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1 Introduction

1.1 Motivation

According to the World Health Organization (WHO) [1], more than one million people died in
road accidents in 2016. In addition to improving passive vehicle safety, Automated Vehicles
(AVs) (Level 3 and higher according to Society of Automotive Engineers (SAE) [2]) should
make a substantial contribution to significantly reduce this number. In order to achieve this
goal, a considerable amount of resources has been invested in the implementation of such
systems in recent years, so that various prototypes of these vehicles currently exist. Already
with the start of test drives of these systems on public roads it has become clear that the safety
of AVs is an extremely sensitive issue, which means that its consideration in research and
industry is becoming increasingly important. The major difference to Level 2 Advanced Driver
Assistance Systems (ADAS) currently available in mass production vehicles is that responsibility
is transferred from the driver to the vehicle from Level 3 onwards. This means that the driver
does not have to constantly monitor the system and intervene immediately in the event of a
system fault, as is the case with Level 2. Consequently, the safety of AVs must be thoroughly
tested before market launch, which is a demanding task [3–5].

When assessing the safety of AVs, various aspects must be taken into account. One of these is,
for example, functional safety, where the effects of random hardware and software failures are
investigated and procedures to minimize these failures are recommended [6]. Another aspect
is the so-called Safety Of The Intended Functionality (SOTIF), where it is checked whether
risks or hazards resulting from the AV are caused by functional insufficiencies of the intended
functionality [7]. An alternative term for SOTIF is the so-called Object and Event Detection and
Response (OEDR) according to the National Highway Traffic Safety Administration (NHTSA) [8,
9]. It examines whether the vehicle is able to correctly detect objects and events and to plan
and execute an appropriate response, which in turn corresponds to the intended functionality.
This must be checked for the entire Operational Design Domain (ODD) of the system. Since this
aspect of safety is the central topic of this thesis and no further safety aspects are considered,
the investigation of SOTIF / OEDR capabilities of the vehicle will be considered equivalent to the
term safety assessment for the further course. It is explicitly emphasized that a vehicle that has
been successfully validated with SOTIF / OEDR cannot be regarded as holistically safe, because
further aspects like functional safety have to be considered. Furthermore, we only consider the
ODD specified by the manufacturer. Therefore, tests whether the vehicle correctly detects an
exit from the ODD are not covered by this thesis.

The biggest challenge in the safety assessment of AVs is that road traffic is an open parameter
space in which an infinite number of different traffic situations can occur. A complete safety
assessment is therefore not possible. For this reason, the so-called Scenario-based Approach
(SBA) has been developed [10], which focuses on individual scenarios that are important for
safety assessment. All situations that do not contribute to the safety demonstration, such as
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1 Introduction

driving on an empty straight motorway, are neglected, thus reducing the effort required. The
question remains of how all the necessary scenarios for a sufficiently accurate safety assessment
can be identified.

The safety of the system must not only be checked during development, but also before it
can be launched on the market. For this purpose, it must receive a type approval from the
legislator. The basis for a type approval are (for Europe) the regulations of the United Nations
Economic Commission for Europe (UNECE). Tests included in these documents are carried
out by an independent third party (technical service) and are intended to provide minimum
safety requirements for all types of vehicles. For the type approval of AVs, new regulations
and concepts must be developed analogous to the safety assessment accompanying the
development. In this context, the technical service has an expanding responsibility for the
definition of concrete test scenarios due to the increasingly generalized formulation of future
regulations. One consequence of this is an enhanced integration of the approval process into the
development process. Type approval by an independent technical service is the main application
of the methodology developed in this thesis. Therefore, the type approval process as well as the
specific requirements for type approval of AVs are explained in detail in Section 2.4.

In summary, the type approval of AVs is essential for their successful market launch, manufactur-
ers, legislators and technical services have the responsibility to protect society from intolerable
risks. For this purpose, an efficient methodology for technical services for the type approval of
AVs must be developed and established.

1.2 Contributions

The basic objective of the present work is to contribute to an efficient safety assessment in the
type approval process of AVs conducted by a independent third party (technical service), thus
supporting the market introduction of AVs. The main contributions of this work are explained in
more detail below.

1. Taxonomy of the SBA:
There are many publications in the literature dealing with the safety assessment of
AVs using the SBA. A classification of this literature into a generic overall concept
is not possible because there is still a lack of a uniform understanding of the
generic approach. Therefore, a taxonomy for the SBA is introduced in Section 2.3,
which is used to classify the existing literature. Similarly, there is still a lack of an
uniform definition and use of terms. Therefore, in Section 2.1 already established
definitions will be taken up and these will be extended by definitions missing in the
state of the art.

2. Identification of special requirements for the type approval of AVs:
Almost all of the literature is focused on safety assessment during the development
of the systems from the perspective of a vehicle manufacturer. Since the aim of
this thesis is a methodology for technical services to efficiently conduct future
type approval of AVs according to upcoming UNECE regulations [11], the special
requirements from the point of view of an independent technical service are defined
in Section 2.4 and 3.1.
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1 Introduction

3. Development of a methodology to identify corner cases:
Chapter 3 introduces a novel methodology for the identification and definition of
challenging scenarios that can support a technical service in carrying out the type
approval. For this purpose, three different sub-methods are defined in order to
address the overall system consisting of a sense-, plan- and act-module. The
development process is based on the special requirements for the type approval of
AVs.

4. Implementation of the methodology:
Besides the development of the overall and sub-methods, the exemplary imple-
mentation and validation of the sub-methods is an important contribution of the
present work. For this purpose, the sub-methods are implemented and their results
are analyzed in Section 4.1 - 4.3. The focus is especially on the third sub-method,
the development and validation of a complexity metric (Section 4.3), which al-
lows an objective evaluation of the difficulty of test scenarios. The focus is on
this sub-method, because the first two sub-methods are already published by the
author.

1.3 Structure of the Work

An overview of the structure of the present work is shown in Figure 1.1. After a short introduction
to the topic of AVs and their safety verification, the current state of the art is discussed in
Chapter 2. First, important terms are defined and then an overview of concepts for validating
the safety is given. The focus here is strongly emphasized on the SBA. Then the type approval
process is described in detail and special requirements for type approval of AVs are derived. At

1) Introduction

2) State of the Art
2.1) Terms and

Definitions
2.2) Safety Assessment

Approaches
2.3) Scenario-based

Approach
2.4) Type Approval of

Vehicles

3) Overall Methodology Development Process
3.1) Detailed
Requirements

3.2) Overview of the
Developed Methodology

3.3) Fulfillment of
Requirements

4) Sub-Methods

4.1) Sensor Analysis 4.2) Driving Behavior
Characterization

4.3) Traffic Situation
Complexity

5) Discussion and Outlook

6) Summary

5.1) Sub-Methods 5.2) Overall Approach

2.5) Derivation of the Research Question

4.4) Combination

Figure 1.1: Structure of the thesis.
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1 Introduction

the end of Chapter 2, the research question of the present thesis is derived. Chapter 3 describes
the procedure with which the approach was developed and also provides an overview of it. The
defined sub-methods are described in Chapter 4 and their results are analyzed. Based on this,
the results are discussed in Chapter 5 and an outlook on future research work is given. Finally,
this work is summarized in Chapter 6.
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2 State of the Art

This chapter first introduces important terms and defines their meaning. It then provides a
comprehensive overview of the SBA. Building on this, the following section identifies specific
requirements for the type approval of AVs. Finally, a research question is derived from the
findings.

2.1 Terms and Definitions

For a better understanding, the most important terms are defined in a logical order so that
previous definitions can be taken into account. The definitions are therefore not arranged
alphabetically.

Automated Vehicle (AV): An AV is a vehicle with an automation level of at least Level 3
according to SAE [2]. If the AV is the vehicle to be tested, it is also called Vehicle Under
Test (VUT) or ego-vehicle.

Dynamic Driving Task (DDT): According to SAE [2], DDT includes all of the real-time oper-
ational and tactical functions required to operate a vehicle in on-road traffic, excluding
the strategic functions such as trip scheduling and selection of destinations and way-
points. It includes longitudinal and lateral vehicle motion control and monitoring the driving
environment via object and event detection, recognition, classification, and response
preparation.

Operational Design Domain (ODD): According to SAE [2], the ODD is defined by the operat-
ing conditions for which the AV was developed. The ODD can be restricted, for example,
by road classes (e. g. highway or city center) or environmental conditions (e. g. weather
conditions).

Object and Event Detection and Response (OEDR): Detection of objects that are relevant
to the immediate DDT, as well as the appropriate response to such circumstance. The AV
is responsible for performing the OEDR while in its ODD. [2]

Safety Of The Intended Functionality (SOTIF): analyzes if hazards from functional insuffi-
ciencies of the intended functionality occur [12].

Scene: A scene describes the entire content of the environment at a specific time. All values of
the describing parameters correspond to reality (ground truth). [13]

Situation: A situation is defined as the subjective perception of the scene from the perspective
of an element therein (e. g. ego-vehicle). All information which is necessary to decide on
the further behavior of the element is available in subjective form. [13]
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2 State of the Art

Scenario: A scenario is a chronological sequence of individual scenes that depend on each
other. Starting from a starting scene, actions and events occur through the participating
elements. The aims and objectives of individual participants can also be included. [13]

Scenario description: Furthermore, Menzel et al. [14] distinguish between three descriptions
of scenarios – functional, logical and concrete scenarios:

Functional Scenario: Functional scenarios describe scenarios on a semantic level. The
entities and the relationships of these entities are described by a linguistic representa-
tion. The vocabulary used to describe functional scenarios is specific to the use case
and can have different levels of detail. [14]

Logical Scenario: Based on the functional scenarios, the logical ones describe the
scenario in the state space. They represent the entities and the relationships of
these entities using parameter ranges in the state space. The parameter ranges
can be specified using probability distributions. In addition, the parameter range
relationships can be optionally specified using correlations or numerical conditions. A
logical scenario thus contains a formal notation of the scenario. [14]

Concrete Scenario: When specific numerical values for each parameter are assigned
to the logical scenarios, a concrete scenario is defined [14]. Theoretically, an infinite
number of concrete scenarios can be derived from one logical scenario by means of
an arbitrarily fine discretization of continuous parameters.

Semi-concrete Scenario: In the present work, we also define semi-concrete scenarios.
This means that not all parameters of the logical scenario are exactly defined, but the
parameter space is narrowed by reducing the parameter ranges or by defining a part
of the parameters. All undefined parameters remain as parameter ranges or can be
chosen to default values.

For the definition of logical and concrete scenarios all descriptive parameters are needed.
In order to do this in a structured way, Bagschik et al. [15] introduce a five-layer model.
The five layers are defined as below:

Layer 1: Road-level
Layer 2: Traffic infrastructure
Layer 3: Temporary manipulation of Layer 1 and Layer 2
Layer 4: Objects
Layer 5: Environment

Traffic Participant (TP): All kinds of movable objects (part of Layer 4) within a traffic situation
are called TPs. Among others, this includes pedestrians, cyclists, motorcycles, passenger
cars and trucks.

Key Performance Indicator (KPI): For the evaluation of AVs, KPIs are used. These consist
of a metric and a criterion in which range the measured value is allowed to occur. An
example of a metric is the Time-to-Collision (TTC) and an associated criterion may be that
the measured value may not be less than a predefined value.

Test Case: A test case consists of a concrete scenario together with associated KPIs [12].

Types of concrete scenarios: Various adjectives are used in literature to describe concrete
scenarios. Since these are not used uniformly, they are defined here and additional
adjectives used in this thesis are introduced.

6



2 State of the Art

Relevant scenario: All scenarios that are relevant for the certification of AVs. These are
all scenarios of the safety assessment and also scenarios that are not safety related,
e. g. to check whether the ego-vehicle is capable to comply to all traffic rules.

Critical scenario: A critical scenario is a concrete scenario in which the safety perfor-
mance of the ego-vehicle is insufficient. Therefore, it means an assessment of the
ego-vehicle behavior. It is only determinable after test case execution and the behav-
ior of different AV-functions lead to different criticality-results for the same concrete
scenario. [16, 17]

Challenging scenario: It means an assessment of a concrete scenario itself. It is deter-
minable before test case execution and independent of the AV-performance. Whether
a concrete scenario is challenging or not, depends on the chosen parameter values.
Therefore, challenging can be seen as the difficulty for the AV to master the concrete
scenario without the occurrence of a critical situation. [16, 17]

Complex scenario: The definition is the same as for challenging, but for complex sce-
narios the focus is especially on the objects in Layer 4 of the five-layer model [15].
Complex scenarios are therefore a subset of challenging scenarios where the difficulty
results from the behavior of the participating road users [16]. The relationship between
critical, challenging and complex scenarios is shown in Figure 2.1a.

Corner case scenario: Concrete scenario in which two or more parameter values are
each within the capabilities of the system, but together constitute a rare condition
that challenges its capabilities [18]. Corner cases can therefore be considered as the
most challenging of the challenging scenarios. A summary of the different kinds of
scenarios is given in Figure 2.1b.

Definition of challenging scenarios

Layer 4 (complex scenarios)
Parameters:

Test case execution

Uncritical scenario Critical scenario
AV behavior leads to:

Layer 1, 2, 3 and 5

(a) Difference between challenging, complex and critical sce-
narios. The figure is adapted from [16].

All scenarios

Relevant
scenarios

Challenging
scenariosComplex scenarios

as a subcategory of
challenging scenarios

Corner cases

(b) Amount of possible scenarios before test case execution.

Figure 2.1: Classification of different kinds of scenarios. In Figure 2.1a, the focus is on the distinction
between before and after test case execution. Complexity is a subcategory of challenging
and means the difficulty of a scenario due to the behavior (trajectories) of the objects (TPs)
that are part of Layer 4 of the five-layer model [15]. In Figure 2.1b the focus is on the
number of definable concrete scenarios before test case execution. The pyramid-like shape
symbolizes that starting from all scenarios up to the corner cases there are fewer and fewer
concrete scenarios that can be identified.

Challenger: In general, the challenger is the most difficult aspect of a challenging scenario.
The challenger can be, for example, another TP or difficult weather conditions.

Macroscopic assessment: For a socially accepted market introduction of AVs, it is crucial that
they have a lower accident probability than human drivers [19]. To be able to make such
a macroscopic (statistical) statement about the overall impact of AVs on traffic, a large
amount of data must be available [20, p. VII].
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2 State of the Art

Microscopic assessment: In contrast, particularly in scenario-based safety assessment, indi-
vidual traffic situations (scenarios) are tested and evaluated. The evaluation of a single
scenario is called microscopic assessment. The transition from a microscopic assessment
of a single scenario to a macroscopic assessment of safety is one of the most important
challenges of the SBA. [20, p. VII]

2.2 Overview of Safety Assessment Approaches

The main content of this section has already been published open access in the author’s previous
publication [17]. For a better understanding of the present thesis a summary of the already
published work is given.

Currently, in literature, seven approaches are used for assessing the SOTIF and OEDR related
capabilities and therefore the safety of AVs, which are shown in Figure 2.2. The SBA (highlighted
in orange) is of major importance for the present work. In the following, all seven approaches
are briefly introduced.

Safety assessment
approaches

Traffic-simulation-
basedFunction-based Staged intro-

duction of AVsShadow mode

Formal
verification Real world testingScenario-based

Figure 2.2: Overview of the seven existing approaches to SOTIF and OEDR related safety assessment
of AVs. The Figure is adapted from [17].

Scenario-based Approach

The SBA is the most promising among the approaches currently available in literature because it
has the potential to provide an efficient and reliable safety evaluation.The approach is described
in detail in Section 2.3. Only a short introduction is given here in order to be able to make a more
understandable distinction and differentiation from the other approaches.

By definition (Section 2.1) a scenario is a sequence of actions and events. If, for example, a
typical highway ride is examined, there is a considerable period of time during which no actions
and events occur. The SBA, which is also used in research projects (e. g. in Germany [10], Japan
[21] and Singapore [22]), neglects the part without significant actions and thus reduces the test
scope. In addition, frequent scenarios, such as cut-in situations with large relative distances and
a higher speed of the leading vehicle, which do not provide relevant information for the safety
assessment, can also be neglected. Nevertheless, the question remains unanswered which
scenarios have to be considered in scenario-based tests and how they can be found in order
to make a reliable statement about the vehicle’s safety. With the SBA, individual scenarios are
tested and microscopically evaluated. After a large number of these microscopic evaluations
have been carried out, a transformation to a macroscopic safety statement has to be performed.
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2 State of the Art

Formal Verification
Formal verification is a mathematical method by which the safety of systems can be formally
demonstrated across the entire ODD. It is not a selection technique for dividing the parameter
space into scenarios and is therefore not part of the SBA. Disadvantages of this approach are, on
the one hand, that often simplifying assumptions have to be made and that "only" the trajectory
planning module and not the overall vehicle is considered. For a separate validation of this
module, formal verification can be a promising approach in the future. For detailed information it
is referred to important publications in this area [23–44].

Real World Testing
An exclusively distance-based evaluation of safety by field tests is no longer economically
feasible at higher levels of automation. In order to determine with sufficient certainty that AVs
exceed the safety level of human drivers by a defined factor, 11 billion miles would have to be
driven in the USA according to [45]. In this context, exceeding means that fewer fatal accidents
occur. Analogous statistical investigations exist for Germany, where Wachenfeld and Winner [46]
conclude that a highway chauffeur needs about 6.6 billion test kilometers. With a low degree
of automation, testing in real world is the standard. But from Level 3 on, the required scope
increases so much due to the transfer of responsibility that it is no longer economically feasible.

Function-based Approach
In function-based testing, the system’s functions are checked on the basis of requirements in
tests on the test track or in simulation. This is a widely used procedure for ADAS. Current ISO
standards (e. g. ISO 15622 for Adaptive Cruise Control (ACC)) and UNECE regulations (e. g.
UNECE R131 for Advanced Emergency Braking Systems) for ADAS follow this method and
define a number of precisely specified tests for the individual systems, which check the basic
functionality and thus ensure a minimum level of safety. This reduced testing effort is possible
with ADAS on the one hand because of the reduced functional scope of the systems and on the
other hand because the driver has to monitor the system permanently.

In order for the function-based approach to be applicable, the functionalities of the system must
be defined. This is feasible for ADAS but difficult for AVs because it is impossible to specify
the required functionality of AVs in all possible situations. In addition, future standards and
regulations must not use a small selection of predefined standardized scenarios for testing AVs,
because this leads to performance optimization in these test cases. As a result, the evaluation
result will not reflect the actual driving behavior of the system in real road traffic.

The type approval process in general and the problems and challenges briefly outlined here are
discussed in detail in Section 2.4.

Shadow Mode
Wang and Winner [47] present a method in which the automated driving function in production
vehicles is passively executed, which is sometimes called shadow mode. The driving function
is provided with the real inputs of the sensors, but cannot access the actuators of the vehicle.
Simulation can be used to evaluate the decisions of the automated driving function and thus
determine the safety level. The same approach is used by car manufacturers, e. g. Tesla1, to
test new systems or new versions of existing systems.

1Tesla Autonomy Day: https://www.youtube.com/watch?v=Ucp0TTmvqOE at 2:55:43
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A major drawback, however, is that the behavior of the potential conflict partner (other TPs) in
the simulation does not correspond to reality, since other road users also plan and execute their
actions based on the actions of the AV. If the passive driving function in a situation decides
differently than the actual (active) driving function in the vehicle or the human driver respectively,
then perhaps another TP would have decided differently and the results of the simulation have
only limited validity.

Staged Introduction of AVs

The idea of the staged introduction is to reduce the ODD of the vehicle and thus the number
of traffic situations that occur, so that a safety assessment based on real world tests can be
carried out in an economically viable way. A severely restricted ODD is, for example, driving on
a certain section of a road for a few hundred meters or a few kilometers and only when visibility
conditions are good. In addition, a trained safety driver is part of the safety concept, who can
intervene immediately if the system makes wrong decisions. If the vehicle is assessed as safe in
this ODD, the ODD can be gradually expanded and/or the safety driver can be omitted. Many
system manufacturers apply this procedure, especially in China and the USA. The most recent
example is Daimler and Bosch [48], who are testing their systems in San Jose on a precisely
specified road section.

This approach can be promising for the introduction of Level 4 vehicles, e. g. in a selected city
center. In practice, however, it is not suitable for the validation and approval of Level 5 systems,
because by definition these systems have an unlimited ODD.

Traffic-simulation-based Approach

The concept of traffic simulation is to simulate not only a single scenario, but a whole road
network with hundreds of TPs (so-called agents). This method is therefore particularly suitable for
making a macroscopic statement about the safety of AVs. Here, the effect of AVs on human TPs
can also be modeled and investigated. In addition, it can be determined how the probability of
occurrence of scenarios changes due to the introduction of AVs or what influence an increasing
proportion of AVs has on overall traffic.

The approach based on traffic simulation can be used to increase the efficiency of the staged
introduction of AVs, since the entire ODD can be simulated in traffic simulation. As is also the
case for the staged introduction, this approach is no longer possible for Level 5 systems. Further
information on this concept can be found in [49–51].

2.3 Scenario-based Approach

After briefly introducing seven different approaches of how to assess safety of AVs in Section 2.2,
the SBA is discussed in detail in this section.

2.3.1 Overall Process

As already mentioned in Section 2.2, the main challenge of the SBA is to answer the question of
how to find a manageable set of representative scenarios for a reliable safety assessment and
certification of AVs. A large amount of literature in recent years has been dealing with exactly
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this question. The available literature covers various aspects of the SBA, all of which can be
classified into a generic framework (Figure 2.3). This work flow is derived in the author’s previous
publication [17] on the basis of existing literature and major research projects [10, 21]. In general,
the assignment of references to one of the steps within the framework is ambiguous in some
cases. For this reason, an attempt is made to identify the main aspect of the reference and
categorize it accordingly.
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Figure 2.3: Generic framework of the SBA (adapted from [17]).

The central element of the SBA is the scenario database in which all scenarios are accumulated
and stored. This does not necessarily have to be an actual database. Rather, the term is used
in this thesis as a synonym for a storage container for scenarios. The framework can therefore
be divided into a part to the left and a part to the right of the database. To the left of the
database is the entire process for creating scenarios for the database. On the right side are
all the procedures for the intelligent extraction of scenarios from the database as well as their
execution and assessment. The individual blocks are described briefly below. The blocks of
scenario generation and scenario selection highlighted in orange in Figure 2.3 are most relevant
to the overall process. For this reason, these are discussed in more detail in the following.

2.3.2 Sources for Scenarios

In general, two types of information are available as sources for scenarios. On the one hand,
this can be knowledge in various forms and on the other hand, data can be used as a source.

In the first case, the information can be in the form of abstract expert knowledge, standards and
guidelines, such as the German guideline for the construction of motorways [52] and consumer
tests, or in the form of accident data.

In the latter case, data from real traffic situations (e. g. field tests, etc.) are the source of
information. A requirement for the generation of scenarios from driving data is a data set that
is as representative as possible. Many organizations and enterprises have their own, non-
accessible data sets, but in recent years, various institutions have made publicly accessible data
sets available. An overview of available data sets is given in [53, 54]. Zhu et al. [55] also provide
an overview of data sets and attempt to unify them.

Krajewski et al. [56] demonstrate a novel method for collecting real driving data. The traffic is
logged with the use of a drone and the trajectories of the individual road users are then obtained
from the images using computer vision. This method offers the major advantage that no costly
and time-consuming test vehicles with extensive sensor technology need to be set up and that
the traffic is not influenced by the recording. A drawback of the introduced procedure is the small
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section of about 400 meters that can be captured by the drone, which is a limitation particularly
in the acquisition of highway scenarios.

2.3.3 Scenario Generation and Extraction
In this paragraph, not all references are explained in detail, but rather the focus is on the
description of the basic principles of different approaches. For a comprehensive explanation of
individual references, the reader is referred to the author’s previously published work [17].

Based on the two different sources for scenarios, a distinction is also made between two different
approaches for generating and extracting scenarios. These are the knowledge-based as well as
the data-driven scenario development. Both have in common that they subsequently store the
scenarios identified in the database. However, the type of scenarios can differ. An overview of
both methods can be seen in Figure 2.4.
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Figure 2.4: Knowledge-based and data-driven scenario generation and extraction methods including
relevant literature (adapted from [17]).

Knowledge-based
The fundamental concept of knowledge-based scenario design is the structured transfer of
knowledge into scenarios. In other words, abstract information is used to generate functional,
logical (including parameter ranges) or directly concrete scenarios. Among other things, road
traffic laws, regulations, accident data, consumer tests, ethics guidelines, safety analysis methods
or expert knowledge can be used as knowledge base. Most often of the existing knowledge-
based sources, expert knowledge is used to create scenarios. Within this method, ontologies
are often used to store and structure expert knowledge [15, 57–61].

Data-driven
Three different approaches can be distinguished for the data-driven creation of scenarios
(Figure 2.4b). These are extraction, clustering / classification as well as parameterization,
whereby all of them typically use methods of machine learning or pattern recognition.

The basic idea of extraction methods is to extract concrete scenarios from measurement data
without assigning them to a predefined group of logical scenarios. This approach is often used to
find corner case scenarios. This can be done, for example, by finding a high level of uniqueness
in the scenarios [66] or by triggering actions [62]. In the latter case, the trigger is initiated by a
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particularly challenging prediction of the behavior of other road users. With the help of neural
networks [63, 65] and Bayesian networks [64], this method can also be used to generate new
concrete scenarios based on the measured data.

The common feature of scenario clustering and classification methods is that they can group
individual scenarios from real data. The fundamental difference between the two approaches
is that in clustering, the groups are not known in advance and are created during the process.
In classification, on the other hand, the groups are defined in advance and the measurement
data are assigned to the defined groups based on their properties. The former is usually done
by means of unsupervised learning and the latter by supervised learning.

Clustering methods often use similarity measures [72, 73], hierarchical agglomerative clustering
[75], or procedures based on Bayesian models [74]. In literature, there is a greater variety of
approaches to scenario classification. For example, the predefined scenario groups can be
based on the potential collision direction between the ego-vehicle and other TPs [76] or on the
relative movement between these vehicles [70]. Furthermore, artificial intelligence in different
variations (e. g. learned classification trees, neural networks and deep learning) is used to assign
scenarios to defined groups [67–69, 71].

By definition (Section 2.1), logical scenarios are described by parameters and associated param-
eter ranges and/or parameter distributions. The groups of scenarios created by clustering and
classification form the starting point for the description of logical scenarios by parameterization.
This means that for each scenario group the parameters necessary for the description are
determined from the measurement data. Then, for continuous parameters, their minimum and
maximum values can be specified as parameter ranges. For discrete values, the individual
discrete states can be determined. Based on this information, a parameter distribution can be
specified for each parameter by examining the probability of occurrence of individual parameter
values. Thereby, dependencies between the parameters must also be taken into account. One
challenge is to obtain the most accurate conclusions about the parameter distributions that
actually occur on the basis of a limited amount of real data [77, 78]. Further approaches of
parameterization can be found in [79–81].

2.3.4 Scenario Database
For the SBA, a database with test scenarios is the core element. Due to the large number of
scenarios and parameters, an efficient description and storage of the scenarios is indispensable.
Within the PEGASUS project [10] a database with relevant scenarios for the ODD highway
[82, 83] is established. The primary objective is to provide a standardized interface for reading
different data sources and processing them into machine-readable formats. Another framework
for developing a database, called Testing Scenario Library, is explained in [84, 85]. These
authors also use the definitions for the different scenario types from the PEGASUS project,
which are also introduced in this thesis in Section 2.1. Althoff et al. [86] present the Commonroad
framework, which contains not only scenarios but also models and cost functions for the complete
reproduction of the simulation-based assessment of trajectory planners. A further description of
the procedure for building a scenario database can also be found in [87].

2.3.5 Selection of Concrete Scenarios
In this paragraph, not all references are explained in detail, but rather the focus is on the
description of the basic principles of different approaches. For a comprehensive explanation of
individual references, the reader is referred to the author’s previously published work [17].
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The decisive process step in the SBA for the safety assessment of AVs is the selection of concrete
test scenarios from the database which should be performed for the safety validation. As already
described, there is an infinite number of concrete scenarios due to the open parameter space.
In order to make the safety assessment practicable, a manageable subset must be selected.
Ideally, a maximal reliable proof of safety is performed with the smallest possible number of
tests. As already introduced in Figure 2.3, the selection of concrete scenarios is divided into a
testing-based and a falsification-based approach. For both approaches, there are again sub-
methods, which are shown in Figure 2.5. The basic difference between testing and falsifying is
that testing is used to verify that all requirements for the AV are met in a subset of the infinite
number of scenarios. Falsification, on the other hand, specifically targets to find scenarios in
which the AV does not fulfill the requirements.
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Figure 2.5: Testing-based and Falsification-based scenario selection methods including relevant litera-
ture (adapted from [17]).

Testing-based
Testing-based approaches select concrete scenarios and evaluate them microscopically after
their execution (physically or simulation-based). The evaluation is based on defined KPIs, which
can be accident-related, criticality related or based on guidelines or standards. Within the testing-
based approach, the selection of concrete parameter values of the logical scenarios can be based
on samples of the parameter range specified by minimum and maximum values or on samples
of the parameter distribution (Figure 2.5a). The former is particularly suitable for determining
the parameter space coverage, or for achieving a good parameter space coverage respectively.
However, a transfer to a macroscopic safety statement is only possible to a limited extent due to
the missing parameter distributions. A much more reliable macroscopic safety statement, e. g.
concerning the number of accidents that occurred, can be achieved by sampling the parameter
distributions, which contain the probability of occurrence (exposure) of the concrete scenarios.

The simplest method for sampling from parameter ranges is the so-called N-wise sampling.
In this process, all continuous parameters are discretized and then all possible parameter
combinations of the discrete values are created. Due to the number of required parameters and
an adequate discretization of continuous parameters, this procedure is only applicable for simple
driver assistance systems [92]. For the safety assessment of AVs, more intelligent procedures
that make the process more efficient are inevitable. Examples are design of experiments [89],
regression tests [93], scenario importance [90, 94, 152] or rapidly exploring random trees [88,
153].
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The standard procedure for sampling from parameter distributions is the Monte Carlo (MC)
method, which uses parameter values with high exposure frequently and parameter values with
low exposure correspondingly less frequently. Since the vast majority of frequently occurring
concrete scenarios are not critical for AVs, using the MC method is inefficient. Therefore, the
available literature attempts to accelerate this process. The standard performance criterion for
measuring improvement is usually the comparison with the MC method.

A frequently applied approach [97–99, 108, 110, 112–114] is the use of the so-called Extreme
Value Theory in combination with the Importance Sampling Theory, with which an accelerated
safety assessment can be performed. The basic idea is to increasingly take parameter values
from the outer limits of the parameter distribution and to execute and microscopically evaluate
the selected scenarios. The systematic examination of the outer areas results in more critical
scenarios. Subsequently, the biased microscopic results obtained with the adjusted distributions
are recalculated back to the original parameter distributions and transformed into an unbiased
macroscopic safety statement. According to Zhao [112], this allows the process to be accelerated
by a factor of up to 105.

Falsification-based

The falsification-based approaches attempt to find concrete scenarios within the ODD as effi-
ciently as possible where the performance of the AV does not meet the specified requirements.
Either concrete or logical scenarios with the corresponding parameter ranges can be used as a
basis for this. In literature there are four different approaches to find the best potential scenarios
that can be used as counter-examples to satisfy the safety requirement (Figure 2.5b). These are
described in more detail hereinafter.

Potentially suitable candidates for counterexamples are scenarios from an accident database.
This procedure is established for the evaluation of ADAS systems. ADAS are permanently
monitored by the driver and must therefore be safe, especially in cases where the performance
of the human driver is insufficient, which in turn corresponds to the accidents from current
accident databases. A transfer of this procedure to Level 3 and higher can be seen in [116,
118, 119]. For a more general statement, [115, 117] vary the parameters of existing accidents.
Nevertheless, the use of current accident data is not representative because AVs must be safe
not only in situations where the human driver has experienced difficulties, but in all of them
due to the lack of monitoring. Moreover, current accident databases almost exclusively contain
accidents involving human drivers, which do not necessarily have to be challenging and critical
for AVs as well.

Another possibility is to focus particularly on critical scenarios. This can be done by microscopic
evaluation of real data [122] or by using an exemplary concrete scenario whose criticality is
increased by optimization [120, 121]. Here, however, there is always an influence of the behavior
of the AV function under consideration. In addition, when using real data based on human
drivers, the problem is that critical scenarios that occur do not necessarily have to be critical for
AVs.

As a third possibility, an approach independent of the performance of the VUT is presented. The
basic idea here is to take concrete or logical scenarios and make them more challenging for AVs.
This is done by adjusting the parameter values for concrete scenarios or limiting the parameter
ranges for logical scenarios. By increasing the difficulty, it is assumed that the occurrence of
insufficient system performance during the execution of the scenarios is more likely. Note that
most of the following references use the term complex scenario instead of challenging scenario.
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However, in this thesis, complex is considered a subset of challenging (Section 2.1). The most
important references are briefly summarized below.

Several references [124, 130, 131] use what they call complexity index to describe particularly
challenging concrete scenarios. This index is based on the Analytic Hierarchy Process and
assigns a certain difficulty to parameter values. It is similarly performed in [129], in which the
description of the challenging scenario is divided into a static and a dynamic component. Still
others [132] consider it particularly challenging when the cognitive abilities of the AV are severely
challenged. In particular, the focus on the influence of the behavior of other road users is
emphasized in [128]. An overview of factors that influence the difficulty of a scenario can be
found in [53, 125].

The fourth method is the simulation-based falsification. The central element of this approach
is, according to Figure 2.5b, the optimizer. It uses the microscopic evaluation results and takes
them into account when selecting scenarios in the following iteration. Due to different types
of optimizer, one or more scenarios can be examined in parallel per iteration, as is the case
with genetic algorithms where it is called population size. The initialization of the optimizer at
the beginning of the procedure is done by the required number of concrete scenarios including
the corresponding microscopic evaluation results. Another important element of the optimizer
is the cost function used, which contains an evaluation variable assessing the vehicle safety
(e. g. the TTC [135, 147]). On the basis of this, the optimizer selects the concrete scenarios,
which are then executed using virtual simulation and evaluated microscopically. These results
form the basis for the optimizer to select the next concrete scenarios and a new iteration begins.
By minimizing the cost function, the optimizer can determine concrete scenarios for the VUT
with each iteration that are closer to a violation of the requirements. Due to the large number of
concrete scenarios to be executed, this approach can only be applied reasonably in a virtual
simulation environment.

In literature there are many different approaches to the design of the optimizer, but the basic
principle described in the previous paragraph does not change. In the following, the optimization
approaches available in literature are listed:

• Reinforcement learning [136, 139, 141, 142]

• Differential evolution genetic optimization [134, 135]

• Particle swarm optimization [134, 135]

• Adaptive search-algorithms [143–145]

• Bayesian optimization [138]

• Random forest models [146]

• Simulated annealing [133, 147, 149–151]

• Gradient descent optimization [148]

• Forward / backward search [140]

The references differ not only in the type of the optimizer, but also in the type of use case applied.
However, with all the existing references, the use case is only a simplified use case for the proof
of concept. This can be, for example, the use of simplified driving functions [135] or simple
scenarios such as the following drive scenario [140].
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2.3.6 Scenario Execution

For the execution of the selected concrete scenarios, various test environments are available.
Concrete scenarios can be carried out either in the real world via field or test site tests or with
increasing degrees of virtualization via X-in-the-Loop (XiL) simulation [154]. Since simulation
has many advantages in terms of costs, effort and safety risks, almost all references use it for
their proof of concept. There are many commercial and free simulation tools on the market.
Additionally, there are different frameworks available in literature [155, 156].

2.3.7 AV Assessment

Based on the definitions in Section 2.1, we differentiate between microscopic and macroscopic
safety assessment in Figure 2.3. It is possible to determine the level of safety within a microscopic
evaluation, using KPIs. It is advantageous to use criticality metrics as KPIs because accidents
are rare events. The best known of these is the TTC [157], which also exists in many variations,
e. g. in [158–160]. An overview of existing criticality metrics can be found in [161]. Hallerbach
et al. [155] also distinguish four areas in the environment of the AV that are of interest for
the evaluation of criticality. The number of critical situations and accidents that have been
encountered in the microscopic assessment can be the basis for the transition to a macroscopic
assessment. A more detailed investigation of the transition from many microscopic to one
macroscopic assessment can be found in [20].

In the SBA, both, the testing- and the falsification-based scenario selection methods, microscopi-
cally assess the safety for each scenario. The testing-based methods focus more on covering
the scenario space, while the falsification-based methods concentrate more on finding corner
case scenarios. Although the selection of corner cases is efficient for finding counterexamples,
it is less suitable for a macroscopic evaluation than the testing-based approach. Especially
the distributional sampling approaches include a more comprehensive representation of real
traffic behavior. They are therefore better at transforming the microscopic results into a statistical
macroscopic statement using the parameter distributions / exposure of microscopically evaluated
scenarios.

2.3.8 Conclusion

The generic framework for the scenario-based safety assessment of AVs from Figure 2.3 contains
all high-level process steps within the approach. The central element is the database in which all
scenarios are stored. The most important steps are scenario generation and the selection of the
concrete scenarios to be used for the safety assessment. The former generates the scenarios
(Subsection 2.3.3) and stores them in the database. The latter (Subsection 2.3.5) is the central
aspect of the SBA. For both steps, a large number of references exist that deal with these topics,
but without having shown a comprehensive applicability in practice. After selecting the concrete
scenarios, they have to be executed. Due to the high number of concrete test cases, as many
scenarios as possible have to be executed in simulation for both, time and financial reasons.
Thereby, a big challenge still to be solved is the validation of the simulation models [154]. In the
last step of the procedure, the microscopically evaluated scenarios still have to be aggregated to
a macroscopic safety statement, which has not yet been conclusively clarified [20].

In summary, it can be concluded that there are promising papers for all individual steps of the
SBA. However, these are limited to simple use cases and proof of concepts. Thus, one of the
biggest challenges in future will be the large-scale implementation of existing methods.

17



2 State of the Art

2.4 Type Approval of Vehicles

This section explains the vehicle type approval process in more detail. First, the general process
as applied to current series production vehicles is described (Subsection 2.4.1). Due to the
increasing functional scope of automation and the associated imminent market introduction of
Level 3+ systems, new requirements for type approval arise, which are explained in Subsec-
tion 2.4.2. Finally, the current status of the development of new standards and regulations for
Level 3+ systems is shown in Subsection 2.4.3.

2.4.1 Process

After the development of vehicles and before they are introduced to the market, they must
receive a type approval (also called certification or homologation) that confirms the absence of
unreasonable risks. The type approval is thus at the end of the classic V-model and vehicles
may not be sold without passing this certification. The basic procedure here is that the legislator
specifies requirements that must be verified by defined tests.

In principle, type approval can be carried out in two different ways. These are self-certification and
certification by an independent third party (test organization / technical service). The fundamental
difference between the two procedures is by whom the required tests are carried out. In the case
of self-certification, the manufacturer himself is responsible for carrying out the tests properly
and checking that all requirements are met. In the case of certification by an independent test
organization, this organization takes the manufacturer’s vehicle, carries out the tests and checks
whether all the requirements of the legislator are met. The former procedure is used in the USA,
for example, and the latter in Europe. Since this thesis focuses specifically on type approval by
an independent test organization, only this application will be discussed in the following.

The legal framework for the certification of vehicles in Europe is provided by the UNECE. Within
the UNECE there are various working parties in the field of transport. Working Party 29 (WP.29)
[162], called the World Forum for Harmonization of Vehicle Regulations, is most important for
this work. In addition to this, there are also working groups within the so-called ’Global Forum for
Road Traffic Safety (WP.1)’ which deal with topics related to automated driving. Within WP.29,
general regulations for type approval are developed and revised. These are addressed in various
sub-working groups, arranged according to different subject areas (Figure 2.6). As of August
2020, there are 152 regulations that must be fulfilled before a vehicle can be released for
sale. All these are part of the so-called 1958 Agreement [163], which 54 countries [164] have
signed, mainly but not limited to Europe. In addition, there are 20 so-called UN Global Technical
Regulations from the 1998 Agreement, which only 38 countries have signed, but among them,
in addition to numerous large European countries, the USA and China.

As described in the previous paragraph, there have been standardized regulations for the
certification of vehicles since 1958. At the beginning, all regulations were strongly focused on
testing the hardware (e. g. brakes), because the proportion of software in the vehicle was either
non-existent or low. All hardware-related tests are specified in fixed test specifications and can
be performed reproducibly under standardized boundary conditions (e. g. temperature). With the
increasing use of software in recent years, the demands on software testing have also increased.
This aspect is discussed in detail in Subsection 2.4.2.

Since the introduction of the first regulations, these have not been in support of a comprehensive
proof of safety, but rather confirm a minimum level of safety by spot-checks using predefined
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Figure 2.6: Structure of WP.29 as a part of the UNECE. Of particular interest for this work is the
Sub-Working Group on Automated/Autonomous and Connected Vehicles (GRVA), which is
introduced in more detail in Subsection 2.4.3.

tests. A comprehensive safety assessment, as the manufacturer must carry out for product
liability, is therefore not the focus of the type approval process.

2.4.2 Requirements for AVs

As already introduced in Subsection 2.4.1, the origin of the UNECE regulations is hardware
certification. As the digitalization of vehicles continues to progress, more and more software is
being installed in vehicles. This software can be used in entertainment systems (no requirements
for type approval), or can take over parts of the driving task. The latter has begun with the
introduction of driver assistance systems, for which there are also regulations for their certification
available. Examples are UNECE R130 for lane departure warning systems and UNECE R131
for advanced emergency braking systems.

There are therefore already regulations in place which include testing of software. However,
these support the driver in the execution of the driving task, but do not take any responsibility.
The driver must therefore permanently monitor the system and immediately override the system
in the event of any errors. Due to this distribution of responsibility, it is sufficient in the certification
of driver assistance systems to transfer the well-established procedure from the type approval of
hardware. This means that it is sufficient to verify the basic functionality in predefined tests.

Compared to ADAS, there are two fundamental changes which result in two new requirements
for AVs. These are:

1. Systems from Level 3 upwards take over the responsibility for the driving task. This
leads to a higher number of required tests.

2. With predefined tests, there is a risk that manufacturers will prepare themselves
specifically for these tests. A transfer of the behavior of the system in real road
traffic is only conditionally given.

This two new requirements are explained in more detail in the following.

Higher test amount

By eliminating the monitoring of the system by the driver, any error in the driving function from
Level 3 onwards can result in considerable risks and even fatal accidents. Even if the type
approval does not have to fulfill the purpose of a comprehensive safety assessment, as it is
necessary in the context of product safety, the scope of testing must be significantly increased
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compared to existing regulations. Furthermore, a change from current simple tests to prove the
basic function through function-based testing (Section 2.2) to more challenging, realistic tests
through scenario-based testing must be implemented.

This is necessary because society has high demands on the safety of AVs, as demonstrated
by the great media interest in the Uber accident in Arizona [165]. Reasons for this include,
on the one hand, the fact that this is a new technology that is not yet established and, on the
other hand, the fact that uninvolved persons can be injured by an error of a computer. The risk
that society will accept when AVs are introduced has not yet been conclusively clarified [19].
Junietz et al. [19] assume that AVs must have a significantly lower accident rate than human
drivers in order to be accepted by society. This also increases the pressure on legislators to test
AVs more intensively than driver assistance systems before they are introduced to the market.
Consequently, the scope of testing for type approval of L3+ vehicles will increase significantly,
although the focus will remain on spot checks.

No predefined tests
The concern with pre-defined tests, which are currently the standard within the UNECE regula-
tions, is that manufacturers may optimize the performance of the system to meet the requirements
of these tests. As a result, the system behavior in real operation deviates from the behavior
documented in the tests, respectively the system only achieves a lower performance in real
operation. The reason for the precise definition of the tests as well as test conditions in current
UNECE regulations is the reproducibility and comparability of the results, which are thereby
ensured. A performance optimization by the manufacturer is therefore possible with the existing
UNECE regulations, but due to the permanent monitoring of the systems by the driver, the impact
is small. For the first time, problems with predefined tests in the type approval of vehicles have
arisen with the discovery of the problems in emission testing. More detailed information on this
topic can be found in our already published work [126, p. 6]. In summary, several manufacturers
used software that detects when the vehicle is in the test cycle and then reduces emissions. As
a result, new type approval guidelines have been drafted by UNECE which have a lower repro-
ducibility and comparability, but which reflect the system behavior under real driving conditions
[166].

Due to the high safety requirements that AVs have to meet, it is of great importance that the
test results of the type approval also correspond to the performance of the vehicle in real road
traffic. This is the only way to ensure that the requirements are met and that a socially accepted
introduction of AVs is possible. The fact that standardized tests are not useful for type approval
of AVs also reflects the opinion of the European Commission [167, Slide 5] and NHTSA [8, p.
77].

2.4.3 Development of New Regulations
This section briefly outlines the process of developing new regulations and then gives an
overview of the future UNECE regulation for a Automated Lane Keeping System (ALKS) [11],
the first regulation, for Level 3 systems.

Development process
The development process of new regulations is based on a bottom up principle. For this
purpose, the relevant subgroup of the WP. 29, the Working Party on Automated/Autonomous
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and Connected Vehicles (GRVA) [168] (Figure 2.6), is divided into further working groups. The
working groups include participants from legislators, from research and from industry (both
manufacturers and testing organizations). Among others, there are the working groups Validation
Methods for Automated Driving (VMAD) and Automatically Commanded Steering Function
(ACSF). The former deals more with the overall process of approval of AVs and has proposed
that approval is a multi-pillar process consisting of virtual simulations, proving ground tests, field
tests and an audit [169, 170]. The ACSF working group is involved in the concrete elaboration
of regulations for AVs and developed a first draft for the regulations for the approval of ALKS
systems. If all parties involved agree, this draft will be passed on step by step via the GRVA
to WP.29. Currently (as of August 2020), WP.29 has already approved the draft [171] and the
regulation [11] is expected to come into force in January 2021 and will be called R157 [172]. The
following section provides a brief overview of the content of this future regulation.

Future ALKS regulation

The content of the future regulation [11] is of great importance for the present work, because the
scope of the method to be developed is the certification of AVs and the regulation is the legal
framework to be complied with. By definition, Level 3 systems have a restricted ODD, which
is why the ODD is also clearly restricted in the future regulation. The regulation covers ALKS
systems which operate up to a speed of 60 km/h on motorways with spatial separation of the two
directional lanes (no pedestrians, cyclists and crossing traffic) and thereby take responsibility
for the driving task during this time. By definition, the driver must take control again when the
system requests it. The system does not change lanes, but can initiate evasive maneuvers
in emergency situations. In addition to OEDR, the regulation also contains requirements and
specifications for other areas (e. g. human-machine interface and safe takeover of the driving
task). In the following, only the content of the regulation regarding OEDR will be highlighted,
because it is the focus of this thesis.

In the following, the most important contents of the future regulation for the present work are
summarized:

Technical service shall conduct spot checks: The testing organization should use targeted
spot checks to verify that the requirements for the system are met and that the system has
the functional capabilities specified by the manufacturer (Annex 4 Paragraph 1 and 4.1).

Technical service shall conduct tests that are critical for OEDR: In particular, tests that are
critical / challenging for OEDR should be conducted (Annex 4 Paragraph 4.1.2.1). It is
also mentioned that these so-called traffic critical scenarios can be generated using the
parameters of road geometry and the behavior of surrounding TPs (Annex 4 Appendix 3
Paragraph 2).

Draft provides functional scenarios: The functional scenarios lane keeping, blocked lane,
cut-in, cut-out and decelerating leading vehicle are defined (Annex 5 Paragraph 4).

Draft provides minimum set of parameters: Parameters are defined for the functional sce-
narios, whereby the number of parameters is not complete and only in rare cases a range
of the parameters is specified. According to the definition in Section 2.1, this does not
correspond exactly to logical scenarios, but because there is no standardized term for this
form, these will be referred to as logical scenarios in the following.
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Draft does not provide concrete scenarios: Throughout the document, no concrete scenar-
ios are given and no specific statement is made about the number of scenarios required.
There is also no discretization step size for the specified parameters of the logical scenarios
provided.

Technical Service may define additional parameters: Essential parameters are defined, in-
cluding road geometry, environmental conditions and position, speed and acceleration of
the challenger. It is also emphasized that other parameters such as road curvature and
lighting conditions can be added (Annex 4 Appendix 3 Paragraph 4).

Technical Service may define additional scenarios: The defined scenarios represent a min-
imum of tests and the technical service can define any test scenario within the defined
system boundaries (Annex 5 Paragraph 1). In addition, areas in the parameter space can
be identified by the technical service during the tests, which make further investigation
through tests appropriate (Annex 5 Paragraph 5.4).

Specific test parameters shall be selected by the technical service: The technical service
is responsible for the selection of parameter combinations (Annex 5 Paragraph 1) and can
specify any combination as a test that it deems appropriate (Annex 5 Paragraph 3.2).

The manufacturer shall provide a documentation of the system: Even if the technical ser-
vice does not have the software available as a white-box model in order to protect the
manufacturer’s intellectual property, the manufacturer still has to provide a documentation
of the system. This includes, for example, the system design, control strategy, system
layout, sensor setup and system boundaries (Annex 4 Paragraph 3 and Annex 4 Appendix
2).

Tests can be executed in virtual simulation: Simulation tools can be used especially for sce-
narios that are difficult to execute in real experiments, if they have been validated by
physical tests (Annex 4 Paragraph 4.2).

Skilled human driver is performance reference: The microscopic evaluation of the scenar-
ios is mainly carried out via the distinction accident / no accident. The reference for whether
ALKS must be able to prevent an accident in a scenario is created using a model of an
attentive human driver (Annex 4 Appendix 3 Paragraph 1).

In summary, the formulation of the regulation is not precise in many points and leaves the exact
interpretation and application to the responsibility of the technical service in cooperation with the
manufacturer. In addition, the technical service has a large degree of freedom in the design of
the test scenarios in terms of their characteristics and scope. An efficient and comprehensible
procedure for technical services for the homologation of AVs is therefore urgently needed.

2.5 Derivation of the Research Question

For an efficient certification of AVs performed by a technical service, methods from the safety
assessment of AVs must be combined, integrated and adapted to the requirements of the given
framework by the UNECE (i. e. upcoming Regulation [11]) (Figure 2.7a). This combination is
not addressed in the current state of the art and a new methodology tailored to the individual
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demands of a technical service is required. In the following, the interaction of the safety assess-
ment and the given framework will be explained in more detail and the requirements from the
viewpoint of a technical service will be derived.

The safety assessment of AVs by the manufacturer forms the methodical basis of the new
method to be developed. Section 2.2 shows that the safety assessment of AVs is a problem
that has not yet been solved and that different approaches exist for this purpose [17]. The SBA,
which is explained in more detail in Section 2.3, is considered the most promising approach. The
SBA (Figure 2.3) has various approaches for the individual steps, but it is not yet clear, how all
relevant scenarios can be identified and selected.

Combining the approach of the SBA with the new UNECE framework (future regulation for ALKS
from Section 2.4.2), the most important steps of the SBA for the technical service in the context
of AV certification can be identified. If we look at the process of the SBA in Figure 2.3 and
map the requirements of the future ALKS regulation to it, the steps left to the database can be
assumed to be given by the specification of the logical scenarios. The final assessment of the
AV can also be taken as given by the UNECE framework, because the human driver is to be
used as a reference and further KPIs are also specified. According to the UNECE, the scenarios
can be performed both, physically and virtually. For reasons of time and cost, virtual testing is
applied as much as possible. For this purpose, the simulation models used must be valid. This
is a large field of research and has not yet been conclusively investigated. Nevertheless, this
aspect will not be considered in the present work. Therefore, the most important step is the
selection of concrete scenarios. On the one hand, this aspect is still an open issue in AV safety
assessment and, on the other hand, the UNECE does not make any precise specifications on
this point and the technical service is commissioned to do so.

In the author’s previous publication [17], the strengths and weaknesses of the two different
scenario selection methods (testing-based and falsification-based) are discussed in detail. The
resulting summary is shown in Figure 2.7b. An explanation of the individual categories can also
be found in [17]. Mapping the requirements from the UNECE Framework (Section 2.4.2), it can
be concluded that falsification has a more important role for the technical service. The main
reason for this is the better rating in the identification of corner cases, which corresponds to the
UNECE requirements for critical spot checks (Section 2.4.2).

Thus, according to Figure 2.5b, the four methods accident database, criticality, challenging and
optimizer remain. Currently, there are no comprehensive accident databases of AVs, therefore
this method is not applicable, but may become interesting for technical services after the market
introduction of AVs. According to the definitions in Section 2.1, the assessment of whether a
scenario is critical or not can only be made after the scenario has been carried out. As the
technical service focuses on the definition phase of the scenarios, this approach is not applicable.
To perform falsification using an optimizer, all simulation models must be available. However,
the technical service only has documentation of the system available for homologation (Section
2.4.3), which means that this approach cannot be used either. What remains is the selection /
definition of particularly challenging scenarios. This also makes sense for a technical service,
because documentation of the system is sufficient, it can be defined before the execution of the
scenarios and there is a higher probability that the challenging scenarios become critical during
the execution. This then also fulfills the requirement for the selection of critical spot checks.
However, none of the approaches available in the literature discusses homologation and the
specific requirements from the point of view of a technical service. Therefore a new approach is
needed here.
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Figure 2.7: a) Homologation as prerequisite for a successful market introduction of AVs, where three
stakeholders are involved and a combination as well as integration of various requirements
of the stakeholders is necessary. b) Comparison of scenario selection methods (adapted
from [17]).

Even though more tests should be conducted during AV homologation (Section 2.4.2), the
process must be as efficient as possible and should not be predictable / predefined (Section
2.4.2). In addition, the technical service has to test a wide variety of manufacturers with different
system characteristics and features, which is why a system-specific selection of challenging
scenarios is advisable. To ensure that the procedure is as efficient as possible, the most
challenging scenarios should be identified, which according to the definitions (Section 2.1) are
called corner cases. Recently, Batsch et al. [173, p. 16] also concluded that there is still a
research gap to include knowledge about the system to identify failure regions in the parameter
space to efficiently define corner cases.

From this, the research question of the present thesis can be derived:
How should a procedure for technical services be designed that efficiently identifies

system-specific corner cases within the homologation of automated vehicles?

Based on Figure 2.7a, we take falsification as a method of safety assessment from the lower left
triangle as a basis and adapt it to the homologation framework so that an appropriate procedure
for technical services can be developed for the homologation of AVs. The following chapter
describes in detail how this development is carried out in practice.
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This chapter first refines and specifies the requirements and then provides an overview of the
newly developed approach. Finally, it demonstrates how the requirements of the first part of the
chapter are met.

3.1 Detailed Requirements

Section 2.4 introduces general requirements for AV homologation and presents the relevant
content of the future UNECE framework [11]. From this, detailed requirements are derived in the
following, which the methodology to be developed has to fulfill.

R1) On the one hand, the logical scenarios defined by the UNECE should be used as
input for the method, on the other hand, the documentation of the system, which
the manufacturer has to provide, can be used. According to section 2.4.3, this
consists, among other things, of the system structure including all sensors.

R2) As output, the method should provide (semi) concrete scenarios for the spot checks
during homologation. Semi-concrete scenarios are sufficient, because they allow
to set priorities in the tests and in order to pre-define a larger subset of scenarios
in an uncertain case. This conservative selection is intended to prevent scenarios
that are relevant accidentally being excluded.

R3) After certification, the market launch of the vehicles can be started. The method
must therefore be able to address the overall vehicle.

R4) The definition of the most important parameters of the future UNECE regulation
must be covered. These are according to Section 2.4.3 the road geometry, en-
vironmental conditions and position, speed and acceleration of the challengers.
This corresponds to the layers L1, L4 and L5 according to the five-layer model of
Bagschik et al. [15].

R5) To ensure that the results also represent the vehicle behavior in real traffic situa-
tions, not only standardized and predefined tests should be used (Section 2.4.2).

R6) The technical services test a large number of different system versions during
homologation. Therefore, the method must allow an efficient selection of corner
cases for different system versions of different manufacturers.

R7) According to Section 2.4.3, the technical service can define any other scenarios it
deems appropriate. However, these should be within the system specification. This
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can be taken into account by the documentation provided. Scenarios outside the
ODD are therefore not in focus.

These seven requirements are the most important from the technical service point of view and
have to be taken into account during the development. How this is achieved is presented in
remainder of this chapter.

3.2 Overview of the Developed Methodology

The logical scenarios defined by the upcoming UNECE regulation [11] are the starting point
for the approach. The parameters of these logical scenarios should be specified or at least
restricted, so that test cases are defined which are as meaningful and challenging as possible.
In other words, as few scenarios as possible should be selected which have a high informative
impact in terms of system performance. This means that (semi) concrete corner case scenarios
will be obtained as output. A visualization of the procedure is shown in Figure 2.3. The overall
method thus consists of three sub-methods and a subsequent combination of the parameter
restrictions. Next, an overview of the three sub-methods is given.Approach
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Figure 3.1: Overview of the developed methodology. Every aspect of a single block is challenging and
according to the definitions in Section 2.1 these resulting scenarios are called a corner
cases.

In all three sub-methods, the aim is to define challenging scenarios. The basic assumption here
is analogue to the literature in Subsection 2.3.5 that challenging scenarios are more likely to
lead to critical situations, and are therefore especially informative. This is illustrated in Figure 3.2
using a logical scenario with two parameters. In the unlimited parameter space, areas that
are particularly challenging for the VUT are identified during scenario definition. It is assumed
that critical situations will occur more often during the subsequent execution of test cases,
turning the corresponding challenging scenarios into critical scenarios. Due to different system
characteristics and implementations, the challenging scenarios are not identical for all systems,
as shown in Figure 3.2 using two different systems as an example. Next, the three sub-methods
are introduced shortly.

Sensor analysis

For the sake of simplicity, all sensors used for environmental perception are referred to as
sensors in this thesis. Additionally, the term sensor analysis covers not only the sensors itself but
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Figure 3.2: Simplified representation of a logical scenario with two parameters. The assumption is
used that challenging scenarios lead more often to critical situations. The identification of
challenging scenarios is individual for each AV. Due to bugs, critical situations can of course
also occur in simple scenarios. This is not shown in this figure and will not be considered in
the remainder of this thesis.

also the processing of the sensor data. AVs use different sensors like Lidar, Radar, ultrasonic
and cameras for this task. These sensors have the responsibility to perceive the environment
accurately. Via the involved data processing, all objects relevant for the driving task have to be
detected and tracked. Only if this is ensured, a safe trajectory can be planned by the subsequent
planning module.

In principle, each individual sensor type has certain strengths and weaknesses, which is why a
combination of different sensor types is usually used and redundancy is established. More sen-
sors increase the safety, but also the costs and therefore the manufacturers make a compromise
here. As a result, each manufacturer has an individual sensor setup, which can be influenced
by the cost as well as the package and the ODD of the vehicle. The goal of this sub-method is
the structured analysis of the sensor setup as well as a derivation of weaknesses, which are
then taken into account when defining the test scenarios. According to R1), this analysis has to
work with the documentation of the system as input, which in this case means that the technical
service has access to information about the sensors used, such as type and characteristics,
opening angle, range, mounting position and orientation.

Based on this information and so-called phenomenological sensor models, a sensor coverage
and a detection probability in three-dimensional space are calculated. This can be used to
analyze the following aspects related to the sensor setup in use:

• Investigation of the immediate area around the vehicle for blind spots (independent
of weather conditions, because the influence is negligible at short distances)

• Far-field analysis under different weather conditions to identify unfavorable envi-
ronmental conditions.

• Optimization of an object’s approaching path so that the object is seen as poorly
as possible by the AV.
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• Transforming the optimal approaching path into a road geometry for scenario
execution.

The results of this sub-method are scenarios that are particularly challenging for the perception
module and are derived individually based on the VUT’s characteristics. A detailed description
of the implementation of this sub-method is given in Section 4.1.

Driving behavior

In this sub-method, scenarios are identified that are particularly challenging when considering
the driving behavior of the AV. In order to have information about the driving behavior of the AV,
a small number of tests must be performed. This approach is therefore not completely applicable
in advance, but is carried out during the certification process. The basic idea of this sub-method
is that future test scenarios take the driving behavior of the AV into account (such as particularly
defensive behavior, overtaking behavior, curve driving behavior, etc.) and that the scenarios are
adapted in such a way that they are particularly challenging for the driving behavior of the AV
under test, respectively are more likely to lead to critical situations.

For example, it can be investigated whether the vehicle tends to oscillate to the inside or outside
of the curve during cornering. If it is determined that an AV tends to cut the curve, then this
knowledge can be used for example to place (stationary) objects on the inside of the curve in
future scenarios. If a vehicle behaves in exactly the opposite direction and drifts in the curve
towards the outside of the curve, then objects can be placed accordingly on the outside of the
curve. This leads to smaller distances to the objects, which increases criticality. This is not a
guarantee that a critical situation will occur, but at least the AV must deviate from its usual control
strategy, which is an increased challenge.

If no significant driving behavior can be identified for a vehicle, then this sub-method cannot be
used to adapt future scenarios. Compared to the other two sub-methods, this sub-method has
the smallest extent and is introduced in Section 4.2.

Traffic complexity

This sub-method (Section 4.3) examines the complexity of traffic situations. According to the
definitions in Section 2.1, complex scenarios are a subcategory of challenging scenarios and
address the behavior of surrounding TPs. The question that arises is: How should the surrounding
TPs move so that the scenario is particularly complex respectively challenging for the AV? Hence
the trajectories of the surrounding TPs are to be determined. Parameters like trajectories are
particularly difficult to define because they are time-dependent and therefore not suitable for
simple discretization, such as the scalar curve radius.

The core of this sub-method is the development of a metric to measure the complexity of traffic
situations, and ultimately to derive complex scenarios from them. For this purpose, real data
(highD data set [56]) are used to have realistic baseline data. These data of several minutes are
clustered into short individual scenarios and these scenarios are grouped into different functional
scenarios. In this way, the functional scenarios that are specified for certification by the UNECE
can be considered in particular. In a next step, a newly developed complexity metric is applied to
the scenarios and thus their complexity is determined. The metric consists of 13 different factors
that are used to evaluate the scenario. For simplicity, each of these factors, such as the number
of participating TPs, contributes linearly to the overall complexity. The factors are individually
weighted according to their importance. Subsequently, the most complex scenarios can be
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further used and in a next optional optimization step. An optimizer can be used to optimize
the behavior of surrounding TPs in the most complex scenarios, thus further increasing the
complexity. The scenarios with the highest complexity represent the greatest challenge for the
AV and can be used for certification.

3.3 Fulfillment of Requirements

The following describes how the requirements (Section 3.1) are taken into account in the
developed method (Section 3.2 and Figure 3.1).

Addressing R1) This requirement is strictly predetermined and does not represent an active
implementation. According to Section 3.2, this requirement has been met by the methodol-
ogy developed. For the sensor analysis sub-method, the system specification including
the description of the sensors is required, which the manufacturer must provide to the
technical service. Furthermore, for all three sub-methods the ODD of the vehicle, which
the manufacturer must also provide, and the predefined logical scenarios of the UNECE
are sufficient.

Addressing R2) This requirement is the result of the method and is taken into account by the
sub-methods. Each of the three sub-methods has the objective of identifying challenging
ranges for certain parameters. Thus, the output of a single sub-method can be regarded as
challenging semi-concrete scenarios. By then simply combining these parameter ranges,
according to the definitions in Section 2.1, the challenging scenarios become corner case
scenarios.

Addressing R3) In order to be able to evaluate the entire vehicle, the AV is first divided into the
sense, plan and act divisions, which are widely known from robotics (Figure 3.1 middle). At
least one sub-method is defined for each of the three partial aspects. To further simplify the
process, plan and act are considered in combination, because these two aspects strongly
influence each other. Especially if the system is observed from the external perspective of
a technical service who does not have the insight into the exact implementation.

Addressing R4) The most important parameters to be addressed by the method are L1, L4
and L5. The sensor analysis mainly addresses challenging environmental conditions (L5)
for the system under test. In addition, the definition of the challenging road geometry for
the sensor setup used also examines L1, i.e. the road geometry. The investigation of the
driving behavior includes aspects of the road geometry (e. g. curve radii) as well as objects
(L4). In the latter case, for example, the positioning of static objects is examined. The
analysis of traffic complexity defines particularly challenging trajectories of surrounding
TPs, which corresponds to the dynamic objects. Thus, the overall method includes both,
static and dynamic objects in L4.

Addressing R5) The analysis of the sensor setup as well as the driving behavior are individually
adapted to the VUT. Thus, for each vehicle individual test scenarios, which are not known to
the manufacturer before, are derived and can be tested during homologation. By using real
data for the extraction of particularly complex scenarios, the pre-defined logical scenarios,
where only the challenger is defined, turn into realistic scenarios that can occur in this form
on German motorways.
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Addressing R6) This is also, where the system-specific consideration in the first two sub-
methods comes into effect. In addition, the description of the ODD of the vehicle can be
included in all three sub-methods. For example, the particularly challenging trajectories
of traffic complexity can be filtered according to the velocities involved so that the ODD
specified by the manufacturer is complied with.

Addressing R7) This requirement is met, as mentioned above, by the inclusion of the manu-
facturer‘s specified ODD in all three sub-methods. The more precisely the manufacturer
specifies the ODD of the vehicle, the more specifically the scenarios can be selected.

According to Chapter 2, the scenario selection for the safety demonstration is still an unsolved
problem. It is possible to consider any number of scenarios and any number of parameters,
but especially for homologation, where only a limited scope of testing can be performed, only
the most important parameters can be considered. This is taken into account by the overall
method described in Section 3.2. Especially the reduction of continuous parameters to the most
challenging regions, as it is done in the identification of the most challenging trajectories of the
surrounding TPs based on traffic complexity, is valuable because these parameters are not well
suited for a standard discretization.

In the further progress of the work, the development of the sub-methods is the main focus. The
most comprehensive description is of the traffic situation complexity (Section 4.3), because
the first two sub-methods in Section 4.1 and 4.2 were already published in previous works of
the author. The respective implementation of the sub-methods will be prototypical / exemplary.
The subsequent block of combination is a simple combination of the challenging scenarios
or parameter ranges without considering a mutual influence of the sub-methods and is only
considered theoretically.
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This chapter represents the core of the work and describes the development and results of the
three sub-methods of the overall method (Figure 3.1). At the end, the combination step is briefly
described.

4.1 Sensor Analysis

The main content of this section has already been published in the author’s previous publications
[174–176]. For a better understanding of the present thesis a summary of the already published
work is given.

This section highlights the main aspects of the sensor analysis sub-method. First, the necessary
basics are presented. Next, the approach is described and a summary of the results is given at
the end.

4.1.1 Preliminaries

The aim of this sub-method is the analysis of the sensor setup and the derivation of weaknesses.
According to [17], there are not many publications covering the sensor setup of AVs in the context
of the safety assessment. A relevant example is [177], which models the occlusion by other road
users in dependency of the traffic density. On the other hand, the work of Berk [178] must be
highlighted, who investigates the reliability of individual sensors and entire sensor setups. In
simple terms, he tries to answer the question how many sensors are needed to ensure that the
occurrence of a fault is lower than a defined risk. In contrast, the method presented here tries to
identify weak spots in the sensor setup and derives test scenarios from these weak spots.

The basis for this is provided in the already published work [174], where the necessary basics
are described in more detail. For the analysis of the sensor setup, models of the sensors are
needed. Based on [179–182], a classification of the models into ideal, phenomenological and
physical sensor models is used. Ideal sensor models represent the ground truth. If an object
is in the field of view of the sensor, it is detected, if not, then not. Phenomenological models
can reproduce individual effects such as attenuation by fog without reproducing the physical
relationship between input and output. Physical models include the physics of the sensor. For
example, the propagation of rays can be calculated using the ray-tracing method, thereby
simulating physical processes such as reflection and refraction of rays on objects. They have the
highest accuracy, but also require by far the most computing capacity. Based on a compromise
between accuracy and computing power, phenomenological sensor models are used in this
thesis. Furthermore, high-precision physical sensor models do not add value because the inputs
(e. g. weather conditions or material properties of the object to be detected) are provided in
rather generic terms.
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In the context of automated driving, ultrasonic, camera, Radar and Lidar sensors are used to
perceive the environment. Since each type of sensor has certain strengths and weaknesses
(Figure 4.1a) and is, for example, influenced differently by environmental conditions (Figure 4.1b),
a combination of individual sensors is used and their detections are fused. The sensor types can
be divided into active (ultrasonic, Radar, Lidar) and passive sensors (camera). Active sensors
emit actively modulated radiation which is reflected by objects and absorbed by a receiver.
Passive sensors (in this case cameras) do not emit radiation and instead a receiver absorbs
secondary high-frequency radiation in the visible spectrum (light).
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Figure 4.1: Preliminaries for the sensor analysis sub-method. Both figures are adapted from [174].

For the phenomenological modeling of active sensors, the Signal-to-Noise Ratio (SNR) is
suitable. This equals the ratio of the power of the received signal Pr to the power of the noise Pn:

SNR=
Pr

Pn
. (4.1)

As an example, the equation for the Radar from [186, chap. 2] and [187] is given as:

SNRRadar(R,φs,ψs) =
PeGe(φs,ψs)Gr(φs,ψs)σλ2

(4π)3R4 Loa(R)kBnTsys
. (4.2)

Due to the large number of formula symbols and because these are not discussed in detail,
please refer to the list of formula symbols on page V for a description of them. Based on the
SNR a detection probability can then be derived.

In the author’s first publication [174], the passive camera is modeled with a surrogate model
from the literature as an active sensor. However, since the algorithms for object detection have
a considerable influence on the detection probability of passive sensors and especially of the
camera, the author’s publication [175] develops a model of camera-based object detection based
on meta-information such as the distance to the object. The approaches are described in more
detail in the following section.
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4.1.2 Approach

The procedure is explained using Figure 4.2, which shows the entire sensor analysis approach.
The method has three inputs with the sensor setup, the environmental conditions and the object
to be detected. The former is available from the manufacturer through the system documentation
provided. Input two and three depend on the ODD of the vehicle and this must also defined
by the manufacturer and made available to the technical service. As output (block ’scenario
transformation’), the procedure generates a cost-optimal road geometry for the given inputs.
Optimal in this case means that it is most difficult for the test vehicle to detect the object correctly.
In the following, the individual blocks are briefly described.

Sensor setup
and properties

Environmental
conditions

Detection
object Contribution of [174]

Contribution of [176]

Sensor modeling
and fusion

Initial and boundary conditions

Cost function

Detection
probability

Optimization
algorithm

Scenario
transformation

Sensor
coverage

Figure 4.2: Summary of the sensor analysis approach (adapted from [176]).

Sensor modeling and fusion

The modeling of the sensors is performed in [174] using phenomenological models based on
literature. The camera is also modeled as an active sensor with a surrogate model. An improved
approach is presented in [175], in which the camera-based object detection is modeled on the
basis of meta information. This model can replace the surrogate model from [174]. This improves
the quality of the camera detection probability calculation but has no influence on the further
steps of the methodology.

The properties of the sensors, such as the opening angle and the emitted power, are included in
the calculation of the sensor models. In addition, the environmental conditions such as lighting
conditions or rain as well as the type of object to be detected are also taken into account. The
latter has an influence on the reflection properties of the radiation emitted by the sensor. For
example, a truck has a much larger radar cross section than a pedestrian.

To develop a model for camera-based object detection, a publicly accessible data set (nuScenes
data set [188]) is used in [175] and the performance of three state-of-the-art camera-based
object detectors is investigated. For each object detection 22 defined meta-information are
assigned to each object. This includes, for example, the relative position to the vehicle, the
orientation to the vehicle, the velocities of the vehicle and the object, the degree of occlusion
of the object and rain. Subsequently, the performance of the neural network based object
detectors is imitated using simple random forest models. Thereby, the defined meta-information
is used as input for the random forest. The random forest learns to predict, solely based on the
meta information, whether the underlying object detector can correctly detect an object. With
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the help of a subsequent examination using a explainable Artificial Intelligence (AI) algorithm
called SHapley Additive exPlanations (SHAP) method [189], it can then be analyzed which
meta-information has a large influence on the detection performance for both, in general and
for specific detections. This represents the model that can be used to predict whether camera-
based object recognition can correctly detect a specified object. In [175] it is shown that general
statements can be derived, but for the application it is advantageous to apply this procedure
again for the camera-based object detection of the VUT. As a result, suitable phenomenological
models are now available for both, the active sensors and the passive camera sensor.

Sensor coverage
The sensor properties of all sensors used are sufficient for the sensor coverage, because in this
step only the coverage is considered, which is equivalent to ideal sensor models. This can later
be used to identify blind spots of the vehicle.

Detection probability
To calculate the detection probability, the existing and developed phenomenological sensor
models are used to assign a detection probability to each point in a three-dimensional grid.
This value indicates how likely it is that a pre-defined object at that location can be correctly
detected by the vehicle under defined environmental conditions. This enables a more detailed
investigation to be carried out to determine whether the sensor setup used by the manufacturer
has weaknesses that can be addressed with test scenarios.

Cost function
Based on the detection probability grid, a cost-optimal approaching path via the nodes of the
grid to the vehicle is calculated in [176], with which an object must approach the ego-vehicle in
order to be seen as poorly as possible by the vehicle.

In a first step, a cost function must be defined. The cost function JNode, j of a node v j of the grid is
defined in [176] as

JNode, j =
kJ + PD(v j)

kJ + 1
d(v j , v j−1), (4.3)

with the detection probability PD(v j) of the current node v j and the Euclidean distance d(v j , v j−1)
between the current v j and the previous node v j−1. In addition, a weighting factor kJ is introduced
in order to weight PD(v j) and d(v j , v j−1) differently in relation to each other. A minimum weighting
in the cost function of the distance of the approaching path is necessary to ensure a purposeful
approach of the object towards the vehicle. More details can be found in [176]. The cost function
of the entire path JPath with N nodes yields to

JPath =
N
∑

j=2

JNode, j . (4.4)

Optimization algorithm
The aim of this step is to calculate the optimal approaching path based on the detection probability
grid using the previously defined cost function. To calculate the path from a given starting point to
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the vehicle through the three-dimensional grid, the A-star (A*) algorithm is used. The A* algorithm
is one of the heuristic search algorithms that guarantees to find the cost-optimal path between
two nodes if it exists ([190, chap. 6.3.2]). The total cost of the path via node v j is calculated in
the A* algorithm using a heuristic evaluation function f (v j):

f (v j) = g(v j) + h(v j). (4.5)

Thereby, g(v j) is the cost of the path from the start node v1 to the current node v j and h(v j) is
an estimate of the remaining cost from the current node v j to the end node vN . Both, v1 and vN

can be defined by the user. The cost function from the previous section can be used directly as
g(v j). When choosing h(v j), it must be noted that h(v j) must never overestimate the remaining
costs. For this reason, the cost function with vanishing detection probability PD is used for all
nodes from v j+1 to the end node vN . Thus the A* algorithm calculates in an iterative process the
optimal approaching path xoap from a given start node v1 to an end node vN .

To limit the search space, the number of nodes is reduced by taking the ODD of the vehicle
into account. This is done by considering the different design classes according to the German
Motorway Construction Guideline [52]. For example, this specifies lane widths and minimum
allowed curve radii. This restriction excludes all nodes in the calculation that are located outside
a valid highway geometry.

Scenario transformation
In the previous step, an optimal relative approaching path of the object (challenger) to the
ego-vehicle is calculated. This represents the static relative path that must be followed by
the challenger in relation to the ego-vehicle. In simple terms, the challenger must perform
this path when the ego-vehicle would be stationary. In a realistic test scenario, however, both
vehicles move. Therefore, the relative approaching path is transformed into a dynamic scenario.
Assuming a given relative speed and again taking into account the ODD, the German Motorway
Construction Guideline [52] and the maximum possible vehicle dynamics, a road geometry
is calculated that results in xoap and complies with the constraints of the German Motorway
Construction Guideline [52]. For a summary of the required algorithms, please refer to [176].

The output is the road geometry as well as the trajectory of the challenger. This in turn is the input
for test scenarios, with regard to the sensor setup used, which represent the highest possible
challenge for the ego-vehicle.

4.1.3 Results and Validation
The results are divided into sections according to the blocks in Figure 4.2. As can be seen in the
figure on the overall methodology in Figure 3.1, the results are system-specific. This means that
for each AV, specially tailored results can be derived.

Sensor modeling and fusion
In the methodology of Section 4.1.2, the phenomenological sensor models are the starting
point. The aim is not to develop these models, but to use them with information available in
the literature. This is applicable for the active sensors (ultrasonic, Radar, Lidar), but not for the
camera as a passive sensor. Therefore, the developed model of camera-based object detection
[175] is briefly presented at the beginning of the results.
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For the development of the model of camera-based object detection, the performance of object
detectors is investigated first. Afterwards the behavior is imitated by a simple random forest and
the performance is traced back to meta-information. Three object detectors are investigated,
but they show similar results. Therefore, for simplicity only the result for the RetinaNet [191]
is given. Figure 4.3 shows the 15 most important meta-information with the highest influence
on the detection result. On the left side of the figure, it can be seen that the occlusion has
the highest influence. This means that having information about the degree of occlusion of the
object significantly assists in predicting whether the RetinaNet will detect the object correctly.
On the right side of Figure 4.3 the influence of the values of the meta-information is shown.
Each colored dot corresponds to a prediction made. Positive SHAP values mean an increased
probability that the object will be correctly recognized and negative values indicate a decrease.
It is clearly visible that high values for occlusion lead to negative SHAP values and thus reduce
the probability of a correct object detection.
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Figure 4.3: Left: Overview of the importance of the meta-information measured as the average impact
of each meta-information on the detection score of the random forest modeling the detection
performance of the RetinaNet. Right: Global impact of the meta-information on the prediction
output of the random forest modeling the detection performance of the RetinaNet. Each dot
represents an individual Shapley value. The corresponding value of the meta-information to
the Shapley value is indicated by the coloring, where blue corresponds to low and red to
high values. The figure is adapted from [175].

Figure 4.4 shows an example application of the model. The question arises whether the camera-
based object detection can correctly detect the pedestrian framed in red. Below the image the
SHAP values of the meta-information are shown and the model predicts with a probability of
60 % (marked in bold) that the RetinaNet correctly detects the pedestrian. The highest positive
influence is that the object on the image is not truncated (t runcation = 0%). The validation
shows that the RetinaNet actually detects the pedestrian correctly and that an overall accuracy of
almost 85 % is achieved. Since the ground truth data of the meta-information must be available
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for the application of the model, it can only be used for offline applications. However, this is no
limitation for the definition of test scenarios.
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Figure 4.4: So-called force plot to visualize the estimated impact of each meta-information on the
detection score of the random forest (0.60) for the marked pedestrian. The influence of each
meta-information with respect to the baseline of 0.6293 is illustrated as an arrow. The baseline
is the average of the output of the random forest over all leaves. Meta-information with
positive Shapley values (green arrows) promote a correct detection, while meta-information
with negative Shapley values (red arrow) reduce the probability of a correct detection. The
length of each arrow indicates the height of its impact. The figure is adapted from [175].

Sensor coverage

The sensor coverage can be used, for example, to investigate whether there are blind spots
in the manufacturer’s sensor setup that can be specifically addressed when generating test
scenarios. As already mentioned, the results are system-specific, which is why two systems are
compared below. These two systems are exemplary systems and are intended to illustrate the
system-specific aspect of the developed sub-method. They are based on (but are not an exact
replica of) the sensor setup of commercially available cars from two different manufacturers and
are generally referred to as system A and system B in the following.

When comparing the two vehicles in the near field around the vehicle in Figure 4.5, it is observed
that the area of blind spots at manufacturer A is significantly larger. Blind spots are defined
as areas that cannot be seen at any height by any sensor. In addition, Figure 4.5 also shows
the area in gray that does not fall within the field of view of any sensor at a height of 0.1 m. In
this area, the detection of small objects is therefore not possible. Overall, it can be concluded
that system A has a significantly higher risk of not detecting nearby objects. Therefore, special
scenarios must be selected in which objects are located in the close vicinity. For the considered
highway use case, this can be of particular importance during starting from standstill and slow
driving in congestion. With system B this focus is not necessary due to the good coverage.
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Figure 4.5: Blind spots (blue) of both sensor configurations. For a description of the sensor setups see
[176]. Blind spots are areas that do not fall within the detection range of a sensor at any height.
The sum of all blind spots equals an area of 4.17 m2 for System A and 0.77 m2 for System B. In
addition, the area that does not fall into any detection area at a height of 0.1 m is shown in gray.

Detection probability

Based on the detection probability, the far periphery of the vehicle can be examined more
precisely, taking into account defined weather conditions. For this purpose, the two systems are
compared again and two different weather conditions are considered (Figure 4.6). Under good
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Figure 4.6: Calculated detection probability of the ego-vehicle under normal (Figure (a) and (b)) weather
conditions and with direct glare from the front right (Figure (c) and (d)). The ego-vehicle drives
in the left of a four-lane highway approaching a curve of radius r = 500m. Depicted in gray is
the path of a passenger car driving in the right-hand lane. The path of the passenger car is
considered only in the area in front of the automated vehicle. All four figures are adapted from
[176].
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weather conditions (Figure 4.6a and 4.6b), both vehicles have good coverage of a four-lane
highway. In direct glare from the front right, i.e. when the performance of the forward and right-
facing cameras is significantly reduced, Figure 4.6c and 4.6d show that system B has significant
shortcomings in the coverage and this must be taken into account in the tests, unless the
manufacturer excludes these conditions from the ODD of the vehicle. How the object (challenger)
has to approach optimally in the defined detection probability grid is explained below.

Optimization algorithm
In the following, the result of the path optimization using the A* algorithm is shown using system A
under good weather conditions and a car as the object to be detected. The start node v1 of the
approaching path is located outside the field of view of the sensors (Figure 4.7a). In addition, the
constraints (adherence to road boundaries) are shown. Although the optimization is performed
in a three-dimensional grid, only the representation in the x-y-plane is discussed, because the
effects in z-direction are small. A noteworthy influence in the z-direction only occurs with hilltops,
which is addressed in the discussion in Subsection 5.1.1. It can be seen that as kJ increases,
the focus is increasingly put on the shortest possible approach path. Figure 4.7b shows that the
optimizer for decreasing kJ focuses more and more on exploiting areas with the lowest possible
detection probability. This confirms the functionality of the optimizer.
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Figure 4.7: Results of the approaching path xoap optimization. Left: Optimal approaching path xoap with
different weighting factors kJ. Right: Detection probability PD with different weighting factors
kJ. The high detection probabilities PD of almost 100 % are due to multiple overlapping
sensors and the assumed good weather conditions. This can change in adverse weather
conditions [174]. Both figures are adapted from [176].

Scenario transformation
Using scenario transformation, the optimal approaching path xoap is transformed into a dynamic
scenario and a corresponding road geometry (Figure 4.8). The ego-vehicle starts in vN and the
challenger in v1, which corresponds to the starting position of the path optimization in Figure 4.7a.
Then both vehicles move in positive x-direction and the relative approach of the two vehicles
corresponds to the optimal approaching path xoap. It can be seen that the two vehicles are not
on a common valid road geometry at approximately 400 m. The constraint is therefore violated in
this area and must be considered by an improved implementation in future work.

Validation
The focus of the approach is not on the development of sensor models of active sensors,
because these are well documented in the literature and are therefore assumed to be valid. The
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Figure 4.8: Calculated optimal road geometry to generate xoap between the two vehicles. From v1, i.e.
from 200 m, the road can theoretically also be defined around the challenger.

self-developed model for camera-based object detection can also be regarded as valid with
an accuracy of almost 85 % which is in the range of state of the art object detectors [192]. The
optimization based on these models uses the A* algorithm, an algorithm which, if implemented
correctly, finds the optimal path as long as it exists. Based on the plausible results, a correct
implementation and thus validity can be considered. The transformation into a dynamic scenario
provides plausible results, but cannot yet meet all constraints, which must be addressed in future
work. In summary, it can be concluded that the generated results are valid.

4.2 Driving Behavior Characterization

The main content of this section has already been published in the author’s previous publications
[127]. For a better understanding of the present thesis a summary of the already published work
is given.

This section highlights the main aspects of the driving behavior characterization sub-method.
First, the necessary basics are presented. Next, the approach is described and a summary of
the results is given at the end.

4.2.1 Preliminaries
In order to characterize the driving behavior of AVs, on the one hand, KPIs are required to
evaluate the driving behavior. On the other hand, meaningful traffic situations are necessary
in which the driving behavior can be observed properly. These situations can be diverse. For
example, a simple straight drive can be used to investigate whether the vehicle oscillates between
the lane markings. However, situations that are more extensive may also be necessary, for
example to characterize specifically the merging behavior on motorways. The basics for both,
the meaningful traffic situations and the KPIs are briefly introduced below.

For the evaluation of the driving behavior, there is literature that studies the driving behavior of
human drivers. For the present work, however, the publications on driving behavior of ADAS are
of particular interest. Holzinger [193, 194], who is dealing with the evaluation of ACC and Lane
Keeping Assistant (LKA), does important work in this field. Characteristic values of particularly
aggressive and defensive driving behavior are investigated in [195–197]. It should be noted that
the threshold values for these behaviors depend strongly on the driving situation [197].

The characteristic situations in which the driving behavior is evaluated are usually available
in simple representations described in words, i. e. as functional scenarios. In some cases,
parameters are given so that logical scenarios are already provided. An example of a functional
scenario of longitudinal control for the investigation of reaction time is the sudden stopping of
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the front vehicle [194]. Further situations can be taken from [198, 199]. Besides the technical
literature, other sources can be used to define characteristic situations. These include, for
example, the (German) Driving License Directive [200] or driving safety training courses. The
former, together with the theoretical Driving License Questionnaire [201], contain a variety of
suitable scenarios for characterizing driving behavior. In the driving license guideline, these are
only tested in theory because their probability of occurrence is low. When testing AVs, such
scenarios can be simulated using virtual simulation.

4.2.2 Approach

In the following, the procedure for characterizing the driving behavior for the adaptation of future
scenarios is presented. The structure of the method can be seen in Figure 4.9. With the scenario
definition, the scenario execution and the scenario evaluation three main process steps are
introduced, whereby the methodological focus is on the former and the latter. All three steps are
described below.

Functional 
scenarios

Logical
scenarios

ODD 
assignment Test cases Driving

behavior
Test case

assessment
Scenario
adaption

KPIs

Parameters Parameter discretization Definition EvaluationExecution

Figure 4.9: Overview of the driving behavior characterization sub-method (adapted from [127]).

Definition

The scenario definition is divided into four sub-steps as shown in Figure 4.9. First, functional
scenarios are extracted from the sources described in Subsection 4.2.1. These are differentiated
according to the distinction between lateral and longitudinal guidance known from vehicle
dynamics in order to allow a more comprehensible structure. In addition, the scenarios are
structured according to the primary type of acceleration. For example, when driving through a
curve with constant velocity, a constant lateral acceleration occurs, which is why the functional
scenario ’driving through a curve’ is assigned to lateral guidance under constant acceleration. A
summary of the number of derived functional scenarios is given in Table 4.1.

Table 4.1: Distinction of the scenarios into longitudinal and lateral control. Further subdivision according
to the primary acceleration type occurring during the scenario. A distinction is made between
no, a constant, a transient and a periodic acceleration. The table shows the number of
identified scenarios for each category. A description of all scenarios can be found in [202].

Number of scenarios

Null Constant Transient Periodical

Longitudinal 18 29 5 1

Lateral 0 9 13 2

In order to turn the functional scenarios into logical ones, the necessary parameters and their
ranges must be defined. Since all concrete scenarios derived from the same logical scenario
that are executed later are assessed with the same KPIs in the evaluation, the KPIs are already
defined here and assigned to the logical scenarios. An overview of the defined KPIs can be found
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in Table 4.2. The five-layer model [15] is used for the structured definition of the parameters and
a total of 34 parameters are defined for the derived functional scenarios. If a parameter is not
defined for a scenario, it is assumed to have no influence and a default value can be used.

Table 4.2: The KPIs are divided into six groups according to the corresponding physical quantities. The
table shows the number of defined KPIs per category and one corresponding KPI as an
example.

Based on Number of KPIs Example

Distance 6 Distance to center of ego lane
Velocity 2 Maximum lateral velocity

Acceleration 10 Maximum lateral acceleration
Angle 3 Yaw angle
Time 3 Time-To-Collision (TTC)

Frequency 2 Oscillation around the center of the lane

Then the logical scenarios can be selected according to the ODD of the AV under test. The
categories general, city center, country road and motorway are defined in Table 4.3 and the
corresponding logical scenarios are assigned. The general category includes all scenarios that
cannot be uniquely assigned to one of the other three categories. To derive test cases, i. e.
concrete scenarios including KPIs, the existing parameter ranges must be discretized so that
concrete numerical values for the parameters are available. Thereby, the real range of usage of
the AV should be covered, because the goal is to identify characteristic driving behaviors that
occur generally and not only under a certain parameter combination.

Table 4.3: The defined scenarios are subdivided according to four different ODDs. The table shows the
number of scenarios per category.

Operational Design Domain (ODD)
General City center Country road Highway

38 26 3 10

Execution

The execution of the scenarios is not the focus of this thesis and is only mentioned for the sake
of completeness. For the execution by means of virtual simulation, the concrete scenarios can
be transferred into a machine-readable format (e. g. OpenDRIVE and OpenSCENARIO), or
implemented and executed directly in a simulation tool such as IPG CarMaker®.

Evaluation

The concluding evaluation is divided into three sub-steps according to Figure 4.9. First, the
previously defined KPIs are applied to the results of the virtual simulation. The KPIs can be
used to identify characteristics in the driving behavior. The characteristics are defined manually
based on expert knowledge. The evaluation of different parameter combinations ensures that
the behavior is consistent and not a randomly occurring single event. Finally, this knowledge will
be used to make future scenarios even more challenging for the AV under test. Subsequently, a
proof of concept of this approach is shown using exemplary results.
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4.2.3 Results and Validation

This sub-method has the smallest scope of the three sub-methods and is only prototypically
implemented. For this reason, the results and the validation are only briefly addressed here.

Results

The proof of concept is confirmed by exemplary results of the functional scenario ’driving through
a curve’. The KPI is the deviation from the center of the vehicle to the center of the ego lane.
The parameters defined are the curve radius Rcurve, the desired velocity vset and the direction
of the curve. The curve radius Rcurve is discretized in a range of 400 m to 1000 m in 200 m steps.
The speed in 20 km/h steps from 60 km/h to 100 km/h and for the direction of the curve the values
left and right exist. For the proof of concept, a simple driving function for lateral control was used
and the scenarios were simulated with IPG CarMaker®.

Figure 4.10 shows the KPI under consideration, the deviation from the center of the vehicle
from the center of the ego lane over the driven distance. The vertical lines mark the beginning
and end of the curve, respectively. It is clearly visible that the vehicle first drives to the outside
of the curve at the beginning of the curve and then cuts the curve towards the inside. At the
end of the curve, the opposite behavior can be observed accordingly. In order to prove that the
driving behavior of the ego-vehicle is characteristic for the whole parameter space, the maximum
values of the considered KPI are plotted over the parameters curve radius and desired velocity
in Figure 4.11. The figure confirms that this is a characteristic driving behavior of the AV.
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Figure 4.10: Comparison of the system behavior between a left and a right curve with an identical
radius of Rcurve = 800m at identical speed of vset = 70 km/h. The system shows the same
driving behavior, a clearly visible curve cutting, in both left and right-hand curves. Due to
the comparable behavior, only the left-hand curve will be considered in the following. The
dashed vertical lines represent the beginning and the end of the curve respectively. Both
figures are adapted from [127].

It is intended to adapt future scenarios to make them even more challenging for the AV under
test. If, for example, scenarios with static obstacles are considered, then these can be placed in
a precise position using the information obtained. In the case under consideration, before the
curve entrance on the outside of the curve, or shortly after the curve entrance on the inside of
the curve. These are more challenging because the AV will drive at these areas on the respective
side of its own driving lane and thus the distance to the static object is smaller due to the driving
behavior. Smaller distances in turn increase the probability of a critical situation occurring. Thus,
the number of necessary parameter variations can be reduced with the described method. For
example, if one assumes that the position of the static obstacle is discretized in ten steps, then
the optimum placement of the obstacle can reduce the parameter combination to 10 % of the
initial quantity. Even if no critical situation occurs when executing the scenario, this scenario is
more difficult for the AV under consideration because in this case it had to change its standard
control strategy.
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Figure 4.11: Maximal deviation of the center point of the vehicle to the center line of the ego-lane shortly
after the entrance of a left turn. The AV shows an identical performance over the entire
speed range and over all curve radii. In all concrete scenarios, there is a positive deviation,
i. e. the AV drives much closer to the inside of the curve in all tested left-hand curves shortly
after the curve entrance. The figure is adapted from [127].

Validation

The developed methodology cannot be completely automated and requires expert knowledge.
For these reasons, the procedure has only been implemented as a prototype. The thereby
performed proof of concept confirms the feasibility and delivers plausible results. Thus, plausibility
is given but a comprehensive validation must be the subject of future work.

4.3 Traffic Situation Complexity

The concept of this section and first results have already been published in the author’s previous
publication [16]. In the following, this concept is taken up, explained in depth and the results are
presented in detail.

The following section forms the core of this document and is explained in detail, which is why the
extent is much larger compared to the first two sub-methods in Section 4.1 and 4.2. It explains
a methodology for assessing traffic complexity in relation to AVs. It is important to note that
complexity is defined in Section 2.1 as particularly challenging scenarios for the planning module
of the AV in terms of the behavior of other TPs, i. e. Layer 4 of the five-layer model [15]. A
second important aspect is that complexity refers to the AV. Therefore, the question is what is a
complex traffic situation for AVs and not, what is a complex traffic situation for human drivers.
Furthermore, the developed metric is intended to assess the scenario itself and not the behavior
of the ego-vehicle. The metric is therefore (as far as possible) independent of the ego-vehicle
behavior.

This section highlights the main aspects of the traffic situation complexity sub-method. First, the
necessary basics are presented. Next, the approach is described and the results are discussed
at the end.
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4.3.1 Preliminaries

The methodology described in this section is intended to enable the assessment of the complexity
of scenarios so that the most complex and thus most challenging ones can be identified and
selected. For the complexity assessment, a newly developed metric is applied. In literature,
related work exists in the context of automated driving, which will be introduced briefly below.
Subsequently, necessary basics in relation to the sub-method are explained. It should be noted
that the term complexity is often used differently in the relevant literature than in this thesis.

Related work

Wang et al. [129] present a two-part metric for assessing complexity. These are a road semantic
complexity and a traffic element complexity. Both are weighted with a weighting factor and added
linearly. For the present thesis, traffic element complexity is the more important part. However,
only the distance and the angle to the surrounding TPs are considered in [129]. The evaluation
of the total complexity is normalized to a range of values from zero to one and is divided into
three equidistant ranges (general, medium and extreme).

Complexity metrics based on the analytic hierarchy process in combination with a relative
importance index are developed by [124, 130, 131]. The resulting metric is called complexity index
by the authors. The publications use a lane departure warning system as use case. Therefore,
the focus is strongly on complex road geometry. Complex road design is not that important for
the considered highway use case, because it is well standardized by the German Motorway
Construction Guideline [52], but for city center and country roads this may be interesting in future
work.

For a reinforcement learning process for trajectory generation, Gonzalez et al. [203] use a
cost function, which can also be considered as a complexity function. It is based on a linear
combination of weighted features. The features are divided into static and dynamic features. The
dynamic features relevant for this thesis are limited to criticality measures like time headway.

Based on the trajectories that lead to inadequate ego-vehicle performance, Qi et al. [128] use
the so-called scenario character parameter. By examining the scenario character parameter,
scenario groups can be generated and then compressed into a challenging scenario.

A general description of the complexity of traffic situations for AVs based on eight influencing
factors is presented by Schuldt [204, chap. 2.3.5] in his dissertation. These eight factors are:

1. Number of Variables: Describes how many elements (TPs) participate in a sce-
nario.

2. Connectivity: Describes the mutual influence on several elements when the
behavior of an element changes.

3. Self-dynamic: Describes whether the scenario develops itself without having
received modified external impact.

4. Non-transparency: Describes whether elements are not visible or not known to
the decision maker (AV under test).

5. Multiple targets: Describes whether elements pursue contradictory goals.

6. Indistinction: Describes whether the target situation of the scenario is clearly
identifiable.
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7. Novelty: Describes whether the scenario and the actions it contains are known to
the decision maker.

8. Number of states per element: Describes the number of states that an element
can occupy in the scenario.

Schuldt [204, chap. 2.3.5] applies these factors to example scenarios and evaluates them
subjectively. His conclusion is that the method is applicable, but that an objectification of
the factors must be implemented in future work. A validation of the influencing factors is not
conducted.

A suitable metric for the evaluation of the trajectories of the surrounding TPs in order to assess
the complexity is not available in literature, because many authors limit themselves to the road
geometry, or the metric is only available in subjective form. Nevertheless, important information
can be derived from the existing publications, which can be used for the development of the
complexity metric:

• Use of a linear combination of influence factors and associated weighting factors
[124, 129–131, 203].

• Normalization of the complexity values to a value range from zero to one and
subsequent equidistant division of complexity into three classes [129].

• The factors considered by Schuldt [204, chap. 2.3.5] represent a good starting
point for the influencing factors to be considered.

Fundamentals

This section briefly introduces necessary tools for the sub-method to be developed. These
include the highD data set, the Genetic Algorithm (GA), and a simple model to mimic an AV.

Scenarios are needed so that the metric to be developed can be applied. In order to be able to
use scenarios that are as realistic as possible, a freely available data set covering the considered
highway use case is required. Popular data sets are for example the Next Generation SIMulation
(NGSIM) [205] and the highD [56] data set. The latter is used in the presented thesis, because it
is comprehensive and covers exactly the considered use case (German Autobahn). An overview
of available data sets can be found in [53, 54]. The highD data set was recorded with the help
of a drone with a frame rate fhighD of 25 Hz and contains the trajectories of all vehicles passing
through a 400 m to 420 m long, straight section of a motorway. A summary of the data set can
be seen in Table 4.4. The values are based on [56] and are all rounded.

Table 4.4: Summary of the highD data set based on [56]. The values given by [56] are rounded.

Recording Lanes per Recorded
Vehicles Cars Trucks

Driven Driven Frame rate
duration direction distance distance time fhighD

16.5 h 2 to 3 400 m to 420 m 110,000 90,000 20, 000 45.00 km 447 h 25 Hz

Within the developed method there is a step that optimizes the trajectories of the surrounding
TPs. For this purpose, a GA, an optimization algorithm from the class of evolutionary algorithms,
is used. In the following, the principle of the GA is briefly presented in Algorithm 1. For further
information, the interested reader is referred to the detailed description in [206].

During optimization, the trajectories of the surrounding TPs from a scenario from the highD data
set are adjusted in such a way that the considered scenarios become even more challenging.
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Algorithm 1 Genetic algorithm
Require: Initial population, fitness function . Initial population consists of individuals
Ensure: Optimal solution

1: Evaluate initial population . Initial population is evaluated with fitness function
2: stopCondit ion← f alse
3: while ¬stopCondit ion do
4: Select best individuals . Evaluated with fitness function
5: Reproduce individuals . Apply crossover and mutation to children
6: Evaluate new individuals
7: end while
8: return Optimal solution

Thereby, the ego-vehicle controlled by a human driver in the highD data set is replaced by a
simple and computationally cost efficient replica of an AV. This simplicity is for two reasons.
First, the model has to be calculated often during optimization and second, the complexity
metric is mainly independent of the ego-vehicle behavior. For the simulation of the longitudinal
behavior the Intelligent Driver Model (IDM) [207] is used as a surrogate model according to
Equation (4.6) and (4.7) with a∗x,ego as the desired IDM acceleration in longitudinal direction, s
the bumper to bumper distance between the leading vehicle xlead and the ego-vehicle xego with
length lego, vego as the actual ego velocity, ∆v as the velocity difference of the leading vehicle
vlead to the ego-vehicle vego, ax,max as the maximal allowed acceleration, v0 as the desired velocity,
δ as the acceleration exponent, s∗ as the desired distance between both vehicles, s0 as the linear
jam distance, s1 as the non-linear jam distance, Tg the desired time gap to the leading vehicle
and bx,com as the value of comfortable deceleration. The acceleration according to the IDM is
calculated as

a∗x,ego(s, vego,∆v) = ax,max

�

1−
� vego

v0

�δ

−
�

s∗(vego,∆v)

s

�2�

(4.6)

with

s∗(vego,∆v) = s0 + s1

√

√ vego

v0
+ Tgvego +

vego∆v

2
Æ

ax,max bx,com

s = xlead − xego − lego

∆v = vlead − vego.

(4.7)

The lateral guidance is controlled by the so-called Minimizing Overall Braking Induced by Lane
Changes (MOBIL) [208] approach. Here, lane changes are performed if the conditions from
Equation (4.8) - (4.10) are fulfilled. A distinction is introduced between the symbols before (•)
and after (•̃) the hypothetical lane change. The basic requirement for a lane change is that

|ãfollow,target| ≤ |asafe|, (4.8)

with the necessary deceleration of the following vehicle in the target lane ãfollow,target and the
safe deceleration asafe which is defined as 8 m/s2.

If Equation (4.8) is fulfilled, the conditions in Equation (4.9) and (4.10) are checked and thus it is
decided whether a lane change is performed. Therein, aego denotes the current ego acceleration,
p a politeness factor that is set to 0.5 to balance egoistic and altruistic behavior of the ego-vehicle,
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afollow,initial the acceleration of the following vehicle in the initial ego lane, δth a switching threshold
which is set to 0.1 m/s2 and δbias the bias to account for the European keep-right directive which
is set to 0.3 m/s2.

Condition 1: changing lane from left to the right:

aego+p(afollow,initial+afollow,target)> ãego+p(ãfollow,target+ãfollow,initial)+δth−δbias (4.9)

Condition 2: changing lane from right to the left:

ãego+p(ãfollow,target+ãfollow,initial)> aego+p(afollow,initial+afollow,target)+δth+δbias (4.10)

After this short introduction of the basics, the developed sub-method is explained in the next
section.

4.3.2 Approach
This section first summaries the overall approach of the sub-method. Then, the individual method
modules are outlined.

Overall approach
The primary goal of this sub-method is the development of a metric for evaluating the trajectories
of the surrounding TPs in a scenario, so that the most complex scenarios can be extracted from
real driving data. These are the most challenging and, according to the assumption in Section 3.2,
lead more often to critical scenarios. The entire procedure is summarized in Figure 4.12. The
part to the left of the database is used to develop and identify complex scenarios. The most
important part is the complexity assessment, which is the focus of this sub-method. The part
to the right of the database is used for the certification of different AVs and is not the focus of
this work. However, this part is exemplary performed once for the validation of the complexity
assessment method.

Real driving
data

Clustering /
classification

Complexity
assessment

Scenario
optimization

Scenario
simulation

AV
assessment

One-time execution to identify important scenarios

Independent of AV performance Database

Execution for each AV-version

AV performance assessment

Figure 4.12: Overview of the traffic situation complexity sub-method (adapted from [16]).

The scenario optimization step shown in Figure 4.12 is an optional step. Scenarios can be
stored in the database both, directly after the complexity assessment and including the additional
optimization. A short introduction to the overall approach is already given in Section 3.2. The
sub-modules starting from the real driving data to the database are described in detail in the
following subsections.

Before the individual modules are explained in more detail, two basic aspects are defined that
affect the entire sub-method. This is the definition of an Region Of Interest (ROI), as well as
the definition of the considered functional scenarios. The ROI describes the area around the
ego-vehicle in which surrounding TPs must be located in order to be considered relevant for
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the behavior of the ego-vehicle. For example, TPs that are too far away or on the structurally
separated opposite roadway are not relevant. The definition of the ROI is based on [21] and is
calculated in the x-direction using the legally specified and speed-dependent safety distance
dsafety, which corresponds to a time gap of 1.8 s. In lateral direction, the lane of the ego-vehicle
as well as an adjacent one to the left and to the right are included, if they exist. According to
Figure 4.13a, if the safety distance is maintained and both adjacent lanes exist, a maximum of
eleven TPs are within the ROI of the ego-vehicle.
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(a) Definition of ROI for highway scenarios based on eleven
surrounding TPs (adapted from [16, 21]) and the safety dis-
tance dsafety defined as a time gap of 1.8 s.
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(b) Classification of functional scenarios based on the chal-
lenger trajectory. Only the left side is shown from the per-
spective of the ego-vehicle, because the trajectories and
designations are symmetrical. The figure is based on [16,
76].

Figure 4.13: Definition of the ROI as well as the considered functional scenarios.

The given UNECE framework (Subsection 2.4.3, [11]) is structured according to functional
highway scenarios. In order to address these scenarios, individual functional scenarios can
be considered for each module of this sub-method. In this thesis, a classification of highway
scenarios based on [76] as used in the PEGASUS project [10] is used. This classification
has a higher information content than the functional scenarios of the UNECE framework. For
example, the one cut-in scenario is subdivided into the functional scenarios with label D and H
in Figure 4.13b.

Scenario clustering and classification

This module of the sub-method was supported by the student thesis of Breitfuß [209].

The individual steps of this module are shown in Figure 4.14. Starting from the continuous real
driving data of the highD data set, the data is split into individual scenarios using hierarchical
clustering. Subsequently, the maneuvers contained in the scenario are determined and checked
whether a surrounding TP represents a challenger for the ego-vehicle. Finally, the scenarios
containing a challenger are divided into the functional scenarios shown in Figure 4.13b according
to the relative movement of the challenger. These scenarios can then be passed to the next
module, where the complexity of the scenario is calculated.

Hierarchical clustering Before the actual clustering is started, the real data is unified. This
means that one of the two driving directions is mirrored so that all vehicles drive in the same
direction. For further standardization, all measurement recordings are shortened to 400 m and
the numbering of the lanes is standardized.

Hierarchical-Agglomerative Clustering (HAC) is a bottom-up method in which each data point first
forms its own cluster. Using a distance measure, the similarity of individual clusters is calculated
and all clusters that fall below a defined threshold of the distance measure are fused into one
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Figure 4.14: Overview of the scenario clustering and classification sub-sub-method (adapted from [16]).

cluster. An introduction to this technique can be found in [210]. For the clustering of the highD
data, the HAC is adapted to the given problem. Thus, the distance between the vehicles is used
as a distance measure and the limits of the ROI as a threshold value. According to Figure 4.13a
a different threshold is thus chosen in front of and behind the vehicle. This is carried out for a
considered vehicle (in the following called ego-vehicle) of the data set in each time step (frame)
and all vehicles, which are part of the cluster of the ego-vehicle, are saved. Subsequently, all
results of the individual frames are merged and this procedure is performed iteratively over all
vehicles of the data set.

The result of this step is the assignment of the relevant TPs for a considered ego-vehicle. Thus,
a maximum of as many scenarios can be extracted from the entire data set as the data set
has vehicles. According to Table 4.4, this is approximately 110,000. If an ego-vehicle is alone
in its cluster in all frames, then no other TP relevant to the ego-vehicle under consideration
occurs. Consequently, the ego-vehicle is in an uninteresting free driving situation and the vehicle
respectively scenario can be sorted out.

Maneuver classification A simple rule-based approach is used to determine the maneuvers
because the driving situations on highways can still be handled with a relatively small number
of rules. For a city-center application, this is difficult to perform and machine-learning methods
should be preferred. The rule-based determination of maneuvers is done in two steps and is
implemented in Stateflow from The MathWorks. First, the state between the ego-vehicle and
the considered surrounding TP is determined in each frame. The eight basic states from the left
hand side of Table 4.5 are used here. Furthermore, it is assigned to the states which of the two
vehicles has the higher velocity and in which lane the TP is located in relation to the ego-vehicle.

In the second step, maneuvers are defined by the sequence of states respectively state tran-
sitions. This is done by searching the sequences of states according to previously defined
patterns. The predetermined patterns thus represent the maneuvers. This is carried out with a
trained decision tree. A total of 12 (right side of Table 4.5) high-level maneuver classes and 158
(Appendix Table A.1) maneuvers derived from them are defined. A sequence of maneuvers is
also possible, which can be divided into separate maneuvers by a splitting step.

Challenger identification The next step is to examine each scenario to check whether it
contains a challenger. Challenger in this context refers to a surrounding TP that requires a
reaction from the ego-vehicle. If, for example, the ego-vehicle drives behind a TP and this TP
starts to brake so that the ego-vehicle has to react within a defined period of time in order to
prevent a potential collision, then this TP is classified as a challenger. However, if the TP drives

50



4 Sub-Methods

Table 4.5: Basic states (left) and maneuvers (right) between the ego-vehicle and a TP.

Name Semantic description Name Semantic description

S1 TP in adjacent lane behind ego-vehicle M1 Follow drive
S2 TP in adjacent lane next to ego-vehicle M2 Passing
S3 TP in adjacent lane in front of ego-vehicle M3 Parallel driving
S4 TP in same lane behind ego-vehicle M4 Passing with cut-in in front of vehicle
S5 TP in same lane in front of ego-vehicle

M5
Follow drive with cut-out and

S6 Ongoing lane change of TP behind ego-vehicle passing vehicle
S7 Ongoing lane change of TP in front of ego-vehicle M6 Complete overtake maneuver
S8 TP located in not relevant area (outside of ROI)

M7
Passing slower vehicle and cut-in of
this vehicle

M8
Follow drive and cut-out of the
leading vehicle

M9
Passing of slower vehicle and cut-in
behind this vehicle

M10 Passing with lane change out of ROI
M11 Lane change from out of ROI into ROI
M12 Lane change of both vehicles

with constant velocity, or if the TP in front is even faster than the ego-vehicle, no reaction from
the ego-vehicle is required and therefore the TP is not considered a challenger.

For this assessment, the movement of the ego-vehicle is predicted into the future using the
current longitudinal and lateral acceleration. This is done for a defined period of time tch,predict in
each time step of the scenario. This represents the behavior if the human driver respectively the
AV does not perform any action. The predicted position of the ego-vehicle is compared with the
actual position of the surrounding TPs at the predicted time. If a TP is located in the immediate
vicinity of the ego-vehicle (Figure 4.15), it is considered a challenger.

TP

Ego

Position in current frame

Ego 1
23

4

5 TP

Actual path of TP until end
of prediction horizon

Predicted path of Ego without any action lcoll

wcoll

Figure 4.15: Prediction principle of the challenger identification. A TP is classified as challenger if the
actual position of the TP from the highD data at the end of the prediction horizon is within
an area of increased risk of collision (marked as 1 to 5) in the vicinity of the predicted
position of the ego-vehicle at the end of the prediction horizon. The potential collision area
is symmetrical and is described by their length lcoll and width wcoll.

In addition, the relative position of the challenger at the predicted time is stored based on five
areas (Figure 4.15), such that this information can be used in the subsequent classification
of scenarios based on challenger movement and collision potential. The size of the potential
collision area, which is indicated symmetrically by the length lcoll and width wcoll, as well as the
prediction horizon have a decisive influence on the number of challengers occurring. According
to the German Motorway Construction Guideline [52], a lane width of 3.50 m is a frequently used
standard width and is used here as a reference for determining wcoll. The collision potential area
should fill the lane width when driving in the middle of its own lane. A vehicle width of 2.0 m is
assumed, which results in wcoll = 0.75 m. In contrast to wcoll, the length lcoll is not defined as
a constant, but variable depending on the velocity of the ego-vehicle. As with ROI, the legally
required safety distance is used as a reference value. The determination of a meaningful value
for this parameter and the prediction duration is discussed in more detail in Subsection 4.3.3.

51



4 Sub-Methods

The decision of whether it is a challenger or not is determined based on the overlap of the TP
with the potential collision area (Figure 4.15). This overlap represents a collision probability and
the larger the area of overlap, the higher is the collision probability rated. As can be seen in
Figure 4.15, a TP can overlap with several areas and in addition, it is possible that during the
course of the scenario several different TPs are located within the potential collision area. Thus,
two different strategies can be pursued to determine the challenger and the potential collision
area. On the one hand, the first contact can be counted, i. e. the first TP that creates an overlap
and the area with which it overlaps is the characterizing challenger. On the other hand, the
maximum overlap can be used as a criterion. The difference between the two approaches is
discussed in more detail in Subsection 4.3.3.

All scenarios that do not include a challenger do not require any action from the ego-vehicle, are
thus uninteresting and can be sorted out. For all other scenarios that contain a challenger, the
next step is to classify the scenarios.

Scenario classification In this step, information known from the previous steps is used
to classify the challenger scenarios using the functional scenarios in Figure 4.13b. The first
information required is the start frame of the prediction in which the characterizing challenger
occurs. If the first contact principle is used, the start frame is relevant, in whose prediction
an overlap of a TP with the potential collision area occurs for the first time. In addition, the
localization of the overlap (one of the five defined areas from Figure 4.15) as well as the state
(Table 4.5) of the start frame is required. Based on these three kinds of information, a simple
decision tree can be created to classify the scenarios into the nine defined functional scenarios
(Figure 4.13b). This means that the relative trajectory of the challenger is used to decide in which
class a scenario is grouped. The movement and behavior of all other TPs of the scenario has no
influence on the classification of the scenario.

The classified scenarios represent the output of the clustering and classification module. The
next module calculates the complexity of the classified scenarios.

Complexity assessment

This module of the sub-method was supported by the student theses of Yu [211, 212].

This module determines the complexity of each challenger scenario. For this purpose, a com-
plexity metric is developed that fulfills this task. Based on the related work in Subsection 4.3.1
the following basic aspects of complexity are defined.

• The complexity is an objective measure to calculate the difficulty of a scenario for
the planning module of an AV (not for a human driver).

• Complexity assesses the trajectories / time dependent behavior of the surrounding
TPs.

• There are different influencing factors / attributes that contribute to the complexity.

• Different factors have different importance.

• Coupling effects between factors are neglected.

• Every attribute has linear contribution to the overall complexity.
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• Complexity evaluates the scenario (as far as possible) independently of the ego-
vehicle behavior.

• All surrounding TPs within the ROI are relevant for the calculation of the complexity.

• The value range of the complexity should be normalized to values between zero
and one.

The core of the method is the definition of the influencing factors that are used to objectively
determine the complexity of a scenario. The basis for the influencing factors are the eight
subjectively described and evaluated factors of Schuldt [204, chap. 2.3.5] from Subsection 4.3.1.
Based on this, 13 factors were derived with the help of discussions with experts from industry
and academia to describe the complexity of a scenario in relation to an AV objectively. These are
summarized in Table 4.6 and are described in more detail below. A comprehensive validation
of whether these factors are suitable and sufficient to describe the complexity is analyzed in
Subsection 4.3.3 using an online expert questionnaire.

Table 4.6: Overview of the 13 defined factors influencing the complexity. Factor one to eleven can be
calculated in every frame of the scenario. Factors twelve and 13 are only calculated for the
whole scenario.

Nr. Influence factor

1 Types of surrounding TPs
2 Number of surrounding TPs
3 Number of connections between all vehicles (Connectivity)
4 Dynamics of surrounding TPs
5 Variation of dynamical parameters of the surrounding TPs
6 Predictability (with a simple constant acceleration model) of future behavior of surrounding TPs
7 Number of possible actions of the ego-vehicle (due to action restriction by other TPs)
8 Number of possible actions of the surrounding TPs (due to action restriction by other TPs)
9 Time-gap between ego-vehicle and surrounding TPs

10 Time-to-Brake between ego-vehicle and surrounding TPs
11 Occluded blind-spot area from the ego-vehicle perspective
12 Number of actions of the ego-vehicle performed in the scenario
13 Number of actions of the surrounding TPs performed in the scenario

Factor 1: Types of surrounding TPs It is determined how many different vehicle types are
within the ROI at each time step of the scenario. Vehicle types can be cars, trucks, motorcycles
and similar. Each of these vehicle types has its own characteristic driving behavior and dynamics.
For example, motorcycles are much more dynamic than trucks, which must be taken into account
when planning a safe trajectory of the vehicle. The higher the number of different vehicle types,
the more complex the scenario is. Because only cars and trucks appear in the utilized highD
data set, the value two is used to normalize this factor.

Factor 2: Number of surrounding TPs It is determined how many TPs are within the ROI at
each time step of the scenario. The ego-vehicle is not counted. The more vehicles are within
the ROI, the more complex the scenario is considered. According to the definition of the ROI
(Figure 4.13a) and in compliance with the required safety distance, a maximum of eleven vehicles
can be positioned within the ROI in a frame, which is why this value is used to normalize this
factor. However, it can be observed here that the normalization to a value between zero and
one cannot be guaranteed. If TPs do not obey the safety distance, there can be more than
eleven vehicles within the ROI. A physical maximum that can be used as a normalization factor
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is therefore not available. This aspect occurs with several factors, which is why it cannot be
guaranteed that the total complexity will not exceed the value 1 in rare cases.

Factor 3: Connectivity This factor is used to express the dependence of the behavior on
neighboring vehicles. This means that the ROI is divided into twelve areas (eleven for the sur-
rounding TPs and one area for the ego-vehicle), as shown in Figure 4.16 using the dashed white
lines. The lateral boundaries of the individual areas are the lane markings. In the longitudinal
direction, the boundaries are on the one hand the boundaries of the ROI and on the other hand,
the additionally inserted white vertical dashed lines. The determination of the connections is
determined by the occupied areas. Occupied means that a TP is present in the corresponding
area. To calculate the connections, the number of arrows (Figure 4.16) for occupied areas is
determined and normalized with the maximum number of connections (21).
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Figure 4.16: Number of connections between all vehicles. Every arrow represents one connection. The
maximum number of connections is 21, which is also the number used for normalization.

This factor thus represents the mutual impact of the change in behavior of a TP. A scenario
with three participating vehicles can be connected to different degrees depending on how these
three vehicles are arranged in the scenario. If a scenario has many connections, on the one
hand, there are action restrictions for other TPs and the ego-vehicle, and on the other hand the
behavior of one TP affects more vehicles and chain reactions can occur. The more connections
there are, the more complex it is assumed for the trajectory planning module to plan a safe
trajectory. Since the focus is on the ego-vehicle, the diagonal connections are only counted for
the ego-vehicle (Figure 4.16).

Factor 4: Dynamics of surrounding TPs With this factor, the dynamic values of the surround-
ing TPs are evaluated. The higher the occurring velocities and accelerations, the more complex
the scenario is considered. Depending on the relative position of the TP to the ego-vehicle
according to Figure 4.13a, the contributions of the TPs are weighted differently. Highly weighted
are all vehicles that have the highest influence on planning a safe trajectory of the ego-vehicle.
In the longitudinal direction, vehicles that are behind the ego-vehicle (positions 1 to 3) and
have a higher velocity than the ego-vehicle are weighted high. Slower vehicles are weighted
accordingly if they are in front of the ego-vehicle (positions 6 to 11). In the lateral direction,
vehicles to the left of the ego-vehicle having a lateral speed to the right and vice versa are given
a high weighting. Again, there is no physical maximum value for the normalization of this factor.
Therefore, the following experience-based values derived from the highD data set are used:
d ynamicv,x = 35 m/s, d ynamicv,y = 0.65 m/s, d ynamica,x = 0.65 m/s2 and d ynamica,y = 0.22 m/s2.

Factor 5: Variation of dynamical parameters of the surrounding TPs This factor considers
the differences in the dynamic state of the surrounding TPs. It is assumed that it is more difficult
for the ego-vehicle to plan a safe trajectory if the scenario includes slow as well as fast TPs and
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the occurring accelerations vary as much as possible. Thus, a scenario in which all vehicles move
at the same constant velocity is considered particularly simple. In the calculation, the lowest
value that occurred in each frame of the scenario is subtracted from the highest value. For this
factor, normalization is also based on the highD data set. The following values are used in this
work: variat ionv,x = 15 m/s, variat ionv,y = 6 m/s, variat iona,x = 12 m/s2 and variat iona,y = 6 m/s2.

Factor 6: Predictability of future behavior of surrounding TPs To plan a safe trajectory,
it is necessary to predict how the surrounding TPs will behave in the future. The better this is
achieved, the easier it is to plan a safe trajectory. In other words, the more difficult it is to predict
the behavior of a TP, the more difficult it is to plan a safe trajectory. Prediction can be made
using simple models such as those based on the assumption of constant velocity or acceleration,
or more sophisticated models based on machine learning. Based on literature [213, 214], the
accuracy of prediction for highway scenarios using simple models is only slightly worse, so a
simple constant acceleration model is used here. This model uses the current longitudinal and
lateral acceleration to predict the position of the TP at a future time. The prediction time tpredict is
chosen depending on the velocity of the ego-vehicle and is calculated as

tpredict =
vego

ax,max,dec
, (4.11)

and represents the time the ego-vehicle needs to brake to a standstill with a maximum decelera-
tion ax,max,dec of 10 m/s2.

The predicted position of a TP in x- and y-direction can therefore be calculated using a simple
point mass model via

�

xpredict

ypredict

�

=

�

x0 + vx,0 tpredict +
1
2 ax,0 t2

predict

y0 + vy,0 tpredict +
1
2 ay,0 t2

predict

�

, (4.12)

with the initial position (x0, y0), velocity v0 and acceleration a0 of the TP.

The overall deviation ∆doverall of the prediction is calculated as the euclidean distance of the
predicted positions to the actual positions (xhighD, yhighD) of the highD data at the end of the
prediction time as

∆doverall =
r

�

xpredict − xhighD

�2
+
�

ypredict − yhighD

�2
. (4.13)

If there are several TPs, the average of the overall deviation ∆doverall over all TPs is calculated.
Again, for this factor there is no physical upper limit that can be used for normalization. Therefore,
a reference value of 1.4m is used based on experience.

Factor 7 and 8: Possible actions of ego-vehicle / TPs The actions of both, the ego-vehicle
and the surrounding TPs are are based on the same principle and therefore they are explained
together. The basic principle of these factors is that a TP or the ego-vehicle can experience
action restrictions due to the presence of other vehicles and therefore can only perform a
certain number of actions. The possible actions are explained here from the perspective of the
ego-vehicle and with regard to the definition of the ROI and its division into twelve areas from
Figure 4.13a and 4.16. An action is the hypothetical change of the position of the ego-vehicle
to one of the surrounding areas. Thus, only the eight surrounding areas of the ROI (areas one
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to eight) are considered and therefore a maximum of eight actions are possible. For example,
it is assumed that a lane change to the left is only possible if area four is not occupied. If it is
determined which actions a surrounding TP can perform, it is temporarily considered as the
ego-vehicle and the possible actions are determined from its point of view. An overview of the
possible actions is given in Table 4.7.

Table 4.7: Overview of the possible actions. If an area is not occupied, this means that the vehicle with
the corresponding number in Figure 4.13a and 4.16 is not present. A necessary criterion for
lane changes is that the adjacent lane exists.

Occupancy of surrounding areas according
Nr. Action to Figure 4.13a and 4.16

1 Deceleration Assumed to be always possible
2 Acceleration Area 7 is not occupied

3 Lane change to the left
Area 4 not occupied and vehicle 1 not faster
than the ego-vehicle

4 Acceleration after lane change to the left Action 3 possible and area 6 not occupied
5 Deceleration after lane change to the left Action 3 possible and area 1 not occupied

6 Lane change to the right
Area 5 not occupied and vehicle 3 not faster
than the ego-vehicle

7 Acceleration after lane change to the right Action 6 possible and area 8 not occupied
8 Deceleration after lane change to the right Action 6 possible and area 3 not occupied

Since the test scenarios to be defined are intended to test the capabilities of the ego-vehicle,
it is assumed for the ego-vehicle that braking actions are always possible. This results in a
smaller number of possible actions. In addition, the normalization is handled differently for these
two factors. From the point of view of the ego-vehicle, it is assumed most difficult for trajectory
planning if an intermediate number of actions is possible. If no action is possible, the ego-vehicle
can only brake and the decision is easy. Likewise, if all actions are possible, then there are
no surrounding TPs and it has no effect which action is chosen. The progression between
the explained extreme values is assumed linear. For the surrounding TPs, the effect on the
ego-vehicle is considered. The more actions are possible for a surrounding TP, the more difficult
it is for the ego-vehicle to predict which action will be executed next by a TP. Therefore, the
reference value eight is used for normalization. If several surrounding TPs exist, the average of
all TPs is used.

Factor 9: Time-gap between ego-vehicle and surrounding TPs This factor represents the
precision with which an action of the ego-vehicle must be performed. The smaller the time gap
tgap,i to surrounding TPs, the more precisely an action of the ego-vehicle has to be planned and
executed. This factor therefore addresses both, the planning and the execution module of the
AV. The time gap tgap,i is calculated from the perspective of the ego-vehicle for a subset i of the
surrounding TPs via

tgap,i =
di

vego
with i ∈ {1,3, 6,7, 8}, (4.14)

where di is the distance to traffic participant i (Figure 4.13a) and is defined as the distance
between the front of the rear vehicle and the rear of the front vehicle. Here, only a relevant
subgroup of the surrounding TPs is considered. These are the TPs driving directly in front of the
ego-vehicle and the potential overtaking vehicles on the adjacent lanes. If several relevant TPs
exist, the average value of these vehicles is calculated. The physical minimum value that can
occur is zero. Therefore this value should result in the maximum value of one after normalization.

56



4 Sub-Methods

In order that small tgap have a larger effect, no linearly decreasing course is used for the
normalized factor tgap,normed, but an exponentially decreasing course according to:

tgap,normed = e−0.5tgap . (4.15)

The choice of the parameters of the e-function is based on experience.

Factor 10: Time-to-Brake between ego-vehicle and surrounding TPs This factor repre-
sents the required reaction time of the ego-vehicle. Even though AVs tend to have shorter
reaction times than human drivers do, a certain amount of time is still required for the detection
and tracking of objects as well as for planning a trajectory. The shorter the required reaction
time, which is described by the Time-to-Brake (TTB), the more difficult it is for the ego-vehicle to
calculate a safe trajectory. As a simplification, no steering intervention is considered. A meaning-
ful calculation of the TTB exists only for a vehicle directly ahead, which is why only vehicle 7
from the definition of the ROI in Figure 4.13a is considered here. If the ego-vehicle is moving at
a higher speed than vehicle 7, then the distance ddec, which the ego-vehicle needs to decelerate
with maximum deceleration ax,max,dec to the speed of vehicle 7 v7 is defined as:

ddec =







0, for v7 ≥ vego
v2

ego−v2
7

2·|ax,max,dec| , else.
(4.16)

Then the required distance can be subtracted from the actual distance d7 and the TTB t ttb can
be calculated as:

t ttb =
d7 − ddec

vego
. (4.17)

The value for t ttb can be negative, which means that the ego-vehicle can no longer prevent a
critical situation by a braking maneuver alone. For the normalization of this factor, reference
is made to Junietz [20, p. 83]. In his dissertation, he also uses the TTB for the evaluation of
scenarios for AVs, thereby using a reference value of 2 s and a linearly decreasing progression.
The reference value is determined on the basis of the traffic events of human drivers due to a
lack of data for AVs. It is handled analogously in the present work, which yields to the normalized
TTB tttb,normed:

tttb,normed =











1, for t ttb ≤ 0 and v7 ≤ vego

1− t ttb
2 for 0< t ttb < 2 and v7 ≤ vego

0, else.

(4.18)

Factor 11: Occluded blind-spot area from the ego-vehicle perspective This factor de-
scribes the non-transparency of the scenario for the ego-vehicle, which is described by the
size of the occluded area from the perspective of the ego-vehicle. These are blind spots that
cannot be seen by the ego-vehicle’s environmental sensors because they are occluded by
other vehicles. This is illustrated by the black area in Figure 4.17. It is assumed that there is
no common environment model of all TPs through vehicle-to-vehicle communication. This is
realistic because the market penetration of the vehicles with which this is possible will be low in
the first years after market launch. The larger the areas occluded by surrounding TPs, the greater
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the uncertainty in planning a safe trajectory. This is seen as an increased difficulty because the
probability of unexpected situations increases.

Ego

Region Of Interest (ROI)

Figure 4.17: Visualization of the blind spot (marked in black) calculation. The blind spots are only
considered within the ROI.

For a simplified and computationally efficient calculation of the blind spot, several assumptions
are made. For example, the actual used sensor positions and orientations of the ego-vehicle
under investigation are not used, but for simplification, it is assumed that the sensors are concen-
trated on two points (middle of the front and rear of the vehicle) according to Figure 4.17. Starting
from these points, the blind spots are calculated based on beam propagation. Consequently, only
the area within the ROI is considered. For the normalized size of the blind spot Ablindspot,normed,
the calculated size of the blind spot Ablindspot is divided by the size of the ROI AROI according to:

Ablindspot,normed =
Ablindspot

AROI
. (4.19)

Factor 12 and 13: Number of actions of the ego-vehicle / TPs performed in the scenario
All factors introduced so far can be evaluated in each scene of a scenario. The last two factors,
which are explained again together because of the same principle, can only be calculated at
the end of the scenario for the overall scenario. After assessing with the factors 7 and 8 how
many actions are possible in the current scene, the number of actions performed in a scenario is
assessed here. The basic idea here is that the more actions are performed by surrounding TPs
and the more actions are required by the ego-vehicle, the more difficult it is for the ego-vehicle
to plan a safe trajectory. Thereby, it is distinguished between actions in longitudinal and lateral
direction. An action in longitudinal direction is evaluated as a change in acceleration, unlike with
factors 7 and 8. The concept is based on the work of [215], in which different actions are defined
based on the intensity of the acceleration. In the present work, we use the states according to
Table 4.8 and an action is defined as a change of the state.

Table 4.8: Definition of states in dependency of the intensity of the longitudinal acceleration ax. An action
in longitudinal direction is defined as the transition between two states.

Range of ax Driving state

ax ≤ −6.0 m/s2 Emergency brake
−6.0 m/s2 < ax ≤ −3.0 m/s2 Strong deceleration
−3.0 m/s2 < ax ≤ −0.2 m/s2 Normal deceleration
−0.2 m/s2 < ax ≤ +0.2 m/s2 Constant driving
+0.2 m/s2 < ax ≤ +2.0 m/s2 Normal acceleration

ax > +2.0 m/s2 Strong acceleration

The highD data used are real driving data. To compensate for measurement fluctuations and not
to count short-term changes, an average of the longitudinal acceleration over ten time steps,
which corresponds to a time of 0.4 s, is used. Only when this average indicates a change in the
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driving status, an action in the longitudinal direction is counted. The highD data set contains
the trajectories of vehicles controlled by human drivers and thus includes small fluctuations in
constant driving. To ensure that these slightly changing positive and negative accelerations ax

are not counted as actions, the range of constant driving is set to ±0.2 m/s2.

In contrast to longitudinal control, the number of actions in the lateral direction is not determined
by the intensity of the acceleration, but the number of actions is determined by the number of
lane changes performed by the vehicle under consideration. This number can be determined
simply by comparing the lane ID stored in the highD data. If this number changes, the vehicle
has changed lanes and an action is counted.

There are no physical upper limits available for the normalization of these factors, thus values
based on experience are used. As already mentioned, these two factors are not calculated for
every scene of a scenario but can only be calculated for the entire scenario. For the longitudinal
direction, a reference value is calculated based on the number of scenes. Thus, for a scenario
duration per 50 scenes, which corresponds to 2.0 s for the highD data, one action is used as a
reference value. No additional normalization is used for the lateral actions because not many
lane changes occur due to the comparatively short scenario duration compared to the duration
of a lane change. The mean value of the actions in longitudinal and lateral direction is then
calculated and considered as the final value for the number of actions of the ego-vehicle. For
the number of actions of the surrounding TPs, additionally the average over all existing TPs is
calculated. For a scene-based consideration of complexity, the calculated values of these factors
are applied to all scenes.

Complexity metric On the basis of the 13 defined factors, the developed metric is designed to
objectively assess the complexity of scenarios. The aim is to make the evaluation as independent
as possible of the behavior of the ego-vehicle. Because reactions to the actions of other road
users are always carried out in the progress of a scenario, this is not fully possible, but the 13
defined factors enable this as far as possible. As mentioned at the beginning of this subsection,
the complexity metric is defined as a linear combination of these factors which are aggregated in
the vector cfactors. These should be weighted differently using the weighting factors cweighting. The
general calculation of the complexity of a scene Cscene,i in a scenario with nframes frames is given
by

Cscene,i = cT
weighting · cfactors,i for i ∈ {1,2, ..., nframes}, (4.20)

whereby cweighting,cfactors,i ∈ Rnfactors×1 with nfactors = 13.

In order that a structured determination of the weighting factors can be carried out in the further
course of the work and in order to limit the values of the complexity of a scene Cscene,i, it is
defined that the sum of all weighting factors cweighting, j results in

nfactors
∑

j=1

cweighting, j = 1. (4.21)

In addition, the value range for the individual complexity factors cfactors,i, j is normalized as

cfactors,i, j ∈ [0, 1], (4.22)
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even if compliance with the upper limit cannot be proven, which is already discussed in the
introduction of the individual factors.

Because even a short difficult part of a scenario can cause a critical situation, the maximum
complexity of a scene within each scenario is used as the descriptive complexity of a scenario
Cscenario according to:

Cscenario =max
i
(Cscene,i). (4.23)

Complexity calculation For the complexity assessment, only all classified scenarios that
contain a challenger are considered. For all scenarios, the complexity in each scene (frame)
is calculated using the 13 defined and weighted factors and the result is stored in the scenario
data. In addition, the number of the scene in which the highest complexity occurred is saved.

Scenario optimization

This module of the sub-method was supported by the student thesis of Lin [216].

This module represents an optional step of the tool chain. If this step is not performed, the
scenarios with the highest complexity can be selected for the final database after calculating
the complexity score. However, if this module is executed, the behavior of the surrounding TP is
adjusted to maximize the calculated complexity of the scenario. A simplified visualization of the
procedure is depicted in Figure 4.18.

Complexity
assessment

Scenario optimization

One-time execution to identify important scenarios

Independent of AV performance

Pre-
processing

Database

Simulation Fitness function

Optimizer

Reproduction

Penalty Complexity

Figure 4.18: Visualization of the optional scenario optimization module. The core element of this module
is the fitness function, which consists of a penalty function and the complexity metric
described above.

The individual blocks of this module are described in the following. Thereby, the focus is on the
fitness function, which is the core of this module.

Preprocessing The preprocessing step serves as preparation for the optimization. Thereby,
any desired challenger scenario is loaded. This means that information about the number of
frames of the scenario nframes, the number of lanes, their width as well as the position, velocity,
acceleration, orientation, width, height and vehicle type of the ego-vehicle and the surrounding
TPs is provided. Only the starting state consisting of position, speed, acceleration and orientation
of the ego-vehicle is used and the trajectory from the highD data, which was driven by a human
driver, is replaced by the combination of IDM and MOBIL from Subsection 4.3.1.

This is necessary because a scenario always consists of actions and reactions of the partici-
pating vehicles and therefore the ego-vehicle must also be able to adapt its actions during the
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optimization process. Furthermore, the IDM and MOBIL model eliminates the influence of the
human driver. However, it cannot be guaranteed that these models behave identically to the
human driver from the original highD data set. Since the complexity is defined largely indepen-
dent of the behavior of the ego-vehicle, the complexity of the scenario changes only slightly
due to a different ego-vehicle behavior, which is discussed in more detail in Subsection 4.3.3.
Nevertheless, such a change can always occur when an identical scenario is tested for different
AVs. Each of these AVs can behave differently and influence the outcome of the scenario. With
the developed complexity metric, the difficulty of the scenario can be described independently of
this behavior.

During the optimization process, the behavior of the surrounding TPs is adjusted to maximize the
complexity of the scenario. The adaptation of the behavior is done by varying the accelerations
of the TPs in x- and y-direction (ax and ay ). These two variables are adjusted in each frame
of the scenario for each TP. Thereby, lower and upper allowed bounds for the acceleration
values are used. These are for passenger cars −9 m/s2 and +3 m/s2 in longitudinal and ±3 m/s2 in
lateral direction and for trucks −7 m/s2 and +1 m/s2 in longitudinal and ±1 m/s2 in lateral direction.
To reduce the computational effort, not every frame of the original highD data is used in the
optimization, but only every nff-th frame. The size of the time steps in the optimization ∆topt thus
also increases by the factor nff compared to the time step ∆thighD of the highD data which is
0.04 s. The number of optimization variables nvar finally results as:

nvar = 2nTPsnframes,opt with nframes,opt =
�

nframes

nff

�

, (4.24)

where nTPs is the number of traffic participants in the scenario and nframes,opt is the number of
frames used in the optimization of the scenario that has nframes frames in the original highD data.

The vector of the optimization variable yopt contains all acceleration values in both directions, of
all surrounding TPs and of all considered frames and is represented as:

yopt =
�

ax,1,1 ay,1,1 ax,2,1 ay,2,1 · · · ax,nTPs,nframes,opt
ay,nTPs,nframes,opt

�T ∈ Rnvar×1. (4.25)

Thereby, each entry has three indices according to the scheme adirection,TP number,frame number.

For the initialization of the genetic optimization algorithm, the acceleration values from the
highD data are used as initial population and forwarded to the optimizer. The optimization is
performed using the genetic algorithm of the global optimization toolbox in Matlab [217] which
was introduced in Subsection 4.3.1. The next section describes the simulation of the scenarios
within the optimizer.

Simulation At the beginning of each optimization iteration the scenarios of the single in-
dividuals of the population are simulated. This means that each individual of the population
corresponds to an acceleration vector according to Equation (4.25) and thus as many simulations
have to be performed as there are individuals in a population. For each TP, the acceleration
values must be transformed into a trajectory. Because this has to be done many times in the
optimization, a computationally efficient extended nonlinear point mass model is used for each
TP of the scenario, which is summarized as:

ẋ= f(x,u) with x=
�

x y v ψ
�T

and u=
�

ax ay

�T
(4.26)
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as well as
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The state vector x consists of the position (x , y) of the vehicle in global x- and y-direction, the
velocity v and the yaw angle ψ of the TP. As already introduced in the previous section, the
acceleration in x- and y-direction is used as input vector. For the simulation, the time-discrete
form of this model is used:
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·∆topt. (4.28)

Thus, the state vector at the current time t is calculated based on the values of the previous time
step t − 1 and the inputs u at the current time step t.

Based on the trajectories of the surrounding TPs, the trajectory of the ego-vehicle is calculated
using the IDM and MOBIL model to calculate the longitudinal and lateral acceleration with
a subsequent application of the extended point mass model from Equation (4.28). Thus, all
trajectories are available for all scenarios (individuals) and next the fitness function can be
calculated for all individuals. The next paragraph explains how this function is defined.

Fitness function The fitness function JGA is the function that the optimizer tries to minimize. It
consists of the complexity metric CGA and a penalty function PGA. The latter is used to prevent
certain resulting behaviors, such as accidents between surrounding TPs. Since an optimization
problem is formulated by default as a minimization problem and in the present case PGA is to be
minimized and CGA maximized, the fitness function JGA results in:

JGA = PGA − CGA. (4.29)

In Equation (4.29), not the maximum occurring complexity Cscenario is used as descriptive com-
plexity, but the average complexity of all scenes of the scenario CGA according to:

CGA =
1

nframes,opt

nframes,opt
∑

i=1

Cscene,i . (4.30)

The mean value of complexity over all scenes of the scenario is used in JGA in order to increase
the difficulty of the whole scenario and not only of one time step. The reason for the change from
maximum to mean complexity is that the application has shown that more realistic scenarios
can be achieved using mean complexity, since the focus is not only on one situation within the
scenario. The mean complexity is only used within the optimizer. As with all scenarios from the
highD data set in the previous complexity assessment step, the maximum complexity is used as
the descriptive characteristic for evaluating the optimized scenarios.
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The penalty function PGA is used to ensure that defined boundary conditions for the behavior
of the surrounding TPs are met during optimization. These boundary conditions are divided
according to the descriptive variable into the three areas jerk Pjerk, velocity Pvel and position Ppos.
Thereby, Ppos is again divided into three different aspects. The entries of the penalty function are
calculated in each frame and summed up over all frames nframes,opt of the scenario according to:

PGA =
nframes,opt
∑

i=1

 

Pjerk,i + Pvel,i +
3
∑

j=1

Ppos, j,i

!

. (4.31)

Thus, a total of five different aspects are defined, causing an increase of the penalty. These are
explained in more detail below and summarized in Table 4.9.

Table 4.9: Overview of the five parts of the penalty function PGA.

Aspect Penalty if Description

Jerk jx > 10 m/s3; jy > 10 m/s3 Physically motivated limitation of jerk
Vel v < 0 m/s Reverse driving is not allowed

Pos 1 (x , y) outside road boundaries Prevent vehicles from leaving the road
Pos 2 tlaneMarking > 3 s Driving between lanes is not allowed
Pos 3 Vehicles overlapping Prevent collisions between vehicles

The penalty in relation to the jerk of the surrounding TPs is physically motivated. Driving dynamics
does not allow the acceleration to change too much between two time steps. In order to prevent
this, a penalty is added if the jerk is too high and the fitness function JGA therefore deteriorates.
For simplicity, the jerk limit is set identically for all vehicle types.

If the optimizer determines permanently negative values for the longitudinal acceleration of a
TP, then its velocity can become negative and the corresponding TP drives in the opposite
direction. To prevent this, a penalty is inserted which takes effect as soon as the velocity of a TP
is negative.

Regarding the position of the surrounding TPs there are three aspects that are considered in the
penalty function. First, the surrounding TPs are not allowed to leave the road. Second, the TPs
should drive within one lane and not permanently between two lanes. This is determined by the
time a TP drives over a lane marking. Since lane changes are still allowed and also encouraged,
the penalty is introduced from a time of 3 s upwards. The value of 3 s is based on [218], whose
work investigates the duration of lane changes on motorways. The value is based on the median
in free-flowing traffic, and the duration of a lane change is simplified to be equal to the time
the vehicle is located over the lane marking. As the last part of the penalty function, accidents
between the surrounding TPs are penalized. This is calculated based on an overlap of the vehicle
shapes, which are assumed to be rectangles. In addition, collisions between the ego-vehicle and
surrounding TPs are also penalized if the TP under consideration drives with higher speed into
the rear of the ego-vehicle. This can happen because the surrounding TPs have no intelligence
and do not brake due to other objects. If accidents occur in which the ego-vehicle crashes into a
TP because it has made a wrong decision or cannot brake in time, no penalty is added. In other
words, in a simplified form, the blame for the accident is determined and if the TP is responsible,
a penalty is introduced. If the ego-vehicle is to blame, then the difficulty of the scenario was too
high for the ego-vehicle under consideration (in this case the simple IDM / MOBIL model) and
this is exactly what should be achieved with challenging scenarios.
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If all constraints are met, PGA = 0 and the fitness function becomes the negative value of the
complexity, which is then minimized by the optimizer, thus maximizing the complexity of the
scenario. In the next step the reproduction of the individuals can be performed.

Reproduction Each individual in the population is assigned a fitness function value, which
describes how well the individual fulfills the given problem formulation. The reproduction is
performed internally in the Matlab pre-implemented GA algorithm and does not have to be
implemented manually. The algorithm bases the reproduction on a small percentage of the
best individuals (elite) and combines them to new individuals. Additionally, mutations are in-
serted, which represent a random change of individual acceleration values. The most unsuitable
individuals are sorted out so that the population size remains identical in each iteration.

After reproduction, all individuals are simulated again, and a new iteration starts. This is repeated
according to Algorithm 1 as long as defined end conditions are not met. In the optimal case, this
is the convergence of the solution to the optimal solution y∗

y∗(x(t),u(t), t0) = argmin
y(·)

JGA(x(t),u(t), t0) = argmin
y(·)

(PGA − CGA) , (4.32)

otherwise it can be aborted based on other conditions, such as reaching a maximum number of
iterations.

With this approach, the scenarios extracted from the highD data set can be made even more
challenging and these scenarios are a good choice for the certification of AVs as they are
challenging in terms of the behavior of surrounding TPs.

Regardless of whether the most complex scenarios from the highD data set are stored directly
in the database, or the scenarios are subject to the optimization process just described, the
reduced number represents a selection of good test scenarios for all AV systems. Scenarios
that do not correspond to the ODD of the ego-vehicle to be tested can also be sorted out here.
For example, if an AV can only be activated and used up to a defined maximum velocity, all
scenarios with higher ego-vehicle velocities can be sorted out.

In the previous sections, the methodology on the left of the database from Figure 4.12 has been
introduced. In the next section, the scenarios extracted using this method are examined in more
detail and the procedure is validated.

4.3.3 Results and Validation

Analogous to the approach, the results are divided into the three steps to the left of the database
from Figure 4.12. Afterwards, the method is validated. The validation focuses on the core element
of the approach, the complexity metric, which is validated by an expert survey and an exemplary
execution of the part to the right of the database (scenario simulation and AV assessment).

Scenario clustering and classification results

The results of the scenario clustering and classification depend mainly on the three parameters
tch,predict, lcoll and the type of the challenger determination strategy, as already mentioned in
Subsection 4.3.2. In order to determine their influence and to keep the computational costs low,
the first ten of the 60 measurements of the highD data set are used. In these ten measurements
11, 370 vehicles are recorded, which leads to a maximum possible number of as many concrete
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scenarios. First, the time tch,predict is examined, which describes how long the trajectory of the
ego-vehicle is predicted into the future (Figure 4.15). Thereby, the length of the collision area lcoll

is chosen constant to 0.5 · dsafety and the challenger is determined according to the first contact
strategy. A summary of the share of scenarios containing a challenger is shown in Table 4.10.

Table 4.10: Share of challenger scenarios as a function of the prediction time tch,predict. The values shown
have been calculated based on the first ten of the 60 highD measurements, which include
a total of 11,370 vehicles. For the collision length lcoll, the value 0.5 · dsafety is used and the
challenger is determined according to the first contact strategy.

tch,predict in s 1 2 3 4 5
Challenger scenarios in % 29.2 29.9 32.8 38.2 44.3

As expected, the share of challenging scenarios with longer prediction times increases as more
potential collisions occur. A maximum prediction time of 5 s is chosen. Longer prediction times do
not make sense from the author’s point of view because the deviation from the actual trajectory
increases with higher prediction times, especially since only a simple constant acceleration model
is used. The percentage of challenger scenarios that already become challenger scenarios
at low prediction times are the most interesting ones, because they require a reaction of the
ego-vehicle within a short time. A reasonable value for tch,predict in Table 4.10 is 2 s, because
this is comparable to the reaction time of a human driver. Next, we investigate how the share of
challenger scenarios changes depending on the collision length lcoll. A prediction time tch,predict

of 2 s and the first contact strategy is used. A summary of the percentage of scenarios containing
a challenger is given in Table 4.11.

Table 4.11: Share of challenger scenarios in relation to the collision length lcoll. The values shown have
been calculated based on the first ten of the 60 highD measurements, which include a total
of 11, 370 vehicles. For the prediction time tch,predict, the value 2 s is used and the challenger
is determined according to the first contact strategy.

lcoll in m 0.1 · dsafety 0.2 · dsafety 0.3 · dsafety 0.4 · dsafety 0.5 · dsafety

Challenger scenarios in % 1.6 5.1 12.2 21.6 29.9

As expected, the share of challenger scenarios increases with increasing lcoll. The upper limit
is 0.5 · dsafety, because this corresponds to the distance from which the fines become higher
and so-called "Punkte" (English: points) are assigned in Germany2. Scenarios which become
challenging at small collision lengths are more interesting because this corresponds to a high
intensity of the required action (e. g. strong deceleration required). A reasonable value for lcoll in
Table 4.11 is 0.5 · dsafety, because even at this length a comprehensive reaction is required to
avoid any points.

There is no difference in the number of challenger scenarios between the two different strategies
(first contact and maximum overlap) for challenger determination. What may change is the
classification of the scenario into one of the nine defined functional scenarios because the TP
that is considered as the challenger may change. However, 54.2 % of the considered scenarios
have only one challenger. In theory, a shift can also occur in scenarios that only have one
challenger. This is the case if the collision area (Figure 4.15) at first contact is different from
that at maximum contact. Due to the short duration of the scenarios and the fact that the first
challenger already requires an action, the first contact strategy is used in the further course of
the work.

2https://www.bussgeldkatalog.org/abstand/→ If a driver has received more than eight points, there is the risk of a
(temporary) withdrawal of the driving license.
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Consideration of the entire data set Although a prediction time tch,predict of 2 s is defined as
suitable, the entire data set is calculated with tch,predict = 5s. This is done in order to have a larger
number of scenarios for the classification and the complexity assessment. Otherwise, only a
small number is available for rarely occurring functional scenarios such as class F (Figure 4.13b),
with which an evaluation of the occurring complexities is not reasonably feasible. If a more
comprehensive data set than the highD data set is available, it makes more sense to use
tch,predict = 2 s. The collision length lcoll is chosen as discussed above to 0.5 · dsafety and the first
contact strategy to determine the challenger is used.

In Figure 4.19a the distribution of the 9 functional scenarios is visualized. The most common
scenarios are the classes A and I, which refer to a challenger in the same lane as the ego-vehicle.
The classic cut-in scenario, as defined in the future UNECE regulation [11], corresponds to the
functional scenario H and occurs comparatively rarely. However, the functional scenarios D and
G can also be considered as cut-in scenarios, which increases the number of cut-in situations.
A total of 69,584 challenger scenarios occur in the entire data set with the defined parameter
values. All maneuvers of the surrounding TPs according to the procedure in Subsection 4.3.2
can be determined for 52,918 (76.05 %) scenarios. For the remaining scenarios, undefined
maneuvers occur that can be integrated in future work.
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(a) Number of concrete scenarios in the highD data set which
include a challenger. 52.918 scenarios are assigned to the
nine defined functional scenarios from Figure 4.13b.
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(b) Distribution of the number of involved vehicles per sce-
nario, whereby the ego-vehicle is also counted. The me-
dian is seven and the maximum (without traffic jam situa-
tions) is 19 vehicles.

Figure 4.19: Results of the clustering and classification of the highD data set.

One motivation for the approach of extracting challenging scenarios based on real world data
is the representation of actually occurring situations in real road traffic. In the future UNECE
regulation [11], only the framework for the scenarios under consideration (e. g. cut-in) will be
specified. This means that only a simple situation consisting of one challenger and the ego-
vehicle will be defined. According to Figure 4.19b, which shows the number of vehicles involved
in a scenario including ego-vehicle, this combination rarely occurs in real traffic. Only 397 of
69,584 challenger scenarios, which corresponds to a share of 0.57 %, are scenarios where only
a challenger and the ego-vehicle occur. Considering the required transferability of the results to
the behavior of the vehicles in real traffic, the definition of challenging scenarios with several
TPs is therefore of essential importance.

According to the definition of the ROI in Figure 4.13a, the maximum of surrounding TPs is
eleven. As can be seen in Figure 4.19b, scenarios with more than eleven TPs also occur. This
can be caused by either not maintaining the safety distance of surrounding TPs, or by faster /
slower TPs leaving the ROI or new TPs entering the ROI during the scenario. In the depiction in
Figure 4.19b, traffic jam situations are excluded because it can happen that an adjacent lane has
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not yet come to a standstill and therefore many vehicles pass through the ROI of the ego-vehicle
under consideration. However, this does not provide any added value in terms of information.

Complexity assessment results
In this section, the complexity of all challenger scenarios is calculated according to Equa-
tion (4.20) - (4.23). Since the factors influencing complexity are defined mostly independent of
the behavior of the ego-vehicle, the highD data set can be used here, although the data set
consists purely of vehicles controlled by human drivers. To calculate the complexity, the vector
with the weighting factors cweighting of the individual factors must first be defined. In the present
work the weighting vector

cweighting = [0.01, 0.087,0.087, 0.1,0.087, 0.077,0.087, 0.087,0.087, 0.087,0.1,0.02, 0.084] (4.33)

is used. How the values for the weighting vector cweighting are determined is explained in the
subsequent validation subsection.

Figure 4.20a shows the distribution of the complexity of all challenger scenarios independent
of the assignment to the functional scenarios. An equidistant division of complexity based on
[129] into low, medium and high complexity is used. With the defined weightings, only eight of
the 69,584 challenger scenarios are assigned a high complexity. This corresponds to a share
of 0.0115 %. The course of example scenarios from a top view is illustrated in the appendix in
Figure B.1.
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(a) Complexity distribution of all challenger scenarios. Only 8
out of the 69,584 challenger scenarios are classified with
high complexity.
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(b) Distribution of the scenario complexity of the 20,939 con-
crete scenarios of functional scenario I which has the high-
est occurrence frequency of the nine functional scenarios.

Figure 4.20: Complexity distribution of the extracted highD scenarios using an equidistant classification
into low, medium and high complexity based on [129]. Each scenario class shows a similar
distribution compared to the distribution of all scenarios.

The different functional scenarios all show similar distributions compared to the distribution of all
scenarios. As an example, this is shown for the most frequently occurring functional scenario
I in Figure 4.20b. From this it can be concluded that the type of functional scenario does not
allow any conclusions regarding its complexity. The most complex scenarios from the highD data
set can be used for the application or the entry into the database. Optionally, the scenarios can
even be improved in terms of complexity using the optimization process.

Scenario optimization results
Theoretically, all scenarios can be subjected to the optimization process. It is also possible
to use scenarios that do not contain a challenger and to generate this challenger during the
optimization process. To prove the applicability and functionality of the optimizer, a small number
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of exemplary scenarios is used. The selection is based on the number of surrounding TPs that a
scenario contains. For each number, the scenario with the highest complexity is selected from
the highD data. We use these scenarios because as an approximation, each scenario with
an identical number of TPs can be transformed into each other. Only the initial states, which
are taken from the highD data, can still differ. As already described in Figure 4.19b, traffic jam
situations are excluded and therefore the maximum number of participating vehicles including
the ego-vehicle is 19, i. e. a total of 18 scenarios (1 surrounding TP to 18 surrounding TPs) are
selected, each of which has the highest complexity value. This is shown in the Kiviat diagram in
Figure 4.21 in orange.
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16 TPs

15 TPs

14 TPs13 TPs

12 TPs

11 TPs

10 TPs

9 TPs

8 TPs

7 TPs

6 TPs
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0.5 1.0

highD complexity before optimization after optimization

Figure 4.21: Complexity values of the scenarios for the proof of concept of the optimization process.
The ’highD complexity’ is the complexity of the original highD scenario. ’Before optimization’
is the complexity of the scenarios where the human driver of the ego-vehicle is replaced
by the approximate implementation of a AV by the IDM and MOBIL model. Additionally, in
’after optimization’ the behavior of the surrounding TPs is optimized by the GA algorithm.

It can be seen that the complexity does not only depend on the number of surrounding TPs.
The highest values are obtained with an intermediate number of surrounding TPs. This means
that the highest value occurs with Cscenario = 0.73 with 7 TPs, followed by Cscenario = 0.72 with
8 surrounding TPs. The lowest value is obtained with 1 TP with Cscenario = 0.42, followed by
Cscenario = 0.57 with 18 TPs. An overview of all scenarios can be found in the appendix in
Table C.3. Figure 4.21 also shows that the developed metric is mostly independent of the
behavior of the ego-vehicle. This can be observed using the values shown in blue. As explained
in Subsection 4.3.2, during optimization the ego-vehicle is replaced by the IDM and MOBIL
model, thus emulating a simple automated system. The values shown in blue represent the
complexity values when the surrounding TPs behave exactly as in the highD data and the
ego-vehicle is replaced by the model. It can be seen that there are only minor differences. There
is also a slight tendency that the original highD scenarios with the human driver as ego-vehicle
show slightly higher values.

The complexity values after optimization are shown in green in Figure 4.21. The results show
that the GA algorithm achieves an improvement of the values in all scenarios. The functionality
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of the algorithm is thus proven. That more complex scenarios generally lead more often to critical
situations is shown at the end of this subsection. However, values > 1 occur in some scenarios,
which is due to the normalization already mentioned in Subsection 4.3.2, for which a physical
upper limit cannot always be found. Even if this does not have a negative influence on the
results obtained, a further well-founded investigation of the normalization values of the individual
complexity factors can be carried out in further work. The parameters of the GA algorithm used
are summarized in the appendix in Table C.2. An overview of the most important information
on the selected scenarios for optimization including the number of optimization variables and
the required duration can be found in the appendix in Table C.3. The number of optimization
variables tends to increase with the number of surrounding TPs and thus also the required
calculation time of the optimization.

As introduced in Subsection 4.3.2, the trajectories of the TPs from the original highD data are
used as the initial solution for the optimization. In combination with the replacement of the
ego-vehicle controlled by a human driver using the IDM and MOBIL model, collisions between a
TP and the ’new’ ego-vehicle may occur for which the TP is to blame. In most cases, the TP
collides with the rear of the ego-vehicle because the ego-vehicle adjusts a larger distance to the
front vehicle compared to the human driver from the original highD data. The reason for this is
the frequent non-compliance with the required safety distance by human drivers, especially at
higher velocities [219]. The other aspects of the penalty function from Equation (4.31) do not
raise problems when defining the initial solution. To improve the optimization results, an adaptive
adjustment of the start solution can be investigated so that no collisions occur.

Regardless of whether scenarios are used directly from real data or via the optional optimization
module, after this step a database with the most challenging scenarios in terms of the behavior
of surrounding TPs is available.

Validation

In the previous sections, a methodology and the corresponding results are explained to identify
the most challenging scenarios with respect to the behavior of surrounding TPs. The core of
this methodology is a complexity metric that allows to determine the difficulty of the scenario
mostly independent of the behavior of the ego-vehicle under test. The validation of this metric is
an important process that is accomplished with the following two-step approach (Figure 4.22).
Next, the two steps are explained in more detail.

Step 1 of the validation process was supported by the student thesis of Yu [212].

Step 1: Online expert survey A significant impact factor in the complexity metric is the relative
weighting of the individual factors cweighting, j to each other. Without additional information, only an
equal weighting of all 13 factors with 1/13 is reasonable. One approach to determine a suitable
weighting vector cweighting is an online expert survey, with which cweighting can be determined
based on expert knowledge. In addition to querying standard information such as age and
duration of experience in the field of safety assessment of AVs, the designed questionnaire
consists of two parts.

In the first part, the importance of each of the 13 factors is determined by the experts. They can
rate each factor on a scale from 1 (not important) to 5 (very important). Here, it is additionally
asked whether, from the experts’ point of view, other factors must be considered in the complexity
metric. This can be used to check the completeness of the metric.
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Complexity metric validation process

Step 1: Online expert survey Step 2: Confirm assumption

Scenario
Simulation

AV
assessment

Database

Execution for each AV-version

AV performance assessment

Prove that metric is complete and reflects
expert opinion

1

2

Rate importance of complexity
factors

Rate complexity of scenarios

Prove that scenarios with high complexity
lead more often to critical situations.

Use elements to the right of the database
from Figure 4.12. 3 Determine weightings of complexity factors

2 31

Figure 4.22: Overview of the process to validate the complexity metric. The first step is a online
expert survey to determine the weighting factors cweighting, j . The second step is to prove
the assumption from Section 3.2 that scenarios with high complexity lead more often to
critical situation when they are executed. For this, the modules to the right of the database
according to Figure 4.12 are used.

In the second part of the survey, the experts will be provided with videos3 of 20 different highD
scenarios, which the experts will also rate on a scale of 1 (not complex) to 5 (very complex).
Both parts of the questionnaire are therefore ordinally scaled and will then be used to determine
the weighting vector cweighting. This division is used to first focus on the individual factors and
then to compare the overall result of the metric with the expert judgment. This is to prevent that
a certain factor is classified by the experts as very important, but that scenarios where this factor
is very prominent are only evaluated as not complex. Since this conflict can occur, a compromise
must be found in the weighting determination process.

Step 1.1 Factor importance rating: In the first part of the survey, 25 participants (nexperts = 25)
from industry and academia from the automotive sector and mainly from the safety assessment
of AVs responded, with about three-quarters of them being from Germany. The remaining
persons are distributed among China, Singapore, Czech Republic, Slovakia and Croatia. The
average age of the participants is almost 32 years. The Code of Practice for the Design and
Evaluation of ADAS [220, p. 15] states in the context of user experiments a number of at least 20
participants for an indication of the validity of the results. Thus, a sufficient number of participants
can be assumed in the conducted online questionnaire.

As already briefly introduced, in the first part of the questionnaire the 13 complexity factors are
rated by the participants on a scale of 1 (not important) to 5 (very important). The results of all
participants for all factors are summarized in Table D.1 in the appendix. A reliability analysis
based on Cronbach’s Alpha αcronbach [221]:

αcronbach =
nfactors

nfactors − 1

�

1−
∑nfactors

i=1 Vi

Vt

�

= 0.8216 (4.34)

is used to determine whether the generated results are also reliable. With nfactors = 13 and the
variances Vi of the individual 13 factors as well as the variance from the total score Vt from
Table D.1, the value is 0.8216. A result of more than 0.8 indicates a ’good’ reliability. Furthermore,

3The videos are available via https://www.youtube.com/channel/UC3IV32GfmVKXouqvF74jMFg/videos?view=0&
sort=dd&shelfid=0
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the experts did not name any additional factor when querying for influencing factors not taken
into account, which can be seen as an indication of the completeness of the metric. All comments
of the participants can be found in the appendix in Section D.2.

To calculate the order of the ordinally scaled data, the sum of the ranks of the individual factors
Rfactor,i and their mean rank R̄factor,i are calculated. The rank is the numbering of the order of the
ratings by the experts, sorted by size. Since only five different values can be assigned, there are
often identical values. This is called ties and is taken into account in the calculation of ranks by
averaging. A summary of the rank sums Rfactor,i as well as mean rank R̄factor,i for all 13 factors
can be found in Table D.2 in the appendix. A visualization of the mean rank of all 13 factors is
shown in Figure 4.23. The identical order of the factors as in Table 4.6 is used in Figure 4.23.
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Figure 4.23: Evaluation of the importance of the individual factors by 25 experts. The higher the mean
rank R̄factor,i the more important the respective factor i is rated. The exact values of each
factor are summarized in the appendix in Table D.2. A description of the factors can be
found in Table 4.6.

Figure 4.23 shows that the Factor 6 (predictability) and Factor 4 (dynamic) are rated most
important by the experts. The least important factors are therefore Factor 1 (types of surrounding
TPs) followed by Factor 12 (number of actions of ego-vehicle).

Next, the Kruskal-Wallis test [222, p. 587] is used to determine whether there are significant
differences in the evaluation of the individual factors. If this is not the case, then it cannot be
statistically proven that one factor is rated by the experts as more important or less important
than another factor. This is checked using the test statistic H:

H =
12

Ntotal(Ntotal+1)

∑nfactors
i=1

R2
factor,i
nele,i

− 3(Ntotal + 1)

1− 1
N3

total−Ntotal

∑l
k=1τ

3
k −τk

= 29.67, (4.35)

where Ntotal is the total number of expert ratings, which is calculated based on the number of
factors nfactors rated and the number of elements (ratings) per factor nexperts = nele,i to Ntotal =
13 · 25 = 325. In our case, the number of elements per factor is identical for all 13 factors.
Rfactor,i is the rank sum for all factors i listed in the appendix in Table D.2. The denominator in
Equation (4.35) is a correction term for tied ranks and is calculated from the number of tied
observations τ with rank k. With the values given, the test statistic H is 29.67.

The Kruskal-Wallis test can be used to check whether the null hypothesis (there is no difference
between the factors) can be rejected. Because there are more than five groups (complexity
factors), a Chi-square distributed test statistic can be assumed. To determine whether there
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is a significant difference between the factors, H is compared with the critical value Hcrit of
the chi-square distribution determined by the degrees of freedom d f . The number of d f is
given by nfactors − 1 = 12. Additionally, the significance level α = 0.05 is predetermined. If H
exceeds the critical value Hcrit, it can be concluded that p-value< α and thus the null hypothesis
can be rejected. The value of Hcrit can be read from tables [223]. In the considered case,
H = 29.67> Hcrit = 21.03 and thus it follows that there are differences in the importance of the
factors. However, it is not possible to determine between which factors a significant difference
has occurred. In the next step, the so-called Dunn’s test [224] is used for this purpose.

It can be examined for each combination whether the importance of the two factors considered
differs significantly. For the 13 factors, nfactors(nfactors−1) ·0.5 = 78 pairwise comparisons must be
made. The null hypothesis for each comparison is that there is no difference in the importance
of the two factors considered. The null hypothesis can be rejected if the inequality

Q0.05 <
|R̄factor,i − R̄factor, j|

√

√

�

Ntotal(Ntotal+1)
12 −

∑l
k=1 τ

3
k−τk

12(Ntotal−1)

�

�

1
nele,i
+ 1

nele, j

�

(4.36)

is fulfilled.

Thereby, R̄factor,i denotes the middle rank of factor i and R̄factor, j that of factor j that are compared
with each other. The number of elements (ratings) nele = nexperts is identical for all factors, so
that nele = 25∀ i, j. Q0.05 equals the z-value of a standard normal distribution from the so called
z-table [225] for adjusted 1− α

2·ncomp
level depending on the number of comparisons ncomp that

is 78 in our case. With α= 0.05, this results in a z value of 0.99968 and therefore, Q0.05 = 3.41
according to the z-table [225].

In the appendix in Table D.3, the right side of the inequality from Equation (4.36) is listed for all
78 pairwise comparisons of the factors. The reference value for each comparison is Q0.05 = 3.41.
The results show that there are only significant differences for the pairs factor 6 to 1 and factor 4
to 1. These are marked in gray in Table D.3. For all other combinations, some tendencies can be
identified which factors are of higher importance (Figure 4.23), but these are not high enough
to be verifiable. These findings are taken into account when determining the weighting vector
cweighting. First, however, the second part of the online questionnaire is evaluated.

Step 1.2 Scenario complexity rating: In the second part of the questionnaire, the participants
are provided with videos of 20 scenarios (nscenarios = 20), which are again rated on a scale of
1 (not complex) to 5 (very complex). This part of the questionnaire has been completed by 20
participants, so that from now on nexperts = 20. Again, according to [220, p. 15] this is enough for
valid conclusions. For the analysis of the results, a three-step procedure consisting of Cronbach’s
Alpha, Kruskal-Wallis test and Dunn’s test is carried out analogous to the first part of the survey.
The results are summarized in Table 4.12. Furthermore, the mean rank of the scenarios is shown
in Figure 4.24. The links to the videos of each scenario are summarized in the appendix in
Section D.3.

Table 4.13 contains all combinations for which the null hypothesis (there is no difference in the
complexity of the two scenarios considered) is rejected in Dunn’s test. In addition, the values to
be compared with Q0.05 are listed. Since the null hypothesis is rejected for all pairings, all values
are > Q0.05. This means, for example, that according to expert opinion there is a significant
difference in complexity from scenario 15 to scenario 17. In comparison to the evaluation of the
influencing factors, significant differences occur more often here. This indicates that the order
based on the mean rank can be used as an appropriate order scheme and the complexity metric
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Table 4.12: Summary of the results of the second part of the online survey. When using the equations,
the sub-script (•)factor must be replaced by (•)scenario. The number of elements (ratings) per
scenario nele is 20 for all scenarios and the total number of ratings is Ntotal = 400.

Name of test Value Description

Cronbach’s Alpha αcronbach = 0.86 Calculated via Equation (4.34) and αcronbach > 0.8 which means
that a ’good’ reliability of the results is given.

Kruskal-Wallis test H = 156.2 Calculated via Equation (4.35) and d f = 19 and α= 0.05.
Hcrit = 30.14 There is a significant difference in the complexity of the

scenarios because H > Hcrit.

Dunn’s test Q0.05 = 3.64 In total, 190 pairwise comparisons have to be made. The
combinations with significant difference are summarized in Table 4.13
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Figure 4.24: Evaluation of the complexity of the individual factors by 20 experts. The higher the mean
rank R̄scenario,i the more complex the respective scenario i is rated by the experts. The exact
values of each scenario are summarized in the appendix in Table D.2. The links to the
videos can be found in the appendix in Section D.3.

Table 4.13: Summary of the results of the Dunn’s test of the second part of the online survey. The
experts rated the scenarios from each column significantly more complex than the scenarios
in each row (if there is a value entered in the corresponding cell).

Scenario
15 14 19 13 16 12 4 20 2 3 11

S
ce

n
ar

io

5 7.12 6.65 5.92 5.63 4.92 4.76 4.38 4.37 4.32 4.08 4.04
6 6.95 6.48 5.76 5.46 4.75 4.59 4.21 4.21 4.16 3.91 3.87
8 5.79 5.32 4.59 4.30
9 5.42 4.95 4.23 3.93

18 5.26 4.78 4.06 3.76
10 5.11 4.63 3.91

7 4.88 4.41 3.68
1 4.38 3.91

17 3.80

should create an order that is as identical as possible. In the next step, the findings from the first
and second part of the survey are used to determine the weighting vector cweighting.

Step 1.3 Factor weightings: It is intended to take into account both, the assessment of the
importance of the factors and the complexity assessment of the scenarios by the experts when
determining the weighting vector cweighting. The basis is an identical weighting of all factors
cweighting, j =

1
nfactors

. The importance of the factors in the complexity metric is determined by the
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simple but effective sigma-normalized derivative [226, p.15]:

Sσcfactors, j
=
σcfactors, j∂ Cscenario

σCscenario
∂ cfactors, j

=
σcfactors, j

σCscenario

cweighting, j . (4.37)

This is particularly suitable for linear models, as the complexity metric is. Here, the partial deriva-
tives (which correspond to the weighting factors cweighting, j in the linear model) are normalized with
the ratio of input and output variance. This results in a measure with which it can be concluded
which input (complexity factor cfactors, j) is the most influential on the output (total complexity of
scenario Cscenario). In Equation (4.37), Sσcfactors, j

denominates the sigma-normalized derivative of
input cfactors, j which is one of the complexity factors, σcfactors, j

denominates the variance of the
considered complexity factor and σCscenario

the variance of the output which is the result of the
complexity metric.

The complexity assessment of the scenarios by the experts is included by comparing the mean
rank and the calculated complexity through the metric. The mean rank is also used here because
the data is strictly ordinally scaled. The correlation between expert opinion and complexity
metrics is determined using linear regression and least squares.

This is examined more closely in [212] and a conflict of targets arises because a higher weighting
of the factors assessed by the experts as important leads to a deterioration of the least-squares
error in the agreement of the assessed scenarios. Thus a compromise is obtained in the
weighting vector, which is already introduced in Equation (4.33). Using these values, a level of
influence of the influencing factors according to Figure 4.25 results, which is calculated using
the sigma-normalized derivative. A value of 1 means that this is the most influential factor and a
value of 13 that it is the factor with the least influence. In [212] it is found that the order between
the individual measurement recordings (tracks) of the highD data set changes only slightly.
Therefore, only two tracks are shown here. In addition, the order of importance of the factors
determined by the experts is shown (analog to Figure 4.23).
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Figure 4.25: Order of importance of the factors influencing the result of the overall complexity of a
scenario. The metric should reflect the expert opinion as far as possible. However, in the
expert opinion there are only significant differences between Factor 6 and Factor 1 and
between Factor 4 and 1, which the metric also reflects.

Figure 4.25 shows a close correlation between the actual importance of the influencing factors
in the highD data set and the expert opinion. There are larger differences, for example, in
the case of Factor 7, which is considered more intensively in the complexity metric than the
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experts’ opinion. However, it must be taken into account that no significant differences occurred
in the expert opinion for Factor 7 compared to the other factors. Therefore, the order should
not be overestimated. It is important that the significant differences that have occurred between
Factor 6 and Factor 1 and between Factor 4 and 1 are included. Since the complexity metric
takes Factor 6 into account most intensively, Factor 4 also very intensively and Factor 1 as the
least intensively, this requirement is met by the metric.

Next, for the 20 scenarios, the correspondence of the calculated complexity based on the metric
with the experts’ assessment is checked. As already mentioned, the complexity rating of the
expert opinion is represented by the mean rank R̄scenario,i from Figure 4.24. In Figure 4.26, this is
plotted over the complexity Cscenario of the metric.
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Figure 4.26: Correlation of the scenario assessment of the experts (mean rank of the scenarios R̄scenario,i

from step 1.2) and of the complexity metric Cscenario with weightings according to Equa-
tion (4.33) based on the 20 selected scenarios and a linear regression. The metric reflects
the experts’ assessment well.
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Figure 4.27: Order of the complexity values. The value 1 means the highest and 20 the lowest complexity
of all scenarios. The metric with weightings according to Equation (4.33) should reflect
the expert opinion as far as possible. However, the metric does not reflect one of the 43
significant differences according to Table 4.13, namely scenario 19 is not rated with higher
complexity than scenario 7.

The linear regression in Figure 4.26 shows that the selected weighting vector from Equation (4.33)
achieves a good agreement of the complexity metric with the expert opinion. Scenario 16, which is
calculated with too high complexity, and scenario 19, which is calculated with too low complexity,
are conspicuously higher and lower than the experts’ assessment. Here again, the order of
the complexity values of the scenarios compared to the experts’ assessment (Figure 4.27)
of complexity can be used as a check in combination with the table of significant complexity
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differences from Table 4.13. On the one hand, this shows that the complexity metric also
reflects the order of the scenarios well. However, it also shows that only 42 of the 43 significant
differences from Table 4.13 are met. The only pairing not reflected by the metric is that scenario
19, according to the experts, is more complex than scenario 7. Even if scenario 16 is clearly
overrated by the metric, the value does not violate any significant difference of the expert
assessment to another scenario.

The previous paragraphs show that the developed metric mostly reflects the judgment of experts.
An exact agreement and validation is not possible due to the described conflict of objectives.
One reason for this is that expert opinions are assessments by humans, which can contradict
each other. Therefore, a second validation step will check whether the developed metric can
be used to confirm the assumption from Section 3.2 that challenging (complex) scenarios more
often lead to critical situations. The procedure for this is explained in the next paragraph.

Step 2: Confirm assumption If the assumption is correct, scenarios with high complexity
lead more often to critical situations. Whether the developed complexity metric can confirm this
assumption is the objective of this second validation step. For this purpose, three sub-steps
are performed as shown in Figure 4.22. First, suitable scenarios are selected from the scenario
database. Secondly, these scenarios are implemented in a simulation tool and simulated with
an exemplary implementation of an AV. Finally, in the third step, the scenarios are evaluated
microscopically and the criticality of the simulations performed is examined in order to confirm or
reject the assumption. The three steps are explained in detail below.

Step 2.1 Selection of Scenarios: When selecting the scenarios, the scenario database previously
derived from the highD data is used. A distinction between the individual functional scenarios is
not considered here. The distribution of the complexity of all scenarios in the database is shown
in Figure 4.20a. Since the equidistant distribution of complexity results in too few scenarios
with high complexity, a different approach is used when selecting the scenarios. Three groups
are defined, which are located at the left and right boundary area as well as in the middle of
the distribution. In this way, a total of almost 2000 scenarios are selected, so that there are
650 scenarios in each of the three groups. The group ’lowest complexity’ consists of the 650
scenarios with the lowest complexity values, i. e. the left end of the distribution from Figure 4.20a.
The group ’average complexity’ consists of the 650 scenarios that are closest to the average
value of the distribution of 0.38. The group ’highest complexity’ consists of the 650 scenarios
with the highest complexity values, i. e. the right end of the distribution. These three categories
can be compared later in the criticality evaluation.

The choice of the number of scenarios considered represents a compromise, so that enough
scenarios are used for a reliable statement, but at the same time the differences in complexity are
as large as possible. This allows to identify differences in criticality of the individual complexity
classes best. The average complexity of the three groups increases from 0.20 for ’lowest
complexity’ to 0.38 and 0.57 for ’highest complexity’.

Step 2.2 Scenario simulation: The selected scenarios are executed using Matlab/Simulink
version R2019b by The Mathworks. The Automated Driving Toolbox [227] is used for this. First,
the scenario information (trajectories of the surrounding TPs, their dimensions, the number and
width of lanes and the initial state of the ego-vehicle in the scenario designer are loaded from the
highD data. Thereby, the scenarios start at the frame with highest complexity, in order to reduce
the influence of the ego-vehicle until the high complex scene is reached. Otherwise, it can occur
that the AV drives slower than the original ego-vehicle of the highD data in the first ’boring’
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part of the scenario and the complex situation does not even occur. For the implementation
of the ego-vehicle, existing examples [228] of the Automated Driving Toolbox are used. To be
able to reproduce the automated behavior for the considered highway scenarios, a combination
of the existing examples of an model predictive control based ACC [229], a LKA [230] and
an emergency brake assistant [231] is used. Since there is no pre-implemented function for
changing lanes, a simple system is implemented which changes lanes when the adjacent lane is
free and also complies with the German keep right directive. The vehicle dynamics are modeled
using a bicycle model from the Vehicle Dynamics Blockset [232]. The sensor setup is defined by
idealized camera and Radar sensors with 360° surround view. Starting from the initial state at
time t = 0s this simplified implementation of an AV takes over the calculation and execution of
the trajectory of the ego-vehicle. After the simulation has been carried out, the trajectories are
saved and the evaluation can begin.

Step 2.3 Criticality assessment: The microscopic evaluation of the simulated scenarios on
the basis of criticality is an examination of the relative differences between the three defined
complexity groups. Due to the simplified implementation of the AV, a macroscopic statement
about the performance of the considered AV is not meaningful. The criticality evaluation is
performed via the TTC [157] of the AV to the front vehicle. The minimum TTC value of the
scenario is used as a comparison value.

Each of the three complexity groups contains 650 scenarios, whereby accidents occur for which
the AV is not to blame. As with the optimization of complexity, these result almost exclusively
from the more defensive driving behavior of the AV compared to the original ego-vehicle of this
scenario from the highD data. This has the effect that TPs driving behind the AV will drive into
the rear of the AV because the trajectories of the surrounding TPs are fixed and they have no
intelligence. Because these kinds of critical situations and accidents have no relevance to the
problem under investigation, these scenarios are sorted out. Therefore, a smaller number of
scenarios are considered for the final evaluation according to Table 4.14.

Table 4.14: Results of the Matlab/Simulink simulation. The number of scenarios is not identical because
all accidents that are not caused by the AV are sorted out. The critical TTC value is 1.5 s
and is based on [233].

Complexity class
Lowest Average Highest

Average complexity 0.20 0.38 0.57
Number of scenarios 645 595 416
Scenarios below critical TTC 2 7 9
Scenarios below critical TTC at t = 0s 0 1 2
Number of accidents 2 13 22
Number of accidents with critical TTC at t = 0s 0 1 3

Table 4.14 shows that the number of cases sorted out increases with increasing complexity.
Even if the complexity does not correlate directly with the number of TPs involved (Figure 4.21),
there is still a tendency for low complexity scenarios to contain less TPs on average. As the
number of TPs increases, the probability of irrelevant accidents increases as well. In addition,
Table 4.14 shows that scenarios with high complexity are more likely to result in critical situations
(TTC<1.5 s). This is illustrated in Figure 4.28 using the cumulative distribution functions of the
three complexity classes. Table 4.14 also shows that some scenarios and accidents already
start with a critical situation (TTC< 1.5 s). In order to be able to evaluate the influence of the start
situation, Figure 4.29a shows the cumulative distribution function of the TTC in the start situation
(t = 0 s). From this it follows that the start situation has an influence, but it is only minor.
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Figure 4.28: Cumulative distribution functions of the TTC of the lowest, average and highest rated
scenarios. The three categories each contain approximately one percent of the scenarios
shown in Figure 4.20a. It can be seen that scenarios with higher complexity more often
show small TTC values. This means that more complex scenarios are on average more
critical.
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(a) Cumulative distribution functions of the TTC at t = 0 s of the
lowest, average and highest rated scenarios. It can be ob-
served that scenarios with higher complexity tend to have
a slightly higher criticality at the beginning of the scenario
than scenarios with lower complexity.
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Figure 4.29: Analysis of simulated scenarios. The scenarios are the same as in Figure 4.28.

Figure 4.29b shows the difference in TTC called ∆TTC between the initial scene at t = 0 s and
the minimum occurring TTC in the respective scenario. As more scenarios show a high ∆TTC,
i. e. the lower right the course of the cumulative probability distribution, the more interesting the
scenarios are. This in turn means that criticality increases over the course of the scenario due to
decisions of the ego-vehicle. It is exactly this type of scenario that is therefore meaningful for the
safety verification. Figure 4.29b shows that the most complex scenarios lead to higher ∆TTC
and are therefore better suited for the homologation of AVs.

According to Table 4.14, the number of accidents in which AVs are at fault also increases
with increasing complexity values. Since with increasing complexity values both, the number
of scenarios with minimum TTC values below the critical limit of 1.5 s occur and the number
of accidents caused by AVs increases, the assumption can be confirmed that more complex
scenarios lead more often to critical situations (even if there is a small bias of the initial scene)
and thus the complexity metric can be confirmed as valid.

In summary, this section develops and validates a complexity metric that can be used to assess
the difficulty of concrete scenarios in relation to the trajectories of surrounding TPs (Layer 4 of
five-layer model of Bagschik et al. [15]). Starting from the highD data set, concrete scenarios
are extracted by means of clustering and classification and their complexity is subsequently
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determined by a complexity metric based on expert knowledge and literature. The complexity
metric consists of 13 individual factors, which are determined using a weighted linear combination
to form a scalar complexity value for the scenario. The completeness of the metric and the
weighting factors (Equation (4.33)) for the linear combination of the individual factors are
examined and determined using an online expert survey. In addition, an optimization procedure
is implemented to increase the complexity of selected scenarios. Finally, simulation executions
are used to show that scenarios with high complexity are more likely to lead to critical situations,
which proves the validity of the metric to identify challenging scenarios before their execution.

4.4 Combination

In this chapter the three elementary sub-methods of the overall procedure with which the
homologation of a AV can be carried out at the overall vehicle level have been presented
in detail so far. Each sub-method presented focuses on specific modules of the AV. Thus, a
modular concept is available. The development and exemplary application of these sub-methods
is the focus of the present work. The combination step introduced here is considered purely
theoretically.

The three sub-methods developed must be applied for the homologation at overall vehicle level.
In the simplest case, this means that all three sub-methods are executed one after the other in
order to identify and thus define particularly challenging scenarios. The user (technical service)
is thus provided with a tool which is able to address all relevant parameters according to the
future UNECE regulation [11].

The execution of the sub-methods is partially automated as described in the previous sections.
The importance of the individual sub-methods and their test scope cannot be determined in
general, but depends, among other things, on the ODD of the AV to be tested as defined by the
manufacturer. For example, if the manufacturer specifies that the system can only be activated
under good weather conditions, then the sensor setup analysis in Section 4.1 is simplified.

Besides the step-by-step execution of the three sub-methods for the identification of challenging
scenarios, the three methods can be combined. Here, the user executes the combination
manually. For example, a particularly complex cut-in scenario from Section 4.3 can be defined
with a curve with a static object positioned according to Section 4.2. This combination of
challenging scenarios results in corner cases according to the definitions (Section 2.1). Since
not all existing parameters are defined concretely, these scenarios are called semi-concrete in
this work.

In summary, the overall results of this work are a simple and manual combination of the individual
results from Section 4.1 - 4.3. The combination of these individual results provides technical
services with a methodology to determine all the given parameters by the UNECE for the pre-
defined functional scenarios, resulting in system-specific corner cases. Hereby, the individual
parameters are considered and determined separately. An improvement of the performance
of the presented method can be achieved by a simultaneous determination of all predefined
parameters by means of a global optimization, as it is considered again in the discussion in
Section 5.2. The main challenges here are the extensive automation of all sub-methods as well
as the consideration of all occurring interactions between the sub-methods.

Alternatively, individual modules can also be used to test an AV at system or component level.
Even if this is not sufficient to certify a vehicle according to UNECE regulations, it may be of
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interest to suppliers, for instance. For example, a sensor manufacturer may develop a sensor
setup and have it tested by a technical service using the sub-method described in Section 4.1. If
all relevant objects are successfully detected in the selected scenarios, the manufacturer can
advertise that his sensor setup is suitable for the homologation of AVs.
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This chapter critically reviews the developed methodology and at the same time highlights
possible improvements for future work. First the sub-methods are considered and then the
overall method is discussed.

5.1 Sub-Methods

Of the three sub-methods from Section 4.1 - 4.3, the focus here is on the development of the
complexity metric, because the other two sub-methods are already discussed in the previous
publications and only a short summary is given here.

5.1.1 Sensor Analysis

The discussion of this methodology is also part of the author’s previous publications [174–176].
For a better understanding of the present thesis a summary with extensions of the already
published work is given.

The basis for the analysis of the sensor setup are the phenomenological sensor models. For the
active sensors (Radar, Lidar and ultrasonic) these are taken from literature. These are validated
in literature, but depend on the available information of the sensors used. According to the
future UNECE regulation [11], the manufacturer has to provide this information to the technical
service, but it is still unclear to what extent the quality of the provided information about the
sensors affects the validity of the models, which has to be investigated in further work. For the
camera as a passive sensor, a separate model has been developed [176] that describes the
performance including object classification based on meta-information. The selection of the
meta-information used is mainly motivated by the availability in the data set used (nuScenes) and
is by no means complete. For example, glare caused by low sunlight has not been investigated
and modeled because there are too few images available in the nuScenes data for this particular
purpose. With the increasing number of freely available data sets there is a chance that further
meta-information, such as the mentioned glare from low sunlight, can be considered in the future.
Even better results can be achieved if the recorded data set is recorded with the identical camera
at the identical mounting position and orientation, as is the case in the AV under test.

Based on the calculated sensor coverage, an optimal approaching path is calculated in [175] so
that the AV can see the object (challenger) as poorly as possible. The optimal path is calculated
in a three-dimensional grid. It is shown that the effect in z-direction is negligible with the sensor
models used and the calculation can be reduced to a two-dimensional x-y grid. Only the influence
of hilltops on the maximum range of the sensors must be considered. For example, the maximum
range is significantly limited for the smallest permissible hilltop radius on German motorways
[52]. Especially for low mounted sensors (e. g. front Radar), the visibility for small objects (height
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of 0.5 m) decreases to about 100 m during the crossing of the hilltop. Therefore, a reduction of
the dimension is possible when choosing the grid. In contrast, when considering the challenger,
an extension is necessary. The challenger is currently regarded as a point without dimensions,
which can at least be replaced by modeling and considering the width of the object.

Improvement potential exists in the transformation of the approaching path into a dynamic
scenario. Thereby a short deviation from the permitted road geometry occurs in Figure 4.8. This
means that no road geometry could be determined that both establishes the optimal approaching
path and complies with the road geometry permitted in Germany [52]. One reason for this is
the occurrence of oscillations. A possible solution, which can be investigated in further work,
is the reverse simulation in time starting from the end of the scenario. This can improve the
results, because the most complex compliance with the road geometry at the time-related end
of the scenario is then calculated at the beginning, where no oscillations have yet occurred.
Another possibility is the consideration of maximum allowed curvature values when calculating
the cost-optimal approaching path using the A* algorithm.

An extension of the approach can be implemented by an automated and comprehensive opti-
mization of the choice of environmental conditions and the starting point of the challenger. Both
are currently selected manually by the user. Especially the environmental conditions depend
on how the ODD of the manufacturer is defined. If the system cannot be activated in a foggy
environment, this weather condition does not have to be considered for certification. Due to the
small number of different weather conditions, automated consideration is not as crucial, but still
desirable. It is different when choosing the starting point of the challenger. For this, there is a
variety of possibilities which must be examined more closely.

Subsection 4.1.3 argues by means of a mathematical validation. For the development of the
methodology this is sufficient, but in a future application an additional validation of the concept
is required. For the validation and also already for the implementation of the concept during
homologation, simulations of the identified scenarios have to be performed. Because the
calculated road geometries are usually not available on test sites, the only reasonable execution
is by means of virtual simulation. Because the sensors are in the focus here, high-precision
physical sensor models must be used that are capable of realistically representing a wide range
of environmental influences. These are still topic of current research but are absolutely necessary
for the simulation-based homologation of AVs at vehicle level. If the manufacturer cannot provide
them, then the methodology from Section 4.1 can neither be validated nor reasonably applied
and a simulation-based homologation of the overall vehicle for the considered AV is not possible.

5.1.2 Driving Behavior Characterization

The discussion of this methodology is also part of the author’s previous publication [127]. For a
better understanding of the present Thesis a summary with extensions of the already published
work is given.

The main focus of this section has been the development of the methodology. Up to now,
implementation has only been performed as proof of concept, which has been carried out
successfully. For a comprehensive implementation, a high-performance automated driving
function must be available in the simulation in order to execute the derived scenarios in a
meaningful way. The implementation of the derived functional scenarios in a simulation tool
involves an increased amount of work, because they were derived on the basis of knowledge
and therefore cannot be automatically transferred from measurement data into the simulation. In
addition, it can happen that no characteristics occur in the examined AV and therefore none can
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be identified. In these cases, the execution of the scenarios would not generate any additional
value.

In general, due to the limited implementation, there is a lack of experience as to which identified
functional scenarios are particularly well suited to efficiently determine characteristic driving
behavior. Similarly, there is a lack of experience on how many parameter variations of the
functional scenarios should be executed as concrete scenarios. In the proof of concept under
consideration, 24 variations of the functional scenario ’driving through a curve’ are executed. To
what extent this number can be transferred to other functional scenarios cannot be stated.

A side effect of the developed methodology is that the consideration of the theoretical Driving
License Questionnaire [201] creates the basis for a simulation-based driving license test of
AVs. Due to their rareness, many important situations, whose probability of occurrence is low,
are not tested in the practical driving license test [200], but in the theoretical driving license
questionnaire [201]. With the derived functional scenarios, parameters and KPIs it is possible for
AVs to transfer this into virtual simulation and thus to perform a sort of simulation-based driving
license test for AVs which has a strong symbolic effect. Of course, this is only applicable for
questions about driving behavior and not for questions like the correct adjustment of the rear
mirrors.

The conclusion is that this sub-methodology is applicable, but a lot of time must be invested to
have the required scenarios, parameters (including discretization) and KPIs available in virtual
simulation. Furthermore, even after extensive application, it is not ensured whether information
can be derived from it. But if all scenarios and KPIs are implemented, an efficient and fast
execution of the method for different AV versions is possible and therefore this sub-method can
also contribute to an efficient certification of AVs and is an important tool for technical services.

5.1.3 Traffic Situation Complexity

The discussion of the traffic situation complexity is based on the order of the approach shown in
Figure 4.12.

Scenario clustering and classification For the classification, the maneuvers performed by
the surrounding TPs are determined using a rule-based approach. This approach is currently
not yet able to correctly identify all maneuvers. Investigations in [209, chap. 4.2-4.3] show that
24.7 % of the challenger scenarios contain a non-assignable maneuver. These scenarios can still
be taken into account in the database, only an assignment to the nine defined scenarios is not
possible. In addition, it was shown that 94.8 % of the specified maneuvers are correctly assigned.
These values are sufficient for the development of the methodology, but can be improved in
future work. For example, it is possible to switch from a simple rule-based approach to methods
of machine learning.

Currently, the extracted scenarios are divided into the nine functional scenarios shown in
Figure 4.13b. This can be extended by information on action restrictions, so that, for example,
cut-in scenarios can be tested specifically if the adjacent lane is occupied at a certain position.
In addition, in congestion situations, the number of vehicles involved can be characterized by the
maximum number of vehicles simultaneously within the ROI. Currently, as shown in Figure 4.19b,
a maximum number of 19 involved vehicles (i. e. different 18 TPs are spread over the whole
scenario and at least for one time step within the ROI) is considered. In congestion situations, it
can happen that many vehicles in a faster moving adjacent lane drive through the ROI of the
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ego-vehicle, but this does not provide any additional information. A description of the scenario
using the maximum simultaneously present TPs can be more precise here.

Complexity assessment The complexity metric represents the core of this sub-method and
is therefore of particular importance. One aspect of the metric is the normalization of the
individual complexity factors so that the value of one is not exceeded. As already described in
Subsection 4.3.2, this is not possible for all complexity factors because there is no physical upper
limit. The execution of the optimization (Figure 4.21) shows that complexity values of more than
one occur. Even if this circumstance does not reduce the quality of the metric, an adjustment of
the normalization values can be performed so that the occurring complexity values are between
0 and 1. Because the importance of the individual factors changes according to Equation (4.37),
a new investigation of the weighting factors is necessary afterwards.

For the development of the metric, it is assumed for simplicity that the overall complexity of
the scenario consists of a linear combination of the individual complexity factors and without
couplings between them. The validation of the metric has shown that these simplifications are
acceptable and that valid results are achieved with them. In further work it can be investigated
whether the performance of the metric can be improved by considering nonlinearities as well as
couplings between the factors.

Scenario optimization There is always the potential for performance improvement during
optimization. This can be achieved by adjusting the parameters of the optimization algorithm
used or by choosing another algorithm that is more suitable for the given problem. Both are
investigated in more detail in [216], first by studying different algorithms (simulated annealing,
pattern search, particle-swarm and genetic algorithm) and then by studying the parameters for
the best performing genetic algorithm. Due to the long optimization times (Table C.3) caused by
the high number of variables, further optimization of the parameters can reduce computation
time.

It can also be examined whether a simpler optimization with fewer optimization variables also
achieves the desired result. This means that the maneuvers (i. e. the profile of the accelerations)
of the surrounding TPs are not changed, but only the start positions and velocities. Depending
on the duration of a scenario, this reduces the number of optimization variables from several
thousands to a low two-digit number. Furthermore, in future work, additional constraints should
be added so that the type of functional scenario cannot be changed or even specified in advance.
In the current version, a scenario from class X may be a scenario from class Y after optimization.

During optimization, the penalty function punishes undesirable behavior of the surrounding TPs
and thus prevents it. This is to ensure that as a result of the optimization, scenarios are obtained
that are representative of the traffic situation on German highways and that the scenarios are
therefore physically reasonable. This is only visually checked and found plausible in the present
work. In future work, this can be investigated in detail on the basis of objective indicators.

Scenario simulation When executing the extracted scenarios using the simplified simulation
model, it became apparent that testing exactly what should be tested with the considered
scenario is difficult. The reason for this is that each AV can behave differently and thus the
desired situation in the scenario does not necessarily have to occur when the surrounding TPs
have fixed trajectories. This becomes more likely the longer the scenarios last. Therefore, the
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scenarios used for the validation of the metric are started at the time step when the complex
situation is already present. Here, it can also be examined whether it is better to let the scenarios
start shortly before the most complex situation, so that the AV to be tested still has a chance to
mitigate the situation. Thereby, the question arises how long before the most complex situation
the scenario should be started. Ensuring that the desired situations occur during the execution
of the scenarios can also be achieved by defining all trajectories relative to the ego-vehicle.
However, this requires that the simulation tool used can handle this type of definition.

In addition, the executed scenarios often cause the problem that a TP driving behind the ego-
vehicle drives into the rear of the AV, because the AV sets a larger safety distance to its front
vehicle than the human driver in the highD data. Because this kind of collision has no relevance
for the safety assessment of the considered AV, these scenarios have to be sorted out during
the evaluation of the simulations. This problem also occurs during optimization, which leads to
high penalty values in the initial solution, which the optimizer has to reduce in the iterations. In
this case, adapting the start solution can improve the performance of the algorithm.

Overall complexity approach This sub-method focuses exclusively on the behavior of the
surrounding TPs, which corresponds to Layer 4 according to the five-layer model of [15], and
therefore considers only highway scenarios on straight roads. This is identical to the highD data
set used, which also only considers scenarios on straight sections of the highway. However, the
methodology is not limited to this special case, but can also be carried out with other data sets
that include curves, for example. It is only important that the data is available for all vehicles
within the ROI.

A disadvantage of the highD data set used is that the extracted scenarios are rather short for
highway scenarios with a duration of slightly more than 10 s. This means that, for example,
complete overtaking maneuvers are almost impossible to find because their duration or distance
is longer than that recorded in the data set. Furthermore, the maneuvers do not start at the
beginning of the recording, but occur at arbitrary positions. To ensure that even long maneuvers
are completely present and to extract the interesting part of a scenario, much longer scenarios
are necessary. In the highD data set a distance of about 400 m is recorded and based on the
experience gained a length of 1 km is desirable from the author’s point of view.

Further investigations with regard to the overall methodology are necessary in the area of
challenger determination for the classification of the scenarios into functional scenarios (Fig-
ure 4.13b). The evaluation of the highD data set showed that 45.8 % of the challenger scenarios
have more than one challenger. This also raises the question whether a scenario in which the
second challenger is a cut-in situation still belongs to the cut-in scenario according to the future
UNECE regulation [11].

Even if the entire methodology is applied offline, future work may focus on how to reduce
the required computing time. In particular, the extraction of the scenarios and the complexity
assessment must be carried out for a large number of scenarios and therefore their efficiency is
decisive for the entire sub-method.

The validity of the metric is determined using a multi-stage process consisting of an expert
questionnaire and the evaluation of simulations of scenarios with different complexity values.
This confirms the validity of the metric, which can be assumed to be reliable due to the multi-
stage process. Nevertheless, a further validation of the metric can be carried out in the future
using the simulation with different AV versions. Thus, it can be proven that the developed metric
is not only valid for the exemplary AV used in this thesis.
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5.2 Overall Approach

The safety assessment of AVs is still a relatively new research domain. Currently, many terms
are not yet used consistently and there is no widely accepted definition for many of them. This is
also affecting the present work, because terms such as challenging scenarios, corner cases or
semi-concrete scenarios are used here as well. Because the work considers different aspects
of challenging scenarios, the overall result is called corner cases. Based on the upcoming
UNECE regulation [11] only the most important parameters are addressed and therefore not
all parameters are defined. For this reason the term semi-concrete is used in this thesis for the
identified scenarios. The corresponding definitions can be found in Section 2.1.

For the safety assessment and certification of AVs, it is always better if more parameters and
scenarios are considered. But especially for homologation a reduced and efficient procedure is
necessary to ensure a minimum level of safety based on the given framework of the UNECE.
Therefore, the focus during the development of the methodology is on all parameters that are
explicitly mentioned in the future UNECE regulation [11]. All these parameters are addressed
by the developed overall method and thus the most important requirements of the UNECE are
fulfilled, even if no objective evaluation can be made whether a sufficient number of tests have
been performed.

The focus in this work is also on developing the method so that it is available to the technical
service as an efficient tool for the certification of AVs. This is achieved and the exemplary
implementation and validation of the sub-methods ensures the functionality of the overall method.
A well founded validation of the overall method will only be possible after the introduction of
the future UNECE regulation [11] into practice. Nevertheless, the method can be used for the
homologation of the first systems by the technical service.

In a first step of implementation, the developed method has been implemented as far as possible
in an automated way. However, it is currently not possible to completely replace and automate
the expert judgment required in some places. However, this can also be seen as a positive
aspect, because each assessor of the technical service can make a slightly different selection
and therefore an additional variation is included in the test scenarios. This reduces the danger
from Subsection 2.4.2 that the manufacturer of the vehicles prepares specifically for the tests to
be carried out during homologation.

As already mentioned, highly accurate sensor models are required for the simulation-based
certification of AVs. Because these are expensive to calculate, the simulation currently achieves
only slightly higher simulation speeds than real time. This means that the execution of the
scenarios takes a relatively long time and any reduction in the number of test scenarios,
as achieved by the present methodology, is valuable. Even though the simulations can be
parallelized well, and therefore the time required for execution can be reduced, each simulation
execution costs money. This is examined in more detail in the author’s already published work
[92] and it is shown that it is not economically feasible to perform simulation-based homologation
without reducing the number of test cases.

The developed method can also be interesting for system manufacturers during the development
of the driving function in the context of optimization-based falsification. The developed method
can be used to select the start scenario for the optimization process. The better this is chosen,
the more efficiently the procedure can be carried out, thus saving time and costs.

The aim of this thesis is to develop a methodology for the use case of highways. In principle,
the method is also suitable for other use cases (e. g. country road or city center), but special
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adaptations have to be made. For example, the focus on complicated road design and the
often unpredictable behavior of pedestrians must be addressed, which is not necessary for
the highway use case. In this context, the requirements of the UNECE in the regulations that
are intended for this purpose must be taken into account. Since there are no drafts for these
regulations yet, it is difficult to estimate the future requirements.

The biggest potential for improvement of the overall method exists in the substitution of the
simple combination block of the three sub-methods by a global optimization that takes all three
parts into account. For this purpose, the sub-methods must be automated as far as possible
and an iterative inclusion of all aspects must be carried out. For example, the challenger from
the sensor analysis can be included as a constraint in the complexity optimization and it can
be additionally specified that this challenger results in a cut-in situation. There are many more
couplings between the three sub-methods, so that the implementation of this global approach
represents a considerable workload for future work.

The developed methodology is an important tool for technical services in the homologation
of AVs, but the user must be aware that this is only a small aspect of the overall AV-related
certification. In addition, requirements for human-machine interface, functional safety or system
self checks, for example, must also be considered. Even when selecting the scenarios, in
addition to testing the particularly challenging corner cases, a certain coverage of the parameter
space must be ensured. This is methodically not comprehensive and can be achieved by simple
equidistant discretization, which is why it is not considered more closely in the context of this
thesis. The only problem here is the question of the step size of the discretization, which must
be specified by the technical service. An exemplary visualization, reduced to two parameters, of
the interaction between the developed method for the system-specific definition of corner cases
and a simple coverage-based approach, which was introduced in Subsection 2.3.5, is shown in
Figure 5.1.

Parameter 1

Pa
ra

m
et

er
 2

Corner cases Coverage-based test cases

Figure 5.1: Simplified illustration of a combination of the developed corner case method with a simple
coverage-based approach using only two parameters. The coverage-based approach can
also be used for homologation in order to obtain information about the performance over the
entire operating range of the AV.
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The homologation of Automated Vehicles (AVs) is essential for the market introduction of these
vehicles. This poses new challenges not only for vehicle manufacturers and the legislator,
but also for technical services which are responsible in Europe for checking compliance with
the requirements specified by the legislator. For this purpose, the United Nations Economic
Commission for Europe (UNECE) has developed a framework [11] that represents the first
regulation for AVs of Level 3 according to Society of Automotive Engineers (SAE) and is to come
into force from 2021. This future regulation essentially sets the requirements for this work. The
focus here is on the use case of the German highway and the examination of the correct Object
and Event Detection and Response (OEDR).

Since the homologation covers a reduced safety proof, the work starts with a definition of the
most important terms (Section 2.1) and a comprehensive presentation of the state of the art in
the field of safety assessment of AVs (Section 2.2 and 2.3). The elaboration of this section is
based on an already published work [17] of the author. Together with the special requirements
for the type approval of AVs, the concrete question of the work is derived in Section 2.5. From
the state of the art it can be concluded that the type approval represents a reduced proof of
safety with special requirements. From the point of view of a technical service, however, this is
not yet considered in the literature. Therefore the following research question is derived:

How should a procedure for technical services be designed that efficiently identifies
system-specific corner cases within the homologation of automated vehicles?

On the basis of the derived requirements by the future UNECE regulation [11], an overall method-
ology is derived in Chapter 3 and it is explained how the requirements are addressed. Essentially,
the overall method consists of three sub-methods, whose development and exemplary imple-
mentation is the core of the present work. A detailed description of the three sub-methods is
given in Chapter 4.

First, a procedure is developed and implemented in Section 4.1, which deals in detail with the
used sensor setup of the AV to be tested. Central for this section are the already published papers
[174–176] of the author. Based on information about the sensors used and on phenomenological
sensor models, quality of the sensor coverage is modeled and analyzed. An optimal approaching
path to the AV is calculated in a three-dimensional grid using an A* algorithm. This path must
be followed by an object (challenger) to approach the vehicle so that it can be detected as
poorly as possible by the Vehicle Under Test (VUT). Thereby, different weather conditions can
be considered. Finally, the static approaching path is transformed into a dynamic scenario and
an optimal road geometry for the selected environmental conditions is derived for the scenario
that establishes the calculated optimal approaching path. These scenarios thus represent a
particular challenge for the perception of the vehicle.

The second sub-method in Section 4.2 examines the driving behavior of AVs and the question of
how information can be derived from it to define particularly challenging scenarios specifically
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for the AV under consideration. The basis for this is an already published work [127] by the
author. Functional scenarios and objective Key Performance Indicators (KPIs) are derived from
technical literature and from guidelines for driving license tests [200, 201], which can be used
to characterize the driving behavior. The implementation of this sub-method is exemplified by
the functional scenario of driving through a curve. It is shown how stationary obstacles can be
optimally placed to provide a challenging situation for the AV based on an investigation of the
cornering behavior.

Finally, in Section 4.3 the third sub-method is introduced, which deals specifically with the
trajectories of surrounding Traffic Participants (TPs), so that it is particularly challenging for the
AV to plan a safe trajectory. The term complex scenarios is used for this type of scenario. The
basic concept has already been published in [16] by the author. The central element of this
sub-method is a newly developed complexity metric that allows the difficulty (complexity) of
scenarios to be assessed independently of the performance of the AV. The metric is based on
13 factors that are weighted differently, combined with each other and thus yield a scalar value
for the complexity of a scenario. The validation of this metric is performed by a two-step process
consisting of an online expert survey and the simulation of scenarios extracted from the highD
data set. The former is used to determine the weightings of the individual factors. The latter to
investigate the assumption that more complex scenarios lead more often to critical situations.
The obtained results confirm this assumption and the developed metric can be considered valid.
Chapter 4 ends with a brief description of how these three sub-methods can be combined by the
user (technical service) in the execution of the type approval.

In the subsequent discussion and outlook (Chapter 5), the three sub-methods are first examined
in more detail before the overall method is again critically reviewed. In the case of the sub-
methods, special emphasis is placed on the development of the complexity metric, because
the other two sub-methods have already been discussed in the author’s previous publications
[127, 174–176]. For the complexity metric, the biggest potential for improvement is a review
of whether an improvement can be achieved by extending the metric from its current linear
combination of individual factors to include non-linear elements. It can also be examined whether
the consideration of couplings between the factors improves performance. For the overall
method, it is advisable in future to use a global optimization that considers all three sub-methods
simultaneously instead of the simple combination. Only then mutual interactions between the
individual sub-methods can be efficiently taken into account.

The conclusion of the present work is that a method is developed which is specifically designed
to meet the requirements of the type approval of AVs. The method is available to technical
services as a tool to address the most important parameters of the future UNECE regulation [11]
and to allow an efficient and system specific identification of corner cases, thus preparing the
technical services for the introduction of the regulation. During the development of the method
a lot of experience was gained, many questions were answered from the point of view of a
technical service, but at least as many new research questions were raised in Chapter 5, to
which a solution must be found in future research work.
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A Maneuver Definitions

Table A.1: Definition of 158 maneuvers. The surrounding TP is denoted as surrounding vehicle (SV).

Name Description

FFA FollowDrive Front Approach
FFI FollowDrive Front Identical
FFB FollowDrive Front Backdrop
FBA FollowDrive Back Approach
FBI FollowDrive Back Identical
FBB FollowDrive Back Backdrop
FFD FollowDrive Front Diverse
FBD FollowDrive Back Diverse
SPB SV Passing Behind
SPM SV Passing Middle
SPF SV Passing Front
SPBM SV Passing Behind Middle
SPMF SV Passing Middle Front
SPC SV Passing Complete
EPB Ego Passing Behind
EPM Ego Passing Middle
EPF Ego Passing Front
EPBM Ego Passing Behind Middle
EPMF Ego Passing Middle Front
EPC Ego Passing Completely
PSB ParallelDrive SV Behind
PSM ParallelDrive SV Middle
PSF ParallelDrive SV Front
SPCCIFFA SV Passing Complete Cut-In FollowDrive Front Approach
SPCCIFFI SV Passing Complete Cut-In FollowDrive Front Identical
SPCCIFFB SV Passing Complete Cut-In FollowDrive Front Backdrop
SPMFCIFFA SV Passing Middle/Front Cut-In FollowDrive Front Approach
SPMFCIFFI SV Passing Middle/Front Cut-In FollowDrive Front Identical
SPMFCIFFB SV Passing Middle/Front Cut-In FollowDrive Front Backdrop
SPFCIFFA SV Passing Front Cut-In FollowDrive Front Approach
SPFCIFFI SV Passing Front Cut-In FollowDrive Front Identical
SPFCIFFB SV Passing Front Cut-In FollowDrive Front Backdrop
SCIFFA SV Cut-In FollowDrive Front Approach
SCIFFI SV Cut-In FollowDrive Front Identical
SCIFFB SV Cut-In FollowDrive Front Backdrop
SPCCI SV Passing Complete Cut-In
SPMFCI SV Passing Middle/Front Cut-In
SPFCI SV Passing Front Cut-In
EPCCIFBA Ego Passing Complete Cut-In FollowDrive Back Approach
EPCCIFBI Ego Passing Complete Cut-In FollowDrive Back Identical
EPCCIFBB Ego Passing Complete Cut-In FollowDrive Back Backdrop
EPMFCIFBA Ego Passing Middle/Front Cut-In FollowDrive Back Approach
EPMFCIFBI Ego Passing Middle/Front Cut-In FollowDrive Back Identical
EPMFCIFBB Ego Passing Middle/Front Cut-In FollowDrive Back Backdrop

Continued on next page
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A Maneuver Definitions

Table A.1 – continued from previous page
Name Description

EPFCIFBA Ego Passing Front Cut-In FollowDrive Back Approach
EPFCIFBI Ego Passing Front Cut-In FollowDrive Back Identical
EPFCIFBB Ego Passing Front Cut-In FollowDrive Back Backdrop
ECIFBA Ego Cut-In FollowDrive Back Approach
ECIFBI Ego Cut-In FollowDrive Back Identical
ECIFBB Ego Cut-In FollowDrive Back Backdrop
EPCCI Ego Passing Complete Cut-In
EPMFCI Ego Passing Middle/Front Cut-In
EPFCI Ego Passing Front Cut-In
SFBCOPC SV FollowDrive Behind Cut-Out Passing Complete
SFBCOPBM SV FollowDrive Behind Cut-Out Passing Behind/Middle
SFBCOPB SV FollowDrive Behind Cut-Out Passing Behind
SFBCOPSB SV FollowDrive Behind Cut-Out ParallelDrive SV Behind
SFBCOEPF SV FollowDrive Behind Cut-Out Ego Passing Front
SFBCO SV FollowDrive Behind Cut-Out
SCOPC SV Cut-Out Passing Complete
SCOPBM SV Cut-Out Passing Behind/Middle
SCOPB SV Cut-Out Passing Behind
SCOPSB SV Cut-Out ParallelDrive SV Behind
SCOEPF SV Cut-Out Ego Passing Front
EFBCOPC Ego FollowDrive Behind Cut-Out Passing Complete
EFBCOPBM Ego FollowDrive Behind Cut-Out Passing Behind/Middle
EFBCOPB Ego FollowDrive Behind Cut-Out Passing Behind
EFBCOPSF Ego FollowDrive Behind Cut-Out ParallelDrive SV Front
EFBCOSPF Ego FollowDrive Behind Cut-Out SV Passing Front
EFBCO Ego FollowDrive Behind Cut-Out
ECOPC Ego Cut-Out Ego Passing Complete
ECOPBM Ego Cut-Out Passing Behind/Middle
ECOPB Ego Cut-Out Passing Behind
ECOPSF Ego Cut-Out ParallelDrive SV Front
ECOSPF Ego Cut-Out SV Passing Front
SLCB SV Lane Change Behind
SLCF SV Lane Change Front
ELCB Ego Lane Change Behind
ELCF Ego Lane Change Front
SFBOFFA SV FollowDrive Behind Overtake FollowDrive Front Approach
SFBOFFI SV FollowDrive Behind Overtake FollowDrive Front Identical
SFBOFFB SV FollowDrive Behind Overtake FollowDrive Front Backdrop
SOFFA SV Overtake FollowDrive Front Approach
SOFFI SV Overtake FollowDrive Front Identical
SOFFB SV Overtake FollowDrive Front Backdrop
SFBO SV FollowDrive Behind Overtake
EFBOFBA Ego FollowDrive Behind Overtake (SV) FollowDrive Back Approach
EFBOFBI Ego FollowDrive Behind Overtake (SV) FollowDrive Back Identical
EFBOFBB Ego FollowDrive Behind Overtake (SV) FollowDrive Back Back-drop
EOFBA Ego Overtake (SV) FollowDrive Back Approach
EOFBI Ego Overtake (SV) FollowDrive Back Identical
EOFBB Ego Overtake (SV) FollowDrive Back Backdrop
EFBO Ego FollowDrive Behind Overtake
EPBSCIFFA Ego Passing Behind and SV Cut-In with FollowDrive Front Approach
EPBSCIFFI Ego Passing Behind and SV Cut-In with FollowDrive Front Identical
EPBSCIFFB Ego Passing Behind and SV Cut-In with FollowDrive Front Backdrop
EPBMSCIFFA Ego Passing Behind/Middle and SV Cut-In with FollowDrive Front Approach
EPBMSCIFFI Ego Passing Behind/Middle and SV Cut-In with FollowDrive Front Identical
EPBMSCIFFB Ego Passing Middle and SV Cut-In with FollowDrive Front Backdrop
EPMSCIFFA Ego Passing Middle and SV Cut-In with FollowDrive Front Approach

Continued on next page
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A Maneuver Definitions

Table A.1 – continued from previous page
Name Description

EPMSCIFFI Ego Passing Middle and SV Cut-In with FollowDrive Front Identical
EPMSCIFFB Ego Passing Middle and SV Cut-In with FollowDrive Front Backdrop
EPBSCI Ego Passing Behind and SV Cut-In
EPBMSCI Ego Passing Behind/Middle and SV Cut-In
EPMSCI Ego Passing Middle and SV Cut-In
SPBECIFBA SV Passing Behind and Ego Cut-In with FollowDrive Back Approach
SPBECIFBI SV Passing Behind and Ego Cut-In with FollowDrive Back Identical
SPBECIFBB SV Passing Behind and Ego Cut-In with FollowDrive Back Backdrop
SPBMECIFBA SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Approach
SPBMECIFBI SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Identical
SPBMECIFBB SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Backdrop
EPBSCI Ego Passing Behind and SV Cut-In
EPBMSCI Ego Passing Behind/Middle and SV Cut-In
EPMSCI Ego Passing Middle and SV Cut-In
SPBECIFBA SV Passing Behind and Ego Cut-In with FollowDrive Back Approach
SPBECIFBI SV Passing Behind and Ego Cut-In with FollowDrive Back Identical
SPBECIFBB SV Passing Behind and Ego Cut-In with FollowDrive Back Backdrop
SPBMECIFBA SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Approach
SPBMECIFBI SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Identical
SPBMECIFBB SV Passing Behind/Middle and Ego Cut-In with FollowDrive Back Backdrop
SPMECIFBA SV Passing Middle and Ego Cut-In with FollowDrive Back Approach
SPMECIFBI SV Passing Middle and Ego Cut-In with FollowDrive Back Identical
SPMECIFBB SV Passing Middle and Ego Cut-In with FollowDrive Back Backdrop
SPBECI SV Passing Behind and Ego Cut-In
SPBMECI SV Passing Behind/Middle and Ego Cut-In
SPMECI SV Passing Middle and Ego Cut-In
SFBECOSPC SV FollowDrive Behind with Ego Cut-Out and SV Passing Com-plete
SFBECOSPBM SV FollowDrive Behind with Ego Cut-Out and SV Passing Behind/Middle
SFBECOSPB SV FollowDrive Behind with Ego Cut-Out and SV Passing Behind
SFBECOPSB SV FollowDrive Behind with Ego Cut-Out and ParallelDrive SV Behind
SFBECOPF SV FollowDrive Behind with Ego Cut-Out and (Ego) Passing Front
SFBECO SV FollowDrive Behind with Ego Cut-Out
ECOSPC Ego Cut-Out and SV Passing Complete
ECOSPBM Ego Cut-Out and SV Passing Behind/Middle
ECOSPB Ego Cut-Out and SV Passing Behind
ECOPSB Ego Cut-Out and ParallelDrive SV Behind
ECOPF Ego Cut-Out and (Ego) Passing Front
EFBSCOEPC Ego FollowDrive Behind with SV Cut-Out and Ego Passing Complete
EFBSCOEPBM Ego FollowDrive Behind with SV Cut-Out and Ego Passing Behind/Middle
EFBSCOEPB Ego FollowDrive Behind with SV Cut-Out and Ego Passing Behind
EFBSCOPSF Ego FollowDrive Behind with SV Cut-Out and ParallelDrive SV Front
EFBSCOPF Ego FollowDrive Behind with SV Cut-Out and (SV) Passing Front
EFBSCO Ego FollowDrive Behind with SV Cut-Out
SCOEPC SV Cut-Out and Ego Passing Complete
SCOEPBM SV Cut-Out and Ego Passing Behind/Middle
SCOEPB SV Cut-Out and Ego Passing Behind
SCOPSF SV Cut-Out and ParallelDrive SV Front
SCOPF SV Cut-Out and (SV) Passing Front
EPBCIFFA Ego Passing Behind Cut-In FollowDrive Front Approach
EPBCIFFI Ego Passing Behind Cut-In FollowDrive Front Identical
EPBCIFFB Ego Passing Behind Cut-In FollowDrive Front Backdrop
PSFECIFFA ParallelDrive SV Front Ego Cut-In FollowDrive Front Approach
PSFECIFFI ParallelDrive SV Front Ego Cut-In FollowDrive Front Identical
PSFECIFFB ParallelDrive SV Front Ego Cut-In FollowDrive Front Backdrop
SPFECIFFA SV Passing Front Ego Cut-In FollowDrive Front Approach
SPFECIFFI SV Passing Front Ego Cut-In FollowDrive Front Identical

Continued on next page
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A Maneuver Definitions

Table A.1 – continued from previous page
Name Description

SPFECIFFB SV Passing Front Ego Cut-In FollowDrive Front Backdrop
SPBCIFBA SV Passing Behind Cut-In FollowDrive Back Approach
SPBCIFBI SV Passing Behind Cut-In FollowDrive Back Identical
SPBCIFBB SV Passing Behind Cut-In FollowDrive Back Backdrop
PSBCIFBA ParallelDrive SV Behind Cut-In FollowDrive Back Approach
PSBCIFBI ParallelDrive SV Behind Cut-In FollowDrive Back Identical
PSBCIFBB ParallelDrive SV Behind Cut-In FollowDrive Back Backdrop
EPFSCIFBA Ego Passing Front SV Cut-In FollowDrive Back Approach
EPFSCIFBI Ego Passing Front SV Cut-In FollowDrive Back Identical
EPFSCIFBB Ego Passing Front SV Cut-In FollowDrive Back Backdrop
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B Exemplary Complex Scenarios

(a) Scenario from highD-track 34 with low complexity Cscenario = 0.32.

(b) Scenario from highD-track 10 with high complexity Cscenario = 0.66.

Figure B.1: Comparison of scenarios with low and high complexity. The ego-vehicle including the driven
path is shown in blue and all surrounding TPs are shown in green. The ROI of the ego-
vehicle at the depicted time step is marked by a dashed black rectangle. Each vehicle has a
three-part identification consisting of the class (car or truck), the current speed in km/h and
the highD vehicle ID. The figures are adapted from [16]
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C Scenario Optimization

C.1 IDM Parameters

Table C.1: List of the parameters used for IDM model.

Parameter Symbol value

Desired velocity v0 scenario-specific
Time-gap headway Tg 1.2 s based on [219]
Maximum acceleration ax,max 3 m/s2

Comfortable deceleration bx,com 4 m/s2

Acceleration exponent δ 4
Length of ego lego scenario-specific
Linear jam distance s0 2 m
Non-linear jam distance s1 3 m

C.2 GA Parameters

Table C.2: Parameters of the GA.

Parameter Value

Population size 500
Maximal number of generations 500

Crossover fraction 80 %
Elite ratio 5 %

Selection type Stochastic uniform
Crossover type Two point

Mutation function Adaptive feasible
Initial population matrix Original highD
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C Scenario Optimization

C.3 Optimization Results

Table C.3: Overview of the optimization results. Thereby, highD is the complexity of the original highD
scenario, before means the complexity of the original highD date where the ego-vehicle is
replaced by the IDM and MOBIL model, after means the complexity of optimized scenario,
track nr. is the track number of the highD data set, ego ID is the number of the ego-vehicle of
the highD data set, time is the optimization time in seconds for the 500 iterations on a 32
core E5-2670 Intel Xeon with 2.6 GHz and nvar is the number of optimization variables.

highD before after Track Nr. Ego ID Time in s nvar

0.424 0.450 0.915 56 1278 1348 124
0.583 0.489 1.076 3 178 2026 220
0.595 0.486 1.034 53 1108 3276 390
0.622 0.539 0.874 52 529 4164 512
0.605 0.512 1.047 59 140 5742 740
0.627 0.627 0.887 40 2194 5068 828
0.729 0.753 1.242 47 1135 5493 1064
0.719 0.661 0.792 36 2326 8707 1328
0.637 0.617 0.833 31 72 11165 1692
0.615 0.535 0.796 40 1291 8213 1420
0.675 0.572 0.730 10 676 14949 1804
0.660 0.688 0.863 10 679 12718 1920
0.677 0.615 0.763 40 1288 19020 2262
0.613 0.597 0.970 30 1709 24613 2744
0.672 0.570 0.928 41 254 25406 2730
0.623 0.674 1.027 41 253 29559 2912
0.613 0.575 0.826 41 544 23976 2822
0.568 0.655 0.854 44 2349 35438 3492
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D Complexity Metric Validation

D.1 Complexity Factors Results

Table D.1: Rating of the 13 influencing factors by 25 experts via a scale from 1 (not important) to 5 (very
important).

Influence factor
1 2 3 4 5 6 7 8 9 10 11 12 13 sum

P
ar

tic
ip

an
t

1 1 5 3 4 3 5 4 4 2 2 5 2 2 42
2 3 4 3 5 5 5 5 4 2 5 5 3 5 54
3 2 4 4 4 3 4 3 4 2 2 3 2 3 40
4 2 5 5 4 1 5 5 5 5 5 5 1 1 49
5 3 3 4 4 4 3 3 3 3 3 2 3 3 41
6 3 2 4 4 3 2 2 2 4 4 4 3 3 40
7 2 4 4 4 5 4 3 4 5 4 3 4 4 50
8 3 4 2 3 4 5 2 4 2 2 4 3 4 42
9 2 4 3 5 5 5 5 4 2 5 5 4 5 54

10 2 4 4 5 5 5 5 4 2 5 5 4 5 55
11 5 5 5 5 5 5 5 5 5 5 5 5 5 65
12 4 2 3 4 5 4 2 2 2 1 3 1 5 38
13 3 4 4 5 1 5 4 2 5 2 3 1 5 44
14 4 3 1 1 5 5 1 3 3 3 5 4 4 42
15 4 4 4 5 5 5 3 3 5 5 5 3 3 54
16 4 4 5 5 5 4 3 4 5 3 4 4 4 54
17 2 3 3 4 3 4 3 2 4 4 3 2 2 39
18 5 5 5 5 5 4 5 5 5 5 5 4 4 62
19 4 5 5 5 4 5 5 5 4 4 4 5 5 60
20 4 5 5 4 4 4 4 3 4 4 3 4 3 51
21 5 5 5 5 5 4 4 4 5 5 5 4 4 60
22 2 4 3 2 4 5 5 5 3 3 5 5 5 51
23 3 2 4 4 3 3 2 4 1 2 2 2 4 36
24 3 4 4 5 5 2 3 3 3 3 4 5 5 49
25 2 4 4 4 3 5 3 3 3 3 4 2 2 42

Variance 1.24 0.91 1.06 1.00 1.50 0.88 1.51 0.99 1.76 1.59 1.04 1.67 1.42 68.51
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D Complexity Metric Validation

Table D.2: Mean rank of each influence factor. The number of elements is the number of participating
experts who rated the factors.

Factor Number of elements Rank sum Rfactor,i Mean rank R̄factor,i

1 25 2766.50 110.66
2 25 4342 173.68
3 25 4207 168.28
4 25 5016 200.64
5 25 4683.50 187.34
6 25 5165.50 206.62
7 25 3736.50 149.46
8 25 3760.50 150.42
9 25 3570 142.80

10 25 3762 150.48
11 25 4639.50 185.58
12 25 3109 124.36
13 25 4217 168.68

Table D.3: Right side of the inequality from Equation (4.36) of the Dunn’s test for all influence factor
comparisons. Factors with significant difference are marked in gray. The reference value for
each comparison is Q0.05 = 3.41.

Mean rank difference to factor
1 12 9 7 8 10 3 13 2 11 5 4

6 3.75 3.21 2.49 2.23 2.19 2.19 1.50 1.48 1.29 0.82 0.75 0.23
4 3.51 2.98 2.26 2.00 1.96 1.96 1.26 1.25 1.05 0.59 0.52
5 2.99 2.46 1.74 1.48 1.44 1.44 0.74 0.73 0.53 0.07

11 2.93 2.39 1.67 1.41 1.37 1.37 0.68 0.66 0.46
2 2.46 1.93 1.21 0.95 0.91 0.91 0.21 0.20

13 2.27 1.73 1.01 0.75 0.71 0.71 0.02
3 2.25 1.71 0.99 0.73 0.70 0.70

10 1.55 1.02 0.30 0.04 0.00
8 1.55 1.02 0.30 0.04
7 1.51 0.98 0.26
9 1.26 0.72

12 0.53

F
ac

to
r

1

D.2 Complexity Factors Additional Factors Comments

• The distinction between actors can be an additional factor: Small angles between
vehicles, Small distances, similar look and behavior might challenge the algorithm.
So the AV doesn’t know whether there are two objects or one object.

• Factors like size and shape of surrounding objects will have an Impact as well.
Influence: object recognition will be challenged

• Factors for the shape and size of surrounding vehicles will have an impact: Influ-
ence: Object recognition will be challenged

• Speed difference of the vehicles (might be similar to factor 1)

• constellation of position and speed of the vehicles (difficult to evaluate)

• road obstacles (e.g. entry lane)

• I think the parameterization is already pretty detailed.
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D Complexity Metric Validation

D.3 Links to Scenario Videos Used for Online Survey

1. https://www.youtube.com/watch?v=9ojVyRYyiPk

2. https://www.youtube.com/watch?v=w4S5mX6DXis

3. https://www.youtube.com/watch?v=xnmLJZqJTag

4. https://www.youtube.com/watch?v=f-d44ulvFMo

5. https://www.youtube.com/watch?v=K2engJ8GETs

6. https://www.youtube.com/watch?v=3uV1l8jdsXY

7. https://www.youtube.com/watch?v=TQXLO8SpihE

8. https://www.youtube.com/watch?v=ibNUY904Cdk

9. https://www.youtube.com/watch?v=zm9Uj428oeU

10. https://www.youtube.com/watch?v=xGOdYsfN5hA

11. https://www.youtube.com/watch?v=ZnhlrH6uVHk

12. https://www.youtube.com/watch?v=WkWs-1os60s

13. https://www.youtube.com/watch?v=2V8Wb8wAzp0

14. https://www.youtube.com/watch?v=XfLf5S1gr_Q

15. https://www.youtube.com/watch?v=8ifA54kV7Bo

16. https://www.youtube.com/watch?v=Y1GkeFIcACk

17. https://www.youtube.com/watch?v=k26SAxLzXAM

18. https://www.youtube.com/watch?v=GDx7PADYuhQ

19. https://www.youtube.com/watch?v=3zDyRoRxtMk

20. https://www.youtube.com/watch?v=UjIoIs7uH8M
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