
Chair of Electronic Design Automation

Design and Optimization of Emerging Systems

for Biochemical Experiments and Neuromorphic Computing

Ying Zhu

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades

eines Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr. Bernhard Wolfrum

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing Ulf Schlichtmann

2. Prof. Dr. Tsung-Yi Ho

Die Dissertation wurde am 02.12.2020 bei der Technischen Universität München

eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am

19.04.2021 angenommen.

Acknowledgments

Firstly, I would like to thank the International Graduate School of Science and

Engineer (IGSSE), Technical University of Munich (TUM), which offered me the

funding to proceed my research and multiple opportunities to join in the science

and technology community.

Secondly but most importantly, I would like to express my sincere gratitude to my

supervisor Prof. Ulf Schlichtmann. Thanks for the opportunity he offered to me so

that I could research at the Chair of Electronic Design Automation (EDA) at TUM.

In the past three years, he gave me precious instructions to improve my working

skills and the ability for critical thinking. His serious attitude as a scientist also

showed me a role model. Without his supports, I couldn’t have the opportunities

to learn from and work with many international outstanding researchers.

I would like to appreciate the effort and time from Prof. Bernhard Wolfrum and

Prof. Tsung-Yi Ho who serve as the committee members.

I would like to express my sincere gratitude to Dr. Bing Li whom I closely cooperate

with on the research topics - biochips and neuromorphic computing. As a senior

researcher, he gave me a lot of invaluable advice on my research and career. The

advice not only focused on the research topics we worked on but helped me learn

how to discover cutting-edge research topics, develop novel ideas, design experi-

ments, as well as present the research work, which inspired me to grow up as an

independent researcher step by step. He also motivated me when I got depressed.

I appreciate the uncountable helps and supports in both research and life from

Dr. Grace Li Zhang. Her devotion to research impressed me very much and her

professionalism is my role model.

Simultaneously, due to the international cooperation, I truly appreciated the in-

valuable suggestions from Prof. Cheng Zhuo, Prof. Xunzhao Yin, Prof. Huaxi Gu,

Prof. Yiyu Shi, Prof. Hailong Yao, Prof. Tsung-Yi Ho, and Prof. Robert Wille about

our collaboration projects.

Furthermore, I would like to thank Dr. Helmut Graeb, Dr. Daniel Mueller-Gritschneder,

Susanne Werner, Hans Ranke, Tobias Baur and other colleagues at the Chair of

EDA, as well as Dr. Katrin Offe, Dr. Arne Schieder, Dr. Marco Barden, Jo-Anna

Kuester and Sandra Schoengen with IGSSE for their kindly and patient support.

Last but not least, I give my deepest gratitude to my parents for their endless love.

Munich, May 2020

Ying Zhu

Contents

1 Introduction 1

1.1 Contributions of This Work . 3

1.2 Structure of This Dissertation . 4

1.3 Summary . 5

2 Background and Shortcomings of Emerging Systems 7

2.1 Biochips for Automatic Biochemical Experiments 7

2.1.1 Introduction of Continuous Flow Biochips 7

2.1.2 Traditional Control Logic for Continuous Flow Biochips . . . 10

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing 14

2.2.1 Neural Network and Hardware Realization 14

2.2.2 Emerging System with Memristor-based Crossbar 27

2.2.3 Emerging System with Optical Mach-Zehnder Interferometer

Array . 33

2.3 Summary . 41

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based

Microfluidic Biochips 43

3.1 Proposed Multiplexing Mechanisms for Control Logic Design and

Problem Formulation . 44

3.1.1 Multi-Channel Switching . 44

I

3.1.2 Logic Reduction by Alternate Multi-Channel Switching for

Given Applications . 47

3.1.3 Fault Tolerance in Control Layer 49

3.1.4 Problem Formulation . 50

3.2 A General Framework for Control Multiplexing and Fault Tolerance 51

3.2.1 Switching States Compression by Mixing Multiplexing 51

3.2.2 Computation of Multi-Channel Switching Scheme 54

3.2.3 Control Logic Construction on a General Routing Grid 59

3.3 Simulation Results . 64

3.4 Summary . 71

4 Statistical Training for Memristor-based Crossbars Considering Pro-

cess Variations and Noise 73

4.1 Principal Component Analysis (PCA) of Process Variations and Canon-

ical Form of Weights . 74

4.2 Statistical Forward Propagation . 76

4.2.1 Statistical Multiplication . 76

4.2.2 Statistical Addition . 77

4.2.3 Statistical Activation Function Transformation 78

4.3 Statistical Probability Included Cost Function 79

4.4 Compensation for Global Variation . 81

4.5 Simulation Results . 82

4.6 Summary . 85

5 Countering Variations and Thermal Effects for Accurate Optical Neu-

ral Networks 87

5.1 Software Training for ONNs . 89

5.2 Hardware Implementation for ONNs 91

5.2.1 Extraction of Process Variations with Calibration 91

5.2.2 Power Adjustment to Counter Thermal-effected Inaccuracy . 95

5.2.3 Characterized Tuning of ONNs 96

5.3 Experimental Results . 97

5.4 Conclusions . 101

6 Conclusion 103

A Complex Expressions for Optical Wave 105

Bibliography 109

Chapter 1

Introduction

Interest has grown in recent years in using engineering to answer questions such

as how humankind originated and evolved, why and how humankind acquired

consciousness, and whether consciousness can be mimicked or even created. To

answer these questions, researchers have long explored in fields ranging from tra-

ditional biological and chemical engineering to mathematics and computer science.

In several decades there has been much progress in biological sciences, rang-

ing from genetic testing and pharmacogenomics to analysis and exploration of

metabolism, enzyme and tissues, in which a large number of biochemical experi-

ments are necessary. These experiments have been conducted using cumbersome

devices such as tubes and droppers in traditional biochemical laboratories. This

approach is complex and error-prone due to the need for human intervention. To

improve the execution efficiency of experiments, the community of researchers and

practitioners working in and around biochemistry has achieved a remarkable ad-

vancement by providing system-in-a-package solutions, where experiments can be

completely performed within a compact system. Although this system integra-

tion has significantly improved experimental efficiency compared with traditional

biochemical laboratories, only relatively simple experimental protocols can be pro-

cessed automatically, and complex biochemical experiments, such as exhaustive

diagnosis of diseases, still require human intervention [HCH17].

Humans are also using engineering to explore how the brain works. Early in

1

1 Introduction

1960s, to mimic the nervous systems, scientists proposed artificial neural networks

(ANNs) with the introduction of computers [Sch15,IL73]. However, due to the lim-

ited computing performance, ANNs were not commonly researched until the 21st

Century when the integrated circuits were able to provide sufficient computing

capacity. To further improve computing efficiency, engineers are developing cen-

tral processing units (CPUs), graphic processing units (GPUs), field-programmable

gate arrays (FPGAs) and application-specific integrated circuits (ASICs) which can

be enhanced by multicore computing, memory distribution optimization, and more.

Even so, ANNs are still outperformed by human brains which consume less energy

per operation and lower area costs [CMP13], because these computing systems still

use the von Neumann architecture which separates the computing units and mem-

ory [Har14]. Therefore, automatic biochemical platforms and novel neuromorphic

computing systems are necessary to make further progress in biochemical experi-

ments and ANNs, respectively.

Flow-based microfluidic biochips are one of the most promising platforms used

in biochemical and pharmaceutical laboratories due to their high efficiency and

low costs. They have been applied to biochemical assays, such as DNA/RNA

sequencing [Fai07, WHD+13, LCH13], destruction and crystallization of protein

molecules [XCP10], immunohybridization reactions [TMQ02], cell culture and anal-

ysis [YWR+15]. Inside such biochips, fluids of nanoliter volumes are transported

between devices for various operations, such as mixing and detection. The trans-

portation channels and corresponding operation devices are controlled by microvalves

driven by external pressure sources. Since assigning an independent pressure

source to every microvalve would be impractical due to high costs and limited

system dimensions, microvalves are switched on/off by by a control logic using

time multiplexing. Existing control logic designs, however, still switch only a sin-

gle control channel per operation, leading to low efficiency. Besides, due to the

nano-scale size of control logic, manufacturing faults occur frequently.

2

1.1 Contributions of This Work

For neuromorphic computing, the structure Computing in Memory (CIM) is intro-

duced, using Memristors and Mach-Zehnder Interferometers (MZIs). A memristor

is a kind of electric device whose conductance value can be changed by applying

voltages. The memristor-based crossbar can realize rapid matrix-vector multipli-

cation operations, which are one of the most time-consuming operations in neural

networks (see Chapter 2). However, the memristor device is unstable and due to the

nano-scale size process variations seriously affect the practical conductance values

and further reduce the computing accuracy of memristor-based crossbars.

Simultaneously, in the optical domain, MZI-based Optical Neural Networks (ONNs)

have emerged as a promising computing platform. In such ONNs, phases of light

are modulated through MZIs to carry computation information, and MZIs are con-

nected in a grid-like layout to implement multiplications and additions. These

computations can be conducted at the speed of light and the results can be de-

tected at a rate over 100 GHz [LV+12], while the energy efficiency of such a chip

can reach 105 times that of GPUs [YS+17]. To use MZI-based ONNs in reality,

though, there exist several technical challenges, including high power consump-

tion, process variations, and thermal crosstalk.

1.1 Contributions of This Work

To improve the working efficiency of biochips, a novel control logic structure is pre-

sented, which is able to simultaneously switch multiple control channels. More-

over, the first fault-aware design in control logic by introducing backup control

paths is proposed to maintain the correct functioning even when manufacturing

defects occur. The automatic construction of the control logic is achieved using an

integer linear programming (ILP) model with mixing multiplexing. Simulation re-

sults demonstrate that the proposed multi-channel switching mechanism reduces

valve-switching times and lowers total logic cost, while improving fault tolerance

3

1 Introduction

for all control channels.

To solve the process variation impacts in memristors and maintain the inference

accuracy of ANNs processed by memristor-based crossbars, a statistical training

method is introduced to model process variations and noise as random variables

and incorporate them into weights of neural networks during training. The cost

function during training is modified to represent the probability of the correct out-

put values, so that the resulting weights can maintain a good inference accuracy

after being mapped onto memristors with process variations and noise. Global

variation is compensated by scaling the target programming values according to

the average of variations of memristors in a column.

In the MZI-based computing systems, we first demonstrate the problem that even

with small variations in the phases of MZIs, the inference accuracy degrades sig-

nificantly, thus requiring a systematic solution to enable ONNs in practical appli-

cations. The cost function during training is modified to reduce variations and

thermal imbalance in MZIs. To map the phase values of MZIs obtained from train-

ing, we first calibrate process variations of MZIs and the phases of MZIs are then

determined according to the individual characteristic curves. Thermal effects are

modeled and compensated in advance when determining the exact power values

applied onto MZIs to avoid undesirable phase drifts. Finally, online tuning is used

to counter residual statistical variations and noise to improve inference accuracy

further. Experimental results confirm that the proposed framework can effectively

recover the inference accuracy of ONNs under process variations and thermal ef-

fects, thus enabling their adoption in accelerating neuromorphic applications.

1.2 Structure of This Dissertation

The structure of this dissertation is as follows. The background on biochips, neural

networks, neuromorphic computing, and their state of the art and shortcomings are

4

1.3 Summary

introduced in Chapter 2. A framework for biochip control logic is presented to im-

prove the working efficiency and fault tolerance in Chapter 3. Chapter 4 describes

the statistical training, testing and compensating framework to counter process

variations and noise. In Chapter 5, a framework for ONNs considering process

variations and thermal effects is described. The concluding Chapter 6 summarizes

the results and points out directions for future work.

1.3 Summary

Biochemical experiments and existing chips with the von Neumann architecture are

no longer a satisfying solution to conduct biochemical researches and neuromor-

phic computing, respectively, due to their low working efficiency and high energy

consumption. Therefore, biochips and the novel CIM architectures are becom-

ing increasingly interesting for researchers. However, to use these emerging sys-

tems is challenging due to immature design frameworks, manufacturing faults and

variations, high power consumption, and thermal crosstalk. Therefore, a frame-

work is proposed to automatically design a novel control logic which should im-

prove the working efficiency and fault tolerance for biochips. A statistical training

and compensation method incorporating process variation impacts on memristor-

based crossbars is proposed to maintain the inference accuracy of ANNs processed

through memristor-based crossbars. A modified training method is also designed

for MZI-based ONNs to reduce power consumption and thermal hotspots, a spe-

cial algorithm is introduced to test and reduce process variations, and a method is

presented to eliminate thermal crosstalk. Finally, a tuning algorithm is proposed

to reduce residual noise.

5

1 Introduction

6

Chapter 2

Background and Shortcomings of

Emerging Systems

Emerging systems are needed to improve their working efficiency for researchers

working on biochemical experiments and neuromorphic computing. In this chap-

ter, biochips, memristor-based neuromorphic systems and MZI-based neuromor-

phic systems are introduced. Their current research is reviewed and the technical

shortcomings are presented.

2.1 Biochips for Automatic Biochemical Experiments

Biochips are an automatic and highly efficient platform for biochemical experi-

ments. In this section, the basic structure and working principle of biochips are

introduced, and the existing designs of the control logic, which is one of the core

structures determining the working efficiency of biochips, are reviewed.

2.1.1 Introduction of Continuous Flow Biochips

A schematic of a biochip consists of a control layer and a flow layer which form the

control channel and the flow channel, respectively (see Fig. 2.1). The control chan-

nel is located on top of the flow channel, and at the intersections the channels are a

7

2 Background and Shortcomings of Emerging Systems

Substrate
flow layer

control layer

control channel

flow channel

Figure 2.1: Schematic of flow-based microfluidic biochips [ZLH+18] c©2018 IEEE.

Figure 2.2: A microfluidic biochip with flow channels (green) and control channels

(yellow and red) [LSE+05] c©AAAS 2005.

membrane fabricated with polydimethylsiloxane (PDMS), a kind of elastomer ma-

terial [Fai07,HBM+12]. An air/fluid pressure through the control channel squeezes

the flow channel to block the movement of flow samples. When the pressure in the

control channel is released, the flow channel opens again for fluid transportation.

In other words, the membrane is a valve, whose state is controlled by the pres-

sure in the control channel. In the following, the valves in the flow core are called

flow valves, which share the same indices as the control channels. With the flow

valves as the controlling units, complex biochips can be constructed, as shown in

Fig. 2.2 [EiSWd13].

In such a chip, a large number of devices, e.g., mixers and detectors, are con-

8

2.1 Biochips for Automatic Biochemical Experiments

co
n
tr

o
l

ch
an

n
el

s
co

n
tro

l p
o
rts

Figure 2.3: Structure of a complete biochip [FM11] c©The Royal Society of Chem-

istry 2011.

structed. These devices are connected by flow channels to transport intermedi-

ate experiment results. The transportation of these results is controlled by flow

valves [HHG+19].

A major advantage of biochips is their large integration. Accordingly, the man-

ufacturing process of biochips has taken a road similar to integrated circuits by

etching microchannels on a substrate [AQ12]. Observing this similarity, the de-

sign automation community has started to propose methods and work flows to

improve the design quality and efficiency. For example, the synthesis of biochip ar-

chitectures has been addressed in [TLSH15a, TLHS15, TLL+16a, LTL+16, TLL+16b,

LLY+17a,TLF+18a,TLF+18b,WZY+18,CHG+19,TLZ+19], the routing of flow chan-

nels in [LLC+14, HHCG19, GWY+17] and the storage, caching and transportation

of fluid samples in [TLSH15b, LLY+17b]. Furthermore, test methods for defect

detection after manufacturing have also been proposed in [HYHC14, LLB+17].

Compared with integrated circuits, biochips, however, exhibit some specific fea-

tures. Besides flow channels that are used to transport fluid samples, flow valves

need to be driven by external air/fluid-pressure patterns to change their states.

9

2 Background and Shortcomings of Emerging Systems

When executing an application, the patterns of air/fluid pressure in the control

channels should be generated by a control logic, which plays a critical role in a

biochip, since it manages the overall execution of applications.

2.1.2 Traditional Control Logic for Continuous Flow Biochips

In Fig. 2.3 an example of a complete biochip from [FM11] is shown. The flow

core of the biochip is located at the center for executing biochemical operations.

The control channels surrounding the flow core, the multiplexer, the core input, as

well as the pressure sources on the right-hand side together form a control logic to

generate pressure patterns to switch flow valves in the flow core.

Due to the cost and the size of the mechanical components, it is not practical to

assign each flow valve an independent pressure source. For example, in the design

in Fig. 2.3, 114 flow valves in the flow core have been implemented. For executing

applications, instead of using 114 pressure sources directly, which would be very

cumbersome and expensive, only 15 pressure sources are used to generate pressure

patterns, consisting of 14 control ports and one core input. The core input at the

bottom provides one external pressure source that can be switched on or off. On

the right, the control ports are connected to external pressure sources to create

control patterns that specify which control channel can be connected to the core

input. The multiplexer in the middle forms a multiplexing function to connect

the channels to the core input according to these control patterns. Once a control

channel is connected to the core input, its pressure value is updated to the same as

that of the core input. Correspondingly, the open/closed state of the flow valve in

the flow core driven by this control channel is also updated.

Fig. 2.4 explains the multiplexing function of the control logic to reduce the number

of pressure sources. In this example, four complementary control ports x1, x1, x2, x2

are connected to pressure sources to control the connection of the control channels

10

2.1 Biochips for Automatic Biochemical Experiments

core input

x1
x1
x2
x2

controlports

x1x2 x1x2

control channels

control valves
flow valves

2
31 x1x2

control
output

2 31
logic

control

connection channels

flow channels

Figure 2.4: Control logic for multiplexing three control channels. Control ports

x1, x1, x2, and x2 are connected to external pressure sources [ZLH+18]

c©2018 IEEE.

that drive the three flow valves. In control logic design, the pressure values of the

control ports are often complementary [FM11, MQ07]. At any time, only one of a

pair of complementary ports can have a high pressure, so that the complementary

control variables xi and xi can be implemented. Through the connection channels,

these variables are used to control the valves built on top of the channels in the

control logic, called control valves as shown in Fig. 2.4. The outputs of the control

logic represent the states of the control channels, and are called control outputs.

The states of control ports and the control valves determine which control channel

is to be connected to the core input to change the valves of the control outputs. For

example, control channel 1 driving flow valve 1 is connected to control output 1,

whose value is updated to the value of the core input when both x1 and x2 are set

to logic ‘1’. In the following, the terms “control channel” and “control path” will

be used interchangeably.

The combinations of control valves on the control paths form control patterns for

channel multiplexing. For example, three control patterns x1x2, x1x2, and x1x2 are

used in Fig. 2.4 to control the three channels. At any moment, only one of them

can be true, so that only one control output can be connected to the core input for

updating its pressure value. If the target pressure should be high, the pressure of

11

2 Background and Shortcomings of Emerging Systems

Table 2.1: Logic relationship corresponding to Fig. 2.4 [ZHL+19] c©2019 IEEE.

Control ports Channel connected

to core input

State of the

connected channelx1 x2

‘1’ ‘1’ channel 1 =core input

‘0’ ‘1’ channel 2 =core input

‘1’ ‘0’ channel 3 =core input

‘0’ ‘0’ – –

the core input is activated; otherwise, the core input releases the pressure in the

control channel.

With this mechanism, n complementary control ports can be used to multiplex

2n/2 control channels. That is to say, if the number of control channels is N, the

required number of control ports is 2 ∗ dlog2 Ne + 1, where dxe is the smallest

number greater than or equal to x, and “+1” is the control port to core input. Note

that in Fig. 2.4 three control channels exist, the required number of control ports is

five, which is larger than the number of control channels. But with N increasing,

the number of control channels N will also increase, the required number of control

ports will increase slower than N. This reduction, however, is at the price of time

consumption to switch the pressure states of control channels.

The function of the control logic is to change the pressure values, defined as chan-

nel states, in the control channels so that flow valves can be switched to execute

applications. As shown in Fig. 2.4, assume that at time t the channel states are

“011”, where ‘1’ represents that the pressure in the corresponding control channel

is high and ‘0’ represents the pressure is low. At time t+ 1, assume that the states of

the control channels need to be updated to “100”. Since the control logic in Fig. 2.4

only allows one control channel to be connected to the core input at a moment,

the state transitions need to be implemented using three switching operations, in

12

2.1 Biochips for Automatic Biochemical Experiments

which the control variables x1 and x2 are set to “11”, “01” and “10”, respectively. In

this process, the three control channels are connected to the core input one after the

other, activated by the control patterns x1x2, x1x2, and x1x2, respectively. Accord-

ingly, the pressure of the core input should sequentially be set to ‘1’, ‘0’ and ‘0’ to

update the pressures in the control channels. For convenience, the time to update

all control channels from their states at time t to their states at time t+1 is called

a time slot. Within a time slot, the states of several control channels may need to

be changed by the control logic. Therefore, the state transition from time slot t to

time slot t + 1 may be divided into several time slices, each of which represents an

actuation of the control logic, costing one real time unit.

In the scenario where each flow valve is controlled by an independent pressure

source, only one time slice is required to switch the pressure values for all control

channels simultaneously. However, the control logic with the multiplexing struc-

ture usually costs more than one, e.g. three time slices in Fig. 2.4 from “011” to

“100”, leading to a tradeoff between design complexity and efficiency.

Recently, related research considering control channel optimization has started to

appear. For example, the method in [HDHC17] minimizes pressure-propagation

delay in control channels to reduce the response time of valves. The lengths of

control channels are matched in [YHC15] to synchronize switching times of valves.

These methods, however, mainly focus on the control channels that deliver air pres-

sure to valves. The control logic to generate the required pressure patterns has not

sufficiently been investigated yet. Up to now, only one method has been proposed

to consider the reliability of control logic [WZY+17], where the order of patterns

that are required to control valves is adjusted to reduce the maximum number of

switching times (or time slice) in the control logic. This method, unfortunately, still

does not address the efficiency of generating the required pressure patterns.

13

2 Background and Shortcomings of Emerging Systems

2.2 Neuromorphic Hardware to Accelerate Neural

Network Computing

Neuromorphic hardware is designed to accelerate neural networks. In this section,

the background of neural networks and existing hardware with von Neumann ar-

chitecture for neural network computing are presented. Due to the limit of memory

bandwidth in the von Neumann architecture, to further accelerate neural network

computing, CIM systems and novel memory units are introduced, where data is

stored and processed simultaneously. In this dissertation, two CIM architectures,

memristor-based crossbars in the electronic domain and MZI-based array in the

optical domain, are optimized. The working principles of these architectures and

technical challenges are described in this section.

2.2.1 Neural Network and Hardware Realization

The human nervous system is formed of neurons connected by myelin sheath

through which electronic signals carrying information are transported and pro-

cessed [KSJ+00]. Inspired by this, the basic structure of neural networks is de-

signed as shown in Fig. 2.5, consisting of an input layer, a hidden layer and an

output layer. The hidden layer can be extended into multiple layers in large neural

networks.

The nodes in a neural network represent neurons labeled by x[k]i or a[k]i , where k

and i are the indices for the layer and the neuron in a layer or sublayer, respectively.

In this dissertation, numbering of k and i starts from 0 to be consistent with the

numbering in most programming languages. Generally, except for the input layer

where the data are directly fetched into input neurons, each hidden layer and the

output layer consist of two sublayers. The sublayer consisting of neurons labeled x

14

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

a[0]0

a[0]1

a[0]i

a[0]783

...
...

x[1]0

x[1]1

x[1]j

x[1]255

...
...

a[1]0

a[1]j

a[1]255

...
...

a[1]1

x[2]0

x[2]1

x[2]10

...
a[2]0

a[2]10

...

a[2]1

Input Layer Hidden Layer Output Layer

...
...

...
...

...
...

...
...

w[1]
j,0

w[1]
j,1

w[1]
j,i

w[1]
j,783

A(·)
x[2]m a[2]m

... ...

...
......

...
...

...
...

...

Figure 2.5: Basic structure of neural networks.

receives data from the previous layer after linear operations using

x[k]j =
Nk−1−1

∑
i=0

w[k]
j,i a[k−1]

i , (2.1)

where w[k]
j,i is the weight, representing the importance of the neuron i in layer (k−1)

to the neuron j in the layer k, see in Fig. 2.5 x[1]j = ∑783
i=0 w[1]

j,i a[0]i ; then the data is

propagated through activation functions A(·) to their target neurons a which make

up the other sublayer by

a[k]j = A(x[k]j). (2.2)

Activation functions can include ReLU

a[k]j = max(x[k]j , 0), (2.3)

15

2 Background and Shortcomings of Emerging Systems

and sigmoid function

a[k]j =
1

1 + e−x[k]j

. (2.4)

Instead of the functions of a single fold xk
j , they can also be the max pooling func-

tion

a[k]j = max
i∈I

x[k]i , (2.5)

where I is the range of neurons for comparisons, or the Softmax function

a[k]j =
ex[k]j

∑I
i=1 ex[k]i

, (2.6)

where I is the total number of neurons in the corresponding layer. A neural net-

work is constructed by employing these linear and nonlinear operations.

Before putting them into applications, the weights in a neural network need to

be determined by training. In the training process, training data are fetched to

the input neurons, propagated through the network with multiplication, addition

and activation functions and finally reach the outputs. This progress is defined

as forward propagation. The data at the outputs are compared with the expected

values which are either 0 or 1 for classification. The difference is used to construct a

cost function, which should be minimized to obtain weights that enable the neural

network to achieve a satisfactory inference accuracy. A common cost function is

Mean Square Error (MSE) as

C = 1
M

M−1

∑
i=0

(âi − a[L−1]
i)2 (2.7)

where M is the number of neurons in the output layer, L − 1 is the index of the

output layer, a[L−1]
i is the ith output of the neural network, and âi is the expected

value of the corresponding output.

Another common used cost functions is Cross Entropy expressed as

C = − 1
M

M−1

∑
i=0

(âi log(a[L−1]
i) + (1− âi) log(1− a[L−1]

i)) (2.8)

16

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

with sigmoid as the activation function which results in values between 0 and 1 for

a[L−1]
i . In deep learning, the most frequently used activation function is Softmax,

which can interpret outputs as a probability distribution, because it results in val-

ues in the interval [0, 1) for them and the sum of them equals 1. Accordingly, the

cost function is Log-Likelihood Cost written as

C = − 1
M

M

∑
i=1

(âi log(a[L−1]
i)). (2.9)

To minimize the cost function C, the weights in the neural network, denoted as wi,

are adjusted according to the gradient of C with respect to the weights ∂C
∂wi

, namely,

the gradient descent method [BV04], as

wi ← wi − γ · ∂C
∂wi

(2.10)

where γ is the learning rate and ∂C
∂wi

can be calculated by the back-propagation

algorithm [LBH15].

The back-propagation method calculates the gradients of C with respect to the

parameters from the latest outputs layer, hidden layers to the input layers according

to the chain rule, i.e., ∂y
∂x = ∂y

∂u ·
∂u
∂x , if y = f (u) and u = g(x) are differentiable

functions [Ste99]. The gradient of C with respect to a[k]m , ∂C
∂a[k]m

, where k = L−1, is

calculated firstly with the present value of a[k]m according to (2.7-2.9). Then, ∂C
∂x[k]j

, the

gradients of C with respect to x[k]j can be calculated with the present value of ∂C
∂a[k]j

and x[k]j by

∂C
∂x[k]j

=
∂C

∂a[k]j

·
∂a[k]j

∂x[k]j

=
∂C

∂a[k]j

·
∂A(x[k]j)

∂x[k]j

.

(2.11)

After that, with the present values of ∂C
∂x[k]j

, a[k−1]
i and x[k]j , we can obtain ∂C

∂w[k]
j,i

and

17

2 Background and Shortcomings of Emerging Systems

∂C
∂a[k−1]

i

using

∂C
∂w[k]

j,i

=
∂C

∂x[k]j

·
∂x[k]j

∂w[k]
j,i

=
∂C

∂x[k]j

· a[k−1]
i

(2.12)

and

∂C
∂a[k−1]

i

=
∂C

∂x[k]j

·
∂x[k]j

∂a[k−1]
i

=
∂C

∂x[k]j

· w[k]
j,i .

(2.13)

By scanning k from L−1, L−2 to 1, we can obtain all weight gradients. With (2.10), af-

ter a sufficient number of iterations, the weights can be determined as C converges.

The neural network shown in Fig. 2.5 is a simple fully-connected neural network

which can only realize very simple application. For example, it can infer MNIST

[LCB10] with a 96% accuracy. However, to realize more complicated applications

such as face identification, data mining, machine translation, neural networks are

designed with tens or hundreds of hidden layers, over millions of weights and

complex connections, such as convolutional neural networks (CNNs) [KSH12],

residual neural networks (ResNets) [HZRS16], recurrent neural networks (RNNs)

[MKB+10]. Training these neural networks with the back-propagation method em-

ploying differential equations derived manually is complicated and error-prone.

Therefore, to address the concerns, the community of neural networks develops

several libraries, e.g., CNTK [Eta19], Caffe [JSD+14], Keras [GP17], PyTorch [PGM+19],

TensorFlow [AAB+15]. They can provide gradient calculations in back-propagation

and neural network training automatically. TensorFlow is the library used in this

dissertation because it can easily build data flow models, work on servers, edge de-

vices, and the web, and support parallelization over multiple processors [AAB+15].

18

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

Central Processing Unit

Registers

M
em

or
y

bus

Control
Unit

Arithmetic
Logic
Unit

Figure 2.6: CPU Structure.

M
em

or
y

Graphic Processing Unit

Control Unit Register Alrithmetic Logic Unit

bu
s

Figure 2.7: GPU Structure.

It has one of the largest open source communities as well as comprehensive docu-

ments, and is supported by the Google Brain Team [Dub17].

Although libraries can improve the working efficiency of researchers who work in

high level design, computing efficiency and power consumption of training and

inference for complicated neural networks are eventually decided by hardware, ex-

actly where large amounts of data are stored and processed. As mentioned earlier,

19

2 Background and Shortcomings of Emerging Systems

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB DSP

DSP

DSP

DSP

Memory

Memory

Memory

Memory

I/O I/O I/OI/O

I/O I/O I/O I/O

I/O
I/O

I/O
I/

O
I/

O
I/

O
I/

O
I/O

Figure 2.8: FPGA Structure.

H
BM

H
BM

Core

MXU128×128 MXU128×128

Core

MXU128×128 MXU128×128

scalar/
vector units

scalar/
vector units

Figure 2.9: Schematic of TPU v3 - 4 chips, 2 cores per chip.

20

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

the concept of neural networks was proposed in the 1960s, but after that its devel-

opment was blocked because the hardware capacity was low then until the increas-

ing maturity of integrated circuit technologies enabled computers to operate with

large amounts of computing at an acceptable cost. However, the "acceptable" cost

does not mean high speed and low cost. Actually, to compute complicated neural

networks in traditional computers requires too much time and power. Therefore,

researchers have been devoting much time and effort to designing and optimizing

hardware for AI.

Since the early days of computing, people have used CPUs (see Fig. 2.6 [Bro08]),

which can realize complex operations and whose performance has been improved

by technologies like multi-core processors and pipelines [BDRDR03]. However,

the performance is eventually limited by memory bandwidth caused by the von

Neumann architecture where data computing and storage are separated and too

much data must be transported between arithmetic logic units (ALUs) and mem-

ory [McK04, XY19]. Because the main operations of neural networks are multipli-

cation and addition [GZY+19], GPUs are adept at them with high throughputs and

large quantity of ALUs working in parallel as shown in Fig. 2.7 [Bro08]. GPUs

have become the most widely used hardware in both training and inference for

neural networks. However, GPUs consume too much power, which is a challenge

for widely using both large cloud servers and customer devices. Besides, GPUs are

also overqualified for applications that do not require high data throughputs, like

video stream and image classification in edge computing [SSEM18]. FPGAs, see

Fig. 2.8 [KTR+08], have been proposed as a supplement for CPUs and GPUs in neu-

ral network computing. With hundreds to thousands of digital signal processing

(DSP) units, configurable logic blocks (CLBs), many programmable input/output

(I/O) buses and large internal memory, FPGAs with hardware-oriented neural net-

work structure compression and hardware architecture design based on neural net-

work structure can achieve over 10× greater speed and energy efficiency than the

21

2 Background and Shortcomings of Emerging Systems

latest GPUs [LTA16, GZY+19]. To implement deep learning networks on FPGAs,

challenges still exist with regard to data storage, memory bandwidth, and compu-

tational resources. Application-specific integrated circuit (ASIC) accelerators have

also been utilized for neural network computing, e.g. custom-designed tensor pro-

cessing units (TPUs) (see Fig. 2.9) by Google [Jou16]. But they have disadvantages

with their development cycle, costs and flexibility.

Therefore, to reduce the access off-line memory and improve the integration den-

sity, engineers propose the CIM, a.k.a. computing in memory. These memory

systems include but not limited in the following items:

Static Random Access Memory (SRAM)

SRAM is a memory system based on a 6-transistor (6-T) cell (see Fig. 2.10 (a)). By

applying high voltage to WL, 1-bit data can be quickly written into or read from

the SRAM cell through BL or BLB whose value is always opposite [ZWV17]. The

SRAM cells are connected as an array (see Fig. 2.10 (b)) to realize multiplications for

neural networks. In the array, data in the neural networks can be continuous values

and applied as the voltage value output from digital-to-analog converters (DACs)

into the wordlines; the weights are binary values and represented by the SRAM cell;

the output currents in BL or BLB are the products of data and weights [ZWV17].

This array requires the neural network weights to be specially trained due to the

binary limits and the structure to be custom designed or enlarged to maintain

inference accuracy. To realize multiplication between arbitrary data and weights,

[KGPS18] presented a method using multi SRAM cells to store weights and data

and sequentially share charges after several time slots to obtain a multiplication

result, both of which, however, are time-inefficient. In addition, SRAM cells are

volatile, requiring power to maintain their values.

Flash Memory [MBGK+17]

Flash memory is based on the metal-oxide-semiconductor field-effect transistor

(MOSFET). Its stored memory value is presented by the floating-gate charge, which

22

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

FV
Buffer

WLDAC

WLDAC

Class En

Class En

6T SRAM
Array

128× 128

VDD

PRE PRE

W
L

0
W

L
127

6T

BL0 BLB0BL127 BLB127

6T 6T

Read Buffer

Write Buffer
WD0 WD WD127WD127

6T
WLDriver0

WLDriver127

SRAM En

SRAM En

ADDR
Decoder··

·

··
·

· · ·

· · ·

··
·

Rail-to-Rail
Comparator

VDD

WL

BL BLB
(a)

(b)

Figure 2.10: Schematic of SRAM-based CIM architecture. (a) 6-T SRAM. (b) Archi-

tecture of 6-T SRAM array [ZWV17] c©2017 IEEE.

23

2 Background and Shortcomings of Emerging Systems

can be reduced by adding electrons to the floating gate, i.e., channel hot-electron

injection (CHEI), or increased by removing electrons using Fowler-Nordheim (FN)

tunneling. By reducing or increasing the floating-gate charge, MOSFET threshold

voltages are increased or decreased, accordingly [DHMM96]. [MBGK+17] presents

an architecture to realize three-layer neural networks for MNIST, in which the mul-

tiplication is realized using the relation between MOSFET source-to-drain currents

as the output and MOSFET gate voltages and threshold voltages as the input when

MOSFETs are working in the linear region and subthreshold mode. However, this

architecture is complicated requiring peripheral floating transistors and subtraction

amplifiers for robustness and reliability.

Magnetic Random Access Memory (MRAM)

An MRAM bit-cell consists of an access transistor and a magnetic tunnel junction

(MTJ), see Fig. 2.11 (a). By applying voltages with different directions to MTJ, its

states can be switched to a low resistance RP representing logic ‘1’ or a high resis-

tance RAP representing logic ‘0’. MRAM can be rapidly read from or written into

and is non-volatile, i.e., no power is needed to maintain data. With the structure

in Fig. 2.11 (b) and introducing different reference currents, logic operations AND,

OR, NAND, NOR and XOR can be realized [JRRR17]. Based on these operations,

single-bit in-memory addition and multiplication can be achieved. However, multi-

bit addition and multiplication are still time-inefficient.

Electronic Phase Change Memory (EPCM)

The core element of PCM is the phase change material, which can be continuously

changed between the amorphous phase and the crystalline phase using Joule heat-

ing. Different phases result in different conductance or resistance values of the

EPCM [SLGB+18]. When the materials are sandwiched between two electrodes

and a crossbar is constructed (see Fig. 2.12), the output current from each column

is the summation of the products between the input voltages and the conductances

of the EPCM in the corresponding column, which can quickly realize matrix-vector

24

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

WLi = VDD

Ii
Ri

WLj = VDD

Ij
Rj

...
SL BL

I S
L
=

I i
+

I j

free

pinned w
ri

te
0

w
ri

te
1

MTJ

BL

WL

SL

(Ri, Rj)

(Rp, Rp)

(Rp, RAP)

(RAP, Rp)

(RAP, RAP)

ISL

IP−P

IP−AP

IAP−P

IAP−AP

(a) (b) (c)

Ire f

Comparator+−
+−

Figure 2.11: Basics for MRAM-based Computing Unit [JRRR17]. (a) Applying volt-

ages to MRAM in different directions can write ’0’ or ’1’ in MRAM.

(b) CIM in MRAM can be realized by comparing the total output cur-

rent of corresponding MRAMs and a reference current. (c) Output

currents of two MRAMs in different states c©2017 IEEE.

25

2 Background and Shortcomings of Emerging Systems

G00 G01 G02

G12G11G10

v0

v1

i0 i1 i2

i0

i1

i2

 =

G00 G01

G10 G11

G20 G21

v0

v1

Figure 2.12: Computing structure based on EPCM in the electrical domain. Repro-

duced from [SLGB+18] with the permission of AIP Publishing.

multiplications. However, this material is easily impacted by 1/ f noise, aging, as

well as nonlinearity and randomness in crystallization, which further reduce the

computing accuracy of EPCM-based crossbars [SLGB+18].

Optical Phase Change Memory (OPCM)

The optical domain contains OPCM. Through heating, the material can switch be-

tween the crystalline and amorphous phase continuously too, which leads to dif-

ferent optical transmittances. The material is magnetron sputtered on the optical

waveguide to construct a computing structure as in Fig. 2.13 [FYW+19]. The input

data are carried by different wavelength lights. The data values are represented by

the values of optical power. These optical signals are collected firstly by the col-

lector in Fig. 2.13, and then the power of every optical signal is equally distributed

to the corresponding optical rings. This process is controlled by the coupling ef-

ficiency and ring radii. After that, the optical signals are transported through the

phase change material, and the output optical signal power is the product of the

corresponding input signal and the transmittance of OPCM. Finally, the optical

signal power is collected again to sum the products. Therefore, the matrix-vector

multiplication is realized.

Because optical signals with the same wavelength interfere with each other re-

26

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

sulting in amplitude superimposition, the optical ring cannot distinguish between

signals on the same wavelength or on two wavelengths whose distance is the free

spectral range (FSR) [BDHVV+12], which makes the collection and distribution

unavailable. Accordingly, every input data requires an independent wavelength

optical signal in a limited range. Note the available wavelength range is deter-

mined by both the FSR and the optical waveguide functional range. Furthermore,

the wavelength of the optical source carrying input data is not an ideal value but

around which the optical power exists on the wavelengths. Therefore, signal infor-

mation is distributed on carrying lights with wavelengths around the ideal value

and crosstalks exist between two optical signals and increase as the wavelengths of

the optical signals become closer to each other. Therefore, the number of available

wavelengths is limited, and the structure cannot serve large neural networks.

Due to the structure size, power consumption, computing speed as well as scal-

ability, memristor-based crossbars (see Section 2.2.2) and optical MZI arrays (see

Section 2.2.3) to realize CIM for neural networks are focused in this dissertation.

2.2.2 Emerging System with Memristor-based Crossbar

In this subsection, the memristor is introduced, how the memristor-based crossbar

executes the matrix-vector multiplication is described, what degrades the comput-

ing accuracy of the crossbar is explained, and current research that reduces the

degradation is presented.

In 1971, Leon Chua noted that there are three basic two-terminal circuit elements

resistor R, capacitor C and inductor L, which are defined in terms of the relation-

ships between two of the four fundamental circuit variables, namely, the current

i, the voltage v, the charge q and the flux ϕ. For these four variables, the number

of relationships between two of them is six. Five of them are known with three

definition relations R = du/di, C = dq/dv and L = dϕ/di and two time-related

27

2 Background and Shortcomings of Emerging Systems

λ1 ... λN−1

λ0 − λN−1

λ0
Adjusted coupling efficiency

Coupling = 1/(M-i)

λ0 λn−1 λ0 λN−1

To neuron 0 To neuron M− 1

...
......

...

...
...

Phase Change Material
λ0 λ1 λN−1

λ0 λN−1 λ0 λN−1 λ0 λN−1

Collector

Distributor

Distributor

Collector

Figure 2.13: Computing structure based on OPCM in the optical domain

[FYW+19] c©2019, Springer Nature.

28

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

Charge q Voltage v Current i Flux ϕ

C = dq/dv R = dv/di L = dϕ/di

q(t) =
∫ t
−∞ i(τ)dτ ϕ(t) =

∫ t
−∞ v(τ)dτ

M = dϕ/dq

Figure 2.14: Relationships in the four fundamental two-terminal circuit elements,

i.e., resistor, capacitor, inductor and memristor.

relations q(t) =
∫ t
−∞ i(τ)dτ and ϕ(t) =

∫ t
−∞ v(τ)dτ (see Fig. 2.14). One is unde-

fined, which is the relationship between ϕ and q. In [Chu71], Chua inferred it as

M = dϕ/dq = v/i, (2.14)

where M is the fourth basic element memristor. The memristor resistance can be

interpreted by the slope of ϕ− q curve. If the ϕ− q curve is nonlinear, memristor

resistance can vary along the ϕ− q curve (see an example in Fig. 2.15 [KSYC10]).

Therefore, memristor resistance can be programmed or tuned to a specific value

by changing the flux ϕ or the charge q, namely, applying voltage v or current i to

memristor terminals for a period of time. This process is defined as programming

[SKK10, KSYC10, HSL+16].

The real memristor devices are fabricated with a thin film of titanium dioxide in

2008 by HP Labs [SSSW08] (see Fig. 2.16). In the memristor, part of the titanium

dioxide is doped so that its resistance is low and the undoped part is insulated with

high resistance. When a bias V is applied, the oxygen vacancies in the doped part

will be driven into the undoped part, lowering the memristor resistance. In con-

29

2 Background and Shortcomings of Emerging Systems

φs

q

φq

qQ

Q

φ = φ(q)
or

q = q(φ)

φ(v) Weber

dφ
dq Ω

RQ Q

φQ

(b)(a)

Figure 2.15: An example of φ − q curve for memristors. (a) The nonlinear curve

between the flux φ and the charge q. (b) The slop of the curve in

(a) [KSYC10] c©2010 IEEE.

TiO2−x TiO2

V

Doped Undoped

Figure 2.16: Diagram for memristor [SSSW08] c©2008, Springer Nature.

trast, a reversed bias V will drive the oxygen vacancies from the undoped part to

the doped part, increasing the memristor resistance [NCXX10, Chu11, SW13]. This

feature enables memristors to function as nanoelectronic memories and computer

logic and further realize neuromorphic computing [ZSL18, Mit19].

The memristor-based crossbar is a crossbar where memristors sit between the hor-

izontal wordlines and the vertical bitlines at the crossing points (see Fig. 2.17

[LYY+15]). Assuming a voltage vector, U = (U1, U2, ..., Ui, ..., UM) is applied to

the memristors on the jth column through the horizontal wordlines in the crossbar

in Fig. 2.17. A current Ij = ∑M
i=1 Uigij can then be detected at the bottom of column

i, where gij is the conductance of the memristor in the ith row and the jth column.

Accordingly, the outputs of all columns produce the results of a matrix-vector mul-

30

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

U1

U2

Ui

UM

I1 I2 Ij IN

Ij = ∑M
k=1 gj,kUk

gj,1

gj,2

gj,i

gj,M

Figure 2.17: Memristor crossbar architecture [ZZW+20] c©2020 IEEE.

tiplication,

I1

I2
...

Ij
...

IN

=

g1,1 g1,2 · · · g1,i · · · g1,M

g2,1 g2,2 · · · g2,i · · · g2,M
...

...

gj,1 g1j2 · · · gj,i · · · gj,M
...

...

gN,1 gN,2 · · · gN,i · · · gN,M

U1

U2
...

Ui
...

UM

. (2.15)

In the matrix-vector multiplication executed by a crossbar, the matrix is represented

by the conductance values of memristors. In neuromorphic computing, these con-

ductance values correspond to the weights of a neural network after training, and

should be programmed into the memristors before the crossbar is used to acceler-

ate computing. Assuming that the ith weight wi in the neural network is mapped

31

2 Background and Shortcomings of Emerging Systems

to the conductance gi of the ith memristor, this mapping can be described as

gi =
gmax − gmin

wmax − wmin
(wi − wmin) + gmin = αwi + β, (2.16)

α =
gmax − gmin

wmax − wmin
, (2.17)

β = gmin −
gmax − gmin

wmax − wmin
wmin (2.18)

where gmax and gmin are the maximum and minimum conductance values in the

crossbars, respectively; wmax and wmin are the maximum and minimum weights,

respectively [ZZL+19].

Since matrix-vector operations are realized by the electrical nature of the devices

in a crossbar, the computation efficiency of such a platform can potentially sig-

nificantly outperform the conventional von Neumann architectures. Accordingly,

memristor-based crossbars have been implemented in hardware to accelerate neu-

ral networks [HGL+18], and methods to integrate them into existing computing

systems have been explored [LWW+14, SDCG+15].

However, in reality, programming memristors is challenging, because process vari-

ations make memristors differ from each other and noise affects the programming

accuracy as well [CYL14]. After manufacturing, the variations cause the physical

and electrical properties of memristors to differ from each other [NCXX10]. There-

fore, the same programming voltage applied to different memristors changes their

conductance values differently. Consequently, the conductance values of memris-

tors deviate from their nominal values after training. Since process variations are

statistical, these conductance deviations are also statistical.

A straightforward way to overcome the impacts from process variations is to pro-

gram memristors individually with many reading-programming cycles. But this

method is too time-consuming for crossbars in large-volume industrial produc-

tion. To counter process variations and noise, [COT00] trains the weights us-

ing the Monte Carlo simulation to minimize the expected value of the cost func-

tion. [LLC+15] minimizes the corner cases of the statistical cost function and adjusts

32

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

the mapping between the weights and conductance values of the memristors. In

addition, [CLC+17] applies iterative training and remapping to reduce the weight

variance for a given crossbar. These methods, however, are either time-consuming

or require heavy on-chip tests and redundant memristors to counter large varia-

tions. More recently, the concept of statistical neural networks has been proposed

in [WXXS19, WXX+19]: while the canonical forms there are used to model the

correlation in the inputs, the weights remain constant.

2.2.3 Emerging System with Optical Mach-Zehnder

Interferometer Array

In this subsection, basics of optical signal transformation and the working mech-

anism of MZIs to perform multiply-accumulate operations are introduced first.

Afterwards, the grid-like ONN architecture for implementing neural networks is

described and design challenges of such ONNs are explained. The existing litera-

ture on ONNs is also reviewed in the end.

In ONNs, data is carried by the optical signal which is expressed by the trigono-

metric function

L = A cos(ωt + kz + θ), (2.19)

where A is the amplitude of the optical signal, ω is the frequency, t is the time, k is

the wavenumber which is equal to 2π/λ, z is the distance between the observation

point and the initial point, and θ is the initial phase. P = ωt+kz+θ is the total

phase of the optical signal. When the amplitude A and phase P are known, the

optical signal state can be obtained. Different data can be represented with different

As and then propagated through the optical components which are fabricated in

waveguides [YS+17].

MZIs are the fundamental optical components for computation. The structure of

MZI is illustrated in Fig. 2.18(a). An MZI consists of two direction couplers, also

33

2 Background and Shortcomings of Emerging Systems

φ

Direction coupler

Thermal-optic phase shifter

φL1

L2

s1

s2

s3

s4

L′1

L′2

Z1

Z2

Z3

Z4

Z5

Z6

L1

L2

L3

L4

L′1

L′2

L′3

L′4

C1 C2 C3 C4

(a) (b)

Figure 2.18: MZI and the architecture of ONN [ZZL+20] c©2020 IEEE. (a) The

structure of MZI. (b) The grid-like architecture of MZI array to per-

form 4×4 multiplication. This architecture is composed of four

columns of MZIs (C1–C4). Each component Zi, i = 1, ..., 6, in this

array represent an entire MZI shown in (a).

called beam splitters, and one thermal-optical phase shifter, whose phase can be

configured by tuning its temperature with an applied power. One MZI can im-

plement the multiplication of a 2×2 matrix and a vector of two elements using

a mechanism based on interference of light, requiring light signals of the same

wavelength.

Assume two input light signals L1 and L2 with the same frequency, namely, the

same ω and k, are connected to the inputs of the MZI in Fig. 2.18(a). Their trigono-

metric expressions are

L1 = A1 cos(ωt + kz + θ1), (2.20)

L2 = A2 cos(ωt + kz + θ2), (2.21)

where A1 and A2 are their amplitudes, θ1 and θ2 are their initial phases, respec-

tively. To simplify the following expressions, the part ωt is omitted since the fre-

quencies of light signals are the same, and the part kz is omitted under the as-

sumption that the observation points of light signals are at the same distance from

their beginning points. For mathematical operation simplification, in the optical

34

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

domain, the complex expression is more commonly used than the trigonometric

expression (see Appendix A).

The light signals at the direction coupler inputs can be revised as

Lc
1 = A1ejθ1 , (2.22)

Lc
2 = A2ejθ2 , (2.23)

where j is the fundamental imaginary number, i.e., j =
√
−1. In the direction cou-

pler, the light signals Lc
1 and Lc

2 are propagated through their waveguide branches.

When the waveguides branches are closing, part of the light will be coupled to

the other’s branches and phase shifts will be introduced in the light signals. The

coupler ratio and phase shifts are decided by the physical parameters of the two

branches, e.g., the length and the distance of the parallel branches [SL12]. Gen-

erally, a symmetric 50:50 direction coupler is used here, which means half of the

energy from one light signal at the input is transmitted to the other’s branch after

the coupler, i.e. the amplitudes of the signals become 1√
2

of their original ampli-

tudes. In addition, the diagonal transmission of the light signals is appended with

a phase shift π
2 [YS+17]. Therefore, after passing through the first direction coupler

in Fig. 2.18(a), the two complex signals s1 and s2 can be expressed as

s1 =
A1√

2
ejθ1 +

A2√
2

ej(θ2+
π
2) =

A1√
2

ejθ1 +
jA2√

2
ejθ2 , (2.24)

s2 =
A1√

2
ej(θ1+

π
2) +

A2√
2

ejθ2 =
jA1√

2
ejθ1 +

A2√
2

ejθ2 , (2.25)

where ej π
2 = j according to Euler’s formula. Therefore, the relation between

[Lc
1, Lc

2]
T and [s1, s2]

T can be written as s1

s2

 =
1√
2

1 j

j 1

 Lc
1

Lc
2

 . (2.26)

The thermal-optical phase shifter in Fig. 2.18(a) adds a phase shift φ to s1. There-

35

2 Background and Shortcomings of Emerging Systems

fore, [s3, s4]
T can be obtained using s3

s4

 =

ejφ 0

0 1

 s1

s2

 . (2.27)

Since the second direction coupler transforms [s3, s4]
T in a way similar to (2.26), the

relation between [Lc
1, Lc

2]
T and [L′c1 , L′c2]

T can thus be expressed as L′c1
L′c2

 =
1√
2

1 j

j 1

ejφ 0

0 1

 1√
2

1 j

j 1

 Lc
1

Lc
2

= je

jφ
2

sin φ
2 cos φ

2

cos φ
2 − sin φ

2

 Lc
1

Lc
2

= T

 Lc
1

Lc
2

(2.28)

with

T = je
jφ
2

sin φ
2 cos φ

2

cos φ
2 − sin φ

2

 , (2.29)

where L′c1 and L′c2 are the complex representations of L′1 and L′2 at the outputs of the

MZI in Fig. 2.18(a). Therefore, the relation between the inputs and the outputs of

an MZI can be expressed by the transformation matrix T, which is a unitary matrix

so that its conjugate transpose T∗ is its inverse [FMW+19].

The conversion of inputs to the outputs in (2.28) indicates that an MZI implements

a matrix-vector multiplication operation in the complex domain. This property can

thus be used to accelerate computations in neural networks taking advantage of

the nature of light modulation.

To implement the multiplication for multiple inputs, MZIs can be connected to

form an ONN as the triangular array [RZBB94a] or the grid-like architectures

[CHM+16], which allows every input signal to be propagated to every output.

In this dissertation, the grid-like architecture is used to implement ONNs because

36

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

the grid-like architecture costs less area than the triangular array in fabrication to

realize an N × N multiplication [CHM+16]. Fig. 2.18(b) illustrates the grid-like

architecture to perform a 4 × 4 matrix-vector multiplication for four input light

signals L1, L2, L3 and L4. The whole transformation of this architecture can be

expressed as the multiplication of the transformation matrices of all columns, as

T = TC4TC3TC2TC1 (2.30)

for the ONN in Fig. 2.18(b). The transformation matrices of the columns can be

formed from the transformation matrices of MZIs. For example, TC1 and TC2 can

be expressed as

TC1 =

T1 0

0 T2

 , TC2 =

1 0 0

0 T3 0

0 0 1

 (2.31)

where T1, T2 and T3 are the 2× 2 transformation matrices of the first three MZIs.

All these matrices are unitary so that their conjugate transpose are equal to their

inverse [CHM+16, RZBB94b].

To implement ONNs, MZI phases should be programmed to expected values,

which is realized by supplying different power to heat thermal-optical phase shifters.

In theory [HMM+14], the relation between the phase shift ∆φ and the supply power

P is expressed as

∆φ =
2πL

λ

dn
dT

τ

H
P, (2.32)

where L is the device length, λ is the free-space wavelength, dn
dT is the thermo-optic

coefficient, τ is the thermal time constant, H is heat capacity and P is adjusted by

applying different voltages or different pulse widths per unit time to the heaters

[RB17]. Fig. 2.19(a) is a layout to test the thermal-optical phase shift and Fig. 2.19(b)

gives the curve of phase shift vs. power. When power is removed from the phase

shifter, it will return its default state. Therefore, to maintain the phases of thermal-

optical shifters requires power supplies [YS+17].

37

2 Background and Shortcomings of Emerging Systems

0

3

2

1

0 5 10 15 20 25
Power (mW)

φ
(R

ad
ia

ns
)

(a)
(b)

In

Out

Pad

Pad

Ph
as

e
Sh

if
te

r

∆L

Figure 2.19: Thermo-optical phase shifter. (a) Schematic for heating the thermo-

optical phase shifter. (b) Average phase shift of three devices vs.

power. Adapted with the permission from [HMM+14] c©The Opti-

cal Society.

38

2.2 Neuromorphic Hardware to Accelerate Neural Network Computing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Accuracy

0

5

10

15

20

25

#
C
h
ip

s

LeNet-5
+

Cifar10

3 = 0.5%, =0.7333
3 = 1.0%, =0.7105
3 = 1.5%, =0.6845
3 = 2.0%, =0.6189

3 = 3.0%, =0.4694
3 = 4.0%, =0.3141
3 = 5.0%, =0.2108
3 = 10.0%, =0.1159

No variation: 0.746

Figure 2.20: Degradation of inference accuracy of LeNet-5 on Cifar10 under pro-

cess variations in MZI phases [ZZL+20] c©2020 IEEE.

In ONNs, one of the primary challenges originates from the matrix in (2.29), where

the results of the trigonometric functions sin φ
2 and cos φ

2 instead of the MZI phases

φ directly are used for matrix-vector multiplication. In mapping a neural network

onto an ONN, however, only the phases of MZIs can be adjusted. Due to man-

ufacturing process variations and thermal effects between neighboring MZIs, this

adjustment inevitably suffers inaccuracy, so that the final phases of MZIs may de-

viate from the target values. These deviations are distorted by the sin(·) and cos(·)

functions in the transformation matrices of MZIs such as (2.28), thus causing a

significant degradation of the resulting inference accuracy. For example, Fig. 2.20

compares the inference accuracy of LeNet-5 using Cifar10 [KNH14] under different

variations. Even with 0.5%–1% random variations in the MZI phases, the inference

accuracy already exhibits an obvious drop. When variations become relatively

large, no meaningful inference accuracy can be achieved anymore and the ONN

becomes unusable. Therefore, it is critical to address process variations and ther-

mal effects in ONNs before they can be adopted for practical applications.

39

2 Background and Shortcomings of Emerging Systems

To configure the phase of an MZI corresponding to the result of training, the tem-

perature of the MZI needs to be tuned accordingly. This can be further realized by

applying a given amount of power to the device. Fig. 5.3 illustrates the functions

of phase changes with respect to applied power p for five exemplary MZIs under

process variations extracted from [HMM+14]. According to this comparison, it can

be observed that the initial phases of MZIs already differ from each other due to

process variations, even if no power is applied (p=0). In addition, the same amount

of power applied on MZIs also generates different phase changes. For example, in

Fig. 5.3, each of p1, p2 and p3 causes different phase changes on different MZIs. The

largest phase deviation occurs as the target phase becomes large and thus requires

a large amount of power for phase configuration.

To maintain inference accuracy of ONNs, effects of process variations need to be

extracted so that the applied power for phase configuration can be adjusted ac-

cordingly. In addition, since the phases of MZIs are configured by changing their

temperatures by applying power, neighboring MZIs affect each other’s tempera-

ture, leading to further phase deviation. This effect also needs to be addressed

to maintain inference accuracy. Furthermore, training can also be investigated to

explore the potential of reducing process variations and thermal imbalance in ad-

vance.

In [YS+17], a fully optical architecture with MZIs connected in a grid-like lay-

out [CHM+16] is fabricated to implement multi-layer neural networks. In this

architecture, a weight matrix from software training is first decomposed with SVD

into three matrices and mapped to MZIs afterwards. To reduce the number of

MZIs, in [ZLL+19], one of the decomposed matrices is replaced by a sparse tree

structure and the MZI phases are trained directly to achieve a high inference ac-

curacy, and the network structure is further pruned by an FFT-based represen-

tation in [GZF+20]. Furthermore, other connection architectures have also been

explored, such as the FFTNet architecture [BBA07] and the triangular mesh ar-

40

2.3 Summary

chitecture [RZBB94b]. In addition, ONN designs also include optoelectronic im-

plementation of reservoir computing [BM+13, BMF+18] and photonic spiking pro-

cessing [RKF+09, TNSP14], demonstrating the potential of optical computing for

neural networks.

Since ONNs rely on MZIs for computation and trigonometric functions are in-

volved in their functional representation, the inference accuracy of these networks

is very sensitive to process variations and thermal effects of MZIs. Unfortunately,

this sensitivity has not been analyzed and addressed up to now, thus hindering the

adoption of this high-performance implementation of neural networks in practice.

2.3 Summary

In this chapter, biochips, memristor-based crossbars and MZI-based arrays are in-

troduced as typical emerging systems to improve efficiency for biochemical experi-

ments and neural network computing. Their challenges and the state of the art are

reviewed. The working efficiency of biochips is generally affected by their control

logic which used to be a binary tree multiplexing structure. To further improve

efficiency, the control logic requires an application-specific design. In addition, the

control logic with manufacturing faults needs to be addressed.

To accelerate neural network computing, memristor-based crossbars and MZI ar-

rays are proposed to break the von Neumann architecture bottleneck. However,

both of them are vulnerable to process variations and noise. MZI arrays are also

impacted by power consumption and thermal crosstalk. Frameworks are needed

to solve these problems or reduce their impacts.

41

2 Background and Shortcomings of Emerging Systems

42

Chapter 3

Multi-Channel and Fault-Tolerant

Control Multiplexing for Flow-Based

Microfluidic Biochips

As mentioned previously, the up-to-date control logic for biochips offers only

the single-channel switching function, which is also vulnerable to manufacturing

faults. In this chapter, a multi-channel switching control logic is presented to im-

prove working efficiency and accompanied with backup paths to improve the fault

tolerance. To automatically generate the novel control logic, a three-step frame-

work is presented: 1. Compress the switching patterns by mixing-multiplexing;

2. Distribute control patterns to achieve minimum switching times; 3. Establish

an ILP model to construct the new control logic. Six applications are used to test

the validation of the framework. The simulation results show an improvement in

working efficiency and a resource-saving in biochips.1 2

1 c©2018 IEEE. Reprinted, with permission, from Y. Zhu and B. Li and T. Ho and Q. Wang and

H. Yao and R. Wille and U. Schlichtmann, Multi-channel and fault-tolerant control multiplexing

for flow-based microfluidic biochips, 2018 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 11/2018.
2 c©2019 IEEE. Reprinted, with permission, from Y. Zhu and X. Huang and B. Li and T. Ho and

Q. Wang and H. Yao and R. Wille and U. Schlichtmann, MultiControl: Advanced Control Logic

Synthesis for Flow-Based Microfluidic Biochips, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 11/2019.

43

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

3.1 Proposed Multiplexing Mechanisms for Control

Logic Design and Problem Formulation

The control logic design described in Section 2.1.2 is very effective in reducing the

number of pressure sources. However, flow valves are switched sequentially in this

scheme by activating control channels individually. During the state transition from

time slot t to time slot t+ 1, the execution of an application on the biochip is paused.

If the number of valves whose states need to be updated is large, the execution time

of the application can be prolonged. This disadvantage is due to the fact that only

one output can be updated in a time slice. To solve this problem, a new design

scheme that allows multiple control outputs to be activated simultaneously will be

introduced in the following to improve the efficiency of the control logic.

In addition, the existing control logic design is also sensitive to manufacturing de-

fects. If a control channel cannot be opened properly, the corresponding flow valve

cannot be switched anymore, potentially leading to a complete chip failure. This

reliability issue is addressed in the proposed new design scheme with duplicated

control paths, which are constructed together with control paths for multi-channel

switching to improve design efficiency.

3.1.1 Multi-Channel Switching

In Fig. 2.4, only three flow valves are driven by the control logic, though the com-

binations of pressure sources are capable of generating four control patterns. Con-

sider the scenario that channel states are switched from “011”→“100”. The control

logic individually switches the second and the third channel from ‘1’ to ‘0’. There-

fore, it is possible to combine the last two operations. Besides the three control

patterns used in Fig. 2.4, there is still the fourth control pattern x1x2 available,

which can be used to switch the channel 2 and 3 together, as shown in Fig. 3.1(a).

44

3.1 Proposed Multiplexing Mechanisms for Control Logic Design and Problem Formulation

x1x2 x1x2 + x1x2

core input

controlports

x1x2

pattern x1x2
multi-channel

cancel

cancel merge

merge

(a) (b)
x1x2 + x1x2

x1x2 + x1x21

2

3

x1

x1

x2

x2

core input

1

2

3x1x2 + x1x2

x1

x1

x2

x2

Figure 3.1: Control logic with multi-channel switching. (a) Additional control pat-

tern x1x2 is used to update control channels 2 and 3 simultaneously. (b)

Simplified control logic after valve merging and canceling [ZLH+18]

c©2018 IEEE.

We call this “multi-channel switching”. In this augmented design, both channels

2 and 3 are directly connected to the core input through the newly added control

paths , which is named as the Direct Connection (DC) in this dissertation . Con-

sequently, in the transition from “011”→“100”, the number of time slices can be

reduced by 1. However, in the DC control logic, the number of control valves on

every control path is fixed to the number of the complementary control port pairs,

e.g., on every path in Fig. 3.1(a) exist two control valves. The control valve number

increases with the number of multi-channel switching paths increasing, leading to

a high cost. Therefore, a method is needed to reduce the control valve number for

a new control logic.

In Fig. 3.1(a), flow valve 3 is driven by two control paths. At the bottom of these two

paths, the two control valves are connected to the same control port x2. Therefore,

they can be merged to save one valve. The two control valves at the top of these two

control paths are complementary, since they are connected to x1 and x1. Therefore,

45

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

no matter what value x1 has, at least one of the two control paths to flow valve

3 opens on the condition that x2 is set to ‘1’. Accordingly, the two valves at the

top of the two control paths to flow valve 3 can be canceled. The merging and

canceling operations can also be applied to the control channels to flow valve 2.

Consequently, the control logic can be simplified as shown in Fig. 3.1(b), where

only one control valve is required in each of the control paths to the control outputs

2 and 3. This merging and canceling process is actually the simplification of the

Boolean logic x1x2 + x1x2 = x1 and x1x2 + x1x2 = x2. The + sign means that

either control path can drive the corresponding flow valve sufficiently. In Fig. 3.1(b)

the number of valves has been reduced from 10 to 4 compared with Fig. 3.1(a).

Compared with the original control logic in Fig. 2.4, the number of valves has

also been reduced from 6 to 4, while the multi-channel switching function is still

implemented.

In the simplified design in Fig. 3.1(b), the flow valves can still be switched indi-

vidually, because the individual control patterns x1x2 and x1x2 are still valid for

channels 2 and 3, respectively. For example, the control pattern x1x2 connects only

the control channel 3 to the core input, while the other two channels are still closed.

Consider a more complex scenario of channel states “011”→“100”→“001”→“110”.

The transition “100” →“001” requires two time slices for channels 1 and 3, while

channel 2 does not need to be updated. The transition “001”→“110” still requires

three time slices, since the channels 1 and 2 cannot be updated simultaneously.

Consequently, the total number of time slices required by the flow valves can be

calculated as the sum of time slices in the time slots, i.e., 2+2+3=7, which is less

than the time slices 8 required in the original design in Fig. 2.4, where only single-

channel switching is possible.

46

3.1 Proposed Multiplexing Mechanisms for Control Logic Design and Problem Formulation

pattern x1x2
multi-channel

channel state patterns: "011" "100" "001" "110"
x1x2 + x1x2 x1x2 + x1x2

core input

controlports

x1x2 + x1x2

pattern x1x2
multi-channel

cancel

(a) (b)

x1x2 + x1x2

x1x2 + x1x21

2

3

x1

x1

x2

x2

core input

1

2

3x1x2 + x1x2

x1

x1

x2

x2

mergecancel

merge
merge

cancel

Figure 3.2: Control logic reduction by alternate multi-channel switching. (a) Con-

trol pattern x1x2 is used to update control channels 1 and 2 simulta-

neously and control channel 2 has no individual control pattern. (b)

Simplified control logic [ZLH+18] c©2018 IEEE.

3.1.2 Logic Reduction by Alternate Multi-Channel Switching for

Given Applications

In the case in Fig. 3.1(b), the control logic cannot be reduced anymore, since all

the spare control patterns have been used. This design still maintains the ability

to update each control channel individually, as well as to update the states of the

channels 2 and 3 simultaneously. The maintained single-switching ability guaran-

tees that this control logic is capable of generating states of control channels for

any applications.

If the application of the biochip is given, the state transitions become known. In a

sequence of transitions such as “011”→“100”→“001” →“110”, it can be observed

that the control channel in the middle is always updated together with another one,

either the first or the last. This phenomenon indicates that it is not necessary to

assign channel 2 an individual control pattern. Instead, the original control pattern

47

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

x1x2 in Fig. 3.1(a) can be spared to implement multi-channel switching between

channels 1 and 2, as shown in Fig. 3.2(a).

In Fig. 3.2(a), control channels 1 and 3 receive individual control patterns x1x2 and

x1x2, respectively. The control channel 2, however, can only be switched together

with either channel 1 by x1x2 or channel 3 by x1x2. This loss of generality makes

this control logic design suitable only for a given application. But the control

logic itself can be simplified and the switching times of valves in executing the

application can be reduced.

After the merging and canceling operations are applied to the case in Fig. 3.2(a),

only three control valves are left in the design, as shown in Fig. 3.2(b). The logic

of the control patterns can be verified from the multi-channel control patterns as

x1x2 + x1x2 = x2 for channel 1, x1x2 + x1x2 = x1 for channel 2, and x1x2 + x1x2 = x2

for channel 3. Furthermore, the number of control ports is also reduced by one,

since x1 is not required anymore, leading to a further decrease of the complexity of

the biochip platform.

For the state transitions of the control channels “011”→“100”→ “001”→“110”, the

further simplified control logic requires only 2+2+2=6 time slices, since channel 2

always shares the new value with another channel. A special case is in the tran-

sition “100”→“001”, where the state of channel 2 does not change. Therefore, the

function of the chip is independent of whether the state of the second channel is

updated or not, similar to a “don’t care" channel in logic design. In the design in

Fig. 3.2(b), the pattern x1x2 takes advantage of this phenomenon for multi-channel

switching. Since the number of control valves in the control logic has also been

reduced significantly, this comparison confirms that the newly introduced multi-

channel switching concept can improve the execution efficiency of the control logic

and reduce the resource usage at the same time.

48

3.1 Proposed Multiplexing Mechanisms for Control Logic Design and Problem Formulation

1 3

5

6

core input

x1

x1

x2

x2

x3

x3

x1x2x3

x1x3

2

4

Figure 3.3: Fault tolerance in control logic [ZLH+18] c©2018 IEEE.

3.1.3 Fault Tolerance in Control Layer

In Fig. 3.2(b), there is only one valve and one control path to a control output.

During manufacturing, there might be defects in the control logic. If a control

valve cannot be closed, the core input is always connected to the control channel,

leading to a failed flow valve in the biochip. To tackle this problem, a control valve

can be duplicated and inserted in series to the original control valve, similar to the

solution in [HGR+17]. On the other hand, if a control valve cannot be opened or

a control path is blocked, there is no path to connect the core input to the control

output to update its state. A simple strategy to solve this problem is to duplicate

all the channels and valves and insert them in parallel to the original channels and

valves. This method, however, may lead to an unnecessarily complicated design

and large resource usage.

49

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

Fig. 3.3 shows another example of control logic generated by the proposed method,

where the control paths along control valves to control outputs 2 and 4 are high-

lighted. In this case, the control pattern x1x2x3 activates these two outputs simul-

taneously, forming a multi-channel switching pair. Furthermore, to each of these

control outputs, there are two independent paths through the control logic. If one

of these paths is blocked due to a manufacturing defect, the other path still main-

tains the correct function of the control logic.

Compared with the straightforward strategy to duplicate the control logic for fault

tolerance, the control paths in Fig. 3.3 share control valves, e.g., the two valves

connected to x1, leading to a reduction of resource usage. To design such a con-

trol logic with efficient multi-channel switching and resource sharing for fault-

tolerance, these features need to be considered together in a general framework.

3.1.4 Problem Formulation

Based on the new mechanisms discussed above, the control-logic design consider-

ing control multiplexing and fault-tolerance can be formulated as follows:

Input: The states of all flow valves/control channels at every moment in a given

biochemical application.

Output: An optimized control logic supporting multi-channel switching and fault

tolerance.

Objective: (1) Minimize the number of time slices for channel switching, (2) min-

imize the number of control valves, and (3) minimize the total control-channel

length.

50

3.2 A General Framework for Control Multiplexing and Fault Tolerance

3.2 A General Framework for Control Multiplexing

and Fault Tolerance

To generate a control logic supporting multi-channel switching and fault tolerance,

a general framework including two major steps is adopted in this section. First,

the given control channel states are converted to channel switching patterns. Then

control channels that can be enabled simultaneously are identified to reduce the

total number of time slices. In the second step, control channels are constructed

to meet the multi-channel switching and fault-tolerance requirements and thus

generate the final control logic.

3.2.1 Switching States Compression by Mixing Multiplexing

The complexity of control logic is affected by the flow-valve states to be generated.

Generally more valve states lead to more control channels and valves. In practice, a

large number of valve states are actually generated by mixers. As shown in Fig. 3.4

(a), each of the three mixers has three flow valves at the top to create a circular

flow for peristalsis mixing. This function requires these valves to be switched with

a high frequency within a given time period. The flow-valve states need to repeat

a given pattern series, e.g., “010”→“011”→“001”→“101”→“100”→“110” [MQ07].

Assume that each of the three mixers in Fig. 3.4 (a) is activated by this pattern

series once, but at a different time. An exemplary flow-valve switching states are

thus shown as in Fig. 3.4 (b), where the bold patterns highlight the valves need to

be switched (in total 21 states should be switched in this example).

In a mixer, the flow valves for peristalsis are only used to create a circular flow

with the given pattern series, no matter from which pattern the series starts. In

other words, the switching series can be rotated, as long as the whole pattern

series is repeated. To compress switching times, we take advantage of this feature

51

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

(a)

010
011
001
101
100
110

000

000
000

000

000
000
000

000
000
000

000
000
000
000
000
000

000

011
010

000

110
000
000

100
101
001

000
000
000
010
011
001

000

100
101

000

000
000
000

000
000
110

(b)

mixer1 mixer2 mixer3

(c)

010
011
001
101

110

000

011
010

000

110
000
000

100
101
001

011
011
011
001

100 001
001

111

100
100

111

110
111
111

110
110
100

v1v2v3
regular
patterns

mixer1 mixer2 mixer3

core
input

regular patterns

v1

v3

v2

x1 x2

x2x1

x1x2
x1x2

x1x2

x1x2

x1x2

Figure 3.4: Switching states compression by mixing multiplexing. (a) Structure

of mixing multiplexing. (b) Switching states when peristalsis valves

in mixers are controlled separately. (c) Switching states with mixing

multiplexing [ZHL+19] c©2019 IEEE.

52

3.2 A General Framework for Control Multiplexing and Fault Tolerance

by driving all mixers with the same peristalsis patterns, as shown in Fig. 3.4 (a).

The three control ports at the top of this structure provide a repeating regular

pattern series for all the peristalsis valves. The real connection of these ports to

the peristalsis valves in the mixers are controlled by newly introduced valves v1, v2

and v3. Therefore, the switching states in Fig. 3.4 (b) can be converted into Fig. 3.4

(c), where v1, v2 and v3 are opened with a low pressure in their control channels

when the mixers start, and they are closed with a high pressure when the mixers

stop. Since the regular patterns are shared by all mixers and switch very often, they

are generated by external pressure sources directly. The control logic only needs

to generate the corresponding states for v1, v2 and v3. Compared with the original

direct control of peristalsis valves in Fig. 3.4 (b), the control logic only needs to

produce 5 switching activities, fewer than a fourth of the switching activities in

Fig. 3.4 (b).

To implement mixing multiplexing, the original switching states are examined. For

each mixer, a new valve is created on the control paths to its peristalsis valves.

These valves are considered control valves and the original peristalsis valves are

removed from the control patterns. Consequently, the control logic can generate

the control patterns such as x1x2, x1x2 and x1x2 to control v1, v2 and v3, respec-

tively. In addition, mixers can be activated by multi-channel switching. For exam-

ple, mixer2 and mixer3 in Fig. 3.4(c) can be activated by the control pattern x1x2

simultaneously. This concept of mixing multiplexing is a pre-processing step for

control logic construction, and it scales well as the number of mixers in the chip

increases, since for each mixer only the control patterns of one valve need to be

generated, which only mark the starting and stopping time of the mixer and thus

do not switch often.

53

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

3.2.2 Computation of Multi-Channel Switching Scheme

As discussed in Section 3.1.2, the number of time slices of the control logic and the

resource usage can be reduced significantly if the control channel states required

for the application are considered. These states are written as a state matrix P̃,

whose rows represent the states of all control channels at different moments. For

example, for the states of the transitions “011”→“100”→“001”→“110”, P̃ is written

as

P̃ =

0 1 1

1 0 0

0 0 1

1 1 0

 Ỹ =

0 1 1

1 0 0

1 X 0

0 0 1

0 0 1

1 1 0

(3.1)

In a transition such as “011”→“100”, the second and the third control channels

need to be connected to the core input with its pressure value set to ‘0’. After-

wards, the first control channel needs to be connected to the core input and the

pressure value of the core input should be set to ‘1’. In both cases, it is the re-

sponsibility of the control logic to connect the corresponding control channels to

the core input. These requirements to the control logic can be represented by a

switching matrix Ỹ derived from the state matrix P̃. In this matrix, a ‘1’ represents

that the corresponding control channel is connected to the core input and its state

is updated to the same as that of the core input; a ‘0’ indicates no update of the cor-

responding control channel. Therefore, these rows are called switching patterns.

As an example, the switching matrix of P̃ in (3.1) is also shown as Ỹ. Note that

in the transition “100”→“001”, when the first channel is updated to ‘0’, the second

channel can be updated together with the first channel, or it can be ignored since

its state does not change. Accordingly, a don’t care ‘X’ appears. In reality, multiple

‘1’s in a row in Ỹ may not be updated simultaneously, in case this specific multi-

54

3.2 A General Framework for Control Multiplexing and Fault Tolerance

channel combination is not implemented. Therefore, such a row needs to be split

into time slices so that the corresponding channels are updated by several opera-

tions. To reduce the overall number of time slices, the multi-channel combinations

need to be selected carefully.

In a general case, assume that the switching matrix is written as

Ỹ =

Y0

Y1

· · ·

YM−1

 =

y0,0 y0,1 · · · y0,N−1

y1,0 y1,1 · · · y1,N−1

· · · · · · . . . · · ·

yM−1,0 yM−1,1 · · · yM−1,N−1

 (3.2)

where yi,j is a constant taking one of the values ‘0’, ‘1’ or ‘X’. M is the number of

transitions in which at least one channel should be switched. N is the number of

control channels.

As discussed above, a row in Ỹ may contain multiple ‘1’s that cannot be imple-

mented simultaneously. Consequently, the corresponding time slot of switching

these control channels needs to be split into several time slices. The objective is

that the overall number of time slices implementing the switching matrix Ỹ is re-

duced. To fulfill this objective, the potential multi-channel switching combinations

need to be examined.

For N control channels, there are 2N − 1 possible combinations to form multi-

channel scheme, defined by the multiplexing matrix X̃ with N columns, as

X̃ =

X0

X1

...

X2N−2

 =

1 0 0 0 · · · 0

0 1 0 0 · · · 0

· · · · · · · · · · · · . . . · · ·

0 0 0 0 · · · 1

1 1 0 0 · · · 0

0 1 1 0 · · · 0

· · · · · · · · · · · · . . . · · ·

1 1 1 1 · · · 1

(3.3)

55

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

where each row represents a possible combination of control channels to form

the multi-channel switching. If an item xi,j in X̃ is ‘1’, the corresponding control

channel is included in the multi-channel switching combination.

Since the objective of multi-channel switching is to select proper combinations of

rows in X̃ to implement the switching matrix Ỹ, a selection matrix T̃ of M rows

and 2N − 1 columns is defined as follows

T̃ =

t0,0 t0,1 · · · t0,2N−2

t1,0 t1,1 · · · t1,2N−2

· · · · · · . . . · · ·

tM−1,0 tM−1,1 · · · kM−1,2N−2

 (3.4)

where the i-th row defines which rows in X̃ are selected to implement the switching

pattern in the ith row of Ỹ in (3.2).

For example, Fig. 3.5 shows the multiplexing matrix and a feasible selection matrix

corresponding to the switching matrix in (3.1). There are a total of seven channel

combinations and four of them are selected to implement the switching patterns

defined in Ỹ. Note that the last switching pattern in Ỹ, i.e., ‘110’, is split into two

time slices to update the states of the first two control channels. More specifically,

the channel combinations ‘100’ and ‘010’ are selected to update the states of the

two channels sequentially.

X̃ =

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

1 1 1

T̃ =

0 0 0 0 0 1 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0 0 0 0 0

(3.5)

56

3.2 A General Framework for Control Multiplexing and Fault Tolerance

Ỹ

0

1

1

0

0

1

1

0

X

0

0

1

1

0

0

1

1

1

0

1

1

0

0

1

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

T̃ X̃

1

0

0

1

0

1
1

0

1

0

1

1

0
1

0

0

1

0

1

1
1

Figure 3.5: Multiplexing matrix and a feasible selection matrix corresponding to

the switching matrix in (3.1) [ZHL+19] c©2019 IEEE.

In a row in (3.2), if an item yi,k is ‘1’, meaning that this control channel must be

activated once, it must be covered by at least one of the rows in X̃ that has a ‘1’ at

the corresponding column. This constraint can be expressed as

j=2N−2

∑
j=0

ti,jxj,k

 ≥ 1, yi,k = 1

= 0, yi,k = 0

∀i = 0, . . . M− 1, k = 0, . . . N − 1

(3.6)

where xi,j and yi,k are given constants. ti,j are 0-1 variables whose values are deter-

mined by a solver.

In a control logic, the maximum number of allowed control patterns is usually

given or constrained by the number of external pressure sources as a constant

Qcw = 2dlog2Ne and usually Qcw � 2N − 1. Accordingly, for each row in X̃, a

0-1 variable li is defined to indicate whether the corresponding combination is

selected. The total number of selected combinations should be no larger than Qcw,

constrained as
2N−2

∑
i=0

li ≤ Qcw. (3.7)

If row j in X̃ is not selected so that lj = 0, all the selection variables in column j in

57

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

T̃ must be set to 0, constrained as

ti,j ≤ lj, ∀i = 0, . . . M− 1, j = 0, . . . 2N − 2. (3.8)

Since a row in T̃ represents which multi-channel switching combinations from X̃

are selected to implement the switching patterns in the corresponding row in Ỹ,

the number of ‘1’s in this row in T̃ represents the required number of time slices.

To minimize the total number of slices, the following optimization problem can be

solved

minimize
M−1

∑
i=0

2N−2

∑
j=0

ti,j (3.9)

s.t. (3.6), (3.7), (3.8). (3.10)

After solving (3.9)–(3.10), the combinations of channels to implement multi-channel

switching are determined by the values of li. The values of ti,j specify how the

switching patterns in Ỹ can be realized by these control patterns to reduce the

overall switching times.

For an application, the number of rows in the switching matrix Ỹ might be large,

making (3.9)–(3.10) very difficult to solve. In practice, many rows in the switching

matrix Ỹ might be equal. For example, a typical application contains many mixing

operations, which use only a few switching patterns repeatedly. In the proposed

method, these rows are merged and the number of merged rows are multiplied

with ti,j in (3.9) to reduce the scale of the problem. Another deployed technique

to reduce the scale of (3.9)–(3.10) is that in the multiplexing matrix, the maximum

number of channels that are allowed to switch simultaneously is constrained to a

given number. This is acceptable because the case that a large number of channels

are updated simultaneously is not common in reality. In the experiments, this

maximum number is set to 3.

58

3.2 A General Framework for Control Multiplexing and Fault Tolerance

core inputcontrol tree

nodes

edges as potential
valve locations

on-tree loop

off-tree loop

oj1

control
output

oj2

control

(a)

output

i

fi,j,k3

fi,j,k1

fi,j,k2 fi,j,k4

i1 fi1,j,i

fi2,j,i

fi,j = fi1,j,i + fi2,j,i

i2
edge ei

(b)

Figure 3.6: Routing grid. (a) A control tree constructed on a routing grid. (b)

Modeling variables representing flow volumes and directions for con-

trol tree construction [ZLH+18] c©2018 IEEE.

3.2.3 Control Logic Construction on a General Routing Grid

After determining the multi-channel switching scheme, the values of the li carry the

information which control channels should be connected to the core input together.

Since the states of control channels are the same as those at the outputs of the

control logic, it is then the task of the control logic to generate correct patterns at

its outputs to drive control channels.

When multiple control outputs are updated by a control pattern, a control path

should be constructed for each of them. Since these paths can also share segments

with each other, a control tree is constructed, as illustrated in Fig. 3.6. In reality, the

control tree can be very complex, even with many branches dangling in the middle

of the control tree.

In the proposed method, a general routing grid is used as virtual guide to construct

59

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

control trees. Such a grid is composed of a set of horizontal and vertical edges, and

edges join other edges at nodes. On this routing grid, a path can be viewed as a

series of consecutive connected edges. On each edge, a control valve can be built.

If no valve is built, but the edge still appears in the final control logic, it then

always connects the two nodes at its ends. If in the end an edge does not appear in

the control logic, the two nodes at the ends of this edge are always not connected

directly. An example routing grid is shown in Fig. 3.6 (a), where oj1 and oj2 are

control outputs.

For an edge ei on the routing grid, a 0-1 variable eexist
i is used to indicate whether

the edge appears in the control logic. In addition, a 0-1 variable vexist
i is used to

indicate whether a control valve vi is built on the edge ei. If a control valve appears

on the control tree to drive the control output oj, it must be switched open when

oj is activated. This open/closed state is denoted by the 0-1 variable vstate
i,j . The

relation between these variables can be written as

vstate
i,j ≤ vexist

i ≤ eexist
i , ∀ei ∈ E , cj ∈ C (3.11)

where E is the set of all edges on the routing grid, and C is the set of all control

patterns.

To construct a control tree in the control logic, the connection state of an edge

should be defined first. In two scenarios, an edge connects the two nodes at its

ends: 1) an edge appears in the control logic but there is no valve built on it; 2) a

valve is built on an edge that appears in the control logic, and the valve is open

due to the control port driving it. Such an edge is called a connection edge in the

following. If the 0-1 variable ci,j is used to indicate whether the edge ei connects the

nodes at its two ends when the jth control pattern is applied, ci,j can be constrained

as

ci,j = eexist
i − vexist

i + vstate
i,j . (3.12)

With the connection states of edges defined above, the control tree can thus be

60

3.2 A General Framework for Control Multiplexing and Fault Tolerance

described accordingly. To construct a control tree, the idea is to use the concept of

a flow from the core input. The flow fills the edges it passes and only reaches the

control outputs that should be activated.

For each node ni in the routing a grid, a flow value fi,j,k is defined with respect

to control pattern cj and the kth edge that is incident to ni directly, as shown in

Fig. 3.6(b). If a flow enters a node, the flow value is negative. If it leaves a node, its

flow is positive. Since a node only connects edges but cannot store a flow volume,

for node ni that does not correspond to the core input or a control output that

should be activated, the relation between the flow variables can be written as

∑
ek∈Ei

fi,j,k = 0 (3.13)

where Ei is the set of edges incident to node ni directly.

For each edge ei, the variable fi,j is defined to represent whether the edge stores

one unit of the flow, and is determined by the flows entering the edge from the

two nodes at its ends and could be one only when the edge is open. The relation

is expressed as

fi,j = ∑
nk∈Ni

fk,j,i ≤ ci,j (3.14)

where Ni is the set of nodes at the ends of edge ei, and fk,j,i is a flow value to ei.

To form a control tree from the core input to control output oj, the nodes in-between

must function as connecting points. A 0-1 variable ni,j is defined to represent

whether node ni is in the tree or not. For a node in the tree, at least an edge

incident to it should be filled by the flow. The connection condition for node ni is

ni,j ≤ ∑
ek∈Ei

fk,j ≤ 4 · ni,j (3.15)

where Ei is the set of edges connecting to ni.

Since the core input needs to provide sufficient flow to fill the edges in the control

tree and the flow must only reach the current control output oj, the following

61

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

constraints can be established:

∑
ek∈Ei

fi,j,k > 0, ni = ncore (3.16)

∑
ek∈Ei

fi,j,k < 0, ni represents an opened output oj. (3.17)

For the outputs that are closed, the nodes representing them should not appear on

the control tree. Since an edge that is in the connection state makes its two nodes

share the same status, ni,j needs to be constrained as

ni,j = 0, ∀ni representing a closed output (3.18)

ci,j − 1 ≤ nk1,j − nk2,j ≤ 1− ci,j, ∀ei ∈ E (3.19)

where nk1,j and nk2,j are the two nodes of ei, and E is the set of all edges.

The constraints above can be used to generate a control tree shown in Fig. 3.6(a).

These constraints do not prohibit an on-tree loop such as that in Fig. 3.6(a) from

happening. The existence of on-tree loops, however, does not affect the correct

function of the control logic. The off-tree loop in Fig. 3.6(a) is excluded by the

constraints (3.11)–(3.19). However, these constraints are only sufficient conditions

to construct a control tree. Off-tree loops can still appear, provided that they do

not activate the current control output.

The flow value fi,j defines whether an edge is required to control an output. If a

valve appears on the edge, its connection to the control ports needs to be deter-

mined, so that it can be switched correctly by an external pressure source. Assume

there are Np control ports. Since a control valve can be connected to any of these

Np ports, for the control valve vi, Np 0-1 variables pi,1, pi,2, . . . pi,Np are defined. The

variable pi,k represents whether control valve vi is connected to the kth control port.

Since a control valve can only be controlled by one port when a control valve exists

on an edge, these variables are constrained as

Np

∑
k=1

pi,k = vexist
i . (3.20)

62

3.2 A General Framework for Control Multiplexing and Fault Tolerance

For the jth control tree, corresponding to the jth control pattern, assume the states

of the control ports are denoted by 0-1 variables sj,1, sj,2, . . . sj,Np . For the control

valve vi, its state corresponding to the jth control pattern is written as vstate
i,j . Since

all the valves controlled by the same control port must have the same state in a

control pattern, the valve states can be constrained as

pi,k − 1 ≤ vstate
i,j − sj,k ≤ 1− pi,k, ∀ei ∈ E , k ∈ {1, . . . Np} (3.21)

where E is the set of all edges.

In a control logic, the control patterns should be different in activating different

control outputs or their combinations. Therefore, when regarded as binary num-

bers, the values of the control patterns are different from each other. This condition

can be specified as

Bj = 20 · sj,1 + 21 · sj,2 + · · ·+ 2Np−1 · sj,Np (3.22)

Bj1 − Bj2 ≤ −1 + My, ∀j1 6= j2 (3.23)

Bj1 − Bj2 ≥ 1− (1− y)M, ∀j1 6= j2 (3.24)

where M is a large number, y is an intermediate 0-1 variable, where y = 1 if and

only if Bj1 > Bj2 and y = 0 if and only if Bj1 < Bj2.

The constraints described in this section are very general. To implement multi-

channel switching, a control tree needs to activate multiple control outputs simul-

taneously. Accordingly, these active outputs can simply be enabled by adding

constraints similar to (3.17), so that the control tree drives multiple control outputs

at the same time.

To implement backup paths for fault tolerance, a path needs to be identified from

a control tree first. For example, in Fig. 3.6, the on-tree loop does not need to be

duplicated, because the direct path between the core input and the control output is

already sufficient for state updating. To identify a path in the control tree, a model

similar to that used to identify the control tree can be deployed. In constructing the

63

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

control tree, the edges are chained one after another. To constrain a path instead of

a tree, the only change to be made is that a node in the routing grid that represents

neither the core input nor the control output is only allowed to connect exactly two

edges, in contrast to (3.15), where more than two edges can be connected to a node

to allow more freedom to the patterns of control ports. For fault tolerance, two

identified control paths that are backup to each other should not share any parts

on the routing grid. This constraint can be specified as that the edges covered by the

paths should not overlap, so that the variables indicating that an edge belonging to

these paths should be 1 only for one of the fault-tolerant paths. These constraints

are similar to those for constructing control trees discussed above, and are not

discussed in detail due to limited space.

With the constraints defined, the control logic can be constructed by creating a

control tree for each control pattern and solving the resulting ILP problem as

minimize
|E |−1

∑
i=0

vexist
i (3.25)

s.t. (3.11)–(3.24). (3.26)

To improve the efficiency of the formulation (3.25-3.26), two heuristic techniques

have been applied. First, the control ports are only allowed to control the valves in

the rows and columns that are neighboring to them in the routing grid. Second,

the routing grid is partitioned into sub-blocks and the formulation (3.25-3.26) is

applied to each sub-block to solve the problem hierarchically. In addition, pressure

degradation in control trees has also be considered, which is not explained in detail

due to space limit.

3.3 Simulation Results

The proposed method was implemented in C/C++ and tested on a PC with 2.4 GHz

CPU and 32GB memory. We demonstrate the results of three real-life biochemical

64

3.3 Simulation Results

Table 3.1: Details of benchmarks used in this paper [ZHL+19] c©2019 IEEE.

Benchmarks (#Mx,#Fv,#Cs,#Sp,#Ip)

RA30: (2,19,10221,13408,86) R0: (1,22,5000,6684,153)

mRNA: (3,37,5361,1403,52) R1: (2,27,6000,8013,244)

CPA: (3,25,2941,1409,92) R2: (3,48,127000,9372,325)

applications that are CPA (Colorimetric Protein Assay) used in RA30 chip from

[LLY+17a], IVD (Int-Vitro Diagnostics) applied in CPA chip from [LLY+17a], and

mRNA chip from [MAQ06]. In addition, three randomly generated sequences of

switching patterns R0, R1, and R2 are tested to demonstrate the characteristics of

the proposed method further.

The details of aforementioned benchmarks are listed in Table 3.1, where #Mx is

the numbers of mixers used in the applications and #Fv is the number of flow

valves/control channels. The numbers of states of flow valves in executing the cor-

responding applications are reported in #Cs and the numbers of switching patterns

corresponding to the rows of the switching matrix Ỹ in (3.2) are reported in #Sp.

After merging equivalent rows of switching patterns as described in Section 3.2.2,

the numbers of independent patterns used in (3.9)–(3.10) are reported in #Ip. In

our simulations, the control logic itself has two layers to implement the multiplex-

ing function. In the flow part, the flow channels and control channels also form a

two-layer structure. Therefore, the whole chip can be considered as two two-layer

blocks interfaced by the control outputs.

Verification of mixing-multiplexing control architecture

In Section 3.2.1, we presented a mixing-multiplexing control architecture (MMCA)

by switching the states of flow valves in mixers in a centralized manner, and thus

further improve the efficiency of a control logic. To verify the effectiveness of

mixing multiplexing, we compare the design results between MMCA with the ar-

65

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

Table
3.2:V

alidation
of

the
proposed

m
ulti-channelsw

itching
m

echanism
[Z

H
L
+

19]
c©

2019
IEEE.

Bench
C

ontrolarchitecture
w

ith
individualm

ixing
C

ontrolarchitecture
w

ith
m

ixing
m

ultiplexing

#T
s

#T
m

Im
p

(%
)

#N
c

#A
p

#C
p

Tim
e

(s)
#T

s
#T

m
Im

p
(%

)
#N

c
#A

p
#C

p
Tim

e
(s)

R
A

30
27025

15247
43.6

19
17

10
1307.0

27025
10080

62.7
19

12
11

559.5

C
PA

4198
1742

58.5
25

22
10

2146.7
4198

1065
74.6

25
13

11
846.3

m
R

N
A

4464
1597

64.2
37

20
12

3159.5
4464

1055
76.4

37
18

13
2303.6

R
0

6891
6799

1.3
22

26
10

3981.4
6891

5090
26.1

22
20

13
2465.5

R
1

14334
9776

31.8
27

28
10

4002.9
14334

6179
56.9

27
24

13
3942.3

R
2

26058
11781

54.8
48

51
12

10171.2
26058

7481
71.3

48
46

15
9541.8

A
verage

—
—

42.4
—

—
—

—
—

—
61.3

—
—

—
—

66

3.3 Simulation Results

chitecture in which mixers are controlled individually (IMCA). Fig. 3.7 shows the

comparison results on the total number of valve-switching times. Overall MMCA

achieves a 25%–39% switching times reduction across all the benchmarks, with an

average reduction of 34%. This significant reduction of switching times will further

improve the execution efficiency of biochips. Moreover, as shown in Fig. 3.8, com-

pared with IMCA, the total number of applied control patterns is also reduced by

10%–29% in the benchmarks, with an average reduction of 21%. This result implies

that MMCA has a greater potential to realize a large-scale multi-channel control.

Validation of multi-channel switching mechanism

As discussed previously, in the traditional single-channel switching mode, the ‘1’s

in a switching matrix must be updated individually, leading to a low-efficiency

control system. To validate the efficiency of the proposed multi-channel switch-

ing mechanism, we compare the synthesis results of two switching modes in both

IMCA and MMCA in Table 3.2.

In IMCA, the total numbers of time slices in the single-channel switching mode are

reported in the column #Ts in Table 3.2. With multiple-channel switching, these

numbers are reduced significantly in most cases, as shown in the column #Tm . The

reduction of these switching times can reach up to 64.2%, as shown in the column

Imp.

The numbers of control patterns used in the control logic are shown in the column

#Ap, which are larger than the numbers of control channels in the column #Nc due

to the additional control patterns for multi-channel switching for cases R0, R1 and

R2, while being slightly smaller in cases RA30, CPA and mRNA since several flow

valves in these cases always activate simultaneously with other valves so that their

control patterns are shared. It can be observed that with a limited increase of the

number of control patterns, a significant reduction of switching times (42.4% on

average) from #Ts to #Tm can be achieved. Moreover, the number of control ports

used in the control logic are reported in the column #Cp.

67

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

15247

1742 1597

6799

9776

11781

10080

1065 1055

5090

6179

7481

34%

39% 34%

25%

37%

36%

Average reduction=34%

Figure 3.7: Comparison on the number of valve-switching times [ZHL+19] c©2019

IEEE.

In MMCA, compared with the single-channel switching mode, the proposed multi-

channel switching mechanism achieves a 26.1%–76.4% time-slice reduction, with an

average reduction of 61.3%. Furthermore, in all benchmarks, the numbers of con-

trol patterns used in the control logic are fewer than the numbers of control chan-

nels, this is achieved by a slight increase of the number of control ports. This re-

sult, on one hand, demonstrates the high efficiency of our multi-channel switching

scheme, and meanwhile further confirms the effectiveness of the proposed MMCA.

The CPU time to generate the control logic by the proposed method is reported

in the columns Time. It can be seen that all results can be generated within an

acceptable time.

In addition, in determining multi-channel switching patterns, the maximum num-

ber of control channels that can be switched together is bound to a given number

to increase the implementation efficiency. The reduction of valve-switching times

with different bounds is shown in Fig. 3.9. As expected, the reduction increases

68

3.3 Simulation Results

Ta
bl

e
3.

3:
C

om
pa

ri
so

n
on

th
e

co
st

of
co

nt
ro

ll
og

ic
[Z

H
L
+

19
]

c ©
20

19
IE

EE
.

Be
nc

h
C

on
tr

ol
ar

ch
it

ec
tu

re
w

it
h

in
di

vi
du

al
m

ix
in

g
C

on
tr

ol
ar

ch
it

ec
tu

re
w

it
h

m
ix

in
g

m
ul

ti
pl

ex
in

g
D

C
IL

P
Im

p
(%

)
D

C
IL

P
Im

p
(%

)
#C

v
#C

l
#C

v
#C

l
#C

v
#C

l
#C

v
#C

l
#C

v
#C

l
#C

v
#C

l

R
A

30
27

0
62

8
13

7
44

3
49

.2
6%

29
.4

6%
18

4
44

4
75

32
3

59
.2

4%
27

.2
5%

C
PA

34
0

79
0

17
9

62
9

47
.3

5%
20

.3
8%

28
0

65
2

10
4

46
4

62
.8

6%
28

.8
3%

m
R

N
A

51
0

11
52

21
2

94
9

58
.4

3%
17

.6
2%

42
0

98
6

21
3

82
0

49
.2

9%
16

.8
4%

R
0

51
5

12
13

27
4

94
8

46
.8

0%
21

.8
5%

41
5

97
5

17
2

74
0

58
.5

5%
24

.1
0%

R
1

49
0

11
48

33
0

94
2

32
.6

5%
17

.9
4%

55
5

13
08

33
2

11
10

40
.1

8%
15

.1
4%

R
2

10
14

23
17

81
2

22
92

19
.9

2%
1.

10
%

11
88

27
23

11
70

26
69

1.
52

%
1.

98
%

69

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

17

12

29%

22
20

26
28

51

13

18
20

24

46

41% 10%

23%
14%

10%

Average reduction=21%

Figure 3.8: Comparison on the number of applied control patterns [ZHL+19]

c©2019 IEEE.

as the number of channels that can be switched together increases. However, a

further increase from 3 to 4 does not lead to significant performance improvement,

justifying the bound set in our method. For case R2 the reduction even decreases

slightly due to the heuristics introduced in the proposed formulation to improve

computing efficiency.

Validation of control logic construction

We compare the ILP method with the DC method [MQ07] in terms of the cost of

the final control logic, including the number of control valves and the total channel

lengths (see Table 3.3). In IMCA, the proposed method achieves a 19.92%–58.43%

control-valve reduction and a 1.10%–29.46% channel-length reduction across all

benchmarks. In MMCA, the number of control valves and the total channel lengths

can also be reduced by 45.27% and 19.02% on average, respectively. In other words,

the ILP method reduces the control logic cost from the DC method.

70

3.4 Summary

Figure 3.9: Reduction of total channel switching times under different multiplex-

ing distances [ZHL+19] c©2019 IEEE.

3.4 Summary

We have studied the control-logic design problem, considering both control mul-

tiplexing and fault-tolerance in flow-based microfluidic biochips, and presented a

systematic method to efficiently solve it. By introducing the multi-channel switch-

ing and mixing multiplexing mechanisms, the time slices required for switching

valves can be reduced significantly. Moreover, independent backup paths have also

been introduced to improve the reliability of automatically generated control logic.

Using these concepts, a general framework based on an ILP formulation is pro-

posed. Simulation results have shown that our method can generate a control logic

with high efficiency, low cost, and fault tolerance within a short time.

71

3 Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips

72

Chapter 4

Statistical Training for

Memristor-based Crossbars

Considering Process Variations and

Noise

Memristor-based crossbars, as one of the most promising neuromorphic comput-

ing structures, whose working principle has been demonstrated in Section 2.2.2,

are vulnerable to process variations and noise. In this chapter, a statistical training

method is proposed to maintain the inference accuracy with weights with varia-

tions. Firstly, it decomposes process variations into independent statistical vari-

ables via Principal Component Analysis (PCA) in Section 4.1. Then the statistical

training method introduces the independent statistical variables into the traditional

training framework, whose modified operations in forward propagations and cost

functions are explained in Section 4.2 and 4.3, respectively. After that, the proposed

method is supplemented with the global variation test and compensation to further

maintain inference accuracy in Section 4.4. Results are presented in Section 4.5.1

1 c©2020 IEEE. Reprinted, with permission, from Y. Zhu and G. L. Zhang and T. Wang and B. Li and

Y. Shi and T. Ho and U. Schlichtmann, Statistical Training for Neuromorphic Computing using

Memristor-based Crossbars Considering Process Variations and Noise, 2020 Design, Automation

Test in Europe Conference Exhibition (DATE), 03/2020.

73

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

4.1 Principal Component Analysis (PCA) of Process

Variations and Canonical Form of Weights

As mentioned previously, process variations are inherent in the manufacturing pro-

cess [AR+16]. They consist of global variation and local variations. The former is

shared by all memristors and the latter are specific to individual memristors. In

the manufacturing process, local variations are correlated [XZH07], and the shared

global variation also increases the correlation between memristors. The overall

correlation between the memristors can be expressed using a covariance matrix

R [XZH07].

This matrix can be decomposed using PCA [Seb09] to facilitate the computation

during training, as

R = V · Σ ·VT (4.1)

where Σ = diag(λ1, λ2, ..., λN) contains the eigenvalues of R, and V = [V1, V2, ..., VN]

contains the corresponding eigenvectors which are orthogonal to each other.

Assume that the variations of all the memristors are written together as D. After

the decomposition in (4.1), D can be expressed as

D = V · Σ0.5 · B (4.2)

where B = [B1, B2, . . . , BN] are independent random variables. The representation

in (4.2) expresses the variations on memristors as linear combinations of indepen-

dent random variables. To reduce computation complexity, the independent ran-

dom variables corresponding to small eigenvalues can also be discarded without

affecting the modeling accuracy significantly.

Due to process variations, the actual conductance values programmed into mem-

ristors vary from their nominal values. Assume the conductance values of all the

74

4.1 Principal Component Analysis (PCA) of Process Variations and Canonical Form of Weights

memristors are expressed as G. The actual conductance values considering process

variations can be expressed as

G = G0 + F(G0, D) ≈ G0 + f(G0) ·D (4.3)

where G0 represents the nominal conductance values. F(G0, D) is a function rep-

resenting the relation between process variations and the change of conductance,

which can be approximated by f(G0) ·D due to the relatively small value of the

process variations compared with the nominal values. f(G0) can be characterized

from device measurement directly. Together with (4.2), (4.3) can be transformed

into

G = G0 + f(G0) ·V · Σ0.5 · B. (4.4)

Besides process variations, programming noise also causes random drifting of the

conductance values [CYL14]. To incorporate this effect, (4.4) can be modified as

G = G0 + f(G0) ·V · Σ0.5 · B + h(G0)N (4.5)

where h(G0) represents the impact of noise on the conductance values of memris-

tors and N contains independent random variables specific to certain memristors.

According to (4.5) and the relation between the weights and the conductance values

in (2.16), the weights can be expressed as linear combinations of B and N, since G0

and all the coefficients of B and N are known. Therefore, a weight under process

variations and noise can be expressed in the canonical form [VRK+06] as

wi =wi,0 +
N

∑
k=1

wi,kBk + wi,nNi (4.6)

where wi,0 is the nominal value of the weight, wi,k and wi,n are constant coefficients.

Bk are random variables independent from each other but shared by all the weights.

Ni is the pure random variable individual to each weight.

75

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

4.2 Statistical Forward Propagation

Since the weights have been expressed as linear combinations of random variables

to incorporate process variations and noise, the training of neural networks should

also be adapted, in which the multiplication, addition, activation functions as well

as the cost function should be modified accordingly.

4.2.1 Statistical Multiplication

In a neural network such as shown in Fig. 2.5, the input to a neuron in the first layer

is constant. This input needs to be multiplied with the weight on the connection

to the next neuron. Since the weight is now expressed in the canonical form (4.6),

this multiplication can be realized by multiplying the input constant to all the

coefficients in (4.6). The result of this multiplication is still in the canonical form.

At an output neuron in Fig. 2.5, or a neuron in the next hidden layer if it exists, the

multiplication needs to be performed again. The input values from the previous

layer to this neuron are the results of previous computation operations, so that they

are already in the canonical form (4.6). Consequently, the multiplication should be

performed between two expressions in the canonical form. Assume the input is

denoted as aj and the weight to multiply is denoted as wi, The multiplication can

76

4.2 Statistical Forward Propagation

be performed as

ak =aj · wi

=(aj,0 +
N

∑
k=1

aj,kBk + aj,nNj)(wi,0 +
N

∑
k=1

wi,kBk+ wi,nNi)

=aj,0wi,0 +
N

∑
k=1

(aj,0wi,k + aj,kwi,0)Bk + aj,0wi,nNi + aj,nwi,0Nj

+
N

∑
k=1

N

∑
l=1

aj,kwi,lBkBl +
N

∑
k=1

aj,kwi,nBkNi +
N

∑
k=1

aj,nwi,kNjBk + aj,nwi,nNjNi

≈aj,0wi,0 +
N

∑
k=1

(aj,0wi,k + aj,kwi,0)Bk +
√
(aj,0wi,n)2 + (aj,nwi,0)2Nk. (4.7)

The multiplication above produces terms of the second order and complicates the

further propagation of the data across the neural network. To reduce computa-

tional complexity, we only keep the first-order terms and approximate aj,0wi,nNi +

aj,nwi,0Nj using
√
(aj,0wi,n)2 + (aj,nwi,0)2Nk by matching their variances [VRK+06],

where Nk is a new independent random variable. Consequently, the result of a

multiplication can also be represented in a canonical form and propagated further

through the neural network using the same implementation of the computation

operations.

4.2.2 Statistical Addition

At a neuron, the results of multiplication operations from different input neurons

should be added together. Assume that the results of two multiplications are xi

and xj, their sum can be computed as

xk = xi + xj = (xi,0 + xj,0) +
N

∑
m=1

(xi,m + aj,m)Bm+
√

x2
i,n + x2

j,nNk (4.8)

where Nk is a new independent random whose coefficient is determined by match-

ing variance with xi,nNi + xj,nNj.

77

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

4.2.3 Statistical Activation Function Transformation

At a neuron, the result of multiplication and addition with canonical form (4.6)

which is also denoted as

xi = xi,0 +
N

∑
l=1

xi,kBk + xi,nNxi = xi,0 + Xi (4.9)

needs to be processed by an activation function f which can be expanded using

Taylor series at the mean value xi,0, and approximated by discarding terms with an

order higher than 1, as

ai = f (xi) = f (xi,0) + f ′(xi,0)Xi +
∞

∑
l=2

f (l)(xi,0)Xl
i

l!

≈ f (xi,0) + f ′(xi,0)Xi. (4.10)

Softplus operation Inside a neural network, the active function used at neurons

is often ReLU y= max(x, 0). However, this function is nondifferentiable at 0, a

condition that is needed to expand this function into Taylor series to allow the

propagation of the canonical form (4.9) through the neural network. Therefore, we

choose the softplus f (x) = log(1 + ex), also called SmoothReLU, as the activation

function.

According to (4.10), the softplus function can be approximated as

ai = f (xi) = log(1 + exi,0) +
exi,0

1 + exi,0
Xi +

∞

∑
l=2

f (l)(xi,0)

l!
Xl

i

≈ log(1 + exi,0) +
exi,0

1 + exi,0
Xi. (4.11)

Note that this linearization of the softplus function adapts itself according to the

mean value of the input data to allow useful information to be propagated to the

next layer. Fig. 4.1 (a), Fig. 4.1 (b) and Fig. 4.1 (c) present the examples of input

78

4.3 Statistical Probability Included Cost Function

distributions, output distributions after the actual activation softplus function and

the linearized approximated softplus functions with different mean values. The

examples show that the linearized approximated distributions are similar to the

actual outputs so that the linearized approximation method is effective.

Sigmoid operation At the outputs of the neural network, sigmoid function f (x) =

1/(1 + e−x) may be applied to generate classification results. Similar to softplus

operation, this function can be expanded into Taylor series and approximated as

ai = f (xi) =
1

1 + e−xi,0
+

e−xi,0

(1 + e−xi,0)2 Xi +
∞

∑
l=2

f (l)(xi,0)

l!
Xl

i

≈ 1
1 + e−xi,0

+
e−xi,0

(1 + e−xi,0)2 Xi. (4.12)

4.3 Statistical Probability Included Cost Function

As shown in (2.8), the cross entropy is used to guide the adjustment of the weights.

If the expected value of an output is equal to 1, i.e., âi = 1, the actual value of this

output ai is expected to be close to 1. If ai deviates much from 1, C in (2.8) quickly

becomes large, so that the weights that contribute to this deviation are punished,

as indicated by (2.10). This mechanism works similarly in the case when the output

âi is equal to 0.

When process variations and noise are considered, the actual value at an output

is represented in the canonical form (4.6), so that the comparison between the ac-

tual value and the expected value, which is either 1 or 0 for classification, becomes

statistical. To signify that the whole distribution of the output should be shifted

toward the expected value, we use the mean value µai of the distribution to replace

ai in the original cost function (2.8). In addition, we punish an output if its distribu-

tion is not close to the expected value. If the expected value âi is 1 but ai incorrectly

drifts to 0, the probability P(ai ≤ 0.5) becomes large. Therefore, we also include

79

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

2 0 2
0

1

2

3

0 1 2
0

2

4

6

0 1 2
0

2

4

6

2 0 2
0

1

2

3

0 1 2
0

2

4

6

0 1 2
0

2

4

6

2 0 2
0

1

2

3

0 1 2
0

2

4

6

0 1 2
0

2

4

6

(a)

(b)

(c)

Figure 4.1: Distributions comparisons, in which the first figure is the input distri-

bution, the second is the actual distribution after Softplus function, the

third is the distribution after the linearized approximated function. (a)

The input nominal value is 0. (b) The input nominal value is a negative

value. (c) The input nominal value is a positive value.

80

4.4 Compensation for Global Variation

Ut

Ut

Ut

Ut

I′1 I′2 I′j ′ IN

I′j = ∑M
k=1 g′j,kUt

g′j,1
g′j,2

g′j,i

g′j,M

Ut

Ut

Ut

Ut

I1 I2 Ij IN

Ij = ∑M
k=1 gj,kUt

gj,1

gj,2

gj,i

gj,M

Actual crossbar Ideal crossbar

Figure 4.2: Compare the outputs between the crossbar with variations and the

ideal crossbar to test and compensate for the global variation.

this probability into the cost function. Similarly, the case that the expected value

equal to 0 is also adapted. Consequently, the cost function are transformed as

C =
M

∑
i=1

(−âiPp(ai ≤ 0.5) log(µai)− (1− âi)Pp(ai ≥ 0.5) log(1− µai)) (4.13)

where p is a power used to magnify the influence of the probability.

4.4 Compensation for Global Variation

As explained in Section 4.1, global variation is shared by all the memristors, so that

this variation contributes a large part of the correlation between the process vari-

ations. Consequently, the variations in the conductance values of the memristors

also exhibit a tendency to vary into the same direction. To capture this tendency,

memristors in a column in the crossbar as shown in Fig. 4.2 can be tested by ap-

plying a test voltage Ut to all the wordlines. The current measured at the output of

the jth column can be written as

I′j = (g′1,j + g′2,j + ... + g′M,j) ·Ut (4.14)

81

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

where g′1,j, g′2,j, ..., g′M,j are the actual conductance values of the memristors in the jth

column. Due to process variations and noise during programming, these conduc-

tance values deviate from the values determined by weights after training. How-

ever, since the random variations experienced by the memristors can cancel each

other out when the conductance values are added together, this sum can be used

to evaluate the overall effect of global variation.

Since the current with the ideal conductances for these memristors can be expressed

as

Ij = (g1,j + g2,j + ... + gM,j) ·Ut (4.15)

the current deviation caused by global variation on the memristors in this column

can be expressed as a ratio R = I′j /Ij. When programming memristors, we then

adjust the programming voltage to offset the conductance by 1/R to compensate

global variation in advance to improve the inference accuracy.

4.5 Simulation Results

The proposed framework was implemented using TensorFlow [AAB+15] and tested

with an Intel 3.6 GHz CPU and an NVIDIA GeForce GTX1080Ti graphics card. The

standard deviations of the distribution of process variations and noise were set to

25% and 5% of the nominal values [AR+16, CYL14]. The covariance matrix was

generated using the method in [XZH07] and the global variation was set to 60% of

the total process variations.

We simulated 2000 chips using Monte Carlo simulation and tested them with

one-layer and two-layer fully-connected neural networks. The results are shown

in Table 4.1, where DT is the conventional training method with deterministic

weights without considering process variations and noise, VT is the vortex training

method [LLC+15] and ST is the method proposed in this paper. In this experiment,

82

4.5 Simulation Results

Table 4.1: Accuracy of SNN with different training methods [ZZW+20] c©2020

IEEE.

DT VT ST

NN Acc0 µ(Acc) σ(Acc) Acc0 µ(Acc) σ(Acc) Acc0 µ(Acc) σ(Acc)

FC1 0.91 0.87 0.10 0.91 0.89 0.05 0.91 0.90 0.03

FC2 0.97 0.32 0.33 0.92 0.38 0.32 0.92 0.92 0.01

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

50

100

150

200

250

300

Acc

#

DT
ST
VT

Figure 4.3: Accuracy distributions [ZZW+20] c©2020 IEEE.

the power p in (4.13) was set to 2. NN stands for neural network, FC1 and FC2

are one-layer and two-layer fully-connected neural networks, respectively. Acc0 is

the accuracy of the ideal case when memristors are programmed to conductance

values equal to the target values mapped from weights, µ(Acc) and σ(Acc) are the

mean and standard deviation of the inference accuracy of the simulated 2000 chips,

respectively.

As shown in Table 4.1, the proposed ST method has a larger mean value and a

smaller standard deviation in the inference accuracy compared with VT and DT,

indicating that the simulated chips can achieve a good accuracy with much fewer

83

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1.0

σ(G)/µ(G)

A
cc

DT, FC1
VT, FC1
ST, FC1
DT, FC2
VT, FC2
ST, FC2

Figure 4.4: Robustness comparison [ZZW+20] c©2020 IEEE.

failing outliers. The distribution of the inference accuracy of the simulated chips

tested with FC1 is shown in Fig. 4.3, where the results of ST have more chips

concentrated toward high accuracy.

To verify the robustness of the proposed method, we tested different ratios of the

standard deviation to the mean value of process variations, denoted as σG/µG,

using FC1 and FC2. The results are illustrated in Fig. 4.4, where the y-axis shows

the mean value of the inference accuracy of the simulated chips. According to

this comparison, the proposed ST method maintains a stable accuracy as process

variations increase, while the other methods suffer a significant accuracy loss.

84

4.6 Summary

4.6 Summary

In this chapter, a statistical training method for neural networks has been proposed.

The inference accuracy can be maintained, even as process variations become large,

by modeling process variations and noise as random variables and applying global

variation compensation.

85

4 Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise

86

Chapter 5

Countering Variations and Thermal

Effects for Accurate Optical Neural

Networks

In this chapter, software training for ONNs is described firstly, in which phases

of MZIs are trained directly to achieve a high inference accuracy. During training

the phases of MZIs are also reduced, since the deviation of phases from the ex-

pected values due to variations is small when the MZIs are tuned to small phases,

as shown in Fig. 5.3, where the resulting phases of MZIs at p1, p2 and p3 spread

from the nominal curve with different amounts. In addition, thermal imbalance is

decreased to reduce phase drift of MZIs during training. To configure the phases of

MZIs to the target values determined from training, we introduce a calibration pro-

cedure to determine the effects of process variations. Thermal effects among MZIs

are also modeled and the power values to configure phases of MZIs are adjusted

in advance to counter these effects. Finally, variation residues and noise are com-

pensated with characterized online tuning. The flow of the proposed framework is

illustrated in Fig. 5.1. 1

1 c©2020 IEEE. Reprinted, with permission, from Y. Zhu and G. L. Zhang and B. Li and X. Yin

and C. Zhuo and H. Gu and T. Ho and U. Schlichtmann, Countering Variations and Thermal

Effects for Accurate Optical Neural Networks, 2020 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 11/2020.

87

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

Software training to determine φ of each MZI

Tune φs online

no
#iterations ≥ nth

Configure phases φs with the best tuning into ONN

yes

Calibrate process variations of MZIs

Update power to configure MZI phases

considering power consumption and thermal imbalance

hardw
are

according to process variations and thermal effects

Figure 5.1: Work flow of the proposed framework [ZZL+20] c©2020 IEEE.

88

5.1 Software Training for ONNs

L1

L2

L3

L4

L5

L6

L′1

L′2

L′3

L′4

L′5

L′6

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

center

Cluster M7

Figure 5.2: Thermal imbalance in an ONN. The darker the color is, the hotter the

corresponding MZI is [ZZL+20] c©2020 IEEE.

5.1 Software Training for ONNs

In an ONN, the phases of MZIs carry computation information. Input data go

through the ONN and are multiplied with the transformation matrix similar to

(2.29) and (2.30). In the ONN, the items in the matrix are trigonometric functions

of the phases of MZIs. During training, the phases of MZIs are updated with a cost

function, defined as follows

Cost = −
η

∑
i=1

ŷ(i)log(y(i)) = C(φ) (5.1)

where y(i) is the value of the ith output of the neural network, and ŷ(i) is the target

value of this output. η is the number of outputs. C(φ) is the cross entropy function

with respect to the phases φ of all the MZIs in the ONN. A lower cost usually

results in a higher accuracy. To decrease the cost function, the phases of MZIs in

the neural network are updated iteratively, as

φi = φi −LR ·
∂C(φ)

∂φi
(5.2)

where LR denotes the learning rate.

89

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

In an ONN, the phase of an MZI is tuned by changing its temperature. As shown

in Fig. 5.3, the smaller the phase of an MZI is tuned, the smaller the deviation of

this phase from the expected value becomes. Therefore, during training, we add

a regularization term to the cost function to reduce the overall changed phase of

MZIs, as

Cost = C(φ) + α ·
N

∑
i=1

φi (5.3)

where C(φ) is the cross entropy defined in (5.1), N is the number of MZIs in the

whole ONN, and α is the penalty parameter to reduce the phase values of MZIs

during training.

In an ONN, the MZIs have different temperatures after configuration. If MZIs with

significant temperature difference are physically close to each other, their tempera-

tures also drift due to thermal imbalance. For example, in Fig. 5.2, φ7 and φ8 have

large phases and thus high temperatures, though other MZIs have small phases

due to the appended regularization term in (5.3). These MZIs with small phases

can be heated by φ7 and φ8 and their phases drift accordingly.

To address the problem above, we reduce thermal imbalance by narrowing the

temperature gap between an MZI and its neighbors. In this technique, we choose

each MZI in the ONN and its surrounding neighbors to form a cluster Mi, as

illustrated in Fig. 5.2. The size of the cluster can be adjusted to include more MZIs

according to different ONN structures. The average phase of the MZIs in such a

cluster is computed as ∑φj∈Mi
φj/|Mi|, where Mi is the set of MZIs in the cluster

and |Mi| is the number of the MZIs in Mi. Afterwards, the difference between

the phase of the MZI and this average is minimized to reduce thermal imbalance.

Accordingly, the cost function in (5.3) is modified as

Cost = C(φ) + α ·
N

∑
i=1

φi + β ·
N

∑
i=1
|φi − ∑

φj∈Mi

φj/|Mi|| (5.4)

90

5.2 Hardware Implementation for ONNs

where β is the penalty parameter to reduce thermal imbalance. After this training,

the target phases of MZIs are determined and certain amount of power should be

applied onto the MZIs to achieve these phases.

5.2 Hardware Implementation for ONNs

After the phases of MZIs are determined using software training, they should be

configured into the thermal-optic phase shifters in the MZIs. In this section, we

first introduce the proposed calibration procedure to extract process variations in

Section 5.2.1. Afterwards, we compensate the phases of MZIs to counter thermal

effects in Section 5.2.2. Finally, the residual variations and noise are compensated

with a characterized online tuning in Section 5.2.3. With these steps, the effects of

process variations and thermal impact can be reduced further.

5.2.1 Extraction of Process Variations with Calibration

To configure the MZI phases accurately, the effects of process variations on indi-

vidual MZIs need to be extracted. However, MZIs in an ONN cannot be measured

directly. Instead, only the final outputs of the ONN can be observed. To solve

this problem, we propose to deploy a technique based on differential testing. The

concept of this method is illustrated in Fig. 5.4, where the column C4 is under test.

This network contains four columns of MZIs. Their transformation matrices are

written as TC1 , TC2 , TC3 , and TC4 .

In the test procedure, we first apply four input patterns 1000, 0100, 0010 and 0001

to the inputs of the ONN. These input patterns together form an identity matrix

I. The outputs corresponding to these inputs are written together as a matrix

M. As discussed in Section. 2.2.3, this output matrix is the multiplication of the

transformation matrix of the ONN and the input data. Therefore, with the identity

91

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

k = 0.862, b = -0.150
k = 0.800, b = -0.390phase

power pp1 p2 p3

φ = xk + b

φ
′1 −

φ
φ
′2 −

φ

φ
′3 −

φ

φ

nominal curve

k = 0.900, b = 0.000
k = 0.938, b = 0.150
k = 1.000, b = 0.390

Figure 5.3: Characteristic curves of five MZIs under process variations, showing

the relationship between the applied power and the corresponding

phase change [ZZL+20] c©2020 IEEE.

matrix I as the input data, the matrix M is the same as the transformation matrix,

so that M = TC4TC3TC2TC1 . Afterwards, we change the phases of all the MZIs in

the column C4 by applying the same amount of power. Due to process variations,

the real phase changes of the MZIs in this column differ from each other. With

the same input identity matrix I, the ONN produces another set of outputs M′ =

T′C4
TC3TC2TC1 . Therefore, we can deduce

M′M−1 = (T′C4
TC3TC2TC1)(TC4TC3TC2TC1)

−1

= T′C4
T−1

C4

= T′C4
T∗C4

, (5.5)

where all matrices are unitary so that T−1
C4

= T∗C4
.

Similar to (2.31), all the transformation matrices of the columns are composed of

submatrices in the form of (2.29). Therefore, the multiplication of the modified

transformation matrix and the conjugate transpose of the original transformation

matrix can always be processed by multiplying the individual transformation ma-

92

5.2 Hardware Implementation for ONNs

trices of the MZIs. For example, the T′C4
T∗C4

can be calculated as

T′C4
T∗C4

=

1 0 0

0 T′6 0

0 0 1

1 0 0

0 T∗6 0

0 0 1

 =

1 0 0

0 T′6T∗6 0

0 0 1

 (5.6)

where T′6 is the transformation matrix of the MZI corresponding to φ6 in Fig. 5.4

after φ6 is tuned to φ′6 during calibration, and T∗6 is the conjugate transpose of T6.

Since both T′6 and T∗6 are in the form of (2.29), their multiplication can be expressed

as

T′6T∗6 = je
jφ′
2 (−je

−jφ
2)

sin φ′

2 cos φ′

2

cos φ′

2 − sin φ′

2

sin φ
2 cos φ

2

cos φ
2 − sin φ

2

= e

j(φ′−φ)
2

 cos φ′−φ
2 sin φ′−φ

2

− sin φ′−φ
2 cos φ′−φ

2

 . (5.7)

According to (5.5)–(5.7), T′6T∗6 is known since M′M−1 can be obtained from test

results. Therefore, tan φ′−φ
2 = sin φ′−φ

2 / cos φ′−φ
2 becomes known by matching the

corresponding items in the matrices. Consequently, ∆φ = φ′ − φ can be identified

from this test procedure.

With the analysis above, we can observe that the phase change of an MZI with

respect to a given power can be identified through test. However, this information

is still insufficient to calibrate to which characteristic curve such as in Fig. 5.3 this

MZI corresponds, since a curve in Fig. 5.3 is determined by two parameters k and

b.

Therefore, for a column in an ONN such as in Fig. 5.4, we applied several different

power values to tune the phases of MZIs in this column and obtain the correspond-

ing phase changes. We then use these phase changes to match the characteristic

curves as shown in Fig. 5.3, where three phase changes corresponding to the power

values p1, p2 and p3 are used.

93

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

φ1

φ2

φ4

φ5

φ3 φ6

C1 C2 C3 C4

TC1 TC2 TC3

TC4

T′C4

M

M′

Figure 5.4: Differential testing to extract process variations of MZIs [ZZL+20]

c©2020 IEEE.

Assume the three real phase changes of an MZI t corresponding to the power

values p1, p2 and p3 are obtained from test, as ∆φt
1 = φt

1 − φt, ∆φt
2 = φt

2 − φt,

∆φt
3 = φt

3 − φt, where φt is the original phase of the MZI t without any power

applied. For the rth curve in Fig. 5.3, we can compute the phase changes ∆φr
1, ∆φr

2

and ∆φr
3 when the power values p1, p2 and p3 are applied to this curve. These

computed phase changes are then used to match the real phase changes ∆φt
1, ∆φt

2

and ∆φt
3 by comparing the difference defined as ∆t,r = ∑M

k=1 |∆φt
k − ∆φr

k|, where M

is the number of power values used during test and equal to 3 in this case. After all

characteristic curves are enumerated, the curve i with the smallest ∆t,i is selected

as the characteristic curve of the MZI t.

With the characteristic curves of the MZIs in a column identified, the phases cor-

responding to any power values applied to these MZIs can be computed easily.

Therefore, the transformation matrix of the column under test can be identified,

such as TC4 in (2.30). By multiplying the inverses of TC4 to the left of TC4TC3TC2TC1 ,

the result of TC3TC2TC1 can be obtained. Therefore, the test procedure can be con-

tinued to identify the characteristic curves of the MZIs in the third column and

thus TC3 . This procedure can be repeated on all the columns of MZIs to identify

the characteristic curves of all MZIs in the ONN. The algorithm is summarized as

Algorithm 1.

The characteristic curves calibrated above are specific to individual MZIs and are

94

5.2 Hardware Implementation for ONNs

Algorithm 1: Test the process variations.

1 foreach phase shifter t do

2 foreach power k do

3 calculate ∆φt
k under power k with (5.7);

4 foreach curve r do

5 get the reference ∆φr
k under power k;

6 calculate ∆[k]
tr = ∆φt

k − ∆φr
k;

7 end

8 end

9 ∆t,r = ∑M
k=1

∣∣∣∆[k]
tr

∣∣∣;
10 Process variation of phase shifter t fits the curve argmin ∆t,r

r
;

11 end

used to compute the required power pk for the kth MZI according to the target

phases determined by training, so that the effects of process variations are taken

into account.

5.2.2 Power Adjustment to Counter Thermal-effected Inaccuracy

Even with thermal-aware training using (5.4) the target phases and thus the tem-

peratures of some MZIs may still differ much instead of being balanced. Conse-

quently, MZIs with different temperatures affect each other and cause their phases

to deviate from the expected values. To counter this deviation, we adjust the power

applied onto MZIs in advance with thermal compensation. Instead of the target

power pk to the kth MZI, the real power applied to this MZI is modified to pr
k.

Consequently, with the thermal effects of neighboring MZIs, the actual power the

kth MZI receives matches pk.

Assume that the kth MZI and the jth MZI are neighbors and the real power values

applied to them are denoted as pr
k and pr

j . The thermal effect of the jth MZI to the

kth MZI depends on their distance. Therefore, the target power pk that is actually

95

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

received by the kth MZI can be expressed as

pk = λk pr
k + ∑

j∈Nk

λj,k pr
j (5.8)

where λk is the ratio of pr
k received by the kth MZI directly. λk < 1 since a part

of pr
k is contributed to the neighboring MZIs, Nk contains the indexes of the MZIs

neighboring the kth MZI, λj,k is a constant determined by the distance between the

jth MZI and the kth MZI and can be set as in [JSEF+19].

The target power pk of the kth MZI is determined from training and variation

calibration. With pk determined, all the real power values of the MZIs can be

calculated by solving the linear system of (5.8) for all MZIs. By applying the power

pr
k to the kth MZI, the power actually received by this MZI is pk, so that the thermal

effects between MZIs can be compensated.

5.2.3 Characterized Tuning of ONNs

After process variations are calibrated and thermal effects are compensated by ad-

justing power values in advance, statistical noise from unpredictable residual ef-

fects may still exist. Even though these effects are relatively small, they may still

cause a remarkable degradation of inference accuracy as demonstrated in Fig. 2.20.

To improve the inference accuracy of ONNs, we tune the phases after MZIs are

configured. Unlike in other online tuning methods such as [HLC+13], the result

of a tuning iteration in an ONN is not observable, since the MZIs cannot be mea-

sured directly. To address this challenge, we characterize a given number of tuning

directions by emulating the statistical noise during training and use them to tune

ONNs online.

After training, the phases of the MZIs are determined. We then generate a given

number of samples according to noise distributions and inject them into the phases.

96

5.3 Experimental Results

The gradients with the cost function in (5.4) are updated with respect to all these

random samples and stored for online tuning later.

During online tuning, we first enumerate all the precharacterized gradient samples

stored during training. In each gradient sample, we apply a small amount of power

change to each individual MZI, and the direction of this tuning is determined by

the gradient sample. After all the samples are enumerated, the gradient sample

with the highest inference accuracy is selected and the corresponding tuning is

applied. Online tuning repeats until a given number of iterations, nth in Fig. 5.1,

are executed, and the best tuning result in all the iterations is adopted.

5.3 Experimental Results

To evaluate the proposed framework for ONNs, three different neural networks,

a 2-layer fully-connected neural network (FCNN), LeNet-5 with 2 convolutional

layers and 3 fully-connected layers, and an augmented LeNet-5 with 4 convolu-

tional layers and 3 fully-connected layers were implemented using ONNs. These

networks were then used to process two image datasets, MNIST and Cifar10. To

maintain a high inference accuracy, we duplicated each convolutional layer for

LeNet-5 and the augmented LeNet-5 to construct the corresponding ONNs. The

proposed method, however, is independent of the ONN architectures and can also

be applied to the architecture based on SVD decomposition [YS+17] or the sparse

tree structure [ZLL+19]. The neural networks and the proposed algorithm were

implemented using TensorFlow [AAB+15] and tested with an Intel 3.4 GHz CPU

and an Nvidia Quadro RTX 6000 graphics card.

To emulate process variations, we generated 100 sample chips for each ONN with

process variations and noise modeled as Gaussian distributions. In each sample,

the parameters of all MZIs were generated randomly according to the distributions

of process variations. We used 1000 characteristic curves similar to Fig. 5.3 to

97

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

Table 5.1: Significant drop of inference accuracy without variation extraction and

power adjustment [ZZL+20] c©2020 IEEE.

w/o var. ext. w/o pow. eval.

NN Dataset µ σ µ σ

FCNN MNIST 11.63% 1.47% 12.07% 1.79%

LeNet-5 Cifar10 11.22% 0.86% 11.05% 0.82%

Aug.LeNet-5 Cifar10 13.76% 0.82% 14.35% 0.93%

Table 5.2: Results of ONNs with the proposed framework [ZZL+20] c©2020 IEEE.

Acc. Software Training Acc. ONN_MZI Power

NN Dataset NN ONN ONNp µ σ Reduct.

FCNN MNIST 97.40% 97.13% 94.41% 92.80% 0.6% 25.83%

LeNet-5 Cifar10 76.56% 75.91% 74.60% 74.11% 0.26% 20.24%

Aug.LeNet-5 Cifar10 82.81% 82.08% 81.23% 80.80% 0.22% 13.27%

capture the process variations. In these curves, the deviation of phases from the

nominal curve increases as the applied power increases, which corresponds to large

phases in the MZIs, and the largest deviation appears at the phase 2π. In the

experiments, the 3σ of the phases at 2π was set to 20% to determine the parameters

of k and b in the characteristic curves in Fig. 5.3. The noise is purely random and

its 3σ was set to 1.9%.

To demonstrate the necessity and effectiveness of the proposed framework coun-

tering variations and thermal effects, we tested the baseline cases by disabling the

extraction of process variations described in Section 5.2.1 and the countermeasure

for thermal effects described in Section 5.2.2, respectively, and the results are shown

in Table 5.1. The third and fourth columns in Table 5.1 show the mean value and the

standard deviation of the inference accuracy without extracting process variations,

respectively. The fifth and the sixth columns in Table 5.1 list the mean value and

standard deviation of the inference accuracy without the countermeasure of ther-

98

5.3 Experimental Results

mal effects, respectively. According to this table, the inference accuracy of ONNs

drops drastically down to an unusable level if either of the proposed techniques

were not applied, confirming the indispensability of the proposed framework.

The results of applying the proposed framework of variation extraction and power

adjustment are shown in Table 5.2. The third column in Table 5.2 shows the infer-

ence accuracy of the original neural networks without using ONNs as accelerator.

These values represent the capability of these general networks in processing the

corresponding datasets. The inference accuracy of ONN implementation using

MZIs with the cost function (5.1) is shown in the fourth column. In these tests,

process variations and thermal effects on MZIs have not been considered. Since

these values are very close to those in the third column of Table 5.2, it has been

demonstrated that ONNs with MZIs are capable of maintaining a similar infer-

ence accuracy in realizing neural networks while providing the advantage of high

bandwidth.

To counter thermal imbalance, we penalized phases during software training using

the cost function (5.4). The resulting accuracy is shown in the fifth column in Ta-

ble 5.2. These accuracy values degrade further but are still comparable to the cases

without penalization during software training. In countering thermal imbalance

using (5.4), a side effect is that the phases of the MZIs were generally reduced,

leading to a smaller power consumption. The results of this reduction using (5.4)

over the case without this penalization are shown in the last column in Table 5.2.

After configuring the phases into MZIs, process variations, thermal effects and

noise came into play, so that the accuracy values of the 100 sampled chips also

become a distribution. The mean value µ and the standard deviation σ of the infer-

ence accuracy are shown in the sixth column and the seventh column in Table 5.2,

respectively. With the introduced calibration of process variations and compen-

sation of thermal effects, the inference accuracy only decreases slightly compared

with software training and the distributions of the accuracy values are within small

99

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

0.900 0.918 0.936 0.954

Accuracy

0

2

4

6

8

10

12

14

16

#
C
h
ip

s
=0.9239
=0.0070

=0.9280
=0.0060

FCNN w/o Tuning
with Tuning

0.730 0.737 0.743 0.750

Accuracy

0

2

4

6

8

10

12

14

16

#
C
h
ip

s

=0.7379
=0.0028

=0.7411
=0.0026

LeNet-5 w/o Tuning
with Tuning

0.785 0.798 0.812 0.825

Accuracy

0

2

4

6

8

10

12

14

16

#
C
h
ip

s

=0.7993
=0.0025

=0.8080
=0.0022

Aug.LeNet-5 w/o Tuning
with Tuning

Figure 5.5: Accuracy distribution with/without characterized tuning for FCNN,

LeNet-5 and Augmented LeNet-5 [ZZL+20] c©2020 IEEE.

100

5.4 Conclusions

ranges, leading to a good quality control.

To compensate residual noise, we tuned MZI phases online according to a prechar-

acterized set of gradients. To verify the effectiveness of online tuning, this step was

disabled in the proposed framework and the distributions of the inference accuracy

of 100 chips are compared in Fig. 5.5. According to this comparison, it is clear that

online tuning is able to improve the inference accuracy further.

5.4 Conclusions

In this chapter, we have proposed a framework for ONNs to counter their sensi-

tivity to deviation of phases due to process variations and thermal effects. During

software training, phases are penalized to reduce process variations and thermal

imbalance. To configure phases of MZIs accurately on hardware implementation

of ONNs, we extract process variations of MZIs and adjust power applied on them

in advance. Residual noise is compensated by online tuning to improve inference

accuracy further. Experimental results confirm that the proposed framework im-

proves inference accuracy effectively.

101

5 Countering Variations and Thermal Effects for Accurate Optical Neural Networks

102

Chapter 6

Conclusion

In the past decade, engineers have been exploring and developing emerging sys-

tems for biochemical labs and neuromorphic computing. Biochips and CIM sys-

tems have been proposed (see Chapter 2), as they can automatically carry out bio-

chemical experiments and integrate storage and computing, respectively. To further

improve the efficiency of the emerging systems, the control logic for biochips (see

Chapter 3), memristor-based crossbars (Chapter 4) and MZI-arrays (Chapter 5) for

neural network computing are optimized regarding power consumption and im-

pacts from manufacturing faults, process variations, thermal issues, and so on.

To improve the efficiency and fault tolerance for biochips, the multi-channel multi-

plexing control logic accompanied by the backup path structure is proposed, with

an ILP model established to design the control logic automatically. The novel con-

trol logic can provide an average 61.33% improvement in time cost and an average

45.27% saving of control valves compared to the direct connection structure. Fault

tolerance is also improved in the proposed framework.

To reduce the impacts of process variations and noise in the memristor-based cross-

bars, a framework is proposed consisting of a statistical training method for neural

networks by modeling process variations and noise as random variables and of a

global variation compensation. The interference accuracy of neural networks im-

plemented in hardware with process variations shows significant improvement.

Future work is likely to include exploring statistical training on more complex

multi-layer neural networks and convolutional neural networks. Considering the

103

6 Conclusion

limited first-order statistical information propagation and the self-designed modi-

fied cost function in the existed framework, exploration directions may include how

to propagate the high-order statistical information efficiently and how to design the

cost function able to deal with output distributions with high-order statistical in-

formation. But most importantly, whether there exist variation-tolerant weights is

needed to figure out, which may require more exploration in the mathematics of

neural networks.

In the neuromorphic computing based on the MZI array, traditional neural net-

works with weights of general real-value matrices are modified to ONNs with

unitary complex-value matrices. In ONN training, the cost function is modified

to a cross entropy along with regulation terms of phase summation and cluster

power difference from thermo-optical phase shifters to reduce power consumption,

process variations, and thermal imbalance in the MZI array. A process variation

testing algorithm and a power adjustment method are proposed to counter pro-

cess variations and thermal effects, respectively, followed by a characterized tuning

method to compensate for the residual noise. Simulation results show a potential

25.83% power saving compared to the ONN without power optimization, and the

framework maintains an ONN inference accuracy well-matched to its electricity

counterparts. Future work should include optimization and simplification of ONN

architectures, efficiency improvements in process variation calibration algorithms

and power adjustment methods, designing a tuning algorithm that works for larger

residual noise, as well as applying online-training to reduce the sensitivity of ONNs

to variations and thermal effects directly. The inspirations to design and optimize

these algorithms could be from the classical algorithms or via machine learning.

104

Appendix A

Complex Expressions for Optical

Wave

In the optical domain, if we use the trigonometric identities to operate the light

transformation in mathematics, it will be quite difficult. Fortunately, another method

exists. The oscillatory trigonometric function can be expressed as an exponent of

the natural number e by Euler’s formulas

ejθ = cos θ + j sin θ, (A.1)

where j is the fundamental imaginary number

j =
√
−1. (A.2)

The real and imaginary parts of ejθ can be easily extracted by

<(ejθ) = cos θ (A.3)

=(ejθ) = sin θ. (A.4)

Therefore, the light signal can be written in its complex form

Lc = Aej(ωt+kz+θ) (A.5)

with

<(Lc) = A cos (ωt + kz + θ) (A.6)

=(Lc) = A sin (ωt + kz + θ). (A.7)

105

A Complex Expressions for Optical Wave

In reality, <(Lc) is the light signal. The amplitude A and phase P of the wave can

be obtained by

A(Lc) =
√
<2(Lc) +=2(Lc), (A.8)

P(Lc) = arctan
=(Lc)

<(Lc)
= ωt + kz + θ. (A.9)

With the exponential expressions, it is easy to perform mathematical functions on

the light waves including wave adding, wave multiplication, amplitude and phase

obtaining [GGG17]. Take the operation L1 + L2 as the example. The generated

wave can be easily obtained with the following steps:

1. Change the light signals from trigonometric to complex form:

Lc
1 = A1ej(ωt+kz+θ1) (A.10)

Lc
2 = A2ej(ωt+kz+θ2). (A.11)

2. The two signals can be added directly in the complex forms to obtain the

superposed wave, namely, adding real parts and imaginary parts, respectively

as

Lc
12=<(Lc

12)+ j=(Lc
12) =Lc

1+Lc
2=<(Lc

1)+<(Lc
2)+ j(=(Lc

1)+=(Lc
2)) (A.12)

3. According to (A.8) and (A.9), the amplitude and phase of the superposed

wave can be obtained by

A(Lc
12) =

√
(<(Lc

1) +<(Lc
2))

2 + (=(Lc
1) +=(Lc

2))
2 (A.13)

P(Lc
12) = arctan

(=(Lc
1) +=(Lc

2))

(<(Lc
1) +<(Lc

2))
(A.14)

4. The real superposed wave can be extracted from the complex form by

L12 = <(Lc
12) = A(Lc

12) cos (P(Lc
12))

=
√
(<(Lc

1)+<(Lc
2))

2+(=(Lc
1)+=(Lc

2))
2 cos(arctan

=(Lc
1) +=(Lc

2)

<(Lc
1) +<(Lc

2)
).

(A.15)

106

Other light signal operations can also be processed similarly in the complex do-

main.

107

Bibliography

[AAB+15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-

fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. Soft-

ware available from tensorflow.org.

[AQ12] I. E. Araci and S. R. Quake. Microfluidic very large scale integration

(mVLSI) with integrated micromechanical valves. Lab Chip, 12:2803–

2806, 2012.

[AR+16] E. Amat, A. Rubio, et al. Memristive crossbar memory lifetime eval-

uation and reconfiguration strategies. IEEE Trans. Emerg. Topics in

Comput., 6(2):207–218, 2016.

[BBA07] R. Barak and Y. Ben-Aryeh. Quantum fast fourier transform and

quantum computation by linear optics. J. Opt. Soc. Am. B, 24(2):231–

240, 2007.

[BDHVV+12] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Ku-

mar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout,

109

Bibliography

and R. Baets. Silicon microring resonators. Laser & Photonics Reviews,

6(1):47–73, 2012.

[BDRDR03] R. E. Bryant, O. David Richard, and O. David Richard. Computer

systems: a programmer’s perspective, volume 2. Prentice Hall Upper

Saddle River, 2003.

[BM+13] M. Brunner, D.and Soriano, C. Mirasso, et al. Parallel photonic infor-

mation processing at gigabyte per second data rates using transient

states. Nature Communication, 4(1364):1–7, 2013.

[BMF+18] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger,

and D. Brunner. Reinforcement learning in a large-scale photonic

recurrent neural network. Optica, 5:756–760, 2018.

[Bro08] J. G. Brookshear. Computer science: an overview. Addison-Wesley

Publishing Company, 2008.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004.

[CHG+19] Z. Chen, X. Huang, W. Guo, B. Li, T.-Y. Ho, and U. Schlichtmann.

Physical synthesis of flow-based microfluidic biochips considering

distributed channel storage. In Proc. Design, Autom., and Test Europe

Conf. (DATE), pages 1525–1530, 2019.

[CHM+16] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer,

and I. A. Walmsley. Optimal design for universal multiport interfer-

ometers. Optica, 3(12):1460–1465, 2016.

[Chu71] L. Chua. Memristor-the missing circuit element. IEEE Transactions

on circuit theory, 18(5):507–519, 1971.

[Chu11] L. Chua. Resistance switching memories are memristors. Applied

Physics A, 102(4):765–783, 2011.

110

Bibliography

[CLC+17] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang.

Accelerator-friendly neural-network training: Learning variations

and defects in RRAM crossbar. In Proc. Design, Autom., and Test Eu-

rope Conf. (DATE), 2017.

[CMP13] A. Calimera, E. Macii, and M. Poncino. The human brain project and

neuromorphic computing. Functional neurology, 28(3):191, 2013.

[COT00] M. Conti, S. Orcioni, and C. Turchetti. Training neural networks to be

insensitive to weight random variations. Neural networks, 13(1):125–

132, 2000.

[CYL14] S. Choi, Y. Yang, and W. Lu. Random telegraph noise and resis-

tance switching analysis of oxide based resistive memory. Nanoscale,

6(1):400–404, 2014.

[DHMM96] C. Diorio, P. Hasler, A. Minch, and C. A. Mead. A single-transistor

silicon synapse. IEEE Transactions on Electron Devices, 43(11):1972–

1980, 1996.

[Dub17] K. Dubovikov. Pytorch vs tensorflow – spotting the difference. To-

wards Data Science abs/1703.06907, 2017.

[EiSWd13] K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, and A. J. deMello.

The past, present and potential for microfluidic reactor technology

in chemical synthesis. Nature Chemistry, 5:905–915, 2013.

[Eta19] L. Etaati. Deep learning tools with cognitive toolkit (cntk). In Ma-

chine Learning with Microsoft Technologies, pages 287–302. Springer,

2019.

[Fai07] R. B. Fair. Digital microfluidics: is a true lab-on-a-chip possible?

Microfluidics and Nanofluidics, 3(3):245–281, 2007.

111

Bibliography

[FM11] L. M. Fidalgo and S. J. Maerkl. A software-programmable microflu-

idic device for automated biology. Lab Chip, 11:1612–1619, 2011.

[FMW+19] M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and

M. R. DeWeese. Design of optical neural networks with component

imprecisions. Optics express, 27(10):14009–14029, 2019.

[FYW+19] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and

W. Pernice. All-optical spiking neurosynaptic networks with self-

learning capabilities. Nature, 569(7755):208–214, 2019.

[GGG17] G. D. Gillen, K. Gillen, and S. Guha. Light propagation in linear optical

media. CRC Press, 2017.

[GP17] A. Gulli and S. Pal. Deep learning with Keras. Packt Publishing Ltd,

2017.

[GWY+17] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille. Close-

to-optimal placement and routing for continuous-flow microfluidic

biochips. In Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC),

pages 530–535, 2017.

[GZF+20] J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan. Towards

area-efficient optical neural networks: An FFT-based architecture. In

Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 476–

481, 2020.

[GZY+19] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. [dl] a survey of fpga-

based neural network inference accelerators. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 12(1):1–26, 2019.

[Har14] Y. N. Harari. Sapiens: A brief history of humankind. Random House,

2014.

112

Bibliography

[HBM+12] B. Hadwen, G. Broder, D. Morganti, A. Jacobs, C. Brown, J. Hector,

Y. Kubota, and H. Morgan. Programmable large area digital mi-

crofluidic array with integrated droplet sensing for bioassays. Lab on

a Chip, 12(18):3305–3313, 2012.

[HCH17] K. Hu, K. Chakrabarty, and T.-Y. Ho. Computer-Aided Design of Mi-

crofluidic Very Large Scale Integration (mVLSI) Biochips. Springer, 2017.

[HDHC17] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty. Control-layer

routing and control-pin minimization for flow-based microfluidic

biochips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

36(1):55–68, 2017.

[HGL+18] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,

H. Jiang, R. S. Williams, J. J. Yang, et al. Memristor-based analog

computation and neural network classification with a dot product

engine. Advanced Materials, 30(9):1705914, 2018.

[HGR+17] W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, and P. Pop. Fast

architecture-level synthesis of fault-tolerant flow-based microfluidic

biochips. In Proc. Design, Autom., and Test Europe Conf. (DATE), pages

1671–1676, 2017.

[HHCG19] X. Huang, T.-Y. Ho, K. Chakrabarty, and W. Guo. Timing-driven

flow-channel network construction for continuous-flow microfluidic

biochips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2019.

doi:10.1109/TCAD.2019.2912936.

[HHG+19] X. Huang, T.-Y. Ho, W. Guo, B. Li, and U. Schlichtmann. Minicontrol:

Synthesis of continuous-flow microfluidics with strictly constrained

control ports. In Proc. Design Autom. Conf. (DAC), pages 145:1–6,

2019.

113

Bibliography

[HLC+13] M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose. BSB training scheme

implementation on memristor-based circuit. In IEEE Symp. on Com-

put. Intelligence for Security and Defense Applications, pages 80–87,

2013.

[HMM+14] N. C. Harris, Y. Ma, J. Mower, et al. Efficient, compact and low loss

thermo-optic phase shifter in silicon. Opt. Express, 22(9):10487–10493,

2014.

[HSL+16] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,

S. Lam, N. Ge, J. J. Yang, and R. S. Williams. Dot-product engine for

neuromorphic computing: Programming 1t1m crossbar to accelerate

matrix-vector multiplication. In 2016 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–6. IEEE, 2016.

[HYHC14] K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty. Testing of flow-based mi-

crofluidic biochips: Fault modeling, test generation, and experimen-

tal demonstration. IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., 33(10):1463–1475, 2014.

[HZRS16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[IL73] A. G. Ivakhnenko and V. G. Lapa. Cybernetic predicting devices. CCM

Information Corporation, 1973.

[Jou16] N. Jouppi. Google supercharges machine learning tasks with tpu

custom chip. Google Blog, May, 18:1, 2016.

[JRRR17] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan. Computing in mem-

ory with spin-transfer torque magnetic ram. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 26(3):470–483, 2017.

114

Bibliography

[JSD+14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[JSEF+19] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant.

Optimization of thermo-optic phase-shifter design and mitigation of

thermal crosstalk on the SOI platform. Opt. Express, 27:10456–10471,

2019.

[KGPS18] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag. A multi-

functional in-memory inference processor using a standard 6t sram

array. IEEE Journal of Solid-State Circuits, 53(2):642–655, 2018.

[KNH14] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online:

http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[KSJ+00] E. R. Kandel, J. H. Schwartz, T. M. Jessell, D. of Biochemistry, M. B. T.

Jessell, S. Siegelbaum, and A. Hudspeth. Principles of neural science,

volume 4. McGraw-hill New York, 2000.

[KSYC10] H. Kim, M. P. Sah, C. Yang, and L. O. Chua. Memristor-based

multilevel memory. In 2010 12th International Workshop on Cellular

Nanoscale Networks and their Applications (CNNA 2010), pages 1–6.

IEEE, 2010.

[KTR+08] I. Kuon, R. Tessier, J. Rose, et al. Fpga architecture: Survey and

challenges. Foundations and Trends R© in Electronic Design Automation,

2(2):135–253, 2008.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

115

Bibliography

[LCB10] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit

database. 2010.

[LCH13] Y. Luo, K. Chakrabarty, and T.-Y. Ho. Design of cyberphysical digital

microfluidic biochips under completion-time uncertainties in fluidic

operations. In 2013 50th ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), pages 1–7. IEEE, 2013.

[LLB+17] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and

U. Schlichtmann. Testing microfluidic fully programmable valve ar-

rays (FPVAs). In Proc. Design, Autom., and Test Europe Conf. (DATE),

pages 91–96, 2017.

[LLC+14] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho. An efficient

bi-criteria flow channel routing algorithm for flow-based microflu-

idic biochips. In Proc. Design Autom. Conf. (DAC), pages 141:1–141:6,

2014.

[LLC+15] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang. Vortex: Variation-

aware training for memristor x-bar. In Proc. Design Autom. Conf.

(DAC), 2015.

[LLY+17a] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann. Transport

or store?: Synthesizing flow-based microfluidic biochips using dis-

tributed channel storage. In Proc. Design Autom. Conf. (DAC), pages

49:1–49:6, 2017.

[LLY+17b] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann. Trans-

port or store? synthesizing flow-based microfluidic biochips using

distributed channel storage. In 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–6. IEEE, 2017.

[LSE+05] C. Lee, G. Sui, A. M. Elizarov, C. J. Shu, Y. S. Shin, A. N. Doo-

ley, J. Huang, A. Daridon, P. G. Wyatt, D. B. Stout, et al. Multistep

116

Bibliography

synthesis of a radiolabeled imaging probe using integrated microflu-

idics. Science, 310(5755):1793–1796, 2005.

[LTA16] G. Lacey, G. W. Taylor, and S. Areibi. Deep learning on fpgas: Past,

present, and future. arXiv preprint arXiv:1602.04283, 2016.

[LTL+16] M. Li, T. Tseng, B. Li, T. Ho, and U. Schlichtmann. Sieve-valve-aware

synthesis of flow-based microfluidic biochips considering specific bi-

ological execution limitations. In Proc. Design, Autom., and Test Europe

Conf. (DATE), pages 624–629, 2016.

[LV+12] D. M.-M. Laurent Vivien, Andreas Polzer et al. Zero-bias 40gbit/s

germanium waveguide photodetector on silicon. Opt. Express,

20:1096–1101, 2012.

[LWW+14] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang. Training itself: Mixed-

signal training acceleration for memristor-based neural network. In

Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC), 2014.

[LYY+15] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Q. Wu,

and H. Jiang. A spiking neuromorphic design with resistive crossbar.

In Proc. Design Autom. Conf. (DAC), 2015.

[MAQ06] J. S. Marcus, W. F. Anderson, and S. R. Quake. Microfluidic single-

cell mRNA isolation and analysis. Analytical Chemistry, 78(9):3084–

3089, 2006.

[MBGK+17] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev,

and D. B. Strukov. High-performance mixed-signal neurocomputing

with nanoscale floating-gate memory cell arrays. IEEE transactions

on neural networks and learning systems, 29(10):4782–4790, 2017.

[McK04] S. A. McKee. Reflections on the memory wall. In Proceedings of the

1st conference on Computing frontiers, page 162, 2004.

117

Bibliography

[Mit19] S. Mittal. A survey of reram-based architectures for processing-in-

memory and neural networks. Machine learning and knowledge extrac-

tion, 1(1):75–114, 2019.

[MKB+10] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur.

Recurrent neural network based language model. In Eleventh annual

conference of the international speech communication association, 2010.

[MQ07] J. Melin and S. Quake. Microfluidic large-scale integration: the evo-

lution of design rules for biological automation. Annu. Rev. Biophys.

Biomol. Struct., 36:213–231, 2007.

[NCXX10] D. Niu, Y. Chen, C. Xu, and Y. Xie. Impact of process variations

on emerging memristor. In Proceedings of the 47th Design Automation

Conference, pages 877–882, 2010.

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems, pages 8024–8035, 2019.

[RB17] A. Ribeiro and W. Bogaerts. Digitally controlled multiplexed silicon

photonics phase shifter using heaters with integrated diodes. Optics

express, 25(24):29778–29787, 2017.

[RKF+09] D. Rosenbluth, K. Kravtsov, M. P. Fok, , and P. R. Prucnal. A

high performance photonic pulse processing device. Opt. Express,

17:22767–22772, 2009.

[RZBB94a] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental

realization of any discrete unitary operator. Physical review letters,

73(1):58, 1994.

118

Bibliography

[RZBB94b] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental

realization of any discrete unitary operator. Phys. Rev. Lett., 73(1):58–

61, 1994.

[Sch15] J. Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[SDCG+15] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky.

Memristor-based multilayer neural networks with online gradient

descent training. IEEE Trans. Neural Netw. Learn. Syst., 26(10):2408–

2421, 2015.

[Seb09] G. A. Seber. Multivariate observations, volume 252. John Wiley &

Sons, 2009.

[SKK10] S. Shin, K. Kim, and S.-M. Kang. Memristor applications for

programmable analog ics. IEEE Transactions on Nanotechnology,

10(2):266–274, 2010.

[SL12] A. W. Snyder and J. Love. Optical waveguide theory. Springer Science

& Business Media, 2012.

[SLGB+18] A. Sebastian, M. Le Gallo, G. W. Burr, S. Kim, M. BrightSky, and

E. Eleftheriou. Tutorial: Brain-inspired computing using phase-

change memory devices. Journal of Applied Physics, 124(11):111101,

2018. Available at https://doi.org/10.1063/1.5042413.

[SSEM18] A. Shawahna, S. M. Sait, and A. El-Maleh. Fpga-based accelerators

of deep learning networks for learning and classification: A review.

IEEE Access, 7:7823–7859, 2018.

[SSSW08] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The

missing memristor found. nature, 453(7191):80–83, 2008.

[Ste99] J. Stewart. Calculus, brooks. Cole Publishing Company, 6:378, 1999.

119

https://doi.org/10.1063/1.5042413

Bibliography

[SW13] R. Stanley Williams. How we found the missing memristor. In Chaos,

CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-

ROM, composed by Eleonora Bilotta, pages 483–489. World Scientific,

2013.

[TLF+18a] T. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T. Ho, I. E. Araci,

and U. Schlichtmann. Columba 2.0: A co-layout synthesis tool for

continuous-flow microfluidic biochips. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., 37(8):1588–1601, 2018.

[TLF+18b] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho,

and U. Schlichtmann. Columba s: A scalable co-layout design au-

tomation tool for microfluidic large-scale integration. In Proceedings

of the 55th Annual Design Automation Conference, pages 1–6, 2018.

[TLHS15] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. Reliability-aware

synthesis for flow-based microfluidic biochips by dynamic-device

mapping. In Proceedings of the 52nd Annual Design Automation Con-

ference, pages 1–6, 2015.

[TLL+16a] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann. Reliability-

aware synthesis with dynamic device mapping and fluid routing for

flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., 35(12):1981–1994, 2016.

[TLL+16b] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann. Columba:

Co-layout synthesis for continuous-flow microfluidic biochips. In

Proceedings of the 53rd Annual Design Automation Conference, pages

1–6, 2016.

[TLSH15a] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho. Storage and

caching: Synthesis of flow-based microfluidic biochips. IEEE Design

& Test, 32(6):69–75, 2015.

120

Bibliography

[TLSH15b] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho. Storage and

caching: Synthesis of flow-based microfluidic biochips. IEEE Design

& Test, 32(6):69–75, 2015.

[TLZ+19] T.-M. Tseng, M. Li, Y. Zhang, T.-Y. Ho, and U. Schlichtmann. Cloud

columba: Accessible design automation platform for production and

inspiration. In 2019 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 1–6. IEEE, 2019.

[TMQ02] T. Thorsen, S. J. Maerkl, and S. R. Quake. Microfluidic large-scale

integration. Science, 298(5593):580–584, 2002.

[TNSP14] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal. Broad-

cast and weight: An integrated network for scalable photonic spike

processing. Journal of Lightwave Technology, 32(21):4029–4041, 2014.

[VRK+06] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,

S. Narayan, D. K. Beece, J. Piaget, N. Venkateswaran, and J. G. Hem-

mett. First-order incremental block-based statistical timing analysis.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 25(10):2170–

2180, 2006.

[WHD+13] N. N. Watkins, U. Hassan, G. Damhorst, H. Ni, A. Vaid, W. Ro-

driguez, and R. Bashir. Microfluidic cd4+ and cd8+ t lymphocyte

counters for point-of-care hiv diagnostics using whole blood. Sci-

ence translational medicine, 5(214):214ra170–214ra170, 2013.

[WXX+19] T. Wang, J. Xiong, X. Xu, M. Jiang, Y. Shi, H. Yuan, M. Huang, and

J. Zhuang. MSU-Net: Multiscale statistical U-net for real-time 3D

cardiac MRI video segmentation. In Proc. Medical Image Computing

and Computer Assisted Interventions, 2019.

[WXXS19] T. Wang, J. Xiong, X. Xu, and Y. Shi. SCNN: A general distribution

based statistical convolutional neural network with application to

121

Bibliography

video object detection. In Proc. AAAI Conf. on Artificial Intelligence,

2019.

[WZY+17] Q. Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and Y. Cai.

Hamming-distance-based valve-switching optimization for control-

layer multiplexing in flow-based microfluidic biochips. In Proc. Asia

and South Pacific Des. Autom. Conf. (ASP-DAC), pages 524–529, 2017.

[WZY+18] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai. Phys-

ical co-design of flow and control layers for flow-based microflu-

idic biochips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

37(6):1157–1170, 2018.

[XCP10] T. Xu, K. Chakrabarty, and V. K. Pamula. Defect-tolerant design and

optimization of a digital microfluidic biochip for protein crystalliza-

tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 29(4):552–565, 2010.

[XY19] Q. Xia and J. J. Yang. Memristive crossbar arrays for brain-inspired

computing. Nature materials, 18(4):309–323, 2019.

[XZH07] J. Xiong, V. Zolotov, and L. He. Robust extraction of spatial correla-

tion. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(4):619–

631, 2007.

[YHC15] H. Yao, T.-Y. Ho, and Y. Cai. PACOR: practical control-layer rout-

ing flow with length-matching constraint for flow-based microflu-

idic biochips. In Proc. Design Autom. Conf. (DAC), pages 142:1–142:6,

2015.

[YS+17] S. S. Yichen Shen, Nicholas C. Harris et al. Deep learning with co-

herent nanophotonic circuits. naturephotonics, 11:441–446, 2017.

122

Bibliography

[YWR+15] H. Yao, Q. Wang, Y. Ru, Y. Cai, and T.-Y. Ho. Integrated flow-control

codesign methodology for flow-based microfluidic biochips. IEEE

Design & Test, 32(6):60–68, 2015.

[ZHL+19] Y. Zhu, X. Huang, B. Li, T. Ho, Q. Wang, H. Yao, R. Wille, and

U. Schlichtmann. Multicontrol: Advanced control logic synthesis

for flow-based microfluidic biochips. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, pages 1–1, 2019.

[ZLH+18] Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlicht-

mann. Multi-channel and fault-tolerant control multiplexing for

flow-based microfluidic biochips. In Proc. Int. Conf. Comput.-Aided

Des. (ICCAD), pages 123:1–8, 2018.

[ZLL+19] Z. Zhao, D. Liu, M. Li, Z. Ying, L. Zhang, B. Xu, B. Yu, R. T. Chen,

and D. Z. Pan. Hardware-software co-design of slimmed optical

neural networks. In Proc. Asia and South Pacific Des. Autom. Conf.

(ASP-DAC), pages 705–710, 2019.

[ZSL18] M. A. Zidan, J. P. Strachan, and W. D. Lu. The future of electronics

based on memristive systems. Nature Electronics, 1(1):22–29, 2018.

[ZWV17] J. Zhang, Z. Wang, and N. Verma. In-memory computation of a

machine-learning classifier in a standard 6t sram array. IEEE Journal

of Solid-State Circuits, 52(4):915–924, 2017.

[ZZL+19] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann.

Aging-aware lifetime enhancement for memristor-based neuromor-

phic computing. In 2019 Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE), pages 1751–1756. IEEE, 2019.

[ZZL+20] Y. Zhu, G. L. Zhang, B. Li, X. Yin, C. Zhuo, H. Gu, T.-Y. Ho, and

U. Schlichtmann. Countering variations and thermal effects for ac-

123

Bibliography

curate optical neural networks. In 2020 IEEE/ACM International Con-

ference On Computer Aided Design (ICCAD), pages 1–7, 2020.

[ZZW+20] Y. Zhu, G. L. Zhang, T. Wang, B. Li, Y. Shi, T. Ho, and U. Schlicht-

mann. Statistical training for neuromorphic computing using

memristor-based crossbars considering process variations and noise.

In 2020 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 1590–1593, 2020.

124

	Introduction
	Contributions of This Work
	Structure of This Dissertation
	Summary

	Background and Shortcomings of Emerging Systems
	Biochips for Automatic Biochemical Experiments
	Introduction of Continuous Flow Biochips
	Traditional Control Logic for Continuous Flow Biochips

	Neuromorphic Hardware to Accelerate Neural Network Computing
	Neural Network and Hardware Realization
	Emerging System with Memristor-based Crossbar
	Emerging System with Optical Mach-Zehnder Interferometer Array

	Summary

	Multi-Channel and Fault-Tolerant Control Multiplexing for Flow-Based Microfluidic Biochips
	Proposed Multiplexing Mechanisms for Control Logic Design and Problem Formulation
	Multi-Channel Switching
	Logic Reduction by Alternate Multi-Channel Switching for Given Applications
	Fault Tolerance in Control Layer
	Problem Formulation

	A General Framework for Control Multiplexing and Fault Tolerance
	Switching States Compression by Mixing Multiplexing
	Computation of Multi-Channel Switching Scheme
	Control Logic Construction on a General Routing Grid

	Simulation Results
	Summary

	Statistical Training for Memristor-based Crossbars Considering Process Variations and Noise
	Principal Component Analysis (PCA) of Process Variations and Canonical Form of Weights
	Statistical Forward Propagation
	Statistical Multiplication
	Statistical Addition
	Statistical Activation Function Transformation

	Statistical Probability Included Cost Function
	Compensation for Global Variation
	Simulation Results
	Summary

	Countering Variations and Thermal Effects for Accurate Optical Neural Networks
	Software Training for ONNs
	Hardware Implementation for ONNs
	Extraction of Process Variations with Calibration
	Power Adjustment to Counter Thermal-effected Inaccuracy
	Characterized Tuning of ONNs

	Experimental Results
	Conclusions

	Conclusion
	Complex Expressions for Optical Wave
	Bibliography

