This is also true for AlexNet double,
however, with a slightly increased performance compared to baseline AlexNet. The
best performance is achieved by the models "L12345". More precisely, AlexNet double
gives the highest score for this configuration, followed by AlexNet and AlexNet half.
Consequently, deeper as well as broader (in terms of filters per layer) networks help to
learn better features for tracking from depth information. As a comparison, (d) shows
the performance when not taking a deep convolutional network architecture, but rather
a handcrafted HOG [16] extractor which has been a common feature extractor in early
DCF-based tracking architectures, leading to 64.5% IoU. The performance is significantly
lower compared to 87.3% overlap obtained by AlexNet double.

To sum up, the obtained results show a similar trend for depth information as it is
the case for RGB data in a variety of computer vision tasks, with deeper convolutional
networks being able to extract more meaningful features, which then allow for an overall
increased performance. Also, the superiority of a convolutional feature extractor over the
handcrafted HOG has been shown. Although the performance has been the highest with
the AlexNet double architecture, the standard AlexNet architecture will be considered
for further investigations. This seems reasonable as AlexNet double contains double as
much parameters and leads to an training IoU increase of 0.6%, which is rather small.
However, the significant advantage of utilizing standard AlexNet is the availability of
pretrained networks on e.g. ImageNet or PySOT, as already used in section 4.3. This
should allow better performance in the long run, when effectively applying transfer
learning.

4.5. RGB Pretraining for Depth Information

The last section showed that, indeed, taking an equivalent backbone architecture for
depth information works well. This has been assumed in section 4.3 without further
investigation, and has been proven to be a reasonable approach. This investigation
probably refers to the fact that recognizing edges and low-level patterns helps for both,
RGB and depth, to identify and locate an object. Therefore, the underlying structure
of both domains has some similarities, which intuitively points at taking a similar
function space to search for a good feature extractor. To recap, depth information led to
better IoUs when training from scratch compared to RGB-only. Transfer learning helps
significantly for RGB input data, especially when taking pretrained networks which
have been trained for tracking. Furthermore, a similar or equivalent backbone seems to
be a good architecture to extract features from depth data. However, pretraining results
for a simple RGBD architecture has not exploited the full potential of the depth data.
Therefore, this section will deal with how to apply transfer learning on the AlexNet
architecture for depth information. Thus, color information will not be used in this
section. It investigates RGB pretraining for the depth network, similar to subsection 4.3.1,
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(b) AlexNet half
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Figure 4.13.: Maximum training IoU for different backbone architectures for feature
extraction from depth. (a) uses AlexNet as baseline architecture, (b) a
modified version of AlexNet with every layer containing half the amount
of filters, and (c) doubles the number of filters in each layer. For each
subplot, L[12345]+ denotes how many layers of the baseline architecture
are implemented. (d) does not utilize a deep backbone, but rather uses a
handcrafted HOG feature extractor for comparison with the convolutional
network approaches, as e.g. often used in earlier DCF approaches (see
chapter 2). The dotted line shows the maximum achieved training IoU of
"AlexNet double: L12345".
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4.5. RGB Pretraining for Depth Information

with the difference of using depth as input, rather than RGB. Referring to Figure 4.11,
replication of the depth information to 3 channels led to the best results when utilizing
RGB pretraining for depth data. Thus, this section utilizes replication, copying the
depth data to be a 3-dimensional input, and then using pretrained RGB weights. This is
possible as now the input dimensions are the same, thus there is no need to adapt the
network. Again, the training hyperparameters in Table 4.2 are used. Figure 4.14 shows
the general setup.

AlexNet

AlexNet

RPN

regression output
(17, 17, 4k)

classification output
(17, 17, 2k)

D

Dtemplate image
(127, 127, 3)

search image
(255, 255, 3)

Figure 4.14.: Setup for investigating pretraining methods for depth with the DaSiamRPN
architecture. The backbone extracts features from template and search im-
age, respectively. Based on these, the RPN predicts foreground-background
classification and bounding box regression outputs on anchor level. k
reflects the number of anchors. The depth information is copied along
the channel dimension to be 3-dimensional. Therefore no adaption to the
backbone is necessary.

Figure 4.15 shows the results of pretraining an AlexNet backbone which takes depth
information as input, utilizing RGB pretrained network weights from either training
on ImageNet or on large-scale object detection datasets (model from the PySOT model
zoo, see subsection 4.3.1). The same notation as for the pretraining experiment with
RGB input data is used. Note that training from scratch takes the depth data as 1D
input, while the rest of the architectures copy the data to three dimensions. As this is
only done to allow using pretrained weights, training from scratch should not follow
the same procedure. Thus it modifies the first layer filters to accept 1D input data.
When using transfer learning from ImageNet, the training IoU decreases and thus the
model is not overfitting the training data as much. At the same time, the validation
performance increases, with the best model (L12345) leading to a maximum validation
IoU of 61.5%, exceeding the score when training from scratch by 1.3% IoU (2.2% absolute).
The performance gain of 2.2% is rather small compared to 4.6% in the RGB case in
subsection 4.3.1. However, it becomes clear that transfer learning from the RGB to
the depth domain is able to increase performance, thus extracted features from both
domains seem to be correlated, and one can profit from the other. Again, remarkably
better performance is achieved when applying transfer learning from a model that has
been trained for tracking on large-scale object detection datasets. This has also been
the case when examining pretraining for RGB inputs (see subsection 4.3.1). Again, the
performance increase is significantly also for depth input data, even when not finetuning
the backbone at all. The best validation IoU is 67.8%, which means an increase of 7%
IoU (11.5% absolute) compared to training from scratch. Recall that the increase with
RGB input data has been 17.7% absolute. This indicates that the features in the depth
domain are somewhat different. Thus, the performance gain is less with depth data,

75



4. Results

however, still significant. The network is also able to better fit the training data when
applying transfer learning from RGB tracking, which emphasizes the impact of having
been trained on a large variety of different object categories from several datasets. Similar
to the pretraining experiment on RGB inputs, finetuning the last three layers (config
L345) achieves the best performance.

To summarize, features learned on RGB data transfer well to the depth domain,
however with less performance gain compared to an architecture that processes RGB
inputs. This indicates similarities of features in both domains, however, only to some
extent. According to these findings, applying RGB pretraining should definitely be
considered when training an RGBD tracker, as the backbone that extracts features might
profit significantly. This is especially important in the current situation, where large-scale
datasets with depth information are rare. It might be the case that in the future, RGBD
datasets will be large enough to train deep backbones from scratch. However, as this is
not true at the moment, transfer learning from RGB is a good practice, especially when
utilizing networks that have been trained for RGB tracking on rather large datasets.

It has been proven that transfer learning helps for backbones with RGB input data
as well as depth. However, the realtive performance gain by applying transfer learning
is 56.7% less compared to the RGB case for ImageNet pretraining, and 35.8% less
compared to the RGB case for PySOT pretraining. Note, however, that it clearly improves
performance in both cases. The next section investigates fusion strategies to profit from
color and depth information.

4.6. Fusion Strategies for Leveraging RGB and Depth
Encodings

Different backbones as well as pretraining strategies have been thoroughly analysed in
the last sections. As transfer learning from RGB to the depth domain is crucial to achieve
good performance especially with small RGBD datasets, desinging an architecture with
two backbones and a fusion layer is a reasonable strategy to utilize pretrained networks.
The first approach of implementing this architecture in subsection 4.3.2 used a C1BR
fusion strategy, which was rather simple and might not unleash the full potential of
combining features extracted from both domains. Therefore this section investigates
different fusion architectures which allow the tracker to learn embedded features from
RGB and depth. The training uses the same data as in the last sections, splitting the
VOT2019-RGBD dataset by half for training and validation, respectively. The backbones
are initialized with pretrained weights from the PySOT model zoo. As encoding the
depth information to form a 3D input by replication lead to the highest performance
when utlizing a pretrained network (see Figure 4.11), this technique is also implemented
in this experiment. Being pretrained on RGB tracking has been proven to achieve
significantly better performance for the case of RGB (see Figure 4.8) as well as depth (see
Figure 4.15) inputs compared to ImageNet pretraining. The backbones are intitialized
with the pretrained weights and kept fixed during training in this experiment. The
examined fusion layers in this section as well as the RPN are trained from scratch. The
experiment generally follows the setting in Table 4.2. However, a WD of 0.0001 is applied.
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(a) ImageNet pretraining: IoU on training set
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(b) Imagenet pretraining: IoU on validation set

sc
ra

tc
h

fix
ed L5 L4

5

L3
45

L2
34

5

L1
23

45

0.82

0.83

0.84

0.85

M
ax

Tr
ai

n
Io

U

(c) PySOT pretraining: IoU on training set
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(d) PySOT pretraining: IoU on validation set

Figure 4.15.: Effect of pretraining the DaSiamRPN architecture with depth-only inputs
on training and validation performance, obtained with a simple validation
tracker. The network neglects the color information and thus only operates
on depth input. "Scratch" indicates no pretraining and 1D input data, "fixed"
that no finetuning is applied and thus the pretrained weights are kept,
and "L[12345]+" denotes which layers are finetuned, while the remaining
ones are the fixed pretrained weights. (a) and (b) have used ImageNet
pretraining, while (c) and (d) have used a pretrained network from the
PySOT model zoo, which has been finetuned on tracking with large-scale
datasets. All networks except for "scratch" copy the depth data along the
channel dimension to form a 3D input vector, that allows to take the same
backbone as for RGB.
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Figure 4.16.: Setup for finding good fusion architectures using the DaSiamRPN archi-
tecture with AlexNet backbones. One AlexNet processes RGB and depth
data, respectively. Both use pretrained PySOT weights as initialization.
The depth data is encoded to 3 dimensions by replication. The extracted
features from both domains are combined with a fusion layer to form an
RGBD feature embedding. "D" denotes the depth information. The RPN
performs object presence classification as well as bounding box regression
based on the RGBD features.

Apart from that, backbones are fixed. Instead of having an exponential LR decay, the
LR in these experiments is kept constant apart from a warmup schedule in the first 5
epochs. The optimizer uses a base LR of 0.005.

4.6.1. Fusion Layers

This subsection examines the use of different fusion layers which differ in the number of
layers, the number of trainable parameters as well as the complexity of the fused output
RGBD features. Table 4.3 introduced the C1BR fusion scheme. Figure 4.17 shows all
implemented fusion layers. Despite having been introduced before, C1BR is also shown
for completeness. The extracted features from both, RGB and depth backbone, feed into
the fusion layer (see Figure 3.2). All schemes concatenate the feature maps to form a 512
dimensional input volume. The fusion schemes are referred to by their name as defined
in Figure 4.17. The efficient layers are a modified version of their baseline counterpart.
1× 1 convolutions reduce the channel dimension. This significantly reduces the number
of parameters and therefore computational complexity. Table 4.4 lists the number of
trainable parameters for each fusion network.

4.6.2. Results

Figure 4.18 shows the results of the fusion experiment. "C3BR efficient" leads to the
best validation IoU of 70.7%, followed by C3BR, [C3BR]2 efficient, and C1BR. Note that
when taking the validation loss into account, which aggregates loss over 16 positive and
48 negative bounding boxes (see section 3.2), the best three architectures to use are the
efficient variants of the fusion layers [C3BR]2 efficient, followed by [C3BR]3 efficient and
C3BR efficient. Altogether, C3BR efficient as well as [C3BR]2 efficient seem to be the best

78



4.6. Fusion Strategies for Leveraging RGB and Depth Encodings

input_rgb
DxDx256

input_d
DxDx256

stack 256 x conv 1x1
B

R
output
DxDx256

(a) C1BR.

input_rgb
DxDx256

input_d
DxDx256

stack 256 x conv 3x3
B

R
output
DxDx256

(b) C3BR.

input_rgb
DxDx256

input_d
DxDx256

stack 256 x conv 3x3
B

R
output
DxDx256

64 x conv 1x1
B

R

(c) C3BR efficient.

input_rgb
DxDx256

input_d
DxDx256

stack 256 x conv 3x3
B

R
output
DxDx256

64 x conv 3x3
B

R

(d) [C3BR]2.

input_rgb
DxDx256

input_d
DxDx256

stack 64 x conv 3x3
B

R
output
DxDx256

64 x conv 1x1
B

R
256 x conv 3x3

B

R

(e) [C3BR]2 efficient.

input_rgb
DxDx256

input_d
DxDx256

stack 64 x conv 3x3
B

R
output
DxDx256

256 x conv 3x3
B

R
x2

(f) [C3BR]3.

input_rgb
DxDx256

input_d
DxDx256

stack 64 x conv 3x3
B

R
output
DxDx256

64 x conv 1x1
B

R
256 x conv 3x3

B

R
x2

(g) [C3BR]3 efficient.

Figure 4.17.: Visualization of fusion layers. "D" denotes the input feature size, which is
22 for the search and 6 for the template image. Red boxes represent conv
layers, defining the number of filters as well as the filter size. Circled "B"
and "R" denote Batchnorm and ReLU layers that follow the convolutions.
The output layer feeds into the RPN.
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Table 4.4.: Number of trainable parameters for different fusion networks.

Network Trainable Parameters

C1BR 131,584
C3BR 1,180,160
C3BR efficient 180,864
[C3BR]2 443,008
[C3BR]2 efficient 217,856
[C3BR]3 480,000
[C3BR]3 efficient 254,848

architectures. They should both be tried when training the architecture end-to-end for
deployment. Also note that the choice of fusion is also influenced by the availability
of RGBD data. With more data being available, bigger fusion architectures with more
parameters can be used without the risk of overfitting too much to the training data.
However, as RGBD data is still rather rare, this supports the observations of the efficient
layers with fewer parameters leading to better results. As expected, the depthonly
network achieves the worst performance on training and validation set, followed by
the rgbonly network. This shows that combining the information from both domains
allows to fit the training data better. Furthermore, it not only helps to overfit, but also
increases the IoU on the validation set for all fusion layers, approving that considering
depth information in a fusion architecture is important for tracking. Specifically, C3BR
efficient leads to an increase of 8.6% IoU (13.8% absolute) compared to depthonly, and
an increase of 1.8% IoU (2.7% absolute) compared to rgbonly in terms of validation IoU.

4.7. Benchmark Evaluation of DaSiamRPN vs. DaSiamRPN_D

Finally, this section makes use of the preceding results to implement the RGBD version
of DaSiamRPN, further referred to as DaSiamRPN_D. In contrast to all sections before,
VOT2019-RGBD is no longer used for training to comply with the VOT participation
guidelines. Therefore, this section will train on some other RGBD dataset and evaluate
on the full VOT2019-RGBD consisting of 80 sequences. Referring to Table 3.2, SceneN-
etRGBD might be the best candidate mainly due to its size, which should allow to train
a tracker without severe overfitting to specific videos. The architecture incorporates
findings from prior sections. Evaluation is performed twice. Once per validation IoU
on the VOT dataset, and second according to the tracking F1 score (see section 4.1),
which is the official evaluation measure for the VOT-RGBD subchallenge. The RGB-only
architecture from the PySOT model zoo serves as a reference. As in the previous sections,
an AlexNet backbone serves as feature extractor.
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Figure 4.18.: Training different fusion architectures with backbones being initialized with
weights from the PySOT model zoo. "Depthonly" as well as "rgbonly" are
added as baselines. They only consist of the depth/rgb network for feature
extraction and therefore do not need a fusion network.
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4.7.1. Model Zoo DaSiamRPN

The model zoo tracker with AlexNet backbone called "siamrpn_alex_dwxcorr" is pro-
vided through the PySOT model zoo website3. It uses RGB data and has been trained end-
to-end on YouTube-BoundingBoxes [72], Microsoft COCO [58], ImagenetDetection [74]
and ImageNetVideo [74] while making use of ImageNet pretraining. The tracker config-
uration for the long-term strategy (see section 3.2) has been taken from the long-term
model configuration which utilizes a ResNet backbone (siamrpn_r50_l234_dwxcorr_lt).
The configuration is also published in the model zoo. Specifically, no hyperparameter
search has been performed on the tracker parameters and the same parameters are
used for different models. In the future, tuning these hyperparameters would allow to
improve the performances of the trackers. As the goal is to highlight tendencies rather
than tweaking the performance of every single architecture to the optimum, utilizing the
same parameters for multiple architectures is sufficient. Table 4.5 shows the performance
of the model zoo baseline. Analogous to previous sections, the validation IoU results
from randomly sampling search and candidate images and evaluating the IoU of the
most probable bounding box prediction with the ground truth box multiple times for all
videos. However, compared to earlier sections, all videos in the VOT2019-RGBD dataset
belong to the validation set.

Table 4.5.: Performance measures and validation loss of the DaSiamRPN model zoo
tracker on VOT2019-RGBD.

Evaluation Metric Score

F1 0.451
Validation IoU 0.677

4.7.2. Training DaSiamRPN_D

The architecture consists of two AlexNet backbones with a C3BR efficient fusion layer
to combine RGB and depth features (see Figure 4.17). The backbones are initialized
with the weights from the model zoo and fixed during training. Therefore, only the
fusion layer and the RPN are trained. SceneNetRGBD is used for training. The dataset
provides a training and a validation set. The latter serves as bridge set (terminology see
subsection 4.2.4). VOT2019-RGBD is utilized as validation data, as achievinging a high
tracking F1 score on this dataset is the overall goal. Similar to the recent introduction of
a bridge set in the data distribution subsection, this will allow to identify data mismatch
apart from overfitting. Several experiments have been evaluated with the outlined
architecture. In addition, each experiment is also performed on the baseline model from
the model zoo. Again, this architecture is RGB-only and therefore has no fusion layer.
It uses pretrained backbone weights and trains the RPN. The first experiment (RPN
scratch) trains the RPN from scratch without data augmentation techniques. The next
experiment (+augmentation) adds data augmentations to both, RGB and depth data.

3https://github.com/STVIR/pysot/blob/master/MODEL_ZOO.md
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4.7. Benchmark Evaluation of DaSiamRPN vs. DaSiamRPN_D

The augmentations are only performed on the training set, not on the bridge, nor on the
validation set. The third experiment (RPN pretrained) uses pretrained weights for the
RPN. The last experiment (+more objects) uses more of the objects that are present in
the SceneNet dataset, as the prior experiments have only used approximately half of the
overall objects. Each experiment is performed once for the DaSiamRPN_D architecture
(named C3BR eff according to the fusion scheme) and once for the RGB-only model
(named PySOT Zoo). The last experiment also evaluates a C3BR efficient fusion layer
with a smaller hidden size, specifically taking 16 1× 1 conv filters rather than 64. This
reduces the number of trainable parameters in the fusion layer from 180, 864 to 45, 600.
All experiments are performed on a system with 2 GPUs. Table 4.6 lists the training
settings.

Table 4.6.: Training settings for DaSiamRPN vs. DaSiamRPN_D experiments.

Hyperparameter Value

Optimizer SGD
Epochs 50
Batch size 32 per GPU
LR 0.01
WD 0.0001
LR schedule Constant
Negative Sampling 0.05
Training Dataset SceneNetRGBD
Bridge Dataset SceneNetRGBD
Validation Dataset VOT2019-RGBD
Training Pairs per epoch 84328
Bridge Pairs per epoch 2000
Validation Pairs per epoch 8000
Augmentations Gaussian Blur, Gaussian Noise, Brightness, Contrast

4.7.3. Results

Table 4.7 shows the results of the conducted experiments. The best overall F1 score
is obtained by the baseline that has not been trained on SceneNet. Even finetuning
the RPN of the RGB architecture leads to significantly lower F1 scores, indicating that
the training data distribution is different to the validation data. Therefore, the C3BR
architecture does not achieve superior performance on the VOT-RGBD dataset, but on
data that is similar to the training distribution (bridge set). The results reveal interesting
relationships. For each experiment, the RGBD model has better performance in terms
of IoU on training and bridge set compared to PySOT Zoo. On the validation set, the
contrary is true, with the RGB architecture outperforming RGBD. This clearly identifies
a data distribution problem. The RGBD model fits the training data better, and it also
does generalize better to unseen data that comes from the same distribution, e.g. the
bridge set, by a large margin. As the training data is not diverse enough, the RGB
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Table 4.7.: Results for DaSiamRPN vs. DaSiamRPN_D experiments. The baseline config-
uration has not been trained and shows the performance of the model zoo
network. Experiments are separated by horizontal lines. For each experiment,
bold numbers indicate the best score on each measure for a specific experi-
ment. C3BR eff stands for the model with depth information, while PySOT
Zoo means finetuning the RPN of the RGB-only architecture. Performances
are measured on training set (Train IoU), bridge set (Bridge IoU), and val-
idation set (Val IoU, F1). The table shows the lowest F1 score obtained by
the three model snapshots that lead to the lowest validation losses during
training.

Configuration Model Train IoU Bridge IoU Val IoU F1

baseline PySOT Zoo – – 0.677 0.451

RPN scratch C3BR eff 0.808 0.843 0.593 0.251
PySOT Zoo 0.717 0.781 0.680 0.379

+augmentation C3BR eff 0.771 0.812 0.626 0.249
PySOT Zoo 0.715 0.773 0.690 0.386

+RPN pretrained C3BR eff 0.783 0.822 0.648 0.299
PySOT Zoo 0.708 0.777 0.704 0.400

+more objects C3BR eff 0.698 0.746 0.651 0.274
C3BR eff_16 0.677 0.728 0.634 0.279
PySOT Zoo 0.602 0.681 0.703 0.405
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model performs better on VOT (validation set) in terms of mean IoU as well as F1 score.
One hypothesis to explain this is that depth adds another data channel, which again
adds another source of dissimilarity between training and validation data distributions.
Training the RPN from scratch leads to the worst validation IoU for both, C3BR eff and
PySOT Zoo. Adding augmentation, using pretrained weights for the RPN as well as
adding more objects to the training set consistently improves the validation IoU for both
architectures. This is not always true for the F1 score. Achieving a higher mean IoU
reflects better average localization of objects. However, the F1 score can still be worse if
in a few of the validation videos, a model leads to target loss for the rest of the sequence.
Reducing the hidden size of the fusion layer, as in C3BR eff_16, is worse on train, bridge
and validation set, indicating that this fusion scheme does not add enough complexity
to the model.

One more experiment will take the configuration of the last experiment (+more objects)
and perform the training for 500 epochs to ensure that the model has converged and
will not become better with further training given the available data. The training took 8
days on a 2 GPU setup. Figure 4.19 visualizes the training process. The training IoU as
well as the bridge IoU consistently improve, indicating that performance on data similar
to the training data still improves. This hints that further training might be necessary
to make the training converge. This even holds for the validation IoU, meaning that
the overlap of the most probable bounding box with the ground truth increases also on
the VOT2019-RGBD validation data. However, for the validation set, optimization of
the model on the training data does not lead to a minimization of the validation loss.
The noise again hints at data distribution problem, as small updates with respect to the
training data lead to big improvements as well as degradations in terms of validation
loss. Still achieving a higher validation IoU means that the best bounding box gets
better, while other bounding boxes might either be classified wrong or get worse at
predicting the object location. The highest achieved validation IoU is 68.2%, which is
0.5% IoU (0.7 % absolute) better than the baseline model zoo model (see Table 4.7). The
models with the highest validation IoU (epoch 472) as well as the lowest validation loss
(epoch 402) are picked for F1 evaluation (see Table 4.8). Although the model with depth

Table 4.8.: Long training results of DaSiamRPN_D on VOT2019-RGBD data in a super-
vised learning setup.

Configuration Model Val IoU F1

baseline PySOT Zoo 0.677 0.451

+more objects (epoch 402) C3BR eff 0.670 0.358
+more objects (epoch 472) C3BR eff 0.682 0.319

information is able to achieve a higher average overlap when considering all frames in
the VOT2019-RGBD dataset, the F1 score is higher for the baseline. This is due to target
loss in videos.

These results sharply reveal the importance of having very large and diverse datasets
for training RGBD architectures. This is even more important than in the RGB case
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Figure 4.19.: Training DaSiamRPN_D for 500 epochs on SceneNetRGBD. Train and bridge
set are taken from the SceneNetRGBD dataset, while VOT2019-RGBD is the
validation set. The circles mark the epoch with the highest validation IoU
as well as lowest validation loss, which are evaluated for F1 tracking score.
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due to depth information as an additional source of dissimilarity. As such datasets are
not available so far, self-supervised pretraining is a promising option to cope with this
problem until labeled datasets are available at large scale. As soon as large-scale datasets
become available, this experiment shows that the RGBD architecture will outperform its
RGB counterpart.

4.8. Alternate Approach: Self-Supervised Pretraining

Prior experiments focused on training an RGBD tracking architecture in a supervised
fashion. Many insights have been found, e.g. how to preprocess depth data, what
architecture to use when training with depth, how to use RGB pretraining for depth,
as well as what approach works well when considering RGB and depth data as joint
inputs to one architecture. However, the results in section 4.7 clearly identified data
mismatch between training and validation data to be the main concern with training
the DaSiamRPN_D tracker on SceneNet with the goal to achieve good performance on
the VOT2019-RGBD subchallenge. To recap, the RGBD architecture showed superior
performance over the RGB version on the training and bridge set. Therefore, the derived
architecture outperforms the RGB tracker on data that comes from the same data
distribution as the data it has been trained on. However, in terms of performance on the
VOT2019-RGBD dataset, the situation is reversed, with the RGB version outperforming
its RGBD counterpart. As SceneNetRGBD is by far the biggest labeled RGBD dataset
that can be used for training a generic RGBD tracker, taking more data and even bigger
datasets into account is not possible by the time of writing. However, with bigger
datasets becoming available, the architecture from section 4.7 might have the potential
to deliver state-of-the-art results when training in a supervised setup.

4.8.1. Datasets

In addition to the labeled dataset, NYU Depth v2 (see Table 3.2) also provides a bigger
raw dataset with image and depth videos. The biggest labeled RGBD dataset from
Table 3.2 is SceneNetRGBD. However, as mentioned earlier, the data is rendered and
therefore it is not clear how well the data represents data from real camera setups as e.g.
in the VOT2019-RGBD challenge. Apart from that, Princeton dataset is the biggest in
terms of videos (100 vids), while VOT2019-RGBD is the biggest in terms of number of
images (101, 956 imgs). The preprocessed unlabeled NYU dataset has 407, 024 images
from 582 videos and therefore exceeds the size of labeled captured RGBD datasets. For
details on how to preprocess the raw dataset, refer to section A.2. Note that for Princeton,
the ground truth data is not available. While it can therefore not be used for supervised
training, it can be leveraged in an unsupervised training setup. The self-supervised
setups in this section will mainly use NYU Depth v2 for training due to its size. However,
incorporating even more datasets is likely to further improve the results. As more data
is always a way of regularization, it most often helps the network to generalize better to
unseen data.
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4.8.2. Reconstruction Learning

Figure 4.20 shows the setup. The RGBD data is treated as a 4D input vector. An AlexNet
backbone with modified first layer filters to allow 4D inputs extracts features. The pretext
head network is an AlexNetDecoder network that outputs a (255, 255, 4) matrix. The
input as well as the output from the pretext head feed into a Mean Squared Error (MSE)
loss function. Thus, this is a reconstruction task, where the overall architecture learns to
reproduce the input. This is a non-trivial task, as the AlexNet architecture projects from
pixel-space to feature-space, and the AlexNetDecoder tries to map features back to the
pixel-space. It is referred to as reconstruction learning.

AlexNet AlexNetDecoder MSE
RGBD

Loss(255,255,4)
backbone pretext head

Figure 4.20.: Self-supervised reconstruction learning.

Training Settings

Pretext training uses SGD as optimizer with a multi-step LR decay. The base learning
rate is 0.05, and it is divided by 5 at epochs 25, 225, and 300. WD is set to 0.0001. Training
takes place for 500 epochs on the NYU-Depth v2 dataset with 29500 videos per epoch.
Batch size is 16 per GPU. Finetuning for tracking uses adam optimizer with a constant
LR of 0.0003. Training is performed for 150 epochs on SceneNetRGBD. The remaining
settings for the second step are as in Table 4.6. When initializing the backbone with
weights from self-supervised pretraining, finetuning the backbone starts at epoch 30,
always with 1/10 of the LR of the rest of the architecture. When training from scratch
the same learning rate is applied for the whole architecture. Finetuning for tracking uses
the SceneNetRGBD dataset (train and bridge set). For pretext training and finetuning,
VOT2019-RGBD serves as the validation set. The network does not need a fusion layer
as it directly gets the 4D data as input.

Results

Figure 4.21 shows the pretext training as well as finetuning for tracking. The loss
decreases for both, training and validation, indicating that the network learns a good
mapping from pixel-space to features back to pixels. The model snapshot of epoch
500 is taken as initialization for the backbone when finetuning for tracking. Another
model trains from scratch for comparison. When only training the RPN, training from
scratch seems to have better performance. However, when starting to finetune the
backbone at epoch 30, the performance of the pretrained model clearly exceeds the
baseline in terms of IoU for training, bridge and validation set, by a significant margin.
The validation IoUs have been smoothed with a 1D gaussian to cope with outliers.
The validation set is checked once per epoch. Comparing smoothed versions for both
should be fair, as otherwise it could happen that one model has been tested once when
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Figure 4.21.: Results for reconstruction learning. (a) and (b) show pretext learning, while
(c), (d), and (e) display finetuning the pretrained architecture for tracking vs
training from scratch. The validation IoUs are smoothed with a 1D gaussian
filter with σ = 3. The circle marks the epoch that is taken for finetuning.
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the weights perform well on the validation set, while the other one has had a similar
situation, however just not exactly when the validation IoU has been tested. Therefore,
comparison of the smoothed values should give more insight into how much one model
outperforms the other. The maximum smoothed validation IoU of the model that uses
self-supervised pretraining exceeds the scratch model by 3.8% IoU, which makes an
absolute improvement of 6.8%. This results is remarkable. It means that reconstruction
learning with the given data is able to improve RGBD tracking by training on data
without any labels by a large margin. As even more unlabeled RGBD data should
be available in future applications, this finding can help to significantly improve the
performance without being dependant on huge labeled datasets.

4.8.3. Domain Transfer Learning

This subsection treats another self-supervised learning approach which is further referred
to as domain transfer learning. The overall architecture has one network for RGB and
one network for depth data together with a fusion layer, as in previous sections. The
self-supervised pretraining itself consists of two separate subtrainings:

• Learn features from RGB that are meaningful for depth

• Learn features from depth that are meaningful for RGB

This is somewhat more complex compared to reconstruction learning, as it consists of
two trainings rather than one. The intuition behind is to separately learn features from
one domain that are useful for the other one. This forces the representation to have a
causality between RGB and depth, which might turn out to be useful when used for
tracking in the second step. The correlation of learning features from one domain, that
transfer to the other one leads to the name domain transfer learning.

Foreground Background Segmentation

Figure 4.22 shows the setup for depth prediction from RGB as well as foreground
background prediction from RGB. More specifically, "RGB to depth" tries to predict the
depth image given the RGB image. Inputs to the network are images that are cropped
to a size of (359, 359, x). In that way, the backbone learns to extract features from the
RGB image that are meaningful for depth. On the other hand, "depth to foreground
background segmentation" tries to learn a segmentation of foreground and background
from the RGB image given the depth information. More specifically, the last three RGB
images of a frame from one video are captured and fed into an algorithm which performs
background subtraction based on the current and the last two frames. Inputs to the
architecture are a cropped (359, 359, 1) depth image and the full size RGB image. After
background subtraction, pixel values that are bigger than 64 contribute to the foreground
mask. The output is postprocessed by applying an erosion with a 3× 3 filter followed
by a dilation with a 5× 5 filter with 10 iterations to reduce noise. Finally, the RGB
foreground background segmentation mask is cropped to be of size (359, 359, 1). Both
matrices feed into a MSE loss function, which allows the backbone together with the
pretext head to learn the segmentation task. For background subtraction, the OpenCV
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Figure 4.22.: Self-supervised domain transfer learning with foreground background
segmentation as pretext subtask.

MOG24 algorithm is used. Due to its definition, background subtraction methods only
work in static camera setups. This is however not true for the videos in NYUDepthv2.
Therefore, this dataset can not be used for training. For STC [90] and Princeton [79],
half of the videos are captured in static camera setups. Therefore, these datasets are
used for self-supervised learning rather than NYUDepthv2, despite being significantly
smaller. STC provides information about which videos are captured in static setups. For
Princeton these videos are detected by filtering images that have up to 40% foreground,
which effectively removes moving camera scenes. Figure 4.23 shows some RGB and
depth images together with the background segmentation. The images show that in static
camera setups this technique works quite well. However, it is hard to find parameters
that work well for most of the training images. By e.g. looking at the 4th image from the
left, the segmentation has the contours of the person, but not the body. Also, some noise
in the outputs can not always be suppressed (e.g. first image on the left).

Training Settings

Due to the restriction to static camera setups, STC and PTB (see Table 3.2) are used for
training with 11540 videos per epoch. As only half of the videos have static cameras,
this makes 68 videos in total. Both pretext trainings use Adam with a LR of 0.0003 and
a multi-step LR schedule which multiplies the LR by 1/5 at epochs 150, 200, and 250.
Batch size is 32 per GPU. Training is performed for 300 epochs for RGB to depth, as well
as depth to foreground background segmentation task. The architecture implements a
C3BR efficient fusion layer to combine the two backbone networks from both domains.
Adam is used with a constant LR of 0.0003. Training is performed for 150 epochs. The
remaining settings for the second step are as in Table 4.6. When initializing the backbone

4https://docs.opencv.org/3.4/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
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(a) RGB.

(b) Depth.

(c) Background segmentation.

Figure 4.23.: Visualization of foreground background segmentation through background
subtraction on STC and PTB. (a) and (b) are images provided by the datasets.
(c) is the processed output of the background subtractor.

with weights from self-supervised pretraining, finetuning the backbone starts at epoch
30, always with 1/10 of the LR of the rest of the architecture. When training from scratch
the same learning rate is applied for the whole architecture. Finetuning for tracking uses
the SceneNetRGBD dataset (train and bridge set). For pretext training and finetuning,
VOT2019-RGBD serves as validation set.

Results

The training results for pretext training are presented in Figure 4.24. While the training
loss consistently decreases for RGB to depth, the validation loss indicates overfitting to
the training data after approximately 120 epochs. The model with the lowest validation
loss (epoch 107) is used for pretraining. For depth to segmentation pretraining, the
situation is similar, however overfitting starts even earlier at about 20 epochs. Again,
the model with the lowest validation loss (epoch 9) is taken for pretraining. Compared
to reconstruction learning, the validation losses seem to be more noisy. This is most
probably because of the fact that here the training data is significantly smaller, which
makes it not generalize well to unseen data and promotes early overfitting. In addition
to the models with the lowest validation losses, the model snapshots at epoch 300
will also be taken as initialization for finetuning. Figure 4.25 shows the results for
finetuning for tracking. Pretrained1 refers to the models with the lowest validation
loss, while pretrained2 refers to the snapshots at epoch 300 (see circles in Figure 4.24).
After epoch 30, when finetuning of the backbone starts, the training IoU gets better
for the pretrained models compared to training from scratch. This is also the case
for the bridge IoU, however not as much. The validation IoUs are again smoothed
due to the reason mentioned in the reconstruction learning subsection. Comparing

92



4.8. Alternate Approach: Self-Supervised Pretraining

the smoothed maximum validation IoUs gives an improvement of 3.4% IoU which
is an absolute improvement of 5.9% when performing domaintransfer learning with
foreground background segmentation on unlabeled data. The performance gain is
significantly higher for the pretreained2 model. Considering the validation losses in
Figure 4.24, this means that having a low validation loss does not necessarily mean
that the model is suited better for initializing the tracking architecture in the second
step. This finding is in general true for self-supervised pretraining, where one does not
care too much about how good a model performs on the pretext task. It is much more
important that the model learns good filters / representations rather than having a good
performance. The performance gain is less than for reconstruction learning. However,
the margin of improvement is impressive, considering the fact that only a fraction of
the training data can be used here. For reconstruction learning, pretext training was
performed on NYU with 582 videos, while domaintransfer learning with foreground
background segmentation only uses 68 videos in total (static sequences of STC and PTB).

Grayscale Prediction

The major drawback of domain transfer learning with foreground background segmenta-
tion is the restriction to videos with static camera setups due to background subtraction.
This inhibits the use of the NYU Depth v2 datasets which is much bigger compared
to PTB and STC. To cope with these cons, another task can be used to learn features
from depth which does not restrict the choice of data. Specifically, the RGB to depth
part stays the same, while the foreground background segmentation is replaced by
grayscale prediction (see Figure 4.26 for the overall setup). Inputs to the architecture are
a cropped (359, 359, 1) depth and a (359, 359, 3) RGB image. The RGB image is converted
to grayscale. The decoded feature representation of the depth image and the grayscale
image lead into a MSE loss. Figure 4.27 shows some examples.

Training Settings

As grayscale prediction does not restrict the choice of data, the NYU-Depth v2 data is
used for training with 36300 videos per epoch. Both pretext trainings use Adam with a
LR of 0.0003 and a multi-step LR schedule which multiplies the LR by 1/5 at epochs 150,
200, 250, and 275. Batch size is 32 per GPU. Training is performed for 300 epochs for
RGB to depth, as well as depth to grayscale prediction task. Similar to domaintransfer
learning with foreground background segmentation, the architecture implements a C3BR
efficient fusion layer to combine the two backbone networks of both domains. Adam is
used with a constant LR of 0.0003. Training is performed for 150 epochs. The remaining
settings for the second step are as in Table 4.6. When initializing the backbone with
weights from self-supervised pretraining, finetuning the backbone starts at epoch 30,
always with 1/10 of the LR of the rest of the architecture. When training from scratch
the same learning rate is applied for the whole architecture. Finetuning for tracking uses
the SceneNetRGBD dataset (train and bridge set). For pretext training and finetuning,
VOT2019-RGBD serves as validation set.
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(a) RGB to depth training loss.

0 100 200 300

0.14

0.16

0.18

Epoch

V
al

Lo
ss

(b) RGB to depth validation loss.

0 100 200 300

4

6

8

10
·10−2

Epoch

Tr
ai

n
Lo

ss

(c) Depth to segmentation training loss.
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(d) Depth to segmentation validation loss.

Figure 4.24.: Results for domaintransfer pretext training with foreground background
segmentation pretext task. (a), (b) show RGB to depth training, (c), (d)
depth to foreground background segmentation. The solid circle marks the
snapshots with the lowest validation loss, while the dotted circle marks the
validation losses at the end of training (epoch 300). Both candidates are
evaluated for finetuning for tracking.
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(a) Tracking training IoU.
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(b) Tracking bridge IoU.

0 20 40 60 80 100 120 140

0.54

0.56

0.58

0.6
0.034⇒ +5.9%

Epoch

V
al

Io
U

pre1 pre2 scratch
pre1_smooth pre2_smooth scratch_smooth

(c) Tracking validation IoU.

Figure 4.25.: Results for domaintransfer finetuning with foreground background seg-
mentation pretext with the respective model snapshots from Figure 4.24.
The validation IoUs are smoothed with a 1D gaussian filter with σ = 3.
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(b) Depth to grayscale.

Figure 4.26.: Self-supervised domain transfer learning with grayscale prediction as pre-
text subtask.

(a) RGB.

(b) Depth.

(c) Grayscale version of RGB image.

Figure 4.27.: Visualization of grayscale prediction images on the NYU Depth v2 dataset.
(a) and (b) are images provided by the dataset. (c) is the grayscale version
of the RGB image that the network shall learn to predict given the depth
image.
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Results

Figure 4.28 shows the results for pretext training. For RGB to depth learning the
training loss consistently decreases, while the validation loss indicates overfitting after
approximately 15 epochs. The depth to grayscale prediction subtask follows the same
trend, with overfitting starting at about epoch 15. The noise in the validation losses
might potentially result from a data mismatch problem between the training data (NYU
Depth v2) and the validation set (VOT2019-RGBD). The model snapshots with the lowest
validation losses (RGB to depth: epoch 13, depth to grayscale: epoch 10) as well as the
snapshots at epoch 300 will be taken as initialization for finetuning. The results for
tracking are visualized in Figure 4.29. Pretrained1 refers to the models with the lowest
validation loss, while pretrained2 refers to the snapshots at epoch 300 (see circles in
Figure 4.28). After epoch 30, when finetuning of the backbone starts, the training and
bridge IoU clearly starts to improve. The pretrained1 model gets better than the model
that trains from scratch in terms of training and bridge IoU, while the pretrained2 model
achieves similar performance. The validation IoUs are smoothed with a 1D gaussian
filter to cope with outliers and allow better comparison. When comparing the validation
IoUs, pretrained1 and pretrained2 clearly outperform training from scratch without
self-supervised pretraining. The maximum improvement is obtained by pretrained2
with an improvement over training from scratch of 0.022, which corresponds an absolute
improvement of 3.9%. Again, the model profits from self-supervised pretraining. The
margin is slightly smaller compared to foreground background segmentation despite
training on much more data, indicating that the latter is a better suited pretext task for
self-supervised pretraining with tracking as final application.

The investigations in this section revealed the potential of self-supervised pretraining
in an RGBD tracking setup, where large-scale datasets are not yet widely available. All
experiments showed superior performance compared to training from scratch by signifi-
cant margins. Reconstruction learning leads to the best improvement compared to the
two domaintranfer methods. Most probably, this is due to the data distribution problem
between the training (SceneNetRGBD) and validation data (VOT2019-RGBD) that has al-
ready been addressed in the supervised section (see section 4.7). For the domaintransfer
approaches, the final tracking architecture needs a fusion layer to combine features from
both domains. This layer needs to be trained from scratch during finetuning for tracking.
Therefore, the overall architecture has more parameters and can fit the training data
better. However, as the training and validation data distribution is somewhat different,
the domaintransfer models overfit more to the SceneNetRBGD data distribution and
thus have inferior performance on VOT2019-RGBD. For reconstruction learning, no
domaintransfer layer is needed as the model directly processes 4D input data. This
might explain the improvement of reconstruction learning over domaintransfer learning.
Recalling that for domaintransfer learning with foreground background segmentation
the training data is significantly less compared to the other self-supervised experiments,
it is remarkable that the performance is close to the performance of reconstruction learn-
ing, and even better compared to domaintransfer learning with grayscale prediction,
indicating that this training method might be the most elegant one considering the
amount of data needed.
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(b) RGB to depth validation loss.
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(c) Depth to grayscale training loss.
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(d) Depth to grayscale validation loss.

Figure 4.28.: Results for domaintransfer pretext training with grayscale prediction pretext
task. (a), (b) show RGB to depth training, (c), (d) depth to grayscale
prediction. The solid circle marks the snapshots with the lowest validation
loss, while the dotted circle marks the validation losses at the end of training
(epoch 300). Both candidates are evaluated for finetuning for tracking.
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(c) Tracking validation IoU.

Figure 4.29.: Results for domaintransfer finetuning with grayscale prediction pretext task
with the respective model snapshots from Figure 4.28. The validation IoUs
are smoothed with a 1D gaussian filter with σ = 3.
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5. Discussion and Future Work

The goal of this thesis is to investigate the use of depth information in deep visual
object trackers. Chapter 2 gives a thorough analysis over the progress of the tracking
community in the topic of generic visual object tracking. It explained the separation
of approaches into template-matching methods and tracking by detection. In addition,
the progress in processing depth information in other computer vision applications has
been analysed, before finally enlarging on RGBD tracking. Chapter 3 presented the
evaluation metrics and outlined the challenges in RGBD tracking. Out of the approaches
presented in the related work section, DaSiamRPN has been taken as RGB baseline
tracker for further investigations with depth information. The algorithm has been
presented, particularly mentioning the training process, as the main concern of the
thesis is to incorporate the depth information in the training process of a deep visual
object tracker. Chapter 4 explains and analyzes all conducted experiments. For all
experiments the final goal has been to achieve good performance on the VOT2019-
RGBD tracking dataset, as it currently is the most relevant and as well the biggest
benchmark for generic object tracking with depth information. As a proof of concept
(see section 4.2), half of the data has been used for training, while the other half served
as validation data. It became obvious that adding depth information to the architecture
leads to approximately 5% absolute improvement on the validation set over a variety of
hyperparameters. As using pretrained networks is a common tool in machine learning
that helps to develop models especially in scenarios with little data, the next experiment
(see section 4.3) has tested if and to what extent pretrained networks can be used for
RGBD tracking. The use of pretrained networks with depth information is completely
different to the RGB case, as no RGBD pretrained networks are available. Therefore,
the experiment tested how RGB pretrained weights can be used for a tracker with
depth. As RGB and depth have to be used as separate channels in order to exploit
pretrained networks (no 4D input pretrained networks available), a C1BR fusion scheme
is introduced to combine features from both domains. The results reveal that RGB
pretraining helps to significantly increase the performance when training and validating
on VOT2019-RGBD. More specifically, replication of the depth channel to 3D lead to the
best performance. The absolute increase is even more compared to the RGB only case,
indicating that for RGBD inputs, pretrained networks seem to have at least the same if
not more benefit than for RGB. Another experiment (see section 4.4) investigates the
influence of deeper and shallower backbone architectures for feature extraction with
depth-only input data. It also used HOG as a popular handcrafted feature extractor in
the history of generic object tracking. The major outcome is that the deeper versions
of the AlexNet backbones led to better performance. However, taking the unmodified
version is the best option for the rest of the thesis, as only for these pretrained weights
are available. Also, the deep AlexNet backbone outperformed the HOG extractor by a
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large margin, justifying the research question on how to train deep visual object trackers
with depth information. As the pretrained weights have such a big influence on the final
performance given VOT as training data, section 4.5 compares ImageNet pretraining
vs PySOT model zoo pretraining, which is provided by the DaSiamRPN authors, for
depth-only inputs. The model zoo model has been initialized with ImageNet pretrained
weights and been finetuned on large-scale RGB tracking datasets. The results show
that transfer learning improves the performance in both cases, with the model zoo
pretraining clearly outperforming ImageNet pretraining. Transfer learning is able to
improve the performance with depth-only inputs in both cases, however, by over 35%
less compared to the RGB case. Taking the knowledge about what backbone to use for
depth information, as well as further investigations about RGB pretraining methods
applied to depth information, section 4.6 goes one step further and implements and
evaluates different fusion layers and their performance. Considering the data together
with the validation IoU as well as the number of parameters, C3BR efficient as well
as [C3BR]2 efficient turned out to be best suited for this application. This experiment
concludes the investigations on how to set up an RGBD generic tracking architecture
that utilizes transfer learning and achieve the best performance. Finally, section 4.7
exploits all previous findings to come up with one architecture that is evaluated on
the official VOT2019-RGBD benchmark. As the participation guidelines prohibit the
use of the VOT datasets for training, SceneNetRGBD serves as training and bridge
data, while validation data is the VOT. The evaluation is performed in terms of IoU
as well as tracking F1 score. Every architecture is benchmarked against the model
zoo tracker with the same training settings. While validation IoU and tracking score
are better without depth data, the opposite is true for training and bridge IoU for
all settings. This reveals that the RGBD tracker outperforms its RGB counterpart on
data that is from the same distribution as the training data. However, there is a data
mismatch problem between SceneNetRGBD and VOT2019-RGBD, resulting in worse
validation IoU and F1 score on VOT. Keeping the data mismatch problem in mind,
section 4.8 presents three self-supervised training methods to cope with the shortage
of large-scale RGBD tracking training data. The central idea is to train on unlabeled
RGBD data. All implemented approaches outperform their counterparts which have
been trained from scratch, with the best approach (reconstruction learning) leading to a
6.8% improvement. Domaintransfer learning with foreground background segmentation
pretext task achieved an improvement of 5.9% while training on significantly less data.
Another domaintransfer approach with depth prediction pretext leads to an improvement
of 3.9%

This work has taken AlexNet-like backbone architectures into account. In the future, to
go along with the general trend in deep learning, deeper architectures like ResNet [29],
Inception [81], etc could lead to even more meaningful features, resulting in better
tracking performance. However, this requires bigger RGBD datasets, as with the current
situation it is not feasible to train these architectures given the available datasets. The
supervised experiments in this thesis proved that an RGBD tracker will outperform its
RGB counterpart assuming that the data distribution of training and validation data
are similar. With more large-scale datasets becoming available, this requirement will be
more and more fulfilled. Once this is the case, the approaches and insights that have
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been found might be able to eventually improve any tracker over its RGB counterpart.
Therefore, despite having found many useful insights that might help the tracking
community to come up with suitable RGBD tracking algorithms, re-evalution of the
conducted experiments with bigger datasets might already lead to SOTA results. In
addition, the findings may enable other researchers to include depth information in their
trackers and push overall progress in RGBD tracking. Future RGBD datasets should
tackle data dissimilarity, ideally utilizing many different sensors to capture depth data,
as this will help the trackers to be invariant to the capturing hardware. So far, the
VOT2019-RGBD dataset has been captured using three different sensors, however, many
datasets just use one sensor or are rendered (SceneNetRGBD). This adds another degree
of dissimilarity, leading to situations like data mismatch problems, as encountered in
the experiments.
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6. Conclusion

The availability of the VOT2019-RGBD visual object tracking challenge motivated this
work. Following the trend in generic object tracking, it has been investigated how depth
information can be effectively utilized during training of a deep visual object tracker.
The findings in the supervised training setups demonstrated how trackers could profit
from the additional information. However, in the current situation, the sparsity of RGBD
datasets poses data distribution problems between training and validation data. As soon
as the focus of the tracking community goes more into RGBD tracking, big datasets
will become available and tackle these problems. Self-supervised pretraining has shown
remarkable results and might help to solve this problem in the near future by exploiting
unlabeled RGBD data. This is a big advantage, as unlabeled data is usually cheap to
acquire. As soon as large-scale datasets are available, the techniques derived in this thesis
might enable the adaption of SOTA RGB trackers to the RGBD domain by effectively
combining information that is obtained by both, RGB and depth.
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A. General Addenda

A.1. Training on SceneNet-RGBD for tracking

RGBD datasets are still rare. As mentioned in subsection 4.3.2, SceneNet-RGBD [66] is
a large rendered dataset of indoor scenes and therefore has pixel-perfect annotations.
Specifically, each video consists of 300 separately stored rgb and depth images. In
addition, an instance map is provided with every frame, which gives a segmentation
of the image. The dataset as is does not provide bounding boxes for objects, However,
given the instance map it is possible to compute the bounding boxes for every object
in the image. The instance mapping is consistent in each sequence such that e.g. ID 1
would correspond to the same object all the time. This allows an identification of the
same object in nearby images which can then be used to train a tracker. The dataset also
provides a protobuf file which specifies all objects in a sequence together with scales,
rotation matrices, camera capturing details as well as the instance type, which can be
random objects, background, layout objects, as well as light objects. Random objects are
sampled from ShapeNet [10], which is a large-scale dataset of 3D shapes. The dataset
also provides a mapping to NYU [69, 76] classes, which are the following: Unknown,
bed, books, ceiling, chair, floor, furniture, objects, picture, sofa, table, TV, wall, window.
Considering the instance maps and utilizing the NYU classes, "objects" falling into the
floor, ceiling, or wall category are removed. The processed dataset has bounding box
annotations for all objects in every frame. These can be used to train an RGBD tracking
architecture.

A.2. Processing Raw NYU Depth v2 for self-supervised
pretraining

The labeled NYU Depth v2 [69] is rather small (see Table 3.2). However, the authors
also provide a bigger raw unlabeled dataset with 407, 024 images from 582 videos. It
provides the color and depth images as well as accelerometer dumps from the kinect. The
timestamps of all files are included in their filenames. The files are not yet synchronized.
The authors of NYU provide a toolbox that provides some functions for processing
the data. Each RGB image is synchronized with the nearest depth frame in terms of
capturing time. The RGB image is cropped such that only the part of the image is used
where the depth signal is projected. The depth images often contain missing values,
which can be filled by postprocessing. Specifically, the toolkit provides a function which
uses a grayscale version of the RGB image as weighting factor for smoothing the depth
image. For more information, refer to the toolkit1. The postprocessed and synchronized

1https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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A. General Addenda

frames can then be saved and used for self-supervised pretraining, as in section 4.8. The
raw dataset has a size of 428GB. Processing has taken about 4 days on a machine with
an Intel i9 CPU.

A.3. Evaluating top performing architectures from
VOT2019-RGBD

After obtaining the results from sections section 4.2 to section 4.6, one approach was to
enhance the implementation of a top performing architecture on the VOT2019RGBD
challenge by adding depth information. The three architectures SiamDW_D, ATCAIS,
and LTDSEd achieved almost the same performance on the challenge. To recap, all
three implement deep backbones as feature extractors. Also, in addition to an offline
trained feature extractor, they implement a discriminative localization strategy with a
small network which is trained online. According to [48, 61], the depth information is
used for target loss detection. None of these seems to incorporate depth information
in the training phase. The plan has been to take either one of these architectures and
incorporate depth information in the training process. Specifically, two methods should
have been tried. First, depth information can be included in the backbone feature
extractor. This is promising, however, it might run into similar data similarity problems
as the final supervised experiment in section 4.7. Even more promising would be the
integration of the depth information into the online trained discriminative localization
strategy. This would not have the data shortage drawback as the task of this unit is to
do foreground / background differentiation. Also, as the online adapted network is
small, overfitting is not a concern. Assuming that data distribution is not a problem,
incorporating depth into both modules should fully leverage depth information and
lead to even better results. All of the mentioned strategies seem very appealing and
might be capable to improve the architectures to become even better.

Unfortunately, these experiments could not be performed due to driver and hardware
discompatibilities. The code of the top three trackers is published on GitHub. However,
all of them have used CUDA9.0, Cudnn7.0.x drivers and PyTorch0.3.x together with
older Nvidia GPUs (e.g. Nvidia GeForce GTX Titan). The setup of the available machines
in the scope of this thesis use CUDA10.2, Cudnn7.6.5 drivers and PyTorch1.3.1 with
Nvidia GeForce RTX2080 GPUs. As the RTX2080 is not compatible with older drivers it
is not trivial to downgrade the system in order to use the existing code for the published
trackers. Furthermore, many python modules are no longer compatible with newer
PyTorch libraries and also many PyTorch functionalities have changed from 0.3.x to
1.3.x, which does not allow an upgrade of the trackers’ code to newer GPU drivers and
PyTorch versions. Potentially, this strategy can be applied with the publication of the
VOTRGBD2020 trackers.
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2.1. Overview of the SINT architecture. The algorithm starts with a bounding
box centered at the target object. Then a pretrained matching function
predicts the new location of the object at the next image frame by evaluat-
ing the best match on different candidate boxes (dashed boxes in the left
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2.4. SiamRPN++ architecture which uses a modified ResNet as backbone
feature extractor. The network outputs a classification score as well as a
bounding box by combining outputs from multiple SiamRPN blocks. The
structure of each SiamRPN block is shown on the right. It is similar to the
RPN in Figure 2.3 but uses another type of correlation function [53]. . . . 8

2.5. Visualization of different cross-correlation layers. (a) predicts a single
similarity map between a template and a search patch, as in SiamFC. (b)
predicts one similarity map for each anchor, as in SiamRPN. (c) predicts
depth-wise similarity maps between a template and a search patch, as in
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2.6. Schematic visualization of the SiamMask architecture based on SiamRPN.
?d denotes depth-wise cross-correlation. After the features have been
correlated, the network splits into three branches. As in SiamRPN, one
branch performs foreground/background classification (score), while
another one performs bounding box regression (box). In SiamMask, a
third branch is introduced for segmentation mask generation (mask) [85]. 10

2.7. Representation of THOR architecture. A neural network extracts features
from the input image and the initial template image. Activation maps
are produced by a dot product, which is a convolution operation for
siamese networks. THOR accumulates templates in the STM and LTM
over time. The modulation module combines the activation maps of
both modules. The ST-LT Switch takes the two predictions based on
STM and LTM templates and selects which bounding box to use for
prediction. Depending on the final prediction, both modules decide
whether to capture the new template. γ is a measure of diversity and
controls the threshold of the LTM to capture new templates [75]. . . . . . 11
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2.8. The architecture of ATOM. The framework consists of a feature extrac-
tion network (orange), a target estimation module (blue), and a target
classification module (green). The feature extraction network is a ResNet
architecture pretrained on ImageNet. The target estimation network is
trained offline on large-scale datasets, while the target classification mod-
ule is completely trained online. The classifier outputs confidence scores
for the estimated target position. The target estimation network consists
of an IoU modulation component and an IoU predictor. The modula-
tor incorporates target-specific information in the offline trained model
by performing feature modulation, while the IoU predictor predicts the
overlap of estimated bounding boxes with the target [18]. . . . . . . . . . 12

2.9. Performance of all discussed trackers on the VOT2018-RT [45] challenge,
together with the publishing date of the corresponding paper. Only track-
ers where results have been published are visualized. The scores are taken
from the official challenge results and papers, respectively. Whenever
there have been different results for a particular tracker, the better score
was taken to consider bugfixes and code optimizations. Trackers that
belong to tracking-by-detection are displayed in gray, template-matching
architectures in color. Best viewed in color. . . . . . . . . . . . . . . . . . . 14

2.10. Visualization of the DiMP tracker. The feature extraction network pro-
cesses a training set and a test frame, respectively. The novel model
predictor module consists of an initialization module and the optimizer
itself. The model predictor outputs the weights of the convolutional layer,
which produces a score prediction map with the extracted features from
the test frame. The bounding box branch, which is taken from ATOM [18],
is not shown for clarity [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11. Workflow of correlation filter based tracking methods. For each frame after
initialization, the current output is cropped at the previously predicted
object position. Depending on the tracker, raw pixel values or more
advanced features to better represent the object function as image features.
Usually, a cosine window is applied to the features to smoothen the
discontinuities at the boundaries before being transformed to the Fourier
domain, where the filter is trained and updated. The symbol � denotes
element-wise multiplication, FFT means Fast Fourier Transform operation
while IFFT, namely Inverse Fast Fourier Transformation, is the inverse
operation. After updating the filter, the correlation between the current
image and the filter is calculated in the Fourier domain. Applying IFFT
outputs the response map, whose peak estimates the new position of the
target [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.12. Example of vertical cyclic shifting of an image. Effects from the wrapped-
around edges can be seen; however they are reduced by the multiplication
with a cosine window and padding [32]. . . . . . . . . . . . . . . . . . . . 19
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2.13. Illustration of training samples used to update DSST. The sample for the
translation filter (a) is extracted from a rectangular patch centered at the
object’s position. The sample for the scale filter (b) is an aggregation of
d-dimensional feature vectors of rectangular patches of different scales,
sampled at the estimated object’s position by applying the translation
filter [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14. Main steps of the algorithm proposed by Ma et al. A cropped search
window is extracted from an image frame centered at the last object’s
position. Conv3, Conv4, and Conv5 contain the target representations at
different hierarchical levels, obtained from the respective convolutional
layers in the feature extractor. Each representation is correlated with a
filter w to generate a response map whose location of the maximum value
corresponds to a location estimate. The exact position of the target object
is obtained by refining the estimates in a coarse-to-fine approach, starting
with the deepest layer [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.15. CSR-DCF tracking algorithm, consisting of a localization step (left) and
an update step (right). In the localization step, the new position of the
target object is estimated based on the weighted sum of the channel-wise
correlation filters. In the update step, the spatial reliability map estimate is
adjusted, followed by correlation filter and reliability weights updates [62]. 22

2.16. Architecture of Re3. Two image crops are fed into the feature extractor
CNN. Before every pooling operation, skip connections preserve high-
resolution spatial information. The output of the network leads into a
fully connected layer and an LSTM. The outputs of the network are the
new coordinates of the upper left and lower right corner of the bounding
box estimate [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.17. Performance of presented trackers on the OTB100 [88] dataset. Each
tracker is plotted with its specific precision and success AUC values. In ad-
dition to the architectures that belong to tracking-by-detection, template-
matching based trackers are also shown in gray wherever results have
been available. The figure shows that the best performances are obtained
by template-matching trackers. Best viewed in color. . . . . . . . . . . . . 24
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2.18. Overview of all discussed visual object trackers and their dependencies.
The approaches divide into template-matching methods and tracking-
by-detection. The colors represent the backbone network that is used for
feature extraction in each framework. Because modern long-term trackers
build on short-term trackers with global re-detection strategies, most of the
presented trackers are short-term trackers. However, the top three long-
term trackers of the VOT2019-LT [48] are also portrayed with dashed lines.
For long-term trackers, the color represents the feature extractor backbone
of the underlying short-term tracker. Although this illustration only
includes a selection of approaches, it coarsely represents the evolution
of state-of-the-art trackers. The best-performing architectures rely on
CNNs, with a clear trend towards deeper backbones like ResNet [29] or
MobileNet [34]. On the other hand, tracking-by-detection approaches
mostly rely on handcrafted features and often have inferior performance
compared to architectures that profit from deep features.The top three
performers on the VOT2019-LT as well as the VOT2019-RT challenge are
annotated. Best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.19. Two-stream CNN architecture that Gupta et al. use for RGBD object
detection. The two inputs are the RGB color image for the first and
a depth encoded color image for the second stream. The first stream
resembles an RGB approach, while the second stream solely relies on the
depth information. Combining the outputs with a late fusion network
allows weighting the importance of the two modalities [20]. . . . . . . . . 26

2.20. Generation of 3D representations from depth and RGB information that
are used as inputs in VGG3D and 3DCNN, exemplary for a 3× 3 input
image. Accordingly, a 3× 3× 6 voxel is produced as the depth values are
quantized into 6 intervals [98]. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.21. Illustration of the depth-aware convolution layer and the depth-aware
average pooling layer that have been introduced by Wang et al. The con-
cept is demonstrated with a 3× 3 convolutional filter for a single channel.
For the depth similarity maps, darker colors represent higher similarity
with the pixel in the center of the filter’s receptive field. (a) performs
convolution between the input feature map and the convolutional kernel,
element-wise multiplying the result with the depth similarity map. Like-
wise, (b) performs average pooling on the input feature map, weighted
with the depth similarity [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.22. Block diagram of DS-KCF tracker. It expands the baseline KCF tracker by
depth features. Furthermore, a clustering-based segmentation method is
applied. It is used for scale analysis and occlusion handling of the tracked
object [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.23. RGBD tracker by Gu et al. RGB and depth information are two separate
input channels with different feature representations. The RGB features
are CN, HOG and deep features, while the depth channel uses HOG and
deep features. These features are combined and a Kernelized Correlation
Filter produces a response map with the maximum value corresponding
to the new bounding box position. The depth input is compared to the
previous frame to estimate the scale of the predicted bounding box [23]. . 32

2.24. Winners of the VOT2019-RGBD [48] challenge. Only rank one to four
have been published in the scope of the challenge. OTR and CSR-DCF
have been added as baseline architectures for comparison. The top three
performers are very close to each other. All presented trackers (rank one
to four) outperform the two baselines. . . . . . . . . . . . . . . . . . . . . . 33

2.25. The framework of Kart et al. convert short-term RGB trackers to be RGBD
compliant. In the case of no occlusion, the RGB tracker estimates the
target position. Whenever the target object is occluded, a special occlusion
recovery mode activates until the target object is re-detected. The RGB
tracker is not modified, thus not taking depth information into account [42]. 35

3.1. Visualization of anchor boxes. The red circle in each grid cell denotes the
center position of anchors located in that cell. Each grid cell contains k
anchors of different shapes. The image shows the anchors of two grid
cells for k = 3 with different aspect ratios. For visibility reasons, only the
anchor positions are displayed for the remaining grid cells. . . . . . . . . 42

3.2. System overview. The approach can be divided into two parts: Supervised
training and self-supervised pretraining. The former is essential, while the
latter is optional. Supervised training takes an RGBD search and template
image as input. RGB and depth information are passed through separate
encoder networks. For this work, the encoder network is a siamese
network, transforming from pixel to feature space. The fusion component
learns a cross-domain feature representation. It leads into the tracking
head network which finally outputs a prediction of the object location.
Given the ground truth position, this allows the learning algorithm to
perform end-to-end optimization by minimizing the loss function. The
self-supervised pretraining part takes unlabeled RGBD images as input.
An encoder network transforms to feature space followed by a decoder
network which is dependant on the pretext task. The label generator
component is calculating labels, such that the encoder-decoder architecture
can be trained end-to-end by minimizing a loss function. When utilizing
self-supervised pretraining in the first step, the pretrained weights of the
encoder network are used as initialization for the encoder network in the
supervised training in the second step. . . . . . . . . . . . . . . . . . . . . 47
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4.1. Setup for RGB training of the DaSiamRPN architecture. The AlexNet
backbone extracts features from template image and search image, re-
spectively. Based on these, the RPN predicts foreground-background
classification and bounding box regression outputs on anchor level. k
reflects the number of anchors. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2. Setup for RGBD training. Depth information is preprocessed and stacked
on top of the color information. Input vectors therefore consist of 4
channels. ∗ denotes the modifications to the first layer filters of the
backbone architecture to accept the additional channel channel. . . . . . . 57

4.3. Histogram and distribution of the maximum depth value in all sequences
of the VOT2019-RGBD dataset in the first frame. The dataset utilizes
three different sensors for depth recording. One sensor can potentially be
identified, as some sequences have a maximum value of 65535. The first
two sensors have similar sensor value ranges, which makes separation
based on the maximum depth value in the first frame inappropriate. The
depth values are encoded as 16 bit integers, therefore values range from 0
to 65535. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4. Best IoU on the validation (Val) set and corresponding score on the
training set obtained for different runs. RGB stands for the original
DaSiamRPN architecture which takes color images as input. The RGBD
architecture preprocesses the depth information and then stacks it to the
color information as a 4-channel input. The graphic only shows the best
model during a training run for each setup. . . . . . . . . . . . . . . . . . 59

4.5. Data distribution of a random split of the VOT2019-RGBD dataset into
training and validation set. (a) shows the split of the 80 videos. (b)
analyzes the validation set in terms of target object categories in the
videos. The dataset is biased towards categories like box or human, as
they are represented in multiple videos, compared to e.g. cart, teapot or jug. 60

4.6. Data distribution of a custom split of the VOT2019-RGBD dataset into
training, bridge, and validation set. (a) shows the split of the 80 videos.
The training set obtained by the custom split divides further into the final
training and bridge sets. (b) analyzes the validation and bridge set from
(a) in terms of target object categories in the videos. The custom validation
set has a small overlap with objects in the training set. This is not true
for the bridge set, which again contains objects in the training set due to
random sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7. Best IoU on the validation (Val) set and corresponding score on the
training and bridge set obtained for different runs given a custom split of
the VOT2019-RGBD dataset into training, bridge, and validation set. RGB
stands for the original DaSiamRPN architecture which takes color images
as input. The RGBD architecture preprocesses the depth information and
then stacks it to the color information as a 4-channel input. The graphic
only shows the best model for each setup. . . . . . . . . . . . . . . . . . . 63
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4.8. Effect of pretraining the DaSiamRPN architecture with RGB-only inputs
on training and validation performance, obtained with a simple valida-
tion tracker. The network neglects the depth information and thus only
operates on RGB input. "Scratch" indicates no pretraining, "fixed" that
no finetuning is applied and thus the pretrained weights are kept, and
"L[12345]+" denotes which layers are finetuned, while the remaining ones
are the fixed pretrained weights. (a) and (b) have used ImageNet pretrain-
ing, while (c) and (d) have used a pretrained network from the PySOT
model zoo, which has been finetuned on tracking with large-scale datasets. 68

4.9. First layer filter visualization of the RGB ImageNet pretrained AlexNet and
the configuration L12345 from the RGB ImageNet pretraining experiment.
No significant changes can be seen in the first layer filters of architecture
L12345. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10. Setup for RGBD training of the DaSiamRPN architecture utilizing Ima-
geNet pretrained weights for AlexNet backbones. One AlexNet is im-
plemented for RGB and depth data, respectively. Both use pretrained
weights as initialization. The depth data is encoded to 3 dimensions. The
extracted features from both domains are combined with a fusion layer to
form an RGBD feature embedding. "D" denotes the depth information.
The RPN performs object presence classification as well as bounding box
regression based on the RGBD features. . . . . . . . . . . . . . . . . . . . . 70

4.11. Results of ImageNet-pretraining when considering RGBD inputs. "rgbd_repl"
represents the encoding of the depth information to 3D by replicating
the depth, "rgbd_jet" uses a Jet colormap as 3D encoding, "rgbd_avg"
averages the first layer weights and treats the depth information as 1D.
Therefore it modifies the first layer of the backbone. "rgbd_stack" only
uses one backbone architecture that processes the stacked RGBD data as a
4D input, while "rgb" reflects the architecture without depth. The latter
serves as a reference. "rgbd_stack" does not use pretraining, as no pre-
trained networks are available for RGBD inputs. Furthermore, "scratch"
indicates no pretraining, "fixed" that no finetuning is applied and thus the
pretrained weights are kept, and "L[12345]+" denotes which layers of the
backbone are finetuned, while the remaining ones are fixed. . . . . . . . . 72

4.12. Setup for searching suitable backbone architectures for feature extraction
from depth input. The backbone extracts features from template and
search image, respectively. Based on these, the RPN predicts foreground-
background classification and bounding box regression outputs on anchor
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as backbone, indicated by "Backbone" as a placeholder . . . . . . . . . . . 72
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4.13. Maximum training IoU for different backbone architectures for feature
extraction from depth. (a) uses AlexNet as baseline architecture, (b) a
modified version of AlexNet with every layer containing half the amount
of filters, and (c) doubles the number of filters in each layer. For each
subplot, L[12345]+ denotes how many layers of the baseline architecture
are implemented. (d) does not utilize a deep backbone, but rather uses a
handcrafted HOG feature extractor for comparison with the convolutional
network approaches, as e.g. often used in earlier DCF approaches (see
chapter 2). The dotted line shows the maximum achieved training IoU of
"AlexNet double: L12345". . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14. Setup for investigating pretraining methods for depth with the DaSi-
amRPN architecture. The backbone extracts features from template and
search image, respectively. Based on these, the RPN predicts foreground-
background classification and bounding box regression outputs on anchor
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along the channel dimension to be 3-dimensional. Therefore no adaption
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4.15. Effect of pretraining the DaSiamRPN architecture with depth-only inputs
on training and validation performance, obtained with a simple validation
tracker. The network neglects the color information and thus only operates
on depth input. "Scratch" indicates no pretraining and 1D input data,
"fixed" that no finetuning is applied and thus the pretrained weights
are kept, and "L[12345]+" denotes which layers are finetuned, while the
remaining ones are the fixed pretrained weights. (a) and (b) have used
ImageNet pretraining, while (c) and (d) have used a pretrained network
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large-scale datasets. All networks except for "scratch" copy the depth data
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4.16. Setup for finding good fusion architectures using the DaSiamRPN archi-
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with weights from the PySOT model zoo. "Depthonly" as well as "rgbonly"
are added as baselines. They only consist of the depth/rgb network for
feature extraction and therefore do not need a fusion network. . . . . . . 81

4.19. Training DaSiamRPN_D for 500 epochs on SceneNetRGBD. Train and
bridge set are taken from the SceneNetRGBD dataset, while VOT2019-
RGBD is the validation set. The circles mark the epoch with the highest
validation IoU as well as lowest validation loss, which are evaluated for
F1 tracking score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.20. Self-supervised reconstruction learning. . . . . . . . . . . . . . . . . . . . . 88
4.21. Results for reconstruction learning. (a) and (b) show pretext learning,

while (c), (d), and (e) display finetuning the pretrained architecture for
tracking vs training from scratch. The validation IoUs are smoothed with
a 1D gaussian filter with σ = 3. The circle marks the epoch that is taken
for finetuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.22. Self-supervised domain transfer learning with foreground background
segmentation as pretext subtask. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.23. Visualization of foreground background segmentation through back-
ground subtraction on STC and PTB. (a) and (b) are images provided by
the datasets. (c) is the processed output of the background subtractor. . . 92

4.24. Results for domaintransfer pretext training with foreground background
segmentation pretext task. (a), (b) show RGB to depth training, (c), (d)
depth to foreground background segmentation. The solid circle marks the
snapshots with the lowest validation loss, while the dotted circle marks
the validation losses at the end of training (epoch 300). Both candidates
are evaluated for finetuning for tracking. . . . . . . . . . . . . . . . . . . . 94

4.25. Results for domaintransfer finetuning with foreground background seg-
mentation pretext with the respective model snapshots from Figure 4.24.
The validation IoUs are smoothed with a 1D gaussian filter with σ = 3. . 95

4.26. Self-supervised domain transfer learning with grayscale prediction as
pretext subtask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.27. Visualization of grayscale prediction images on the NYU Depth v2 dataset.
(a) and (b) are images provided by the dataset. (c) is the grayscale version
of the RGB image that the network shall learn to predict given the depth
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.28. Results for domaintransfer pretext training with grayscale prediction
pretext task. (a), (b) show RGB to depth training, (c), (d) depth to grayscale
prediction. The solid circle marks the snapshots with the lowest validation
loss, while the dotted circle marks the validation losses at the end of
training (epoch 300). Both candidates are evaluated for finetuning for
tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.29. Results for domaintransfer finetuning with grayscale prediction pretext
task with the respective model snapshots from Figure 4.28. The validation
IoUs are smoothed with a 1D gaussian filter with σ = 3. . . . . . . . . . . 99

117





List of Tables

2.1. Winners of the VOT2019-RT challenge [48]. . . . . . . . . . . . . . . . . . . 13

2.2. Winners of the VOT2019-LT challenge [48]. . . . . . . . . . . . . . . . . . . 13

2.3. Participating trackers in the VOT2019-RGBD challenge, split up into their
components. The frameworks are divided into short-term tracker and
global re-detection module. Furthermore, the use of the depth information
is annotated. The trackers are sorted according to their rank in the
challenge, starting with the best entry. [48, 61]. . . . . . . . . . . . . . . . . 36

3.1. Training settings for DaSiamRPN. . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. List of labeled RGBD datasets. For each datasets, the table shows whether
it contains videos and bounding box annotations. "#Vids" denotes the
number of videos, domain the computer vision task that the dataset
addresses, "#Images" the number of RGBD images. ImageNet is not
an RGBD dataset and serves as a reference. It does not contain depth
information, thus "#Images" refers to the number of RGB images in this
case. All datasets except SceneNetRGBD have been captured with cameras
and been labeled afterwards. In contrast, SceneNetRGBD has completely
been rendered on computers with the goal of producing realistic-looking
images, thus the labels go along "for free". . . . . . . . . . . . . . . . . . . 49

4.1. Training settings for proof of concept. . . . . . . . . . . . . . . . . . . . . . 56

4.2. Training settings for pretraining experiments. . . . . . . . . . . . . . . . . 66

4.3. C1BR fusion layer. The channel map property describes the number of
output and input channels of the convolutional layer. ReLU nonlinearities
follow the convolutional layer. Batch normalization is used after every
linear layer. The extracted features (255 channels) of both backbones are
stacked along the channel dimension to form the 512-channel input. . . . 70

4.4. Number of trainable parameters for different fusion networks. . . . . . . 80

4.5. Performance measures and validation loss of the DaSiamRPN model zoo
tracker on VOT2019-RGBD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6. Training settings for DaSiamRPN vs. DaSiamRPN_D experiments. . . . . 83

119



List of Tables

4.7. Results for DaSiamRPN vs. DaSiamRPN_D experiments. The baseline
configuration has not been trained and shows the performance of the
model zoo network. Experiments are separated by horizontal lines. For
each experiment, bold numbers indicate the best score on each measure
for a specific experiment. C3BR eff stands for the model with depth
information, while PySOT Zoo means finetuning the RPN of the RGB-
only architecture. Performances are measured on training set (Train IoU),
bridge set (Bridge IoU), and validation set (Val IoU, F1). The table shows
the lowest F1 score obtained by the three model snapshots that lead to the
lowest validation losses during training. . . . . . . . . . . . . . . . . . . . . 84

4.8. Long training results of DaSiamRPN_D on VOT2019-RGBD data in a
supervised learning setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

120



Acronyms

3D-T 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration.
30, 37

ATCAIS Accurate Tracking by Category-Agnostic Instance Segmentation for RGBD
Images. 33, 34, 36, 38

ATOM Accurate Tracking by Overlap Maximization. 10, 12, 14–16, 33, 34, 36, 110

AUC area under curve. 23, 24, 111

CDTB Color and Depth Visual Object Tracking Dataset and Benchmark. 32–34, 36

CLGS Complementary Local-Global Search for Robust Long-term Tracking. 13–16, 37

CN Color Name. 19, 21, 30–32, 37, 113

CNN Convolutional Neural Network. 1, 3–5, 10, 16, 20, 21, 23–29, 32, 33, 37, 41, 42, 111,
112

CSR-DCF Discriminative Correlation Filter with Channel and Spatial Reliability. 21, 22,
33–35, 37, 111, 113

CSTEM Channels weighted and spatial-related Tracker with Effective response-map
Measurement. 22, 37

DaSiamRPN Distractor-aware Siamese Region Proposal Network. 6, 7, 36, 41, 43–46,
53–56, 58, 61, 65, 68–70, 75, 77, 78, 80, 82, 114–116, 119

DCF Discriminative Correlation Filter. 4, 17, 19–23, 32, 34, 36–38, 73, 74, 116

DFT Discrete Fourier Transform. 19

DiMP Discriminative Model Prediction for Tracking. 13, 15, 37, 110

DS-KCF Depth Scaling Kernelized Correlation Filter. 31, 38, 112

DSST Discriminative Scale Space Tracker. 19, 20, 111

DualCF Dual Correlation Filter. 17, 19, 20

EAO Expected Average Overlap. 13

FCOS Fully Convolutional One-Stage Object Detector. 15

121



Acronyms

fDSST fast Discriminative Scale Space Tracker. 19, 20

GPU Graphics Processing Unit. 55, 56, 64–66, 83, 85, 88, 91, 93, 108

HOG Histogram of Oriented Gradients. 19, 21, 30–32, 37, 73, 74, 101, 113, 116

HTC Hybrid Task Cascade. 34, 36

IoU intersection-over-union. 12, 13, 23, 44, 45, 55, 57–59, 61, 63–67, 69, 71, 73–75, 78, 80,
82–86, 88–90, 92, 93, 95, 97, 99, 102, 110, 114, 116, 117, 120

KCF Kernelized Correlation Filter. 17, 19, 31, 32, 37, 112, 113

LR Learning Rate. 55, 56, 58, 61, 65, 66, 78, 83, 88, 91–93

LSTM Long Short-Term Memory. 23, 24, 111

LT-DSE long-term tracking by diving videos into successive short episodes. 13–16, 37

LTDSEd long-term tracking using depth information by diving videos into successive
short episodes. 34, 36, 38

LTM Long-term module. 10, 11, 109

MBMD MobileNet based tracking by detection algorithm. 16

MF Multiple Features Tracker. 19

MOSSE Minimum Output Sum of Squared Error. 16, 17, 37

MSE Mean Squared Error. 88, 90, 93

OAPF Occlusion-Aware Particle Filter. 29, 30, 34, 37

OTR Object Tracking by Reconstruction with View-Specific Discriminative Correlation
Filters. 32–34, 36, 38, 113

PCA Principal Component Analysis. 20

Re3 Real-time Recurrent Regression-based tracker. 23, 24, 37, 111

ReLU rectified linear unit. 69, 70, 119

RNN Recurrent Neural Network. 23, 37

ROI Region of Interest. 31

RPN Region Proposal Network. 6–8, 15, 16, 36, 41–43, 56, 65, 67, 69–72, 75, 76, 78, 79,
82–85, 88, 109, 114–116, 120

RPT Reliable Patch Trackers. 22, 37
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Acronyms

RT-MDNet Real-time MDNet. 15, 16, 36

SA Scale Adaptive Tracker. 19

SAMF Scale Adaptive with Multiple Features Tracker. 19

SGD Stochastic Gradient Descent. 44, 55, 56, 65, 66, 83, 88

SiamFC Siamese Fully-Convolutional. 5, 6, 9, 36, 41, 109

SiamFCOT Siamese Fully Convolutional Object Tracking. 13–15

SiamRPN Siamese Region Proposal Network. 6–10, 36, 41, 109

SINT Siamese Instance Search Tracker. 4, 5, 36, 37, 109

SOTA state of the art. 35, 103, 105

STC Spatio-Temporal Consistency. 39, 49

STM Short-term module. 10, 11, 109

Struck Structured Output Tracking with Kernels. 23, 37

SVM support vector machine. 4, 15, 23, 37

THOR Tracking Holistic Object Representations. 9–11, 36, 109

VOT Visual Object Tracking Challenge. 3, 32, 59

WD Weight Decay. 55, 56, 66, 76, 83, 88

YouTube-VOS Video Object Segmentation dataset. 8
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L. Č. Zajc, O. Drbohlav, A. Lukezic, A. Berg, A. Eldesokey, J. Kapyla, and G.
Fernandez. The Seventh Visual Object Tracking VOT2019 Challenge Results. 2019.

[49] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebe-
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