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Abstract

The AutoPas library is capable of simulating computationally intensive molecular dynamic
simulations. To reduce the run time, it provides many configurations to select the fastest
for the specific scenario. AutoPas tries to achieve this task by testing the hole search space
frequently. In this thesis, a new approach is implemented that uses extrapolation to predict
the efficiency and only tests the best predictions to avoid inefficient configurations. The
predicting strategy can reduce the run time by up to 74%.

iv



Contents

Abstract iv

I. Introduction and Background 1

1. Introduction 2

2. Theoretical Background 3
2.1. Extrapolation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Lagrange polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3. Newton polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4. Runge’s Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Introduction to AutoPas 6
3.1. Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1. Particle Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2. Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3. Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4. Newton3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Auto Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II. Implementation of a Predictive Tuning Strategy 11

4. Refactoring Search Space based Tuning Strategies 12

5. Predictive Tuning 13
5.1. Extrapolation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2. Blacklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III. Analysis 17

6. Evaluation of Input Variables 19
6.1. Number of Evidence until First Prediction . . . . . . . . . . . . . . . . . . . 19

6.1.1. Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.2. Lagrange and Newton polynomial . . . . . . . . . . . . . . . . . . . 20

6.2. Relative Optimum Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



6.3. Maximum Tuning Phases Without Test . . . . . . . . . . . . . . . . . . . . 26
6.4. Blacklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7. Comparing PredictiveTuning to FullSearch 33

IV. Conclusion 37

8. Conclusion and Future Work 38

V. Appendix 39

A. Legends for the plots 40

B. Simulations 41

Bibliography 45



Part I.

Introduction and Background
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1. Introduction

Molecular Dynamics is used to simulate liquids, solids, gases, and molecules’ proper-
ties. This makes it possible to execute experiments that can only be realized with a
simulation[HEDM15]. The simulations initialize the N atoms or molecules as particles with
a mass, velocity, and force, and the behavior is computed with Newton’s equations. The
pairwise force calculation for every particle has a time complexity of O(N2), which makes it
expensive to compute and needs optimization.[Pli95]
AutoPas is a library for arbitrary N-body simulations, which provides different configurations
to optimize the force calculation. In order to choose the most efficient configuration, it
provides a functionality called auto-tuning. This function frequently tries to map the best
configuration to the current scenario during the simulation by testing all configurations.
Additionally, AutoPas provides different selection strategies to minimize the number of
configurations that have to be tested.
This thesis tries to optimize the auto-tuning process by implementing a new selection strat-
egy that uses extrapolation to predict the efficiency of all configurations. The predictions
are used to select and test only efficient configurations. The new strategy avoids testing
configurations with long run time. This approach aims to reduce the time spent in the
tuning-process and the simulation’s total run time. There are three extrapolation methods,
linear regression [Subsection 2.1.1], Lagrange polynomial [Subsection 2.1.2], and Newton
polynomial [Subsection 2.1.3] implemented to cover different cases and to be able to analyze
them to determine the best method.
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2. Theoretical Background

2.1. Extrapolation Methods

For this thesis, three different extrapolation methods have been implemented to predict
the evidence of a configuration. The user can decide through the simulation’s input, which
method is used by the tuning strategy.

2.1.1. Linear Regression

The first method is the linear regression[Fro18], which puts a line through all input points.
For this we need to calculate the gradient b̂ and the y-intercept â with x̄ and ȳ being the
arithmetical mean.

b̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(2.1)

â =ȳ − b̂x̄ (2.2)

These two values, shown in Equation 2.1 and Equation 2.2, are used to calculate the
regression line.

ŷ = â+ b̂x (2.3)

Equation 2.3 is then used to extrapolate the evidence for a configuration.
The linear regression is a fast and straightforward method to calculate a prediction. Addi-
tionally, it provides the possibility to store the calculated function for a second extrapolation.

2.1.2. Lagrange polynomial

The second method makes use of the Lagrange interpolation[HS02], where input values pairs
(x0, y0), . . . , (xn, yn) are used to calculate so called Lagrange polynomials

Lj(x) =

n∏
i=0,i 6=j

x− xi
xj − xi

=
(x− x0) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

(2.4)

for j = 0, 1, . . . , n. Thereafter a single polynomial with the degree n can be calculated out
of the Lagrange polynomials:

p(x) =
n∑

j=0

yjLj(x) (2.5)
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2. Theoretical Background

The method’s intended purpose is to use the function to interpolate within the interval of
the input values with the polynomial of Equation 2.5. In this thesis, it is used to extrapolate
them and calculate a prediction for a configuration.
This method provides the possibility to calculate a polynomial extrapolation function if
a linear function can not accurately represent the input points. It can calculate a linear
polynomial. However, the linear regression is expected to perform better for linear functions.
Therefore, the Lagrange polynomial should only be used to extrapolate a non-linear function.
A disadvantage is that the polynomial Lj , as seen in Equation 2.4, is calculated for a specific
x value. Therefore, the Lagrange polynomial does not produce a function that can be stored
and reused.

2.1.3. Newton polynomial

A similar approach is taken with the third method, the Newton interpolation[FH07][HS02],
where a polynomial function of the degree n is defined as

p(x) =f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]+

. . .+ (x− x0) · · · (x− xn−1)f [x0, . . . , xn]
(2.6)

with the coefficients f [xi, . . . , xi+k] that can be calculated as follows:

f [x0] =f(x0) (2.7)

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
(2.8)

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
(2.9)

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
(2.10)

This polynomial, calculated with Equation 2.6, is normally used for interpolation. As it
is done in the second method, it is used for extrapolating the base pairs to calculate a
prediction.
The Newton polynomial has no clear advantage over the Lagrange polynomial as both can
potentially have trouble with rounding errors. This method was chosen to have a second
extrapolation method for polynomials with a degree higher than one to compare them in
efficiency and accuracy. An advantage of the Newton polynomial is that the calculated
polynomial can be stored and reused in the next tuning-phase.

2.1.4. Runge’s Phenomenon

Carl Runge discovered that the interpolation of the function 1
1+x2 , in the same interval

with a different amount of base points, leads to different accuracy of the interpolation on
the edges of the interval. The phenomenon describes that the more base points are used
for the interpolation, the more the result for the edges diverges from the function’s real
value. The cause is that the interpolation oscillates towards the endings of the interval.
Therefore having an interpolation function with a higher degree can decrease the accuracy,
and fewer base points can lead to a result with a lower interpolation error on the edge of
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2. Theoretical Background

the interval.[Run01]
The phenomenon describes how it should be beneficial for the accuracy of edge cases of
the interpolation to use fewer base points. In this thesis, interpolation methods are used
to extrapolate the base points beyond the given interval. The phenomenon could have a
significant impact on the extrapolated value. It is crucial to consider it and test how the
accuracy is impacted when more input for the extrapolation is used.

2.2. Molecular Dynamics

Molecular dynamic (short: MD) simulations provide the possibility of modeling molecular
structures in great detail. This provides a numerical solution for the N-body problem.
MD is used to simulate scenarios like fluid dynamics or biomolecules. There are different
categories of MD problems. The focus of AutoPas is on short-range MD simulations, where
the interactions occur between pairs of particles that are in close range. The function to
calculate the pairwise potential is the Lennard-Jones Potential. It is defined by the relative
range between two particles rij , parameter ε, governing the strength of the interaction and
σ, defining a length scale.[Rap04]

U(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.11)

Applying Equation 2.11 on every particle pair results in the force for each of them. The
Lennard-Jones Potential is modified with a cutoff radius rc because it converges to zero
when the distance between to particles increases and, therefore, is insignificantly small. This
can be seen in Figure 2.1, where the Lennard-Jones Potential is shown for ε = σ = 1. The
cutoff radius reduces the number of potential force calculations because it is only calculated
when the distance between two particles is smaller or equal to the cutoff.

Figure 2.1.: The Lennard-Jones Potential for ε = σ = 1
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3. Introduction to AutoPas

AutoPas1 is an open-source C++ library to provide a base and optimize the node-level
performance of arbitrary N-body simulations. It acts as a black-box for the user that provides
different algorithms to apply short-range force calculations to particles in a domain. To
optimize the run time, AutoPas uses auto-tuning to select the optimal algorithm. Therefore
the user does not need to have a deeper understanding of the library to use it.[GST+19]

3.1. Configurations

A configuration combines a particle container [Subsection 3.1.1], a traversal [Subsection 3.1.2],
a data layout [Subsection 3.1.3], and the optimization with Newton’s third law of motion
(Further named as: Newton3) [Subsection 3.1.4]. This determines how the particles are
stored, how they are traversed, and how the interactions between them are calculated. The
different parts all have advantages and disadvantages, which makes them better for different
scenarios. AutoPas provides many configurations to ensure it chooses the best strategy for
the current state of the simulation.[GST+19]

3.1.1. Particle Container

The particle containers are the algorithms for the pairwise force calculation. They identify
the particles within a prescribed neighborhood, such as finding all particle pairs with a
distance less than a prescribed cutoff radius. There are currently seven different containers
implemented, all based on the following four algorithms: DirectSum, LinkedCells, VerletLists,
and VerletClusterLists.[GST+19]

DirectSum
The DirectSum is the intuitive way of calculating each particle’s force because it
calculates every particle’s pairwise interaction with each other regardless of the distance.
After this, it only considers the particles in the cutoff radius, as seen in Figure 3.1a.
This algorithm has a time complexity of O(N2). DirectSum causes no memory overhead
since no complicated data structure needs to be stored.[GST+19]

LinkedCells
To reduce the number of distance calculations, LinkedCells divides the simulation
domain into cells. The width of these cells is bigger or equal to the cutoff radius. On
account of this, only the distance between the particle and the particles within the
particular and neighboring cells needs to be calculated. Those within the cutoff radius
are used to calculate the force. As Figure 3.1b shows, only the red and blue cells need
to be evaluated to calculate the force acting on the red particle. The result of storing

1https://github.com/AutoPas/AutoPas
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3. Introduction to AutoPas

the particles in cells is that they can continuously be placed into the memory, thus
providing a good vectorization opportunity.

Cutoff volume

Search volumeLC
=

4
3πr

3
c

(3rc)3
≈ 0.155 (3.1)

LinkedCells still has flaws. The chance of a particle being within the cutoff radius is less
than 16%, which means that 84% of distance calculations are unnecessary.[GST+19]

VerletLists
Instead of creating cells, all distances can be pre-computed. The relevant particles for
a particle can be stored in a so-called VerletList. These lists need to be rebuilt when a
particle moves out of the cutoff radius or comes in range. In order to reduce the rebuild
frequency, a so-called Verlet skin is created, which has the radius of the cutoff radius
rc + s with s > 0 being the skin summand. The distance between the particles in the
skin still needs to be calculated, as shown in Figure 3.1c. The probability of finding a
particle with a skin radius increases in comparison to LinkedCells. A drawback of the
VerletLists is that every particle pairs’ distance needs to be evaluated, which would
have a complexity of O(N2). This can be optimized by combining the VerletLists with
the LinkedCells algorithm.[GST+19]

VerletClusterLists
This algorithm uses particle clusters for VerletLists. VerletClusterLists[AMS+15] does
not construct the neighbor lists out of the particle in the Verlet skin. Instead, particles
near each other have similar neighbors and build particle clusters. The algorithm
divides the domain in a grid along the x- and y-axis, creating towers along the z-axis.
The side of the towers is calculated with Equation 3.2.

Tower Side Length =
3

√
Cluster Size ·Domain Volume

Number of Particles
(3.2)

The clusters are then built inside each tower. The particles are sorted along the z-axis,
and a certain number of particles form a cluster. The last cluster is filled with dummy
particles if not enough particles are left. Then neighbor lists are built out of the
clusters. The distance calculation is done between two neighboring clusters and the
cluster itself. Two clusters are neighbors when one particle has at least one neighbor
in the other cluster.
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3. Introduction to AutoPas

(a) DirectSum (b) LinkedCells (c) VerletLists

Figure 3.1.: Interactions for the calculation of the force on the red particle in different
container types. The red circle illustrates the cutoff radius, the yellow one the
Verlet-skin radius. The distance of every particle connected with an arrow is
analyzed. Only the force with the particles within the cutoff radius is calculated.
The white particles are not involved in any interactions. In Figure (c), the blue
and red cells are used for the neighbor list construction. Source: [GST+19]

3.1.2. Traversal

Containers only store the particles but do not provide any order in which the particle pairs
are processed. This is what the traversals do. Furthermore, they aim to parallel the force
calculations in order to utilize modern multi-core processors. The traversals try to reduce the
scheduling overhead and address the race conditions when Newton3 is applied. Additionally,
some traversals have the purpose of balancing the workload among the available cores.
The traversals can be roughly divided between three different categories that address the
race conditions differently. The first category uses domain coloring, which assigns a color to
every cell. These colors create barriers in the hole domain to prevent race conditions because
they can not occur in cells with the same color. Thus all cells with the same color can
be dynamically scheduled without locks. The second category tries to utilize every usable
thread by dividing the domain into slices. Each thread is assigned one slice. Race conditions
can only occur in cells that are neighboring a cell of another slice. These race conditions are
solved with local locks. With the slicing, the threads’ usage is better; however, obtaining
the locks can cause overhead. The third category disables Newton3 entirely, which has the
effect that no race conditions exist and the particles can be scheduled arbitrarily.
A container can have multiple traversals, but every traversal is only applicable to one
container. Table 3.1 lists all traversals with their corresponding containers.[GST+19]
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3. Introduction to AutoPas

Container Traversal

DirectSum ds sequential

LinkedCells

lc c01
lc c01 combined SoA

lc c01 cuda
lc c04

lc c04 HCP
lc c04 combined SoA

lc c08
lc c18

lc sliced
lc sliced balanced

lc sliced c02

VerletLists vl list iteration

VerletListCells

vlc sliced
vlc c18
vlc c01

vlc sliced balanced
vlc sliced c02

VerletClusterCells vcc cluster iteration

VerletClusterLists
vcl cluster iteration

vcl c06
vcl c01 balanced

VarVerletListsAsBuild vvl as built

Table 3.1.: All traversals and their corresponding container
Source: https://www5.in.tum.de/AutoPas/doxygen_doc/master/

3.1.3. Data Layout

AutoPas uses two different data layouts, Array of Structures (AoS) and Structure of Arrays
(SoA), to store the particles. AoS stores the particles as a struct containing all the data in
one array. This gives the advantage that the particles can be easily accessed. SoA instead
builds a structure out of separate arrays for every parameter where all particles’ data are
stored. The parameters of any particle i can be accessed in the corresponding parameter
arrays at the index i. With SoA, the particles are stored in the same cache line and can be
loaded simultaneously. This leads to an efficient force calculation by utilizing vectorization
efficiently.[GST+19]

3.1.4. Newton3

The Newton3 option optimizes the force calculations with Newton’s third law of motion.
The law states that for every force exerted on a body i by a body j, body i exerts a force of
equal magnitude but opposing direction on body j [New87]. This means that the calculated
force F between two particles i and j hold: Fij = −Fji. When the Newton3 optimization
is applied, the number of force calculations is reduced by a factor of two. Since they only
need to be calculated once and can be applied to both interacting particles. As mentioned

9
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3. Introduction to AutoPas

in Subsection 3.1.2, the optimization has the drawback that it causes race conditions, which
have to be addressed when parallelizing the force calculation.[GST+19]

3.2. Auto Tuning

AutoPas contains multiple configurations that can calculate different simulations and sce-
narios within a different run time. As stated at the beginning of Chapter 3, AutoPas is a
base for arbitrary N-body simulations. Therefore, it can not make any assumptions that
could be used to select an optimal configuration for the simulation before it is started. To
solve this problem, AutoPas selects a configuration during the simulation. To maximize
the performance, it needs to map the simulations’ state to the most efficient configuration.
This is called the algorithm selection problem[Ric76]. AutoPas resolves this problem with
auto-tuning.[GST+19]
Different strategies are implemented to select the configurations, which are then tested in
the following so-called tuning-phase. The auto-tuning process will test every selected and
currently applicable configuration over the next iterations. The test consists of using the
configuration for a certain amount of iterations. The measured run time of every iteration is
used to calculate the evidence, which can be the mean value, or it just selects the fastest.
Then the best configuration is determined by selecting the fastest evidence. This configura-
tion is then used for the computation of the simulation until the next tuning-phase. After a
certain number of iterations, AutoPas repeats the auto-tuning process, because the scenario
in a simulation can change and with it, another configuration could have the optimum run
time.[GST+19]
AutoPas provides different tuning strategies for the selection of the configurations that it
then tests during the following tuning-phase. The focus in this thesis is on FullSearch, where
no specific selection occurs as it selects all configurations and tests them.

10



Part II.

Implementation of a Predictive
Tuning Strategy
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4. Refactoring Search Space based Tuning
Strategies

AutoPas already has different tuning strategies implemented. They share similarities because
they all have the same interface and overall purpose of selecting the best configuration.
Additionally, the implemented tuning strategy shares other similarities with FullSearch.
They both represent the search space, all applicable configurations, in a set. Therefore, other
functions and variables are identical in both classes. To make the code more maintainable
and avoid code duplication, the created superclass SetSearchBasedTuningStrategy contains
the functionality both classes share. As seen in Figure 4.1, PredictiveTuning and FullSearch
both inherit the search space and the functions both classes use. It also shows that
PredictiveTuning has other similarities to FullSearch, like how the search space is filled and
how the Newton3 option is removed. It contains all of FullSearche’s functions, adapts them,
implements additional variables and functions to optimize the tuning-process.

Figure 4.1.: UML Class Diagram of the tuning strategies that are based on a set to store
the configurations
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5. Predictive Tuning

The predictive tuning strategy’s general idea is to extrapolate the collected evidence of every
configuration to create a prediction. Then only the configurations with the best predictions
are selected and tested during the following tuning phase. The goal is to prevent inefficient
configurations from being tested in the first place and thereby reducing the run time of the
simulation.
To gather evidence that PredictiveTuning later uses to extrapolate the predictions, it needs
to test every configuration during the first number of tuning phases. This can be seen in
Figure 5.1, where the selection strategy is shown in red. In the beginning, PredictiveTuning
needs to check if enough tuning-phases have been performed to be able to calculate a
prediction. If this is not the case, it selects all configurations for testing. Otherwise, it
will proceed with calculating the predictions for each configuration. PredictiveTuning goes
through them to check if the respective prediction is in the optimum predictions interval
or if it was not tested in a certain number of tuning-phases. If either one of these is the
case, the configuration gets selected to be tested in the following tuning-phase. After the
selection, the selected configurations get tested, which is represented in blue. If not enough
tuning-phases were performed yet, and all configurations were selected, they all get tested.
When PredictiveTuning used predictions for the selection. It first tests the configurations
with a prediction in the optimum predictions interval. After that, PredictiveTuning checks
if at least one valid configuration was tested successfully and produced evidence. If that is
not the case, it calculates a new best prediction out of the remaining configurations and
selects new configurations with the best predictions to test them. This procedure is done
until either a valid configuration is found or there are no configurations left to test. If
PredictiveTuning runs out of configurations to test, it throws an exception. Following the
testing of a valid configuration, PredictiveTuning tests the configurations that have not
been tested in a defined number of tuning-phases, represented in orange. After the testing,
PredictiveTuning checks if it produced at least one evidence and then selects the fastest
configuration, else it throws an exception.
The number of tuning-phases in which all configurations get tested depends on how many
base points should be used by the extrapolation. Additionally, it determines the degree
of the polynomial if the Lagrange or Newton polynomial is applied. The goal is to have
a sufficiently accurate prediction with the least amount of base points because testing
every configuration during a tuning-phase is expensive. However, selecting an inefficient
configuration at the end of a tuning-phase could be worse. A good compromise needs to
be drawn depending on the degree of the Lagrange or Newton polynomial or how many
points the linear regression should use. The goal of PredictiveTuning is to reduce the run
time. Thus the accuracy only needs to be sufficient enough to select efficient configurations.
Therefore, a less then perfect precision can be accepted if it reduces the run time.
When PredictiveTuning completed enough tuning-phases, it will calculate a prediction for
every configuration before each tuning-phase. It will use these predictions to determine

13



5. Predictive Tuning

the configurations that the upcoming tuning-phase will test assumed each configuration
has been tested enough in the previous tuning-phases. When not enough evidence for a
configuration was produced to this point, the prediction is set to the maximum value, and
PredictiveTuning selects it automatically. Those will be tested with the configurations that
have not been tested in a certain number of tuning-phases. To chose the configurations, the
best prediction is used to create an interval containing the best configurations. If a prediction
is in the interval, the corresponding configuration is selected. The interval dimension is
relative to the optimum prediction because the run time can differ significantly depending
on the simulation’s scenario. A fixed interval could lead to different problems. It could
be too large for small and too little for big simulations. However, the relative interval has
the disadvantage that it expands more when the fastest prediction increases. As a result,
more configurations with a longer run time from the beginning can be chosen for the next
tuning-phase.
As seen in the red part of Figure 5.1, when PredictiveTuning goes through the configuration
and selects the configurations for testing, there are configurations selected that have not
been tested for a certain number of tuning-phases. PredictiveTuning tests them to prevent
an inaccurate extrapolation since it uses the last produced evidence to extrapolate those to
the current time value. The time value is further away with every following tuning-phase
in which the configuration is not tested. Additionally, the scenario of the simulation can
change, and other configurations could get more efficient. Therefore a configuration is
guaranteed to be tested every m tuning-phases. PredictiveTuning wants to avoid inaccurate
extrapolations, but it also wants to avoid testing inefficient configurations. The described
functionality leads to a reasonable compromise because the evidence collected during the
previous tuning-phase should lead to the most accurate prediction. Having to test each
configuration every m tuning-phases means testing all the inefficient configurations, which
takes up a lot of time. This parameter needs to be set with caution. PredictiveTuning should
only test the configurations with imprecise predictions as often as it is necessary, to prevent
inaccurate prediction, which could be worse, especially with extrapolation polynomials of a
higher degree.
The new tuning-strategy needs to change the tuning process. Not every configuration
in the search space can always be applied to the current state of the simulation. This
does not matter when PredictiveTuning tests all configurations. However, it needs to be
considered when only the configurations with the optimal predictions and those that have
not been tested for a certain number of tuning-phases are probed. To ensure that an efficient
configuration is selected in the end, PredictiveTuning needs to test the optimal predictions
first and has to check if an applicable configuration was tuned. If that is not the case, it
selects new optimal predictions out of the remaining configurations. As seen in Figure 5.1
following the ’No’-branch of the first blue decision node, PredictiveTuning does this until at
least one usable configuration is tested, or if there are no configurations left to test. Then the
configurations that were selected because they have not been tested in several tuning-phases
are then tested. PredictiveTuning selects the optimal configuration out of all produced
evidence. This procedure ensures that an optimal prediction is tested. It prevents that
PredictiveTuning only selects the best configuration from the evidence of the configurations
that were selected because they had not been tested for a certain number of tuning-phases.
This is important as the configuration for the next couple thousand iterations has to be
picked out of those. The goal is to select the most efficient configuration.

14



5. Predictive Tuning

Begin

Enough tuning-
phases for the first

predictions?

Reset
PredictiveTuning

Select the hole
SearchSpace for

tuning

Calculate
Predictions

Configuration has
not been tested for n

tuning-phases?

for configurations in
SearchSpace

Select
configuration for

tuning

Tune through
searchSpace

Tune through the
configurations
with an optimal

prediction

Tuned a valid
configuration?

Tune through the
configurations that have

not been tested in n
tuning-phases

Reselect TuningSpace
with the best predictions of

the remaining
configurations

Select the configuration
with the best evidence as

current configuration

Remaining
SearchSpace

empty?

Throw exception

Was at least one
evidence produced?Throw exception End

Prediction in
optimum range?

YesNo

No

Yes

No

Yes
No

No

Yes

YesNo

Yes

Figure 5.1.: The UML Flow Diagram shows the whole tuning process of PredictiveTuning.
The objects in red describe the selection strategy for the configurations that get
tested. After the selection, the testing phase is executed, which is shown with
the blue objects. In the end, the process of evaluating the tested configurations
is described in orange.

5.1. Extrapolation Methods

The extrapolation methods are implemented following the formulas stated in Section 2.1. To
prevent redundant calculations, the functions calculated with the linear regression and the
Newton polynomial for every configuration are stored to reuse them if no new evidence was
added in the previous tuning-phase. The polynomial created by the Lagrange polynomial
can not be stored. Therefore, the extrapolation must be calculated again for every new
prediction. This does not affect the run time because the number of configurations and the
evidence used in the extrapolation, more in Section 6.1, is not high enough to significantly
impact the simulation duration.
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5. Predictive Tuning

5.2. Blacklist

The assumption that an inefficient configuration does not drastically increase its efficiency
during a simulation opens up new functionality to decrease tuning time. PredictiveTuning
uses this assumption to erase all inefficient configurations from the search space. It compares
the evidence of every configuration to the evidence of the fastest configuration after the
first tuning phase or when tuning produces the first evidence for a configuration. If the
evidence of a configuration is greater than the best evidence multiplied by the relative
blacklist range, it is blacklisted. Then it is not possible to select this configuration again
during this simulation. The blacklist will only be applied once for every configuration. When
a user wants PredictiveTuning to use the blacklist during a simulation, the user needs to set
the relative blacklist range. This value determines the relative range of the blacklist. If the
user does not set the variable, PredictiveTuning does not use this function.
The blacklist’s goal is to increase the tuning-process efficiency by prohibiting blacklisted
configurations from being selected. Those configurations are expected to be inefficient.
Therefore, they would only be selected either when the configuration was not tested for
too many tuning-phases or when the prediction was inaccurate. This reduces the chance of
selecting an inefficient configuration as the best configuration and the number of inefficient
configurations used during the simulation. The blacklist should reduce the tuning time
significantly and speed up the run time of the simulation. Nevertheless, it could slow the
simulation down if the allowed configuration interval is to narrow and configurations get
blacklisted that could be the best later in the simulation.

16



Part III.

Analysis
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Every simulation of the following analysis was performed on the CoolMUC-2 system of
the LRZ Linux Cluster. Each node consists of 28-core Haswell nodes and has 64 GB RAM
available. There were two simulations used for the performance analysis of PredictiveTuning.
A static simulation that has particles in-homogeneously distributed in the domain, as seen
in Figure B.1, and the Spinodal Decomposition Experiment, which is an example of a
simulation that is usually performed with AutoPas.
The phenomenon of the Spinodal Decomposition describes the rapid decomposition of
a homogeneous solution, which results in the creation of two different thermodynamic
phases[CHK+94]. The experiment is performed in two separate simulations. The first
simulation initializes the particle grid. Then all particles get equilibrated by simulating
100.000 thousand iterations with a constant temperature. In the end, a checkpoint of
the simulation is created. The second simulation, the actual decomposition, is started by
initializing the particles with the first simulation’s checkpoint and has the same parameters
as the equilibration except that it has half the temperature. The simulation is then run for
80.000 iterations, where the temperature reduction causes the particles to form clusters.
The configurations all have different efficiency, and some take up a lot of time. Therefore,
some of the shown plots do not depict the simulation’s complete data but rather a selection.
This is done for consistency and to make essential parts visible. Additionally, if the behavior
of the three implemented extrapolations methods is similar, only one of them is shown as an
example.
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6. Evaluation of Input Variables

Many variables influence how PredictiveTuning selects the configurations for the following
tuning-phase. The analysis of the input variables of PredictiveTuning should lead to
reasonable default values for the best performance. However, it can not be claimed that
they will be the best for every simulation.
The different input parameters are evaluated by the run time of the simulation and the
accuracy of PredictiveTuning. The accuracy is measured by comparing the evidence of the
selected configurations of FullSearch and PredictiveTuning in the same tuning-phase. If the
time between the two does not deviate within five percent, it is counted as accurate. The
sum of the accurate selections divided by the number of tuning-phases is then presented as
the overall accuracy. If not stated otherwise, this is meant when talked about the accuracy.

6.1. Number of Evidence until First Prediction

The number of evidence until the first prediction (Further named as evidenceUntilPrediction)
affects two things. It declares how many tuning phases every configuration is tuned until the
first prediction can be calculated. This also determines how much evidence is used to calculate
the prediction and the degree of the Lagrange and Newton polynomial. This variable can
significantly affect the accuracy of the prediction and the efficiency of PredictiveTuning.
The goal is to have the least amount of tuning-phases that test all configuration before the
first prediction is calculated while obtaining an accurate prediction.
As mentioned before, this variable affects the degree of the polynomial of Lagrange and
Newton. The linear regression is always a linear function. Therefore they need to be analyzed
separately.

6.1.1. Linear Regression

Increasing the evidenceUntilPrediction with the linear regression only makes sense when the
accuracy increases, which leads PredictiveTuning to choose more efficient configurations to
reduce the run time of a simulation. If this is not the case, the impreciseness is accepted.
The smallest number possible is two. Figure 6.1a shows that the Spinodal Decomposition
Experiment’s total run time with two evidence is generally faster than when three or more
evidence have to be produced for the first prediction. Additionally, the linear regression is
accurate with only two evidenceUntilPrediction, and PredictiveTuning is not getting more
accurate with more evidence used in the extrapolation, as seen in Figure 6.1b. In conclusion,
only having to produce two evidence for the first prediction is faster and has higher accuracy.
This is the number chosen as the default value for the linear regression.
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(a) Run time
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Figure 6.1.: The run time of the Spinodal Decomposition (a) and the accuracy (b) of
PredictiveTuning using the linear regression with evidenceUntilPrediction set
to two and three. The simulation is faster when only two evidence are used in
the extrapolation. The accuracy can be more consistent with a higher value.
However, it is not more accurate. Colors represent the tuning strategy. For the
values, see Figure A.2

6.1.2. Lagrange and Newton polynomial

Figure 6.2 shows the Spinodal Decomposition run time and displays that choosing a higher
value for evidenceUntilPrediction increases the run time significantly for both extrapolation
methods. This was anticipated because there are two obstacles to effectively reduce the run
time with a higher number for evidenceUntilPrediction. The first one is that more tuning-
phases are testing all configurations, as seen in Figure 6.3, which is very time-consuming.
An extrapolation method with a higher number of base points needs to calculate more
accurate predictions, which leads to the selection of more efficient configurations. The Runge
Phenomenon affects the accuracy of the predictions significantly, as seen in Figure 6.4a. It
shows that the Lagrange polynomial is most accurate with two base points and that the
predictions get more inaccurate the more evidence is used for the extrapolation. However,
this does not affect the overall accuracy of the selection of configurations. Figure 6.5 shows
that extrapolating with an even number of base points is more accurate than with an uneven
number.
Increasing the value for evidenceUntilPrediction does not reduce the run time. Therefore
a lower number is recommended. The default value is set to two evidence until the first
prediction.
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(a) Lagrange polynomial
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(b) Newton polynomial

Figure 6.2.: The Spinodal Decomposition’s run time with PredictiveTuning and different
inputs for evidenceUntilPrediction. Increasing the input for the evidenceUntilPre-
diction increases the run time for both extrapolation methods. The prediction
strategy has to test inefficient configurations for more tuning-phases, and fewer
were it avoids them through the predictions. Colors represent the tuning strategy.
For the values, see Figure A.2
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(a) evidenceUntilPrediction set to 2
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(b) evidenceUntilPrediction set to 6

Figure 6.3.: The evidence produced during the Spinodal Decomposition with Predictive-
Tuning using the Lagrange polynomial for evidenceUntilPrediction set to two
(a) and six (b). Each point represents one produced evidence. Increasing the
evidenceUntilPrediction increases the number of tuning-phases that test all
configurations and decreases the number of tuning-phases that can avoid testing
inefficient configurations. The usage of more base points by the extrapolation
does not ensure a more accurate prediction. This can be seen, for example, in
(b) in all non-full-search tuning phases where the selected configuration does
not produce the fastest evidence. The fact that the prediction quality worsens
with an increasing number of base points can be traced back to the Runge
Phenomenon. For the values see Figure A.1
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(a) evidenceUntilPrediction set to 2
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(b) evidenceUntilPrediction set to 3
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(c) evidenceUntilPrediction set to 4

Figure 6.4.: The accuracy for each prediction is calculated by dividing the prediction and the
evidence during the same tuning-phase. The best possible value for a prediction
is 1. Each dot represents the prediction accuracy, calculated by dividing the
prediction through the tested evidence in the same tuning-phase. When two dots
are connected, it means that they belong to the same configurations. The worst
prediction with two evidence (a) is at about five million times the produced
evidence and far less than for three (b) with exceeding the real produced evidence
by a factor by around twenty-five billion. The accuracy gets even worse when the
extrapolation uses four evidence (c) compared to three. There is no prediction
that is near the produced evidence due to the Runge Phenomenon. Colors
represent containers. For the values see Figure A.1
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(a) Lagrange polynomial
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(b) Newton polynomial

Figure 6.5.: The accuracy of PredictiveTuning and different inputs for evidenceUntilPredic-
tion during the Spinodal Decomposition. The accuracy for both extrapolations
is higher for even numbers. The Lagrange polynomial has the best accuracy
with two base points and the Newton polynomial with six. Colors represent the
tuning strategy. For the values, see Figure A.2

6.2. Relative Optimum Range

The relative range of the interval for the optimal predictions (Further named as relative
optimum range) primarily affects how the chance rises for a configuration to get selected
for the tuning process. Setting the relative optimum range to a higher value means that
more configurations get selected. As seen in Figure 6.8b, where the number of configurations
selected for every tuning-phase is considerably more with a relative optimum range of four,
compared to Figure 6.8a, which has it set to 1.2. Testing more configurations does not
necessarily translate to higher overall accuracy. Figure 6.6 shows that a higher range of the
interval can be more inaccurate. Nevertheless, the highest value for the relative optimum
range has the best accuracy for the Lagrange and Newton Polynomial.
A better accuracy does not affect the run time of the Spinodal Decomposition significantly, as
seen in Figure 6.7. The run time is reduced for a higher value of the relative optimum range
with the Lagrange and Newton polynomial. The simulation takes a bit longer with the linear
regression. Overall the impact is neither significant nor consistent enough. Therefore, the
relative optimum range should preferably be a value between [1.1, 2] because PredictiveTuning
aims to reduce the selection of configurations.
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(c) Newton polynomial

Figure 6.6.: The accuracy of PredictiveTuning and 1.2, 2, 3, and 4 as input for the relative
optimum range during the Spinodal Decomposition. The accuracy does not
always increase when the relative optimum range is set with a higher value.
Colors represent the tuning strategy. For the values, see Figure A.2
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(a) Linear Regression
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(b) Lagrange polynomial
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(c) Newton polynomial

Figure 6.7.: The Spinodal Decomposition’s total run time with PredictiveTuning and 1.2, 2,
3, and 4 as input for the relative optimum range. Increasing the relative optimum
range increases the number of tested configurations. When the interval is still
narrow enough that no inefficient configurations are selected, it can slightly
reduce the run time using the Lagrange and Newton polynomial. The linear
regression is faster, with a lower relative optimum range. Colors represent the
tuning strategy. For the values, see Figure A.2
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(a) Relative optimum range set to 1.2
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(b) Relative optimum range set to 4

Figure 6.8.: The produced evidence during the Spinodal Decomposition with Predictive-
Tuning with the Lagrange polynomial and the input for the relative optimum
range set to 1.2 (a) and 4 (b). Each point represents one produces evidence.
Since increasing the number results in a widening of the interval in which the
prediction has to be to get selected, setting the relative optimum range to four
(b) results in the selection and testing of many more configurations, which always
contains the most efficient one. When the number is set to 1.2 (a), only a few
configurations get selected, and at one point, it is not testing the most efficient
configuration. Colors represent containers. For the values see Figure A.1

6.3. Maximum Tuning Phases Without Test

The number of maximum tuning phases a configuration might not be tested (Further named
as maxTuningPhasesWithoutTest) can have a more significant impact on the run time than
the relative optimum range. As it affects the accuracy of the prediction and how often
PredictiveTuning has to test inefficient configurations. The goal is to have this number as
high as possible without losing too much accuracy that efficiently enough configurations are
still selected.
Figure 6.9 shows that the Spinodal Decomposition’s run time decreases when maxTuning-
PhasesWithoutTest is selected higher. It reduces the number of tuning-phases where all
inefficient configurations are selected. When the parameter is set between six and thirteen,
it means that all configurations could only be tested once again after the first prediction
if their prediction never is in the optimum range. A reduction of the run time can not be
considered for a general proposition of the effectiveness and can only be used for this specific
simulation. When the number is greater than thirteen, PredictiveTuning does not test the
inefficient configurations again, which produces the fastest run time. Additionally, the run
time of the simulation is more consistent when a higher number is selected for the linear
regression and the Lagrange polynomial.
The accuracy of PredictiveTuning does not necessarily decrease with a higher maxTun-
ingPhasesWithoutTest. As seen in Figure 6.10, where the average accuracy for three is
worse for the linear regression and Newton polynomial than the values greater than six.
Only the Lagrange polynomial is always around 60% accuracy and primarily differs in the
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6. Evaluation of Input Variables

consistency. Newton still has the worst overall accuracy of the three extrapolation methods.
The difference between the selected configurations with the Lagrange and Newton polyno-
mial can be seen in Figure 6.11a and Figure 6.11b. The Lagrange polynomial consistently
selects configurations with a short run time. In comparison, the selected configurations with
the Newton polynomial have differing run time. Around half of them are not the fastest
configurations. Those configurations are also selected to calculate the next five thousand
iterations. However, the Newton polynomial still produces a faster run time, which means
that the time it would take to test all inefficient configurations mostly is higher than selecting
some less efficient configurations at the end of a tuning-phase. Because the run time is
the deciding factor, the maxTuningPhasesWithoutTest should be set to number as high as
possible to ensure that all inefficient configurations get tested as few times as possible as
long as no significant changes in the configurations are expected.
The Spinodal Decomposition does not change the fastest configuration after the second
tuning-phases, as seen in Figure 6.8b, which makes the selection of a higher number so
effective. If more changes are expected, it could be beneficial to use the variable to check if
some changes have occurred.
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(a) Linear Regression
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(b) Lagrange polynomial
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(c) Newton polynomial

Figure 6.9.: The Spinodal Decomposition’s total run time with PredictiveTuning and differ-
ent inputs for maxTuningPhasesWithoutTest. A lower maxTuningPhasesWith-
outTest leads to an increase in the total run time because inefficient configura-
tions get tested more frequently. With a number between six and thirteen, the
inefficient configurations only get tested once again, and a greater number has
the effect that those are not tested again. The reason for the difference in the
run time is the simulation itself and how the update at a certain point in time
affects the predictions. Colors represent the tuning strategy. For the values, see
Figure A.2
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(a) Linear Regression
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(b) Lagrange polynomial
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(c) Newton polynomial

Figure 6.10.: The accuracy of PredictiveTuning with different inputs for maxTuningPhas-
esWithoutTest. The accuracy does not increase when the number is lower,
and all configurations get tested more often. Testing them more often has a
negative effect. Additionally, the accuracy can be increased when the inefficient
configurations are less tested. The three extrapolation methods are all affected
differently. The linear regression (a) has s better and more consistent accuracy
at first. This changes when the maxTuningPhasesWithoutTest is greater than
nine, and the overall accuracy is worsened. The Newton polynomial is more
accurate when the inefficient predictions are tested less. The accuracy of the
Lagrange polynomial is always around 60% and only changes in the consistency.
It does get more accurate when the inefficient predictions are not tested again.
Colors represent the tuning strategy. For the values, see Figure A.2
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(a) Lagrange polynomial
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(b) Newton polynomial

Figure 6.11.: The produced evidence of the tested configurations with maxTuningPhas-
esWithoutTest set to fifteen for the Lagrange (a) and Newton (b) polynomial.
Each point represents one produces evidence. The tested configurations with
the Newton polynomial are not always the most efficient. The Lagrange poly-
nomial always selects the fastest configurations and sometimes a less efficient
one. Colors represent containers. For the values see Figure A.1

6.4. Blacklist

The blacklist reduces the run time by eliminating inefficient configurations when they are
first tested. Figure 6.12 shows every tested evidence. In the first tuning-phase, there are
more configurations tested than in the following ones. This illustrates the functionality of
the blacklist as it erases the inefficient configurations from the search space.
The main goal is to reduce the tun time of the simulation. As seen in Figure 6.13b, the
Spinodal Decomposition Experiment’s total run time without the blacklist is significantly
higher than with it. The run time can roughly be reduced by 33% up to 45%. Furthermore,
in this simulation, the narrowing interval of the blacklist does not have an impact on the run
time. It is nearly the same for the relative blacklist range of five and ten as both eliminate
the worst predictions. Narrowing the blacklist range further does not reduce the run time
significantly for this simulation.
When the maxTuningPhasesWithoutTest is set to a more efficient value, as explained in
Section 6.3, the effect of the blacklist is reduced, as seen in Figure 6.13a. Comparing the run
time of both figures shows that the simulation has the lowest run time when the relative
blacklist range and maxTuningPhasesWithoutTest both are set to five. The blacklist can
reduce the negative effect of the lower setting of maxTuningPhasesWithoutTest and can use
the up site to reduce the run time.
The key message is that the blacklist is an excellent addition to making the tuning more
efficient and reducing the total run time by eliminating hopelessly slow configurations.
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Figure 6.12.: The produced evidence during the Spinodal Decomposition with Predictive-
Tuning using linear regression and a relative blacklist range of 5. Each point
represents one produced evidence. After the first tuning-phase, the inefficient
configurations get blacklisted, which means that in the following ones, there
are fewer configurations that can be selected. Colors represent containers. For
the values see Figure A.1
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(a) maxTuningPhasesWithoutTest set to 5
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(b) maxTuningPhasesWithoutTest set to 15

Figure 6.13.: The run time of the Spinodal Decomposition Simulation with PredictiveTuning
using linear regression(LR), Lagrange(LA), and Newton polynomial(NE). The
difference between (a) and (b) is the input for maxTuningPhasesWithoutTest.
Apart from that, the simulations differ in the blacklist range input. When no
number is stated, it means that PredictiveTuning does not use the blacklist.
It is removing all inefficient configurations after the first tuning-phase speeds
up the tuning-process of all extrapolation methods. It is more important to
exclude the inefficient configuration because the run time does not significantly
improve when the blacklist range is reduced from ten to five, as seen in (a).
Additionally, (b) shows that the blacklist always affects the run time, even when
PredictiveTuning does not test the inefficient predictions again. Comparing (a)
and (b) shows the benefits of the blacklist with the addition of the lower value
of maxTuningPhasesWithoutTest. The simulation is faster when the variable is
set to five. Colors represent the tuning strategy. For the values, see Figure A.2
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(a) FullSearch
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(b) PredictiveTuning using linear regression
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(c) PredictiveTuning using linear regression and
blacklist

Figure 7.1.: Every produced evidence by all configurations during the inhomogeneous per-
formance test. Each point represents one produced evidence. Since FullSearch
(a) tests every configuration frequently, it produces much more evidence. The
predictive strategies avoid this by testing only the configurations with the best
predictions. This is improved even further with the usage of the blacklist (c).
Colors represent containers. For the values see Figure A.1

PredictiveTuning is created to speed up the tuning process and, therefore, to be more
efficient than FullSearch. The effectiveness of the new strategy should be seen through a
reduction of the run time.
The inefficiency of FullSearch can be seen in Figure 7.1a, as it tests all configurations in
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every tuning-phase. In contrast, Figure 7.1b and Figure 7.1c show that PredictiveTuning
tests far fewer configurations over the whole simulation, making the tuning process more
efficient. As displayed in Figure 7.3, where the testing of the configurations, which only
takes around 11.000 of the 100.000 iterations of the simulation, takes up more than 60% of
the force calculations. PredictiveTuning can reduce the percentage to around 30% to 25%
and down to 10% with the blacklist while simultaneously reducing the run time. Figure 7.2b
shows the run time of the inhomogeneous performance test. PredictiveTuning is always
faster than FullSearch. The results can differ between a 15% to a 40% reduction, which is
not consistent.
The results for the Spinodal Decomposition are more consistent than those of the inhomoge-
neous performance test. Figure 7.2a displays the Spinodal Decomposition run time when
FullSearch or PredictiveTuning with either one of the extrapolations methods is applied as
the tuning-strategy. It shows that PredictiveTuning reduces the run time of the Spinodal
Decomposition consistently by 50%, even if it does not predict the best configuration every
time, as seen in Figure 6.11b.
This depicts the new tuning-strategy’s effectiveness and that it has a significant impact on
the run time. As seen in Figure 7.2c, the blacklist gives the potential to reduce the run time
of the Spinodal Decomposition even further. It is subsequently reducing the run time to
around 30% to 26% compared to the run time of FullSearch. Considering that four hundred
thousand seconds are roughly four and a half days, reducing the duration to a fourth saves
a little over three days of computation time.

34
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(b) Inhomogeneous performance test
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(c) Spinodal Decomposition with blacklist

FullSearch Linear Regression Lagrange Newton
0

10T

20T

30T

40T

50T

S
im

ul
at

io
n 

Ti
m

e 
in

 [n
s]

(d) Inhomogeneous performance test with black-
list

Figure 7.2.: The total run time of five runs of the Spinodal Decomposition and ten runs
of the inhomogeneous performance test. The simulations are performed using
FullSearch and PredictiveTuning using all extrapolation methods with and
without the blacklist as the selection strategies. In both simulations, the run
time using the Predictive Strategies is lower than the run time of FullSearch,
because it avoids testing the inefficient configurations during tuning, which saves
much time. The Spinodal Decomposition’s run time can be reduced by 50%
and even further with the blacklist. The linear regression is the most effective
selection strategy. Colors represent the tuning strategy. For the values, see
Figure A.2
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7. Comparing PredictiveTuning to FullSearch
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Figure 7.3.: Distribution of the total force calculation time spent during tuning (blue) and
non-tuning (red) iterations. Since FullSearch frequently tests many inefficient
configurations, it spends a lot of time tuning, while Predictive Strategies avoid
this. Blacklisting the inefficient configuration has the effect that those can not
be tested twice, which leads to even less time spent in tuning.
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8. Conclusion and Future Work

In this thesis, a tuning strategy was implemented that predicts the run time of all configura-
tions using extrapolation. The evaluation with the simulation of the Spinodal Decomposition
depicts a significant performance increase when compared to FullSearch. The run time can be
reduced by up to 74%. This is a substantial improvement and shows that PredictiveTuning
can effectively prohibit inefficient configurations from being tested. Additionally, the analysis
displays that linear regression is the best extrapolation method and should be preferred over
the others.
It should be possible to improve PredictiveTuning in future work. The extrapolation methods
could be improved by implementing an error evaluation. One example could be to calculate
the error of the created polynomial for the existing evidence and factoring it into the existing
function before the prediction is calculated. Another method would be to compute the
prediction error to the produced evidence and use it for the next prediction. This should be
an easy way to improve the predictions. Additionally, the optimal prediction range could be
calculated dynamically, for example, through the best and worst prediction or evidence. The
same could be done for the number of tuning phases, after which configurations have to be
tested. One possibility would be to put the configurations into groups with roughly the same
behavior and run time. Then it would be possible to test only one of every group. When
the prediction is too inaccurate, or the run time has improved to a certain point, the entire
group would be tested. Besides, other approaches to predict the configurations like another
extrapolation method or another data-driven approach could be implemented. The number
of possible improvement shows that there is potential to improve this tuning-strategy and
to make it even more efficient.
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A. Legends for the plots

Figure A.1.: Legend for the evidence plots, that distinguishes between the container of the
configurations

Figure A.2.: Legend for the time and accuracy plots, that distinguished between FullSearch
and the extrapolation method used in PredictiveTuning.
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B. Simulations

Figure B.1.: Particle Distribution in the inhomogeneous performance test.
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