
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s �esis in Informatics

Implementation and Analysis of Load Balancing
Options for AutoPas’ Sliced Traversal

Vincent Fischer

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s �esis in Informatics

Implementation and Analysis of Load Balancing Options for
AutoPas’ Sliced Traversal

Implementierung und Analyse von
Lastbalanzierungsmöglichkeiten für das Sliced Traversal von

AutoPas

Author: Vincent Fischer
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Fabio Alexander Gratl, M.Sc.
Date: September 15th 2020

I confirm that this bachelor’s thesis is my own work and I have documented all sources and material
used.

Munich, September 15th 2020 Vincent Fischer

Acknowledgements

I would like to thank all people who supported me while writing this thesis, first and foremost my
advisor, Fabio Gratl. �ank you for introducing me to the fascinating field of molecular dynamics in an
excellent lab course last semester and for our weekly meetings during this project. I would not have
been able to solve many of the problems I encountered without your insight. �ank you also to my dear
friends Matt and Martin, as well as to my parents, who proofread this thesis.

vii

viii

Abstract

AutoPas is a free and open-source library written in C++ providing multiple e�cient algorithms for
particle simulations. In order to fully exploit modern processors, it is necessary to distribute the
computational load evenly among multiple threads. One of the shared-memory parallelization approaches
implemented in AutoPas cuts the simulation domain into multiple equally large slices and assigns one
slice to each thread. However, for inhomogeneous particle distributions, this does not distribute the
computational load equally among the threads.

In this thesis, multiple variants of sliced traversal for di�erent particle containers were implemented,
which aid in balancing the computational load among the threads. �e new traversals were benchmarked
using two di�erent particle simulations, which were run on the Haswell architecture based CoolMUC-2
cluster. �e results show that each of the new traversal options outperforms the original unbalanced
sliced traversal for the same container for at least one scenario. As AutoPas uses autotuning to determine
the best traversal for the scenario, this results in an absolute improvement.

ix

x

Zusammenfassung

AutoPas ist eine in C++ geschriebene, freie und quello�ene So�warebibliothek, die mehrere e�ziente
Algorithmen für Partikelsimulationen bereitstellt. Um moderne Prozessoren voll auszunutzen, ist
es notwendig, die Rechenlast gleichmäßig auf mehrere �reads zu verteilen. Einer der in AutoPas
implementierten Ansätze zur shared-memory Parallelisierung zerschneidet die Simulationsdomäne in
mehrere gleich große Slices und teilt jedem �read ein Slice zu. Für inhomogene Partikelverteilungen
teilt dies jedoch die Rechenlast nicht gleichmäßig auf die �reads auf.

In dieser Bachelorarbeit wurden mehrere Varianten dieses “sliced traversal” für verschiedene Partikel-
container implementiert, welche dazu dienen, die Rechenlast besser zu verteilen. Die neuen Traversals
wurden mittels zwei verschiedener Partikelsimulationen bewertet, welche auf dem auf der Haswell
Architektur basierenden CoolMUC-2 Cluster durchgeführt wurden. Die Ergebnisse zeigen, dass jedes
der neuen Traversals in mindestens einem Szenario performanter ist, als das ursprüngliche unbalanzierte
sliced Traversal. Da AutoPas autotuning verwendet um das für das Szenario am besten geeignete traversal
zu bestimmen, ist dies nur vorteilha�.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

I. Introduction and Background 1

1. Introduction 2

2. �eoretical Background 3
2.1. Intermolecular Forces . 3
2.2. Improving upon the Run-Time of Direct Sum Computation 4

2.2.1. Linked Cells . 4
2.2.2. Verlet Lists . 4
2.2.3. Verlet Lists Cells . 5
2.2.4. Verlet Cluster Lists . 5
2.2.5. Newton 3 Optimization . 5

2.3. Algorithms for Parallel Traversal of Cell-Based Containers 6
2.3.1. Base Steps . 6
2.3.2. Coloring Traversals . 6
2.3.3. Sliced Traversal with Locks . 7

3. Overview of AutoPas’ Code Structure 8

II. Implementation of Di�erent Load Balancing Options 9

4. Implementing a Version of Sliced Traversal for Verlet Cluster Lists 10

5. Adapting Sliced Traversal to Allow Load Balancing 11
5.1. Dynamic Scheduling . 11

5.1.1. Sliced Traversal with Two Colors . 11
5.2. Heuristic-Based Balancing . 11

5.2.1. Load Estimation Heuristics . 13

xiii

III. Analysis 15

6. Introduction to MD-Flexible 16

7. Comparing the Performance of the New Traversals 17
7.1. Simulation of Elongated Steinmetz Solids . 17

7.1.1. �eoretical Analysis . 17
7.1.2. Evaluating the Balancing Algorithm . 19

7.2. Ostwald Ripening . 22
7.2.1. Per Iteration Run-Time Comparison . 23
7.2.2. Evaluating Load Estimation Heuristics . 24

IV. Conclusion 28

8. Summary 29

9. Future Work 30

V. Appendix 31

A. Measurement Data 32

B. Simulation Config Files 33
B.1. Steinmetz Simulation . 33
B.2. Ostwald Ripening Simulation . 34

Bibliography 37

Part I.

Introduction and Background

1

1. Introduction

Molecular dynamics simulations play a significant role in modern science. �ey are heavily used in
some branches of computational biochemistry and medicine, such as protein folding [Mia+15] and drug
research. A recent example of this is testing the e�ectiveness of existing drugs against the SARS-CoV-2
virus [KSP20]. Many of these simulations include a very large number of particles, which makes solving
their dynamic behavior analytically unfeasible. Instead, numerical methods are invoked.

In theory, the pairwise interactions between all particles have to be calculated leading to quadratic
run-time. For short-ranged potentials, however, a cuto� can be introduced without sacrificing accuracy.
To further increase the simulation speed parallel computation can be utilized.

AutoPas is a free and open-source node-level performance library written in C++, which provides
e�cient algorithms for solving arbitrary N-body simulations [Gra+19]. It utilizes OpenMP for shared
memory parallelization. For short-ranged potentials, it provides linked cells and verlet list based
containers for the e�cient traversal of particle pairs. One of the possible parallelization strategies
known as “sliced traversal” cuts the simulation domain into multiple equally large slices along its longest
axis. One slice gets assigned to each thread. Locks are placed on the layers near slice boundaries to
prevent race conditions. �is works well for homogeneous particle distributions but fails to equally
distribute the computational load among the threads if the particles are not evenly distributed.

In this thesis, three di�erent variations of sliced traversal are implemented. �e first two are based on
OpenMPs dynamic scheduling option. Instead of creating one slice per thread, as many slices as possible
are created and assigned to the threads dynamically. One of these two options uses locks to prevent
race conditions, as does the original sliced traversal. �e other instead uses an alternating coloring on
the slices. Each color is then processed separately. �e third approach stays at one slice per thread but
tries to estimate the load beforehand and size the slices accordingly. To this end, two di�erent load
estimation heuristics were introduced, which can be chosen from using a tunable option.

Finally, the performance increase compared to the unbalanced sliced traversal was measured for two
di�erent simulations. In addition, the e�ectiveness of the balancing algorithm for the heuristic-based
traversals was analyzed.

2

2. �eoretical Background

2.1. Intermolecular Forces

By Newton’s second law of motion, we know that the center of mass of molecules must move according
to their initial velocity and the forces acting on them. �e motion can be approximately described by
eqs. (2.1) and (2.2), where v is the velocity of a point particle, F is the force exerted on it and r is its
position in three-dimensional Euclidean space.

v (t) = v0 +

∫ t

0

F (t′)

m
dt′ (2.1)

r (t) = r0 +

∫ t

0
v
(
t′
)
dt′ (2.2)

�e forces arise from a pairwise interaction potential; for the purpose of molecular dynamics simula-
tions, we will be using the Lennard-Jones potential, which approximates the sum of several attractive
and repulsive physical e�ects. �e potential between particles i and j is described by [Len24]:

Uij = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.3)

where rij = |ri − rj | is the distance between the two molecules. εij is the minimum value that Uij can
take and therefore represents the depth of the potential well. σij is the finite distance where Uij = 0.
�e potential reaches its minimum εij at 2

1
6σij . �is is the point where attractive and repulsive forces

are in equilibrium. Both constants can be calculated from molecule specific constants using a set of
combining rules. A common example is to use the arithmetic mean for σij and the geometric mean for
εij . �ese are known as the Lorentz-Berthelot rules, and are based on equations for noble gas molecules
postulated by H. A. Lorentz [Lor81] and D. Berthelot [Ber98].

εij =
√
εiεj σij =

σi + σj
2

(2.4)

Figure 2.1 shows the potential for σi = σj = 0.5 and εi = εj = 1.5.
�e force exerted by particle i on particle j can then be derived by taking the gradient with respect

to rj

Fij = −∇jUij (2.5)

�e total force for molecule j can then be calculated by summing over all of the pairwise forces:

Fj =
∑
i 6=j

Fij (2.6)

3

2. �eoretical Background

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

1

2

3

Uij

Figure 2.1.: Lennard-Jones potential visualized for σi = σj = 0.5 and εi = εj = 1.5.

2.2. Improving upon the Run-Time of Direct Sum Computation

�e simplest approach to calculate the updated forces in each time step is summing the pairwise forces
over all particle pairs. It has quadratic runtime. However, as the Lennard-Jones potential quickly drops
o� to zero with increasing rij , it su�ces to consider particle pairs which are within a certain cuto�
distance c of each other (for example c := 2.5 · σij , but may be di�erent according to the scenario). On
its own this doesn’t cut down on the runtime though, as it is still necessary to calculate the distance
between each particle pair. �e data structures described in the following chapters aid in limiting the
number of neighbors that need to be considered for each particle.

2.2.1. Linked Cells

For this algorithm, the domain is split into a 3D grid of evenly spaced cells. �e particles are then sorted
into these cells according to their position in space. Assuming the cell side length is equal to the cuto�
length, it then su�ces to consider the particle pairs that are in the same cell or in neighboring cells. If
the cell side length is smaller than the cuto� length more cells will need to be considered. Assuming
there exists a finite upper bound on the number of particles in each cell, this e�ectively reduces the
runtime toO (n).

2.2.2. Verlet Lists

�e Linked Cells algorithm has to consider all neighboring cells of the cell containing the current
particle. �is covers a volume of (3 · c)3 = 27c3. �e particles that need to be considered are however
all contained within a sphere with radius c and thus volume 4π

3 c
3, which is only about 16% of the

covered volume. �e Verlet Lists approach, proposed by Loup Verlet in 1967 [Ver67], aims to further
reduce the number of particles that need to be considered by building a list of neighboring particles
every n time steps. One list is built for each particle with references to all particles within a distance of
c+ s. �e skin depth s has to be chosen in such a way, that no particle will traverse a distance greater
than s

2 in n time steps. �is ensures that if two particles which are not considered to be neighbors when
the lists get rebuilt are moving towards each other at maximum speed, they will also not get within

4

2.2. Improving upon the Run-Time of Direct Sum Computation

(a) Direct Sum (b) Linked Cells (c) Verlet Lists

Figure 2.2.: Visualization of Direct Sum, Linked Cells, and Verlet Lists. Interactions between the red
particle and all blue particles are calculated. For particles within the green area, the distance
to the red particle has to be calculated. �e dotted blue circle represents the cuto� radius.

distance c of each other until the next rebuild. �e sum of cuto� and skin depth will be referred to
as interaction length. �e fraction of volume within the cuto� sphere to the volume covered by the
traversal is then increased to c3

(c+s)3
. A comparison of Direct Sum, Linked Cells, and Verlet Lists is

visualized in Figure 2.2.
Note that while the original algorithm used the direct sum algorithm to rebuild the neighbor lists,

in AutoPas an underlying Linked Cells container is used to further improve performance. �is also
provides a natural way of parallelization by assigning di�erent cells to di�erent threads.

2.2.3. Verlet Lists Cells

�e standard Verlet Lists container provided by AutoPas stores the neighbor lists for each particle in
one single list. �e Verlet Lists Cells container (VLC) improves upon this by storing the neighbor lists
of each particle within the cell the particle is currently in. �is means list entries may need to be moved
to a neighboring cell if a particle crosses the boundary, but it provides better parallelization support.

2.2.4. Verlet Cluster Lists

As Verlet Lists store a list of neighbors for each particle they have a greater memory requirement than
the Direct Sum or Linked Cells algorithms. �e Verlet Cluster Lists container (VCL) aims to reduce
this overhead. �e domain is split into towers in the x and y directions. Each tower contains equally
sized clusters of particles that are close together. Instead of creating neighbor lists for every particle,
every cluster stores a list of neighboring clusters. Two clusters are neighbors if one contains a particle
that is within a distance of c+ s of a particle in the other cluster. �is optimization of the Verlet Lists
approach was first implemented for the so�ware GROMACS [Abr+15].

2.2.5. Newton 3 Optimization

Newton’s third law of motion states that when one body exerts a force on a second body, the second
body also exerts a force of equal magnitude but opposite direction on the first body [New87]. For the
purpose of molecular dynamics, this means it su�ces to calculate the force between two particles i and
j only once and add it to the total force exerted on i and subtract it from the total force exerted on j,

5

2. �eoretical Background

e�ectively cutting the number of calculations in half. �is optimization can be applied to all of the
algorithms described in the previous sections.

2.3. Algorithms for Parallel Traversal of Cell-Based Containers

When using both multiple threads for the simulation and the optimization based on Newton’s third
law of motion, it is necessary to introduce some kind of synchronization to prevent race conditions.
Otherwise, two threads could simultaneously try to update the force exerted on the same particle.

2.3.1. Base Steps

�e base step of a traversal defines which particle interactions are calculated for each base cell. Without
the Newton 3 optimization, all particle pairs where at least one particle is within the base cell have to
be considered, which leads to a base step covering 27 cells. With Newton 3 optimization enabled, only
half the number of neighboring cells need to be considered, as the other interactions are covered by
applying the base step to the other cell. �is base step covers only 14 cells, however, in order to be able
to tesselate it, 18 cells have to be locked. For traversals of the Linked Cells container, we can further
reduce the number of cells per base step to 8 if we don’t require that all particle pairs contain at least
one particle within the base cell. Instead, some of the interactions between diagonally neighboring cells
are moved to di�erent base steps.

�ese base steps will be referred to as c27, c18 and c08 respectively. Figure 2.3 shows a comparison of
how the interactions are divided among the base steps for the latter two variants.

Figure 2.3.: comparison of c18 base step (le�) and c08 base step (right). �e colors mark the base cell to
which the interaction is grouped.

2.3.2. Coloring Traversals

Coloring traversals arise naturally from the base steps described above. Each cell gets assigned a color in
such a way that

1. no two neighboring cells have the same color.

2. the base step applied to two cells of the same color will never process interactions with the same
third cell.

6

2.3. Algorithms for Parallel Traversal of Cell-Based Containers

For example for the c18 and c08 base steps as visualized in Figure 2.3 each cell can be colored according
to its most o�en occurring arrow color.

As described in Algorithm 1 the colors are then processed sequentially, but within each color, the
base step can be applied to each cell in parallel.

Algorithm 1: Colored Traversal

1 for c in colors do
2 for cell in cells with color c do in parallel
3 processBaseStep(cell)

Note that cells with equal colors are usually spaced in regular intervals in all three dimensions, so
the inner loop does not need to iterate over every cell, but use a stepsize with a color specific starting
point to iterate over only the cells with that color. �e key point to remember here is that processing
one color can only start when the previous color is finished. In other words, all threads have to be joined
a�er the inner loop. �is, of course, causes some overhead every time, which is the reason we want to
minimize the number of colors.

2.3.3. Sliced Traversal with Locks

�is traversal algorithm uses locks to prevent race conditions instead of colors. �e domain is cut into
multiple slices along its longest dimension. �e slices are then processed in parallel. Every slice locks
its first layer of cells (or multiple layers if the cell side length is shorter than the interaction length).
�e lock is released, when the first layer is finished. When the last layer is reached, the starting layer
of the next slice is locked. Each slice has to be at least two layers thick. Otherwise, that slice would
immediately lock both its own starting layer and the starting layer of the next slice, which prevents the
two slices from being processed in parallel. Algorithm 2 describes this in greater detail.

Algorithm 2: Sliced Traversal

1 for slice < numSlices do in parallel
2 for layer < slice�ickness[slice] do
3 if layer == 0 and slice != 0 then
4 locks[slice].lock()

5 if layer == slice�ickness[slice]-1 and slice < numSlices-1 then
6 locks[slice+1].lock()

7 for cell in currentLayer do
8 processBaseStep(cell)

9 if layer == 0 and slice != 0 then
10 locks[slice].unlock()

11 if layer == slice�ickness[slice]-1 and slice < numSlices-1 then
12 locks[slice+1].unlock()

7

3. Overview of AutoPas’ Code Structure

In order to describe the changes made to AutoPas, it is first necessary to understand how the library is
structured. �e main interface to AutoPas is the AutoPas class. It takes a template parameter describing
the particle type. �e class provides the method iteratePairwise() which applies a pairwise functor given
as a template parameter to every particle pair in the domain. Multiple configurations for the iteration
can be chosen from. A configuration consists of a container for the particles, a traversal algorithm, a data
layout, and whether to use Newton’s third law to cut down on calculations. One container exists for each
of the data structures described in Section 2.2. Multiple traversals can exist for every container. �eir job
is mainly to provide an e�cient way to parallelize the pairwise iteration for the force calculation. While
similarly working traversals can be implemented for multiple containers, they have to be implemented
in separate classes for each container. �e data layout can be either an “Array of Structures” (AoS) or a
“Structure of Arrays” (SoA). Not all combinations of these options are applicable. For example traversals
for the VerletListsCells container currently only support the AoS data layout.

�e configuration used for an iteration is chosen by an autotuner. In regular intervals, it tries out
di�erent configurations, limited by a set of allowed choices for each option. A�erward, the best
configuration is used for the next n iterations. �e configurations tried in a specific block of tuning
iterations are chosen by a search strategy, the simplest of which is the full search which simply measures
the performance of all possible combinations of the allowed options. Some options, such as the cell
side length, support infinite sets of allowed choices, which is not supported by this search strategy for
obvious reasons. If an infinite set is supplied, other search strategies, such as a Bayesian Cluster Search,
may be used, which can cope with these. Each chosen configuration is run multiple times within one
block of tuning iterations. �is helps compensate for random fluctuations and also ensures that only a
minority of the runs will be a�ected by container- or neighbor list rebuilds.

8

Part II.

Implementation of Di�erent Load
Balancing Options

9

4. Implementing a Version of Sliced Traversal for
Verlet Cluster Lists

Previously sliced traversal was implemented for the LinkedCells and VerletListsCells containers. Both
versions inherit most of their functionality from the common base class SlicedBasedTraversal, which
provides methods for finding and slicing the longest dimension, and iterating over the particle pairs.
�e latter function requires a base step to be passed as a parameter, which when applied to all cells in a
container calculates all pairwise forces that are in range. For the LinkedCells container, the c08 base step is
used. For the VerletListsCells container the base step simply iterates over the neighbor list of each particle
in a cell. �is is equivalent to a c18 base step. In the VerletClusterLists container the towers are interpreted
as cells. �is means there is only one cell in the z-dimension, and slicing is only possible in the other two
dimensions. In order to adapt sliced traversal to this container, a new subclass of SlicedBasedTraversal
had to be implemented, which provides an appropriate base step. �e container already provides the
two functions traverseCluster(cluster) and traverseClusterPair(cluster1, cluster2) to iterate over particle pairs
within one cluster or two neighboring clusters respectively. �ese were used to construct the base step
described by Algorithm 3. It iterates over every cluster in a tower and calls traverseCluster(cluster) on it,
as well as traverseClusterPair(cluster, neighbor) on it and each of its neighbors.

Algorithm 3: Base step for Verlet Cluster Lists

1 for cluster in tower do
2 traverseClusterPair(cluster)
3 for neighbor in cluster.neighbors do
4 traverseClusterPair(cluster, neighbor)

10

5. Adapting Sliced Traversal to Allow Load
Balancing

�e sliced traversal algorithm provided by AutoPas previously created one slice for every OpenMP
thread, with all slices being the same thickness. If not enough layers are present, fewer sliced will be
created. While this works well for scenarios with relatively even particle distributions, it does not evenly
distribute the load among the threads in inhomogeneous scenarios. In order to solve this problem,
two di�erent approaches were taken and implemented in AutoPas. �e first is based on the dynamic
scheduling option of OpenMP and is split into two variants. �e second uses heuristics to estimate the
load beforehand. All of the traversals described in the following sections inherit from a common base
class. A class diagram illustrating the relevant dependencies is shown in fig. 5.1.

5.1. Dynamic Scheduling

Previously AutoPas’ sliced traversal used OpenMP’s static scheduling option. OpenMP however also
provides a dynamic scheduling option, which assigns tasks to threads dynamically at runtime. �is
approach simply replaces static with dynamic scheduling. For balancing purposes many small tasks
work better than a few large ones, as there are more options to divide them among the threads and
the imbalance among the threads is limited by the longest task. For this reason, the calculation of
slice thicknesses was modified to create as many slices as possible while respecting the minimum slice
thickness. From now on this traversal will be referred to as “dynamic sliced traversal”.

5.1.1. Sliced Traversal with Two Colors

Creating the maximum number of slices possible results in half of the layers having locks on them, which
could potentially lead to a significant slowdown. For comparison purposes, another version of sliced
traversal was implemented, which does not use locks. Instead, the slices are colored in an alternating
fashion. Each color is separately processed. �is results in a hybrid of the two algorithms described in
Section 2.3. Since a lot of the functionality of this traversal and the original sliced traversal are identical,
this was refactored into a common base class SlicedBasedTraversal. �e original SlicedBasedTraversal
was renamed to SlicedLockBasedTraversal. �e new sliced traversal with colors is provided by the class
SlicedC02BasedTraversal.

5.2. Heuristic-Based Balancing

�e idea of the second approach, as opposed to the two dynamic variants described in Section 5.1, is
to use a heuristic to estimate the number of interactions for each layer. �e slice thicknesses can then
be chosen, to give each slice an equal fraction of the total computational load. �e time required to
calculate the heuristic should be low compared to the time required to calculate one iteration of force
updates. Otherwise, the potential speedup gained by better distributing the load could be negated by

11

5. Adapting Sliced Traversal to Allow Load Balancing

the additional time required for this optimization. Di�erent options for this heuristic will be discussed
in Section 5.2.1.

To implement this feature in AutoPas a new subclass of SlicedLockBasedTraversal was introduced,
named SlicedBalancedBasedTraversal. It overrides the classes initTraversal() method, which is responsi-
ble for setting up the slice thicknesses. �e class also inherits from the new class BalancedTraversal
which provides a member representing the load estimation function as well as the method setLoadEs-
timator(EstimationFunction). �is method has to be called before initTraversal(). �e calculation of load
thicknesses is described in Algorithm 4. �e while loop on line 11 increases the thickness of the current

Algorithm 4: Calculation of slice thicknesses

1 for i = 0 ; i < numLayers do
2 loads[i] = estimateLoadForLayer(i)

3 for i ≥ 1 ; i < numLayers do
4 loads[i] += loads[i-1]

5 remainingLoad = loads[numLayers - 1]
6 total�ickness = 0
7 avg = remainingLoad / numSlices
8 for s < numSlices do
9 thickness = minSlice�ickness
10 currentSliceLoad = loads[total�ickness + thickness - 1] - loads[total�ickness]
11 while total�ickness + thickness < numLayers and currentSliceLoad < avg do
12 currentSliceLoad = loads[total�ickness + thickness - 1] - loads[total�ickness]
13 increasedSliceLoad = loads[total�ickness + thickness] - loads[total�ickness]
14 if abs(avg - currentSliceLoad) < abs(avg - increasedSliceLoad) then
15 break
16 else
17 thickness += 1

18 if total�ickness + thickness > numLayers then
19 slice�ickness[s-1] += numLayers - total�ickness
20 numSlices = s
21 break

22 slice�ickness[s] = thickness
23 total�ickness += thickness
24 remainingLoad = loads[numLayers - 1] - loads[total�ickness]
25 remainingSlices = numSlices - s - 1
26 avg = remainingLoad / remainingSlices

slice until the total estimated load for that slice is as close to the average remaining load per slice as
possible. Lines 18 - 21 handle the case that by setting the thickness of the current slice to the minimum
possible slice thickness (see line 9), the total number of layers was already exceeded. Recall that the
minimum slice thickness is defined by the ratio of interaction length to cell length. In this case, the
number of slices is decreased and the remaining layers added to the last slice.

12

5.2. Heuristic-Based Balancing

SlicedBasedTraversal
_sliceThickness : vector

- init(dimensions)

+ initSliceThickness(minSliceThickness)

SlicedLockBasedTraversal
_dynamic : bool

+ slicedTraversal(loopBody)

SlicedC02BasedTraversal

+ cSlicedTraversal(loopBody)

BalancedTraversal
_loadEstimator

+ setLoadEstimator(loadEstimator)

SlicedBalancedBasedTraversal

+ initSliceThickness(minSliceThickness)

LCSlicedBalancedTraversal

+ traverseParticlePairs()

VLCSlicedBalancedTraversal

+ traverseParticlePairs()

VCLSlicedBalancedTraversal

+ traverseParticlePairs()

LCSlicedTraversal

+ traverseParticlePairs()

VLCSlicedTraversal

+ traverseParticlePairs()

VCLSlicedTraversal

+ traverseParticlePairs()

LCSlicedC02Traversal

+ traverseParticlePairs()

VLCSlicedC02Traversal

+ traverseParticlePairs()

VCLSlicedC02Traversal

+ traverseParticlePairs()

Figure 5.1.: Class Diagramm showing the di�erent sliced traversal variations.

5.2.1. Load Estimation Heuristics

Di�erent algorithms were implemented to estimate the load for a specific cuboid region within the
domain. In order to choose between them, a new tunable option was added to AutoPas and integrated
into the di�erent tuning strategies.

�e first estimation algorithm is trivial and simply returns 1 for every region. It serves multiple
purposes: Firstly to preserve the functionality of the original sliced traversal. �is is sensible not only as
a baseline for runtime comparisons but also since more complicated calculations should not be necessary
if the particle distribution is relatively even. Secondly, the tuning algorithms implemented in AutoPas
do not support some traversals requiring additional options. �e “none”-heuristic solves this by being
the only supported option for all other traversals.

A very intuitive way to estimate the load is to count the number of interactions that need to be
calculated for each particle within the region. �is would take excessively long for the Linked Cells
container, but for the Verlet Lists Cells container, a very good approximation is to add up the lengths of
the neighbor lists. Due to the skin depth, this is a slight overestimation, but the correlation with the
actual value is su�cient for balancing purposes. �e same approach can be used for the Verlet Cluster
Lists container. While the neighbor lists here contain references to the neighboring clusters instead of to
particles, the estimation still works, as each cluster contains the same number of particles. �is heuristic
will be referred to as “Neighbor List Length” (NLL).

�e final estimation algorithm assumes that most particles that are within one cell will have interac-
tions with each other. Interactions with neighboring cells are ignored. �e heuristic simply sums up the
squared number of particles for each cell in the region. �is is not as accurate as the previous heuristic
but has the benefit of being applicable to the Linked Cells container. It is also faster to calculate for the
Verlet Lists Cells container if the number of particles is significantly greater than the number of cells.
One should also note that the assumptions made are only sensible if the interaction length and the cell
length are equal. For this reason, this algorithm is not available for the Verlet Cluster Lists container, as

13

5. Adapting Sliced Traversal to Allow Load Balancing

each cell occupies the complete z-dimension of the domain. �is heuristic will be referred to as “Squared
Particle per Cell” (SPpC)

14

Part III.

Analysis

15

6. Introduction to MD-Flexible

MD-Flexible is a simple particle simulation program built on top of the AutoPas library. Among other
useful options, it provides object generators, which create 3D shapes filled with particles, a velocity-
scaling thermostat to control the total kinetic energy in the system, and the option to load particles from
a checkpoint. �e configuration of a simulation consists of a YAML file specifying firstly the di�erent
objects to be simulated and secondly the options that are passed to AutoPas. �e latter include, but are
not limited to the interaction potential that is used via the functor option, the cell size for Linked Cells
and Verlet Lists Cells containers, the allowed containers and traversal options that may be used, and
the number and frequency of tuning iterations. �e current state of the simulation can be written out
to VTK files at regular intervals. By setting the log level to “debug” it is also possible to gain detailed
information about each iteration of the simulation, such as the complete configuration used, including
the traversal, and how long it took. For the di�erent variations of sliced traversal, the time spent in each
specific slice is also included in the debug log. �is makes performance analysis and comparison of the
di�erent balancing options possible.

16

7. Comparing the Performance of the New
Traversals

In the following sections, the performance of the new traversal options will be evaluated using two
di�erent scenarios. For this purpose, we will be using the version of sliced traversal balanced with the
“none”-heuristic as a baseline, as it results in identical behavior to the original sliced traversal, and di�ers
only in how the slice thicknesses are calculated.

7.1. Simulation of Elongated Steinmetz Solids

�e first scenario was specifically designed to test the balancing algorithm. It consists of an elongated
Steinmetz solid1 made up of 110239 particles. �e particles are arranged in a series of layers, each layer
consisting of a square of particles arranged in a grid. Figure 7.1 shows a visualization of this object. A
listing of the python script used to generate the objects for md-flexible can be seen in Listing B.1.

Figure 7.1.: Visualization of the elongated Steinmetz solid

7.1.1. �eoretical Analysis

As the Steinmetz solid is constructed in such a way, to have a uniform particle density, each particle
has roughly the same amount of neighbors, apart from those at the very edge. Due to the size of the
simulation, these should however only make up a small fraction of all the particles and can be safely
ignored. When iterating with sliced traversal, the load on each slice should therefore be proportional to
the fraction of volume of the Steinmetz solid covered. If l is the length of the solid and w its width, the
intersection area A when cutting through a plane normal to its longest axis at a distance x from one end

1A Steinmetz solid is the intersection of two cylinders of equal radius rotated to each other by 90◦

17

7. Comparing the Performance of the New Traversals

is given by the following equation

A (x) = w2 ·

(
1−

(
2x− l
l

)2
)

(7.1)

�e volume between two planes at a and b is therefore given by the integral

∫ b

a
A (x) dx =

∫ b

a
w2 ·

(
1−

(
2x− l
l

)2
)
dx = (7.2)

=

∫ b

a
w2 ·

(
1− 4x2 − 4lx+ l2

l2

)
dx = (7.3)

=

[
w2 ·

(
x−

4
3x

3 − 2lx2 + l2x

l2

)]b
a

= (7.4)

= w2 ·

(
2

l

(
b2 − a2

)
−

4
(
b3 − a3

)
3l2

)
(7.5)

For this scenario, four threads were used. With the heuristic set to none the balanced sliced traversal
creates four equally large slices which correspond to the following volumes:

V0 = w2 ·

2

l

((
l

4

)2

− 02

)
−

4
((

l
4

)3 − 03
)

3l2

 =
5

48
· w2l (7.6)

V1 = w2 ·

(2

l

(
l

2

)2

−
(
l

4

)2
)
−

4
((

l
2

)3 − (l4)3)
3l2

 =
11

48
· w2l (7.7)

V2 = w2 ·

(2

l

(
3l

4

)2

−
(
l

2

)2
)
−

4
((

3l
4

)3 − (l2)3)
3l2

 =
11

48
· w2l (7.8)

V3 = w2 ·

(2

l
l2 −

(
3l

4

)2
)
−

4
(
l3 −

(
l
34

)3)
3l2

 =
5

48
· w2l (7.9)

As the total iteration time is limited by the longest calculating thread this means we can expect threads
calculating the inner Slices to be active for nearly the complete iteration time, while the outer slices are
finished a�er only 5

11 ≈ 45% of the total time. We can also calculate where the optimal slice boundaries
should be, by setting the slice volume to one-quarter of the total volume and solving for b. It su�ces to
calculate the first boundary. �e rest can be determined by symmetry to be at b1 = l

2 and b2 = l − b0.
a can therefore be set to 0. �is leads to b0 =

(
0.5− sin

(
π
18

))
· l ≈ 0.33 · l and a volume of w

2l
6 ,

which is about 27% smaller than the largest slice without balancing. �is represents an upper bound for
the possible speedup gained by balancing. Note that while the dynamic scheduling algorithms described
in Section 5.1 do not work on the basis of optimizing the slice thickness, they still have the e�ect of
minimizing the total idle time of all threads, so the speedup for those also has the same upper bound.

18

7.1. Simulation of Elongated Steinmetz Solids

7.1.2. Evaluating the Balancing Algorithm

�e simulations discussed in this section were run on the CoolMUC2 Cluster using 4 threads. �e
data layout was fixed to AoS, as this is the only one supported by the Verlet Lists Cells traversals. �e
simulation was run 50 times for each configuration. Iterations containing a container or neighbor list
rebuild were discarded, as they would skew the results. �e balanced sliced traversal using the “none”
heuristic was used as a baseline to judge the e�ectiveness of di�erent balancing options. Before we
compare the runtime of all the algorithms, we will compare the fraction of time each thread is active for
the heuristic-based traversals with the theoretical values calculated in Section 7.1.1. Figure 7.2 shows the
time spent in each slice of the balanced sliced traversal using the “none” heuristic as fractions of the
total iteration time for each of the three supported containers.

0 1 2 3
0

0.5

1

(a) Linked Cells

0 1 2 3
0

0.5

1

(b) Verlet Lists Cells

0 1 2 3
0

0.5

1

(c) Verlet Cluster Lists

Figure 7.2.: Time spent in di�erent slices as fractions of the total iteration time for all three di�erent
containers using the ”none” heuristic. �e theoretical values calculated in Section 7.1.1 are
shown in green. See Table A.2 for the exact values.

�e measured time spent in each of the slices is a bit lower than predicted by eqs. (7.6) to (7.9),
�e exact values are listed in Table A.2. For the outer two slices, this di�erence can be explained by
two di�erent factors: Firstly a layer of halo cells is automatically inserted at both ends of the domain.
Each slice gets assigned 18 layers, but for the outer two slices, only 17 of those layers contain particles.
Secondly, the outer slices contain a greater proportion of particles, that are at the edge of the solid and
thus have fewer neighbors. �is was not taken into account when calculating the theoretical load per
slice, thus it overestimates the load at the edge. �e larger variation in the first slice using the Verlet
Cluster Lists container may be a result of uneven slicing. For the first two containers, the combination
of the length of the solid and cell side length was chosen to result in a layer count divisible by four. �e
Verlet Cluster Lists container, however, calculates its own optimal tower side length. In this case, it
resulted in the last slice being one layer thicker than the first three. �e last two slices, therefore, have a
greater combined load than the first two.

When using one of the other two heuristics, the ideal result would be all threads being active for
the complete amount of time. However, there will always be some overhead, as calculating the load
estimation also requires some time. �is can be seen in Figures 7.3 and 7.4, as none of the time fractions
reach 100%.

Using the SPpC heuristic the domain was cut into slices of lengths 24, 12, 12, and 24, for both the
Linked Cells and Verlet Lists Cells containers. Accounting for the halo cells at both ends the slice
boundaries then lie at 0.33 · l, 0.50 · l and 0.67 · l. �is closely matches the ideal slicing points calculated
in Section 7.1.1.

�e NLL heuristic gives similar results, with slice thicknesses 23, 13, 13 and 23 for the Verlet Lists
Cells container, which corresponds to slice boundaries at 0.31 · l, 0.50 · l, and 0.69 · l. �is is not as close

19

7. Comparing the Performance of the New Traversals

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(a) Linked Cells

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(b) Verlet Lists Cells

Figure 7.3.: Time spent in di�erent Slices as Fractions of the total iteration time for the Linked Cells
and Verlet Lists Cells containers using the SPpC heuristic

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(a) Verlet Lists Cells

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(b) Verlet Cluster Lists

Figure 7.4.: Time spent in di�erent Slices as Fractions of the total iteration time for the Verlet Lists
Cells and Verlet Cluster Lists containers using the NLL heuristic

to the theoretically optimal boundary locations as those achieved using the SPpC heuristic. �us, SPpC
uses thread time more e�ciently than NLL in this scenario, as can be seen when comparing Figures 7.3
and 7.4. From this, we can expect that SPpC also results in a faster runtime for this container. For the
Verlet Cluster Lists container, the slice thicknesses using the NLL heuristic were 20, 9, 10, and 18. �is
corresponds to slice boundaries at 0.33 · l, 0.49 · l, and 0.67 · l

Having confirmed that using heuristics to estimate and balance the load improves the thread utiliza-
tion, we can now take a look at the runtime performance gained as a result. Figures 7.5 to 7.7 show the
average runtimes for one iteration of the simulation using di�erent containers and balancing approaches,
including the two dynamic approaches described in Section 5.1.

Balancing using the SPpC heuristic works well for both supported containers, resulting in average
speedups of 29% for the Linked Cells Container and 30% for the Verlet Lists Cells container. �is is
more than was theoretically predicted to be possible, but can be explained as the imbalance using no
heuristic was also underestimated, as mentioned above, resulting in more room for improvement.

�e NLL heuristic was slightly worse for the Verlet Lists Cells container, achieving only an average

20

7.1. Simulation of Elongated Steinmetz Solids

None SPpC Dynamic c02 c08
0

2

4

·108

Balancing approach

T
im

e
fo

ro
ne

it
er

at
io

n
in

ns

Figure 7.5.: Runtime comparison for the di�erent traversals of the Linked Cells container. �e c08
coloring traversal is also included here, to serve as a comparison to the c02 based sliced
traversal. �e exact values are listed in Table A.1.

None SPpC NLL Dynamic c02
0

2

4

6

·107

Balancing approach

T
im

e
fo

ro
ne

it
er

at
io

n
in

ns

Figure 7.6.: Runtime comparison for the di�erent traversals of the Verlet Lists Cells container.

speedup of 20%. �is matches the prediction made from the measurements of thread time utilization.
For the Verlet Cluster Lists container, it achieves a speedup of 30%. �e larger performance increase
for this container compared to the Verlet Lists Cells container can be explained by the fact that the
unbalanced sliced traversal for this container already had worse thread time utilization. It should also
be noted that due to the way the clusters are built, the NLL heuristic does not work exactly the same for
both containers.

�e dynamic approach also works well for both the Linked Cells and Verlet Cluster Lists containers,
achieving speedups of 17% and 20% respectively. However, it has hardly any e�ect for the Verlet Lists
Cells container. �e average speedup there is 3.6%, but may vary from -4.2% to 11%. �e dynamic sliced
traversal using colors instead of locks, on the other hand, works well for all three containers. �e relative
speedups for Linked Cells, Verlet Lists Cells and Verlet Cluster Lists are respectively 34%, 22% and
32%. For the Linked Cells and Verlet Cluster Lists containers this makes it the fastest traversal for this
specific scenario, however balancing using the SPpC heuristic is still better for the Verlet Lists Cells
container. For the Linked Cells container, this traversal also outperforms the c08 traversal by 6.7%. �is
performance increase is most likely due to fewer OpenMP barriers, as discussed in Section 2.3.2. �e
average measured times for all configurations are also listed in Table A.1.

21

7. Comparing the Performance of the New Traversals

None NLL Dynamic c02
0

2

4

6

·108

Balancing approach

T
im

e
fo

ro
ne

it
er

at
io

n
in

ns

Figure 7.7.: Runtime comparison for the di�erent traversals of the Verlet Cluster Lists container.

7.2. Ostwald Ripening

For the second simulation, the domain was filled with a grid of 640× 80× 80 particles. In the first
step, 100000 equilibration iterations were run. At this point, the domain contains a homogeneous
distribution of particles. �e particle density and temperature were chosen to result in a pressure
between the triple point and critical point, as well as a temperature above the liquid-gas coexistance line.
A�er the equilibration the temperature of the simulation was dropped to the point where gaseous and
liquid phases coexist. �is causes the particles to condense into clusters. As they grow, they are pulled
together by surface tension and form a minimal surface (in this case a gyroid). �is process is known
as Ostwald ripening [Ost85]. Figure 7.8 shows the necessary temperature change for this to occur in a
phase diagram. Snapshots of the simulation at regular intervals can be seen in Figure 7.9. �e result is a
continuous increase of inhomogeneity within the simulation domain.

triple point

critical point

temperature
drop

gaseous phase

liquid
phase

temperature

pressure

Figure 7.8.: Ostwald Ripening occurs when cooling according to the black arrow in this generic phase
diagram.

�e second part of the simulation was run for 30000 iterations using the di�erent variations of
sliced traversal. �e tuning frequency was set to 1000. �e complete configuration files used for both
steps of the simulation are printed in Listings B.2 and B.3. Using the measured times collected in the
tuning iterations, the performance of each traversal over the course of the simulation was analyzed. �is

22

7.2. Ostwald Ripening

(a) 0 Iterations (b) 10k Iterations

(c) 20k Iterations (d) 30k Iterations

Figure 7.9.: Section of the Ostwald Ripening Simulation a�er 0, 10k, 20k and 30k Iterations.

simulation could not be run using the Verlet Cluster Lists container, as its slow region iterator makes it
unsuitable for such a large scenario.

7.2.1. Per Iteration Run-Time Comparison

Figures 7.10 and 7.11 show the per iteration runtime for the Linked Cells and Verlet Lists Cells traversals
respectively. For all of the traversals, this runtime increases as the simulation progresses. �is is due to
the fact that the average number of neighbors of a particle increases as they move closer to form the
clusters, thus causing more forces requiring computation. For the Linked Cells container, the unbalanced
sliced traversal, the SPpC balanced version, and the c02-sliced traversal all start out with very similar
iteration times. �e c02-sliced traversal increases in iteration time faster than the unbalanced traversal,
but by 20k iterations both traversals again take comparably long. �e sliced traversal balanced using
the SPpC heuristic, on the other hand, gains a significant advantage over the unbalanced version. �e
run-time during the last block of tuning iterations was 3.6% faster. �is is to be expected, as the balancing
makes little di�erence for the homogeneous state in the beginning, but compensates for the changing
load distribution, as the inhomogeneity increases. �e dynamic scheduled sliced traversal is consistently
slower than the unbalanced version, taking between 4% and 11% more time per iteration. �is is likely
due to the fact that the average slice thickness here is 2 layers as opposed to 12 for the heuristic-based
traversals (including the unbalanced option). �e probability of having to wait for a lock to be released
is thus increased. �e c02-sliced traversal creates even more slices, but as no locks are used, it is still
more performant in this case. Comparing the c02-sliced traversal to the c08 traversal, c02 is 14% faster
in early iterations but approaches the run-time of c08 in later iterations. A possible explanation is that
in the early iterations, the lower number of colors of the c02-based sliced traversal gives it an advantage,
whereas c08 allows for better balancing in an increasingly inhomogeneous domain due to its smaller
block size of 8 cells as opposed to an entire slice.

While the traversals for the Verlet Lists Cells container also have increasing iteration times, this

23

7. Comparing the Performance of the New Traversals

0 0.5 1 1.5 2 2.5 3

·104

5

5.5

6

6.5

7

7.5

8

8.5

9
·108

Iteration

R
un

ti
m

e
pe

rI
te

ra
ti

on
in

ns
none
SPpC

Dynamic
c02
c08

Figure 7.10.: Per iteration runtime of the di�erent Linked Cells Traversals using AoS data layout.

increase is less significant than for the Linked Cells traversals. While the Linked Cells traversals gained
between 38% and 63% of the iteration time at the beginning of the simulation, for the Verlet Lists Cells
traversals this was only between 9% and 27%. �is is likely due to the larger volume that has to be checked
for neighbors for the Linked Cells container, as discussed in Section 2.2.2. �e unbalanced traversal
is clearly slower than all other versions. However, due to the large fluctuations all traversals for this
container have, it is di�cult to quantify this speedup exactly. Averaged over all of the iterations the
c02-based sliced traversal has the largest speedup, taking 21% less time for one iteration. With a speedup
of 18%, the dynamic scheduled version has a slight advantage over the two heuristic-based approaches.
Using the NLL heuristic the speedup is 15% and using the SPpC heuristic it is 14%.

7.2.2. Evaluating Load Estimation Heuristics

As for the Steinmetz simulation, the imbalance of the loads on the di�erent slices for the heuristic-based
balancing approaches was analyzed. In the first simulation, we could simply di�erentiate between
inner and outer slices. In this case, however, 28 threads were used for the simulation. To quantify the
imbalance we will instead calculate the relative standard deviation of the time spent on processing each
slice. As can be seen in fig. 7.12 both traversals for the Linked Cells container start out with very similar
imbalance. However, there is a very slight increase in imbalance over the course of the simulation for
the unbalanced sliced traversal, whereas using the SPpC heuristic there is a slight drop. Using ideal
balancing the imbalance should stay constant at 0. However, multiple factors prevent us from reaching
this ideal. Firstly the heuristics give us only an estimate for the actual load. Secondly, even if we had

24

7.2. Ostwald Ripening

0 0.5 1 1.5 2 2.5 3

·104

1.8

2

2.2

2.4

2.6

·108

Iteration

R
un

ti
m

e
in

ns
none
SPpC
NLL

Dynamic
c02

Figure 7.11.: Per iteration runtime of the di�erent Verlet Lists Cells Traversals

accurate load predictions, the greedy balancing algorithm described in Section 5.2 and more specifically
by Algorithm 4 does not guarantee optimal slicing. Finally, even with an optimal balancing algorithm we
still are only able to slice at discrete intervals. �e drop in imbalance for the SPpC traversal, while not
specifically expected, can therefore nonetheless be explained. �e greater imbalance of the unbalanced
traversal by the end of the simulation explains the longer iteration time seen in Figure 7.10. �e three
spikes seen in the iteration runtime of the unbalanced traversal can also be predicted from this graph,
the cause for this momentary imbalance is however unknown.

�e same measurement was also performed for the heuristic-based traversals for the Verlet Lists
Cells container. As with the runtime measurement, there are very large fluctuations, as can be seen
in Figure 7.13. Contrary to the expectation, however, the imbalance decreases slightly for all traversal
options, including the unbalanced version. Averaged over all iterations of the simulation, the imbalance
using the two di�erent heuristics is however still lower. �e unbalanced traversal has an average
imbalance of 12.5% whereas using the SPpC heuristic it drops to 11.2% and using the NLL heuristic to
10.6%, which explains why the NLL performs very slightly better for this simulation.

25

7. Comparing the Performance of the New Traversals

0 0.5 1 1.5 2 2.5 3

·104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iteration

St
an

da
rd

de
vi

at
io

n
of

th
e

ti
m

es
pe

rs
lic

e

none
SPpC

Figure 7.12.: Load imbalance for the di�erent Linked Cells heuristic based Traversals

26

7.2. Ostwald Ripening

0 0.5 1 1.5 2 2.5 3

·104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iteration

St
an

da
rd

de
vi

at
io

n
of

th
e

ti
m

es
pe

rs
lic

e

none
SPpC
NLL

Figure 7.13.: Load imbalance for the di�erent Verlet Lists Cells heuristic-based traversals

27

Part IV.

Conclusion

28

8. Summary

In this thesis, multiple new variations of sliced traversal were implemented. To reuse as much code
as possible, SlicedBasedTraversal was split into four classes. �e original class now only contains some
common functionality such as finding the longest dimension and calculating slice thicknesses. �e latter
is done in such a way to create as many slices as possible. SlicedLockBasedTraversal provides the original
traversal algorithm, using locks on the starting layers of each slice. SlicedC02BasedTraversal implements a
di�erent traversal algorithm, where odd and even-numbered slices are processed separately in the same
fashion as in the various coloring traversals. �is eliminates the need for locks on the slice boundaries.
SlicedBalancedBasedTraversal inherits from SlicedLockBasedTraversal, but overrides the calculation of slice
thicknesses. A load estimation function inherited from a second superclass is used to create one slice
for each thread with approximately equal loads. Each of these three traversals was specialized for the
Linked Cells, Verlet Lists Cells, and Verlet Cluster Lists containers. Two load estimation heuristics were
implemented based on the number of particles within a cell and the length of neighbor lists. Additionally,
a constant heuristic was implemented which provides the behavior of the original unbalanced sliced
traversal. �e heuristic was added as a tunable option to the di�erent search strategies. Overall this
adds 36 new configurations to AutoPas.

�e performance of each new traversal was tested and compared against the unbalanced sliced traversal
using two di�erent simulations run on the CoolMUC-2 cluster. It was shown that each of the new
traversals can outperform the unbalanced sliced traversal of the same container for some scenarios. �e
time required for one iteration was decreased by up to 34% for very inhomogeneous scenarios. For the
Linked Cells container, the c02-sliced traversal was also shown to be faster than the c08 traversal in
some situations. �e results have also confirmed that using a load estimation heuristic can improve the
load balancing across multiple threads.

29

9. Future Work

�ere is still a lot of room for improvement in the implementation of the heuristic-based balancing
approaches. For one the only heuristic available for the Linked Cells container is SPpC, which makes
assumptions that only hold for a cell size factor of 1. It would therefore be useful to create more heuristics
that also work for other values. �e balancing algorithm used to calculate the slice thicknesses also has
its shortcomings, as it does not guarantee optimal balancing. Nor does it take into account how the load
is spread within one slice, which can have an e�ect on the probability of having to wait for a lock to be
released. It would be possible to replace the current algorithm or to have several di�erent options that
can be selected from either at compile-time or at runtime.

�ere are also still aspects of the data collected during the Ostwald ripening simulation that remain
unexplained. For one, the three spikes seen in the imbalance and iteration runtime of the unbalanced
traversal. �e first step in diagnosing their cause should be to print out statistics about the domain
at each iteration. �e already present SPpC heuristic could be used for this purpose. Another option
would be writing out vtk files at every iteration, but these would likely contain more information than
necessary and take up vastly more disk space. �is analysis should elucidate any random inhomogeneity
in the domain. �e magnitude of the peaks, however, makes this explanation seem unlikely. �e best
way to proceed in that case would be to measure the time spent in di�erent parts of the iteration in
greater detail. Currently, only the total time, the time for each slice, and the time needed for calculating
the loads of each layer are measured. Instead of just measuring the total time for each slice, the time
spent in each layer, or even each cell could be measured.

�e same measurements could also aid in locating the source of the large fluctuations of the iteration
runtime for the Verlet Lists Cells container. �is in turn is likely necessary to explain the unexpected
decrease of load imbalance during the Ostwald ripening simulation for this container.

30

Part V.

Appendix

31

A. Measurement Data

Container Balancing Approach TTotal Speedup
LC None 459.4 ms 0%
LC SPpC 324.9 ms 29.3%
LC Dynamic 379.8 ms 17.3%
LC c02 302.8 ms 34.1%
LC c08 353.5 ms 23.1%

VLC None 67.8 ms 0%
VLC SPpC 47.3 ms 30.2%
VLC NLL 54.1 ms 20.2%
VLC Dynamic 65.4 ms 3.6%
VLC c02 52.6 ms 22.4%
VCL None 619.4 ms 0%
VCL NLL 433 ms 30.1%
VCL Dynamic 494.3 ms 20.2%
VCL c02 418.9 ms 32.4%

Table A.1.: Average iteration time of the Steinmetz simulation for each configuration.

Container Heuristic T0/TTotal T1/TTotal T2/TTotal T3/TTotal
LC None 35.2% 96.2% 95.7% 36.7%
LC SPpC 91.5% 93% 95.2% 88.8%

VLC None 36.2% 93.7% 99% 40.6%
VLC SPpC 91% 89.7% 94.6% 97.6%
VLC NLL 74.6% 93.5% 95.3% 82.1%
VCL None 28.1% 86.3% 99.9% 46.1%
VCL NLL 86.5% 89.5% 99% 94%

Table A.2.: Fractions of time spent in all slices of the Steinmetz simulation for di�erent Configurations

32

B. Simulation Config Files

B.1. Steinmetz Simulation

1 #!/usr/bin/python3

2
3 import yaml

4 import math

5
6 gridDict = dict()

7
8 width = 70

9 length = 141

10 stretch = length/width

11
12 oldSpacing = 0

13 x = 0

14
15 for i in range(1, length):

16
17 n = math.floor ((((length /2) ** 2 - (length/2-i) ** 2)) ** 0.5 / stretch)

18 spacing = 1

19 x = x + min(spacing , oldSpacing)

20 offset = (width - (n-1) * spacing) / 2

21
22 cube = {

23 "particles -per -dimension": [1, n, n],

24 "particle -spacing": spacing ,

25 "bottomLeftCorner": [x , offset , offset],

26 "velocity": [0,0,0],

27 "particle -type": i,

28 "particle -epsilon": 1,

29 "particle -sigma": 1,

30 "particle -mass": 1

31 }

32
33 oldSpacing = spacing

34 gridDict[i] = cube

35
36 conf = {

37 "Objects": {

38 "CubeGrid": gridDict

39 }

40 }

41
42 print(yaml.dump(conf , default_flow_style=None))

Listing B.1: Python script used to create Steinmetz config

33

B. Simulation Config Files

B.2. Ostwald Ripening Simulation

1 functor : Lennard -Jones (12 -6)

2 cutoff : 2.5

3 deltaT : 0.00182367

4 iterations : 100000

5 periodic -boundaries : true

6 Objects:

7 CubeGrid:

8 0:

9 particles -per -dimension : [640, 80, 80]

10 particle -spacing : 1.5

11 bottomLeftCorner : [0, 0, 0]

12 velocity : [0, 0, 0]

13 particle -type : 0

14 particle -epsilon : 1

15 particle -sigma : 1

16 particle -mass : 1

17 thermostat:

18 initialTemperature : 1.4

19 targetTemperature : 1.4

20 deltaTemperature : 2

21 thermostatInterval : 10

22 addBrownianMotion : true

23 vtk -write -frequency : 100000

24 vtk -filename : ostwald_equilibration

25
26 verlet -rebuild -frequency : 10

27 verlet -skin -radius : 0.3

28 container : [VerletListsCells]

29 selector -strategy : Fastest -Absolute -Value

30 tuning -strategy : active -harmony

31 newton3 : [enabled]

Listing B.2: Config file for the Ostwald Ripening equilibration step

1 functor : Lennard -Jones (12 -6)

2 cutoff : 2.5

3 # these are the box size values for a equilibration with 640 x80x80 and spacing 1.5

4 box -min : [-0.75, -0.75, -0.75]

5 box -max : [959.25 , 119.25 , 119.25]

6 deltaT : 0.00182367

7 iterations : 30000

8 periodic -boundaries : true

9 thermostat:

10 initialTemperature : 0.7

11 targetTemperature : 0.7

12 deltaTemperature : 2

13 thermostatInterval : 10

14 addBrownianMotion : false

15 vtk -filename : vtk/ostwald

16 vtk -write -frequency : 30000

17 checkpoint : ostwald_equilibration_100000.vtk

18
19 container : [LinkedCells , VerletListsCells]

20 verlet -rebuild -frequency : 10

21 verlet -skin -radius : 0.3

22 selector -strategy : Fastest -Absolute -Value

23 data -layout : [AoS]

24 traversal : [lc_c08 , lc_sliced , lc_sliced_balanced , lc_sliced_c02 , vlc_sliced ,

vlc_sliced_balanced , vlc_sliced_c02]

25 tuning -strategy : full -search

26 tuning -interval : 1000

27 tuning -samples : 5

28 tuning -max -evidence : 10

29 newton3 : [enabled]

30 cell -size : [1]

Listing B.3: Config file for the Ostwald Ripening simulation

34

List of Figures

2.1. Lennard-Jones Potential . 4
2.2. Visualization of Direct Sum, Linked Cells, and Verlet Lists 5
2.3. c18 and c08 base steps visualized in 2D . 6

5.1. Class diagramm . 13

7.1. Visualization of the elongated Steinmetz solid . 17
7.2. Steinmetz baseline . 19
7.3. Steinmetz slice times for SPpC Heuristic . 20
7.4. Steinmetz slice times for NLL Heuristic . 20
7.5. Linked Cells runtime comparison . 21
7.6. Verlet Lists Cells runtime comparison . 21
7.7. Verlet Cluster Lists runtime comparison . 22
7.8. Ostwald Ripening phase diagramm . 22
7.9. Ostwald Ripening . 23
7.10. Linked Cells spinodal decompostion runtime . 24
7.11. Verlet Lists Cells spinodal decompostion runtime . 25
7.12. Linked Cells spinodal decompostion slice imbalance 26
7.13. Verlet Lists Cells Ostwald ripening slice imbalance . 27

35

List of Tables

A.1. Average iteration time of the Steinmetz simulation . 32
A.2. Fractions of time spent in all slices of the Steinmetz simulation 32

36

Bibliography

[Abr+15] Mark James Abraham et al. “GROMACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers”. In: So�wareX 1-2 (2015), pp. 19–25.

[Ber98] Daniel Berthelot. “Sur le mélange des gaz”. In: Comptes rendus hebdomadaires des séances de
l’Académie des sciences 126 (1898), pp. 1703–1706.

[Gra+19] Fabio Gratl et al. “AutoPas: Auto-Tuning for Particle Simulations”. In: 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2019), pp. 748–757.

[KSP20] Yogesh Kumar, Harvijay Singh, and Chirag N. Patel. “In silico prediction of potential in-
hibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simu-
lation based drug-repurposing”. In: Journal of infection and public health 13 (9 2020), pp. 1210–
1223.

[Len24] John Edward Lennard-Jones. “On the Determination of Molecular Fields. II. From the Equa-
tion of State of a Gas”. In: Proceedings of the Royal Society of London 106.738 (1924), pp. 463–
477.

[Lor81] Hendrik Antoon Lorentz. “Ueber die Anwendung des Satzes vom Virial in der kinetischen
�eorie der Gase”. In: Annalen der Physik 248.1 (1881).

[Mia+15] Yinglong Miao et al. “Accelerated molecular dynamics simulations of protein folding”. In:
Journal of Computational Chemistry 36.20 (2015), pp. 1536–1549.

[New87] Isaac Newton. Philosophiae Naturalis Principia Mathematica. Vol. 1. 1687.

[Ost85] Wilhelm Ostwald. Lehrbuch der Allgemeinen Chemie. Vol. 1. 1885.

[Ver67] Loup Verlet. “Computer “experiments” on classical fluids. I. �ermodynamical properties of
Lennard-Jones molecules”. In: Physical Review 159.4 (1967), pp. 98–103.

37

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Theoretical Background
	Intermolecular Forces
	Improving upon the Run-Time of Direct Sum Computation
	Linked Cells
	Verlet Lists
	Verlet Lists Cells
	Verlet Cluster Lists
	Newton 3 Optimization

	Algorithms for Parallel Traversal of Cell-Based Containers
	Base Steps
	Coloring Traversals
	Sliced Traversal with Locks

	Overview of AutoPas' Code Structure

	Implementation of Different Load Balancing Options
	Implementing a Version of Sliced Traversal for Verlet Cluster Lists
	Adapting Sliced Traversal to Allow Load Balancing
	Dynamic Scheduling
	Sliced Traversal with Two Colors

	Heuristic-Based Balancing
	Load Estimation Heuristics

	Analysis
	Introduction to MD-Flexible
	Comparing the Performance of the New Traversals
	Simulation of Elongated Steinmetz Solids
	Theoretical Analysis
	Evaluating the Balancing Algorithm

	Ostwald Ripening
	Per Iteration Run-Time Comparison
	Evaluating Load Estimation Heuristics

	Conclusion
	Summary
	Future Work

	Appendix
	Measurement Data
	Simulation Config Files
	Steinmetz Simulation
	Ostwald Ripening Simulation

	Bibliography

