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Abstract

Ride-sharing has become ubiquitous in many metropolises attributed to its affordability,
convenience and flexibility. This thesis will develop dynamic pricing methods for ride-sharing
services to improve its competitiveness in multi-modal transportation systems.

A market equilibrium model for ride-sharing services with a consideration of passenger
preference in a multi-modal transportation system is built at the network level where network
structure and origin-destination (OD) demand pattern are explicitly counted. Moreover, the
method to calculate the system endogenous variables (e.g., ride-sharing demand, expected
waiting time, and expected detour time) in the equilibrium is also deduced. A stated-
preference survey data regarding the mode choice within private car, public transport and
ride-sharing services are utilized to estimate the passenger preference. To reveal the operation
difference of ride-sharing in different scale networks, a handmade network and the Munich
network are adopted in the experiments.

We propose three different pricing strategies: 1) a unified pricing method (trip fare is a
function of travel distance with the same unit price for all OD pairs over the network); 2)
a spatial pricing method accounting for the spatial heterogeneity of the level of demand
over the network by applying different unit prices for different OD pairs; 3) a utility-based
compensation method compensating passengers based on their travel experiences to reduce
variance/uncertainty for trip level-of-services (LOS) and add equity with or without (limited)
sacrifice of the operation objectives. Gradient Descent (GD) algorithms are derived to
optimize the operation strategy (trip fare and vehicle fleet size) for the monopoly optimum
(MO) scenario and social optimum (SO) scenario for method 1 and 2, respectively. For method
3, a heuristic particle swarm algorithm (PSO) is applied. The results show that, in method 1,
the optimal unit price for MO is greater than that for SO, while the optimal vehicle fleet size
is smaller. And the difference between optimal vehicle fleet sizes in two scenarios becomes
greater in the high demand level situation, while the difference between optimal unit prices
almost keeps the same. In method 2, it is found that the optimal unit prices are linear to
their distance and ride-sharing demand with negative slopes. Last but not least, the results
illustrate that method 3 is effective to improve the LOS and equity without losses of profit or
surplus as expected.
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1. Introduction

1.1. Motivation

Urban sprawl and the increase of urban population raise a higher requirement in the conve-
nience and speed of people commuting and goods transportation. The urban transportation
system is constantly updated and completed to satisfy the requirement. To date, many cities
have constructed a multi-modal transport network supplemented with substantial transfers
between different modes to enhance the communication between different regions. Neverthe-
less, private vehicle and public transport (including bus, metro, etc.) are still two dominant
participants in the transportation system.

In addition, the taxi industry plays a more and more important role in people’s movement.
However, the taxi service is still unaffordable for many people. The most basic reason is that,
most of the time, taxi only serves one passenger on a trip. Whereas, if there are more than
one passenger (except the driver) on a trip and the bill is shared, passengers can finish their
trips with much less fare compared to taking taxi separately. Substantially, this is the working
mechanism behind ride-sharing (also known as ride-pooling, ride-sourcing, carpooling, etc.).

It must be noted that, ride-sharing is not a modern concept emerged in these years. Actually,
it can be traced back to as early as World War II, when a Car-Sharing Club is established
for fuel conservation in the US (Ferguson, 1997). However, the rapid development of mobile
internet technologies and smartphones in the last decade has thoroughly facilitated the ubiq-
uity of ride-sharing services. And many influential transportation network companies (TNCs)
have launched their own ride-sharing services, such as UberPool, and DiDi ExpressPool.
People can access the service via a dedicating function on the smartphone application of the
corresponding platform. After being informed origin-destination (OD) of the trip in advance,
the platform will match a vehicle and potential passengers with similar itineraries and time
schedules for users, and the trip expenses will be shared by passengers.

It is widely envisioned that ride-sharing services will be very beneficial to individuals
and the whole society in general. First of all, it is more convenient and flexible than public
transport, and more economical than driving a car or hailing a taxi. It completes the urban
transportation system, and enriches transport choices. Since it increases the number of
passengers per vehicle trip, effective operation of ride-sharing services can reduce the number
of vehicles running on the network to some extent, and therefore mitigate traffic congestion.
Likewise, it can contribute to conserving fuel consumption, reducing emission pollution and
other negative external effects.

Despite the potential benefits, to date, the understanding of ride-sharing services is still
under exploration. The main challenges in ride-sharing are specifically summarized as
follows.

1



1. Introduction

1) The ride-share matching algorithm provides a matching solution for potential drivers
and riders by optimizing an established objective, such as minimizing total system-
wide vehicle-kilometers, or maximizing the total travel distance savings. The matching
algorithm has a decisive influence on the operation of ride-sharing. Thus, it is essen-
tial to design an effective and stable matching algorithm that can maximize system
performance.

2) After drivers and riders have been matched up, the platform needs to recommend
an optimal route for each vehicle based on a predefined objective (e.g., minimizing
distance, or minimizing travel time) via a routing algorithm. It is always desirable
to create a more realistic and comprehensive routing algorithm with more accurate
demand (for prepositioning) and traffic estimation algorithms.

3) For the competitiveness of ride-sharing services, it is necessary to implement appropri-
ate pricing strategies, especially in a multi-modal transportation system. By applying
a specific pricing method, the service provider wants to optimize the operational
objective, such as maximizing profit or maximizing social welfare. This requires a
better understanding of passenger preference and the interdependence of demand and
supply.

The solution to these challenges still remains as open research questions. This thesis will
have some explorations in the dynamic pricing methods with specific consideration of the
characteristics of ride-sharing services.

1.2. Goal and Scope

1.2.1. Research goals

The primary objective of this thesis is to develop effective pricing methods for ride-sharing
services. Specific objectives are listed below.

1) Construct an equilibrium model for a ride-sharing market in the context of a multi-
modal transportation system.

2) Understand the impact of passenger preference on ride-sharing services operation.

3) Develop appropriate dynamic pricing methods in different operation contexts.

The outcome of this thesis will provide scientific reference and methodological support for
the design of pricing methods for ride-sharing services.

1.2.2. Research scope

1) We model the ride-sharing market at the network level (i.e., OD-based). Trips attributes
(distance, travel time, and trip fare) are aggregated based on their OD. In other words,

2



1. Introduction

every traffic analysis zone (TAZ) is modeled as a mass point. Individual trip modeling
is out of the scope of this thesis.

2) Service provider could be the service operator or a matching agency only in the ride-
sharing operation. This thesis only considers the situation that the service provider is
working as a service operator.

3) Detailed operation process (i.e., particular matching and routing algorithm) is not in
the scope of this thesis.

4) We do not consider the impact of ride-sharing on traffic congestion in a single interval.
In other words, the traffic situation of the network does not vary within a single
studying interval.

1.3. Contributions

The major contributions of this thesis are three-fold.

1) This thesis is among the first to construct a ride-sharing market equilibrium considering
the passenger preference in the multi-modal context. We also provide an approximation
method to estimate the equilibrium model parameters with the service attributes
(average detour time, average waiting time, vehicle fleet size, and network attributes)
in actual operations of a market as prior knowledge, such that the equilibrium model
can be used to model the corresponding market.

2) Develop different dynamic pricing methods including unified pricing, spatial pricing,
and utility-based compensation method for ride-sharing services and derive applicable
solution algorithms for each pricing method, respectively.

3) This thesis also explicitly explore the value of considering user heterogeneity on
modeling the ride-sharing market, and its impact on the optimal solution for different
pricing methods. This can provide a recommendation for operation regions and target
user groups for the service provider.

More detailed contributions will be described in each chapter.
The pricing method is a very important component of the ride-sharing system. A suitable

pricing method not only can improve the attractiveness of the service, but also can distribute
the potential benefit to every user. To date, the main pricing methods applied in the mar-
ket still have wide space for improvement. Thus our work is very timely, necessary and
meaningful.

1.4. Thesis Structure

The overall methodologies adopted in this study and the corresponding findings are presented
in the remainder of this thesis. Chapter 2 provides a comprehensive review of the most

3



1. Introduction

important and instructive works on the ride-sharing equilibrium model and dynamic pricing
methods. Chapter 3 constructs the equilibrium in the ride-sharing market. Chapter 4 describes
the stated-preference data used to model the passenger preference and the networks used
to evaluate the proposed equilibrium model and pricing methods. Chapter 5 and Chapter 6
proposes the solution algorithms for the unified pricing method and spatial pricing method
with respect to different objectives, respectively. Chapter 7 develops a novel utility-based
compensation method considering the distinctive characteristics of ride-sharing service and
provides the corresponding solution algorithms. Chapter 8 concludes the thesis and discusses
future open questions. The overall structure of this thesis is illustrated in Figure 1.1. Notice
that we maintain the same notation over the thesis and a list of the important variables is
given in Table 1.1 for the reader’s convenience. And these variables are defined in one single
studying interval, which is one hour in this thesis.

Chapter 1. Introduc�on

Chapter 2. Background and Related Literature

Chapter 3. Ride-sharing Market Equilibrium Model
Chapter 4. Data and Networks

Chapter 5. Unified Pricing Method

Chapter 7. U�lity-based Compensa�on Method

Chapter 6. Spa�al Pricing Method

Chapter 8. Conclusions and Outlook

Figure 1.1.: Structure of the thesis.
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1. Introduction

Table 1.1.: Notations for the important variables.

Variable Definition

Network related variables

Z Set of OD pairs
i OD pair i in Z

io Origin of OD pair i
id Destination of OD pair i
Di Travel demand from io to id

di Expected distance from io to id

Service related variables

Pi,rs Mode share of ride-sharing services for i
Qi Ride-sharing demand from io to id

N Vehicle fleet size
ns Number of seats within one vehicle
Hv Number of vacant seats
ti Expected travel time from io to id by ride-sharing
wi Expected waiting time for trips from io to id by ride-sharing
ri Expected trips fare for trips from io to id by ride-sharing
td
i Expected direct trip time from io to id by ride-sharing

t̃i Expected detour time from io to id by ride-sharing
βt Preference coefficients with respect to travel time
βw Preference coefficients with respect to waiting time
βr Preference coefficients with respect to travel cost
t̃(2) Expected detour time between two passengers
t̃(v) The expected detour time of a vehicle
nt The maximum number of trips a vehicle can serve
na The number of trips assigned to a vehicle
A A positive exogenous parameter
B A positive exogenous parameter
φ Operating cost of a vehicle in one hour
Π Total profit for ride-sharing
S Social surplus (welfare) for ride-sharing

Pricing methods related variables

p Unit price for all trips (unified pricing)
pi Unit price for trips from io to id (spatial pricing)
a Compensation reference point (compensation method)
α Compensation reference factor (compensation method)
ra

i,k Utility for trip k of OD i after compensation (compensation method)
ci,k Amount of compensation for trip k of OD pair i (compensation method)
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2. Background and Related Literature

In this chapter, we define basic concepts on ride-sharing services, present a comprehensive
literature review, and identify the research gaps. Section 2.1 defines the basic concepts and
assumptions that will be used throughout the thesis. Section 2.2 reviews the related literature
on market equilibrium model and dynamic pricing methods. Section 2.3 summarizes the
research gaps.

2.1. Basic Concepts and Assumptions

Trips are defined as instances of travel from one geographic location to another (Dailey et al.,
1999). And each trip has its corresponding origin and destination.

In this thesis, ride-sharing refers to the service that potential passengers announced their
origin and destination of the trips on a smartphone application in advance, and then the
application program will inform them of the pick-up time if their requests have been matched
up with any ride-sharing vehicles. As the name implies, by ride-sharing, it means individual
riders with similar itineraries and time schedules share a vehicle for a trip and split the travel
expenses.

Basically, platforms (service providers) can be categorized into two groups based on their
functions in the operation. One is that the service provider is also the service operator, namely,
it operates ride-sharing services with own vehicles and hired drivers. In this case, the service
provider intrinsically works as a taxi company, but provides ride-sharing services. Another
group is that the service provider is only a matching agency. In this case, the service provider
only matches up individual drivers and potential passengers and has no capability to decide
the vehicle fleet size and service scale. In this thesis, we only focus on the former situation
and design dynamic pricing methods for such platforms.

We assume all riders make the choice objectively based on the perceived utilities of all
transport modes of interest.

Besides, all potential requests are assumed to be matched and served, i.e., the successful
pairing rate is set to 1.

2.2. Related Literature

Over the last decade, ride-sharing services have attracted enormous research interest, with
a particular focus on one of the main challenges concluded in Section 1.1, i.e., matching
algorithm (e.g., Agatz et al., 2011; Wang et al., 2018), routing algorithm (e.g., Ho et al., 2018;
Li et al., 2019a), and dynamic pricing method (e.g., Sayarshad and Chow, 2015; Ke et al.,
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2. Background and Related Literature

2020a). In this section, we focus on the service operator side and conclude related works
on dynamic pricing methods in the ride-sharing services market. Furthermore, we also
summarize the-state-of-the-art in market equilibrium model to provide references for our
following equilibrium modeling.

2.2.1. Market equilibrium model

The prevalence of ride-sharing services in recent years attracts much attention from both
academic and industry. Thus, it is urgent and desirable to formulate the equilibrium for the
ride-sharing market. This section summarizes the works on the equilibrium model for the
taxi market which has been thoroughly investigated in the literature. In some sense, due to
their implicit resemblance, the exemplary works on the taxi market equilibrium can shed
light on the research of equilibrium in the ride-sharing market. Some have extended them to
the ride-sharing market with strict proofs for translating the discrepancies.

Cairns and Liston-Heyes (1996) developed an equilibrium model for the taxi market to
understand the competition in the industry. It found that the unregulated industry does
not satisfy the conditions of competition, and the existence of equilibrium depends on the
regulation of price, entry, and intensity of use of licensed taxis. Besides, it also presented the
models of monopoly, the social optimum and the second-best in the taxi industry. However,
it did not consider the spatial difference in demand patterns. An initial attempt to model the
taxi market at a network level considering the OD demand pattern was in Yang and Wong
(1998). They constantly improved this model in a series of works by further incorporating
demand elasticity and congestion effect (Wong et al., 2001), exploring the impacts of regulatory
restraints on the equilibrium in regulated, competitive and monopoly markets (Yang et al.,
2002). Furthermore, the improved equilibrium model was also applied to investigate the
performance of nonlinear fare structures on perceived profitability. It was proposed to protect
operators’ businesses from the illegal phenomenon (e.g., discounts on metered fare) under a
front-loaded flag-fall charging strategy (Yang et al., 2010a).

Adopting the modeling framework of previous works on the taxi industry, Ke et al. (2020a)
presented an equilibrium model for ride-sharing markets and tried to elucidate the complex
relationships between system endogenous variables and decision variables (trip fare, vehicle
fleet size, and allowable detour time). It proved that the monopoly optimum, first-best and
second-best social optimum are always in a normal regime instead of the wild goose chase
(WGC) regime1. However, they restricted the problem in the situation with two passengers
sharing a trip at most. In addition, the market was modeled as a whole in this study without
considering the network structure and OD demand patterns.

Contrary to Ke et al. (2020a) where the service provider is the service operator, Bimpikis
et al. (2019) formulated the equilibrium state for a matching agency. It pointed out that only

1An inefficient equilibrium where vehicles take substantial time to pick up riders. We refer the interested readers
to Ke et al. (2020a) for the details of its definition and the corresponding analysis

7



2. Background and Related Literature

when the demand pattern2 across the network is balanced the benefit of applying spatial
price discrimination can be observed. Leveraging the spatial pricing method can facilitate the
pattern of the served demand becomes more balanced. The result of numerical experiments
implied that total profit and consumers’ surplus are maximized at the equilibrium with the
optimal pricing policy when the demand pattern of network is balanced. However, in this
study, the supply of potential drivers was assumed to be infinite and the relocation of drivers
was assumed to be instantaneous which is overly idealistic and does not conform to reality.

Although the models developed in the aforementioned works perform well, there is still
room for improvement. For example, none of them consider passenger preference in the
presence of multiple transport modes. The value of time (or willingness to pay) of passengers
is the only factor to be considered in their modeling framework regardless of how superior
the service attributes of other transport options are. This will result in an inaccurate demand
estimation when the service attributes of ride-sharing become incomparable with that of one
of the other transport modes. The main literature on market equilibrium model is listed in
Table 2.1.

Table 2.1.: Main literature on market equilibrium model.

Paper Market OD MM UH Scenarios

Cairns and Liston-Heyes (1996) Taxi MO, SO, SSO
Yang and Wong (1998) Taxi +
Yang et al. (2000) Taxi +
Wong et al. (2001) Taxi +
Yang et al. (2002) Taxi + MO, CO, SO, SSO
Yang et al. (2010a) Taxi +
Yang et al. (2010b) Taxi +
Bimpikis et al. (2019) MA + + MO
Li et al. (2019b) Ride-hailing MO
Ke et al. (2020a) Ride-sharing MO, SO, SSO

Note: OD, OD-based; MM, multi-modal system; UH, user heterogeneity; MO, monopoly optimum; SO, social
optimum; SSO, second-best social optimum; CO, competition optimum; MA, matching agency; ’+’ means the
factor is considered.

2.2.2. Dynamic pricing method

Demand estimation is a main focus of all dynamic pricing strategies for ride-sharing services.
Some aim to capture the temporal elasticity of demand to provide optimal solutions for a
specific objective (e.g., profit maximization) (Sayarshad and Chow, 2015; Qian and Ukkusuri,
2017). Some try to improve the reliability of the proposed solution by considering the spatial

2Demand pattern of a network is defined as a combination of a demand vector for zones and a weighted
adjacency matrix. And it is said to be balanced if, at each zone, the potential demand for rides weakly exceeds
the available drivers in the same zone after completing rides.
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heterogeneity of the level of demand over the network (Chen and Kockelman, 2016; Guo
et al., 2017; Qiu et al., 2018; Bimpikis et al., 2019). Furthermore, the users heterogeneity which
is represented by passenger preference/behavioral models is also an aspect that has been
heavily researched in the literature (Chen and Kockelman, 2016; Qiu et al., 2018; Guan et al.,
2019). Note that, some dynamic pricing methods are only applicable in specific operation
context, e.g., in the monopoly (Qiu et al., 2018; Bimpikis et al., 2019), or duopoly (Sato and
Sawaki, 2013). This section presents a short review of how these aspects are considered when
developing the pricing method.

Sayarshad and Chow (2015) proposed a non-myopic pricing method for the non-myopic
dynamic dial-a-ride problem to maximize social welfare under the assumption of elastic
demand. It pointed out that ignoring the elasticity of demand can result in an overestimation
of the improvement in level of service (LOS) with non-myopic considerations. Motivated
by the demand elasticity among a day, Qian and Ukkusuri (2017) developed a time-of-day
pricing scheme to maximize the profit for taxi service, where price multipliers are used to
dynamically alter trip cost. It concluded that a strict pricing scheme should consider both
temporal heterogeneity and spatial heterogeneity in demand, supply and traffic condition,
together with additional consideration of users heterogeneity in price elasticity.

The Multinomial Logit (MNL) model was applied to estimate the mode share of shared
autonomous electric vehicles (SAEV) in an agent-based framework in Chen and Kockelman
(2016). It investigated the trade-offs between the revenue and mode share of SAEV under
different pricing schemes including distance-based pricing, origin-based pricing, destination-
based pricing, and combination pricing strategy. Guo et al. (2017) provided an elaborated
demand analysis and dynamic pricing analysis of the ride-on-demand service provided by
Shenzhou Ucar in Beijing, China. They adjusted the trip price dynamically by applying
appropriate pricing multipliers for different regions based on the demand characteristics
in both spatial and temporal dimensions. Knowing the passenger preference, demand
distribution, and traffic information of the network, Qiu et al. (2018) proposed a dynamic
programming framework to solve the profit maximization problem for a monopolistic private
shared mobility-on-demand service operator. And the MNL model was used to model the
passenger preference and was integrated into the price optimization model for the subproblem
at the request level.

With the consideration of demand difference over the network, Bimpikis et al. (2019)
established an infinite-horizon, discrete-time model for ride-sharing services, and explored the
impact of the demand pattern on platform’s prices, profits, and the induced consumer surplus.
It is worth noting that user heterogeneity is also considered with explicit consideration of
their willingness to pay for receiving service.

Furthermore, considering the uncertainty nature of travel time and waiting time in shared
mobility on demand services (SMoDs), Guan et al. (2019) applied the cumulative prospect
theory (CPT) to capture the subjective decision making of passengers under uncertainty. A
dynamic pricing strategy was proposed on the passenger behavioral model based on CPT,
which incorporates a dynamic routing algorithm and thus can provide a complete solution to
SMoDs.
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Note that, most of the aforementioned works rely on the assumption of homogeneous
users in terms of the value of time (or willingness to pay). However, such an assumption
cannot capture the spatial difference of functional areas which has been presented in Guo
et al. (2017). For example, the user group in the educational area and user group in the central
business district (CBD) are very different in terms of affordability. The main literature on
dynamic pricing method is listed in Table 2.2.

Table 2.2.: Main literature on dynamic pricing method.

Paper Market OD DE UH Scenarios

Lin (2006) + MO
Dong et al. (2009) Retail MO
Sato and Sawaki (2013) CO
Pfrommer et al. (2014) Bicycle +
Sayarshad and Chow (2015) DARP + SO
Banerjee et al. (2015) Ride-sharing MO
Chen and Kockelman (2016) SAEV + MO
Qian and Ukkusuri (2017) Taxi + MO
Guo et al. (2017) MoD + MO
Qiu et al. (2018) MoD + MO
Turan et al. (2019) AMoD + + MO
Li et al. (2019b) Ride-hailing MO
Guan et al. (2019) SMoDs + IQ
Yang et al. (2010b) Ride-sharing + + MO

Note: OD, OD-based; DE, demand elasticity; UH, user heterogeneity; MO, monopoly optimum; SO, social opti-
mum; IQ, individual request; CO, competition optimum; DARP, dial-a-ride problem; SAEV, shared autonomous
electric vehicle; MoD, mobility on demand; AMoD, autonomous MoD; SMoDs, shared MoD; ’+’ means the factor
is considered.

2.3. Literature Gaps

Based on the literature review in Section 2.2, we focus on the following research gaps.

1) Few works have considered passenger preference in a multi-modal transport context
when constructing the market equilibrium model for ride-sharing services.

2) None of the existing works has developed a spatial pricing method considering spatial
difference and user heterogeneity for the ride-sharing service operator.

3) There is no work that has studied a pricing method integrated with compensation
based on the level of services in the ride-sharing context.
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3.1. Objectives and Contributions

The intertwined relationship of the supply of and demand for taxi services distinguishes it
from the traditional economic markets. Moreover, the complex demand-availability-utilization-
supply1 relation makes the attempts to analyze the taxi market within an inherently static
supply-demand analysis framework impossible (Manski and Wright, 1976; Yang et al., 2002).
An equilibrium in taxi markets is thus described as the system state when the supply-
demand interaction eventually damps out under certain regulated conditions (e.g., trip
fare). Analogously, the market equilibrium in the ride-sharing market is the ultimate stable
state of the market, at which the relationships between the system endogenous variables
(e.g., passenger demand, average detour time) can be satisfied, under a specific operation
strategy (e.g., vehicle fleet size, trip fare). Mathematically, the demand-supply equilibrium
is established when both demand and supply equations are satisfied simultaneously. It is
worth noting that, the equilibrium model of taxi market has been systematically investigated
in the literature (e.g., Manski and Wright, 1976; Cairns and Liston-Heyes, 1996; Wong et al.,
2001; Yang et al., 2002; Yang et al., 2010b), while as described in Section 2.3, only a few works
focus on the ride-sharing market since it just began attracting the attention of both academic
and industry in recent years. On the other hand, to the best of our knowledge, there are no
works that account for the passenger preference in a multi-modal transport network in the
modeling framework. Furthermore, an effective equilibrium model at the network level for
ride-sharing services is still an open question.

To address these research gaps, in this chapter, we propose a market equilibrium model for
ride-sharing services in the multi-modal transport context by applying the Multinomial Logit
(MNL) model to present the passenger preference. This equilibrium model will serve as the
experiment bed for the pricing methods introduced in Chapter 5, Chapter 6, and Chapter 7.
In particular, we will make the following contributions.

1) We explicitly construct the equilibrium model of ride-sharing markets with particular
consideration of the passenger preference in the presence of multiple transport choices.

2) Instead of modeling the market as a whole, we attempt to understand the market at
the network level (i.e., OD-based) by considering the specific network structure (i.e.,
OD demand pattern).

1Taxi availability (measured by expected waiting time) indirectly affects the taxi utilization (measured by the
expected fraction of time a taxi is occupied) through its influence on taxi demand; taxi utilization, in turn,
affects the taxi availability through its influence on the level of supply. Refer to Figure 1. in Manski and Wright
(1976) for the details.
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3) We improve the widely adopted assumption of the average waiting time in the existing
literature by replacing its determinant from vehicle availability to seat availability.

This chapter is organized as follows. The methodology workflow is shown in Section 5.2.
Section 3.3 and Section 3.4 describes how to model the supply of and demand for ride-sharing
services in this study. Section 3.5 presents the formation of the equilibrium model. Section 3.6
and Section 3.7 presents the detailed model of the expected detour time and expected waiting
time.

3.2. General Methodology

Figure 3.1 depicts the intertwined relationships between the variables in the ride-sharing
market. The utilized pricing method decides the trip fare for ride-sharing services, while trip
fare and the attributes of other transport modes, such as the average waiting time, average
detour time and trip fare for public transport, serve as inputs for the passenger preference
module. The passenger preference is working as the media for the interplay between the
ride-sharing passenger demand, the expected detour time and waiting time.

Passenger 

preference

Ride-sharing 

requests 𝑄

Detour time ǁ𝑡

Waiting time 𝑤

Vacant seat-

hours 𝐻𝑣

Pricing 

method

Vehicle fleet 

size 𝑁

Trip fare 𝑟

Attr. of other 

transport modes

Exogenous variables Endogenous variables

: Endogenous variables : Decision variables : Given parameters

: Modules : Direct effect : Indirect effect

Figure 3.1.: Relationships between exogenous variables and endogenous variables in the
ride-sharing market

Generally, the expected waiting time is deemed to be related to the number of available
vehicles (Cairns and Liston-Heyes, 1996; Li et al., 2019b; Ke et al., 2020a). Considering the
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sharing nature of ride-sharing, we can modify this assumption as: expected waiting time is
depending on the number of available seats. Note that, seat availability is decided by vehicle
fleet size and ride-sharing demand. Moreover, due to the interdependence of the ride-sharing
demand, waiting time, and detour time, seat availability also indirectly affects the expected
detour time.

In the remainder of this chapter, how these variables interact with each other is interpreted
in detail and the method to calculate the market equilibrium is presented. Concisely, market
equilibrium means under a certain operation strategy of trip fare and vehicle fleet size, what
the ultimate state of the market will be. In other words, given the exogenous variables, the
values of system endogenous variables will be inherently derived by the market equilibrium
model. Here we assume the service attributes of other transport modes are known.

Note that, the pricing methods proposed in Chapter 5, Chapter 6, and Chapter 7 are
included in the pricing method module. Thus the equilibrium model of ride-sharing services
presented in this chapter is actually the experimental bed for these pricing methods, which
plays a critical role in the investigation of the effectiveness and benefits of them.

3.3. Supply of Ride-sharing Services

A trip is defined as the movement of an instance of travel from one geographic location to
another (Dailey et al., 1999). Each trip has its own origin and destination. Different from the
existing works based on abstract, simplified demand-supply models, in this study, we model
the ride-sharing market at the network level with consideration of the network structure and
traveler OD demand pattern.

Consider a network which allows the travel between OD pairs in set Z. For an OD pair
i in Z, its origin and destination are denoted as io and id, respectively. For a given hour
(the studying interval is set to one hour), the travel demand for i (i.e., the number of trips
from io to id) is Di. We denote Pi,rs as the mode share of ride-sharing services of i under a
certain operation strategy, where rs indicates ride-sharing. Then, the passenger demand for
ride-sharing from io to id is estimated by

Qi = DiPi,rs (3.1)

where Qi is the ride-sharing passenger demand for i.
We assume that each seat in ride-sharing vehicles can be either vacant or occupied. And

the summation of vacant seats and occupied seats equals to the total number of seats of all
vehicles. We define available seat capacity Hv as the number of vacant seats in stationary
equilibrium, while utilized seat capacity Hc as the number of occupied seats. For a given
hour, the conservation equation of seat capacity is thus given by

Nns = Hv + Hc (3.2)

where N is vehicle fleet size, ns is the number of seats in a vehicle.
Note that, the travel time for a passenger in ride-sharing services consists of two compo-

nents: direct trip time (equals to the time by driving private cars without detouring) and
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detour time (due to the detouring to pick-up and/or drop-off other passengers). Thus, the
expected travel time of i is given by

ti = td
i + t̃i (3.3)

where ti is the expected travel time of i, td
i and t̃i denote the direct trip time and the

expected detour time, respectively. As a result, the utilized seat capacity in one hour can be
calculated as

Hc = ∑
i∈Z

Qiti (3.4)

Substitute Equation (3.4) into Equation (3.2) resulting in

Nns = Hv + ∑
i∈Z

Qiti (3.5)

This seat capacity conservation equation bridges the demand for and supply of ride-sharing
services and has to be satisfied at the market equilibrium.

3.4. Demand for Ride-sharing Services

To estimate the ride-sharing passenger demand, we assume that all travelers make decisions
objectively based on perceived utilities of the available transport modes. In this study, we
apply a classic discrete choice model, Multinomial Logit (MNL) model, to model the passenger
preference in the multi-modal transport context.

Based on the random utility theory, the utility of a choice can be calculated by

U = V + ε (3.6)

where U is the utility, V is the systematic/deterministic component of the utility, ε is the
disturbance.

Time cost and monetary cost are the main factors that influence passengers’ choice among
the available transportation options. Considering the difference of perceptions on travel time
and waiting time, the utility function (i.e., the deterministic part of the utility) of taking one
transport mode is constructed as

V = βtt + βww + βrr (3.7)

where t, w and r denote the travel time (including direct trip time and detour time), waiting
time and trip fare, respectively. βt, βw and βr are preference coefficients for travel time,
waiting time and trip fare, respectively.

If assume the error term ε follows the Gumbel distribution (also known as Extreme Value
distribution)2, then the probability of one from io to id choosing ride-sharing services is given
by

Pi,rs =
eVi,rs

∑j∈M eVi,j
(3.8)

2We refer the interested reader to the Chapter 3 in Train, 2009 for the details of the derivation of Logit model.
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where M is the set of available transport modes in the system, such as private vehicles,
public transport and ride-sharing. Equation (3.8) gives the form of the MNL model.

As the easiest and the most extensively used discrete choice model for estimating the
travel behavior of individuals (Train, 2009), MNL has been applied in many aspects of the
transportation community including the transport mode choice behavior (e.g., Vrtic et al.,
2010; Chen et al., 2013; Krueger et al., 2016). In this study, it is used to estimate the mode
share of ride-sharing services in the multi-modal transport context. Substitute Equation (3.8)
into Equation (3.1), we can estimate the ride-sharing demand for i by (omit the subscript rs in
the following text)

Qi =
DieVi

eVi + µi
(3.9)

where µi = ∑j∈{M−rs} eVi,j .

3.5. Equilibrium in the Ride-sharing Market

From Figure 3.1, we know that both expected detour time t̃i and expected waiting time wi
for OD pair i are related to the vehicle fleet size N and ride-sharing passenger demand
Q (the influence of Hv can be ultimately translated to N and Q), where Q is the vector of
ride-sharing demand for all OD pairs. Thus, we can rewrite them as t̃i(Q, N) and wi(Q, N),
respectively. Recall that the expected travel time is the sum of direct trip time and expected
detour time, such that we can rewrite the travel time as ti(Q, N). Then the utility function for
ride-sharing services is given by

Vi(Q, N) = βtti(Q, N) + βwwi(Q, N) + βrri (3.10)

Substitute Equation (3.10) into Equation (3.9), the ride-sharing passenger demand is thus
an implicit function of itself.

Qi =
DieVi(Q,N)

eVi(Q,N) + µi
(3.11)

Consequently, under certain operation strategies (i.e., given the value of vehicle flee size N
and trip fare ri for all OD pairs), an equilibrium in the market for ride-sharing services is a
set of values for t̃i, wi and Qi that satisfies Equation (3.5), Equation (3.10) and Equation (3.11)
for all i in Z. It is worth pointing out that, Equation (3.5) and all Equation (3.11) for different
i describes the supply of and demand for ride-sharing services, respectively.

In other words, the interplay between system endogenous variables (expected detour time,
expected waiting time and ride-sharing demand) at equilibrium given the values of exogenous
variables (vehicle fleet size and trip fare) is described by a simultaneous equations system
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written as below.

Qi1 =
Di1 e

Vi1
(Q,N)

e
Vi1

(Q,N)
+µi1

Qi2 =
Di2 e

Vi2
(Q,N)

e
Vi2

(Q,N)
+µi2

...
...

Qim =
Dim eVim (Q,N)

eVim (Q,N)+µim
...

...

(3.12)

where Q = [Qi1 , Qi2 , · · · , Qim , · · · ]T is the vector of ride-sharing demand for all OD pairs.
This equations system can be solved via a hybrid method for nonlinear equations proposed
in Powell, 1970.

3.6. Expected Detour Time for Ride-sharing

Following the findings from substantial empirical data of real operations in several cities in
Ke et al., 2020b, Ke et al., 2020a assumed the average detour time between two passengers is
inversely proportional to the ride-sharing demand. Intuitively, more ride-sharing requests
means the average distance between two passengers is closer. In this sense, it is plausible to
take this assumption. However, in contrast to Ke et al., 2020a, which restricts the ride-sharing
services of pairing at most two passengers, we consider the general operation situation in this
study. In this case, more requests could denser the passengers manifested as a reduction in
the average detour time on the one hand. On the other hand, it also increases the possibility
of pairing more passengers and thus results in a longer detour time. Consequently, we make
a modification to the assumption adopted in the aforementioned literature, and extent it to
the general case.

Similarly, the average detour time between two passengers is given by

t̃(2) =
Ã
‖Q‖1

(3.13)

where ‖Q‖1 is the L1 norm of Q, i.e., ‖Q‖1 = ∑j∈Z Qj. Ã is a parameter.
Let t̄d denote the mean direct trip time of all trips, then t̄d = ∑j∈Z Qjtd

j /‖Q‖1. If there is no
detouring, then the maximum number of trips a vehicle can serve in one hour is given by

nt =
1
t̄d =

‖Q‖1

∑j∈Z Qjtd
j

(3.14)

However, due to the limitation of vehicle fleet size, the number of trips assigned to a vehicle
is given by

na = ‖Q‖1/N (3.15)
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As a result, the expected number of passengers in a vehicle at one moment is na/nt. Then
the detour time of a vehicle is given by

t̃(v) =
(

na

nt
− 1
)

t̃(2)i (3.16)

Recall that when we calculate nt, we assume that there are no interruptions between the
time vehicles drop off one passenger and pick up another, which does not comply with the
reality. Thus we approximate t̃(v) by

t̃(v) =
na

nt
t̃(2)i (3.17)

We want to point out that the accuracy of this approximation can be adjusted by the
parameter Ã in t̃(2)i . On the other hand, it can also guarantee the positive of detour time when
the passenger demand is extremely small (e.g., when na < nt). Thus, this approximation is
plausible and necessary.

Moreover, we follows the assumption that the detour time of passengers is a fraction of the
detour time of vehicles in Ke et al., 2020a, i.e., t̃(p) = γt̃(v). If we assume that trips with longer
direct trip time are more likely to have a detour, then the detour time of i can be expressed as

t̃i =
td
i

t̄d t̃(p) =
td
i γna

t̄dnt
t̃(2)i (3.18)

Substitute Equation (3.13), Equation (3.14) and Equation (3.15) into Equation (3.18) resulting
in

t̃i =
td
i γÃ ∑j Qjtd

j

t̄dN‖Q‖1
(3.19)

For simplicity of presentation, we define A , γÃ and Ai , Atd
i /t̄d, such that

t̃i =
Ai ∑j Qjtd

j

N ∑j Qj
(3.20)

Equation (3.20) is used to estimate the expected detour time of trips from io to id in this
study.

3.7. Expected Waiting Time for Ride-sharing

Under a certain operation strategy, the supply of the ride-sharing market is also fixed.
Nevertheless, analogous to the taxi market, the quantity of service supplied to the passengers
(Nns) is always greater than the equilibrium quantity demanded (Hc) by a certain amount of
slack (Hv) (Yang et al., 2002).

The assumption of the expected waiting time of taxi services and ride-sharing services is
inversely proportional to the square root of the number of idle vehicles is widely applied in
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the literature3 (e.g., Li et al., 2019b; Ke et al., 2020a). In this study, considering the sharing
nature of ride-sharing services, we assume the waiting time is inversely proportional to
the square root of the available seat capacity. Furthermore, due to the spatial difference
of ride-sharing demand, we assume it is proportional to the ride-sharing demand for the
corresponding OD as well. As a result, the expected waiting time of trips from io to id is
estimated by

wi =
BQi√

Hv
(3.21)

where B is a parameter.
According to Equation (3.5), the available seat capacity can be calculated from the seat

conservation equation.

Hv = Nns − ∑
j∈Z

Qjtj (3.22)

Substitute Equation (3.22) into Equation (3.21) resulting in

wi =
BQi√

Nns −∑j Qjtj

(3.23)

Equation (3.23) is used to estimate the expected waiting time of trips from io to id in this
study.

3.8. Method to Estimate Equilibrium Model Parameters

Provably, the estimation accuracy of expected detour time and expected waiting time can
significantly affect the effectiveness of the proposed ride-sharing equilibrium model, especially
in the multi-modal transportation system. Therefore, it is critical to provide plausible values
for A and B for the presented estimation models for detour time and waiting time. Obviously,
A and B would be different for different markets.

In this section, we introduce an approximating method to calculate A and B for a specific
market based on its real operation data. Specifically, if we have real operation data of a
market (including the mode share, average detour time, average waiting time, vehicle fleet
size, and the average trip fare) by applying this method, we can calculate applicable A and B
for resulting in a reliable market equilibrium model which can reflect the reality.

For simplicity of presentation, the details will be omitted here and can be found in
Appendix A.1.

3We refer the interested readers to Li et al. (2019b) for the proof for this assumption.
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4. Experiment Setup

This section introduces the data and networks used in the experiments in the following
chapters. In this study, we develop a market equilibrium model for ride-sharing services with a
consideration of the passenger preference in the multi-modal transportation system. To model
the passenger preference, we utilize the stated-preference data from the survey conducted
in Tsiamasiotis (2019). To evaluate the performance of the proposed equilibrium model
integrated with the proposed pricing methods under different traffic situations (congestion
level) and network scales, we conduct experiments on two different networks, and consider
two different demand levels for each network. One is a handmade test network, and the
other is the Munich network. Two demand levels represent congested traffic and uncongested
traffic, respectively. Furthermore, we also present the model of monopoly and social optimum
scenario which have been widely used to evaluate the market in this chapter.

4.1. Stated-preference Survey Data

Tsiamasiotis (2019) designed and performed a web-based stated-preference survey to identify
factors affecting the travel behavior of passengers due to the introduction of ride-sharing
services in the transportation system. 27 hypothetical scenarios were created and divided
into three blocks resulting in nine of each. And three alternatives were provided in each
hypothetical scenario, including private car, public transport and dynamic ride-sharing.
Respondents needed to state their preference in a 5-point rating scale for a scenario given the
values of three attributes including in-vehicle travel time, travel cost and waiting time, which
conforms to the requirement of the model proposed in this study.

The survey got 208 complete responses in total, and obtained 1,248 effective scenario
answers. Apart from the scenarios, some respondents’ demographics were required, including
gender, age, income, education level, etc. We refer the interested readers to Tsiamasiotis (2019)
for the design and data analysis of the survey.

4.2. Small Test Network

We construct a small test network for numerical experiments. Figure 4.1 depicts its layout. It
consists of three zones, the related variables of the trips between zones at the low demand
level are described in Table 4.1. And we assume at the high demand level, the travel demand
is double and the direct trip time is 1.5 times compared to the situation at the low demand
level.
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4. Experiment Setup

Importantly, recall that we need to specify A and B for the equilibrium model. We apply
the method presented in Appendix A.1 to calculate appropriate values of A and B for this
network. We assume the mode share of ride-sharing ŝ = 0.1 when the unit price p̂ = 1.8
Euro/km (trip fare r̄ = ∑i pdi/6 Euro), the vehicle fleet size N̂ = ∑i Di ŝ/2 (and each vehicle
has ns = 6 seats) and the ratio of the average detour time t̄ over the average waiting time w̄ is
k = 2. This market assumption leads to A = 188.39, B = 0.22, which will be applied in all
thereafter experiments on the test network.

1

2 3

Figure 4.1.: Small test network

Table 4.1.: Attributes of the trips between two zones in the test network.

Origin io Destination id Travel demand D Direct trip time td Distance d

1 2 400 25 min 10 km
1 3 400 15 min 7 km
2 1 500 18 min 7 km
2 3 800 20 min 10 km
3 1 400 18 min 8 km
3 2 600 20 min 10 km

4.3. Munich Network

The layout of the Munich area used in the following experiments is shown in Figure 4.2. It is
about 900 square kilometers area. This area is divided into 20 zones resulting in 20× 19 = 380
possible OD pairs (internal trips of each zone are ignored in this study). The road traffic
demand data partially calibrated with traffic counts of a Tuesday in May (on May 9th, 2017)
are used. After screening, we decide to utilize the period from 5 a.m. to 6 a.m. as the low
demand level scenario, while the period from 7 a.m. to 8 a.m. is the high demand level. It
is worth noticing that both public transport and private transport (depending on the survey
data source) are considered in this study. Whereas, road traffic demand data are nearly equal
to the demand for private transport. Thus, we need to scale up the road traffic demand for
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4. Experiment Setup

the Munich network based on the modal split published on the official website of the relevant
department of Munich1.

Note that, in order to mitigate the randomness of the ride-sharing market, we only consider
the OD pairs whose travel demand is greater than 100, rather than considering all OD pairs
within the network. This restricts the services to 49 ODs. The total demand for these OD
pairs between 5 a.m. and 6 a.m. is 8,264, while that between 7 a.m. and 8 a.m. is 15,254.
What’s more, the direct trip time and the distance of each OD pair are calculated as the mean
of all trips of the same OD generated by Simulation of Urban MObility (SUMO) (Lopez et al.,
2018). To eliminate the stochasticity in simulations, results from 10 replications are averaged.
All simulations are implemented at the mesoscopic level through the trip-based (one-shot)
stochastic user route choice assignment method.

We assume the mode share of ride-sharing ŝ = 0.1 when the unit price p̂ = 1.8 Euro/km
(the trip fare r̄ = ∑i pdi/49 Euro), the vehicle fleet size N̂ = ∑i Di ŝ/2 (and each vehicle has
ns = 6 seats) and the ratio of the average detour time t̄ over the average waiting time w̄ is
k = 2. This market assumption leads to A = 697.36, B = 0.83, which will be applied in all
thereafter experiments on the Munich network.

Figure 4.2.: Munich major region

4.4. operational objectives

In this section, we introduce two typical scenarios considered in the literature and shown
in real operation. By analyzing the performance of the equilibrium model developed in
Section 3.2 in different markets, we could have a in-depth understanding of ride-sharing
services. Likewise, we will compare the optimal solutions of the pricing methods in different
scenarios to deduce their application context in the following chapters. Specific scenarios are
listed below.

1) Monopoly scenario. A monopolist aims to maximize its profit.

1We refers the readers to http://www.wirtschaft-muenchen.de/publikationen/pdfs/Businesslocation_Munich_
e.pdf (available on Sep. 10th, 2020) for the published document.
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4. Experiment Setup

2) Social optimum scenario. The platform aims to maximize the social welfare.

4.4.1. Monopoly scenario

As described in Chapter 2, the service provider of ride-sharing services can be either the
service operator or a matching agency. In this study, we focus on the former situation, where
the service provider operates ride-sharing services with its own vehicles and drivers. A
ride-sharing monopolist, as usual in microeconomics problems, attempts to maximize its
profit by optimizing the vehicle fleet size and trip fare. This problem can be formulated as

(P1) maximize Π(N, r) = ∑i∈Z DiPiri − φN (4.1)

where φ is the operating cost of a vehicle in one hour, r is the vector of trip fare of all OD
pairs.

4.4.2. Social optimum scenario

Social welfare which is also known as social surplus equals the sum of consumers’ and
producers’ surplus (Cairns and Liston-Heyes, 1996). Figure 4.3a shows the demand for and
supply of a simple market, where the X-axis is the quantity and the Y-axis is the price. We
assume the market is in the equilibrium, (Q∗, r∗). Consumer surplus is the difference between
the market price and the maximum price the consumer is willing to pay. For instance, for
the Q0th consumer whose maximum acceptable price of purchasing the good is rd, his or
her surplus is rd − r∗. In other words, the consumer surplus is the benefit the consumer
receives by purchasing the good in the market. If we assume both r and Q are continuous
variables, then the total consumers’ surplus is the area between the marginal benefit curve
(the demand curve) and the equilibrium price as denoted in the figure. On the other hand,
producer surplus is the difference between the market price and the least the producer is
willing to sell for. For instance, for the Q0th good whose opportunity cost is rs, the surplus
of producer by selling this good is r∗ − rs. Concisely, the producer surplus is the benefit the
producer receives by selling the good in the market. Thus, the total producers’ surplus is the
area between the equilibrium price and the marginal cost curve (the supply curve) as denoted
in the figure.

Consider a special market with fixed supply as shown in Figure 4.3b. The consumers’
surplus is calculated as in the market shown in Figure 4.3a. However, in this market, the
opportunity cost is invisible. When we calculate the producers’ surplus, we need to subtract
the opportunity cost from the rectangle area formed by the origin and (Q∗, r∗). Thus, the
social surplus equals to the area below the marginal benefit curve from the origin to Q∗ minus
the opportunity cost.

The ride-sharing market is similar to the market depicted in Figure 4.3b. Thus, the social
welfare maximization problem can be constructed as

(P2) maximize S(N, p) = ∑i
∫ Qi

0 Fi(x)dx− φN (4.2)
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Figure 4.3.: Samples of consumers’ surplus and producers’ surplus

where Fi(·) is the inverse of the demand function given in Equation (3.9), i.e., marginal benefit
function. According to Equation (3.9),

ri =
1
βr

[ln Qi − ln(Di −Qi) + ln µi − βtti − βwwi]

Thus, F(x) is given by

Fi(x) =
1
βr

[ln x− ln(Di − x) + ln µi − βtti − βwwi] (4.3)

Besides, due to the inclusion of waiting time and detour time in the demand curve,
the consumers’ surplus must be carefully determined. The integral in (P2) is obtained by
integrating under a (hypothetical) demand curve in which the service level (waiting time,
detour time) is held fixed while the trip fare varies, rather than under the market demand
curve2.

2We refer the interested readers to Anderson and Bonsor (1974), Cairns and Liston-Heyes (1996) for the related
analysis.
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5. Unified Pricing Method

5.1. Objectives and Contributions

As one of the major challenges, dynamic pricing methods have been attracting increasing
attention on ride-sharing services research. Some of the existing works account for the
temporal elasticity of demand (e.g., Turan et al., 2019), or the spatial heterogeneity due to
the network structure (e.g., Bimpikis et al., 2019), or both of them (e.g., Qiu et al., 2018).
These pricing methods are always developed on a basic assumption of homogeneous users.
However, as the importance and benefits of considering user heterogeneity have been proved
in the related problems, such as assortment optimization problem (e.g., Rusmevichientong
et al., 2010), parking choice (e.g., Ibeas et al., 2014), and route choice (e.g., Liu and Nie, 2011),
it is desirable to investigate the optimal pricing strategies for ride-sharing with additional
consideration of the user heterogeneity.

In this chapter, we aim to propose a unified pricing method, which has been widely
applied in taxi markets and mobility-on-demand (MooD) markets, for the market developed
in Chapter 3 and analyze its performance in the monopoly scenario and social optimum
scenario. The contributions of this chapter are three-fold.

1) We propose a unified pricing method for ride-sharing services with a consideration of
passenger preference in the multi-modal transport context, and prove its performance
under different regulations.

2) We develop and derive solution algorithms for the proposed pricing method in different
market scenarios, and investigate their effectiveness.

3) We explore the performance of the proposed market model in different user groups.

This chapter is organized as follows. Section 5.2 introduces the concept of unified pricing
method. Section 5.3 and Section 5.4 presents the solution algorithm and its derivation,
respectively. Section 5.5 describes simulation settings for the experiments in this chapter.
Section 5.6 analyzes the results of different experiments and evaluates the proposed solution
algorithms. Section 5.7 performs a sensitivity analyses with respect to passenger preference
(user group). Section 5.8 concludes this chapter and proposes potential future directions.
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5. Unified Pricing Method

5.2. Fare Structure

The fare structure used in this unified pricing method is such that trip fares are proportional
to the travel distance. Mathematically, the trip fare of i is given by

ri = pdi (5.1)

where p is the unit price for trips of all OD pairs.
Keller (2013) proved that under certain conditions, the local maximum of the non-convex

problem (P1) in terms of the prices is also a global maximum. It means, though gradient-based
algorithms ensure converge to a local minimum only, they can be used to solve the problems
presented in this study. Thus, in this study, we apply the Gradient Descent (GD) algorithm
(Cauchy, 1847; Curry, 1944) for solving (P1) and (P2) in terms of the unit price p and the
vehicle fleet size N.

5.3. Solution Algorithm

Define the operation strategy as O , (N, p). Let J (O) denote the objective function which
can be either Π(O) or S(O). Then the GD for solving the relevant optimization problems
can be described as Algorithm 5.1. By applying this algorithm, first, we need to initialize
the starting point of the operation strategy O(0), the step size α, and the maximum iterations
τmax (line 1). Then at each iteration τ, we have to calculate the values of relevant variables in
the market equilibrium under O(τ) (line4). Followed with the computation of derivatives of
travel time ti, waiting time wi with respect to p and N, respectively, for each OD pair (line
5). The derivatives of the objective J can then be calculated (line 6) based on the results
of the previous step. The detailed derivations of the derivatives aforementioned and their
interdependence are described in Section 5.4. At the end of each iteration, the operation
strategy O(τ) is updated based on the resulted gradient (line 12). This procedure will be
repeated until either the maximum iteration is reached or the termination condition (g(τ) < ε)
is met.

5.4. Partial Derivatives of Related Variables

As describe in Chapter 3, the interdependence among system endogenous variables (waiting
time, detour time, ride-sharing demand) is very complicated. This leads to the difficulty of
calculating the partial derivatives of relevant variables for p and N.

5.4.1. Partial derivatives of profit

Recall that Π(N, p) = ∑i DiPiri − φN and ri = pdi, then the derivative of Π with respect to p
can be calculated as below.

∂Π
∂p

= ∑
i
(Di

∂Pi

∂p
ri + Qidi) (5.2)
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5. Unified Pricing Method

Algorithm 5.1 Gradient Descent for solving unified pricing optimization problems

1: Initialize O(0), α, τmax

2: τ = 0
3: for τ < τmax do
4: Compute the market equilibrium state: ri(O(τ)), wi(O(τ)), t̃i(O(τ)), Pi(O(τ)), Qi(O(τ))

5: Compute ∂ti
∂p , ∂wi

∂p , ∂ti
∂N , ∂wi

∂N , ∀i with O(τ) as the operation condition

6: Compute ∂J
∂p , ∂J

∂N with O(τ) as the operation condition

7: g(τ) = ∇J (O(τ))

8: if g(τ) < ε then
9: O∗ = O(τ)

10: break
11: end if
12: O(τ+1) = O(τ) + αg(τ)

13: τ = τ + 1
14: end for

By applying the chain rule, we know

∂Pi

∂p
=

∂Pi

∂Vi,rs

∂Vi,rs

∂p
(5.3)

Since Pi = eVi,rs /(eVi,rs + µi) and Vi,rs = βtti + βwwi + βrri, so

∂Pi

∂Vi,rs
=

eVi,rs

eVi,rs + µi
− (eVi,rs)2

(eVi,rs + µi)2 =
eVi,rs

eVi,rs + µi
(1− eVi,rs

eVi,rs + µi
) = Pi(1− Pi) (5.4)

∂Vi,rs

∂p
= βt

∂ti

∂p
+ βw

∂wi

∂p
+ βrdi (5.5)

Substitute Equation (5.4) and Equation (5.5) into Equation (5.3), we can get

∂Pi

∂p
= Pi(1− Pi)(βt

∂ti

∂p
+ βw

∂wi

∂p
+ βrdi)

As a result,

∂Π
∂p

= ∑
i

DiPi(1− Pi)(βt
∂ti

∂p
+ βw

∂wi

∂p
+ βrdi)ri + ∑

i
Qidi (5.6)

Similarly, we can calculate the derivative of profit with respect to N as below.

∂Π
∂N

= ∑
i

Di∂Pi

∂N
ri − φ = ∑

i
DiPi(1− Pi)(βt

∂ti

∂N
+ βw

∂wi

∂N
)ri − φ (5.7)

Equation (5.6) and Equation (5.7) tell the derivatives of profit are functions of derivatives of
detour time and waiting time. The derivatives of detour time and waiting time with respect
to p and N are expounded in Section 5.4.3.
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5.4.2. Partial derivatives of social welfare

We emphasize that the integral in (P2) is obtained by integrating under a (hypothetical)
demand curve in which the service level (waiting time, detour time) is held fixed while the
trip fare varies, rather than under the market demand curve.

Recall that S(N, p) = ∑i
∫ Qi

0 Fi(x)dx− φN, we can calculate the derivative of social welfare
with respect to p as below.

∂S
∂p

= ∑
i

[∫ Qi

0

∂Fi(x)
∂p

dx +
∂Qi

∂p
Fi(Qi)

]
(5.8)

Since Fi(x) = 1
βr
[ln x− ln(Di − x) + ln µi − βtti − βwwi], so

∫ Qi

0

∂Fi(x)
∂p

dx =
∫ Qi

0

1
βr

(−βt
∂ti

∂p
− βw

∂wi

∂p
)dx =

Qi

βr
(−βt

∂ti

∂p
− βw

∂wi

∂p
)

∂Qi

∂p
= DiPi(1− Pi)(βt

∂ti

∂p
+ βw

∂wi

∂p
+ βrdi)

Such that

∂S
∂p

= ∑
i

[
Qi

βr
(−βt

∂ti

∂p
− βw

∂wi

∂p
) + DiPi(1− Pi)(βt

∂ti

∂p
+ βw

∂wi

∂p
+ βrdi)Fi(Qi)

]
(5.9)

Similarly, we can calculate the derivative of social welfare with respect to N as below.

∂S
∂N

= ∑
i

[∫ Qi

0

∂Fi(x)
∂N

dx +
∂Qi

∂N
Fi(Qi)

]
− φ (5.10)

∫ Qi

0

∂Fi(x)
∂N

dx =
∫ Qi

0

1
βr

(−βt
∂ti

∂N
− βw

∂wi

∂N
)dx =

Qi

βr
(−βt

∂ti

∂N
− βw

∂wi

∂N
)

∂Qi

∂N
= DiPi(1− Pi)(βt

∂ti

∂N
+ βw

∂wi

∂N
)

∂S
∂N

= ∑
i

[
Qi

βr
(−βt

∂ti

∂N
− βw

∂wi

∂N
) + DiPi(1− Pi)(βt

∂ti

∂N
+ βw

∂wi

∂N
)Fi(Qi)

]
− φ (5.11)

Analogously, from Equation (5.9) and Equation (5.11), we can see that the derivatives of
welfare are also functions of derivatives of detour time and waiting time.
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5.4.3. Partial derivatives of detour time and waiting time

As shown in Section 5.4.1 and Section 5.4.2, the derivatives of the objectives are determined
by the derivatives of detour time and waiting time.

Let t′i|p and t′i|N denote the derivatives of ti with respect to p and N, respectively. And let
w′i|p and w′i|N denote the derivatives of wi with respect to p and N, respectively. Recall that

t̃i = Ai ∑j Qjtd
j /NQ, and since ti = td

i + t̃i, then the derivative of ti with respect to p can be
calculated as

∂ti

∂p
=

∂t̃i

∂p
=

Ai

N

[
1
Q ∑

j

∂Qj

∂p
td

j −
1

Q2
∂Q
∂p ∑

j
Qjtd

j

]

t′i|p =
Ai

NQ ∑
j

DjPj(1− Pj)(βtt′j|p + βww′j|p + βrdj)td
j

−
Ai ∑j Qjtd

j

NQ2 ∑
j

DjPj(1− Pj)(βtt′j|p + βww′j|p + βrdj) (5.12)

Equation (5.12) is a linear combination of t′i|p, w′i|p, ∀i.

On the other hand, since wi = BQi/
√

Nns −∑j Qjtj, so

∂wi

∂p
=

B√
Nns −∑j Qjtj

∂Qi

∂p
− BQi

2
√
(Nns −∑j Qjtj)3

[
−∑

j
(

Qj

∂p
tj + Qj

∂tj

∂p
)

]

w′i|p =
BDiPi(1− Pi)(βtt′i|p + βww′i|p + βrdi)√

Nns −∑j Qjtj

+
BQi ∑j

[
DjPj(1− Pj)(βtt′j|p + βww′j|p + βrdj)tj + Qjt′j|p

]
2
√
(Nns −∑j Qjtj)3

(5.13)

Equation (5.13) is also a linear combination of t′i|p, w′i|p, ∀i.
Combining Equation (5.12) and Equation (5.13) in terms of different i, we can get a

linear equations system with 2nz unknowns (t′i|p, w′i|p, ∀i ∈ Z) and 2nz equations (linear
combinations). For a given p and N (at a specific iteration of the algorithm), this linear
equations system can be easily solved via linear algebra.

Similarly, we can calculate the derivatives with respect to N as below.

∂ti

∂N
=

∂t̃i

∂N
=

Ai

NQ ∑
j

∂Qj

∂N
td

j −
Ai ∑j Qjtd

j

(NQ)2 (Q + N
∂Q
∂N

)
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t′i|N =
Ai ∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)t

d
j

NQ

−
Ai

[
Q + N ∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)

]
∑j Qjtd

j

(NQ)2 (5.14)

∂wi

∂N
=

B√
Nns −∑j Qjtj

∂Qi

∂N
− BQi

2
√
(Nns −∑j Qjtj)3

[
ns −∑

j
(

∂Qj

∂N
tj + Qj

∂tj

∂N
)

]

w′i|N =
BDiPi(1− Pi)(βtt′i|N + βww′i|N)√

Nns −∑j Qjtj

−
BQi

[
ns −∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)tj −∑j Qjt′j|N

]
2
√
(Nns −∑j Qjtj)3

(5.15)

Again, the linear equations system consists of Equation (5.14) and Equation (5.15) (∀i ∈ Z)
can be solved via linear algebra.

5.5. Simulation Settings

In the experiments conducted in Section 5.6, the preference coefficients βr, βt, βw are estimated
by utilizing the entire stated-preference survey data. Recall that respondents were asked to
state their preferences in a 5-point rating scale in each scenario in the survey as introduced in
Chapter 4. Therefore, the conventional MNL cannot be applied directly, since the ordered
responses violate the independence for irrelevant alternatives (IIA) assumption of the logit
model (Antoniou and Polydoropoulou, 2015). In this study, we utilize the ordered logit
model presented in Antoniou et al. (2007) and Antoniou and Polydoropoulou (2015) to
estimate the preference coefficients from the survey data. See the estimation result in Table 5.1.
It can be seen that all p-values for the estimates are zero which indicates the estimation
result is significant with a confidence level of 99%. Furthermore, as we assume passengers
perceive travel time and waiting time differently, the value-of-waiting-time (VOTw) and the
value-of-travel-time (VOTt) of passengers can be calculated as below.

VOTw =
βw

βr
· 60 = 11.51 Euro/h (5.16)

VOTt =
βt

βr
· 60 = 13.04 Euro/h (5.17)
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Table 5.1.: Coefficient estimation for the entire survey.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.589 0.0509 -11.6 0
βt (/min) -0.128 0.0139 -9.18 0
βw (/min) -0.113 0.0134 -8.46 0

Besides, since the equilibrium model is developed in the context of multi-modal system, the
attributes of different transportation options must be given. As explained in Chapter 4, we
know the distance and direct trip time of all OD pairs within the networks. On the other hand,
due to private car, public transport and ride-sharing are the options provided in the survey,
thus in this study, we consider a transportation system consists of theses three transport
modes. The attributes of public transport and private vehicles are given in Table 5.2. And the
attributes of ride-sharing services are inherently decided by the market equilibrium model.

Table 5.2.: Attributes of public transport and private vehicles.

Mode Waiting time (min) Travel time (min) Trip fare (Euro)

Public transport 10 3td
i 1.5di

Private vehicles 0 td
i 2.5di

Moreover, the operating cost per vehicle per hour is φ = 15 Euro/h for all experiments
thereafter.

The experiments and simulations are implemented using Python. The simultaneous equa-
tions system Equation (3.12) is solved using Python with Scipy library (Virtanen et al., 2020),
an open source scientific computing library. The fsolve solver packaged in SciPy.optimize is
used, which is a wrapper around the hybrid algorithm presented in Powell, 1970.

5.6. Case Study and Results

This section shows the performance of the proposed unified pricing method in the market
constructed in Chapter 3. Section 5.6.1 and Section 5.6.2 shows the results for the handmade
test network and the Munich network, respectively. Section 5.6.3 demonstrates the difference
in the optimum for different scenarios. Section 5.6.4 evaluates the proposed GD algorithm in
solving the optimization problems for the unified pricing method.

5.6.1. Results for the small test network

In this section, we show results for the test network at the low demand level, while results for
the high demand level lead to the same conclusion and are omitted here.
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5. Unified Pricing Method

Figure 5.1 shows the iso-profit contours and iso-welfare contours together with the
monopoly optimum (MO) and social optimum (SO) in a two-dimensional space with vehicle
fleet size on the X-axis and unit price on the Y-axis. And trip fares of different OD pairs
can be calculated with ri = pdi. Obviously, the optimal unit price for a monopoly is higher
than the optimal unit price at the social optimum, but the optimal vehicle fleet size at the
monopoly optimum is less than that at the social optimum. Let (N∗m, p∗m) and (N∗s , p∗s ) denote
the coordinates of MO and SO. Then, p∗m > p∗s and N∗m < N∗s . That is to say, a ride-sharing
service operator needs to adjust its operation strategy based on its operational objective. If
it aims to maximize its profit, it could refer to MO. However, if the service is operated by
the government and serves as a supplement of public transport, its objective is always to
maximize the social welfare in general. In this case, it should refer to SO.

Furthermore, clearly, both profit and social surplus first increase with the unit price and
vehicle fleet size and then decrease. If the operational scale of the service is restricted by
the limited source and funds, this figure can still provide suggestions for the unit price by
referring to the vertical section of certain vehicle fleet size.
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Figure 5.1.: Profit and social welfare of test market in a two-dimensional space of vehicle fleet
size and unit price.

Figure 5.2a-Figure 5.2d depict the contours of ride-sharing demand, seats occupancy
rate, network average detour time and network average waiting time of the test network,
respectively. Let λ, ¯̃ti and w̄i denote the seats occupancy rate, network average detour time
and network average waiting time, then we have

λ =
∑j Qjtj

Nns
, ¯̃t = ∑i Qi t̃i

∑i Qi
, w̄ =

∑i Qiwi

∑i Qi

Figure 5.2a says that ride-sharing demand increases with vehicle fleet size, but decrease
with unit price. Intuitively, more vehicles always means a higher serving quality, and therefore
can attract more passengers from other transport modes. On the contrary, higher trip fares
result in a demand loss due to the limited affordability of some passengers. Figure 5.2b shows
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5. Unified Pricing Method

that, different from ride-sharing demand, λ decreases with unit price and vehicle fleet size.
Despite more vehicles can attract more passengers, the induced demand cannot meet the
increase of seats supply.

Furthermore, it can be seen from Figure 5.2c and Figure 5.2d that, network average detour
time is mainly influenced by vehicle fleet size, while the network average waiting time is
mainly affected by the unit price. This conforms to their formulations. If we assume the
direct trip time is the same for all OD pairs, then Equation (3.20) will become t̃i = Atd/N. In
other words, t̃i ∝ 1/N. Though this is an extreme case, it guilds the analysis of the contours
of network average detour time if we do the approximation. Regarding the average waiting
time, we have wi ∝ Qi/

√
Nns −∑j Qjtj. The influence of N is weakened by the square root

operator. Thus it mainly depends on the ride-sharing demand which is affected by unit price
more as shown in Figure 5.2a. And this relationship would not change after averaging.
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Figure 5.2.: System endogenous variables of test network in a two-dimensional space of
vehicle fleet size and unit price.
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5.6.2. Results for the Munich network

Similarly, in this section, we only present results for the Munich network at the low demand
level for the purpose of presentation simplicity.

Figure 5.3 shows the iso-profit and iso-welfare contours together with MO and SO. We can
see that SO is also in the lower right direction of MO, which complies with the phenomenon
in the test network. And we also have N∗m < N∗s and p∗m > p∗s . Both profit and welfare first
increase with the unit price and vehicle fleet size and then decrease. Note that, when the unit
price is relatively big, the joint influence of decision variables on profit and welfare is similar.
However, when the unit price is relatively small, profit is influenced by both vehicle fleet
size and unit price, while social welfare is mainly depending on the vehicle fleet size. This
is not found in Figure 5.1. It implies that the operation of ride-sharing services in different
markets could be very different. Thus, a reliable operation strategy in one market may be
inappropriate in another. Every market should be specifically analyzed. What’s more, for
the same market, the optimum strategies should also be particularly identified in different
operation phases due to distinctive operational objectives.

Noticing that there are some irregular spots in Figure 5.3, this is caused by the unsatisfactory
solutions of Equation (3.12) when applying the hybrid algorithm to solve it. But this happens
rarely. The equations system is solvable via the hybrid algorithm in nearly all cases.
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Figure 5.3.: Profit and social welfare of Munich market in a two-dimensional space of vehicle
fleet size and unit price.

See Figure 5.4a-Figure 5.4d for the contours for ride-sharing demand, seats occupancy
rate, network average detour time and network average waiting time of the Munich network,
respectively. Clearly, the contours of ride-sharing demand and seats occupancy rate are very
similar to those in the test network. Therefore, we can draw the same conclusions for these
variables as in the test network. However, in terms of the network average detour time, the
influence of vehicle fleet size is strengthened. The possible reason may be the complicated
network structure enhances the heterogeneity of the direct trip time such that ride-sharing
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5. Unified Pricing Method

demand plays a more important role in determining the detour time. And as we know,
ride-sharing demand is obviously dominated by the unit price. Moreover, we can see from
Figure 5.4d that when unit price is relatively small, the influence of vehicle fleet size is also
been enlarged compared to the same contours in the test network. This analysis also complies
with the findings in the comparison between Figure 5.3 and Figure 5.1, namely, the operation
of ride-sharing services in different markets could be very different due to the distinctive
characteristics, especially the difference in network structure.
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Figure 5.4.: System endogenous variables of Munich network in a two-dimensional space of
vehicle fleet size and unit price.

5.6.3. Results comparison for different scenarios

To understand the relation of the optimums between different scenarios (different objectives,
different demand levels), we make a comparison for test network and Munich network in
Figure 5.5a and Figure 5.5b separately. Let (N∗m,l , p∗m,l), (N∗s,l , p∗s,l) denote the positions of MO
and SO at the low demand level. Let (N∗m,h, p∗m,h), (N∗s,h, p∗s,h) be the positions of MO and SO at
the high demand level. It can be seen that, at the high demand level, we also have N∗m,h < N∗s,h
and p∗m,h > p∗s,h in both networks. What’s more, in both networks, N∗s,h − N∗m,h > N∗s,l − N∗m,l
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and p∗m,h − p∗s,h ≈ p∗m,l − p∗s,l are valid. That is to say, a ride-sharing provider attempting to
maximize the social welfare needs to operate more incremental vehicles in high demand
scenario than a provider who aims to maximize its profit.

Denote kD as the ratio of total travel demand of the high demand scenario in Munich
network over the total demand of the low demand scenario, then kD = 15254/8264 ≈ 1.85.
From another point of view, in the Munich network, we can see that N∗m,h < kD N∗m,l and
N∗s,h < kD N∗s,l . Implicitly, it indicates that service providers can optimize resource deployment
based on the demand distribution to reduce the requirement of vehicle fleet size rather than
increasing vehicle fleet size in proportion with demand. However, this conclusion is not
valid for the test network. A potential reason is we double the travel demand for all OD
pairs in the test network which limits the possibility of optimizing the deployment of the
resource. Differently, travel demand in the Munich network is from real measurements, and
the demand for OD pairs is not increasing with the same proportion in the high demand
scenario or even some are reducing.
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Figure 5.5.: Optimums comparison for different scenarios.

5.6.4. Convergence analysis

In this section, we evaluate the effectiveness of the GD algorithm on solving (P1) and (P2).
The initialization is given in Table 5.3. As can be seen from Figure 5.6, the trajectory reaches
the optimum after a few iterations in all scenarios. This indicates the effectiveness of the
proposed GD algorithm (Algorithm 5.1) on solving the optimization problems for the unified
pricing method. We can also observe the difference of two markets in terms of profit and
social welfare more clearly through comparing the contours in Figure 5.6.

5.7. Sensitivity Analysis to Passenger Preference

In this section, we analyze the performance of the ride-sharing market in different user groups
with particular consideration of age level and income level. Note that, we only perform the
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5. Unified Pricing Method

Table 5.3.: Initialization condition of GD for different scenarios.

Scenario N(0) p(0) αN αp τmax

Test network (P1) 1,100 2.0 10 0.0001 200
Munich network (P1) 1,100 2.0 50 0.00001 200
Test network (P2) 1,100 2.0 50 0.00001 200
Munich network (P2) 1,100 2.0 50 0.000001 200
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Figure 5.6.: Algorithm iteration process when solving optimization problems for the unified
pricing method.
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sensitivity analysis regarding age groups and income groups on the low-demand Munich
network, while the other scenarios should lead to the same conclusions.

5.7.1. Different age groups

In this experiment, we divide the survey data into three groups based on respondents’
age. The grouping rule and coefficient estimates are listed in Table 5.4. For the ease of
reading, the estimation results are not detailed here and can be found in Appendix B.1. All
estimates are significant with a 99% confidence level. If we assume value-of-time VOT =

(VOTt + VOTw)/2, then we can see that VOT increases with age.

Table 5.4.: Coefficient estimation for different age groups.

Age βr βt βw VOTt VOTw VOT Samples

18-35 -0.716 -0.108 -0.126 9.05 10.56 9.805 216
36-55 -0.601 -0.139 -0.091 13.88 9.08 11.48 858
≥55 -0.556 -0.128 -0.115 13.81 12.41 13.11 162
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Figure 5.7.: Performance of ride-sharing services on different age groups.

Figure 5.7 illustrates the development of optimal unit price (Figure 5.7a) and profit (Fig-
ure 5.7b) of different age groups under different vehicle fleet sizes. It can be seen that, though
VOT of the oldest group is highest, the optimal unit price for the middle age group is slightly
higher than that for the oldest group when the vehicle fleet size is bigger than 100. From
Figure 5.7b, we can also see that service providers can earn more profit in the scenario of
the middle-age group. This implies the importance and benefit of considering the passenger
preference in the context of a multi-modal transportation system. We can see from Table 5.4
that VOTw of the middle age group is much smaller than that of the oldest group, while their
VOTts are very close. From Section 5.6, we know that the waiting time of ride-sharing is
relatively high than driving private cars (0 min) but its detour time is still acceptable. As a
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result, ride-sharing is more popular in the middle-age group. Thus, the optimal unit price is
relatively high. On the other hand, since the youngest group is most sensitive to the trip fare
(βr is biggest), thus the unit price is relatively small. Moreover, the maximum profit of the
oldest group is smaller than that of the other groups, indicating its demand is smaller than
the others.

5.7.2. Different income groups

In this experiment, we divide the survey data into three groups based on respondents’ income.
Again, for the purpose of presentation simplicity, the estimation results are not detailed here
and can be found in Appendix B.2. All estimates are significant with a 99% confidence level.
And as shown in Table 5.5, VOT increases with income as well.

Table 5.5.: Coefficient estimation for different income groups.

Income (Euro) βr βt βw VOTt VOTw VOT Samples

500-2000 -0.601 -0.106 -0.112 10.58 11.18 10.88 480
2000-4000 -0.781 -0.170 -0.151 13.06 11.60 12.33 282
≥4000 -0.514 -0.135 -0.104 15.76 12.14 13.95 486
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Figure 5.8.: Performance of ride-sharing services on different income groups.

Figure 5.8 shows the optimal unit price and performance of ride-sharing in different user
groups under different vehicle fleet sizes. It can be seen that the optimal unit price for the
richest group is always the highest, while the maximum profit is much less than that of the
middle-income group. From Table 5.5, we know the middle-income group is most sensitive
to the trip fare. Nevertheless, its optimal unit price is still bigger than that for the poorest
group, since it is also the most sensitive group to waiting time (ride-sharing always has a
longest waiting time). Analogously, this can also explain why the optimal unit price for the
middle-income group is slightly smaller than that for the richest group despite its sensitivity
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to travel time and waiting time is stronger than that of the richest group. Interestingly, we
can see from Figure 5.8b that service providers can get more profit in the scenario of the
middle-income group. This is also in accords with the findings in the age group experiments
and can also explain in a similar way.

5.8. Conclusions

In this chapter, we propose a unified pricing method for ride-sharing services. Under this
unified pricing method, the trip fare is linearly related to the travel distance, i.e., ri = pdi.
This method has been widely used in taxi markets, ride-sharing markets, and other transport
mobility markets, since it is the easiest method to implement. We evaluate the performance of
the ride-sharing market installed with the unified pricing method under different operation
strategies. Note that, the evaluation is based on the market equilibrium model presented
in Chapter 3. The results show that the operation of ride-sharing services in different
markets (cities) could be very different due to the distinctive network structure. This indicates
the importance of considering network structure and OD demand pattern in the market
equilibrium model, which is in accord with one of the motivations of this study.

Furthermore, a GD algorithm is developed to find the optimal solutions for the monopoly
scenario and the social optimum scenario. The method to calculate the derivatives of the
objectives is explicitly explained. By comparing the optimums of different scenarios, one
can draw that, the unit price for the monopoly optimum is higher than that for the social
optimum, while the vehicle fleet size for the monopoly optimum is smaller than that for
the social optimum. Moreover, the difference between the optimal vehicle fleet sizes in MO
and SO becomes greater in the high demand level scenario, while the difference between
the optimal unit prices almost keeps the same. Besides, the GD algorithm is deemed to be
effective in solving the optimization problems for the unified pricing method based on the
convergence analysis presented in Section 5.6.4.

In addition, the performance of ride-sharing services in different user groups is evaluated.
Particularly, we estimate the passenger preference for different age groups and income
groups, and analyze the popularity and performance of ride-sharing in these groups. The
result implies that ride-sharing operators can get more profit by providing services between
middle-age communities and middle-income communities.
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6.1. Objectives and Contributions

Demand for and supply of ride-sharing services are allocated over the network, and thus
equilibrium modeling of the problem should be conducted with a consideration of the
network structure and a customer OD demand pattern (Yang et al., 2002). However, apart
from accounting for the spatial structure in the equilibrium model, a specific trail for the
spatial difference of pricing is also beneficial. Applying different pricing schemes for trips
with different ODs has the potential to optimize the operation strategy and objective. Thus,
in this chapter, the spatial structure of the market is explicitly considered for developing a
spatial pricing method to improve the equilibrium model presented in Chapter 3 integrated
with the pricing method introduced in Chapter 5.

The fare structure in the spatial pricing method is described in Section 6.2. Section 6.3
introduces the algorithm applied to optimize the operation strategy. Section 6.5 explains
simulation settings for the experiments in this chapter. Section 6.6 analyzes the results of
different experiments and evaluates the proposed solution algorithms. Section 6.7 concludes
this chapter and suggests future works.

6.2. Fare Structure

By applying the spatial pricing method, the unit prices for different OD pairs are different. In
other words, the trip fare is given by

ri = pidi (6.1)

where pi is the unit price for OD pair i.

6.3. Solution Algorithm

We also apply the GD algorithm to solve monopoly optimum and social optimum for the
proposed spatial pricing method. The GD algorithm is given in Algorithm 6.1. Different from
Algorithm 5.1, the derivatives with respect to pz has to be specified for different z (line 4 and
line 5), where z is another numbering for OD pairs in order to distinguish it from i.
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Algorithm 6.1 Gradient Descent for solving MO and SO for spatial pricing

1: Initialize O(0), α, τmax

2: τ = 0
3: for τ < τmax do
4: Compute the market equilibrium state: ri(O(τ)), wi(O(τ)), t̃i(O(τ)), Pi(O(τ)), Qi(O(τ))

5: Compute ∂ti
∂pz

, ∂wi
∂pz

, ∂ti
∂N , ∂wi

∂N , ∀i, z, with O(τ) as the operation condition

6: Compute ∂J
∂pz

, ∂J
∂N , ∀z, with O(τ) as the operation condition

7: g(τ) = ∇J (O(τ))

8: if g(τ) < ε then
9: O∗ = O(τ)

10: break
11: end if
12: O(τ+1) = O(τ) + αg(τ)

13: τ = τ + 1
14: end for

6.4. Partial Derivatives of Related Variables

Note that, the derivatives with respect to N are the same as that in the unified pricing method.
However, we need to specify the derivatives for different pz. Intrinsically, applying different
unit prices for different OD pairs affects the derivatives of trip fare. Then the difference of
the derivatives of the trip fare further influences derivatives of ride-sharing demand. In the
spatial pricing method, the derivative of profit with respect to pz is given by

∂Π
∂pz

= ∑
i
(

∂Qi

∂pz
ri + Qi

∂ri

∂pz
) (6.2)

Note that, the derivative of trip fare with respect to pz is given by

∂ri

∂pz
=

{
di if i = z

0 otherwise
(6.3)

And the derivative of ride-sharing demand is given by

∂Qi

∂pz
=

{
DiPi(1− Pi)(βt

∂ti
∂pz

+ βw
∂wi
∂pz

+ βrdz) if i = z

DiPi(1− Pi)(βt
∂ti
∂pz

+ βw
∂wi
∂pz

) otherwise
(6.4)

Thus, we have

∂Π
∂pz

=

{
∑i DiPi(1− Pi)(βt

∂ti
∂pz

+ βw
∂wi
∂pz

+ βrdz)ri + ∑i Qidi if i = z

∑i DiPi(1− Pi)(βt
∂ti
∂pz

+ βw
∂wi
∂pz

)ri otherwise
(6.5)

For the purpose of convenience, we repeat Equation (5.7) here.

∂Π
∂N

= ∑
i

∂Qi

∂N
ri − φ = ∑

i
DiPi(1− Pi)(βt

∂ti

∂N
+ βw

∂wi

∂N
)ri − φ (6.6)
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Let t and w denote the vector of travel time of all OD pairs and the vector of waiting time
of all OD pairs, respectively. It can be seen that, ∀z ∈ Z, derivative of Π with respect to
pz are functions of derivative of t with respect to pz and derivative of w with respect to pz.
And derivative of Π with respect to N are functions of derivative of t with respect to N and
derivative of w with respect to N.

On the other hand, the derivative of welfare with respect to pz is given by

∂S
∂pz

= ∑
i

di

[
Qi

βrdi
(−βt

∂ti

∂pz
− βw

∂wi

∂pz
) +

∂Qi

∂pz
Fi(Qi)

]
(6.7)

Substitute Equation (6.4) into Equation (6.7) resulting in

∂S
∂pz

=

∑i di

[
Qi

βrdi
(−βt

∂ti
∂pz
− βw

∂wi
∂pz

) + DiPi(1− Pi)(βt
∂ti
∂pz

+ βw
∂wi
∂pz

+ βrdz)Fi(Qi)
]

if i = z

∑i di

[
Qi

βrdi
(−βt

∂ti
∂pz
− βw

∂wi
∂pz

) + DiPi(1− Pi)(βt
∂ti
∂pz

+ βw
∂wi
∂pz

)Fi(Qi)
]

otherwise

(6.8)

For ease of reading, we also repeat Equation (5.11) at below.

∂S
∂N

= ∑
i

[
Qi

βr
(−βt

∂ti

∂N
− βw

∂wi

∂N
) + DiPi(1− Pi)(βt

∂ti

∂N
+ βw

∂wi

∂N
)Fi(Qi)

]
− φ (6.9)

Clearly, analogous to the findings in the unified pricing method, derivatives of S are also
functions of derivatives of t and w.

Note that, the calculation of derivatives of t and w for the spatial pricing method follows
the same procedure for the calculation of derivatives of t and w in the unified pricing method
presented in Chapter 5. For the simplicity of reading, the details will be omitted here and can
be found in Appendix A.2.

6.5. Simulation Settings

We conduct experiments on the test network to analyze the performance of ride-sharing
on the travel for different OD pairs. As test network is simple and the difference (spatial
difference and demand difference) between different OD pairs are apparent, it is easy to
choose typical OD pairs for comparison.

In terms of Munich network, we exploit the relationship between optimal unit price and
OD distance, as well as the relationship between optimal unit price and ride-sharing demand.
Since we have more OD pairs in Munich network, it provides the possibility for us to draw
statistical conclusions. What’s more, we also try to analyze the importance of considering user
heterogeneity when applying spatial pricing method. Figure 6.1 depicts the heterogeneous
regions in the Munich network. The regions with read shadow are assumed to be cost-
insensitive regions, and the preference of users from and to these regions is estimated with
the coefficients from the higher-income (≥4000 Euro monthly) group. On contrary, trips
between other regions will be estimated based on the lower-income (<4000 Euro monthly)
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group. For ease of reading, the coefficient estimation results are listed in Appendix B.2.
Besides, we also make a comparison between unified pricing method and spatial pricing
method on this network.

Income group: < 4000 Euro
Value of waiting time:

60 ∙ 𝛽𝑡

𝛽𝑟
= 11.63𝐸𝑢𝑟𝑜 /ℎ

Value of travel time:

60 ∙ 𝛽𝑡

𝛽𝑟
= 11.36𝐸𝑢𝑟𝑜 /ℎ

Income group: ≥ 4000 Euro
Value of waiting time:

60 ∙ 𝛽𝑡
𝛽𝑟

= 15.76𝐸𝑢𝑟𝑜 /ℎ

Value of travel time:

60 ∙ 𝛽𝑡
𝛽𝑟

= 12.14𝐸𝑢𝑟𝑜 /ℎ

Figure 6.1.: Munich network with heterogeneous regions.

6.6. Case Study and Results

Section 6.6.1 evaluates the performance ride-sharing market using the spatial pricing method
on the test network under different vehicle fleet sizes. Section 6.6.2 analyzes the relationship
of the optimal unit price and the travel distance, ride-sharing demand for different OD pairs
on the Munich network. Section 6.6.3 compares the operation in the Munich network with and
without considering user heterogeneity, under unified pricing and spatial pricing. Section 6.6.4
provides a convergence analysis for the proposed GD algorithm on the optimization problems
for the spatial pricing method.

6.6.1. Performance of ride-sharing on different OD configurations (test network)

This analysis depends on the results of the test network. Figure 6.2 shows the maximum profit
or maximum welfare of operation of ride-sharing in different scenarios on the test network
under different vehicle fleet size. In the monopoly scenarios, the difference in maximum
profit in the low-demand period and high-demand period increases with the vehicle fleet size.
In the social optimum scenarios, we can also observe that the difference in maximum welfare
in the low-demand period and high-demand period increases with vehicle fleet size.

To understand the performance and popularity of ride-sharing services in different ranges
of distance and travel time, we select three representative OD pairs from the test network for
analysis. Figure 6.3a shows the ride-sharing demand for the selected OD pairs under different
vehicle fleet sizes, while Figure 6.3b depicts the market share of ride-sharing. Figure 6.3b
says that ride-sharing is more popular for long-distance and long-time trips. Besides, from
both Figure 5.2a and Figure 6.3b, we can see that the slope of lines are reducing. It means
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Figure 6.2.: Maximum profit and welfare with different vehicle fleet sizes.

providers need to operate more and more vehicles to increase the same range of market share
of ride-sharing when its operating scale is relatively large (more vehicles).
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(a) Ride-sharing demand
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Figure 6.3.: Ride-sharing performance on different OD pairs with different vehicle fleet sizes.

6.6.2. Relationship between optimal unit price and OD-related variables
(Munich network)

Figure 6.4a shows the relationship between the optimal unit price and the distance of OD,
where each point stands for an OD. We can see that when the distance less than 10 km, the
optimal unit price is linearly reducing with the distance in both high supply level and low
supply level. This somehow indicates the necessity of considering spatial heterogeneity in the
market equilibrium model such that a more appropriate optimal unit price set can be applied
on the network. But when the distance greater than 10 km, this relationship does not hold,
especially in the high supply level. The potential reason could be demand exceeds supply for
these ODs due to the popularity of ride-sharing in long-distance trips. Thus, the unit price
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could be increased to adjust the demand.
Figure 6.4b describes the relationship between the optimal unit price and ride-sharing

demand. Clearly, the optimal unit price is also linearly related to the ride-sharing demand for
the same OD in both the low supply level and high supply level. Moreover, if we draw the
curve of optimal unit price along with the increase of supply, it can be seen that, there is an
obvious rise of the optimal unit price for the ODs with high demand but the low unit price
in the low supply level. And the unit price for ODs with low ride-sharing demand in the
low supply level sees a slight increase. However, the unit price for ODs with middle-range
ride-sharing demand almost keeps the same. It means if the service provider invests more
to scale up its service, trips for ODs with high ride-sharing demand are influenced most,
followed with that for ODs with low demand.
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Figure 6.4.: OD-based optimal unit price for different vehicle fleet sizes.

6.6.3. Influence of considering user heterogeneity (Munich network)

In this section, we compare the performance of ride-sharing services utilizing unified pricing
and spatial pricing with and without considering user heterogeneity.

First, we compare the difference in the optimal vehicle fleet size in Figure 6.5a. Note that in
the X-axis, No stands for without considering user heterogeneity, while Yes indicates with a
consideration of user heterogeneity. Low is the low-demand period, while High means the
high-demand period. Recall that MO is the monopoly optimum scenario, while SO denotes
the social optimum scenario. From the figure, we can see a reduction of the optimal vehicle
fleet size after considering user heterogeneity in all scenarios. This implies the necessity
of considering user heterogeneity. If we can estimate the user preference more accurately,
then the optimal solutions for scenarios are more reliable and thus could even reduce the
operating budget. However, we cannot observe an evident change of the optimal vehicle fleet
size by applying the spatial pricing method compared to the unified pricing method in these
scenarios. Thus, it means the spatial pricing method can improve the pricing settings but
have no influence on the solution for the supply side.
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On the other hand, considering user heterogeneity can also help the service provider
evaluate the risk and revenue of operating ride-sharing services in a more accurate and
conservative way, as shown in Figure 6.5b. However, out of expectation, we can only see a
very limited increase in the optimal objectives by applying the spatial pricing method in these
scenarios, and even has an exception of a reduction in High MO. In our opinion, this is caused
by the limitation of the proposed market equilibrium model. Recall that in Section 5.6.1, we
proved t̃i ∝ 1/N and wi ∝ Qi/

√
Nns −∑j Qjtj. These relationships actually imply a hidden

assumption of the proposed market equilibrium model—vehicles are evenly distributed to
OD pairs. In other words, it assumes every OD is deployed almost the same number of
vehicles. So a potential direction for future work is to consider the distribution of vehicles in
a more accurate way.
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Figure 6.5.: Difference between before and after considering user heterogeneity.
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Figure 6.6.: Convergence of GD on solving MO and SO for spatial pricing method.
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6.6.4. Convergence analysis

Figure 6.6 shows the performance of GD on solving the monopoly optimum and social
optimum for the proposed spatial pricing method. Note that, in Figure 6.6b, the derivatives
with respect to different pi are averaged at each iteration for the purpose of simplicity of
presentation. The initial parameters are the same as the ones used in the unified pricing
method, which is listed in Table 5.3. The results show that GD is suitable for solving these
problems. The derivatives with respect to N for both Π and S converge to zero after about
20 iterations. And the averages of derivatives with respect to pi also converge to zero after
around 50 iterations.

6.7. Conclusions

In this chapter, we propose a spatial pricing method for ride-sharing services. Under this
spatial pricing method, the linear relationship between the trip fare and travel distance is
measured by different unit prices in different OD pairs, i.e., ri = pidi. It shows that the
discrepancy of the operation in low demand scenario and high demand scenario becomes
greater with the increase of vehicle fleet size (operation scale), based on the results of
experiments on the test network. Likewise, it indicates that ride-sharing is more popular for
long-distance and long-time trips.

Furthermore, based on the experiment results on the Munich network, it is found that
the optimal unit prices for different OD pairs are negatively linear to their distance and
ride-sharing demand. However, the linear relationship of the optimal unit prices and OD
distance does not hold when the distance becomes extremely long. From the trend of optimal
unit prices for different OD pairs with the increase of vehicle fleet size, it recommends that
service provider should increase the unit prices for the OD pairs with high ride-sharing
demand, while that for the OD pairs with middle-range demand should keep the same.

User heterogeneity can influence the reliability of the solutions calculated from the experi-
ments. This proof is observed in Section 6.6.3 by comparing the optimal vehicle fleet sizes
and maximum profits. Considering user heterogeneity can also help the service provider
better evaluate the risk and potential revenue of operating ride-sharing services. Though the
benefits of applying the spatial pricing method have not been observed in the experiments
conducted in this chapter due to the limitation of the proposed market equilibrium model,
it is a candidate method for improving vehicle deployment (or vehicle rebalancing) and
operation profit as pointed out in Bimpikis et al. (2019).

Similarly, we apply the GD algorithm to solve the optimal unit prices set and vehicle fleet
size for the spatial pricing method. And the convergence analysis proves its effectiveness in
these problems.
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7. Utility-based Compensation Method

7.1. Objectives and Contributions

Due to the discrepancy of ODs and the uncertainty contained in ride-sharing services,
passengers always spend different monetary costs and time costs (waiting time, detour time)
for trips. This difference causes the inequity among the served passengers, represented by
the variance of LOS. Since the utility function applied in this study is a linear combination of
trip fare, waiting time, and detour time, it is plausible to hypothesize the utility is somehow
tantamount to LOS. In other words, the LOS of ride-sharing can be captured and represented
by the utility function applied in this study. As a result, in this chapter, we propose a
utility-based compensation method for ride-sharing services. It aims to improve the equity
among the passengers by reducing the standard deviation of trips’ utilities. Apart from equity,
it is expected to improve the LOS for ride-sharing by applying this method. The contributions
of this chapter are two-fold.

1) We develop a utility-based compensation pricing method for ride-sharing services,
which can improve the LOS and equity for passengers. To the best of our knowledge,
this is the first study of compensation methods for ride-sharing services.

2) We proposed an algorithm to optimize the related variables for the proposed pricing
method.

The rest of this chapter is organized as follows. Section 7.2 introduces the general methodol-
ogy of the compensation method. Section 7.3 describes the algorithm for optimizing relevant
variables in specific scenarios. Section 7.4 details the simulation environment and experiment
settings for case studies. Section 7.5 presents and analyzes the results of the case study.
Section 7.6 summarizes the main findings and provides potential directions for future study.

7.2. General Methodology

As described above, the utility function used in the proposed market equilibrium model
can represent the LOS of ride-sharing services to some extent. In this sense, the LOS of the
operation can be described by the mean utility of all trips, while the equity of the services can
be captured by the standard deviation of utilities. And considering the spread of utilities due
to difference in ODs and uncertainty of travel time and waiting time, we aim to enhance the
equity among trips by compensating part of trips. On the other hand, this can attract more
demand and probably result in longer waiting time and detour time, which may thus impede
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the improvement of LOS. However, generally, it can indeed improve the LOS of the entire
operation. Figure 7.1 illustrates the proposition of the compensation method—compensate
trips whose utility is below a predefined value. Further questions would be how much should
be compensated for different trips (or the compensation principle).
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will be compensated

Figure 7.1.: Presentation of the proposed utility-based compensation method.

To define the compensation principle, we need to specify the threshold value, which is
termed as compensation reference point (CRP) in this study, and the method to calculate the
amount of compensation, which is termed as compensation function. Trips below CRP will be
compensated with an amount of money computed by the compensation function. Moreover,
in order to connect CRP with actual utilities of trips, we define CRP as a proportion of the
mean of trips utilities, which can be written as

a = αV̄ (7.1)

where α is named as compensation reference factor (CRF).

7.2.1. Variables distributions

In unified and spatial pricing method, we compute system endogenous variables Qi, wi, t̃i, ∀i,
under certain operation strategy (N, p) or (N, p) directly through the market equilibrium
model, where all trips are considered at the network level and variables are aggregated based
on OD. Differently, the compensation method developed in this chapter is individual-based.
Thus, we make the following assumptions with respect to the related variables for ease of
processing.

Assumption 7.1 Attribute x of trips for OD pair i follows a normal distribution with µx and µx/ξ as
the mean and standard deviation, respectively, where ξ is an exogenous positive parameter. Specifically,

1) td
i,k ∼ N (td

i , td
i /ξ);

2) di,k ∼ N (di, di/ξ);

3) wi,k ∼ N (wi, wi/ξ);

49



7. Utility-based Compensation Method

4) t̃i,k ∼ N (t̃i, t̃i/ξ).

where k denotes the index of trips.

Under Assumption 7.1, we can calculate the utility of individual trips by

Vi,k = βtti,k + βwwi,k + βrri,k (7.2)

where ti,k = t̃i,k + td
i,k. Note that, other appropriate distributions can also be applied and

would not make any difference in the following analysis.

7.2.2. Compensation function

On the other hand, we emphasize that we do compensation based on the trip’s utility. The
utility of a trip after compensation must satisfy a predefined function termed as compen-
sated utility function, which describes the relationship between the utility before and after
compensation.

Note that, in this method, the fare structure is given by

ra
i,k = pdi,k + ci,k (7.3)

where i denotes OD, k denotes the index of trips, p is the unit price, ci,k is the amount of
compensation, ra

i,k is the trip fare after compensation. Such that the compensation is given by

ci,k =
Va

i,k −Vi,k

βr
(7.4)

where βr is the monetary preference coefficient, Vi,k is the utility before compensation, and
Va

i,k is the utility after compensation.
Furthermore, we state that compensated utility function should follow Prerequisite 7.1.

Prerequisite 7.1 A compensated utility function is a function that describes the relationship between
the utilities of trips before and after compensation. It is the base of the calculation of compensation for
every trip. Every compensated utility function should satisfy the following conditions.

1) The utility after compensation should not bigger than the compensation reference point.

2) The order of trips sorted by utility should not change after compensation.

3) Trips with a utility farther below the compensation reference point should get more compensation
than those closer.

We apply the following compensated utility function to calculate the utility after compensa-
tion in this study. Its curve is shown in Figure 7.2. For the ease of reading, its derivation is
omitted here and can be found in Appendix A.3.

Va =

{
V if V > a

−
√

2aV − a2 otherwise
(7.5)

As a result, the compensation function is given by

ci,k =

{
0 if Vi,k > a
1
βr
(−
√

2aVi,k − a2 −Vi,k) otherwise
(7.6)
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a
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V a

Figure 7.2.: The shape of the compensation function.

7.2.3. Market equilibrium

Furthermore, after compensation, trips need to be re-aggregated (averaged) again to the
network level to calculate the new market equilibrium for the situation after compensation.
The new trip fare is given by

ři =
1

Di
∑

k
ra

i,k (7.7)

Then the expected utility is given by

V̌i(Q̌) = βt(td
i +

Ai ∑j Q̌jtd
j

N ∑j Q̌j
) + βw

BQ̌i√
Nns −∑j Q̌j ťj

+ βr ři (7.8)

And the ride-sharing demand can be calculated by

Q̌i = Di
eV̌i(Q̌)

eV̌1(Q̌) + µi
(7.9)

Finally, one can construct and solve another simultaneous equations system for the market
with compensation according to Equation (7.10) to calculate ride-sharing demand at the
market equilibrium. Then substitute these values into functions of other system endogenous
variables to calculate the corresponding variables.

Q̌i1 =
Di1 e

V̌i1
(Q̌,N)

e
V̌i1

(Q̌,N)
+µi1

Q̌i2 =
Di2 e

V̌i2
(Q̌,N)

e
V̌i2

(Q̌,N)
+µi2

...
...

Q̌im =
Dim eV̌im (Q̌,N)

eV̌im (Q̌,N)+µim
...

...

(7.10)
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It is worth pointing out that, the market with a compensation scheme indeed will attract
more demand for ride-sharing services. However, the CRP for a market is decided only by
the origin trips. That is to say, the value of CRP (or CRF) only depends on the market without
compensation.

7.3. Solution Algorithm

Since trips have an aggregation-disaggregation-reaggregation process in this method, thus it
is very difficult to calculate the relevant derivatives of variables, so we apply a heuristic to
solve the optimization problems. Note that, except for optimizing vehicle fleet size and unit
price, we also need to optimize the CRF α to seek the optimal compensation scheme.

Define αmax , Vmin/V̄, where V̄ = ∑i ∑k Vi,k/ ∑i ∑k 1 denotes the mean of all trips,
Vmin is the lowest utility. Define the operation strategy as O = (N, p, α). Let Omax =

(Nmax, pmax, αmax), where Nmax and pmax are the upper bound of the search area of vehicle
fleet size and unit price, respectively. We apply the Particle Swarm Optimization (PSO) algo-
rithm (Kennedy and Eberhart, 1995; Reyes-Sierra and Coello Coello, 2006) to solve problem
(P1) and (P2) in the corresponding scenario. Since both problems are maximization problem,
we denote J (O) as the objective.

Algorithm 7.1 describes the procedure of applying PSO. First, we need to initialize the
position, velocity and personal best for each particle in the swarm, together with the global
best of the entire swarm (line 1 - line 9). At each iteration, we need to update the velocity
of each particle based on their distance to the personal best and the global best (line 15).
And the updated velocity is applied to update the position of the particle (line 16). Then the
updated particle is evaluated based on the results of the market equilibrium (line 17). By
comparing its performance on the objective with the personal best and global best, decide if
need to update the personal best (line 18 - line 19) and global best (line 20 - line 21). In the
algorithm, ω is the inertia weight employed to control the impact of the historical velocities
on the current velocity. C1, termed as cognitive learning factor, represents the attraction of the
personal best. C2, termed as social learning factor, represents the attraction of the global best
(also known as leader). τmax and np are the maximum iterations and the number of particles
in the swarm, respectively. We refer the interested readers to Reyes-Sierra and Coello Coello
(2006) for a comprehensive review of this algorithm.

7.4. Simulation Settings

Two experiments are conducted on the Munich network in this chapter. First, we do sensitivity
analysis with respect to the CRF α under the MO operation strategy of the unified pricing
method to analyze the influence of the introduction of the compensation method with
different CRFs. The relevant results are presented in Section 7.5.1 and Section 7.5.2. Second,
we apply the proposed PSO algorithm to optimize the vehicle fleet size, unit price and
CRF simultaneously for the utility-based compensation method. A convergence analysis is
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Algorithm 7.1 PSO for solving utility based compensation method optimization problems

1: Initialize the particle’s position with a uniform distribution: xn ∼ U(0, Omax).
2: Initialize the particle’s velocity with a uniform distribution: vn ∼ U(−Omax/2, Omax/2).
3: Initialize the particle’s personal best to the initial position: ρn ← xn.
4: G∗ = x1.
5: for n < np do
6: if J (xn) > J (G∗) then
7: G∗ = xn

8: end if
9: end for

10: τ = 0
11: Initialize ω, C1, C2

12: for τ < τmax do
13: for n < np do
14: r1, r2 ∼ U(0, 1)
15: Update velocity: v(τ+1)

n = ωv(τ)
n + C1r1(ρn − x(τ)n ) + C2r2(G∗ − x(τ)n )

16: Update position: x(τ+1)
n = x(τ)n + v(τ+1)

n
17: Calculate the market equilibrium state after compensation.
18: if J (x(τ+1)

n ) > J (x(τ)n ) then
19: Update personal best: ρn ← x(τ+1)

n

20: if J (x(τ+1)
n ) > J (G∗) then

21: Update leader: G∗ ← x(τ+1)
n

22: end if
23: end if
24: end for
25: τ = τ + 1
26: end for

Table 7.1.: Parameters for PSO.

Parameter Value Meaning

np 100 The total number of particles within the swarm.
τmax 50 Maximum number of iterations.
ω 0.4 Inertia weight.
C1 0.4 Cognitive learning factor.
C2 0.3 Social learning factor.
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provided in Section 7.5.3 to analyze the performance of PSO on this problem. Parameters for
PSO are listed in Table 7.1.

Actually, these two experiments reflect two different options of the service provider for
applying the utility-based compensation method. One is to find an optimal CRF for the MO or
SO solution of the unified/spatial pricing method based on the operational objective. Another
option is to optimize the operation strategy directly based on the operational objective via
an appropriate optimization algorithm (e.g., PSO). Provably, both methods are plausible and
feasible.

7.5. Case Study and Results

In this section, sensitivity analysis with respect to α is conducted on the monopoly optimum
within the low demand period of the Munich network of the unified pricing method. The
MO operation strategy of this scenario is N∗ = 1489, p∗ = 1.21. By analyzing the difference
in relevant variables (e.g., LOS, equity, ride-sharing demand), we can better understand the
impact and benefits of the compensation method. Section 7.5.1 describes the benefits of
applying the utility-based compensation method with respect to LOS, equity and ride-sharing
demand. Section 7.5.2 presents the relationship of the attracted new ride-sharing demand
and the total amount of compensation, from which we can draw a subsidy scheme for the
stakeholders (e.g., governments).

On the other hand, convergence analysis of applying PSO to optimize N, p and α for profit
maximization within the low demand period of the test network is presented. This can
enhance the understanding of the usefulness of PSO on this problem. The result is described
in Section 7.5.3.

7.5.1. Benefits of utility-based compensation method

We emphasize that the motivation of the utility-based compensation method is to improve
the equity of the services and the expected LOS perceived by passengers. As describes in
Section 7.2, LOS and equity can be represented by the mean and standard deviation of utilities
of trips, respectively. Figure 7.3a depicts the profit, social welfare, and mean of utilities under
different CRFs with compensation reference factors on the X-axis, profit and welfare on the
left Y-axis, and mean utility on the right Y-axis. Clearly, profit and welfare increase with
CRF and converge to the corresponding basic values, where basic values are the values of the
corresponding variables in the equilibrium of the MO solution for unified pricing method.
Clearly, the proposed utility-based compensation pricing method cannot improve the overall
profit and welfare considerably in general. However, we can see an obvious improvement in
the LOS. And this improvement does not sacrifice the maximum profit and surplus in a range
of α. Likewise, we can see the convergence point (termed as best point thereafter) for surplus
is on the left of the best point for profit. It means we can compensate for more trips without
seeing a loss of social surplus compared to profit. Denote X coordinate of the best point for
surplus as α∗s , and that for profit as α∗p. Thus, α∗s < α∗p. And since the curve of mean utility
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is monotonically decreasing, so ∆Vs > ∆Vp, where ∆Vs and ∆Vp denote the improvement of
LOS under α∗s and α∗p, respectively.

Furthermore, compensation under α∗s can also improve service equity more than under
α∗p, i.e., ∆σs > ∆σp, as shown in Figure 7.3b. The curve of utility variance is monotonically
increasing. And we can observe that the compensation method has more benefits on the
improvement of equity compared to LOS. Actually, the compensation method influences LOS
and equity from two directions. On the one hand, for the trips whose utility less than αV̄,
their utilities will be increased by compensation. On the other hand, for the trips whose
utility greater than αV̄, their utilities will be decreased due to the increasing of waiting time
and detour time caused by the induced demand resulted from compensation (shown in
Figure 7.3c). As a consequence, it is plausible to observe the improvement of equity. And the
improvement of LOS indicates that the former effect is stronger than the latter one.
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Figure 7.3.: Benefits of utility-based compensation method.

7.5.2. Relationship of the attracted demand, profit and compensation amount

In order to understand the relationship between the quantity of attracted ride-sharing demand
and compensation, we draw their relationship as depicted in Figure 7.4. X-axis is the total
amount of compensation, left Y-axis is the number of attracted requests. Likewise, we also
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Figure 7.4.: Attracted demand and profit with different compensation amount

plot the relationship between compensation and profit in the same figure by adding another
Y-axis to the right for profit.

Suppose that the governments want to promote the market share of ride-sharing by
subsidizing the ride-sharing company. If the utility-based compensation method is utilized as
a pricing strategy by the company, then Figure 7.4 could be subsidy guidance or reference for
the government. The solid black line represents profit, which is decreasing with compensation.
The dashed line is the sum of profit and compensation, which indicates the potential profit
for the company if all compensation were subsidized by the government. However, basically,
governments always want to subsidize an amount such that there is nearly no profit reduction
for the company. In this sense, the blue area could provide a reference to the government
regarding the amount of subsidy.

On the other hand, the solid reared line implies a nearly linear relationship between the
attracted demand and compensation. In our opinion, this is depending on the compensation
function applied in the proposed method. It is possible to see an increasing curve with
reducing slopes when specific compensation functions are used. Under different compensa-
tion functions, there may be different optimal strategies for service providers based on their
operational objectives.

7.5.3. Convergence analysis

In this section, we evaluate the proposed PSO algorithm on solving the profit maximization
problem for the test network at the low demand period. The parameters used in this
experiment are listed in Table 7.1. Figure 7.5a shows the initial positions of particles, while
Figure 7.5b demonstrates the positions of particles at the final iteration. It can be seen that,
compensation reference factor α converges to a point, while the other two variables N and
p are still scattered, especially the unit price p. This implies that particles easily converge
to the personal best in the dimension of unit price, and thus cannot follow the trajectory
of the global best (leader). One potential reason is parameters listed in Table 7.1 are only
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appropriate for the convergence on other dimensions. Moreover, it is also possibly caused by
the narrow search space of unit price. To avoid negative values, we restrict its search space
and the initial velocity in a small range, which may result in slow movements. However, the
optimum from the swarm is still almost the same as the solution we got through the first
method. Thus, PSO is appropriate for this problem.
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Figure 7.5.: Convergence of PSO.

7.6. Conclusions

In this chapter, we propose a utility-based compensation method for ride-sharing services.
With this pricing method, the LOS and equity of the service can be improved without
sacrificing the performance of an operation on the objectives. And this method is more
beneficial under the consideration of social welfare with clearer improvement on LOS and
equity compared to the situation of considering profit. Besides, an additional benefit of the
increase from ride-sharing demand can also be observed.

For a ride-sharing operator applying the proposed compensation method, the subsidy
scheme for the governments to stimulate/support the operator doing the compensation to
serve more requests is provided. Without subsidy, profit for the service operator is reducing
with the amount of compensation in general. However, if all compensation is subsidized by
the stakeholders, the operator can see a profit increase. In more general cases, the stakeholders
want to subsidize the service operator such that the operator can receive the same profit
after compensation. Thus, in this sense, the stakeholders can refer to Figure 7.4 for the
subsidy scheme under different amounts of compensation. It is worth pointing out that the
improvement of LOS and equity, as well as the subsidy scheme, would be different when
different compensation function is applied.

Note that, apart from applying sensitivity analysis to seek the optimal operation strategy,
we also propose a PSO algorithm to optimize the operation strategy for the utility-based
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compensation method. This algorithm is proved to be effective based on the convergence
analysis conducted in Section 7.5.3.
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8. Conclusions and Outlook

8.1. Summary

This thesis is devoted to developing dynamic pricing methods for ride-sharing services in
a multi-modal transportation system. Efforts are therefore made to handle the challenges
associated with the ride-sharing market equilibrium and the optimal operation strategy for
certain pricing methods. The main contributions and findings of this thesis are summarized
below.

8.1.1. Completing the market equilibrium model for ride-sharing services

The first main contribution of this thesis is the development of a more comprehensive market
equilibrium model for ride-sharing by considering the passenger preference in a multi-modal
transport network (Chapter 3). In the existing literature, the demand for ride-sharing services
is determined by a function of the value of time (or willingness to pay) of passengers and the
individual attributes of ride-sharing services. However, the fact is that passengers typically
compare different modes of transportation when they need to choose one. This means that it
is important to consider passengers’ preference for multiple modes of transportation when
modeling the market for ride-sharing services. Otherwise, it will result in an inaccurate
demand estimation. In this study, the MNL model is applied to estimate the probability of
choosing ride-sharing services. This improvement can also make the consideration of user
heterogeneity in the experiments becomes easier and more efficient.

What’s more, the network structure and OD demand pattern are explicitly integrated into
the modeling framework. A market equilibrium modeled at the network level can enhance the
reliability of its application as indicated in Yang et al. (2002). On the other hand, considering
that spatial difference does exist in networks, it is important to estimate the OD-based demand
for ride-sharing specifically in the market model.

More importantly, we explicitly present the method to calculate the system endogenous
variables (detour time, waiting time and ride-sharing demand) in the equilibrium for the
proposed market model. Under a certain operation strategy (trip fare and vehicle fleet size),
the relationship between system endogenous variables at equilibrium can be described by a
simultaneous equations system, which can be addressed by a hybrid method presented in
Powell (1970).
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8.1.2. Developing solution algorithms for the proposed pricing methods

It has been proved theoretically (Keller, 2013) and empirically (Ke et al., 2020a) that the local
maximums of the non-convex objective functions considered in this thesis are also global
maximums, which means the gradient-based optimization algorithms can be applied to solve
these problems. Consequently, we propose a GD algorithm to solve the optimums for the
unified pricing method (Chapter 5) and spatial pricing method (Chapter 6). The complexity of
the derivatives of relevant variables with respect to the operation strategy also demonstrates
the intertwined relationship between these variables. It is evident that the GD algorithm is
effective and efficient for these problems based on the results of the convergence analysis.

In terms of the utility-based compensation method (Chapter 7), we apply a heuristic—PSO
to optimize the operation strategy as the aggregation-disaggregation-reaggregation chain
included in the method makes it impossible to calculate the exact derivatives. Nevertheless,
the convergence analysis shows that the heuristic can also result in a reliable optimum.

8.1.3. Constructing an utility-based compensation method to improve LOS and
equity of ride-sharing services

The third main contribution of this thesis is the development of a novel utility-based compen-
sation method for ride-sharing services (Chapter 7). By applying this method, trips whose
utility below a threshold (i.e., CRP) are compensated based on a predefined utility compen-
sated function (describing the relationship between the utility before and after compensation).
The results show that it can improve the LOS (mean utility) and equity (variance of utility)
of the service. Moreover, the compensation can also attract more demand and increase the
market share for ride-sharing services.

A useful and practical subsidy scheme is provided to the stakeholders. By applying this
scheme, the stakeholders can motivate the ride-sharing provider to adopt this utility-based
compensation method to offer services to more passengers.

8.2. Limitations

This thesis develops dynamic pricing methods for ride-sharing services. A market equilibrium
model, which incorporates passenger preference in a multi-modal urban transportation
system, works as the testbed for the pricing methods. Effective algorithms are proposed
to optimize the operation strategies for the pricing methods. The pricing methods are also
evaluated based on both numerical and real-world case studies. Nevertheless, there are a few
limitations that require further investigation.

1) When modeling the expected detour time, we simply utilize the assumption widely applied
in the existing literature that the average detour time between two passengers is inversely
proportional to the ride-sharing demand, and extend it to the general case (arbitrary
passengers) through a multiplier. Besides, we also simply assume that the expected detour
time for different OD pairs is proportional to the direct trip time which lacks evidence
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from the real operation. It is essential to incorporate a more accurate estimation model for
expected detour time into the proposed market equilibrium model in future work.

2) In the market equilibrium model, vehicles are distributed evenly to the OD pairs as implied
by the models of expected detour time and waiting time. This should be improved by
explicitly accounting for the vehicle distribution mechanism.

3) The survey data available for the experiments result in βw > βt in MNL, which does not
conform to the reality and general cognition despite the estimates are significant. Normally,
passengers are deemed to be more sensitive to waiting time than in-vehicle time. Thus, it
is important to utilize a more reliable dataset for estimating passenger preference.

4) In the chapter for spatial pricing method (Chapter 6), we implement an experiment
considering user heterogeneity by differentiating three regions from the others. However,
the user heterogeneity over the network, in reality, could be more random and chaotic.

8.3. Outlook

The dynamic pricing method for ride-sharing services is a relatively new and promising
research area. Given the stochasticity and the uncertainty in ride-sharing services, there are
many directions to explore. Specifically, potential future research directions are listed as
follows.

1) Comprehensive ride-sharing market equilibrium model. In this thesis, we propose
a market equilibrium model for ride-sharing services with particular consideration of
passenger preference in a multi-modal transportation system. And the network structure
and OD demand pattern have also been incorporated. An important future direction
is to explicitly consider the vehicle distribution in detour time estimation and waiting
time estimation. Furthermore, another possible future direction is to introduce subjective
decision making to the passenger preference model to estimate passengers’ behavior under
uncertainty in ride-sharing, such as a preference model based on Cumulative Prospect
Theory (CPT, Wakker and Tversky, 1993).

2) Reliable survey data. We utilize the survey data from Tsiamasiotis (2019) to estimate the
preference coefficients for all user groups analyzed in the experiments conducted in this
thesis. But the estimation result seems to be unrealistic. Thus, it is important to conduct a
survey on a larger scale and with effective design.

3) Consideration of temporal elasticity of demand. In this thesis, we focus on optimizing
the operation strategies within a single studying interval. However, due to the demand
elasticity, the optimum may be suboptimum in a wider time interval, which should be
overcome in future work.

4) Exploration in compensation functions. In the utility-based compensation method (Chap-
ter 7), an explicit compensation function is adopted and instructs the analysis of the benefits
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of this method. It is desirable to explore the proposed utility-based compensation method
with different compensation functions (e.g., linear or nonlinear, univariate or multivariate)
in the future work.

5) Incorporation with a simulator. The utility-based compensation method is proved to
be beneficial on the LOS and equity of ride-sharing services based on the experiments
implemented on the proposed equilibrium model. However, to prove its applicability in
reality, a future direction to incorporate it with a simulator is needed.
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A. Detailed Calculations

A.1. Method to Calculate Market Equilibrium Model Parameters

This appendix elaborates the procedure for calculating plausible A and B for the proposed
market equilibrium model. Assuming that we can obtain the following data from the real
operation of the market of interest.

• N̂: the vehicle fleet size.

• r̄: the average trip fare .

• ŝ: the mode share under (N̂, r̄).

• k: the quotient by dividing average detour time by average waiting time.

If we assume the probabilities of choosing ride-sharing are the same for all OD pairs in
the network, we can simply get ŝ ≈ P̄, where P̄ is the expected probability of choosing
ride-sharing under (N̂, r̄). According to the MNL model, we can simply get

ŝ =
eV̄rs

∑j eV̄j
⇒ ŝ(eV̄pt + eV̄car + eV̄rs) = eV̄rs ⇒ eV̄pt + eV̄car =

1− ŝ
ŝ

eV̄rs (A.1)

where V̄rs = βt t̄ + βww̄ + βr r̄. V̄car and V̄pt are the mean utility of private car and public
transport, respectively. And

t̄ = ∑i Diti

∑i Di
and w̄ =

∑i Diwi

∑i Di
(A.2)

We omit the superscript for mean value (i.e., bar marker) in the remainder of this section.
We take logarithm for both sides of the last equation in Equation (A.1) resulting in

ln(eVpt + eVcar) = ln(1− ŝ)− ln(ŝ) + Vrs (A.3)

Since Vrs = βtt + βww + βrr, so

βtt + βww = ln(eVpt + eVcar)− ln(1− ŝ) + ln(ŝ)− βrr (A.4)
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A. Detailed Calculations

Substitute t = td + t̃ into the equation above resulting in

βt t̃ + βww = ln(eVpt + eVcar)− ln(1− ŝ) + ln(ŝ)− βrr− βttd (A.5)

We know that t̃ = kw, so

(kβt + βw)w = ln(eVpt + eVcar)− ln(1− ŝ) + ln(ŝ)− βrr− βttd (A.6)

If we define R , ln(eVpt + eVcar)− ln(1− ŝ) + ln(ŝ)− βrr− βttd, then

w =
R

kβt + βw
(A.7)

t̃ = kw =
kR

kβt + βw
(A.8)

And according to the proposed equilibrium model, the expected waiting time is estimated
by

wi =
BQi√

Nns −∑j Qjtj

(A.9)

If we approximate Qi ≈ ŝ ∑i Di/nz, ∑j Qjtj ≈ ŝ ∑j Djtd
J , where nz is the number of OD pairs,

then we can get,

B =
R
√

Nns − ŝ ∑j Djtd
J

(kβt + βw)ŝ ∑i Di/nz
(A.10)

According to the proposed equilibrium model, the detour time is estimated by

t̃i =
Atd

j ∑j Qjtd
j

t̄dN ∑j Qj
(A.11)

Similarly, we approximate td
j ≈ t̄d, ∑j Qjtd

j ≈ ŝ ∑j Djtd
j , ∑j Qj ≈ ŝ ∑j Dj, then we can get,

A =
kRNŝ ∑j Dj

(kβt + βw)ŝ ∑j Djtd
j

(A.12)

Equation (A.10) and Equation (A.12) provide a reliable value of B and A, respectively. Note
that, sometimes we may still need to tune the result from this calculation procedure to make
the experiment with the same input conditions (i.e., vehicle fleet size and price) result in a
similar modal split.
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A.2. Calculation of Derivatives of Expected Detour Time and
Expected Waiting Time for Spatial Pricing Method

Let t′i|pz
and t′i|N denote the derivatives of ti with respect to pz and N, respectively. And let

w′i|pz
and w′i|N denote the derivatives of wi with respect to pz and N, respectively. Recall that

ti = td
i + Ai ∑j Qjtd

j /N ∑j Qj and wi = BQi/
√

Nns −∑j Qjtj.

On the one hand, if i = z, we have

∂Qi

∂pz
= DiPi(1− Pi)(βt

∂ti

∂pz
+ βw

∂wi

∂pz
+ βrdz) (A.13)

Thus, we have

t′i|pz
=

Ai

N ∑j Qj
∑

j
DjPj(1− Pj)(βtt′j|pz

+ βww′j|pz
+ βrdj)td

j

−
Ai ∑j Qjtd

j

N(∑j Qj)2 ∑
j

DjPj(1− Pj)(βtt′j|pz
+ βww′j|pz

+ βrdj) (A.14)

w′i|pz
=

BDiPi(1− Pi)(βtt′i|pz
+ βww′i|pz

+ βrdi)√
Nns −∑j Qjtj

+
BQi ∑j

[
DjPj(1− Pj)(βtt′j|pz

+ βww′j|pz
+ βrdj)tj + Qjt′j|pz

]
2
√
(Nns −∑j Qjtj)3

(A.15)

On the other hand, if i 6= z, we have

∂Qi

∂pz
= DiPi(1− Pi)(βt

∂ti

∂pz
+ βw

∂wi

∂pz
) (A.16)

Thus, we have

t′i|pz
=

Ai

N ∑j Qj
∑

j
DjPj(1− Pj)(βtt′j|pz

+ βww′j|pz
)td

j

−
Ai ∑j Qjtd

j

N(∑j Qj)2 ∑
j

DjPj(1− Pj)(βtt′j|pz
+ βww′j|pz

) (A.17)

w′i|pz
=

BDiPi(1− Pi)(βtt′i|pz
+ βww′i|pz

)√
Nns −∑j Qjtj

+
BQi ∑j

[
DjPj(1− Pj)(βtt′j|pz

+ βww′j|pz
)tj + Qjt′j|pz

]
2
√
(Nns −∑j Qjtj)3

(A.18)
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Note that regardless of the relation of i and z, we have

t′i|N =
Ai ∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)t

d
j

N ∑j Qj

−
Ai

[
Q + N ∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)

]
∑j Qjtd

j

(N ∑j Qj)2 (A.19)

w′i|N =
BDiPi(1− Pi)(βtt′i|N + βww′i|N)√

Nns −∑j Qjtj

−
BQi

[
ns −∑j DjPj(1− Pj)(βtt′j|N + βww′j|N)tj −∑j Qjt′j|N

]
2
√
(Nns −∑j Qjtj)3

(A.20)

A.3. Derivation for the Compensated Utility Function

By applying the utility-based compensation method, we do compensations for the trips whose
utility is less than a predefined threshold a(a < 0). In this study, we assume the form of the
compensated utility function is

f (x) = l
√
−x + b (A.21)

with following mild assumptions.

Assumption A.1 f (x) is continuous and smooth on (a, a), such that: 1) f (a) = a; 2) f ′(a) = 1.

One can prove that this function satisfies the rules stated in Chapter 7. Based on Assump-
tion A.1, we have f (a) = l

√
−a + b = a (A.22)

f ′(a) = −1
2

l(−a + b)−
1
2 = 1 (A.23)

Because utility is negative, i.e., a < 0, f (a) < 0, so from Appendix A.3, we have l < 0. From
Appendix A.3, we have

1
−a + b

=
−2

l

⇒ b = (
l
2
)2 + a (A.24)

And from Appendix A.3, we have

b = (
a
l
)2 + a (A.25)
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Then from Equation (A.24) and Equation (A.25), we have

(
a
l
)2 = (

l
2
)2

⇒ l = −
√
−2a (since l < 0) (A.26)

Substitute Equation (A.26) into Equation (A.24) resulting in

b =
a
2

(A.27)

Thus, substitute Equation (A.26) and Equation (A.27) into Equation (A.21) resulting in

f (x) = −
√

2ax− a2 (A.28)

Consequently, let Va denote the utility after compensation, then the full formulation of the
compensated utility function is given by

Va =

{
V if V > a

−
√

2aV − a2 otherwise
(A.29)
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B. Coefficient Estimation of Passenger
Preference

B.1. Age Groups

Table B.1.: Coefficient estimation for age group: 18-35.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.716 0.1480 -4.84 0
βt (/min) -0.108 0.0381 -2.84 0.00447
βw (/min) -0.126 0.0358 -3.51 0.000443

Table B.2.: Coefficient estimation for age group: 36-55.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.556 0.0585 -9.51 0
βt (/min) -0.128 0.0163 -7.86 0
βw (/min) -0.115 0.0158 -7.28 0

Table B.3.: Coefficient estimation for age group: >55.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.601 0.1510 -3.98 0
βt (/min) -0.139 0.0402 -3.48 0.000529
βw (/min) -0.091 0.0407 -2.23 0.0258
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B. Coefficient Estimation of Passenger Preference

B.2. Income Groups

Table B.4.: Coefficient estimation for income group: 500-2000.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.601 0.0861 -6.98 0
βt (/min) -0.106 0.0227 -4.65 0
βw (/min) -0.112 0.0224 -5.00 0

Table B.5.: Coefficient estimation for income group: 2000-4000.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.781 0.125 -6.23 0
βt (/min) -0.170 0.0329 -5.17 0
βw (/min) -0.151 0.0321 -4.69 0

Table B.6.: Coefficient estimation for income group: ≥4000.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.514 0.0746 -6.89 0
βt (/min) -0.135 0.0216 -6.25 0
βw (/min) -0.104 0.0201 -5.18 0

Table B.7.: Coefficient estimation for income group: <4000.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.660 0.0707 -9.34 0
βt (/min) -0.128 0.0186 -6.86 0
βw (/min) -0.125 0.0183 -6.82 0
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