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Abstract

Molecular dynamics simulations are a typical example of an N-body problem. They have

immense computational costs and require a high degree of parallelism to be solvable in

reasonable time on current hardware.

The performance of different data structures and algorithms highly depends on the

scenario and available hardware. It might even change over the time of a simulation.

Thus it is not always obvious what to select before starting the simulation. The AutoPas

library solves this by performing auto-tuning and (re-)selecting the best combination at

runtime.

The goal of this thesis was to integrate AutoPas into the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS). We then show how to make the existing function-

ality compatible with AutoPas by focusing on some of the provided example scenarios.

Additionally, we compare the node-level performance of the AutoPas integration with the

OMP parallelization of the USER-OMP and KOKKOS packages provided with LAMMPS.

We achieve a successful integration with reasonably good performance that is easily

extendable to support more of LAMMPS’s features. While we do not outperform the

provided packages with the current, still unoptimized version of AutoPas, our integration

shows a significantly better speedup for high core counts.
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1. Introduction

Molecular dynamics (MD) simulations require an enormous computational effort for any

life-sized scenario and thus are quite an interesting topic for computer-science. Running

these simulations includes parallelizing them over many nodes of a supercomputer and

across multiple cores on the CPUs (or other hardware) of each node. This node-level

performance is of utmost importance for a good scaling simulation.

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a huge MD code

that can be used to perform simulations of many different scenarios. It also comes with

support for running highly parallel simulations using MPI and node-level parallelism

like OpenMP, CUDA, etc. LAMMPS uses Verlet lists and an SoA-like architecture to

efficiently compute forces of short-range potentials.

There exist many different algorithms and data structures for these computations

whose performance can vary greatly depending on the available hardware or the

simulated scenario. The best approach can even change over time when, e.g., the particle

distribution of the simulation changes significantly. Therefore, selecting the fastest

settings as a human often requires extensive domain knowledge, a good understanding

of the different algorithms available, and some experimentation. [4]

Leaving this difficult decision to the computer, called automated algorithm selection,

is a sub-problem of the process called auto-tuning. The latter is the overarching goal of

the AutoPas library, which provides a black-box approach for performing the required

computations. The user only has to define what should be calculated without the need

to care about the specific algorithm used or the internal data structure. AutoPas will

then select the most efficient configuration at runtime and can even change it at regular

intervals if needed.

For this thesis, we integrated AutoPas as another node-level parallelization into

LAMMPS. In general, it can be selected by the user to run the same simulations that are

possible with LAMMPS. We show this by looking at three of the example scenarios that

are shipped with LAMMPS. We also compare the performance with the OMP based

node-level parallelizations provided in the USER-OMP and KOKKOS packages that

come bundled with LAMMPS.
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2. Theoretical Background

Molecular Dynamics (MD) Simulations compute the physical movement and interactions

between small particles or molecules. This allows domain scientists insights into

structural behavior or thermodynamic properties like energy, temperature, and pressure.

They are commonly used in areas like chemistry, biology, astrophysics, and material

science. [1, 6, 7, 11]

As in general interactions between all particles have to be considered, MD simulations

are a typical example of an N-body problem. Thus, they have quadratic computational

complexity. As life-size simulations can easily reach an unimaginable amount of particles

(e.g., around 10
21

(sextillion) molecules in a single drop of water), they require way more

efficient methods and still a huge computational effort. [5]

2.1. Time Integration

The movement of particles is governed by Newton’s Equations of Motion, a system of

second-order ordinary differential equations (ODEs). A commonly used numerical solver

for them is the Störmer-Verlet Method. There exist two variants of it that are less susceptible

to rounding errors:

Leapfrog Scheme The new velocities are calculated with an offset of half a timestep at

time C + �C
2

from the old velocities and forces. Then the positions are calculated

at C + �C from these velocities. Finally, the new forces can be computed. If the

velocities at the full timesteps are needed, they have to be calculated separately.

Velocity-Störmer-Verlet Method The new positions are calculated from the old velocities

and forces at C + �C. Then the new forces are computed. Finally, the velocities are

updated from the old velocities and new and old forces. Thus this method requires

an additional force vector in memory.

See reference [5] for a more in-depth explanation and formulas.

2.2. Modeled Forces

The forces that act between particles can be split into two groups:

2



2. Theoretical Background

• Short-range interactions like the Van der Waals Forces

• Long-range interactions like electrostatic forces

Each requires a different approach to be solved efficiently. We’ll only focus on the

short-range interactions in this thesis.

A common short-range potential is the 12-6 Lennard-Jones Potential, which models an

attraction between particles based on the Van der Waals Forces and a repulsion based on

the Pauli principle. It is parameterized by a potential well � and a zero crossing �. It results

in strong repulsive forces up to the energy minimum of −� and attractive forces past

that minimum. For larger distances, it falls off quickly and stays close to zero, which

results in very weak attractive forces. See Figure 2.1 for an example and reference [5] for

formulas.

Distance A
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Figure 2.1.: The 12-6 Lennard-Jones Potential for a potential well � = 1 and zero crossing � = 1.

Particles are repelled for distances smaller than ∼ 1.15 units and attracted for

larger ones. Particles further apart than ∼ 2.5 units apply a negligible force

on each other.

2.3. Efficient Algorithms for the Short-Range N-body Problem

All short-range potentials like the Lennard-Jones Potential discussed in the previous

section converge to zero for larger distances. We can thus define some distance A2 where

the potential is sufficiently close to zero. This distance is called the cutoff radius. All

interactions between particles that are further apart than this, can be ignored without

3



2. Theoretical Background

accumulating a significant error in the calculation of the individual particle forces. It can

be necessary though to apply a correction term for the energy of the whole system.

There exist different efficient methods for determining particle pairs that could have a

distance from each other smaller than the cutoff radius, so that the overall complexity is

reduced to be linear in the number of particles. [5]

Two common methods are:

Linked Cells The domain is divided into cuboidal cells and particles are assigned to

the cell that they reside in. Only the distances of particles in cells that are in

close proximity are computed for deciding if the forces between them need to be

calculated. It is common to choose the cell width bigger than or equal to the cutoff

radius, such that only neighboring cells have to be considered.

Therefore only a small constant number of possible interaction partners have to be

considered for each particle, reducing the complexity of this algorithm to O(=). [5,

9]

Verlet Lists For each particle, neighbor lists are constructed that contain all sufficiently

close particles. Because particle are moving in a simulation, they have to be rebuilt

when new particles come in range. By increasing the distance that is used for

constructing these lists by a so-called Verlet skin, the number of simulation steps

between rebuilds can be increased. The force computation then only considers

particles from those neighbor lists when calculating distances and consequently

the pairwise interactions.

Constructing the neighbor lists requires O(=2) operations as distances between all

particles have to be calculated. This can be improved by combining this approach

with the Linked Cells algorithm to build these lists. [2, 12, 13]
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3. Technical Background

This chapter describes the structure and data-flow of the MD code LAMMPS and

the capabilities of the node-level auto-tuning library AutoPas that was integrated into

LAMMPS for this thesis.

We are using the LAMMPS version stable_7Aug2019 and the AutoPas version of the

commit 918ce7c356250df60b9a1e217482a0c8d4f7bf0d.

3.1. LAMMPS

LAMMPS
1
, which is an acronym for Large-scale Atomic/Molecular Massively Parallel Simu-

lator, is a molecular dynamics C++ code developed by the Sandia National Laboratories
financed by the US Department of Energy. It can be used to model atoms or general

particles for solid-state materials, soft matter, coarse-grained materials, or mesoscopic

systems. [10]

The core simulation loop consists of the steps expected for an MD simulation, see

Figure 3.1 for a class overview:

1. Time integration

2. Periodic boundary conditions

3. Leaving particle exchange

4. Sending particle ghost copies

5. Neighbor list rebuild

6. Calculation of pairwise forces

7. Force reverse communication

8. Output

All particle data is stored in C-style arrays that are accessible via a global singleton. This

results in code that accesses everything directly in memory via the particle index without

5



3. Technical Background

public

run

Verlet

protected

triclinic

force_clear

8

LAMMPS_NS

Angle

public

compute

38

Atom

public

nlocal

nghost

molecular

sortfreq

nextsort

sort

278

Bond

public

compute

42

Comm

public

setup

forward_comm

reverse_comm

exchange

borders

87

Dihedral

public

compute

36

Domain

public

box_change

reset_box

pbc

lamda2x

x2lamda

102

Force

public

newton

pair

bond

angle

dihedral

improper

kspace

94

Improper

public

compute

36

KSpace

public

compute

118

Modify

public

n_post_integrate

n_pre_exchange

n_pre_neighbor

n_post_neighbor

n_pre_force

n_pre_reverse

n_post_force

n_end_of_step

initial_integrate

post_integrate

pre_exchange

pre_neighbor

post_neighbor

pre_force

pre_reverse

post_force

final_integrate

end_of_step

132

Neighbor

public

style

decide

setup_bins

build

158

Output

public

next

write

52

Pair

public

compute

160

Timer

public

ttype

START

PAIR

BOND

KSPACE

NEIGH

COMM

MODIFY

OUTPUT

11

stamp

check_timeout

35

Update

public

ntimestep

nsteps

44

Exported from Sourcetrail ®Figure 3.1.: LAMMPS - Verlet::run method: Overview of all classes used and functions

called from the run method of the Verlet integrator class. This method

contains the main simulation loop and performs all relevant steps as listed

in section Section 3.1.
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3. Technical Background

any indirections. This is quite fast but results in code that has no encapsulation at all

and thus is difficult to maintain or change. See Figure A.7 for an example showing this.

LAMMPS supports grid-based domain decomposition using MPI with two different

partition styles. A grid-based brick style and a tiled style based on cuboids of different

sizes.

LAMMPS is highly extensible by user-created code and comes packaged with a lot of

optional functionality. It uses the following definitions for the description of its modular

structure:

Style Styles are the features of LAMMPS, like new particle types, force computations, or

operations being performed every time step (so-called fixes). Every style is defined

by its type (e.g., pair, fix, angle) and a name used for selecting it in the input file

(e.g., pair lj/cut or fix nve). The slash is the naming scheme used by LAMMPS to

define a variant of a similar style. It is implemented by inheriting from the style

type base class and integrated into the CMake build system by supplying the name

in a preprocessor macro. Styles can then be enabled in the input file using their

name.

Package A package is a collection of new styles or variants of existing styles, e.g., for an

accelerator. It is defined by a separate CMake file listing the source files, external

dependencies, etc. Packages can be enabled in any combination at configure time

by defining the PKG_<NAME> flag when running CMake.

Accelerator An accelerator is a package providing a parallelized implementation for all

(or possibly only some) available styles utilizing a certain architecture or hardware

type to the fullest. These for example include executing in parallel on CPUs with

OMP, GPUs with CUDA, or special optimizations for Intel Xeon Phis. To define an

accelerated variant of a style, the accelerator suffix is appended to the style name

(e.g., lj/cut/omp). Accelerated styles can be selected manually in the input file by

using their name or can be enabled globally by using the -sf command line flag.

3.2. AutoPas

AutoPas is a C++ node-level auto-tuning library for particle simulations developed in the

context of the TaLPas
2

project. It is still in active development and not yet available as a

stable release.

AutoPas provides a black-box approach for performing MD simulations. It handles

the storage of particles for a given domain and provides iterators for accessing them.

Pairwise particle interactions can be implemented efficiently by writing so-called functors

7



3. Technical Background

that are then applied by AutoPas to particle pairs considering the cutoff radius. The

public interface of the library can be seen in Figure 3.2.

AutoPas<class Particle, class ParticleCell>

public

AutoPas<Particle, ParticleCell>

~AutoPas<Particle, ParticleCell>

init

updateContainer

updateContainerForced

addParticle

addOrUpdateHaloParticle

deleteAllParticles

deleteParticle

iteratePairwise<class Functor>

begin(autopas::IteratorBehavior)

begin(autopas::IteratorBehavior)

cbegin

end

getRegionIterator(std::array<double, 3>, std::a...

getRegionIterator(std::array<double, 3>, std::a...

getNumberOfParticles

getContainerType

Exported from Sourcetrail ®

Figure 3.2.: AutoPas - Public interface: This figure shows the interface of the AutoPas

framework without the getters and setters for the configuration options. The

remaining functions include methods for adding and removing particles,

iterating all particles, iterating parts of the domain, and iterating particle

pairs with functors. Further, the container can be updated when particles

have been moved, which might rebuild the internal neighbor structure and

return particles that left the domain.

The internal algorithms and data structure can be switched while keeping the interface

for the user consistent. AutoPas can change the following things:

Container Object storing and managing all particles defining the algorithm how particle

neighbors are found like Linked Cells or Verlet Lists (see Section 2.3)

Traversal Algorithm how the pairwise force calculations are parallelized on the hardware

Data Layout Array-of-Structures (AoS) or Structure-of-Arrays (SoA)

Optimization Switches Other optimizations like using Newton’s third law to remove up

to half of the force calculations but introducing parallelization limitations

8



3. Technical Background

The decision which algorithms to use for the aspects mentioned above can be left

to the auto-tuner. It will re-evaluate the simulation performance at set intervals and

tries to select the fastest combination available for the next simulation steps. Functor

implementations can also define if they support Newton3 optimizations, which then can

be considered in the auto-tuning process. [4]

Currently, AutoPas is limited to short-range potentials that can be modeled using a

cutoff radius. It also always uses an AoS data layout internally that is converted to SoA

every time step when needed. As LAMMPS always uses Verlet Lists with an SoA layout,

it might have an inherent advantage in all scenarios where SoA is the preferred layout.

3.3. Kokkos

Kokkos is a C++ programming model for writing performance portable code. It provides

a hardware-independent interface, but the same code gets compiled and optimized for

different architectures and node configurations. Currently, it supports CUDA, OpenMP,

Pthreads, and HPX as backends.

The two core concepts Kokkos is based on are: [3]

1. The dispatching of architecture optimized parallel kernels for performing compu-

tations.

2. And the management of the data structure such that these kernels have an optimal

layout for the target device.

In general, this means Kokkos is similar to AutoPas, as it also allows the same code to

run efficiently on different systems. While AutoPas does auto-tuning at runtime to select

the best configuration, Kokkos performs the optimizations at compile time. This is more

or less like compile-time static auto-tuning.

9



4. Implementation

The following chapter explains how AutoPas was integrated into LAMMPS and how to

extend the current implementation.

4.1. Simple Integration

The first approach for the integration of AutoPas is to just replace the computation of the

pairwise forces. For this, we added a pair style for the 12-6 Lennard-Jones potential with

an AutoPas suffix: lj/cut/autopas

The AutoPas container is kept alive for the whole simulation to not lose the auto-tuning

information and the force computation was then simply performed as follows:

1. Copy particles from LAMMPS’s C-style arrays into AutoPas container

2. Compute pairwise forces using a functor

3. Copy particles back to the C-style arrays

While this allowed us to keep all LAMMPS code except for the classes calculating the

pairwise forces and run any scenario already supported by LAMMPS, this approach had

major drawbacks and did not scale well for a higher number of particles.

Not only is the copy operation costly but the internal data structure of AutoPas (e.g.,

Verlet Lists or Linked Cells) has to be rebuild after inserting particles. This for example

removed the possibility to use a Verlet Skin and keep the neighbor lists for multiple steps.

It would also double the memory requirements and still would not parallelize any other

parts of the core LAMMPS code.

4.2. Full Integration

The code of the AutoPas integration can be found in the ssauermann/lammps-autopas

GitHub repository
3
.
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4. Implementation

4.2.1. LAMMPS Package Creation

Our LAMMPS package is defined by a CMake file in the cmake/Modules/Packages

directory. The package is enabled with the PKG_USER-AUTOPAS flag when configuring

LAMMPS. The AutoPas library is included via the CMake FetchContent module directly

from its GitHub repository
4
.

LAMMPS provides a system for automatically discovering sources files that overwrite

existing styles in form of the RegisterStylesExt function. Any additional file for the

accelerator structure must be added manually to the list of source files. See Listing 4.1

for an excerpt from the package CMake file.

1 set(USER-AUTOPAS_SOURCES_DIR ${LAMMPS_SOURCE_DIR}/USER-AUTOPAS)

2

3 add_definitions(-DLMP_AUTOPAS)

4

5 # sources that are not a style

6 set(USER-AUTOPAS_SOURCES

7 ${USER-AUTOPAS_SOURCES_DIR}/autopas.cpp

8 ${USER-AUTOPAS_SOURCES_DIR}/atom_autopas.cpp

9 ${USER-AUTOPAS_SOURCES_DIR}/atom_vec_autopas.cpp

10 ${USER-AUTOPAS_SOURCES_DIR}/comm_autopas.cpp

11 ${USER-AUTOPAS_SOURCES_DIR}/domain_autopas.cpp

12 ${USER-AUTOPAS_SOURCES_DIR}/neighbor_autopas.cpp

13 ${USER-AUTOPAS_SOURCES_DIR}/output_autopas.cpp

14 )

15

16 set_property(GLOBAL PROPERTY "AUTOPAS_SOURCES" "${USER-AUTOPAS_SOURCES}")

17

18 # detects styles which have USER-AUTOPAS version

19 RegisterStylesExt(${USER-AUTOPAS_SOURCES_DIR} autopas AUTOPAS_SOURCES)

20

21 get_property(USER-AUTOPAS_SOURCES GLOBAL PROPERTY AUTOPAS_SOURCES)

22

23 list(APPEND LIB_SOURCES ${USER-AUTOPAS_SOURCES})

24 include_directories(${USER-AUTOPAS_SOURCES_DIR})

Listing 4.1: Excerpt of the CMake file defining the AutoPas package for LAMMPS.

Overwritten styles are discovered by the RegisterStylesExt function (l.19).

11



4. Implementation

4.2.2. AutoPas Accelerator

The core of our AutoPas integration is the AutoPas accelerator class AutoPasLMP in

src/USER-AUTOPAS/autopas.cpp that manages the AutoPas container from the external

library and provides the interface to the LAMMPS code. The accelerator is initialized

in src/lammps.cpp when the -autopas on <options> argument is set when running

LAMMPS. All parameters following this flag are forwarded to the accelerator class until

the next argument starting with a dash. See Subsection 4.2.5 for further instructions on

how to use the accelerator.

When running an input file using the AutoPas accelerator, the particles are only copied

into the AutoPas container for the execution of the run command and copied back

afterward. Thus, any style implementation has to check the initialization status of the

accelerator before performing operations and provide a fallback in case the code is

executed from a different command (e.g., compute). See Listing 4.3 for implementation

advice.

Additionally, we have to overwrite some of the LAMMPS core classes that are not part

of the style system:

• Atom - Atom sorting not possible/necessary with AutoPas

• CommBrick - Modified communication code

• Domain - AutoPas-ifying and custom handling of domain resizing

• Neighbor - Disabled creation of neighbor lists as AutoPas manages those

• Output - Copy back of particles from AutoPas container required

They are initialized instead of the base class in src/lammps.cpp when the AutoPas

accelerator is defined.

To circumvent compile errors when the USER-AUTOPAS package is not loaded, we

provide a dummy interface in src/accelerator_autopas.h. It uses preprocessor

macros to include the real classes when LMP_AUTOPAS is defined and otherwise just

provides class stubs.

4.2.3. AutoPas-ifying of LAMMPS Classes

As described earlier, the particles are now stored inside the AutoPas container instead

of in C-style arrays. Because the internal memory layout of the particles can change, a

memory mapping is not possible. Thus most styles need slight adaptions to work with

the AutoPas accelerator.

The basic steps that had to be performed to create an AutoPas compatible style are as

follows:

12



4. Implementation

1. Find all usages of the particle arrays in the class. These are the atom->x, atom->v

and atom->f arrays. If none of those arrays are used, the style will very probable

work out of the box with AutoPas.

2. Create a style variant of this class for the AutoPas accelerator by inheriting from

the style and adding /autopas to the end of the style name in the style definition

macro.

3. Overwrite all affected methods

See Listing 4.2 for an example header file.

1 #ifdef FIX_CLASS

2 FixStyle(temp/rescale/autopas,FixTempRescaleAutoPas)

3 #else

4 #ifndef LMP_FIX_TEMP_RESCALE_AUTOPAS_H

5 #define LMP_FIX_TEMP_RESCALE_AUTOPAS_H

6 #include "fix_temp_rescale.h"

7

8 namespace LAMMPS_NS {
9

10 class FixTempRescaleAutoPas : public FixTempRescale {
11 public:
12 using FixTempRescale::FixTempRescale;
13 void end_of_step() override;
14 };

15

16 };

17 #endif

18 #endif

Listing 4.2: FixTempRescaleAutoPas header file: FixStyle (l.2) registers this class as

the AutoPas version of the temp/rescale fixture in the CMake build system.

The class itself can then just inherit from the original fixture and overwrite all

methods using the C-style arrays. The constructors can simply be forwarded

(l.11) as they need no changes.

Make sure to provide a fallback implementation for the case when AutoPas is not

initialized as discussed in the previous section. In most cases a call to the method of the

base class is sufficient. See Listing 4.3 for an example.

13



4. Implementation

auto Derived::foo() overwrite {
if (!autopas->is_initialized()) {

return Base::foo();
}

// Code with AutoPas here

}

Listing 4.3: Fallback implementation when AutoPas is uninitialized: AutoPas only

gets initialized when LAMMPS executes the run command. As methods

can also be executed from other commands (e.g., compute), it is necessary to

provide a fallback implementation when AutoPas is not available. For this, a

call to the base class is mostly sufficient.

Depending on the specific way the particles are accessed, different features of the

accelerator can be used. To gain the maximal performance they should be considered in

the following order when AutoPas-ifying LAMMPS code:

• Pair functor

• Region iterator

• Particle iterator

• Random access by index

See Listing 4.4 for an example of an AutoPas-ified particle loop.

Pair Functor

When replacing a force calculation that iterates over all particle pairs within a cutoff

radius using LAMMPS’s neighbor lists an AutoPas functor should be used. The iteration

is then performed by calling iterate_pairwise(functor). For further information on

how to implement such a functor refer to the official AutoPas documentation
5
.

Region Iterator

When replacing a loop over particles that also include a check if the particle position is

inside a given slab or region of the domain, region iterators can be used. These iterators

are accessed via iterate_region(...) and for convenience with different parameters

also as particles_by_slab(...). These iterators are used (and can be limited to local

or ghost atoms) similarly to the particle iterator (See Section 5).
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Particle Iterator

When all or a range of particles are accessed with a ranged based for loop, a particle

iterator can be used to replace it:

• Replace the index-based loop through the particle arrays by an AutoPas iterator

• Add the #pragma omp parallel pragma to the loop with the necessary OMP

data-sharing attributes when free of race conditions

• Get and set the position, velocity and force vectors via the iterator

• Access any other particle data in the arrays by index via the localID provided

from the iterator

Depending on the range that should be iterated, different iterator behaviors have to be

selected:

• 0 → nlocal — use iterate<ownedOnly>()

• nlocal → nlocal + nghost — use iterate<haloOnly>()

• 0 → nlocal + nghost — use iterate<haloAndOwned>()

• Any subset of the above — additionally check the index of particle returned by the

iterator

Random Access by Index

If none of the above implementations is possible, index-based random access is available

by calling particle_by_index(index) but can be quite slow. More in-depth refactoring

of the code segment should be considered instead if it is a performance-critical path.

When accessing the particles in this way, an index to particle mapping is created on the

first call. As the internal data structure of AutoPas can change, this cache is invalidated

when performing certain operations like adding particles or rebuilding the neighbor

lists.

4.2.4. Implementation Problems & Pitfalls

In the previous section, we presented a general approach for converting styles to an

AutoPas compatible version. This section discusses some classes that needed special

attention to work and other pitfalls that can occur.
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1 #pragma omp parallel default(none) shared(factor)

2 for (auto iter = lmp->autopas->iterate<autopas::ownedOnly>();
3 iter.isValid(); ++iter) {

4 auto v = iter->getV();
5 int idx{iter->getLocalID()};
6 if (atom->mask[idx] & groupbit) {
7 if (which == BIAS) temperature->remove_bias(idx, v.data());
8 v[0] *= factor;

9 v[1] *= factor;

10 v[2] *= factor;

11 if (which == BIAS) temperature->restore_bias(idx, v.data());
12 iter->setV(v);

13 }

14 }

Listing 4.4: Excerpt of the FixTempRescaleAutoPas source file: The particle loop

through all local particles is implemented with an AutoPas particle iter-

ator. The mask of the particle is accessed via its ID and one of the C-style

arrays.

Differing virial definitions AutoPas already provides a functor that calculates the Lennard-

Jones potential. LAMMPS expects different values for the calculation of virials and

global energy than that functor calculates though. Thus it could not be used as-is

and had to be adapted.

Excluding particle interactions LAMMPS allows the user to define which particles

should not interact with each other. This can be done for example by specifying

type pairs to exclude with the neigh_modify command. LAMMPS then considers

these exclusions when building the neighbor lists. As AutoPas does not use the

same lists and does not support excluding types from the pair iterations directly,

the force functor implementations have to perform additional checks. This was

implemented by pre-generating an interaction map for all combinations of particle

types that return a factor (either zero or one) which is multiplied with the result of

the force computation. This approach was chosen because it still allows for the

auto-vectorization of loops in the functor with recent compilers.

Shrink-wrapped boundary LAMMPS provides the possibility to define a domain bound-

ary as shrink-wrapped such that the domain extends and retracts to accommodate

the farthest particle. AutoPas can not simply resize its domain but has to recreate
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the whole container. This loses all insights already gained for auto-tuning.

Therefore we limited the shrink-wrapping to only grow the domain and never

shrink it. The possible performance degradation of parts of the domain being

empty can be negated by the auto-tuning choosing a matching algorithm and data

structure. Additionally, we noticeably increased the size the domain grows each

time it gets to small, compared to the LAMMPS default, to minimize the frequency

of this occurring.

Particle random access AutoPas provides no random access to particles via some kind

of index. The domain decomposition and communication code of LAMMPS heavily

rely on index lists though. Thus we would have to either completely rewrite those

classes from scratch or provide index-based access. Although a rewrite would

probably give better performance, the second, simpler approach was implemented

by creating a temporary mapping from index to particle. This mapping can be

created in a single iteration through all particles and allows retrieving a particle in

constant time afterward. Similarly to LAMMPS’s global to local ID mappings, this

is either implemented using an array or a hashmap, depending on the number of

global particles. See Section 5 for usage information.

4.2.5. Usage of the AutoPas Accelerator

When LAMMPS was built with the PKG_USER-AUTOPAS flag, the AutoPas accelerator

can be used when running the program. To enable the package the -autopas on

command-line switch has to be added. This also invokes a package autopas command

with default settings.

When the user wants to customize the behavior of AutoPas they can set further options

either by adding a package autopas <options> command to the input file or appending

the options to the command-line switch like this: -autopas on <options>.

To enable the AutoPas enabled styles, they can either be selected by hand at every style

selection by appending the /autopas suffix in the input file (e.g., fix nve/autopas) or

enabled globally with the -suffix (-sf) command-line argument like this: -suffix

autopas. Keep in mind that most non-AutoPas styles do not work when AutoPas is

enabled with autopas on because particles are stored differently. Thus it is highly

recommended to use the suffix flag to use the AutoPas version of styles wherever

available.

A complete call of LAMMPS using the AutoPas accelerator might therefore look like this:

lmp -i <input_file> -autopas on t c04,c08 i 1000 n enabled -sf autopas

See Table 4.1 for a full list of options. All options that are considered for auto-tuning,

allow setting multiple values by giving a list separated by any of the ,;|/ characters.
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Option Short Tuning Possible Values Description

log trace, debug, info, warn, err,

critical, off

Logging level

newton n X enabled, disabled Newton3 options

traversals t X c08, sliced, c18, c01,

directSum, verlet-sliced,

verlet-c18, verlet-c01,

cuda-c01, verlet-lists,

c01-combined-SoA, verlet-

clusters, c04, var-verlet-

lists-as-build, verlet-

clusters-coloring, c04SoA,

verlet-cluster-cells, verlet-

clusters-static, balanced-

sliced, balanced-sliced-

verlet, c04HCP

Traversal options

containers c X DirectSum, LinkedCells,

VerletLists, VerletListsCells,

VerletClusterLists,

VarVerletListsAsBuild,

VerletClusterCells

Container options

data d X AoS, SoA Data layout options

interval i <integer> Tuning interval

strategy s bayesian-Search, bayesian-

cluster-Search, full-Search,

random-Search, active-harmony,

predictive-tuning

Tuning strategy

selector Fastest-Absolute-Value,

Fastest-Mean-Value, Fastest-

Median-Value

Evidence selector

vc_size <integer> Verlet-cluster size
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Option Short Tuning Possible Values Description

samples <integer> Number of tuning

samples

evidence <integer> Max evidence for

tuning

pred_ror <double> Relative optimum

range for predictive

tuning

pred_mtpwt <integer> Max tuning phases

without test for pre-

dictive tuning

bayesian_af upper-confidence-bound,

mean, variance, probability-

of-improvement, expected-

improvement

Acquisition func-

tion for bayesian

based searches

csf X <double> Cell size factors

estimator X none, squared-particles-per-

cell, neighbor-list-length

Load estimator for

balanced traversals

notune Strictly checks if

only a single config-

uration is selected

Table 4.1.: Options for the AutoPas accelerator: Either the long or short form can be

used when giving an option followed by the value. When the setting is

auto-tunable, multiple options can be given by a list separated by any ,;|/

character. The values do not have to match exactly but are matched with the

Needleman-Wunsch algorithm to find the closest one.
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In the previous chapter, we have seen how AutoPas was integrated as an accelerator and

how to make styles AutoPas compatible. For this thesis, we looked at three different

example input files shipped with LAMMPS, converted all styles used in them, and made

some additional adaptions where necessary. This chapter explains for each of the three

scenarios which styles were necessary to AutoPas-ify and which additional features had

to be implemented on the accelerator. The converted scenarios perform an identical

simulation to the original ones with the same results.

We also compare the node-level performance of runs using AutoPas with two ac-

celerator packages that come with LAMMPS: USER-OMP6
and KOKKOS7

(with OMP

backend).

The benchmarks were executed on the CoolMUC2 and CoolMUC3 clusters of the Leibniz
Supercomputing Centre (LRZ)8

. The former uses the same Haswell CPU based hardware

as the recently decommissioned SuperMUC Phase 2 and the latter has a Knights-Landing
manycore architecture. See Table 5.1 for a detailed hardware overview.

CoolMUC2 CoolMUC3

Architecture Haswell Knights Landing

Processor Type Intel Xeon E5-2697 v3 Intel Xeon Phi 7210F

Nominal Frequency (turbo) 2.6 (3.6) GHz 1.3 (1.4) GHz

Cores per Node 2 × 14 64

Threads per Core 2 4

Vector Instruction Set (width) AVX2 (256 Bit) AVX-512 (512 Bit)

Memory per Node 64 GB DDR4 96 GB DDR4 + 16 GB HBM

Table 5.1.: Specifications of the CoolMUC29 and CoolMUC310 clusters.

5.1. Lennard-Jones Melt

5.1.1. Scenario Description

The first scenario we converted is used typically for benchmarks as it does not change

much over time. We use the 12-6 Lennard-Jones potential (see Section 2.2) because it is
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quite common for MD simulations. We simply use � = & = 1 and a cutoff radius of 2.5.

The domain is completely filled with atomic particles on a face-centered cubic lattice.

They start with random velocities such that a temperature of 1.44 is reached for the

system. The boundaries are periodic and a thermostat is applied every 100 steps. The

rebuild frequency of the neighbor lists is set to 20 steps and they use a skin of 0.3. See

Figure 5.1 for an example of this setup.

(a) C = 0 (b) C = 100

Figure 5.1.: Lennard-Jones Melt Scenario: The fully periodic domain is filled with a

regular arrangement of particles with random velocities. We use atomic par-

ticles and the 12-6 Lennard-Jones potential with � = & = 1 and a cutoff radius

of 2.5. Because of the high density, this is a good scenario for benchmarks

and performance comparisons between the different implementations.

5.1.2. Necessary Styles & Features

In addition to the core accelerator integration as described in Section 4.2, the following

styles were AutoPas-ified to run this scenario.

[Atom Style] atomic An atom style defines the attributes that make up every particle

and handles their memory layout. It is responsible for packing/unpacking the data

into buffers for in- and inter-process communication. Atomic is the simplest style,

just consisting of position, velocity, force, tag, type, mask, and image attributes.
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The most significant change for the AutoPas-ified implementation is that the

position, velocity, force, tag, and type are only stored inside of AutoPas and no

longer in the C-style arrays. Because the remaining attributes are not needed in

any AutoPas functor, they can be kept as is.

Packing particles into buffers is done using particle iterators where possible but

sometimes requires accessing particles by index. When unpacking, the particles

are directly inserted into the AutoPas container.

[Pair Style] lj/cut This class implements the 12-6 Lennard-Jones potential with a cutoff

radius as described in Section 2.2. It was implemented by writing an AutoPas

functor for calculating the pairwise interactions between particles.

[Fix] nve This fix performs the leapfrog integration to update the velocities and positions

of the system. Because the number of particles (N), volume (V), and energy (E) are

constant the trajectories are consistent with the microcanonical ensemble. Particle

iterators were used for performing this calculation in parallel for all particles.

Other changes to the input file that were necessary to be compatible with AutoPas are:

Atom Sorting LAMMPS can resort the C-style arrays to improve the locality of succeeding

particles. We do not support sorting because the iteration order is given by AutoPas

anyway.

Index Map We need to enable the global particle IDs to perform mappings between

particles in the AutoPas container and their corresponding index in the C-style

arrays.

5.1.3. Performance Comparison

To compare the performance of the AutoPas integration we use the LJ melt scenario

similar to the benchmarks provided in the bench/KEPLER folder with LAMMPS which

results can also be found on the LAMMPS website
11

.

We use a domain size of 214.988
3

filled with 8388608 atoms on a single node. LAMMPS

was compiled with the Intel C++ Compiler 19.0.5 with the matching vectorization opti-

mizations enabled for both clusters. The affinity for the OMP threads is set to thread

scatter for CoolMUC2 and to thread balanced for CoolMUC3 using the KMP_AFFINITY

environment variable of the Intel OpenMP Runtime Extensions. We simulate 1000 steps to

amortize the auto-tuning costs of AutoPas better than just running 100 steps.

We perform strong scaling for 1 to 56 threads for CoolMUC2 and 1 to 256 threads for

CoolMUC3. All measurements were only taken three times because they had a small

variance and subsequently averaged. The compared configurations are shortened as

follows in the plot legends:
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AutoPas-FullSearch AutoPas with the default settings, trying most possible combination

of algorithms and data-structures when auto-tuning. Only configurations that

most likely are not a good choice (e.g., Direct Sum) are skipped.

AutoPas-Bayesian AutoPas with the default settings but using a bayesian search for

auto-tuning. This approach finds good settings faster than the full search but is

not guaranteed to find the optimum.

AutoPas-C04 AutoPas using the C04 traversal with the Linked Cells container, SoA data

layout, and Newton3 optimizations enabled. No tuning is performed. This is the

fastest combination of settings in this scenario for higher thread counts.

AutoPas-NoN3 AutoPas using the balanced sliced verlet traversal with the Verlet Lists
Cells container, AoS data layout, and Newton3 optimizations disabled. This is a

configuration chosen by the auto-tuner for higher core counts in this scenario when

disabling Newton3 optimizations explicitly.

OMP USER-OMP package parallelization. Implemented with an MPI-like approach

using separate copies of the data per thread. Therefore, the pairwise forces can

be computed using Newton3 optimizations without synchronization. Afterward,

global properties are reduced in a #pragma omp critical section. The reduction

of per-atom properties is performed in parallel. [8]

Kokkos KOKKOS package parallelization with the OMP backend. Kokkos is set to

use half neighbor lists with Newton3 optimizations enabled, which is the default.

Atomic operations are used to prevent race conditions.

Kokkos-NoN3 KOKKOS package parallelization with the OMP backend. Kokkos is set to

use full neighbor lists with Newton3 optimizations disabled. This is recommended

in the documentation for pair-wise potentials as it needs no synchronization.

Chosen configurations by auto-tuning

The auto-tuner consistently chooses a Verlet Lists based configuration for a low number

of threads and a Linked Cells based configuration for more threads.

Figure 5.2 and Figure 5.3 give an overview of what configuration was chosen for this

scenario by the tested auto-tuning approaches for the different thread counts as well as

the time they took for one timestep. If not all three runs chose the same configuration,

the most common one is shown.
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Figure 5.2.: Auto-tuner configuration selection CoolMUC2: The auto-tuner selected

these AutoPas configurations for the Lennard-Jones melt scenario with about

8 million particles when simulated on the CoolMUC2. The patterns show

the selected container, while the traversal, data layout, and if the Newton3

optimizations are enabled, is written on each bar.
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Figure 5.3.: Auto-tuner configuration selection CoolMUC3: The auto-tuner selected

these AutoPas configurations for the Lennard-Jones melt scenario with about

8 million particles when simulated on the CoolMUC3. The patterns show

the selected container, while the traversal, data layout, and if the Newton3

optimizations are enabled, is written on each bar.
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Atom-Timesteps per Second

The main metric for the performance comparison is the number of timesteps per second

that can be performed. To stay consistent with the LAMMPS benchmark website, we

plot the atom-timesteps per second on the y-axis. This means a value of 4 million for our

about 8 million particle system equals the simulation running at 0.5 steps per second.

Figure 5.4 and Figure 5.5 show the plots for running on CoolMUC2 and CoolMUC3

respectively. The OMP package outperforms both AutoPas and Kokkos which is not

unexpected as it is optimized low-level code specialized on a small core count. AutoPas

is only slower by a factor of 2-4. We can also see that Kokkos stops improving somewhere

around 14 (32) threads and only AutoPas even scales past the physical core count utilizing

hyper-threads.

Similar relations can be shown when plotting the total simulation time as seen in

Figure A.3 and Figure A.4.

Speedup

Next, we can look at the parallelization efficiency and speedup of the different accelerators

to compare how parallelizable the code is. For MD codes this is often influenced by the

amount of time spent communicating instead of computing.

The speedup can be defined as the time the simulation takes sequentially divided by

the time using multiple threads n: C1/C= . Ideally, the performance would scale linearly

but this is not the case for most algorithms. Another way to show the same concept is by

plotting the parallel efficiency, by dividing the speedup by the number of threads. This

should stay as close to the value one as possible.

Figure 5.6 and Figure A.5 show the speedup while Figure 5.7 and Figure A.6 show

the parallel efficiency of different configurations to their sequential performance on

CoolMUC2 and CoolMUC3. We plot both for the total simulation time as well as for just

the time spent on computing the pairwise forces.

AutoPas leads in this metric compared to the OMP and Kokkos package, when running

with one thread per physical core. It reaching about 50-60% efficiency looking at total

simulation time, and even more than 90% for the force computation. Enabling tuning

reduces the efficiency quite dramatically especially for less than 14 threads. When using

the bayesian search the efficiency still stays around or above OMP and Kokkos for more

than 14 threads though. On the CoolMUC3 even the full search is more efficient than

the references for 64 or more threads.

These performance drop-offs introduced by auto-tuning might disappear when

running longer simulations so that the amount of time spent on auto-tuning and

therefore on computing with slower configurations is less relevant.
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Figure 5.4.: Atom-timesteps per second on CoolMUC2 (higher is better): The OMP

package outperforms both Kokkos and AutoPas in any configuration. Kokkos

scales quite good up to 14 threads, which equals 7 threads per CPU. Using

the full neighbor lists with Newton3 disabled shows better performance

than using half neighbor lists with Newton3. AutoPas is the slowest of the

compared methods but not by a large factor. It is also the only accelerator that

still gains performance from utilizing the hyper-threads (56 threads). Dis-

abling Newton3 optimizations only has disadvantages for AutoPas contrary

to Kokkos.
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Figure 5.5.: Atom-timesteps per second on CoolMUC3 (higher is better): The OMP

package is clearly the fastest accelerator here, but it produces a segmentation

failure with 128 or 256 threads for this large scenario. Kokkos is a little bit

faster than AutoPas but does not scale past 32 cores. AutoPas can utilize the

hyper-threads (128, 256) slightly but does not gain a lot from them.

28



5. Scenarios

Figure 5.6.: Speedup on CoolMUC2 (higher is better): The upper plot shows the

speedup for the total simulation, the lower one when calculated just us-

ing the force computation times.

AutoPas can reach quite a good speedup when limited to a single configura-

tion. AutoPas-C04 is always effective but the AutoPas-NoN3 configuration

only improves for more than 14 cores. With auto-tuning, the speedup is

comparable to OMP and Kokkos for high thread counts but quite bad for a

small number of threads. The speedup drops off in general for more than 14

cores.

Looking just at the forces shows that the AutoPas-C04 as well as Kokkos-

NoN3 configuration scale nearly perfectly up to 28 cores and only drop off

when using hyper-threads. This shows that the theoretical peak performance

is not limited by the force computation for those two configurations but more

likely by communication. The force computation of the OMP package scales

only slightly better than the whole simulation.
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Figure 5.7.: Parallel efficiency on CoolMUC2 (higher is better): The upper plot shows

the parallel efficiency when calculated for the total simulation time, the lower

one when just looking at the time spent in computing the pairwise forces.

For the full simulation, only the parallel efficiency of AutoPas-C04 and

Kokkos-NoN3 is very good for up to 14 cores, while the OMP and Kokkos

configurations are acceptable. Afterward, only AutoPas with a fixed setting

reaches sufficient parallelization efficiency. When auto-tuning is enabled

AutoPas shows a surprisingly bad efficiency for low thread counts.

The efficiency of the pairwise forces shows that AutoPas-C04 and Kokkos-

NoN3 can scale excellently but all other configurations are just slightly more

efficient than the full simulation. Thus, communication overhead affects

those two the most.
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When comparing just the force speedups, we can see that AutoPas-C04 as well as

Kokkos-NoN3 scale nearly perfectly up to the physical core count and just drop off when

utilizing hyper-threads. This is a clear sign that the scaling issues we see with both are

not introduced by the force calculation.

LAMMPS in general does not seem to be parallelizable super efficiently at node level just

using OMP, especially for high thread counts. This matches findings of the USER-OMP

package implementation and the current documentation: MPI parallelization is preferred

and OMP is used to keep the number of MPI ranks manageable while still utilizing

all cores. OMP also gets very useful for high node counts or when communication

bandwidth is the limiting factor. [8]

Memory

Another metric for comparing the accelerator packages is the amount of main memory

they use. While current supercomputers have a reasonable amount of RAM per node,

there exist cache and bandwidth limitations that might influence performance. High

memory usage might also limit the size of possible simulations.

While LAMMPS always uses verlet-lists, AutoPas offers multiple methods that can

vary a lot in their memory consumption. Figure 5.8 and Figure A.1 show the memory

used by the different configurations over varying thread counts.

We can see that the OMP packages and Kokkos scale linearly with the number of

threads. AutoPas stays constant for the C04 configuration utilizing a Linked Cells Container,
and the NoN3 configuration using a Verlet List Cells container.

Determining the memory usage for the auto-tuning configurations is more difficult

as they can change over time. The values plotted are always for the configuration

the tuner finally selected and thus was used for the majority of the simulation. Any

Linked Cells based configuration resulted in very little memory usage and Verlet Lists
based configurations used the most memory. See Figure 5.2 and Figure 5.3 for the exact

configurations that were selected.

5.1.4. Causes for Loss of Performance

As we have seen in the previous section, AutoPas is a bit slower than Kokkos and

especially the OMP package but shows a better speedup. We now want to take a deeper

look into possible reasons that limit the performance of the AutoPas integration.

When we observe how the simulation time is spent we can see that the relative amount

of communication increases significantly for more than 8 cores. This affects not only

AutoPas but also Kokkos. See Figure 5.9 and Figure A.2 for plots of this from the runs on

CoolMUC2 and CoolMUC3.
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Figure 5.8.: Memory usage on CoolMUC2 (lower is better): The OMP and Kokkos

packages that use Verlet Lists scale linearly with the number of threads. The

memory usage of AutoPas highly depends on the internal data structure

and can change over the simulation when auto-tuning is enabled. For the

two configurations that perform auto-tuning only the memory usage of the

configuration that was finally selected is plotted.

Therefore the memory usage can be anything from around 1GB for Linked
Cells based configurations (here: AutoPas-C04) up to 20 GB for Verlet Lists
(here: AutoPas with Full Search for 2 and 4 threads). The AutoPas-NoN3 run

uses a Verlet Lists Cells configuration that results in constant, but relatively

high memory usage.
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Figure 5.9.: Relative time spent on communication on CoolMUC2 (lower is better):
This plot shows how much of the simulation time is spent on communication.

Up to 8 threads, the amount of communication required is still below 10%

for all configurations. Starting with 14+ threads, it quickly explodes. This is

especially the case for Kokkos but also for AutoPas. Only the OMP package

can steadily remain below 10%.
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Figure 5.10.: Intel VTune overview for the Lennard-Jones Melt scenario, the C04 con-
figuration, and 54 threads: This excerpt from the profiler shows the parallel

efficiency of the OMP threads as well as the memory bandwidth used. The

red rectangle shows the time frame the communication code is executed for

one iteration. This section is clearly neither compute nor memory- bound

at the moment. Thus replacing this sequential section of the code with an

optimized and parallelized version should bring a huge performance boost.

The communication of LAMMPS is split into four categories:

1. Sending of atom positions in steps where the neighbor lists are not rebuild

2. Sending ghost particles for periodic boundaries and neighboring processes

3. The force communication back to the particles these ghosts originate from

4. Exchanging particles with neighboring processes that leave the local domain

As we are not using multiple processes with MPI we have no particle exchange (4). And

because AutoPas currently always calculates a Full Shell, i.e. particle interactions with

the ghost layer are fully calculated in each process, no force exchange (3) is performed in

the AutoPas configurations. Therefore, in each time step either (1) or (2) is performed.

When integrating AutoPas we had to modify the communication code a little bit but

we kept it mostly as-is for simplicity. It is therefore not parallelized at all and uses a lot

of slow index-based particle accesses (see Subsection 4.2.4).

Using the Intel VTune profiler for this scenario and 54 threads, we can see that this

is indeed one problem resulting in reduced parallel performance (see Figure 5.10).

Therefore the communication code should be replaced with a parallelized version which

then can also remove the index-based accesses. For this mainly the CommAutoPas and

AtomVecAutoPas classes have to be changed.
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With the profiler, we can also see that about 33.5% of the time is spent in serial sections.

This is for a large part connected to the AutoPas particle iterators. The performance of

these can vary greatly depending on the internal container and might improve in the

future.

5.2. Lennard-Jones Crack

5.2.1. Scenario Description

In this scenario a plane of atomic particles is modeled that is torn apart from one edge.

For this, two groups of particles that do not interact with each other are attached to

one edge of the plane such that a gap is created in the middle (see Figure 5.11). The

edges orthogonal to the one that is torn are reinforced with a boundary also made up

of particles but not affected by forces. One boundary is moving away from the other,

tearing on the plane until it cracks.

At first, there appears a visible gap between the non-interacting particles (green and

blue). Then a small crack will appear on one edge of the plane (red). Finally, the internal

structure of the plane will shatter in multiple locations and its regular grid-like structure

will deform.

Forces are again modeled using the 12-6 Lennard-Jones potential � = & = 1 and a cutoff

radius of 2.5. The domain is shrink-wrapped (see Subsection 4.2.4) in both dimensions

and scales with the farthest particles.

5.2.2. Necessary Styles & Features

The following styles and features had to be converted/implemented for this scenario in

addition to the ones described in Subsection 5.1.2:

[Fix] enforce2d This fix explicitly sets the velocity and force of particles in the z-

dimension to zero. This ensures the particles stay in a plane when running

2D simulations. As AutoPas only supports 3D simulations, we use this fix to run

this 2D scenario inside a 3D domain.

[Fix] setforce With this fix the force of particles can be set to an arbitrary value. This is

used to set the forces on the boundary particles (yellow and cyan in Figure 5.11)

to zero so they can not be pushed by the particles of the plane. Thus the yellow

boundary stays static and the cyan boundary is only moved by its initial velocity

while pulling apart the plane.
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5. Scenarios

(a) C = 0 (b) C = 1000 (c) C = 2000

(d) C = 3000 (e) C = 4000 (f) C = 5000

Figure 5.11.: Lennard-Jones Crack Scenario: The red plane of atomic particles is torn

apart at the point of contact of the blue and green plane extension. The blue

and green particles do not interact with each other which allows them to

slide apart when the cyan boundary is moved away from the yellow one

and hereinafter tearing on the red plane until it cracks. The boundaries

are not affected by forces. For particle interactions, the 12-6 Lennard-Jones

potential with � = & = 1 and a cutoff radius of 2.5 is used.
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5. Scenarios

[Compute] temp This computation calculates the temperature of a group of particles.

It is used to compute the initial temperature of the mobile (red, blue, and green)

particles. This temperature is then set as the target temperature of the thermostat.

Shrink-Wrapping Boundary This scenario uses a shrink-wrapped boundary which re-

quires resizing the domain dynamically. The drawbacks of doing that with AutoPas

were discussed in Subsection 4.2.4. As the edges are moving apart slowly in this

scenario, the amount of required resizes is quite small.

Excluding Particle Interactions The blue and green particles (see Figure 5.11) should

not interact with each other. LAMMPS solves this by not including them when

building the neighbor lists. As AutoPas does not use LAMMPS’s neighbor lists,

the AutoPas functor now has to consider an interaction matrix. The drawbacks

were discussed in Subsection 4.2.4.

5.3. Lennard-Jones Obstacle Flow

5.3.1. Scenario Description

This scenario models a 2D Poiseuille flow through a channel that contains two circular

obstacles and widens over time. It uses atomic particles in a periodic and shrink-wrapped

domain and a 12-6 Lennard-Jones potential with � = & = 1 and a cutoff radius of 1.12246.

The channel is bound in the shrink-wrapped dimension using particles as a wall. The

forces applied to these particles are set to zero every step so they can not be moved by the

particles in the channel. The channel is then filled with particles, except for the spaces

taken up by the obstacles. See Figure 5.12 for a visualization.

The particles of the flow start by moving around the obstacles filling in all available

space. The wider the channel gets, the more they leave a shadow-like area behind the

obstacles with a lower particle density.

5.3.2. Necessary Styles & Features

In addition to the styles mentioned in the previous sections ([Atom Style] atomic, [Pair

Style] lj/cut, [Fix] nve, [Fix] enforce2d, [Fix] setforce, [Compute] temp), the following

ones were converted:

[Fix] temp/rescale This fix explicitly rescales the velocities of particles to reset their

temperature. Here it keeps the temperature of the particles in the flow constant.

[Fix] aveforce With this an external force can be applied over a group of particles. The

existing forces of the particles are averaged component by component and the new
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(a) C = 0 (b) C = 500 (c) C = 1000

(d) C = 1500 (e) C = 2000 (f) C = 2500

Figure 5.12.: Lennard-Jones Obstacle Flow Scenario: A 2D channel, which is bound by

the green and blue particles, encloses the red particles that move along

it, as well as two circular obstacles. The blue boundary is pushed over

time to widen the channel. The domain is periodic in the direction of the

channel and shrink-wrapped in the other. All particles are atomic and use a

12-6 Lennard-Jones potential with � = & = 1 and a cutoff radius of 1.12246.

Forces applied to the boundaries are negated.
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5. Scenarios

external force is added. It is used to widen the channel over time by pushing the

blue boundary particles away from the green ones.

[Fix] addforce The fix simply adds a constant force to particles every step. The flow

is created with this by pushing the red particles along the channel while the

thermostat keeps them at a constant velocity.

[Fix] indent This fix creates a cylindrical, spherical, or planar obstacle that repels particles.

In this scenario, it is used to create the circular obstacles in the flow.
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6. Evaluation of the Integration Effort

In this chapter, we want to give an overview of how much effort the AutoPas integration

took and how much of LAMMPS had to be changed. For this, we analyze how many lines

of code were added and removed using git diff. Listing 6.1 shows the diff summary

comparing the current master with the original LAMMPS version. The following changes

were excluded from the overview as they are not really a part of the core integration:

• New example inputs

• OMP data-sharing attributes added to the USER-OMP package that are necessary

to compile when enabling both the USER-OMP and USER-AUTOPAS package.

• Other things like .gitignore and .gitattributes

The core files of LAMMPS consist of roughly around 220,000 lines of code, excluding any

packages. The KOKKOS package itself is around 100,000 and the USER-OMP package

around 80,000 additional lines.

Our integration required about 6000 changes in 56 files, of which only around 100 lines

in 16 files are modifications of the original LAMMPS code. These are mostly needed

to replace classes that are not part of the style system with AutoPas specific versions

(see Subsection 4.2.2 for a list), similar to the Kokkos integration. Or they were minor

changes required for overriding methods of styles in the AutoPas version (e.g., changing

access specifiers from private to protected).

Everything else is new files, mostly inside the src/USER-AUTOPAS directory, which

will not affect the compilation when the package is disabled. Currently, only a small

selection of styles is supported though, compared to the other two packages.

Many of the new files, especially the fix and compute styles, are just a slightly modified

copy of the base style with replaced particle accesses as described in Subsection 4.2.3.

Additionally the autopas_lj_functor.h file implementing the Lennard-Jones functor

used for the lj/cut pair style is mostly provided from AutoPas with some changes in

the virial calculations as seen in Subsection 4.2.4.

Thus, removing all of these from the summary leaves us with about 3550 changed

lines of code in 35 files (23 new) for the most basic form of the integration. In summary,

it was not trivial to integrate AutoPas into LAMMPS, but taking a similar approach to

the Kokkos accelerator package it is doable without major changes to the original code.
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6. Evaluation of the Integration Effort

Duplicating code for the re-implementation of every style is not desirable but necessary

and can be done following the simple step-by-step guide of Subsection 4.2.3. If required,

this also allows for further fine-tuned optimizations of the code to utilize AutoPas to its

fullest.

cmake/CMakeLists.txt | 6 +

cmake/Modules/Packages/USER-AUTOPAS.cmake (new) | 80 ++

src/USER-AUTOPAS/atom_autopas.cpp (new) | 11 +

src/USER-AUTOPAS/atom_autopas.h (new) | 16 +

src/USER-AUTOPAS/atom_vec_atomic_autopas.cpp (new) | 518 ++++++++

src/USER-AUTOPAS/atom_vec_atomic_autopas.h (new) | 77 ++

src/USER-AUTOPAS/atom_vec_autopas.cpp (new) | 204 +++

src/USER-AUTOPAS/atom_vec_autopas.h (new) | 54 +

src/USER-AUTOPAS/autopas.cpp (new) | 608 +++++++++

src/USER-AUTOPAS/autopas.h (new) | 272 ++++

src/USER-AUTOPAS/autopas_lj_functor.h (new) | 1326 ++++++++++++++++++++

src/USER-AUTOPAS/autopas_particle.h (new) | 37 +

src/USER-AUTOPAS/comm_autopas.cpp (new) | 471 +++++++

src/USER-AUTOPAS/comm_autopas.h (new) | 50 +

src/USER-AUTOPAS/compute_temp_autopas.cpp (new) | 86 ++

src/USER-AUTOPAS/compute_temp_autopas.h (new) | 26 +

src/USER-AUTOPAS/domain_autopas.cpp (new) | 507 ++++++++

src/USER-AUTOPAS/domain_autopas.h (new) | 38 +

src/USER-AUTOPAS/fix_addforce_autopas.cpp (new) | 155 +++

src/USER-AUTOPAS/fix_addforce_autopas.h (new) | 23 +

src/USER-AUTOPAS/fix_aveforce_autopas.cpp (new) | 149 +++

src/USER-AUTOPAS/fix_aveforce_autopas.h (new) | 27 +

src/USER-AUTOPAS/fix_enforce2d_autopas.cpp (new) | 65 +

src/USER-AUTOPAS/fix_enforce2d_autopas.h (new) | 24 +

src/USER-AUTOPAS/fix_indent_autopas.cpp (new) | 195 +++

src/USER-AUTOPAS/fix_indent_autopas.h (new) | 24 +

src/USER-AUTOPAS/fix_nve_autopas.cpp (new) | 40 +

src/USER-AUTOPAS/fix_nve_autopas.h (new) | 29 +

src/USER-AUTOPAS/fix_setforce_autopas.cpp (new) | 131 ++

src/USER-AUTOPAS/fix_setforce_autopas.h (new) | 27 +

src/USER-AUTOPAS/fix_temp_rescale_autopas.cpp (new) | 83 ++

src/USER-AUTOPAS/fix_temp_rescale_autopas.h (new) | 24 +

src/USER-AUTOPAS/neighbor_autopas.cpp (new) | 174 +++

src/USER-AUTOPAS/neighbor_autopas.h (new) | 19 +
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6. Evaluation of the Integration Effort

src/USER-AUTOPAS/output_autopas.cpp (new) | 25 +

src/USER-AUTOPAS/output_autopas.h (new) | 24 +

src/USER-AUTOPAS/pair_lj_cut_autopas.cpp (new) | 59 +

src/USER-AUTOPAS/pair_lj_cut_autopas.h (new) | 41 +

src/USER-AUTOPAS/verlet_autopas.cpp (new) | 41 +

src/USER-AUTOPAS/verlet_autopas.h (new) | 31 +

src/accelerator_autopas.h (new) | 86 ++

src/domain.h | 8 +-

src/dump_custom.cpp | 6 +-

src/finish.cpp | 2 +

src/fix_addforce.h | 2 +-

src/fix_aveforce.h | 2 +-

src/fix_enforce2d.cpp | 4 +-

src/fix_indent.h | 2 +-

src/kspace.cpp | 2 +-

src/lammps.cpp | 44 +-

src/lammps.h | 4 +

src/neighbor.h | 3 +-

src/output.h | 9 +-

src/suffix.h | 1 +

src/timer.h | 2 +-

src/variable.cpp | 12 +-

56 files changed, 5959 insertions(+), 27 deletions(-)

Listing 6.1: Git diff summary showing all changed files: For existing files, the combined

number of additions and deletions, and for new files, the total number of

lines in them are shown on the right. Plus means additions and minus signals

deletions.

In total, the core part of the integration took about 6000 lines of codes.

Roughly half of it is modified copies of LAMMPS styles and the AutoPas

Lennard-Jones functor. Only about 100 lines were changed in the original

LAMMPS code.
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7. Conclusion & Future Work

AutoPas was successfully integrated into LAMMPS as an accelerator and can be used

like any other parallelization method LAMMPS offers. While making all styles and

functionality LAMMPS provides compatible with AutoPas is out of scope for this thesis,

they can be simply converted following the steps described in Subsection 4.2.3. This has

been tested by converting some example scenarios bundled with LAMMPS as shown in

chapter 5.

Nevertheless, there are some functionalities like the shrink-wrapping boundaries that

can only be adapted to work with AutoPas by making more significant changes and

might come with performance drawbacks.

When comparing the node-level performance of the AutoPas version with the OMP

parallelizations provided in the USER-OMP and KOKKOS (OMP backend) packages, we

find that AutoPas is consistently slower than the references but only by a small factor. It

shows excellent scaling for high core counts though and provides some configurations

with a significantly smaller memory footprint.

While the MPI code was mostly adapted for AutoPas, it requires more work and testing

to perform comparisons of runs spanning multiple nodes. As the communication code

in general often accesses particles by random access, it is a performance bottleneck and

requires rewriting it from scratch for an optimized AutoPas version.

We only compared the performance of AutoPas on CPUs but GPUs are also supported.

One might consider comparing it against the GPU accelerator or KOKKOS accelerator

(GPU backend) of LAMMPS.

There are a lot of classes that are untested for their AutoPas compatibility and will often

require an adaption. These additional challenges provide a basis for possible future

research.
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A. Appendix

Figure A.1.: Memory usage on CoolMUC3 (lower is better): See Subsection 5.1.3
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A. Appendix

Figure A.2.: Relative time spent on communication on CoolMUC3 (lower is better):
See Subsection 5.1.4
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A. Appendix

Figure A.3.: Simulation times on CoolMUC2 (lower is better): See Subsection 5.1.3
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A. Appendix

Figure A.4.: Simulation times on CoolMUC3 (lower is better): See Subsection 5.1.3

47



A. Appendix

Figure A.5.: Speedup on CoolMUC3 (higher is better): See Subsection 5.1.3
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A. Appendix

Figure A.6.: Parallel efficiency on CoolMUC3 (higher is better): See Subsection 5.1.3
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Figure A.7.: LAMMPS - Direct accesses to the particle positions: This figure shows

all classes and methods that directly access the array storing the particle

positions. In total there are 413 references in 175 different core files of

LAMMPS, not including any optional packages.
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