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Abstract

At its essence, computational mechanics provides numerical solutions to problems that arise
from observations of engineered systems or natural phenomena. Partial differential equations
commonly govern the resulting mathematical descriptions. Discretization of the problem al-
lows for the approximation of a solution using computational methods. The long-established
finite element method and the method of finite differences are among the most popular
approaches. However, with problems of increasing complexity, conventional methods often
result in exponential growth in the computational effort, thus motivating the search for al-
ternatives. Increased accessibility of deep learning techniques has inspired recent research
into investigating their application in physics and engineering. Most publications have em-
ployed neural networks to approximate the hidden solution of problems described by partial
differential equations. The distinct idea behind those approaches is to incorporate domain
knowledge into the learning model to outweigh the usual data scarceness in physical systems.
The first promising results have motivated the pursuit of this line of study in the context of
computational mechanics. Therefore, this work elaborates on the fundamentals of machine
learning and neural networks, and the current literature on learning-based methods in com-
putational mechanics is reviewed. The focus lies on applications of physics-enriched surrogate
models. Subsequently, a physics-informed neural network is employed to predict the solution
of a heat transfer example. By documenting the implementation and related obstacles, this
thesis intends to inform future research on the subject. A discussion on the advantages and
drawbacks of learning-based algorithms in the engineering context concludes the thesis.
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Chapter 1

Introduction

The pursuit of artificial intelligence dates back to the time computers in a modern sense were
born [RND10]. Ever since, computer science has been partially dedicated to finding the key
to intelligent machines. Over the last few years, rapid advancements in the field of machine
learning have caused quite a sensation. Algorithms suddenly achieved competing results in
tasks thought to be the reserve of human intelligence. Reasons for their success are the
vast availability of data paired with a straightforward implementation and powerful graphics
hardware. Nowadays, new classes of learning machines are confronted with various com-
plex problems. Whether audio-visual signal processing, weather forecasting, or autonomous
driving, data-driven algorithms offer tremendous potential and take computer science a step
closer to the ideal of intelligent machines.

The unprecedented success of machine learning has not gone unheeded in other scientific
fields. Especially in the presence of adequate data, the application of learning-based algo-
rithms has shown promising results. For instance, image-based medical diagnosis already
benefits from outstanding progress in visual object recognition [LRVL+12]. At the same
time, the demand for data constitutes a major obstacle for wider interdisciplinary adoption.
Physics and engineering applications often lack sufficient information about the underlying
problem. Thus, the use of data-driven approaches seems rather naive. Further, engineer-
ing sciences have an established, long-standing paradigm of computer-aided problem solving.
Finding numerical solutions to problems that arise from observing natural or engineered sys-
tems describes the essence of computational mechanics. The solution process commences
with formalizing the problem in terms of physical quantities. A set of partial differential
equations typically governs the resulting mathematical description. Further, computational
methods require a discretization of the problem into finite elements to allow the numerical
approximation of continuous variables inside a prescribed domain. Most methods following
this scheme have been developed and enhanced over decades, hence guaranteeing a high level
of robustness and reliability.

Nevertheless, the generality and simplicity of learning algorithms has sparked interest in the
scientific computing community and inspired early attempts toward the data-driven solution
of partial differential equations. Incorporating domain knowledge into the learning model al-
lowed it to compensate for the typical data sparsity in physical problems. The computational
limitations at that time restricted the application beyond the scope of canonical examples.
However, the availability of enhanced programming environments and potent hardware has
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encouraged researchers from various disciplines to revisit the proposed ideas over the past
years. Current publications demonstrate the potential of physics-enriched surrogate models
for the inference and identification of partial differential equations [RPK19, SAG+19, NM19].
Most approaches deploy neural network architectures to approximate the hidden solution.
Neural networks loosely mimic the neuronal structure of the brain and belong to the most
successful group of contemporary learning algorithms. Their ability to learn highly non-linear
representations is an excellent prerequisite for modeling physical phenomena.

The work at hand attempts to pursue this line of study by contributing to the adaption of
learning-based methods in the domain of computational mechanics. In preparation for further
investigations, the first part of the thesis contemplates the advantages and drawbacks of data-
driven algorithms. Explaining machine learning basics paves the way for introducing more
sophisticated architectures. Since neural networks are of particular interest for the applica-
tion in engineering problems, their algorithmic framework is described in detail. A simple
example elaborates on the implementation of neural networks and provides initial insights
into their approximation capabilities. The introduced concepts allow a review of recent liter-
ature on data-driven algorithms in physics and engineering. What follows is a detailed study
of the most notable publication toward learning solutions of partial differential equations in
scarce data regimes [RPK19]. In the proposed method, so-called physics-informed neural
networks approximate solutions of exemplary non-linear systems. The promising results are
the basis for this thesis to advance the study of physics-enhanced learning models to a heat
transfer example. The heat equation in general is of importance to various real-world appli-
cations such as the thermal analysis of metal-based additive manufacturing. The numerical
modeling of these processes is an ongoing challenge due to the extensive computational effort
involved. In cases where conventional methods fail to provide satisfactory approximations,
learning-based algorithms might become an attractive alternative. As a preliminary step
toward greater adoption, a physics-informed neural network is used to predict the solution
to a nonhomogeneous heat equation with temperature-dependent material coefficients. By
documenting the implementation process, the work intends to inform future research on the
subject. The documentation includes a description of the obstacles encountered as well as
possible improvements to the algorithm.

Following this introduction, Chapter 2 leads off with the fundamental concepts of machine
learning. Subsequently, Chapter 3 elaborates on neural networks and their corresponding
algorithms. After reviewing machine-learning applications in engineering and physics, Chap-
ter 4 shifts the focus toward physics-enriched deep learning models. Chapter 5 documents
the implementation of a physics-informed neural network on a heat transfer example. A
discussion of results and future research directions concludes the work in Chapter 6.
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Chapter 2

Fundamental Concepts of Machine

Learning

2.1 Definition

Nowadays, machine learning is arguably the most successful and widely used technique to
tackle problems that can not be solved with linearly written programs. In contrast to con-
ventional algorithms following a predefined set of rules, a machine learning algorithm relies
on a large amount of data that is observed in nature, handcrafted by humans or generated by
another algorithm [Bur19]. A more formal definition by Mitchell states that “a computer pro-
gram is said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience E”
[Mit97]. Taking image recognition as an example, the task T is to classify previously unseen
images, the performance measure P corresponds to the amount of correctly classified images
and the experience E includes all images that have been used to train the algorithm. Most
machine learning algorithms can be decomposed into the following features: a dataset, a cost
function, an optimization procedure, and a parameterized model [GBC16]. Generally, the
cost function defines an optimization criterion by relating the data to the model parameters.
Further, the optimization procedure searches for the model parameters representing the pro-
vided data best. The key difference between machine learning and solving an optimization
problem is that the optimized model is then used for predictions on previously unseen data.

2.2 Data Structure

A machine learning algorithm processes a dataset containing a collection of data points, often
referred to as examples. Every example consists of one or more features describing the data
point in a quantitative manner. In terms of notation, each example can be written as vector
x, where each entry xj corresponds to a feature of that example. To take advantage of fast
implementations of matrix vector calculus in modern programming languages, all examples



4 2. Fundamental Concepts of Machine Learning

are often arranged in a so-called design matrix

X =











feature 1 feature 2 · · · feature n

example 1 x11 x12 · · · x1n
example 2 x21 x22 · · · x2n

...
...

...
. . .

...
example m xm1 xm2 · · · xmn











.

Each row of the matrix represents an example and each column corresponds to a feature
describing the examples [GBC16]. In the case of recognizing gray-scale images, every photo
in the dataset is stored as one example vector in the design matrix. Assuming all pictures
have a resolution of 50 × 50 pixels, then every example consists of 2500 features storing the
gray-scale value for each pixel.

It is common practice to split the data into different subsets, namely a training set and a test
set. The majority of the data, e.g ∼90%, is included in the training set and used for learning
the optimal parameters of the model. The remaining part, e.g. ∼10%, is kept for the test
set to get an estimate for the model’s performance on unseen data. The given percentages
are for guidance only, since machine learning literature does not prescribe specific figures and
leaves it to the practitioner on how to subdivide the data [Ng20].

2.3 Types of Learning

There exist different types of learning, which are presented in the following sub-sections.

2.3.1 Supervised Learning

Most problems solved by machine learning algorithms fall into the category of supervised
learning [Cho18]. In this context, “supervised” indicates, that the algorithm is processing a
labeled dataset. Thus, next to the design matrix the dataset comprises a vector y with a
label or target yi for each example. For instance, in image classification tasks each image
has previously been annotated receiving a certain category label. The supervised learning
algorithm studies the dataset and learns to classify the images into the given categories by
comparing its prediction with the given ground truth label.

2.3.2 Unsupervised Learning

The goal of unsupervised learning is to find a structure or more precisely, the probability
distribution in the provided data. The data is not labeled and therefore no explicit prediction
is possible. However, it can be very useful to apply unsupervised learning to large datasets
in order to find inherent structures or repeating patterns in the data. For instance, anomaly
detection algorithms are used to identify fraudulent credit card transactions that differ from
the usual purchasing behavior of a customer [GBC16].
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2.3.3 Semi-supervised Learning

As the term suggests, semi-supervised learning combines the two preceding concepts. In cases
where only small samples of the data are labeled, unsupervised learning helps to improve the
performance of the supervised learning algorithm [GBC16].

2.3.4 Reinforcement Learning

The basic idea of reinforcement learning is that an algorithm interacts with an environment
to learn a certain decision behavior maximizing the expected average reward [Bur19]. It is
used for problems involving sequential decision-making in order to fulfill a long-term goal. A
group of Google researchers demonstrated the effectiveness of this technique on the example
of playing the game of Go [SSS+17], an old and very complex board game which originated
in China. Solely by playing games against itself the program reached superhuman abilities
and was capable of beating the European Go champion.

2.4 Machine Learning Tasks

The following subsections give a small overview of machine learning tasks with a short in-
troduction of suitable algorithms. This list is by far not complete, however, many problems
that arise in practice can be related to one of the following categories.

2.4.1 Regression

Regression is a supervised learning problem with the goal of predicting a numerical value.
Basically, a regression algorithm outputs a function that maps a given input to an output,
usually in form of a real number. An example is the prediction of house prices based on
certain criteria like the area, number of rooms or the age of the house. A more detailed
explanation of linear regression can be found in Section 2.5. Further, it is possible to extend
the algorithm for the use with polynomials as well as for the prediction of multiple outputs,
known as multivariate regression. Decision tree algorithms and neural networks are also used
for regression problems. The latter will be introduced in Chapter 3.

2.4.2 Classification

Just like regression, classification tasks belong to the category of supervised learning. Instead
of a numerical value, their output takes on a discrete form. In other words, a classification
algorithm returns a function that assigns a category to the provided input. Again, the
example of classifying the content of an image falls into this class of problems. Even though
the name suggests otherwise, logistic regression is a classification algorithm generating a
binary output based on the logistic (or sigmoid) function (cf. Chapter 3). Other important
algorithms for categorization are the support vector machines and decision trees like random
forest or the more advanced gradient boosting approach. In terms of performance at complex
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x1

x2

x3

Σ ŷ = w1x1 + w2x2 + w3x3 + b

b

w1

w2

w3

Figure 2.1: Linear regression for a single example x with three input features.

tasks like image recognition, those algorithm have been surpassed by neural networks, but
are still used for simpler problems [GBC16].

2.4.3 Clustering

Clustering differs from classification and regression as it is an unsupervised learning task. The
algorithm gives feedback about which parts of the data share similarities and therefore belong
to the same cluster. A popular choice for clustering is the k-means algorithm that divides
the incoming data into k different clusters of examples being close to each other [GBC16].

2.5 Example: Linear Regression

Even though linear regression is a very simple algorithm, it is well suited to explain concepts
also applicable to more sophisticated machine learning algorithms. The goal of a regression
model is to predict a scalar value ŷ ∈ R from an input vector x ∈ R

n. In general, linear
regression can be written as

ŷ = wTx+ b =

n
∑

j=1

wjxj + b, (2.1)

where ŷ represents the target, w is a vector containing the weights and x denotes the example
vector (cf. Fig. 2.1). The constant b is called bias, referring to the case when either the weights
or the input is close to zero, the output is biased toward b. Each weight wj is a coefficient
that gets multiplied with the corresponding feature xj . The magnitude and sign of a weight
decide about the feature’s importance to the prediction ŷ. For instance, a feature xj has a
corresponding weight wj which is large in magnitude, then even small changes in xj alter the
prediction ŷ by a great amount. The weights and the bias are the parameters of the model
and determine how well it performs on the task of predicting target values for new data. In
order to get an estimate on the model’s future performance a small part of the labeled data
is held back to be used for evaluation. This fraction is called test set while the remaining
part used for finding the optimal parameters is referred to as training set (cf. Section 2.2).

What is still missing is a way to measure the performance of the model. A common metric
for this purpose is the squared error loss. If ŷ is the prediction and y the ground truth, the
squared error loss is simply defined as (y − ŷ)2. However, this only provides feedback for a
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single data point (xi, yi). To get one measurement for the performance on the whole data set
{(xi, yi)}

m
i=1 the mean of the squared error (MSE) of all examples m is calculated as follows

MSE =
1

m

m
∑

i=1

(yi − ŷi)
2. (2.2)

The closer the prediction ŷi gets to the value of yi, the smaller the error and the better
the model is expected to perform. The mean squared error is a popular choice for the cost
function. It has a continuous derivative and naturally penalizes large differences between the
true target and the prediction [Bur19]. In case of linear regression, the squared error loss even
leads to a convex optimization problem, meaning the cost function has only one particular
minimum.

Now the question is, how to find the optimal parameters w∗ and b∗ that yield a good pre-
diction. This task can be interpreted as an optimization problem with the goal to minimize
the mean squared error. Given Eq. (2.2) and inserting equation Eq. (2.1), a cost function
C(w, b) dependent on the parameters w and b is obtained

C(w, b) =
1

m

m
∑

i=1

(yi − (wTxi + b))2. (2.3)

With the given cost function it is possible to formulate the optimization problem: Find the
model parameters w and b that minimize the cost function C(w, b) or

min
w,b

C(w, b) = min
w,b

1

m

m
∑

i=1

(yi − (wTxi + b))2. (2.4)

Finding the optimal parameters that lead to a good performance of the model can be inter-
preted as “learning”.

The general concept that separates machine learning from solving an optimization problem
is that the former adapts a model using the training examples and then evaluates it on the
test set to emulate the future performance on unseen data. This leads to the important
distinction between the training error MSE(train)

MSEtrain =
1

m(train)

m(train)
∑

i=1

(y
(train)
i − ŷ

(train)
i )2, (2.5)

and the test error MSE(test)

MSEtest =
1

m(test)

m(test)
∑

i=1

(y
(test)
i − ŷ

(test)
i )2. (2.6)

To gain a better understanding of the whole concept, a one-dimensional linear regression
example is given in Fig. 2.2. The goal is to fit the model to the data points by reducing the
distance between the regression line and the training examples. Then, as the algorithm is fed
with unlabeled data points xnew, the fitted line is used for the prediction of ynew.
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fitted model + prediction

Figure 2.2: Linear regression example. Left: The untrained model is indicated by a dashed line.
Middle: Shows the model properly fitted to the training data. Right: The fitted model is used to
make a prediction ŷnew for an unknown example xnew. Illustrations are inspired by [GBC16].

In the case of linear regression it is possible to solve directly for the optimal model parameters
w∗ and b∗ by setting the gradient of the cost function C to zero. This closed solution to the
minimization problem is also known as normal equations [GBC16]. However, due to the
fact that a closed solution only exists for very few simple algorithms it is favorable to use a
more generally applicable optimization technique. Section 2.8 introduces the gradient descent
approach that lays the foundation for many optimization algorithms used in modern machine
learning problems. Gradient descent techniques allow the iterative search for a minimum
considering a large amount of weight parameters.

2.6 Overfitting vs. Underfitting

The previous section has introduced the test error, in particular theMSEtest, to measure how
well a model is expected to perform when confronted with new inputs. The ability to generate
good predictions for previously unseen data is called generalization and the associated error
is called the generalization error. Therefore, the test error is also considered to be an estimate
for the generalization error.

Supervised learning algorithms like linear regression are based on the idea that a low training
error also leads to a small test error. Statistical learning theory provides some assumptions
to support this idea [GBC16]:

1. The data contains all necessary information to solve the problem.

2. Examples in each dataset are independent of each other.

3. The train and test set are identically distributed, meaning each example is generated
with the same probability distribution.

Assuming all given statements are true, the training error ought to be the same as the test
error. Since in reality, the data generating probability distribution is unknown a priori, the
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Figure 2.3: Representation of the underfitting and overfitting problem on the example of a one-
dimensional regression. Illustrations are inspired by [GBC16].

test error is usually higher than the training error. Figure 2.3 illustrates the two main reasons
for that. Firstly, the capacity of a model can be too high, meaning the algorithm chooses
a complex function that fits the training data perfectly, but fails to generalize, because it
overestimates the importance of noisy data. This behavior is called overfitting (cf. Fig. 2.3c).
Secondly, a model with a very low capacity is applied to a highly non-linear problem. For
example, if the hypothesis space of a model only contains linear functions, it is not able to
represent data that is following quadratic or cubic functions. This case describes underfitting
(cf. Fig. 2.3a).

The capacity of a model, more precisely, its ability to fit a wide variety of functions, plays
an important role in terms of performance. Choosing the capacity in a way that suits the
complexity of the problem, or in other words, finding the balance between underfitting and
overfitting is a central challenge in machine learning [GBC16]. The relationship between
the training error and the generalization error with respect to the capacity is depicted in
Fig. 2.4. As indicated, the optimal capacity is reached when the generalization error is as
low as possible.

A way to tackle the problem of underfitting (cf. Fig. 2.3a), is to increase the set of functions
an algorithm is allowed to select. Sticking with the example of linear regression, assuming a
simple model with a single input x

ŷ = wx+ b. (2.7)

The model can be easily extended to include polynomials. Adding x2 as a new feature a
second order polynomial regression of the following form is obtained

ŷ = w1x
2 +w2x+ b, (2.8)

where x1 = x2 and x2 = x. Introducing more polynomials to the model not only increases
the number of features xi, but also introduces the same amount of parameters wi. Hence,
the algorithm has more possibilities to tune and adapt the model to fit the target function
appropriately (cf. Fig. 2.3b). Yet, if the polynomial degree and therefore the capacity becomes
too large the model starts to overfit [GBC16]. This is shown in Fig. 2.3c for the case of
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Figure 2.4: Generalization error and training error in relation with the capacity of a model. Illus-
tration inspired by Goodfellow [GBC16].

regression with a polynomial degree of seven

ŷ =

7
∑

i=1

(

wix
i
)

+ b. (2.9)

In the literature over- and underfitting are often associated with the terms bias and vari-
ance. A high bias means the model produces many mistakes on the training set, so it is the
equivalent to underfitting. Coming from statistics, the term variance describes the model’s
sensitivity to changes in the dataset. If the variance is high, small deviations in the training
data result in a very different model. This behavior is closely related to overfitting [Bur19].

2.7 Regularization

Overcoming underfitting or overfitting, i.e. finding the appropriate capacity for a model,
is one of the most challenging tasks in machine learning. The previous section showed a
possibility to deal with underfitting by increasing the number of features xi. In the same way
overfitting can be reduced when features are removed from the model. However, this option
is not very popular, since removing features means that information about the problem gets
lost. Another countermeasure against overfitting is adding more examples to the training set
[GBC16]. In most cases, it is not feasible or simply impossible to gather more data about the
problem. Conversely, removing training data can help in case of underfitting. Yet again, this
leads to a loss of information. The influence of the training set size on the the error measures
is illustrated in Fig. 2.5.

Since the complexity of the underlying problem is usually unknown, it is hardly possible to
choose a model with the appropriate capacity beforehand. So another approach to overcome
overfitting is to keep a high capacity, but to introduce a control mechanism called regularizer
that prefers the selection of certain functions over others. For instance, the cost function for
linear regression (cf. Eq. (2.3)) can be modified to include an additional term that penalizes
large weights

C̃(w, b) = C(w, b) + λ||w||1, (2.10)
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Figure 2.5: Influence of data set size on training and generalization error. The larger the amount of
available data, the closer both error measurements get. The distance between the training error and
the asymptote marked in red can be interpreted as the bias. In the same way the distance between
die generalization error and the asymptote denotes the variance. Illustration inspired by Goodfellow
[GBC16].

where ||w||1 denotes the L1-norm of the weight vector w. Adding a term proportional to
the magnitude of the weights forces the algorithm to select a model with smaller weights.
In case of linear or polynomial regression, the weights can be understood as the coefficients
determining the slope of the function. For instance, the model depicted in Fig. 2.6c exhibits
large oscillations, which indicates an underlying function with large slope coefficients. Hence,
penalizing large weights is a way to reduce the slope coefficients and the occurrence of oscil-
lations. The influence of the penalty term is controlled by λ. If λ equals zero, the algorithm
simply returns the initial linear regression model (cf. Fig. 2.6c). Contrarily, a large value
for λ leads to extremely small weights, which basically eliminates the corresponding features
resulting in a very simple or sparse model (cf. Fig. 2.6a). In practice, this technique called L1

or lasso regularization is used for feature selection, a method to remove unimportant features
from a model. A similar approach usually producing better results is L2 or ridge regulariza-
tion which adds the L2-norm of the weights instead of their absolute magnitude. For linear
regression the regularized cost function can be written as

C̃(w, b) = C(w, b) + λwTw. (2.11)

Another advantage over L2 regularization is that the penalty term is differentiable [Bur19].
This gains more importance when used in combination with the gradient-based optimization
algorithms, which will be introduced in the following Section 2.8.

Apart from model selection and adding a penalty term to the objective function there exist
many other techniques to implicitly and explicitly express preferences for a certain solution.
A few more will be explained in Chapter 3 about neural networks. Overall, these approaches
can be summarized under the term regularization. A definition by Goodfellow states: “Reg-
ularization is any modification we make to a learning algorithm that is intended to reduce its
generalization error (low variance) but not its training error (low bias) [GBC16].” Accord-
ingly, regularization is also known as the bias-variance trade-off [Bur19].

When applying L1 or L2 regularization to a model, a new parameter λ is added to the
objective function. In contrast to weights and bias, λ is not part of the optimization objective
and thus has to be set manually by the user. Generally, all external settings controlling the
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Figure 2.6: Regularization. Illustration inspired by [GBC16].

behavior of an algorithm are called hyperparameters [Bur19]. They give the opportunity
to further improve the performance by doing a so-called hyperparameter tuning. For this
purpose, a new subset from the training data has to be selected, since the test set can
not be used for any parameter optimization. Therefore, the training data is split into a
set for training the standard model parameters and a validation set used for tuning the
hyperparameters.

2.8 Optimization Techniques

Optimization plays an essential role in many machine learning algorithms. Generally, the
goal of an optimization is to minimize or maximize an optimization criterion or objective
function C(Θ) by altering Θ [GBC16]. In the context of machine learning, this function is
often called cost function, and Θ denotes the parameters of a model, normally the weights
w and biases b. A lot of research is dedicated toward finding efficient methods, that help
to determine the optimal parameters Θ∗. When the optimization criterion is differentiable,
a popular choice is the iterative gradient descent algorithm [GBC16]. A gradient descent
approach finds a local minimum of a function by taking steps proportional to the negative
gradient of the function at a given point. The gradient points in the direction of steepest
ascent, hence a small step in the opposite direction leads to a minimization of the function.

The algorithm is commonly used for neural networks but can be also applied to support
vector machines or linear regression. In the latter case, the optimization criterion is convex
meaning the function only has one global minimum. For neural networks the optimization
problem is non-convex, though it is more likely to converge to a local minimum [GBC16].

As mentioned in Section 2.5, it is possible to analytically solve for the optimal parameters of
linear regression. Nevertheless, it serves as a suitable example to explain the basic steps of
gradient descent. To keep things simple, a linear regression model with a scalar input x, a
corresponding weight w and a scalar bias b is chosen

ŷ = wx+ b. (2.12)

Again, the goal is to find the optimal parameters w∗ and b∗ that minimize the mean squared
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Figure 2.7: Gradient descent on a surface defined by f(x, y) = x2 − y2. Depending on the point
of initialization gradient descent follows the steepest direction toward a minimum of the underlying
function.

error. The resulting cost function can be written as

C =
1

m

m
∑

i=1

(yi − (wxi + b))2. (2.13)

Now the partial derivatives for each parameter have to be calculated

∂C

∂w
=

1

m

m
∑

i=1

−2xi (yi − (wxi + b)) ,

∂C

∂b
=

1

m

m
∑

i=1

−2 (yi − (wxi + b)) .

(2.14)

If more parameters are involved, it is useful to rewrite the partial derivatives in form of
gradient ∇C. The gradient is nothing else than a vector storing all the partial derivatives
with respect to all parameters of a function. During each iteration step or epoch, to use
machine learning terminology, the parameters of the model get updated according to the
following rules

w ← w − α
∂C

∂w
,

b← b− α
∂C

∂b
.

(2.15)

In the first step, the parameters are initialized as zero and then updated in each epoch until
convergence is reached. The learning rate α is a hyperparameter (cf. Section 2.7) and controls
the step size of each update [Bur19].

A graphical representation of gradient descent is depicted in Fig. 2.7. It illustrates how the
algorithm follows the direction of steepest descent toward a minimum. If the starting point
is initialized differently, the algorithm might descent to the minimum on the other side of the
saddle point. This shows the difficulties to find a global minimum in non-convex optimization
problems.



14 2. Fundamental Concepts of Machine Learning

A major drawback of gradient descent is its sensitivity to the choice of learning rate α. If α
is too large, the algorithm starts to oscillate or even fails to converge at all. Conversely, a
small α value leads to an extremely low convergence rate [Bur19].

Another issue is that with an increasing number of examples the computational costs for each
epoch grow as well, because all partial derivatives are evaluated for the whole training set of
size m. Since the whole training set is used, the method described above is often referred to as
full batch gradient descent. Alternatively, the parameter update can be performed instantly
after computing the gradient for a single example in the training data. This introduces
stochasticity to the algorithm, because the gradient of a single example might indicate a
substantially different direction than the gradient computed for the whole training batch
[GBC16]. However, in practice, stochastic or sometimes called on-line gradient descent often
shows better convergence properties, especially when combined with a adaptive learning rate.
A popular and widely used compromise between full batch and stochastic gradient descent
(SGD) is mini-batch gradient descent . The idea is to find an approximation of the gradient
by evaluating the gradient just for a small sample of the data, a so-called mini-batch. Instead
of evaluating the gradient for the whole training set, it is replaced by an estimator that was
computed on a sample with fixed size. The differences between the implementation of the
three possible optimization strategies are described in Section 3.5 on the example of neural
networks.

Other improved versions of stochastic gradient descent include Adagrad, which automatically
adapts the learning rate, and the momentum method that accelerates stochastic gradient
descent by selecting the relevant direction and thus, reduces oscillations [Bur19].



15

Chapter 3

Neural Networks

For supervised learning tasks artificial neural networks (ANNs) are the state of the art al-
gorithmic architecture [Mar19]. Inspired by the neurons of the brain, an early form, known
as perceptron , was created by Frank Rosenblatt in 1958. After the late 1960s, the devel-
opment stagnated due to the lack of computational power and efficient methods for network
training. With the introduction of the backpropagation algorithm in 1986, learning capabil-
ities of neural networks improved significantly. Nevertheless, their application only became
practical in the early 2000s on the hardware available at this time. A major breakthrough
leading to more attention was the success of a deep neural network by Krizhevsky et al. that
won the image recognition challenge ImageNet in 2012 by a large margin [DBDJH14]. The
success was also driven by developments in computer graphics that allowed the exploitation
of graphical processing units (GPUs) for the training process.

Since then, artificial neural networks have been applied to solve a great variety of problems.
Typical tasks include speech, image and natural language processing, autonomous driving,
playing board and computer games, algorithmic trading or weather forecasting. Recently, also
physicists and engineers started to investigate how conventional methods can benefit from
the capabilities of neural networks [CCC+19]. Even though fundamentals in this still young
area of research have been established, most results of modern neural networks are based on
empirical studies and heuristics [MBW+19]. This chapter introduces the simplest form of a
neural networks and explain its fundamentals on an illustrative example. Section 3.8.1 and
Section 3.8.2 are devoted to more advanced neural network architectures that were designed
to perform exceptionally well in specific tasks such as image or speech recognition, language
translation or time series forecasting.

3.1 Feed-forward Neural Network

When seen as a black-box, a neural network is like any other supervised learning model just a
parameterized function defining a mapping y = fNN (x). A particularity of neural networks is
that they are typically composed of many nested functions. For instance, three functions f1,f2
and f3 might form the mapping fNN (x) = f3(f2(f1(x))), where each function fl represents a
layer of the network. The information in form of input x flows from the input layer through
an arbitrary number of so-called “hidden” layers to the output layer, hence the name feed-



16 3. Neural Networks

x1

x2

x3

σ

σ

σ

σ

σ

σ

σ

σ

ŷ1
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Figure 3.1: A fully-connected feed-forward neural network.
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Figure 3.2: A single neuron with three inputs.

forward neural network. The number of layers defines the depth, whereas the amount of
hidden neurons determine the width of a network. In this context the term “deep” learning
often refers to neural networks with more than one hidden layer [GBC16]. A simple network
architecture is depicted in Fig. 3.1. The circles represent the basic units called “neurons”,
whereas the connections can be interpreted as weights that control the importance of their
inputs. If every neuron from the previous layer is connected with each neuron of the next
layer, then the neural network is said to be “fully-connected”. A single neuron takes a vector
of features x and produces a scalar output a(x), which serves as an input for the neurons in
the next layer. The output of a neuron can be decomposed into two operations. First, the
input vector x is transformed into

z = wTx+ b (3.1)

with a neuron-specific weight w and bias b. Second, the neuron’s output a(x) is computed
by applying the non-linear function σ to the resulting scalar z (cf. Fig. 3.2)

a(x) = σ(z). (3.2)

The function σ is called activation function and is usually chosen to be the same for all
neurons [GBC16]. Without the use of a non-linear activation function, the model would
not be able to represent any non-linearities in the data. The reason is, regardless of how
many linear transformations are applied to an input, the output would still remain a linear
function of the input. Typical candidates for the activation σ(z) are the hyperbolic tangent,
the sigmoid function and the rectified linear unit, short ReLU (see Fig. 3.3). A more detailed
discussion about the properties of the different activation functions is provided in Section 3.4.
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Figure 3.3: Common activation functions

Depending on the function chosen for the output neurons, neural networks are able to solve
either regression or classification tasks. For regression, simply applying a linear function in
the output layer leads to a result in form of a real number. In case of classification, a common
choice is the sigmoid function to enforce a binary encoding of the output that can be easily
transformed into labels.

Generally, a fully-connected feed-forward neural networks with one hidden layer is capable
of approximating any continuous multi-input/multi-output function with arbitrary precision,
given that the hidden layer contains a sufficient amount of neurons. Known as the universal
approximation theorem, this hypothesis was formally proven by multiple researchers inde-
pendently, e.g. in “Approximation by superpositions of a sigmoidal function” by Cybenko,
just to mention one of the first references [Cyb89]. A graphical and very intuitive explana-
tion of the universality theorem can be found in chapter four of Nielsen’s online-book [Nie15,
Chapter 4]. The basic idea is that hidden neurons allow the generation of step functions with
arbitrary offsets and heights that can be superpositioned to construct any arbitrary function.
However, the whole concept is rather of theoretical importance. In practice, the usage of
deep networks with multiple hidden layers is preferred. Multi-layer architectures exhibit the
same representational power as comparable wide networks with a single hidden layer, while
being computationally more efficient in the training process, as a paper by Mhaskar et al.
suggested [MLP16]. Nevertheless, this topic is controversially discussed and continues to be
an area of active research [MBW+19].

When dealing with discontinuous functions, a feed-forward neural network can provide a suf-
ficient continuous approximation [Nie15]. Nevertheless, their applicability for discontinuous
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Figure 3.4: Output visualization of a multi-layer neural network. It has two inputs corresponding
to the x and y coordinates of a picture and one output defining the color at the pixel (x, y). The
parameters of the network are randomly initialized and are not trained. The code used for generating
the pictures was developed by Marquardt [Mar17].

problems is limited. The solution often exhibits oscillations around the discontinuities similar
to the Gibbs phenomenon observed in Fourier series approximations of discontinuous func-
tions. In “Constructive Approximation of Discontinuous Functions by Neural Networks”,
Llanas et al. propose a way to overcome this shortcoming and show an almost uniform ap-
proximation of a piece-wise continuous function by a single hidden-layer feed-forward neural
network [LLS08].

In order to give an illustrative example of the representational capabilities, a neural network is
used to generate color plots. The outputs for different numbers of hidden layers are compared
in Fig. 3.4. All networks have two inputs, represented by the horizontal and vertical image
axis as well as the corresponding output that controls the color value of the image. With
an increasing number of layers, the network is able to show more complex functions. These
images were generated with random weights and biases and the networks have not been
trained for approximating a specific function or image yet.

3.2 Forward Propagation

Before proceeding with the training process of a neural network, it is important to get a
better understanding of how the data is propagated from the input to the output layers. A
very simple example network with two inputs x1 and x2, one hidden layer and a single output
ŷ1 is depicted in Fig. 3.5.

The goal is to compute the prediction ŷ1 of the neural network for one given example

x =

[

x1
x2

]

=

[

5
3

]
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Figure 3.5: A simple feed-forward neural network example.

and weights

W (1) =

[

w
(1)
11 w

(1)
12

w
(1)
21 w

(1)
22

]

=

[

1 −3
−2 1

]

, w(2) =

[

w
(2)
1

w
(2)
2

]

=

[

2
−1

]

.

For the sake of simplicity, the biases for each neuron are set to zero and thus are neglected
in the following calculations. Furthermore, the activation function for all neurons is chosen
to be σ(z) = (zi)

2. The input vector x is fed to the network and every entry is stored in
the corresponding neuron of the input layer without any further modifications. As a first
step toward computing the output of the hidden layer, the weighted sum of the inputs is
calculated and stored in the variable z(1)

z(1) = W (1)x =

[

1 −3
−2 1

] [

5
3

]

=

[

−4
−5

]

.

Then, the activation function σ is applied element-wise to the resulting vector z(1) to get the
output a(1) of the hidden layer

a(1) = σ(z(1)) =

[

σ(−4)
σ(−5)

]

=

[

16
25

]

.

Now, the output a(1) serves as the input for the neurons of the next layer. Again, the linear
transformation z(1) is computed first

z
(2)
1 = (w(2))Ta(1) =

[

2 −1
]

[

16
25

]

= 7.

Finally, the prediction of the neural network ŷ is computed by applying the activation function

to z
(2)
1

a
(2)
1 = σ(z

(2)
1 ) = σ(7) = 49 = ŷ1

To generalize the computations from the example, the output for the current neuron j in the
l-th layer is calculated by the following formula [Nie15]

a
(l)
j = σ(z

(l)
j ) = σ

(

∑

k

w
(l)
jka

(l−1)
k + b

(l)
j

)

, (3.3)
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where a
(l−1)
k is the output of the k-th neuron from the previous layer l−1 and w

(l)
jk is the weight

connecting the k-th neuron with the current neuron j. After adding the neuron-specific bias

b
(l)
j to the weighted sum of all outputs k from the previous layer, the non-linear activation
function is applied [Nie15].

Using only matrix and vector notation Eq. (3.3) yields [Nie15]

a(l) = σ(z(l)) = σ(W (l)a(l−1) + b(l)). (3.4)

The images in Fig. 3.4 were generated in very similar fashion, namely by forward-propagating
arbitrary inputs through a feed-forward neural network with random weights and biases.
More complex images were achieved only by adding more hidden layers and neurons to the
network architecture.

3.3 Backpropagation

Up to this point, the neural network was only able to transform an input into an output
depending on the randomly initialized set of weights and biases. Meaning the network has
not utilized any data to learn the optimal parameters w∗ and b∗ that generate a desired
output. As for the example of linear regression, learning from data can be formulated as an
optimization problem which requires the definition of a suitable cost function. Once again
the mean squared error loss is chosen to quantify the prediction accuracy of the model. The
cost function takes on the familiar form

C =
1

2m

∑

i

(yi − ŷi)
2, (3.5)

but introducing the factor 1
2 to simplify the expression of the derivative is needed for later

calculations. To find optimal network parameters, the cost function is minimized with the
gradient descent method that was introduced in Section 2.8. Essential for the iterative
parameter update (cf. Eq. (2.15)) is the computation of the gradient of the cost function with
respect to the weights and biases. Backpropagation is an efficient technique for determining
the partial derivatives of graph-structured functions and in particular neural networks. It
belongs to the field of automatic differentiation that deals with the algorithmic computation
of derivatives [GBC16]. In the following the general form of the back-propagation algorithm is
derived and then illustrated on the example network from the previous section (cf. Fig. 3.5).

If the cost function C is seen as an average over the sum of cost functions Ci of the individual
examples i

C =
1

m

∑

i

Ci, (3.6)

then the cost Ci for one example i can be written as

Ci =
1

2
(yi − ŷi)

2 =
1

2
(yi − a

(L)
i )2, (3.7)

where a
(L)
i denotes the output of the last layer L and simultaneously the output ŷi of the
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neural network. Further, the computation of the derivatives will be only performed for a
single example. Thus, the index i in Eq. (3.7) is dropped to increase the readability. As
mentioned the goal of the back-propagation algorithm is to compute the partial derivatives
of the cost function with respect to the weights ∂C

∂w
(l)
jk

and biases ∂C

∂b
(l)
j

.

Recalling Eq. (3.3) the output of a layer l is defined as

a
(l)
j = σ(z

(l)
j ), (3.8)

where
z
(l)
j =

∑

k

w
(l)
jka

(l−1)
k + b

(l)
j (3.9)

is computed using the outputs of the previous layer a
(l−1)
k .

Now, rewriting ∂C

∂w
(l)
jk

yields

∂C

∂w
(l)
jk

=
∂C

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

= δ
(l)
j

∂z
(l)
j

∂w
(l)
jk

= δ
(l)
j a

(l−1)
k , (3.10)

with
∂z

(l)
j

∂w
(l)
jk

=
∂

∂w
(l)
jk

∑

k

w
(l)
jka

(l−1)
k + b

(l)
j = a

(l−1)
k . (3.11)

Similarly, ∂C

∂b
(l)
j

is computed as follows

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

= δ
(l)
j

∂z
(l)
j

∂b
(l)
j

= δ
(l)
j , (3.12)

since
∂z

(l)
j

∂b
(l)
j

=
∂

∂b
(l)
j

∑

k

w
(l)
jka

(l−1)
k + b

(l)
j = 1. (3.13)

Equation Eq. (3.10) and Eq. (3.12) introduce a new variable δ
(l)
j that describes the sensitivity

of the cost function toward a change in the neuron’s weighted input z
(l)
j . If δ

(l)
j for each

neuron j in layer l is known, the derivative ∂C

∂w
(l)
jk

can be computed simply by multiplying δ
(l)
j

of the j-th neuron of the current layer l with the output a
(l−1)
k of the k-th neuron from the

previous layer (l − 1). The derivative with respect to the bias ∂C

∂b
(l)
j

directly equates to δ
(l)
j .

In a next step, an expression for δ
(L)
j in the output layer L is derived

δ
(L)
j =

∂C

∂z
(L)
j

=
∂C

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

=
∂C

∂a
(L)
j

σ′(z
(L)
j ) = −(yj − σ(z

(L)
j ))σ′(z

(L)
j ), (3.14)
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recalling that a
(L)
j = σ(z

(L)
j ) and inserting

∂a
(L)
j

∂z
(L)
j

=
∂

∂z
(L)
j

σ(z
(L)
j ) = σ′(z

(L)
j ). (3.15)

What is still missing is a general term for δ
(l)
j in an arbitrary layer l. Utilizing the chain rule

δ
(l)
j can be expressed in terms of δ

(l+1)
k

δ
(l)
j =

∂C

∂z
(l)
j

=
∑

k

∂C

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
∑

k

∂z
(l+1)
k

∂z
(l)
j

δ
(l+1)
k . (3.16)

With a
(l)
j = σ(z

(l)
j ) and the definition of z

(l+1)
k being

z
(l+1)
k =

∑

j

w
(l+1)
kj a

(l)
j + b

(l+1)
k =

∑

j

w
(l+1)
kj σ(z

(l)
j ) + b

(l+1)
k , (3.17)

the derivative with respect to z
(l)
j can be calculated as

∂z
(l+1)
k

∂z
(l)
j

= w
(l+1)
kj σ′(z

(l)
j ). (3.18)

Substituting Eq. (3.18) into Eq. (3.16) finally yields

δ
(l)
j =

∑

k

w
(l+1)
kj δ

(l+1)
k σ′(z

(l)
j ). (3.19)

With equations Eq. (3.10), Eq. (3.14) and Eq. (3.19) all expressions to calculate the partial
derivatives of the simple example network are available. Since the biases in the example are
chosen to be zero, the computation of the derivatives has to be executed with respect to the
four entries of w(1) and two entries of w(2). This also implies that Eq. (3.12) is not needed.
The single data point considered in this example consists of the input vector x = [ 53 ] and the
target y = 46. In order to compute the delta for the output neuron δ(L), the derivative of the

activation function σ′(z) = 2z and the results for z
(2)
1 from the previous section are inserted

into equation Eq. (3.14) resulting in

δ
(2)
1 = −(y − σ(z

(2)
1 ))σ′(z

(2)
1 ) = −(46− 49)σ′(7) = 42.

This intermediate result is then propagated backwards to compute δ
(1)
1 and δ

(1)
2 of the hidden

layer using equation Eq. (3.19)

δ
(1)
1 = w

(2)
1 δ

(2)
1 σ′(z

(1)
1 ) = 42 ∗ 2 ∗ σ′(−4) = −672,

δ
(1)
2 = w

(2)
2 δ

(2)
1 σ′(z

(1)
2 ) = 42 ∗ (−1) ∗ σ′(−5) = 420.
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Finally, the partial derivatives are calculated with equation Eq. (3.10) using the previously
computed δ-values

∂C

∂w
(1)
11

= δ
(1)
1 x1 = −672 ∗ 5 = −3360,

∂C

∂w
(1)
12

= δ
(1)
1 x2 = −672 ∗ 3 = −2016,

∂C

∂w
(1)
21

= δ
(1)
2 x1 = 420 ∗ 5 = 2100,

∂C

∂w
(1)
22

= δ
(1)
2 x2 = 420 ∗ 3 = 1260,

∂C

∂w
(2)
1

= δ
(2)
1 a

(1)
1 = 42 ∗ 16 = 672,

∂C

∂w
(2)
2

= δ
(2)
1 a

(1)
2 = 42 ∗ 25 = 1050.

The partial derivatives can now be used to update the parameters according to the update
rule from Eq. (2.15) in Section 2.8:

W (1)
new = W (1) − α∇C

W
(1) , (3.20)

w(2)
new = w(2) − α∇C

w(2) . (3.21)

Updating the weights with a learning rate α = 0.001 yields

W (1)
new =

[

1 −3
−2 1

]

− 0.001

[

−3360 −2016
−2100 1260

]

=

[

4.36 −0.984
0.1 −0.26

]

(3.22)

and

w(2)
new =

[

2
−1

]

− 0.001

[

672
1050

]

=

[

1.328
−2.05

]

. (3.23)

More intuitive explanation of back-propagation can be found in the second chapter of Nielsen’s
online book “Neural Networks and Deep Learning” that was used as reference for the formal
derivation of the algorithm [Nie15, Chapter 5]. Another illustrative approach is described in
Christopher Olah’s blog post [Ola15].

3.4 Activation Function

As observed in the preceding section, the activation function needs to be differentiable in order
to train neural networks with gradient-based methods. Inspired by the biological archetype,
the first neural networks, known as perceptrons, used a Heaviside step function to imitate
an active (= 1) or inactive neuron (= 0) (see Fig. 3.3). However, the derivative of a step
function is zero everywhere except at the jump and thus makes it impractical for training a
network. Until recently, continuous functions like the hyperbolic tangent or the sigmoid, also
known as the logistic function, were popular choices for the activation σ. Unfortunately, with
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increasing weights, those functions tend to saturate, resulting in very small gradients that
prevent the network from further learning [GBC16]. To resolve this problem of “vanishing
gradients”, a new type of activation functions was introduced. Rectified linear units or short
ReLU (cf. Fig. 3.3) are now the default recommendation for the use with most feed-forward
neural networks. They help to reduce saturation, since the function grows linearly for positive
inputs. The fact that the rectified linear function σ(z) = max{0, z} is not differentiable at
z = 0, is not a major issue in practice. Depending on the software implementation either the
left derivative 0 or right derivative 1 is chosen. Due to the numerical errors of computers, the
occurrence of z = 0 is very unlikely and can be neglected regarding the training process of
neural networks. Generally, the choice of the activation function has a considerable impact
on the performance and especially on the learning rate of a model, but usually depends on
the specific problem and the experience of the machine learning practitioner [Ng20].

3.5 Learning Algorithm

Within the previous sections all relevant information has been provided to build a neural
network architecture. To summarize, the following aspects are required to train the network
for a supervised learning task [Cho18]:

• input data X and corresponding targets y, divided into a test, training and validation
set,

• network topology, defined by the input, output and hidden layers, the corresponding
number of neurons, and their connections,

• an activation function σ,

• a loss function C, which defines the feedback signal used for learning,

• a way to compute the gradients w.r.t the network parameters, e.g. backpropagation,

• an optimizer with learning rate α, which determines how learning proceeds.

Algorithm 1 roughly describes the learning algorithm for a feed-forward neural network that
regresses a scalar value ŷ from a given input x.

Instead of using full-batch gradient descent, the parameters can be updated with a stochastic
or mini-batch gradient descent step. In case of stochastic gradient descent, the parameter
update is executed inside the loop over all examples. This means a gradient descent step is
taken each time an example is propagated through the network (cf. Algorithm 2).

The most popular optimization approach in practice is mini-batch gradient descent. Instead
of computing the gradients averaged over the whole training set, the gradients are evaluated
just for a small part of the training data, the so-called mini-batch. This allows to process
data-sets more efficiently, when they are too big to fit the memory as whole. Apart from
that, mini-batch gradient descent is preferred, because it is said to introduce a regularizing
effect [WM03].
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Algorithm 1 Training a neural network with full-batch gradient descent. The inner loop is
only displayed for a better understanding. Normally, the loop over the examples is vectorized
for more efficient computations.

Require: training data X, targets y
define network architecture (input layer, hidden layers, output layer, activation function)
set learning rate α
initialize weights W and biases b
for all epochs do

for example i← 1 to m do

apply forward propagation: ŷi ← fNN (xi;W, b) ⊲ cf. Section 3.2
compute loss: Ci ← (yi − ŷi)

2

apply backpropagation for gradients ∂Ci/∂W and ∂Ci/∂b ⊲ cf. Section 3.3
end for

compute full-batch cost function: C ← 1
m

∑m
i=1Ci

compute full-batch gradients w.r.t. W : ∂C
∂W ← 1

m

∑m
i=1

∂Ci

∂W

compute full-batch gradients w.r.t. b: ∂C
∂b ←

1
m

∑m
i=1

∂Ci

∂b

update weights: W ←W − α ∂C
∂W

update biases: b← b− α∂C
∂b

end for

Algorithm 2 Training a neural network with stochastic gradient descent.

Require: training data X, targets y
define network architecture (input layer, hidden layers, output layer, activation function)
set learning rate α
initialize weights W and biases b
for all epochs do

for example i← 1 to m do

apply forward propagation ŷi ← fNN(xi;W, b) ⊲ cf. Section 3.2
compute loss: Ci ← (yi − ŷi)

2

apply backpropagation for gradients ∂Ci/∂W and ∂Ci/∂b ⊲ cf. Section 3.3
update weights: W ←W − α ∂Ci

∂W

updates biases: b← b− α∂Ci

∂b
end for

end for
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Algorithm 3 Training a neural network with mini-batch gradient descent.

Require: training data X , targets y
define network architecture (input layer, hidden layers, output layer, activation function)
set learning rate α
initialize weights W and biases b
for all epochs do

shuffle rows of X and y synchronously (optional)
divide X and y into n batches of size k
for all batches do

for example i← 1 to k do

apply forward propagation: ŷi ← fNN (xi;W, b) ⊲ cf. Section 3.2
compute loss: Ci ← (yi − ŷi)

2

apply backpropagation for gradients ∂Ci/∂W and ∂Ci/∂b ⊲ cf. Section 3.3
end for

compute mini-batch cost function: C ← 1
k

∑k
i=1 Ci

compute mini-batch gradient w.r.t. W : ∂C
∂W ← 1

k

∑k
i=1

∂Ci

∂W

compute mini-batch gradients w.r.t. b : ∂C
∂b ←

1
k

∑k
i=1

∂Ci

∂b

update weights: W ←W − α ∂C
∂W

update biases: b← b− α∂C
∂b

end for

end for

3.6 Regularization of Neural Networks

As stated in the previous section on regularization (cf. Section 2.7), the task of making an
algorithm perform well on new inputs and not only on the training data is one of biggest
challenges in machine learning and is a field of extensive research. Regularization includes
all strategies aiming to diminish the test error without increasing the training error. Ideally,
they trade a significant reduction of variance for a slightly increased bias. There exist multi-
ple approaches to regularize a machine learning model or in particular neural networks. One
option is to formulate certain constraints, for example, by directly restricting the parameter
values or by adding an extra term to the objective function that constrains the parameters
indirectly. Some constraints and restrictions can alter an undetermined problem into a de-
termined one, others prefer simpler models for better generalization properties. The idea
to choose the simplest hypothesis among competing explanations stems back to the 14th
century and is known as Occam’s razor. Overall, these constraints and restrictions are often
designed to encode prior knowledge about the problem and, if chosen properly, can help to
reduce the generalization error. [GBC16] Furthermore, Section 2.7 introduced the three cases
of underfitting (or high bias), overfitting (or high variance), and an ideal model capacity that
matches the complexity of the underlying problem.

Most problems tackled by deep learning algorithms like image recognition or audio sequences
are too complex to be modeled precisely. However, the practice has shown that building a
large model with an appropriate regularization mechanism yields the best results in terms of
minimizing the generalization error [GBC16].
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Figure 3.6: Early stopping: At point a the validation error reaches its minimum. At point b the
optimization routine is terminated, since the validation error has not shown any improvement for the
prescribed number of iterations. Illustration inspired by Demuth et al. [DBDJH14].

3.6.1 Early Stopping

When plotting the training and validation error for every iteration step, a common observation
is that while the training error is steadily decreasing, the test error starts to rise again at
certain point in time (cf. Fig. 3.6). This usually happens when the model has a sufficient
capacity to overfit the problem. The basic idea of early stopping is to halt the training
process as soon as the validation error rises and the model enters the overfitting regime (see
point a in Fig. 3.6). In this way, the fitting of particular features of the training samples
can be avoided. It is essential to monitor the error on a validation set and not the test
set, because the number of training steps of the gradient-based algorithm has now become
a hyperparameter of the model. Every time the validation error decreases, the weights and
biases of the model are stored. The algorithm terminates when the validation error has not
improved over a predefined number of iterations steps (see point b in Fig. 3.6). Then, the
parameters at the point of the lowest validation error are returned.

Due to its simplicity and effectiveness, early stopping is a very popular regularization method
often applied in practice. It can be seen as a hyperparameter selection algorithm determining
the ideal number of training steps. The only additional costs are the evaluations of the
validation set after each epoch and the memory used to store the parameters. Conversely,
the computational costs are often reduced significantly, since the execution of unnecessary
training steps is prevented.

3.6.2 L
1 and L

2 Regularization

The two main representatives from the family of parameter norm penalties have already been
introduced in Section 2.8, namely L1 and L2 regularization. The methods have briefly been
described for linear regression, and it is straightforward to extend them to regularize neural
networks. Both regularization techniques aim to limit the capacity of a model by penalizing
the parameters Θ of the model with the help of a penalty term Ω(Θ) that is added to the
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cost function C [GBC16]. In a general form this can be expressed as

C̃ = C + λΩ, (3.24)

where C̃ is the regularized and C the unregularized cost function. The coefficient λ is a
hyperparameter weighting the relative contribution of the penalty term Ω. If λ = 0, no
regularization is applied and larger values for λ result in a more regularized model. In case
of L1 regularization, the cost function takes the form

C̃ = C + λ||w||1, (3.25)

and

C̃ = C +
λ

2
wTw (3.26)

for L2 regularization, respectively, where C can be any cost function e.g. the mean squared
error.

How these terms influence the training process, can be shown when deriving the update rules
of the gradient descent algorithm for the regularized cost function C̃ [GBC16]. Beginning
with computing the partial derivatives of Eq. (3.25)

∂C̃

∂w
=

∂C

∂w
+ λ sign(w), (3.27)

where sign(w) is applied element-wise and Eq. (3.26)

∂C̃

∂w
=

∂C

∂w
+ λw, (3.28)

the learning rule for the weights takes on the updated form

w → w′ = w − αλ sign(w)− α
∂C

∂w
, (3.29)

for L1 regularization and

w → w′ = w (1− αλ)− α
∂C

∂w
, (3.30)

for L2 regularization, respectively. In comparison, the update rule for an unregularized cost
function is defined as

w → w′ = w − α
∂C

∂w
. (3.31)

Depending on the choice of the parameter norm different solutions are preferred [Nie15].
L1 regularization encourages the selection of few high-importance connections, while the
other weights are forced toward zero. Looking at Eq. (3.29), the weights always shrink by
a constant amount and eventually tend toward zero. In contrast, L2 regularization shrinks
the weights proportional to w, so for small weights the reduction is much smaller compared
to L1 regularization and thus, is rather seen as weight decay. One intuitive explanation why
smaller weights are preferred is that they reduce the sensitivity toward changes in the inputs.
If the weights are large, even a small variation of the input can drastically alter the output.

The given formulas only consider the weights, because regularizing the biases can have un-
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Figure 3.7: Dropout. Illustration inspired by Nielsen [Nie15].

wanted effects like leading to severe underfitting. Theoretically, the hyperparameter λ could
be chosen individually for each layer, but usually it is set equally for the whole network to
reduce the search space during hyperparameter tuning [GBC16].

Overall, regularization with parameter norm penalties can effectively reduce the generaliza-
tion error of neural networks and can therefore improve their performance on a multitude of
tasks [Nie15]. Nevertheless, the effectiveness is usually demonstrated empirically, rather than
with a mathematical proof.

3.6.3 Dropout

In contrast to the parameter norm penalties, dropout regularization alters the network itself
instead of modifying the cost function [Nie15]. Before initializing the usual training workflow,
half of the hidden neurons get randomly and only temporarily dropped, while input and out-
put neurons stay untouched. Then, forward- and back-propagation as well as the parameter
update are executed. Importantly, dropout works with stochastic gradient-based methods
in which the cycle is only applied to one mini-batch of the training data (see Section 2.8).
Afterwards, the dropout neurons are restored and the procedure is repeated for the next
mini-batch deactivating another random subset of hidden neurons (cf. Fig. 3.7). Thus, the
weights and biases are learned with only half of the hidden neurons activated. Conversely
double the amount of hidden neurons is active, when the network is eventually used for mak-
ing predictions. To compensate for that, the outgoing weights of every hidden neuron are
halved. Other quotas than dropping 50% of hidden neurons are also possible and are usually
defined with the hyperparameter p ∈ [0, 1].

In order to understand why dropout helps the model to generalize better, it is worth to look
at a related topic known as ensemble method [Nie15]. If several different neural networks are
trained with the same training data, they most probably produce different results due to their
varying initial states. To select the preferred output, a voting or averaging scheme is applied
to the results. Assuming all networks overfit the data in a different way, taking an average
over the outputs can help to prevent this type of overfitting. Since training multiple networks
is only possible under extensive computational effort, dropout imitates this approach at a
much reduced cost. Dropping a set of neurons during each mini-batch update is similar to
training different neural networks. The dropout method can be considered as averaging the
effects of a large number of various neural networks and thus may reduce overfitting.



30 3. Neural Networks

3.6.4 Dataset Augmentation

The best way to increase the generalization abilities of a model is to train it on more data.
In most cases, obtaining more training data is not feasible, but sometimes the creation of
“fake” data can be an option. A good example is the task of image classification, where a
high dimensional input is mapped to a single classifier. This implies that the model has to
be invariant to a wide range of transformations. For the example of image recognition, it
is fairly easy to introduce small variations like translation, rotation, or scaling to the input
images.

Another data augmentation technique is the inclusion of noise [GBC16]. Most classification
and regression tasks should still be solvable, even when a small amount of random noise is
added to the input data. However, neural networks seem not to be very robust to noisy
inputs. A possibility to increase the robustness is to actually train the network with noise
injected data.

3.7 Example: Approximating the Sine Function

As stated in Section 3.1, fully-connected feed-forward neural networks with at least one
hidden layer are capable of approximating any continuous function with arbitrary precision
given a sufficient number of hidden neurons. On the example of the sine function, this section
investigates some of the introduced characteristics of machine learning and neural networks.
The sine is a suitable choice, since it is continuous function and its periodicity offers enough
complexity to serve as an academic example. All following results are generated using Python
and Tensorflow, the latter being a widely used and highly optimized library for training deep
neural networks [AAB+15].

The basic architecture of the fully-connected feed-forward network is depicted in Fig. 3.8. It
consists of one input unit, two hidden layers with 100 hidden neurons each as well as one
output unit. The goal is to approximate

f(x) = sin(2πx), x ∈ [−1, 1]

in the interval [−1, 1]. The neural network approximation can be written as

fNN = wT
3 σ
(

W 2

(

σ(wT
1 x+ b1)

)

+ b2
)

+ b3 = ŷ, (3.32)

with the sigmoid σ(zj) =
1

1+e−zj
serving as the activation function for the hidden neurons.

The training set containing 40 samples are generated by computing y = sin(2πx) + ǫ for a
uniform random distribution of values x across the interval [−1, 1]. By adding noise with the
term ǫ, noisy measurements often occurring in real-world applications are simulated. The
noise term is computed as

ǫ = 0.1 · U(−1, 1),

where U(−1, 1) denotes values drawn from a uniform random distribution. Similarly, a val-
idation set is generated by sampling 40 randomly chosen points in the interval [−1, 1]. The
test set is simply represented by the analytical solution of the sine function.
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Figure 3.8: Feed-forward neural network architecture used for approximating the sine function. The
network takes x as an input and outputs the corresponding ŷ coordinate. Each of the two hidden
layers consists of 100 neurons with sigmoid activation functions. The output neuron uses a linear
activation.

Since the prediction of the sine function is a regression task, the mean squared error loss is
chosen as the cost function C

C = MSEtrain =
1

m(train)

m(train)
∑

i=1

(y
(train)
i − ŷ

(train)
i )2. (3.33)

Using the cost function C and the respective gradient ∇C, the loss on the training data is
minimized by applying full-batch gradient descent, in particular the commonly used optimizer
Adam (short for: Adaptive Moment Estimation), with a learning rate of α = 0.01. The
computation of the gradient is handled by Tensorflow, which provides a very fast automatic
differentiation algorithm to compute the partial derivatives with respect to all parameters of
the network.

The weights of the network are initialized using a Glorot uniform initialization, as it often
shows better results and faster training with gradient descent methods [GB10]. Glorot uni-
form initialization draws samples from a uniform distribution within certain bounds. The

bounds [−l, l] are defined as l =
√

6
nin+nout

, with nin being the number of input units in the

weight tensor w(l) and nout the number of output units, respectively. The choice of initial
weights can have an impact on the results, since the gradient based algorithm may descent
into a completely different minimum of the cost function (cf. Section 2.8). For the biases,
the initial values are simply set to zero.

First results at different epochs of the training process are shown in Fig. 3.9. While the
number of training iterations is still low (cf. Fig. 3.9a), the model struggles to fit the training
data and the underlying sine function. As soon as the network has learned the parameters
for a sufficient amount of time (cf.Fig. 3.9b), it fits the training data and also generalizes well
on the test data across the sine. If the training continues for too long (cf. Fig. 3.10a), the
model starts to fit every example in the training set. This includes also the noisy data points
resulting in overfitting and bad predictions for the test data.

Early stopping, a straight-forward approach to prevent the model from overfitting has already
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(a) Neural network still showing signs of underfitting
after 500 training epochs.
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(b) Neural network properly fitting the underlying
sine function after 2000 iterations.

Figure 3.9: Predictions of the example network at different training epochs.
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(a) Neural network prediction after 10 000 epochs of
training and no regularization. Clearly showing signs
of overfitting.
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Figure 3.10: The example network trying to predict the sine function after 10 000 training iterations.
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(a) Prediction after 10 000 epochs of training and L2

regularization (λ = 0.0001).
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(b) Prediction after 10 000 epochs of training and L2

regularization (λ = 0.01).

Figure 3.11: Regularization of sine example.

been introduced in the previous Section 3.6.1. When the validation error can not be improved
within a predefined number of epochs, the early stopping algorithm simply returns the model
parameters at the point of the lowest validation error. For the example network, Fig. 3.10b
shows the training and validation errors plotted against the number of epochs. After reaching
epoch 2000, the validation error begins to rise again. In the given example, this patience
parameter for early stopping is set to 1000 epochs. The training stops after 3243 iterations,
meaning the lowest validation error was reached at epoch 2243.

As discussed in Section 3.6.2, another way to resolve the problem of overfitting is to use
parameter norm penalties like L2 regularization, which adds a term to the cost function pe-
nalizing large weights. The influence of the penalty term is controlled by the hyperparameter
λ. The plots in Fig. 3.11 show the results with applied L2 regularization for different values
of λ. For large values of λ the model exhibits underfitting, meaning it fails to fit the training
data as well as the test data (cf. Fig. 3.11b). In contrast, when the ideal value for λ is found,
the network is able to fit the data points of the training set and also a generalization to the
test data is achieved (cf. Fig. 3.11a). If no regularization (λ = 0) is applied, the model shows
the typical typical of overfitting (cf. Fig. 3.10a). So, the function exactly passes through
almost every noisy data point in the training data, but fails to represent the underlying sine
wave.

Investigating the seemingly simple example of approximating the sine function reveals that
the results are sensitive to a great variety of factors. All the different kind of hyperparame-
ters and possible settings determined by the user have a great influence on the output and
the learning speed of the model. For example, choosing a different activation function, a
different learning rate or even another optimizer can drastically change the outcome. Since
conducting a detailed parameter study exceeds the scope of this work, Fig. 3.12 displays a
few representative results that demonstrate the influence of the three aforementioned settings
and hyperparameters.
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(a) Reference neural network with sigmoid activa-
tions properly fitting the underlying sine function
after 2000 iterations. The network parameters are
learned by applying the Adam optimizer with a learn-
ing rate of α = 0.01.
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(b) Prediction generated using ReLU as the activa-
tion function. With ReLU activations the network
already starts to overfit at 2000 epochs.
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(c) Prediction after 2000 epochs with learning rate
α = 0.2. This example shows that a large learning
rate can prevent the network from learning.
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(d) Prediction after 2000 epochs using stochastic
gradient descent (SGD) instead of the Adam opti-
mizer. A drawback of SGD is the slower convergence
rate, since the parameters are updated after the eval-
uation of each single example (cf. Section 3.5).

Figure 3.12: Parameter study for the example network predicting the sine function. Except for the
one parameter in discussion, all parameters are kept the same as in the reference example on the top
left.
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Figure 3.13: Convolution layer: The local receptive field or filter K is applied to the input layer I.
Image by Veličković [Vel20].

3.8 Advanced Architectures

The following sections introduce two network architectures that have been very successful in
their domains of use. Adapted to a particular data structure, they achieve superior results
in various tasks when compared to fully-connected feed-forward neural networks.

3.8.1 Convolutional Neural Network

Convolutional neural networks (CNNs) are specifically designed for image processing [LBBH98].
Their distinct architecture allows them to account for the spatial structure of a picture and
thus makes convolutional networks the preferred choice for image classification tasks [Nie15].
When trying to recognize an object in an image, it can be assumed that features describing
the object are found in close proximity to each other. Furthermore, the exact location in
the image is not of importance for the identification of an object, just the relative position
of features to each other matters. CNNs exploit these two realities about physical objects,
namely locality and translational variance. Like an ordinary neural network, a CNN consists
of neurons that have learnable weights and biases. What differs is the arrangement of the
processed data and the mathematical operation employed in the hidden layers, which are
separated into convolutional and pooling operations. The input layer is not longer a vector,
but has the shape of a matrix to account for the grid-like structure of pixels in an image.
For instance, a convolutional network is processing a square image of 7× 7 pixels where each
pixel corresponds to a gray-scale value. Then, a hidden neuron in the convolutional layer
is connected with a small region of the input pixels, e.g a 3 × 3 window, called the local
receptive field of the hidden neuron (see Fig. 3.13). The size of the local receptive field and
the distance between the fields, also referred to as stride length, define the number of neurons
of the convolutional layer. In the example shown in Fig. 3.13, the local receptive field of size
3 × 3 moves over the input layer with a stride length of 1. Since the input layer consists of
7× 7 pixels, the corresponding convolutional layer requires 5× 5 neurons. Together with the
size of the local receptive field, the stride length is a hyperparameter of the convolutional
network. A specialty of CNNs is that all hidden neurons in the convolutional layer share
the same weights and bias, often referred to as the filter K. As a result, all neurons detect
the same feature at different locations in the input image, which implies the characteristic
of translational invariance. The output of the convolution operation is called feature map.
A convolutional layer normally consists of more than one feature map in order to detect
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Figure 3.14: Max pooling with a 2 × 2 filter and stride length 1. Illustration inspired by Burkov
[Bur19] and Veličković [Vel20].

Figure 3.15: An unrolled recurrent neural network [Ola15].

multiple localized features. Every feature map is generally followed by the application of a
pooling operation that condenses the output of the convolution (see Fig. 3.14). For example,
each unit in the pooling layer summarizes a region of 2× 2 neurons in the previous layer. A
common pooling technique is max-pooling, where simply the maximum value of the respec-
tive region is taken. Pooling can be interpreted as a query that checks if a feature has been
detected somewhere neglecting the exact position in the image. At the end, a fully-connected
layer is added to perform the classification task. The arrangement of multiple convolutional
and pooling layers allows very deep and expressive network architectures. Sharing weights
and biases in combination with the pooling operation reduces the amount of trainable pa-
rameters significantly. Thus, convolutional networks learn much faster than fully-connected
neural networks with comparable expressive power [Nie15]. The backpropagatoin algorithm
for calculating the gradients needs only small changes to adapt to the convolution and pooling
operations in the network .

3.8.2 Recurrent Neural Network

Conventional neural networks are only able to evaluate a current state described by the fixed-
size input vector. So information from previous states can not persist nor be passed on to
later ones. Recurrent neural networks (RNNs) tackle this issue by adding loops that allow
the persistence and propagation of information over time. A recurrent neural network can be
seen as multiple copies of the same network, each forwarding a message to their respective
successor. The sketch of an unrolled recurrent neural network is depicted in Fig. 3.15 [Ola15].
As shown, RNNs are chain-like structures that take in sequences of data x0,x1, . . . ,xt and
generate a sequential output ŷ0, ŷ1, . . . , ŷt. Sequential data often occurs in tasks like speech
recognition, language modeling and translation, making recurrent neural networks the pre-
ferred choice for these kind of problems. One shortcoming of standard RNNs is that they are
only able to connect very recent information with the current task. An illustrative example
is the prediction of words in text sequences. For instance, the final word in the sentence
“the color of a lemon is yellow” can directly be derived from the preceding words. Often
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the relevant information needed for the prediction is found much earlier in the sequence.
In the text excerpt “We used too many lemons for our lemonade... We did not like the
lemonade, it was too sour”, the gap between the information and the place of prediction is
much larger and RNNs usually fail to learn such long-term dependencies [Hoc91]. This prob-
lem has been solved by introducing a special implementation of recurrent neural networks,
called long short-term memory networks (LSTMs) that often achieve outstanding results in
the aforementioned tasks. The key concept of LSTMs is their cell state, where information
has to pass several gates before it gets passed on. Three different gates control and protect
the cell state by deciding if information is added, kept or discarded. In this way, LSTMs
are capable to remember information and storing long term dependencies. Since recurrent
neural networks employ a sequential structure, the backropagation algorithm is adapted to
take into account the temporal component resulting in a method called “backpropagation
through time” [Ola15].

For more in-depth content about recurrent neural networks, the reader is referred to chapter
10 of Goodfellow’s “Deep Learning” book [GBC16, Chapter 10] and Christopher Olah’s blog
post “Understanding LSTMs” [Ola15].
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Chapter 4

Literature Review

The access to enormous quantities of data combined with rapid advances in machine learning
in recent years yielded outstanding results in the fields of computer vision, recommendation
systems, medical diagnosis, or financial forecasting [AMMIL12]. Nonetheless, the impact of
learning algorithms reaches far beyond and already found its way into many scientific disci-
plines [AJZS18]. While machine learning frameworks are already able to support radiologists
in medical diagnostics [LRVL+12], do scientists from other fields only begin to explore the
immense potential of data-driven algorithms.

The first part of this chapter provides a short overview of developments in physics and
engineering with an emphasis on applications in the domain of computational mechanics.
The second part is dedicated to a more detailed review of a paper by Raissi et al., that
introduces the class of so-called physics-informed neural networks (PINNs) [RPK19]. Lastly,
this chapter ends with an outline of several works, that build up on the findings of the
aforementioned paper.

4.1 Machine Learning in Physics and Engineering

Even before the unprecedented success of deep learning, a handful of academics identified
the potential of neural networks in scientific computations during the 1990s and early 2000s.
For instance, Rico-Mart́ınez and Kevrekidis used a neural-network-based approach for the
identification of non-linear systems, that are continuous in time [RMK93]. With the help
of a neural network, Milano and Koumoutsakos demonstrated the reconstruction of a near-
wall field in turbulent flow [MK02]. An example from the field of chemical engineering is the
process modeling of a fed-batch bioreactor. Psichogios and Ungar described a hybrid network
architecture that incorporates additional information about the problem [PU92]. The idea
of enriching a neural network architecture with prior knowledge is also found in the work
of Lagaris et al., who propose an artificial neural network for solving ordinary and partial
differential equations. The last two examples inspired the paper by Raissi et al. [RPK19],
which will be discussed in more detail in Section 4.2.

Solving scientific problems with the help of machine learning techniques is a very broad and
active area of research. The following section gives a short introduction to the topic and it
provides the reader with an overview of current literature.
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Figure 4.1: Machine Learning in Science and Engineering. The image was taken from Frank et al.
[FDC20].

4.1.1 General Reviews

In order to validate existing theories or new hypothesis, scientists heavily rely on empirical
studies. This means a great part of scientific work is dedicated to data analysis. For instance,
the sub-field of statistical physics deals with the derivation of physical models from experi-
mental data. According to Mehta et al., statistical physics shares a lot of common ground
with statistical learning theory, the fundamental concept of learning probability distributions
from data [MBW+19]. Their recommendable introduction to the world of algorithmic data
analysis is addressed to interested readers with a background in physical sciences. Carleo
et al. take on a similar perspective [CCC+19]. They discuss the interface between machine
learning and physics and further highlight how both fields could equally benefit from each
other. According to the authors, one example of this potential symbiosis is quantum comput-
ing. Machine learning can support the building process and analysis of quantum computers.
On the other hand, the execution of learning algorithms on quantum computers could lead
to a significant speed-up of the training process.

A review article about the applications of machine learning in natural sciences by Frank et
al. puts a greater emphasis on recent developments within computational sciences and en-
gineering [FDC20]. Next to scientific data analysis supported by well-established learning
algorithms, they discuss machine learning in the context of computational simulation and
modeling. More specifically, they distinguish between algorithms that help to improve con-
ventional computational methods and different classes of surrogate models that can replace
those methods completely in specific situations (cf. Fig. 4.1).

Conventional methods in the context of computational mechanics usually refer to the finite
element method (FEM) or other discretization methods such as the finite difference or finite
volume method. The core idea of discretization methods is to subdivide a large domain into
simpler and smaller parts, that can be easily processed by a computer. These methods allow
the numerical solution of partial differential equations and they are applied to a variety of
static and dynamic problems. Due to its robustness, the finite element method is the most
popular approach for solving problems in the fields of structural analysis, heat transfer, multi-
physics applications as well as fluid mechanics [All07]. The application of finite differences
and finite volumes is more prevalent in problems of thermodynamics and computational fluid
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dynamics [PTA12].

Time-dependent partial differential equations are of major significance in the field of fluid
dynamics. Fluids in motion often exhibit highly non-linear behavior, which makes their
solution with conventional numerical methods very costly. In the opinion of Brunton et
al. fluid mechanics could benefit from the application of machine learning due to its ability
to cope with non-linear relations [BNK20]. Their review dealt with recent applications in
problems of flow modeling and optimization as well as experimental flow control. While
highlighting the success of machine learning in critical tasks like model order reduction or
feature extraction, they pointed out current obstacles that demand future research.

Inspired by recent results in reinforcement learning (cf. Section 2.3.4) Garnier et al. assessed
first approaches that apply deep reinforcement learning in the context of fluid dynamics
[GVR+19]. On the examples of flow control and shape optimization, new ideas are compared
to classical methods.

Computationally challenging tasks in mechanics do not only arise in structural or fluid dy-
namics. Also the domain of material mechanics could possibly benefit from the introduction
of machine learning techniques. A collection of articles published by Huber et al. present
data-driven approaches contributing to the advancement of continuum material mechanics
[HKKC20].

The cited reviews agree on the great potential of machine learning in applications of physical
sciences and engineering. No less could machine learning profit from a wider adoption in
the scientific community. For instance, the interface between fluid mechanics and machine
learning lets hope for a fruitful exchange of ideas between the two fields [BNK20]. How-
ever, some authors noted that machine learning introduces new uncertainties and drawbacks.
Data-driven algorithms often lack robustness and can not guarantee convergence [GVR+19].
Further, the interpretability and explainability of results are compromised, when algorithms
are simply applied as “black-boxes” [BNK20].

4.1.2 Combined Methods

After a more general introduction on potential uses of machine learning in science and en-
gineering, the focus shifts on attempts that augment existing methods for modeling and
simulation of physical problems.

Solving partial differential equations while maintaining small-scale features of the solution
becomes computationally infeasible for large time-scales. In these cases, equations that rep-
resent a coarse-grid approximation of the underlying problem are derived. However, it is not
always possible to find such a suitable approximation function analytically. Motivated by this
circumstance Ben-Sinai et al. proposed a neural network that learns an effective approxima-
tion from actual solutions of the underlying partial differential equations [BSHHB19]. This
data-driven approach allows accurate results for a much coarser time discretization when com-
pared to the standard finite-differences method. Nevertheless, the computational overhead
due to the convolutional operations of the neural network is much higher. Additionally, the
scalability needs further investigation, since the method was only demonstrated on examples
with one spatial dimension.

The finite element method requires the element-wise calculation of integrals [All07]. A stan-
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dard approach used for the numerical integration is the Gaussian quadrature, that approxi-
mates an integral with a finite sum [Ise08]. Oishi et al. proposed a method, that optimizes
the quadrature rule for computation of the finite element stiffness matrix using a deep neural
network [OY17]. The resulting quadrature rule was more accurate than the standard Gauss-
Legendre quadrature for the same amount of integration points. Improving the performance
of numerical integration is of general importance to computational mechanics and not only
in the context of the finite element method. Having said that, the computational costs of
training a neural network for each problem individually does not justify the gain in accuracy
so far.

Material modeling is an essential part of simulating physical entities. The material models
are usually derived from experimental data and are then calibrated for further calculations.
According to Kirchdoerfer et al. the additional step of empirical material modeling is a non
negligible source of error to the solution of complex systems [KO16]. Their work introduced
a method, that replaces the empirical material modeling process with data-driven computa-
tions. The proposed solver directly utilizes experimental material data in combination with
essential constraints and conservation laws. The first results were conducted on the examples
of non-linear three-dimensional trusses and linear elastic solids showing good convergence
properties. Even though their approach was formulated in the context of quasi-static me-
chanics, the authors believe that an extension to dynamic problems is possible.

4.1.3 Surrogate Models

The previously discussed examples followed the idea of improving existing numerical methods
by means of data-driven algorithms. A different approach to exploit the predictive power of
machine learning algorithms is to use them as surrogate models for physical simulations. The
following publications introduced the first attempts of replacing costly and time-consuming
computations with data-driven predictions.

Image-guided interventions are exemplary for clinical applications, that demand immediate
feedback to practitioners. Due to the high complexity of biomechanical models standard
numerical methods, such as the finite element method, are not suitable for the application
in time-sensitive tasks. On the way to providing real-time results on patient-specific ge-
ometries Liang et al. proposed a deep learning framework that can directly estimate the
stress distribution in the wall of an aorta [LLMS18]. The stress distributions used to train
the deep neural network were generated by finite element analysis of 729 patient-specific
geometries. Mart́ınez-Mart́ınez et al. provided another example from the field of medical
applications [MMRMMS+17]. In contrast to the preceding approach, they made use of tree-
based methods to simulate the biomechanical behavior of breast tissues during image-guided
interventions. Again, the training data was based on finite element simulations of ten real
breast models.

In the early design phases of engineering structural components, it is crucial to run multiple
iterations, e.g. for the shape optimization of an airfoil. When the problem involves fluid dy-
namics, the computation in each iteration is costly. Even with the use of efficient solvers, the
engineer’s workflow is delayed by long waiting times since the solution has to be computed for
each and every change in design. The concept of Afshar et al. is to estimate the pressure field
and velocity of dynamic problems using a convolutional neural network (cf. Section 3.8.1),
that learns from pixelated solutions [ABP+19]. In particular, they demonstrated the pre-
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Figure 4.2: A combination of long-short term memory and convolutional neural network for fluid
flow prediction. Here the trapezoidal shapes denote the encoding and decoding of spatial information
by the convolutional layers and the rectangle in the middle represents the LSTM network predicting
the temporal evolution in the reduced space. Image by Wiewel et al. [WBT19].

diction of a two-dimensional flow field around different airfoil geometries under variable flow
conditions and compared the performance to a classical Reynolds-averaged Navier–Stokes
solver. The accuracy of the results was sufficient for the early design stage while the com-
putational time decreased by a factor of four on the available hardware. Three years earlier
Guo et al. proposed a very similar idea [GLI16]. Instead of computing the solution of airflow
around an obstacle with conventional methods, they trained a convolutional neural network
to predict the resulting velocity field. The experiments were conducted on a greater variety
of shapes compared to the first approach including simple three-dimensional geometries. In
terms of speed-up, they claimed to accelerate the computations by two orders of magnitudes
in comparison to classical numerical methods.

Motivated by the goal of simulating physics in real-time, progress is made in the field of
computer graphics. Wiewel et al. introduced an interesting data-driven framework for the
prediction of fluid flows [WBT19]. In a first step, they generated data-sets with a classical
Navier-Stokes solver. Then, a convolutional neural network (CNN) was trained to learn a
mapping from the three-dimensional problem into a smaller spatial representation. At the
same time, the network learned the corresponding inverse mapping. The reduced model
was then fed to an LSTM neural network (cf. Section 3.8.2) that predicted the temporal
evolution in the reduced space. Finally, the earlier learned reverse mapping transformed the
output of the LSTM network back into the three-dimensional space. The whole process is
also depicted in Fig. 4.2 [WBT19]. Due to the efficient compression of the CNN, this method
allows significant speed-ups compared to conventional fluid flow simulations according to the
authors. Furthermore, the proposed work shows good generalization capabilities. From an
engineering viewpoint, it is important to note that the accuracy of the results is mainly
judged on visual comparison to the reference computation.

All presented works demonstrate the possibility of replacing physically complex simulations
with data-driven computations. Using a learned surrogate model may lead to a significant
speed-up, which enables the on-line application in time-sensitive tasks. As a consequence, the
problem of expensive data generation and time-consuming training is shifted to preliminary
computations. A major drawback of this approach is the limited generalization ability. The
machine-learning frameworks are trained for one specific task and can not be used for arbitrary
problems. In order to achieve better generalization properties incredibly large data-sets and
deep learning architectures would be needed.
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4.2 Physics-informed Neural Networks

Generating an accurate surrogate model of a complex physical system usually requires a large
amount of data about the problem at hand. However, data acquisition from experiments or
simulations is often infeasible or too costly. With this in mind, Raissi et al. proposed an
approach, that augments surrogate models with existing knowledge about the underlying
physics of a problem [RPK19]. In many cases, the governing equations or empirically deter-
mined rules defining the problem are known a priori. For instance, an incompressible flow
has to satisfy the law of conservation of mass. By incorporating this information, the solution
space is drastically reduced and, as a result, training less data are needed to learn the latent
solution. In particular, the goal is to solve problems which can be described by parameterized
nonlinear partial differential equations of the form

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ]. (4.1)

Here, the latent solution u(t, x) depends on time t and a spatial variable x, N [u;λ] represents
the nonlinear operator with parameter λ, and Ω refers to a space in R

D. This description
covers a wide range of problems ranging from advection-diffusion-reaction of chemical or
biological systems to the governing equations of continuum mechanics.

The idea of adding prior knowledge to a machine learning algorithm is not completely new.
As mentioned before, the studies by Raissi et al. were inspired by papers of Psichogios and
Ungar [PU92], Lagaris et al. [LLF98], and more recent developments by Kondor [Kon18],
Hirn et al. [HMP17] and Mallat [Mal16]. Nevertheless, the solutions proposed by Raissi
et al. extended existing concepts and introduced fundamentally new approaches like a dis-
crete time-stepping scheme, that efficiently exploits the predictive power of neural networks.
Furthermore, they demonstrated their method on a variety of examples that are of interest
in a physics and engineering context. Their code was written in Python and utilizes the
popular GPU-accelerated machine learning framework Tensorflow. Additionally, the code
is publicly available on GitHub allowing others to explore physics-informed neural networks
and contribute to their development [Rai20].

The paper was referenced in different reviews [BNK20, FDC20] and inspired further research
on physics-enriched surrogate models as outlined in Section 4.3. The wide-spread recognition
by the scientific community also motivated this thesis to establish a deeper understanding of
physics-informed neural networks and to investigate their possible applications.

The main article this thesis is referring to was published in 2019 in the Journal of Compu-
tational Physics [RPK19]. It can be seen as the summary of a two-part series of pre-prints
already available since 2017 [RPK17d, RPK17e]. Following the structure of the papers, this
section begins with an introduction to data-driven inference of partial differential equations,
followed by a description of data-driven identification of partial differential equations. Each
of these sections is further subdivided into descriptions of continuous and discrete-time mod-
els. If not indicated differently, the contents in this section refer to the three aforementioned
papers by Raissi et al. [RPK17d, RPK17e, RPK19].
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4.2.1 Data-driven Inference

The problem of inference can be phrased as: find the hidden solution u(t, x) for fixed model
parameters λ. Since λ is known Eq. (4.1) simplifies to

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ]. (4.2)

Continuous-time Model

As an introductory example the authors chose the initial-boundary value problem of a one
dimensional Burgers’ equation. The governing partial differential equation along with the
initial condition and Dirichlet boundary conditions is defined as

ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 1], (4.3)

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0.

Now, a deep neural network is used to approximate the unknown solution u(t, x). So far
this approach does not differ from the surrogates introduced in Section 4.1.3. However, these
models have to rely on a tremendous amount of labeled training data closely related to the
solution being approximated. Instead of having labeled training data in the whole domain,
the solution for the example at hand is only known at initial time t = 0 and on the boundaries.
Additionally, Eq. (4.3) has to be satisfied for every point inside the domain. In order to verify
that every input fulfills this condition, the network is extended to compute the left-hand-side
of equation Eq. (4.3)

f := ut + uux − (0.01/π)uxx. (4.4)

Since a neural network is fully differentiable, it is not only possible to compute the derivatives
with respect to the parameters necessary for training. Likewise, the automatic differentiation
capabilities of libraries such as Tensorflow allow the fast computation of derivatives with
respect to the input variables x and t. To demonstrate the simplicity of computing the
derivatives ut, ux, and uxx needed for f(t, x), the authors show a code snippet where u(t,x)
represents the neural network approximating u(t, x):

def f(t,x):

u = u(t,x)

u_t = tf.gradients(u,t)[0]

u_x = tf.gradients(u,x)[0]

u_xx = tf.gradients(u_x,x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

All together, this extended network architecture can be interpreted as a physics-informed
neural network with outputs uNN (t, x) and fNN (t, x). As depicted in Fig. 4.3 the first part
simply approximates the solution u(t, x) with a feed-forward fully connected neural network.
The second part represents the code snippet from above for the computation of f(t, x) and
the corresponding partial derivatives ut, ux, and uxx. It should be noted that both networks
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Figure 4.3: Conceptual physics-informed neural network for the Burgers’ equation. The left part
shows the feed-forward neural network and the right part represents the physics-informed neural
network. The dashed lines denote non-trainable weights.

uNN (t, x) and fNN(t, x) depend on the same set of parameters, namely the weights and biases
of the first network. The parameters of the second part are not trainable. The connections
can be interpreted as constant weights with value one and the biases of the neurons remain
at zero.

Like with any other machine learning algorithm, the parameters are learned by minimizing
a suitable loss function. In case of the physics-informed neural network this custom loss
function is assembled from three mean squared error losses

C = MSE0 +MSEb +MSEf , (4.5)

where
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The known solution at the initial time t = 0, is represented by N0 labeled data points
{0, xi0, u

i
0}

N0
i=1 and the solution on the boundary by Nb labeled data points {tb, x

i
b, u

i
b}

Nb

i=1,
respectively. The losses MSE0 and MSEb are simply computed by comparing the approx-
imation uNN with the labels u0 and ub of the training data. In order to enforce Eq. (4.2)

in the whole spatio-temporal domain, a set of Nf collocation points {tf , x
i
f}

Nf

i=1 is generated
using a Latin hypercube sampling technique [Ste87]. The corresponding loss MSEf from
Eq. (4.8) is simply computed as the mean squared error of fNN at all collocation points.

Now the physics-informed neural network can be trained by minimizing the cost function
in Eq. (4.5). Contrary to the standard gradient descent methods used in machine learning,
the authors applied a quasi-Newton, full-batch gradient descent algorithm, called L-BFGS
[LN89]. In an additional step, this optimizer approximates the diagonal of the Hessian to
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Figure 4.4: Continuous-time inference of Burgers’ equation. Top: The predicted solution u(t, x) for
the whole spatio-temporal domain is displayed along with the location of the data points used for
training. Bottom: Exact and predicted solution at the temporal snapshots indicated by white lines
in the upper panel. This figure was generated with the code from Raissi et al. [Rai20].

determine a suitable step-size. For larger data-sets, it was recommended to switch to a
computationally more efficient mini-batch gradient descent algorithm.

Even though the proposed approach is not guaranteed to converge to a global minimum,
thus an accurate solution u(t, x), the authors showed empirically, that their method achieves
accurate results for different problems and architectures. Assuming that the partial differ-
ential equation has a unique solution and is well-posed, the physics-informed neural network
is able to predict the underlying solution. Further requirements are a network architecture
with adequate representational power and a sufficient number of collocation points Nf .

To study the robustness of their proposed method the authors conducted multiple sensitivity
analyses. First, they kept the network architecture fixed and changed the number of training
examples N0 + Nb as well as the number of collocation points Nf . In a second run, both
training and collocation points remained fixed and the number of layers and neurons was
varied. Both studies showed a trend of increased prediction accuracy when more data are
available or the network’s capacity is increased.

It is remarkable, that the approach was capable of accurate prediction, even for relatively
small amounts of labeled training data. For instance, given N0 + Nb = 100 randomly dis-
tributed training examples and Nf = 10000 collocation points, a physics-informed neural
network with 8-hidden layers containing 20 neurons each could predict the solution to the
one dimensional Burgers’ equation from Eq. (4.3) with an error of 6.7 × 10−4 in the relative
L2-norm (cf. Fig. 4.4). In the discussion of their results, the authors claimed, that the design
of the cost function prevents the common habit of machine learning algorithms to overfit
(cf. Section 2.6). The combination of multiple terms in the cost function and especially the
loss MSEf seems to have a regularizing effect. They further emphasized that the proposed
method is mesh-free. Nevertheless, there are limits to this approach since the number of
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collocation points increases exponentially for higher-dimensional problems. To keep a com-
parable density in three spatial dimensions, not 1002, but 1004 collocation points are needed.
Propagating such a vast amount of examples through the network at each iteration results
in an extremely slow algorithm. In these cases, a mini-batch gradient descent algorithm
might promise better performance. Apart from the Burgers’ equation, the authors tested the
continuous-time inference on the Schrödinger equation and the method yielded comparably
accurate results on this more complex example.

Discrete-time Model

To circumvent the need for collocation points Raissi et al. proposed an alternative solution-
inference approach based on a Runge-Kutta time stepping scheme. Contrary to a continuous
prediction in time, the solution is only predicted at certain time steps. Assuming the solution
at time step tn is known, then the proposed method is able to predict the solution at the
next time step tn+1 = tn +∆t, where ∆t denotes step size.

To solve the following problem
ut = g[u], (4.9)

the general form of the Runga-Kutta method with q stages is written as [Ise08]

un+ci = un +∆t

q
∑

j=1

aijg
[

un+cj
]

, i = 1, . . . , q,

un+1 = un +∆t

q
∑

j=1

bjg
[

un+cj
]

,

(4.10)

where
un+cj(x) = u(tn + cj∆t, x) j = 1, . . . , q. (4.11)

Writing the Runge-Kutta method in this general form allows the usage of both explicit and
implicit time-stepping schemes. The advantage of explicit methods is that they are fast and
easy to implement. After the solution at the first stage is obtained, it is substituted into
the equation at the second stage and so on. As the name suggests, implicit methods can
not simply be solved by substitution. They form a system of dependent equations, that
requires the use of an iterative solution process. However, implicit methods exhibit excellent
stability properties, which make them especially suitable for stiff systems. The type of method
depends on the choice of parameters aij, bj , and cj that are organized in a so-called Butcher
table [Ise08].

Assuming a neural network is able to predict the solution un+1 at time tn+1 and the inter-
mediate solutions un+ci at all stages i = 1, . . . , q from an input x, then its output can be
written as

[

un+c1(x), . . . , un+cq(x), un+1(x)
]

. (4.12)

In particular, the neural network predicts the left-hand side of Eq. (4.10). Rearranging
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Eq. (4.10) yields

un = un+ci −∆t

q
∑

j=1

aijg
[

un+cj
]

, i = 1, . . . , q,

un = un+1 −∆t

q
∑

j=1

bjg
[

un+cj
]

.

(4.13)

Now all the terms dependent on the prediction of the neural network stand on the right-hand
side and the solution at time tn is found on left. In other words, Eq. (4.13) is a backward
time-stepping scheme. Knowing the solution at time tn+1 as well as all solutions at the
intermediate stages, the solution at time tn can be predicted. To assign a unique identifier
to each equation in Eq. (4.13) the following nomenclature is introduced

un = uni , i = 1, . . . , q,

un = unq+1,
(4.14)

where

uni = un+ci −∆t

q
∑

j=1

aijg
[

un+cj
]

, i = 1, . . . , q

unq+1 = un+1 −∆t

q
∑

j=1

bjg
[

un+cj
]

.

(4.15)

According to Eq. (4.15) the output of the physics-informed neural network for an input x
can be defined as

[

un1 (x), . . . , u
n
q (x), u

n
q+1(x)

]

. (4.16)

Like in the continuous-time model, the physics informed neural network consists of two parts.
The first part is a deep neural network with multiple outputs as shown in (4.12). The second
part transforms the output of the first network according to Eq. (4.15) and returns the
quantities in (4.16) in order to compare them with the known solution at time tn.

The discrete-time model for data-driven inference was again demonstrated on the Burgers’
equation (cf. Eq. (4.3)). So g [un+cj ] takes on the following form

g
[

un+cj
]

= −N
[

un+cj
]

= −un+cju
n+cj
x + (0.01/π)u

n+cj
xx , (4.17)

where N denotes the non-linear operator introduced in Eq. (4.2).

Given the initial data
{

xn,i, un,i
}Nn

i=1
at time tn and the solution on the boundaries x = −1

and x = 1 at time tn+1, the network can be trained with the following cost function

SSE = SSEn + SSEb. (4.18)

Here, SSEn denotes the sum of squared errors over the solutions at time tn and is defined as

SSEn =

q+1
∑

j=1

Nn
∑

i=1

(

unj
(

xn,i
)

− un,i
)2

. (4.19)

The second term SSEb enforcing the boundary conditions at time tn+1 and all intermediate
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steps tn+ci for i = 1, . . . , q, is given by

SSEb =

q
∑

i=1

(

(

un+ci(−1)
)2

+
(

un+ci(1)
)2
)

+
(

un+1(−1)
)2

+
(

un+1(1)
)2

. (4.20)

Thus, the network learns to predict the solution at time tn+1 based on the known solution at
time tn and the boundary conditions in the time interval [tn, tn+1] by minimizing Eq. (4.18).
This step can be repeated to predict the solution at the following time steps u(tn+2, x),
u(tn+3, x), and so on. When explicit methods are used, the step size ∆t is chosen to be small
in order to prevent stability issues. Implicit schemes are stable even for larger time steps,
but this simultaneously leads to a costly increase in the number of required stages q. What
makes the proposed method distinct from the classic Runge-Kutta time stepping-schemes,
is the fact that the number of stages q can be increased without a significant increase in
computational effort. Adding another stage to the model simply extends the output layer
of the neural network by an extra neuron and the corresponding parameters. Overall the
parameters only increase linearly with the total number of stages.

Due to the better stability properties, the authors decided to test their method using an
implicit time stepping scheme. The network architecture consisted of four hidden layers with
50 neurons each. In order to exploit the computational advantage the number of stages was
chosen to be q = 500 which allows the selection of a large time step size. Given Nn = 250
labeled training points at initial time tn = 0.1, the goal was to predict the solution at
tn+1 = 0.9. As shown in Fig. 4.5 the physics-informed neural network was able to predict
the almost discontinuous solution at time t = 0.9 from smooth initial data at time t = 0.1 in
a single time-step of size ∆t = 0.8. The relative L2-error for this examples was measured at
8.2 × 10−4. To investigate the robustness of the discrete time inference model, the authors
conducted a series of small sensitivity studies. Next to different network architectures, they
varied the number of Runge-Kutta stages and the time-step size ∆t. As expected there was
a tendency toward higher prediction accuracy for more expressive networks. Similarly, the
accuracy increased when more Runge-Kutta stages q were used or the time step size ∆t was
decreased. The authors completed the demonstration of their method with another example
of a non-linear partial differential equation, more precisely the Allen-Cahn equation.

4.2.2 Data-driven Identification

System identification from sparse data is another class of problems often encountered in
physics or engineering applications. In the second part of their article, Raissi et al. tackled
the problem of data-driven discovery with the help of the previously introduced physics-
informed neural networks. To phrase the task of system identification in other words: find
the parameters λ, that describe the observed data best.

Continuous-time Model

Like in the previous section (cf. Section 4.2.1), the authors began with the definition of the
continuous-time model. To recall the kind of problem to be solved, Eq. (4.1) is written again

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ]. (4.21)
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Figure 4.5: Discrete time inference of Burgers’ equation. Top: The analytical solution u(t, x) for
the whole spatio-temporal domain is displayed along with the location of the training snapshot at
t = 0.1 and the predicted snapshot at t = 0.9. Bottom: The training data and the prediction at
the corresponding snapshots are shown. This figure was generated with the code from Raissi et al.
[Rai20].
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Figure 4.6: Conceptual physics-informed neural network for the identification of the Burgers’ equa-
tion. The left part shows the feed-forward neural network and the right part represents the physics-
informed neural network. The dashed lines denote non-trainable weights and the additional parameters
λ1 and λ2 can be interpreted as weights of the physics-informed network part.

Since the example is already familiar, the Burgers’ equation is revisited

ut + λ1uux − λ2uxx = 0, x ∈ [−1, 1], t ∈ [0, 1], (4.22)

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0,

with the addition of the scalar parameters λ1 and λ2 for the differential operator.

Except for the additional parameters, the architecture of the physics-informed neural network
as introduced in Section 4.2.1 remains unchanged (cf. Fig. 4.6). The hidden solution uNN (t, x)
is approximated by a deep neural network. The output is then fed into the physics-informed
part of the network to compute the right-hand side of Eq. (4.22)

f := ut + λ1uux − λ2uxx. (4.23)

It should be noted, that λ1 and λ2 simply behave like trainable parameters similar to the
weights and biases of the network.

In order to learn the optimal weights and biases along with the parameters λ1 and λ2 for the
predictive network the following cost function is minimized

C = MSEu +MSEf (4.24)

where

MSEu =
1

N

N
∑

i=1

(

u
(

tiu, x
i
u

)

− ui
)2

, (4.25)

and

MSEf =
1

N

N
∑

i=1

(

f
(

tiu, x
i
u

))2
. (4.26)

Here, MSEu denotes the mean squared error over the training data {tiu, x
i
u, u

i}Ni=1 andMSEf

enforces Eq. (4.22) on the same set of data points.

The authors chose again the L-BFGS optimizer to train their model on a training set of
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Figure 4.7: Training domain and data used for identification of the Navier-Stokes equation. Top:
Incompressible flow around a cylinder with dynamic vortex shedding. Bottom: Locations of train-
ing points and representative snapshots of velocity components. Figure and text from Raissi et al.
[RPK19].

N = 2000 randomly generated points distributed over the whole spatio-temporal domain.
The samples corresponded to approximately 8% of the available data and were taken from
the exact solution u(t, x) where λ1 = 1.0 and λ2 = 0.01/π. A nine-layer deep neural network
with 20 neurons per hidden layer was able to predict both the entire solution and the param-
eters λ1, λ2 accurately, even when the training data was altered by some uncorrelated noise.
The results were validated through another systematic study investigating the influence of
available training data and different noise levels. In the same way, the architecture of the
network was altered to check if larger networks lead to more accurate results. All in all the
results confirmed that assumption. Interestingly, the method proved to be quite robust to
noise levels of up to 10%.

To engage in a more realistic example, Raissi et al. tried the proposed method on an incom-
pressible fluid flow past a cylinder in two dimensions. The flow was modeled by the Navier-
Stokes equation and a high-fidelity data set was generated with a corresponding solver. A
snapshot of the regime with dynamic behavior right behind the cylinder was used for the
training of the physics-informed neural network (cf. Fig. 4.7). Both the velocity and the
pressure field were approximated with a deep neural network. Then, the physics-informed
extension computed the Navier-Stokes equation for the two spatial dimensions. As in the
previous example, the parameters of the differential operator were unknown and learned by
the network. A nine-layer model, where every hidden layer accommodated 20 neurons, was
trained with N = 5000 labeled data points corresponding to only 1% of the available snap-
shot data. The results showed that the physics-informed neural network was able to identify
the two parameters with satisfactory accuracy even for the case when the training data were
corrupted with one percent random noise.

Another remarkable observation was that the network can predict continuous quantities of
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interest from secondary data. In the presented example, the network could predict the
pressure field even though the training data did not contain any information regarding the
pressure. According to the authors, this showed the potential of physics-informed neural
networks to aid the process of solving inverse problems.

Discrete Time Model

The final approach introduced by Raissi et al. is a discrete-time model for the identification
of the governing partial differential equation. As described in Section 4.2.1 the aim is to solve
the following problem

ut = g[u;λ], (4.27)

where λ represents any additional parameters. First, the general form of the Runge-Kutta
method with q stages is written as

un+ci = un +∆t

q
∑

j=1

aijg
[

un+cj ;λ
]

, i = 1, . . . , q,

un+1 = un +∆t

q
∑

j=1

bjg
[

un+cj ;λ
]

,

(4.28)

where
un+cj(x) = u(tn + cj∆t, x) j = 1, . . . , q, (4.29)

The choice of parameters aij , bj and cj decides if an explicit or implicit time-stepping scheme
is applied. Rearranging Eq. (4.28) yields

un = un+ci −∆t

q
∑

j=1

aijg
[

un+cj ;λ
]

, i = 1, . . . , q,

un+1 = un+ci −∆t

q
∑

j=1

(aij − bj)g
[

un+cj ;λ
]

, i = 1, . . . , q.

(4.30)

Now, a neural network predicts the intermediate solutions for all stages q

[

un+c1(x), . . . , un+cq (x)
]

. (4.31)

Using the output of this network and splitting Eq. (4.30) according to the following scheme

un = uni , i = 1, . . . , q

un+1 = un+1
i , i = 1, . . . , q,

(4.32)

two physics-informed neural networks are constructed, namely

[

un1 (x), . . . , u
n
q (x), u

n
q+1(x)

]

(4.33)

and
[

un+1
1 (x), . . . , un+1

q (x), un+1
q+1 (x)

]

. (4.34)



4.2. Physics-informed Neural Networks 55

Since the three networks share their parameters by construction, the weights and biases along
with the unknown parameters λ can be learned by minimizing the following sum of squared
errors

C = SSEn + SSEn+1 (4.35)

where

SSEn :=

q
∑

j=1

Nn
∑

i=1

(

unj
(

xn,i
)

− un,i
)2

(4.36)

and

SSEn+1 :=

q
∑

j=1

Nn+1
∑

i=1

(

un+1
j

(

xn+1,i
)

− un+1,i
)2

. (4.37)

Two distinct measurements at times tn and tn+1 serve as the training data for the model.

The first snapshot at time tn is defined by the labeled data points
{

xn,i, un,i
}Nn

i=1
and the

second snapshot at time tn+1 consists of labeled examples
{

xn+1,i, un+1,i
}Nn+1

i=1
.

The example of the parameterized Burgers’ equation was revisited as the basis for a systematic
analysis of the proposed method

ut + λ1uux − λ2uxx = 0. (4.38)

For this specific example, the nonlinear operator with parameters λ1 and λ2 is defined as

g
[

un+cj ;λ
]

= −N
[

un+cj ;λ
]

= −λ1u
n+cju

n+cj
x + λ2u

n+cj
xx . (4.39)

Choosing a set of randomly sampled points Nn = 199 and Nn+1 = 201 of the exact solution
at the corresponding times tn = 0.1 and tn+1 = 0.9 a physics informed neural network was
trained to find the unknown parameters λ1 and λ2 by minimizing Eq. (4.35). The network
architecture consisted of four hidden layers with 50 neurons each. The number of Runge-
Kutta stages q for time step size ∆t = 0.8 was determined by the following rule

q = 0.5 log ǫ/ log(∆t). (4.40)

This empirical rule was introduced to keep the accumulated error of the time stepping scheme
around the same order of magnitude as the machine precision ǫ. The method showed remark-
able accuracy for varying time step size ∆t, while being quite robust to random noise in the
training data. Eventually, these results were validated by repeating the experiment with the
Korteweg-de Vries equation [KV95].

4.2.3 Review Conclusion

Raissi et al. concluded that their findings demonstrate the potential and usefulness of the pro-
posed methods in a great variety of applications. Whether it is the prediction of a continuous
solution or the identification of hidden parameters, physics-informed neural networks are able
to solve problems governed by partial differential equations in scarce data regimes. However,
the authors also emphasized that the proposed approach is not aimed to replace classical
methods. Instead, they rather see a coexistence of physics-informed neural networks and ex-
isting methods as demonstrated with the discrete time stepping models in Section 4.2.1 and
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Section 4.2.2. Further, the authors acknowledged that their method poses many unanswered
questions. Some of these questions concern the minimum requirements for the network ar-
chitecture or what kind of activation functions and weight initialization techniques should be
used. Another great issue that has not been tackled yet, is the quantification of uncertainty
associated with neural network predictions.

4.3 Related Work

Raissi, Perdikaris, and Karniadakis, the authors of the article reviewed in the previous section,
have been working on physics-enriched learning machines before [RPK17a, RPK17b]. In their
earlier work, they used Gaussian processes for the inference and identification of differential
equations. Certain limitations imposed by the nature of Gaussian processes [RK18, RPK17c]
led to the development of neural-network-based approaches [RPK19].

The introduction of physics-informed neural networks inspired fellow researchers to adapt and
extend the proposed method. For instance, Pang et al. introduced a hybrid approach, that
combines numerical discretization and physics-informed neural networks to solve space-time
fractional advection-diffusion equations [PLK18]. Another extension is tailored to solve three-
dimensional fluid flow problems by encapsulating the governing physics of the Navier-Stokes
equation [RYK18]. Following classical numerical approximations from the family of Galerkin
methods, Kharazmi et al. proposed a physics-enriched network, that is trained by minimizing
the variational formulation of the underlying partial differential equation [KZK19]. Choosing
a variational residual as the cost function reduces the order of the differential operator and
thus promises to simplify the optimization problem during training. Nevertheless, the use of
a variational description does not come without limitations, since the choice of integration
points and the enforcement of Dirichlet boundaries require special treatment.

Using the variational formulation of a problem is the typical approach for the numerical so-
lution of partial differential equations. Thus, it is not surprising to find this idea in other
related publications. For example, Samaniego et al. followed this paradigm and translate the
variational energy formulation of mechanical systems into the cost function of a deep learning
model [SAG+19]. Next to a description of their physics-informed neural network implemen-
tation, the publication entailed several example applications from the field of computational
solid mechanics, like phase-field modeling of fracture or bending of a Kirchhoff plate.

Motivated by the successful application of machine learning algorithms to the solution of
high-order non-linear partial differential equations [BEJ19], E and Yu employed a deep resid-
ual neural network for solving variational problems [EY17]. Residual neural networks form an
extension of feed-forward neural networks (cf. Section 3.1), that introduces additional con-
nections between non-adjacent layers. In this way, some outputs can skip intermediate layers,
which reduces the difficulty of training extremely deep networks [HZRS15]. Nabian and Mei-
dani et al. also made use of this network architecture in order to build a surrogate model for
high-dimensional random partial differential equations [NM19]. On the academic examples
of diffusion and heat conduction they demonstrated, that their implementation is able to
deal with both strong and variational formulation of the problem. The challenge of solv-
ing high-dimensional partial differential equations also motivated Sirignano and Spiliopoulos
to investigate the applicability of deep learning in this context [SS18]. Their method can
solve free-boundary partial differential equations in up to 200 dimensions. Apart from a
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special treatment of the free boundaries, they proposed a Monte-Carlo based method for the
computation of second derivatives in higher dimensions.

The aforementioned papers dealt only with the inference of solutions to partial differential
equations. An alternative approach for data-driven discovery of partial differential equations
was presented by Rudy et al. [RBPK17]. They introduced a technique for discovering
governing equations and physical laws by observing time-series measurements in the spatial
domain. Their method allows the use of either an Eulerian or a Lagrangian frame of reference.
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Chapter 5

Physics-informed Neural Network

for the Non-linear Heat Equation

Joseph Fourier developed the heat equation in 1822 to describe the temperature distribution
in a solid medium over time. Except for the formalization of the heat flow, the heat equation
is often used as a canonical example for the class of parabolic partial differential equations.
More generally, it is used for the description of diffusion processes in various scientific fields
and, thus, also known as the diffusion equation [AP03].

Beyond the broad applicability, the choice of the problem is motivated by the importance
of thermal analysis to additive manufacturing processes. A common method for printing
complex metal components is laser bed powder fusion. Layer-by-layer, a laser melts and fuses
a metallic powder into solid three-dimensional geometries. The effective numerical modeling
of such processes is an ongoing research challenge since the simulation with conventional mesh-
based methods is computationally expensive. The region of laser impact is usually highly
localized compared to the surrounding spatial domain. Thus, the use of fine meshes is required
to achieve accurate results in the area of interest. On top of that, extensive runtimes of the
manufacturing process demand a large temporal domain with adequate discretization. To
reduce the computational effort current research suggests the use of adaptive mesh-refinement
techniques [KÖC+18] or the derivation of effective physical models [KCRA19]. The apparent
challenges show that the exploration of alternative methods is imperative.

As stated in Chapter 4, the development of physics-based learning models cause rising re-
search interest and equally motivates this thesis to investigate their application in the context
of thermal analysis. To pursue this line of study, a physics-informed neural network is used
to predict the solution of a one-dimensional heat transfer example.

5.1 Heat Equation

Before looking into the application of physics-informed neural networks to concrete examples
of heat transfer, a general description of the heat equation is stated. In particular, the
evolution of temperature u as a function of space and time is described by a transient heat
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equation and boundary conditions of the following form

cu̇−∇ · (κ∇u) = s on T × Ω

n · κ∇u = h on T × ΓN

u = g on T × ΓD

u(x, 0) = u0 on Ω.

(5.1)

Here, Ω ∈ R
D represents the spatial domain in D dimensions whereas the temporal domain

is denoted by T . Together they form the tempo-spatial domain T × Ω with Neumann and
Dirichlet boundaries represented by ΓN and ΓD, respectively. If the heat capacity c(u) or
the thermal conductivity κ(u) are chosen to be temperature-dependent, a non-linear heat
equation is obtained.

5.2 Time-continuous Solution of a Non-linear Heat Problem

5.2.1 Problem Statement

As a preliminary step toward the future analysis of more complex thermal problems, a one-
dimensional heat transfer example in the tempo-spatial domain T × Ω = [0, 0.5] × [0, 1] is
investigated. The governing partial differential equation of the problem can be written as

c
∂u

∂t
−

∂

∂x
(κ

∂u

∂x
) = s t ∈ [0, 0.5], x ∈ [0, 1]. (5.2)

Here, s denotes an inhomogeneous source term, while c(u) represents the heat capacity and
κ(u) the thermal conductivity, respectively. Further, the problem is subject to homogeneous
Neumann boundary conditions

− κ
∂u(t, 0)

∂x
= −κ

∂u(t, 1)

∂x
= 0, (5.3)

and the initial condition
u(0, x) = u0. (5.4)

Both the heat capacity c(u) and the thermal conductivity κ(u) are temperature-dependent
and defined as

c(u) = 4.55 × 10−4u2 − 5.78 × 10−3u+ 5.849 × 102, (5.5)

κ(u) = 1.29 × 10−2u+ 6.856. (5.6)

In order to validate the network predictions, a manufactured solution of the following form
is proposed

u = umax exp

(

−
(x− p)2

2σ2

)

, (5.7)

where umax = 800 and σ = 0.02. Normally, such Gaussian bell formulations are used to
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(a) Manufactured solution u.
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Figure 5.1: Manufactured solution u and corresponding flux φ for the one-dimensional heat transfer
problem. The solution was generated using MATLAB with a resolution of t× x = 201× 256 points.

model the the laser-induced heat source s [KCRA19] which is traveling along a path p

p(t) =
1

4
cos

(

2πt

tmax

)

+
1

2
. (5.8)

Here, the Gaussian bell term is chosen to represent the manufactured solution to the problem
instead. Plugging Eq. (5.7) into Eq. (5.2) yields

s =
κu

σ2
+ u

x− p

σ2

[

c
∂p

∂t
−

x− p

σ2

(

κ+ u
∂κ

∂u

)]

. (5.9)

The manufactured solution u and the corresponding heat flux φ were generated with MAT-
LAB at t× x = 201× 256 discrete points (cf. Fig. 5.1).

The method of manufactured solutions is commonly used to validate numerical solvers on suf-
ficiently complex examples [Roa02]. Nonetheless, the manufactured solution from Eq. (5.7)
should by no means be interpreted as an realistic example. For instance, the source term s
partially exhibits negative values which would in the example of laser powder bed fusion cor-
respond to a laser extracting energy from the domain. However, the manufactured solution
is a fast and direct way to benchmark the predictions of the physics-informed neural net-
work and it may help to replicate certain characteristics of the problem found in real-world
applications.

5.2.2 Implementation

The implementation for the results at hand is based on the code accompanying the paper
by Raissi et al. [Rai20, RPK19]. In addition to adapting the code to the specific problem,
several amendments are proposed in the following sections.

To begin with, the architecture of the physics-informed neural network is determined. In



62 5. Physics-informed Neural Network for the Non-linear Heat Equation

accordance with Section 4.2.1, a feed-forward neural network uNN (t, x;Θ) is used to predict
the hidden solution of the problem described in Eqs. (5.2) to (5.4). The inputs of the network
are the temporal variable t and the spatial variable x. The network output û approximates the
corresponding temperature distribution u(t, x). To define the output of the physics-informed
neural network fNN (t, x;Θ) (cf. Fig. 4.3), the left-hand side of Eq. (5.2) is recalled as

f := c
∂u

∂t
−

∂

∂x
(κ

∂u

∂x
) = c

∂u

∂t
−

∂κ

∂x

∂u

∂x
− κ

∂2u

∂x2
. (5.10)

According to Eqs. (5.5), (5.6), and (5.10), the code is adapted to consider for the left-hand
side of the given heat equation:

def f(t,x):

u, u_x = self.net_u(x, t)

u_t = tf.gradients(u,t)[0]

u_xx = tf.gradients(u_x,x)[0]

k = 1.29 * 10 ** -2 * u + 6.856

k_u = 1.29 * 10 ** -2

k_x = k_u * u_x

c = 4.55 * 10 ** -4 * u ** 2 - 5.78 * 10 ** -3 * u + 5.849 * 10 ** 2

f = c * u_t - k_x * u_x - k * u_xx

return f

Here, self.net_u(t,x) denotes the neural network uNN (t, x;Θ) that returns the predicted
temperature û and the corresponding gradient ∂û

∂x . The latter is used to compute the heat
flux and to enforce the Neumann boundary conditions. Correspondingly, the source term
from Eq. (5.9) equates to the right-hand side of Eq. (5.2) and it is implemented as:

def s(t,x)

t_max = 0.5

sigma = 0.02

u_max = 800

p = 0.25 * tf.cos(2 * np.pi * t / t_max) + 0.5

p_t = - 0.5 * np.pi / t_max * tf.sin(2 * np.pi * t / t_max)

u_sol = u_max * tf.exp(-(x - p) ** 2 / (2 * sigma ** 2))

k_sol = 1.29 * 10 ** -2 * u_sol + 6.856

k_u_sol = 1.29 * 10 ** -2

c_sol = 4.55 * 10 ** -4 * u_sol ** 2 - 5.78 * 10 ** -3 * u_sol + 5.849 * 10 ** 2

fac_sigma = 1/(sigma ** 2)

s = fac_sigma * k_sol * u_sol + u_sol * (x - p) * fac_sigma * (

c_sol * p_t - (x - p) * fac_sigma * (k_sol + u_sol * k_u_sol))

return s

In order to train the network, the following cost function is defined

C = MSE0 +MSEb +MSEf , (5.11)
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where

MSE0 =
1

N0

N0
∑

i=1

(

uNN

(

0, xi0
)

− ui0
)2

, (5.12)

MSEb =
1

Nb

Nb
∑

i=1

(

∂uNN

∂x

(

tib, 0
)

)2

+
1

Nb

Nb
∑

i=1

(

∂uNN

∂x

(

tib, 1
)

)2

, (5.13)

and

MSEf =
1

Nf

Nf
∑

i=1

(

fNN

(

tif , x
i
f

)

− s
)2

. (5.14)

The loss function MSE0 penalizes the error between the network prediction and N0 random
sample points {0, xi0, u

i
0}

N0
i=1 at initial time t = 0 (cf. Eq. (5.4)). The term MSEb enforces the

Neumann boundary condition in Eq. (5.3) with Nb random samples {tb, x
i
b, u

i
b}

Nb

i=1 on each
boundary. Lastly, adding the error of the residual MSEf ensures that the solution satisfies
the governing Eq. (5.2). As proposed by Raissi et al. [RPK19], the Nf collocation points

{tf , x
i
f}

Nf

i=1 are generated by a Latin-hypercube sampling technique [Ste87]. Subsequently, a
full-batch gradient-based optimization procedure searches for the optimal network parame-
ters Θ∗ by minimizing the cost function in Eq. (5.11). In addition to the L-BFGS method,
a preceding minimization with the Adam optimizer is employed [KB17]. This combination
was adapted from the existing code [Rai20] and has empirically proven to be the most robust
approach throughout this study.

To evaluate the performance of the model, the manufactured solution is used to generate a
test set of N discrete points covering the whole domain t×x = [0, 0.5]× [0, 1]. The euclidean
relative error measure for the test set is computed as follows

||û− u||2
||u||2

=
(
∑N

i=1 |ûi − ui|
2)1/2

(
∑N

i=1 |ui|
2)1/2

, (5.15)

where ûi denotes the network prediction and ui corresponds to the manufactured solution. A
relative error allows to compare different approaches, which will be introduced later in this
section.

Algorithm 4 summarizes the previously introduced training procedure employed for a contin-
uous prediction of the temperature distribution u(t, x). After the algorithm terminated, the
network uNN (t, x;Θ) with trained parameters Θ is used to predict the continuous tempera-
ture distribution over the whole domain t× x = [0, 0.5] × [0, 1].

If not indicated differently, the results in the coming sections were conducted with the choice of
parameters presented in Table 5.1 Additional parameters of the Adam and L-BFGS optimizers
default to the values chosen by Raissi et al. [Rai20]. The current implementation is based
on Tensorflow version 1.15 and Python version 3.7. The computations were executed on a
laptop computer with an Intel Core i7-7700HQ @ 2.80GHz CPU and a NVIDIA GeForce
GTX 1050 graphics card.
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Algorithm 4 Training a physics-informed neural network for the continuous solution of the
problem described in Eq. (5.2).

Require: training data for initial condition {0, xi0, u
i
0}

N0
i=1

Require: training data for boundary condition {tb, x
i
b, u

i
b}

Nb

i=1

generate Nf collocation points with Latin-hypercube sampling {tf , x
i
f}

Nf

i=1

define network architecture (input, output, hidden layers, hidden neurons)
initialize network parameters Θ: weights {W l}Ll=1 and biases {bl}Ll=1 for all layers L
set hyperparameters for Adam optimizer (epochs, learning rate α, . . . )
set hyperparameters for L-BFGS optimizer (convergence criterion, max iterations, . . . )
loop

û0 ← uNN (0,x0;Θ)
∂ûb

∂x ←
∂uNN

∂x (tb,xb;Θ)
f ← fNN (tf ,xf ;Θ)
compute MSE0, MSEb, MSEf ⊲ cf. Eqs. (5.12) to (5.14)
computer cost function: C ←MSE0 +MSEb +MSEf

update parameters: Θ ← Θ − α ∂C
∂Θ ⊲ Adam or L-BFGS

end loop

for all epochs do

run loop with Adam optimizer
end for

repeat

run loop with L-BFGS optimizer
until convergence or max. iterations

no. of hidden layers: 3
no. hidden neurons: 20 (per layer)

hidden activation function: Tanh
output activation function: linear
no. of initial data points N0: 100

no. of boundary data points Nb: 50 (on each boundary)
no. of collocation points Nf : 20 000

no. of epochs: 10 000 (Adam optimizer)
learning rate α: 0.001 (Adam optimizer)
max iterations: 50 000 (L-BFGS optimizer)

tolerance for convergence: machine precision ǫ (L-BFGS optimizer)

Table 5.1: Parameters for the continuous-time inference.

.

5.2.3 First Results

The first attempt to run the algorithm, solely adapting the previously problem-specific func-
tions, led to no satisfactory result. Even for an extended number of gradient descent steps
and different learning rates, the algorithm did not converge to an acceptable solution. The
L-BFGS optimizer usually terminated after very few iterations.

To determine a cause for this behavior, the individual loss terms were plotted against the
number of iterations. Figure 5.2 shows that the loss regarding the collocation points MSEf
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Figure 5.2: Loss term history of the first attempt.

was several magnitudes larger compared to the other losses and dominated the cost function.
As a result, the network mainly learned to satisfy the partial differential equation at the
collocation points disregarding the boundary and initial conditions. Nabian and Meidani
addressed this issue by introducing weights adjusting the relative importance of each term
in the cost function [NM19]. They further highlighted the similarity between those weights
and the formulation for boundary conditions used in the finite element collocation method
[BG09]. Adding the weight factors to Eq. (5.11) yields a new cost function

C = γ0 MSE0 + γbMSEb + γf MSEf . (5.16)

To continue the study the weight factor for MSEf was empirically determined as γf =
1× 10−11 while γ0 and γb were set to 1. After updating the cost function, the physics-
informed neural network was trained again to infer the solution of the problem stated in
Eqs. (5.2) to (5.4). Even with extensive hyperparameter tuning, the network learned very
slowly as the plot of the training losses in Fig. 5.3b suggests. In particular the learning
rate was set to α = 0.01 and 30 000 Adam iterations were scheduled. Afterward, the L-
BFGS optimization continued the parameter search and terminated after additional 20 000
iterations. The corresponding predictions of the temperature distribution u(t, x) and the
heat flux φ(t, x) are depicted in Fig. 5.4. It can be seen that the network began to recognize
certain features of the underlying solution, but still failed to produce a satisfactory result as
the error plot in Fig. 5.3a confirms.

5.2.4 Nondimensionalization

A closer look at the original paper by Raissi et al. and other publications about physics-
informed networks revealed another interesting insight [RPK19, NM19, SAG+19]. It was
noticed that for most investigated systems the prediction targets laid in a range between -1
and 1. As known from the manufactured solution, the temperature in the present heat transfer
example ranges from 0 to 800. In order to scale down the problem without changing its
physical characteristics, a partial nondimensionalization was applied. Nondimensionalization
is a technique often used in simulations of mechanical problems [LP16]. For instance, it allows
the execution of fluid flow experiments in different length and time scales or helps to improve
the solver stability in complex numerical simulations. The crucial part is to determine suitable
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Figure 5.3: Error and weighted loss history of the modified example. Hyperparameters: epochs =
30 000, learning rate α = 0.01 and weight factors γ0 = γb = 1, γf = 1× 10−11.

scaling factors for the underlying problem. Typically, a dimensionless variable q is defined as

q̄ =
q − q0
qc

,

where q0 is a reference value, that often equates to zero, and qc denotes a characteristic value of
q determining the scaling [LP16]. Since qc has the same units as q, the dimensionless variable
q̄ is obtained. The goal is to scale the temperature u into the range of unity. Neglecting
the reference temperature and choosing the characteristic temperature as uc = umax, the
dimensionless temperature variable is defined as

ū =
u

uc
=

u

umax
. (5.17)

Inserting Eq. (5.17) into the problem defined in Eq. (5.2) yields

c
∂ūuc
∂t
−

∂

∂x
(κ

∂ūuc
∂x

) = s, (5.18)

which is equivalent to

c
∂ū

∂t
−

∂

∂x
(κ

∂ū

∂x
) =

s

uc
. (5.19)

This introduces a scaled source term s̃ defined as

s̃ =
s

umax
=

κũ

σ2
+ ũ

x− p

σ2

[

c
∂p

∂t
−

x− p

σ2

(

κ+ u
∂κ

∂u

)]

, (5.20)

where

ũ = exp

(

−
(x− p)2

2σ2

)

. (5.21)

Based on the scaled problem, a new solution was generated using MATLAB. Plots of the
dimensionless solution ū and the corresponding flux φ̄ are shown in Fig. 5.5.

As a next step, the physics-informed network was adapted to consider the proposed changes.
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Figure 5.4: Prediction of temperature distribution u and the heat flux φ for the modified example.
Hyperparameters: epochs = 30 000, learning rate α = 0.01 and weight factors γ0 = γb = 1, γf =
1× 10−11. Top: Approximated solution and location of time snapshots (white lines). Bottom: Com-
parison of predicted and exact solution at distinct snapshots.
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Figure 5.5: Manufactured solution of the nondimensionalized problem.
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Figure 5.6: Error and weighted loss history of the nondimensionalized example. Hyperparameters:
epochs = 10 000, learning rate α = 0.001 and weight factors γ0 = γb = 1, γf = 1× 10−7.
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The results for the prediction of the scaled temperature distribution ū and the corresponding
heat flux φ̄ are depicted in Fig. 5.7. Figure 5.6 presents the related error and loss history.
In combination with an appropriately chosen weight for the loss MSEf (γf = 1× 10−7),
the network was able to predict an accurate solution as the L-BFGS optimizer converged.
More precisely, the relative prediction error for ū was measured at 3.234 353 × 10−3 and the
relative error of φ̄ yielded 2.390 841 × 10−3.

5.2.5 Adaptive Cost Function

Finding the right weight factor for a problem involves great effort. Since introducing another
hyperparameter is not desirable, an alternative approach for weight balancing is proposed.
The idea is to scale the network outputs individually for each loss term. In particular, the
predictions are divided by the absolute maximum of the target values. For example, the loss
MSEf depends on the network output fNN and the source term s. Since the source term s
is known at every point in the domain, the scaling factor max |s| can be easily determined.
Similarly, the remaining factors are set. The loss for the initial condition is divided by
max |u0|, where u0 represents the known solution at time t = 0. In the same way, the loss
on the boundary could be adapted. Since the present case imposes homogeneous Neumann
boundary conditions, scaling the boundary loss MSEb was neglected to avoid a division by
zero. Including the proposed scaling scheme in the losses yields a new cost function

C̄ = MSE0 +MSEb +MSEf , (5.22)

with

MSE0 =
1

N0

N0
∑

i=1

(

uNN

(

0, xi0
)

− ui0
max |u0|

)2

, (5.23)

MSEb = MSEb (5.24)

and

MSEf =
1

Nf

Nf
∑

i=1





fNN

(

tif , x
i
f

)

− s

max |s|





2

. (5.25)

Employing the introduced cost function, the solution inference for the nondimensionalized
problem from Section 5.2.4 was repeated. The plots of the error and losses in Fig. 5.8 suggest
that the optimization procedure converged. The prediction accuracy of ū was measured at
1.510 847 × 10−2 and the error of φ̄ at 1.437 716 × 10−2 according to Eq. (5.15). Figure 5.9
presents the predictions of the temperature distribution ū and the corresponding heat flux φ̄.
The results imply that the adaptive cost function yields comparable accuracy to a manual
fitting of the cost function.

5.2.6 Alternative Output Function

The previous investigations revealed that scaling the temperature to a range from 0 to 1 led
to faster training of the network and more accurate results. However, a general problem of
nondimensionalizing the target variable is to find an appropriate scaling factor. Apart from
the boundaries, no information about the hidden solution is given. Whenever, for instance,
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Figure 5.7: Predictions of the temperature distribution ū and the heat flux φ̄ for the nondimen-
sionalized example. Hyperparameters: epochs = 10 000, learning rate α = 0.001 and weight factors
γ0 = γb = 1, γf = 1× 10−7. Top: Approximated solution and location of time snapshots (white lines).
Bottom: Comparison of predicted and exact solution at distinct snapshots.
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Figure 5.8: Error and weighted loss history of the nondimensionalized example with adaptive cost
function. Hyperparameters: epochs = 10 000 and learning rate α = 0.001.

the initial condition u0 is small compared to the hidden solution, a scaling by max |u0| might
be insufficient or could even lead to an up-scaling if max |u0| < 1. To summarize, the
applicability of nondimensionalization is problem-dependent and not always reasonable.

From the limited capabilities to scale down the predictions, the idea arose to increase the
expressive power of the network outputs. In other words, introducing an alternative activation
function, should enable the output neuron to learn large values faster. Normally, the literature
proposes a linear output function for regression tasks [GBC16]. In contrast, the hyperbolic
sine is introduced as the activation function for the output layer (cf.Fig. 5.10). To test the
proposed idea, the algorithm was adapted correspondingly. The implementation was straight-
forward, since only the activation for the output neuron had to be changed. Neglecting the
nondimensionalization, the original problem as described in Eqs. (5.2) to (5.4) was revisited.
In combination with the adaptive cost function from Eq. (5.22), the physics-informed neural
network was trained to predict the latent temperature distribution. Figure 5.11 depicts the
error and loss history, while the approximations of the temperature distribution u and the heat
flux φ are presented in Fig. 5.12. The relative error of u was measured at 3.232 114 × 10−2

and the error of φ was measured at 1.465 904 × 10−2, respectively.

It is important to note that the loss term MSEb had to be scaled down by a factor of 2× 104

to obtain a satisfactory solution for the chosen hyperparameters. The successful predictions
conclude this section on the continuous solution inference of a non-linear heat equation. The
results are discussed further in Section 5.5.

5.3 Discrete Solution of a Non-linear Heat Problem

5.3.1 Problem Statement

For the study of the discrete solution method the problem from Eqs. (5.2) to (5.4) is recalled.
The governing partial differential equation is observed in the tempo-spatial domain T ×Ω =
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Figure 5.9: Prediction of the temperature distribution ū and the heat flux φ̄ for the nondimen-
sionalized example with adaptive cost function. Hyperparameters: epochs = 10 000 and learning
rate α = 0.001. Top: Approximated solution and location of time snapshots (white lines). Bottom:
Comparison of predicted and exact solution at distinct snapshots.
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Figure 5.11: Error and weighted loss history of the modified example with adaptive cost function
and Sinh output activation. Hyperparameters: epochs = 10 000 and learning rate α = 0.001.
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Figure 5.12: Prediction of the temperature distribution u and corresponding heat flux φ of the
modified example with adaptive cost function and Sinh output activation. Hyperparameters: epochs =
10 000 and learning rate α = 0.001.Top: Approximated solution and location of time snapshots (white
lines). Bottom: Comparison of predicted and exact solution at distinct snapshots.
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[0, 0.5] × [0, 1] and is written as

c
∂u

∂t
−

∂

∂x
(κ

∂u

∂x
) = s t ∈ [0, 0.5], x ∈ [0, 1]. (5.26)

The temperature-dependent coefficients, namely, the heat capacity c(u) and thermal conduc-
tivity κ(u) are defined as

c(u) = 4.55× 10−4u2 − 5.78 × 10−3u+ 5.849 · 102, (5.27)

κ(u) = 1.29× 10−2u+ 6.856. (5.28)

In contrast to the previous case, homogeneous Dirichlet boundary conditions are assumed

u(0, t) = u(1, t) ≈ 0. (5.29)

Further, the problem is subject to the following initial condition

u(0, x) = u0. (5.30)

Again, the Gaussian bell formulation represents the manufactured solution to the problem

u = umax exp

(

−
(x− p)2

2σ2

)

, (5.31)

where umax = 800 and σ = 0.02. The path p takes on the form

p(t) =
1

4
cos

(

2πt

tmax

)

+
1

2
. (5.32)

Inserting Eq. (5.31) into Eq. (5.26) yields the source term

s =
κu

σ2
+ u

x− p

σ2

[

c
∂p

∂t
−

x− p

σ2

(

κ+ u
∂κ

∂u

)]

. (5.33)

Since the manufactured solution u and the corresponding heat flux φ remain unchanged, the
previously generated data set is used (cf. Fig. 5.1).

5.3.2 Implementation

The implementation of the discrete method is based on the code by Raissi and follows the
scheme introduced in Section 4.2.1 [Rai20].

First, the architecture of the physics-informed surrogate model for a desired time step tn+1 =
tn + ∆t and q stages is specified. Since an implicit time discretization is applied, the feed-
forward neural network uNN (x;Θ) only takes the spatial variable x as an input. Next to
the desired solution ûn+1(x) at time tn+1, the network predicts the intermediate solutions
ûn+ci for all stages i = 1, . . . , q. Here, the parameters aij , bj, and cj for the implicit Runge-
Kutta time stepping scheme are selected from a Butcher table corresponding to the number
of selected stages [Ise08]. To apply the temporal discretization, the problem described in
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Eq. (5.26) is rearranged
∂u

∂t
=

(

∂κ

∂x

∂u

∂x
+ κ

∂2u

∂x2
+ s

)/

c. (5.34)

Following the modified Runge-Kutta time stepping scheme from Eq. (4.15) and using Eq. (5.34)
the physics-informed neural network fNN (x;Θ) is defined. The corresponding output ûni (x)
for i = 1, . . . , q + 1 consists of the solution at time tn as well as the intermediate results
defined by Eq. (4.15).

So far, the initial and boundary conditions have been enforced weakly in the cost functions.
However, it is also possible to apply constraints in a strong sense. To do so, the solution u
is modified to satisfy the boundary conditions for any given input. Following the generalized
approach of Lagaris et al. [LLF98], the network output is adapted to consider for the homo-
geneous Dirichlet boundary conditions as defined in Eq. (5.29). Since the discrete solution is
only dependent on the spatial variable x, the following formulation is obtained

[

ûn+c1 , . . . , ûn+cq , ûn+1(x)
]

= (1− x)xuNN (x;Θ) i = 1, . . . , q. (5.35)

To demonstrate the simplicity of the approach using a near-mathematical notation, a code
snippet from the physics-informed neural network is presented:

net_U0(self, x):

U1 = (x-1)*x*self.neural_net(x, self.weights, self.biases)

...

F = (k_x * U_x + k * U_xx + s) / c

U0 = U1 - self.dt * tf.matmul(F, self.IRK_weights.T)

return U0

Here, neural_net denotes the neural network uNN (x;Θ) predicting the solution at time tn+1

and the intermediate steps, while IRK_weights stores the time-stepping parameters aij and
bj. The differential operators U_x and U_xx are computed with automatic differentiation and
the material coefficients are defined according to Eqs. (5.27) and (5.28).

As a result, the cost function for training the network simplifies to a single loss term, which
omits the need of identifying suitable weighting factors. With the output of the physics-
informed neural network ûni (x) for i = 1, . . . , q + 1, the resulting cost function is written
as

C = MSEn, (5.36)

where

MSEn =

q+1
∑

j=1

Nn
∑

i=1

(

ûnj
(

xn,i
)

− un,i
)2

. (5.37)

In contrast to the squared error sum proposed by Raissi et al. [RPK19], a mean squared error
loss is chosen. The term MSEn computes the prediction error of the physics-informed neural
network at Nn randomly sampled points {xn,i, un,i}Nn

i=1 of the solution at initial time tn. To
learn the shared set of optimal parameters Θ∗, the combination of Adam optimizer and L-
BFGS method is employed to minimize the cost function Eq. (5.36). In accordance with the
previous example from Section 5.2, a test set of N discrete points describing x = [0, 1] at time
tn is taken from the previously generated manufactured solution. The relative error measure
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for the test set computes as follows

||ûn+1 − un+1||2
||un+1||2

=
(
∑N

i=1 |û
n+1
i − un+1

i |2)1/2

(
∑N

i=1 |u
n+1
i |2)1/2

, (5.38)

where ûn+1
i denotes the network prediction and un+1

i represents the manufactured solution
at time tn+1.

To summarize the discrete time method for solution inference, Algorithm 5 describes the
previously elaborated steps of the training procedure. After the algorithm terminated, the

Algorithm 5 Training a discrete physics-informed neural network for a single time step
tn+1 = tn +∆t and q stages.

Require: training data for initial condition {xn,i, un,i}Nn

i=1

define initial time step tn and time step size ∆t
define number of stages q
define network architecture (input, hidden layers, hidden neurons)
initialize output layer with q + 1 neurons
initialize network parameters Θ: weights {W l}Ll=1 and biases {bl}Ll=1 for all layers L
set hyperparameters for Adam optimizer (epochs, learning rate α, . . . )
set hyperparameters for L-BFGS optimizer (convergence criterion, max iterations, . . . )
loop

Un ← FNN (xn;Θ)
compute MSEn ⊲ cf. Eq. (5.37)
C ←MSEn

update parameters: Θ ← Θ − α ∂C
∂Θ ⊲ Adam or L-BFGS

end loop

for all epochs do

run loop with Adam optimizer
end for

repeat

run loop with L-BFGS optimizer
until convergence or max. iterations

network uNN (x;Θ) with the trained parameters Θ is used to predict the temperature at
time tn+1 for a given input x.

The results in this study were generated with the set of parameters denoted in Table 5.2.
Additional parameters of the Adam and L-BFGS optimizers default to the values chosen by
Raissi [Rai20]. The current implementation is based on Tensorflow version 1.15 and Python
version 3.7. The computations were executed on a laptop computer with an Intel Core i7-
7700HQ @ 2.80GHz CPU and a NVIDIA GeForce GTX 1050 graphics card.

5.3.3 Results

Outgoing from the solution at time tn = 0.05, the aim was to predict the temperature
distribution at time tn+1 = 0.3 for the problem outlined in Section 5.3.1. With the resulting
time step size ∆t = 0.25 the solution is resolved over half of the total domain t = [0, 0.5]. The
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no. of stages q: 500
no. of hidden layers: 4
no. hidden neurons: 50 (per layer)

hidden activation function: Tanh
output activation function: Sinh
no. of initial data points Nn: 200

no. of epochs: 10 000 (Adam optimizer)
learning rate α: 0.001 (Adam optimizer)
max iterations: 50 000 (L-BFGS optimizer)

tolerance for convergence: machine precision ǫ (L-BFGS optimizer)

Table 5.2: Parameters for discrete-time inference.

first solution attempt using the algorithm explained in Section 5.3.2 is depicted in Fig. 5.13.
The snapshot at time t = 0.3 reveals that the network by construction satisfied the boundary
conditions, but failed to predict the underlying solution. Further, the L-BFGS optimization
stopped shortly after the 10 000 epochs of the Adam optimizer, indicating that no desirable
minimum was found.

In a second step, the non-linear output activation proposed in Section 5.2.6 was implemented
and tested. The repeated training resulted in a satisfactory solution that is presented in
Fig. 5.14. The network was able to accurately predict the temperature distribution at time
tn+1 = 0.3 solely based on 200 randomly distributed training points representing the known
solution at time t = 0.05 and the prescribed boundary conditions. The error according to
the relative error norm from Eq. (5.38) was measured at 5.498 873 × 10−3.

5.4 Further Studies

5.4.1 Weight Initialization

This short study aimed to expose the influence of the randomized weight initialization on
the training outcome. Precisely, the two popular weight initialization schemes proposed by
Glorot and Bengio are compared [GB10]. The physics-informed neural network was trained
to predict the solution of the non-dimensionalized example from Section 5.2.4. In addition,
the adaptive loss function from Section 5.2.5 was employed. During the repeated execution
of the algorithm, the network architecture and the hyperparameters according to Table 5.1
remained unchanged. For each run the internal random generator generates a new set of
random numbers for the weight initialization. It should be noted that the selection of training
points is also randomized, and thus, adds further uncertainty to the results.

Having that in mind, Table 5.3 presents the relative errors of u and φ for 10 runs with
a weight initialization based on a Glorot normal distribution [GB10]. The results for 10
repetitions with a Glorot uniform weight initialization are shown in Table 5.4 [GB10]. The
obtained results indicate that both schemes achieve a comparable performance since no large
difference between the respective errors of u and φ occurred.

The computations were executed on Google colab that automatically assigns a virtual ma-
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Figure 5.13: Discrete solution without modifications. Top: Manufactured solution u and time
snapshots tn and tn+1 (white lines). Bottom: Training data at tn and prediction at tn+1.
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Figure 5.14: Discrete solution with Sinh output activation. Top: Manufactured solution and time
snapshots tn and tn+1 (white lines). Bottom: Training data at tn and prediction at tn+1.
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Iterations Time [s] Error u Error φ

1.53e+04 4.24e+02 2.78e-02 1.52e-02
1.32e+04 3.58e+02 1.60e-02 1.62e-02
1.29e+04 3.52e+02 2.36e-02 1.41e-02
1.31e+04 3.64e+02 1.67e-02 1.18e-02
1.33e+04 3.78e+02 1.74e-02 1.45e-02
1.31e+04 3.71e+02 2.99e-02 1.37e-02
1.18e+04 3.31e+02 2.89e-02 2.43e-02
1.33e+04 3.88e+02 1.76e-02 1.58e-02
1.40e+04 4.24e+02 2.02e-02 1.63e-02
1.34e+04 3.96e+02 1.97e-02 1.29e-02

Table 5.3: Glorot nornmal initialization with Tanh activation.

Iterations Time [s] Error u Error φ

1.30e+04 4.04e+02 1.59e-02 1.24e-02
1.34e+04 4.32e+02 1.76e-02 1.47e-02
1.30e+04 4.10e+02 1.89e-02 1.87e-02
1.31e+04 4.20e+02 2.12e-02 1.17e-02
1.29e+04 4.19e+02 2.76e-02 1.98e-02
1.42e+04 4.98e+02 3.32e-02 1.90e-02
1.41e+04 4.92e+02 2.98e-02 1.53e-02
1.24e+04 4.04e+02 1.75e-02 1.23e-02
1.48e+04 5.53e+02 2.59e-02 1.71e-02
1.31e+04 4.53e+02 1.25e-02 1.14e-02

Table 5.4: Glorot uniform initialization with Tanh activation.

chine to the user [Goo20]. Depending on available resources, the computations are executed
on different hardware, and therefore, the execution times are subject to variations. This
experiment was conducted on a NVIDIA Tesla K80 GPU.

5.4.2 Alternative Activation Function

Similarly, a study investigating the performance of an alternative activation function was
conducted. Instead of a regular Tanh activation, the sine was chosen as the activation func-
tion for the hidden units. Apart from that, the experiment was conducted under the same
conditions as the previous study.

The results achieved with sine activations and Glorot uniform weight initialization are pre-
sented Table 5.5. Comparing the results in Table 5.5 with the ones in Table 5.3 from the
previous study shows, that the sine generally performed worse than the Tanh activation. In
particular, the errors on u and φ are higher and the algorithm needs additional iterations to
converge.
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Iterations Time [s] Error u Error φ

3.60e+04 1.97e+03 1.93e-01 1.06e-01
3.01e+04 1.59e+03 1.39e-01 6.44e-02
4.15e+04 2.41e+03 1.87e-01 1.14e-01
3.53e+04 2.02e+03 3.81e-02 1.77e-02
2.54e+04 1.35e+03 9.50e-03 6.54e-03
2.80e+04 1.57e+03 3.20e-02 1.55e-02
2.68e+04 1.48e+03 1.19e-02 1.21e-02
1.00e+04 2.85e+02 1.46e+00 1.17e+00
3.35e+04 1.98e+03 1.11e-01 5.34e-02
2.38e+04 1.30e+03 2.03e-02 1.12e-02

Table 5.5: Glorot nornmal initialization with sine activation.

5.5 Discussion

The previous sections dealt with the implementation of physics-informed neural networks
predicting continuous and discrete solutions to a one-dimensional heat transfer example. The
implementation process revealed several hurdles that are, most probably, not unique to the
domain of thermal analysis. Concurrently, tailored solutions for the encountered problems
were proposed. Their general relevance and impact on further investigations is discussed in
the following paragraphs.

The first solution attempts disclosed that without further modification, the algorithm was
unable to produce any viable results for the investigated example. It was found, that an
imbalanced cost function prevented convergence of the optimization problem. Introducing
weighting factors allowed to account for the influence of the individual loss terms. To avoid
manual tuning of the new hyperparameters, an alternative cost function was proposed in
Section 5.2.5. The idea is to scale the loss terms relative to the absolute maximum of the
expected target values. Even though the scaling scheme yielded satisfactory results, it leaves
room for further improvement. This should be considered as a starting point for future
investigations of adaptive cost functions. An interesting alternative could be an approach
that automatically learns the weighting factors [KGC18].

For deep-learning-based regression tasks, it is sometimes recommended to scale the target
values to ensure stability and to speed up the training [Bro19]. In the present case, this is
somewhat similar to the partial nondimensionalization applied in Section 5.2.4. Here, the
scaling of the problem resulted in a hidden solution with target values around unity. In com-
bination with the adaptive cost function, the first accurate results were obtained. However,
as stated in Section 5.2.6, it is not always possible to determine an appropriate scaling factor
since any knowledge about the hidden solution is solely based on sparse boundary data. To
circumvent the need for a manual scaling of the underlying problem, a simple yet effective
enhancement was proposed. Replacing the linear activation function of the output neuron
with the hyperbolic sine enabled faster and more accurate predictions for the un-scaled ex-
ample. The effect can be traced back to the increased expressive power of the output layer
compared to a conventional linear activation. As a matter of fact, the network prediction is
a linear combination of the outputs from the previous layers. Furthermore, the Tanh activa-
tion function of the hidden neurons only returns values between -1 and 1 (cf. Fig. 3.3). In
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return, larger weights in the final layer are necessary to predict a greater output value. The
magnitude of the initial weights depends on the initialization procedure, but often ranges
around 0 [GB10]. On top of that, the weight update depends only on the chosen learning
rate, since the derivative of a linear function is constant (cf. Section 3.3). Thus, faster train-
ing of the output layer would require a large learning rate that often causes unstable training
[Cho18]. The Tanh activation seems to overcome this issue due to its exponential growth and
non-constant derivative. Since the hyperbolic sine is almost linear in the interval between -1
and 1, it can be equally suitable for predictions in smaller ranges. A rudimentary test on
the Burgers’ equation example from the paper by Raissi et al. exhibited comparable results.
Nevertheless, more detailed investigations are necessary to confirm the effectiveness of this
newly proposed output activation in the context of physics-informed neural networks.

In general, activation function constitute another potential research subject. A recent pub-
lication provided examples, where a periodic activation was beneficial to problems governed
by partial differential equations [SMB+20]. This inspired a small study to compare the per-
formance of the sine and the original hyperbolic tangent as activation functions. It was noted
that the sine performed slightly worse for the investigated example in terms of prediction
accuracy and the number of iterations (cf. Section 5.4.2). Nonetheless, more fundamental
investigations are necessary and left for future research. Another paper related to physics-
informed neural networks suggested the use of a squared ReLU activation [GACR19]. Gen-
erally, every nonlinear function could act as an activation function. However, to account
for most differential operators found in physical problems, it should have a non-zero second
derivative. For this reason, simple ReLU activations are not considered in the context of
physics-informed surrogate models.

The investigation of the discrete-time method also demonstrated the advantage of the mod-
ified output neuron. In combination with a strong enforcement of the boundary condition,
the physics-informed neural network was able to predict an accurate solution for the given
example. The idea to strongly enforce the boundary conditions of the partial differential
equation dates back to the early paper of Lagaris et al. [LLF98]. They provided a formalized
description for various types of boundary conditions. One big advantage of strong enforce-
ment is the simplified cost function. As claimed in several other publications, this promises a
better-posed optimization problem [SAG+19, GACR19, NM19]. However, in cases of irregu-
lar boundaries, the derivation of a suitable solution function is often infeasible. Thereby, the
general applicability of physics-informed neural networks gets affected.

Furthermore, this study unveiled that the algorithm’s convergence is subject to various fac-
tors. Next to the choice of cost function or hyperparameters, the randomized weight initial-
ization and training point selection had a notable impact on the prediction outcome. The
initial weights determine were the optimization algorithm begins its search for a minimum.
Varying this starting point and the training data adds a noticeable degree of uncertainty to
the solution as the study from Section 5.4.1 indicates. A second factor limiting the repro-
ducibility of results is owed to the training on GPUs. Usually, determinism is only achieved
for a specific hardware-software constellation [Ria20]. One way to address these issues is to
repeatedly execute the algorithm and to average over the obtained results. However, this
would increase the computational effort even further. Without an explicit comparison, it
is safe to say that the training process of a physics-informed neural network is significantly
slower than computing a solution with a conventional method. All in all, this implies that
the results conducted in this work underlie uncertainties and therefore should be treated with
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caution.

Even though a variety of aspects were studied, many areas of interest remain untouched.
First of all, Raissi et al. claimed that the physics-informed neural networks are not prone to
overfitting since the physical constraints impose a regularizing effect [RPK19]. Within the
scope of this work, no contrary indications were found. However, a proof for this hypothesis
is still pending. Further, the scaling properties of the continuous method are yet to be
determined [RPK19]. The number of required collocation points grows exponentially in higher
dimensions. Due to increased memory demand, this allows only the application of mini-batch
gradient descent algorithms. To prepare further studies, the extended code accompanying
this treatise entails an implementation of a mini-batch optimization approach. Apart from
that, implementations of physics-informed neural networks based on a variational formulation
appeared in multiple recent publications (cf. Section 4.3). By adequately integrating the
partial differential equation, the order of the differential operator can be reduced, which
supposedly simplifies the optimization problem. Therefore, a more detailed investigation of
these approaches should be considered.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

The preceding chapters explored the interface between data-driven algorithms and compu-
tational mechanics. This was accomplished by introducing the basic concepts of machine
learning and reviewing current literature on learning-based solutions to physics and engineer-
ing problems. Some of the presented works demonstrated that machine learning algorithms
could be used to enhance existing numerical methods [OY17]. However, the improvements
usually failed to justify the increased computational effort [BSHHB19]. Other publications
have replaced expensive computations with neural networks as surrogates for mechanical sys-
tems [LLMS18, WBT19]. To ensure accurate predictions, the networks required vast amounts
of data generated by conventional methods. An alternative approach incorporating domain
knowledge into the surrogate model circumvented the necessity of costly data acquisition
[RPK19]. Promising results inspired the work presented here to pursue this line of study.
In particular, the operating principles of physics-informed neural networks were elaborated
and investigated with a transient heat transfer problem. Building upon an existing code
base [Rai20], the physics-enriched learning algorithm was adapted to continuously predict
the latent temperature distribution. The obstacles that occurred during the implementation
process were documented and possible workarounds were proposed. For example, the dif-
ferent magnitudes of the loss terms required the introduction of penalty factors. To avoid
an empirical hyperparameter search, a scheme was proposed accounting for the scales of the
individual cost function terms. Another observation revealed that training of the network
worked best when the prediction targets stayed close to unity. However, re-scaling the out-
put is only possible when additional knowledge about the hidden solution is available. With
the idea to extend the representational power of the network, the linear activation in the
output layer was replaced by the hyperbolic sine function. This enabled faster learning in
case the network needed to predict values beyond unity. However, it remains subject to fur-
ther investigations in order to validate the effectiveness of the proposed idea. Subsequently,
another solution strategy based on physics-informed neural networks was introduced. The
applied method combines the physics-enriched prediction of the network with an implicit
time-stepping scheme. According to the authors, this approach allows for the accurate res-
olution of almost the entire domain in a single time-step [RPK19]. Due to computational
limitations, implicit time schemes are usually employed with a small number of stages per
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time step. Here, the network approximated intermediate solutions at relatively low extra
cost and thus, allowed larger time steps. For the example of non-linear heat transfer, the
described method provided accurate predictions when combined with strong enforcement of
boundary conditions and the non-linear output activation.

Even though the methods presented offer advantages such as mesh-free solutions, they are far
from being able to compete with conventional methods in terms of computational efficiency
and reliability. The implementation process revealed a series of drawbacks mainly due to
the very nature of deep learning algorithms. Specifically, the high training costs and the
sensitivity toward a multitude of hyperparameters should be taken into consideration. Among
others, the weight initialization, the choice of activation function, and the learning rates had
a non-negligible impact on the results. Most of these issues are not unique to the applications
presented. The problems are rather general to the field of deep learning and are still under
intensive investigation. The uncertain convergence properties of gradient-based optimization
algorithms are a particularly major concern. Since neural networks impose a highly non-
convex optimization landscape, the procedures are not guaranteed to find a satisfying solution.

However, should these drawbacks be eliminated or at least diminished, data-driven approaches
could become a valuable addition to the scientific computing toolbox. In specific cases
where conventional numerical methods would exceed the computational limitations, physics-
informed learning algorithms could provide alternative solutions. As the rising research in-
terest indicates [FDC20, BNK20], deep learning and its interface with other scientific fields
is developing at an extremely rapid pace. Thus, the presented findings could be outdated
sooner rather than later. Nevertheless, by discussing and identifying the assets and draw-
backs of data-driven computational mechanics, this work has established a basic foundation
for further research on the subject.

6.2 Outlook

Even though first insights regarding the application of physics-informed neural networks were
developed, many relevant questions remain unanswered. Therefore, this outlook suggests in-
teresting research directions. First of all, this work only demonstrated the learning-based
algorithm on transient heat problems in one spatial dimension. To get closer to the adop-
tion in real-world applications it is crucial that the learning-based approaches scale up to
problems in higher dimensions. Further, it was suggested to use physics-informed neural net-
works to identify coefficients in the governing equations by observing random data [RPK19].
In cases where the material coefficients are usually determined by experimentation, this ap-
proach could offer a worthy alternative. Recent publications introduce data-driven methods
to other engineering domains. An example from solid mechanics employed an enhanced
physics-informed neural network in combination with a phase field model for crack propa-
gation [GACR19]. To speed up the iterative computations a transfer learning approach was
proposed. This idea could be picked up to apply predictive solutions in the layered pro-
cesses of additive manufacturing or in biomechanical problems dealing with brittle fracture
[HKYR20]. Next to transfer learning data sciences provide a wide range of improvements for
neural networks. Those include batch normalization, dropout or modified architectures, to
name a few. Some of the presented approaches already applied a network variation making
use of residual connections between non-adjacent layers. Another archetype could possibly
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provide improved predictions of transient problems. Long-short term memory neural net-
works were particularly designed to predict temporal evolution.

Given the fact, that deep learning in general is a young area of research and subject to
constant transformations, new discoveries are expected to elevate applications in all scientific
disciplines. For instance, the advent of quantum computer could revolutionize the data-driven
computing by providing significant speed-ups of the training process. Some go even so far
and predict that learning-based algorithms will aid the discovery of fundamental physical
concepts.

Even though initial insights regarding the application of physics-informed neural networks
were developed, many relevant questions remain unanswered. Therefore, this outlook suggests
interesting directions for future research. First of all, this work has only demonstrated the
learning-based algorithm on transient heat problems in one spatial dimension. To approach
the adoption of real-world applications, the learning-based approaches must scale up to prob-
lems in higher dimensions. Further, physics-informed neural networks were used to identify
coefficients in the governing equations by observing random data [RPK19]. In cases where the
material coefficients are usually determined by experimentation, this approach could offer a
worthy alternative. Recent publications have introduced data-driven methods to other engi-
neering domains. An example from solid mechanics employed an enhanced physics-informed
neural network in combination with a phase-field model for crack propagation [GACR19]. To
speed up iterative computations, a transfer learning approach was proposed. This idea could
be adopted to apply predictive solutions in the layered processes of additive manufacturing
or biomechanical problems dealing with brittle fracture [HKYR20]. Data sciences provide
a wide range of techniques to further improve the performance of neural networks. Those
include batch normalization, dropout, or modified architectures, to name a few. Some of
the presented approaches already applied a network variation making use of residual connec-
tions between non-adjacent layers [EY17, NM19]. Another archetype could provide improved
predictions of transient problems as a first application suggests [WBT19]. Long-short term
memory neural networks were particularly designed to predict temporal evolution.

Given the fact that deep learning is, in general, a young area of research and subject to
constant transformations, discoveries are expected to advance applications across scientific
disciplines. For instance, the advent of quantum computers could revolutionize neural net-
work training by providing significant optimization speed-ups [CCC+19]. Some have even
gone so far as to predict that learning-based algorithms will aid the discovery of fundamental
physical concepts.



88 6. Conclusion and Outlook



INDEX 89

Index

L1 regularization, 27
L2 regularization, 27

activation function, 16

automatic differentiation, 20

backpropagation, 20

classification, 5
clustering, 6

dataset augmentation, 30
deep learning, 16
design matrix, 4
dropout, 29

early stopping, 27
example, 3

feature, 3
feed-forward neural network, 15
forward propagation, 18

generalization, 8
generalization error, 8
gradient descent, 12

hidden layer, 15

linear regression, 6

mean squared error (MSE), 7
mini-batch gradient descent, 14

neural networks, 15
neuron, 16

overfitting, 9

perceptron, 15
physics-informed neural network, 44

recurrent neural networks (RNNs), 36
regression, 5
regularization, 10, 26
reinforcement learning, 5

semi-supervised learning, 5
short-term memory networks (LSTMs), 37
stochastic gradient descent, 14
stochastic gradient descent (SGD), 14
supervised learning, 4

test set, 4, 6
training set, 4, 6

underfitting, 9
universal approximation theorem, 17
unsupervised learning, 4

validation set, 12



90 INDEX



91

Appendix A

Data Stick

The attached data stick contains the following materials:

• Python script for the sine approximation example used to produce the presented results,

• MATLAB code used for generating the manufactured solutions,

• Python scripts for continuous and discrete-time physics-informed neural networks used
to produce the presented results,

• the source code of this document in addition with all embedded graphics.
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