
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Masters’ Thesis in Robotics, Cognition, Intelligence

Spatially adaptive Density Estimation with
the Sparse Grid Combination Technique

Markus Fabry

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Masters’ Thesis in Robotics, Cognition, Intelligence

Spatially adaptive Density Estimation with
the Sparse Grid Combination Technique

Räumlich-adaptive Dichteschätzung mit
der Dünngitter Kombinationstechnik

Author: Markus Fabry
Supervisor: Univ-Prof. Dr. Hans-Joachim Bungartz
1st Advisor: Michael Obersteiner; M.Sc.
2nd Advisor: Paul Christian Sarbu; M.Sc. (Hons.)
Submission Date: September 15, 2020

I confirm that this masters’ thesis in robotics, cognition, intelligence is my own work
and I have documented all sources and material used.

Munich, September 15, 2020 Markus Fabry

Acknowledgments

I want to thank my advisors, Michael Obersteiner and Paul Sarbu, for their invaluable
support, advice and feedback.

Thank you dad, for helping me with proofreading and spell-checking.

Abstract

Non-parametric density estimation, especially with high dimensional data sets, presents
a problem requiring powerful hardware and sophisticated algorithms. Sparse grids
are an approach that offer a computationally feasible solution. However, the usual
methods, like the standard combination technique, still struggle with the sheer number
of dimensions and data points for some data sets. Recent advances in adaptive
combination techniques present new solutions for such challenges. In this thesis one
such method - the dimension-wise spatially adaptive refinement - will be analyzed and
compared to the standard combination technique and regular kernel density estimation.
To determine its effectiveness for density estimation it will be compared to these
methods with a variety of data sets. Furthermore, a classification-based comparison of
the dimension-wise method and the standard combination technique will be conducted.

Zusammenfassung

Nicht-parametrische Dichteschätzung stellt ein Problem dar, das, besonders bei Daten-
sätzen mit vielen Dimensionen, große Rechenleistung und ausgeklügelte Algorithmen
erfordert. Dünngitter Verfahren sind Methoden, die rechnerisch machbare Lösun-
gen bieten. Trotzdem kämpfen die üblichen Dünngitter Verfahren, wie etwa die
Standard-Kombinationstechnik, mit der schieren Anzahl an Dimensionen und Daten-
punkten mancher Datensätze. Jüngste fortschritte für adaptive Kombinationstechnik
ermöglichen neue Lösungen für solche Herausforderungen. In dieser Arbeit wird
eine solche Methode - die Dimensionsweise Räumlich-adaptive Kombinationstechnik
- analysiert und mit der Standard-Kombinationstechnik und Kernel Dichteschätzung
verglichen. Um ihre Effektivität bei Dichteschätzung festzustellen wird sie mit den eben
genannten Methoden mit einer Vielfalt von Datensätzen überprüft. Weiterhin wird
ein auf Klassifikation basierender Vergleich mit der Standard-Kombinationstechnik
unternommen.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Theory 2
2.1 Sparse Grids . 2

2.1.1 Basics . 2
2.1.2 Combination Technique . 6
2.1.3 Adaptivity . 9

2.2 Density Estimation . 15
2.3 Classification . 17

3 Implementation 19
3.1 SparseSpACE Framework . 19
3.2 Density Estimation for dimension-wise Refinement 20

4 Evaluation 28
4.1 Density Estimation . 28

4.1.1 Cross data set . 28
4.1.2 Two Gaussians . 31
4.1.3 Circle . 34

4.2 Classification . 37
4.2.1 Two Moons . 37
4.2.2 Gaussian Quantiles . 42

4.3 Classification on Real Data . 47
4.3.1 Iris flower data set . 47
4.3.2 Italian wine data set . 50
4.3.3 Breast cancer data set . 53

5 Conclusion and Outlook 56

Bibliography 58

v

1 Introduction

Data is ubiquitous in the present world. Telescopes observe and examine the stars,
weather stations record humidity, wind speed and temperature, phones track locations
and much more. The amount of data continues to grow, so efficient methods to
disseminate and interpret all this data becomes more and more important.The methods
to accomplish this are commonly grouped together under the umbrella of data mining.
One such method is density estimation. For this, data is interpreted as the observations
produced by probability distributions and the goal is to learn these distribution through
the data. The problem is that there are infinitely many possible distributions that
could have produced a given data set [1]. The intent is to find a model that closely
matches the observed data, while being general enough to also match with future
observations and thus allowing predictions to be made. Common approaches to solve
this problem are neural networks or kernel density estimation, the latter of which
will be relevant for this thesis. Another promising approach is the concept of grids,
and more specifically, sparse grids. It is a flexible approach, with many applications
including regression, interpolation, solving of partial differential equations, density
estimation or classification. The basic principle is using a grid of points on which
simple basis functions are centered. This collection of basis functions covers the entire
domain and by adjusting the coefficients of the functions numerically, they can be made
to fit to the function or data in question.
In this thesis, a recent innovation for sparse grid-based algorithms - dimension wise
spatially adapitve refinement - will be examined in the context of the problem of
density estimation. Based on the combination of sparse grids, the so called component
grids, this algorithm will be compared to the standard method within the family of
combination techniques as well as kernel density estimation.
Chapter 2 describes the basic concepts of sparse grids and the combination schemes
used for this thesis as well as kernel density estimation, which is used as a comparison
to the combination schemes. In chapter 3, the new additions to the sparseSpACE
framework and the algorithms for the density estimation with dimension wise spatially
adaptive refinement will be covered in detail. The evaluation of the dimension-wise
method compared to the standard combination technique and the kernel density
estimation will be covered in chapter 4. Lastly, chapter 5 summarizes and discusses the
results of the previous chapter as well as future improvements.

1

2 Theory

In this section the necessary background for the implementation is introduced. Firstly, a
general overview of sparse grids and associated concepts and algorithms like adaptivity
and the combination technique. Special focus is given to the dimension-wise spatially
adaptive combination technique on which this thesis is based on. Secondly a brief
introduction to density estimation and the relevant methods for this thesis, kernel
density estimation and grid based density estimation. Lastly, the general principle of
classification and the approaches used in the later evaluation will be covered.

2.1 Sparse Grids

Sparse grids are a computationally efficient way of accomplishing various tasks like
interpolation, regression, classification or solving of partial differential equations.
Introduced by Smolyak [21] in 1963, the main idea is to discretize the domain of a data
set with a set of points and basis functions. This section explains the basic principles of
a grid based approximation of functions, first with a full grid and then with a sparse
grid. The differences between nodal and hierarchical basis, as well as the concepts of
adaptive refinement and boundary treatment will also be covered.

2.1.1 Basics

Suppose that a function f : Ω → R is given that is to be interpolated on a grid. For a
given level l of refinement, the mesh width is defined as

hn =
1
2l (2.1)

The level also determines the number of grid points in a full grid as

n = 2l − 1 (2.2)

This means that the domain of function f is decomposed into 2l ranges of length hn by
n grid points, with the grid points located at i · 1

2l , i ∈ [1, |n|]. Now a basis function

2

2 Theory

needs to be defined from which the set of basis functions for the grid is derived. One
example of such a basis function is the standard hat function

φ(x) = max(1 − |x|, 0) (2.3)

from which the set of locally supported basis functions is derived by dilatation and
translation

φi(x) := φ(2l x − i) (2.4)

Local support in this case means that the functions are centered on the grid points and
dilated to cover the range between neighboring grid points (or the boundary, in case of
the first and last grid point). Therefore the domains are defined as

φi : R →
�

i − 1
2l ,

i + 1
2l

�
, i ∈ [1, |n|] (2.5)

Also note that the level for φi is fixed, since the nodal basis only works with a single
level, unlike the hierarchical basis which indexes the functions φl,i by level as well.

The interpolation u that is to be fitted to f is constructed through a weighted sum of
the basis functions:

u :=
i=i

∑
2l−1

αiφi(xi, h) = f (2.6)

The coefficients αi, also known as surpluses, act as weights for the functions φi and are
the unknown variables that need to be optimized to get a closely fitting interpolation.
To accomplish the fitting, a numerical approach, like gradient descent, can be used.
Figure 2.2 shows an example of a one-dimensional interpolation with nodal basis and
hierarchical basis, respectively.

Using a full grid is not the most efficient way of representation, since a lot of ba-
sis functions only contribute very little to the overall solution, especially in higher
dimensions[19]. Switching from a nodal to a hierarchical basis allows to omit basis
functions whose contribution is negligible, creating a sparse grid.
To achieve a hierarchical decomposition of the approximation requires introducing a
hierarchical index set for the grid points

Il := {i ∈ N : 1 ≤ i ≤ 2l − 1, i odd} (2.7)

with which the hierarchical sub-spaces Wl can be obtained as follows

Wl := span{φl,i(x) : i ∈ Il}. (2.8)

3

2 Theory

V1

V3

V2

x2,3x2,1

x3,7x3,5x3,3x3,1

x1,1

x3,6x3,4x3,2

x2,2

x
3,1

x
3,3

x
3,5

x
3,7

x
2,1

x
2,3

x
1,1

W3

W2

W1

Φ1,1

Φ2,1 Φ2,3

Φ3,1 Φ3,3 Φ3,5 Φ3,7

l=1

l=2

l=3

V3

Figure 2.1: One-dimensional basis functions φl,i and the corresponding grid points xl,i
up to level l = 3. The hierarchical basis is shown on the left and the common
nodal point basis on the right.

φl,i(x) hereby denotes the basis functions translated and dilated

φl,i(x) = φ(2l x − i) i ∈ Il (2.9)

for each level l and index i created for that level. Formulating the space of piece-wise
linear functions Vn on a full grid with mesh width hn for a given level l as a direct sum
of Wl

Vn = ⊕l≤nWl (2.10)

gives the full grid with hierarchical basis. See figure 2.1 for a comparison of nodal
and hierarchical basis and figure 2.2 for an example of a full grid interpolation with
hierarchical and nodal basis.
To obtain a sparse grid from the full grid, only some of the sub-spaces are selected,
preferably the ones that contribute most to the overall solution. For a multidimensional
grid, the selection could look like this

V1
n :=

�

|l|1≤n+d−1

Wl. (2.11)

4

2 Theory

Figure 2.2: Interpolation example with a nodal basis (left) and a hierarchical basis
(right)

Figure 2.3: Example of a 2D Sparse Grid on the left and a 3D Sparse Grid on the right.
Figure sourced from [19]

Here, l denotes a d-dimensional vector of level indices and Wl the corresponding
subspace with i as the index in each dimension. Also note the change in the selection
from |l|1 ≤ n to |l|1 ≤ n + d − 1, where n denotes the exponent of the mesh width
hn and d the dimensionality. The concrete choice of sub-spaces depends on the norm

5

2 Theory

chosen to measure the error.
To extend the basis functions to multiple dimensions, a tensor product approach is
used

φl,i(x) :=
d

∏
j=1

φlj,ij(xj) (2.12)

with the d-dimensional level and index vectors l and i ∈ I with

Il := {i : 1 ≤ ij ≤ 2lj , ij odd, 1 ≤ j ≤ d}. (2.13)

The subspaces Wl in multiple dimensions change to:

Wl := span{φl,i(x) : i ∈ Il} (2.14)

and the corresponding interpolant u(x) ∈ Vn

u(x) = ∑
|l|1≤n+d−1, i∈Il

αl,iφl,i(x). (2.15)

For a more in-depth explanation of multidimensional sparse grids see[19][6].

2.1.2 Combination Technique

When dealing with sparse grids, a popular approach to calculate the surpluses of the
basis functions centered on the grid points is the so called combination technique
[19][7][4]. In addition to working directly in the hierarchical base, the combination
technique can be used to compute a sparse grid representation of a function, whereby
a specific sequence of small anisotropic full grids represented in the conventional nodal
basis, which are also called component grids, is combined linearly.
To this end, let

Vl :=
�

k≤l

Ŵk (2.16)

be the full grid space of level l, ul ∈ Vl the interpolant of some function f . The function
f is discretized on a sequence of anisotropic grids Ωl = Ωl1 , . . . , Ωld with uniform mesh
sizes ht = 2lt in the t-th coordinate direction. The following grids Ωl are considered:

|l|1 := l1 + · · ·+ ld = n + (d − 1)− q, q = 0, . . . , d − 1, li > 0, li ∈ |l|1 (2.17)

Incorporating a finite element approach with piecewise d-linear functions φl,i(x) on
each grid Ωl gives the representation in the nodal basis as follows:

fl(x) =
2l1

∑
j1=0

· · ·
2ld

∑
jd=0

αl,jφl,j(x), (2.18)

6

2 Theory

linearly combining the discrete partial functions f (x) from the different grids Ωl
according to the previous combination formula.

f c
n(x) :=

d−1

∑
q=0

(−1)q
�

d − 1
q

�
∑

|l|1=n+d−1−q
fl(x) (2.19)

A general combination scheme can be written as,

f c
I (x) := ∑

l∈I
cl fl(x). (2.20)

The resulting function f c
n exists in the sparse grid space, where the combined interpolant

is identical with the hierarchical sparse grid interpolant [7]. Note the varying sign of
the combination coefficients in 2.20, which signifies that some grid points occur several
times within the combination technique.
Figure 2.4 shows the combination technique in two dimensions for a level 4 grid on
the top and for a dimensionally-adaptive sparse grid on the bottom. The component
grids with |l|i = 4 (blue) are added, while the component grids with |l|i = 3 (red)
are subtracted. The combination technique has been extended to allow for dimension-
adaptive refinement [4], dimension-wise spatially adaptive refinement [13] and another,
so called split-extend method [14]. This enables to adapt to the underlying function in
an a posteriori way [19], where more grid points are spent local to the data and making
computation with higher dimensionalities feasible.

7

2 Theory

(a) Standard combination components

(b) Standard combination Result

Figure 2.4: Standard combination for level 4 with points on the boundary. Figure (a)
shows the individual component grids involved in the combination (Sourced
from [19]). Blue component grids are added, red ones are subtracted. Figure
(b) shows the resulting sparse grid and the full grid equivalent.

8

2 Theory

2.1.3 Adaptivity

Figure 2.5: An example of a spatially adaptive sparse grid (with hierarchical basis) in
2 dimensions. The blue points in the left and middle figure denotes in
which area the refinement will take place. From the first step to the second
step we can see that that there are multiple points being added (colored in
grey). These points are necessary, since they are the parent points in the
hierarchical basis necessary for the grid to stay valid.

If the problem at hand requires higher local resolutions, for example a density with a
highly irregular shape, the sparse grids can be expanded through adaptive refinement.
This simply means that grid points don’t get placed in a regular fashion over the entire
domain compared to a regular sparse grid like in figure 2.3, but instead the points
are placed in the regions where the data is actually located. The advantage of such
an approach is that it avoids placing a large amount of grid points in regions that
contribute very little to solving the problem. This also means that adaptive approaches
inherently lend themselves to iterative methods, because they simplify minimizing
grid point usage for a given accuracy tolerance or prevent overfitting. (While a non-
iterative approach is still possible by, for example, determining the data locality during
pre-processing and then creating a grid based on that, finding an optimal grid point
"budget" for a given accuracy tolerance would still require repeated evaluations.)
Reducing the grid point count will also reduce calculation time for the solution, simply
due to the lower amount of functions involved, although the overhead introduced by
the iterative process and the adaptivity itself can increase the computation time by a
larger margin, as can be seen later in chapter 4.
A requirement for adaptivity is that all backward neighbors of a grid point need to
be present. More specifically, to create a grid point of level l and index i ∈ Il , all grid
points with level �l, �l < l and index �i ≤ i, �i ∈ I�l , also called ancestors, must be present.
If one or more of those grid points are not present, they need to be created first before

9

2 Theory

the wanted grid point can be created.
For the combination technique, the usual approach to adaptivity is the dimension
adaptive approach [4]. Instead of using 2.17 as the grid choice, it is generalized using
an index set l with the admissability criterion:

k ∈ l and j ≤ k =⇒ j ∈ l. (2.21)

Furthermore, a refinement strategy is necessary to decide which grid point are to be
refined. A naive approach is to consider all possible refinements and determine how
much they would reduce the error of the regression and only refine the one with highest
error reduction in each iteration. Unfortunately, this approach requires considerable
amount of computation and is therefore not feasible for many applications [19].
Another aspect which has to be considered is the number of grid points to refine within
one refinement step. Depending on the problem at hand, refining several grid points at
once can be beneficial, e.g. to avoid the refinement to focus on only a single feature. In
the context of a combination technique, such an approach requires not only keeping a
valid grid, but a valid combination as well [13].
For a more in-depth view on adaptivity see [18][19].

Spatial Adaptivity with Dimension-wise Refinement

In [13] Obersteiner et al. introduced an advanced a dimension-wise refinement scheme
(not to be confused with the dimension adaptive combination scheme [4]) for the sparse
grid combination technique. In contrast to the adaptive refinement with a regular
sparse grid in hierarchical basis, where points are refined individually (while creating
the necessary parent nodes, of course), this scheme instead refines the component
grids of the combination in each dimension individually. Although this scheme still
requires the creation of necessary parent nodes for the grids to keep the combination
valid, it allows grid points to be non-equidistant to their neighbors, unlike the standard
combination technique or regular full grids.
The scheme itself is based on rectilinear grids generated form 1D grids by a tensor
product construction, which enables the use common 1D refinement algorithms [13].

1D Refinement As mentioned before, the refinement happens for each individual
dimension. Refining a single dimension thus increases the level for that dimension
only, but grid points are not only added for a single "axis" in the domain, but multiple.
See Figure 2.6 for an illustration of the grid points added by increasing levels in single
dimensions. If the levels in other dimensions are not equal to 1, grid points are added

10

2 Theory

in "stripes" along the grid points of the other dimension(s). The amount of points added
thus depends on both the level in the dimension to be refined and the level in the other
dimensions, including the hierarchical parents needed for a valid sparse grid.

The global combination scheme For the refined component grids to combine into a
valid sparse grid, a combination scheme is needed. This scheme needs to fulfill the
following criteria:

Pk,i ⊆ Pk,j for i, j ∈ I, k ∈ [d], j ≥ i (2.22)

and
Pk,i = Pk,j for i, j ∈ I, k ∈ [d], ik = jk (2.23)

where Pk,l denotes the set of 1D grid coordinates in dimension k for level vector l and
I is the index set of the combination technique. The index set for the combination is
based on the maximum levels lmax per dimension where lmax

k = max(Lk). The index set
is defined by

I = {l ∈ Nd| �l�1 ≤ max(lmax) + d − 1, li < lmax
i ∨ (li = lmax

i , lk = 1, k ∈ [d]/i)} (2.24)

which is the common d-dimensional simplex definition with level l = max(lmax), where
the scheme is cut off in case a dimension has lower maximum level. Now Pk,l needs to
be defined for each level vector l ∈ I. At the same time the validity of the combination
scheme needs to be ensured. The component grid is then constructed by a tensor
product of all 1D grids Pk,l, k ∈ [d].
[13] includes several proposed schemes for the combination. For this thesis, the balanced
scheme that tries to preserve points as well as interactions between dimensions was
chosen:

Pk,l = {Pk
j |j ∈ [|Pk|], Lk

j ≤ 1, (Lk
j < max(Dlv(j)) ∨ lk = lmax

k)} (2.25)

with

c̃k,l
j = max({m ∈ N|gk,l(

m−1

∑
i=0

gk,l(ck
j − i, d)) ≤ ck

j } ∪ {0}), (2.26)

gk,l(i, j) =
j

∑
n=1

h(i, n), and (2.27)

h(x, k) =

�
1 if max(ck,l) ≥ x

0 otherwise
(2.28)

The second condition of 2.25 guarantees that leaves of Pk are only added if the level
vector is at the maximum level in dimension k [13]. In 2.26 the term that is subtracted

11

2 Theory

Figure 2.6: Three refinement steps of the dimension-wise spatial refinement. Each step
shows Pk and Lk (blue) for each dimension xk, the combination scheme, and
the resulting sparse grid. Green component grids are added and orange
ones are subtracted. From [13].

12

2 Theory

from the level vector is defined. g and h are helper functions that sum up the coarsenings
that are performed on all dimensions, where h(x, k) indicates if dimension k has a
coarsening value of at least x.

Error estimator To determine where the dimension-wise spatially adaptive scheme
should refine the grid an error measure is needed. The goal of this measure is to steer
the refinement to locales where the data is located by resulting in a higher error in
those regions with the most data and where the grid still has too few grid points to
properly approximate it. Ideally the measure should lead to a fast convergence with
the fewest points necessary. One such measure is given by

�k
p =

�����

�����∑l∈I
cl · �k,l

p

�����

����� , (2.29)

where �k,l(p) is the error estimate from the component grid with level vector l and cl the
respective combination coefficient. In each component grid, the measure is calculated
for each point p ∈ Pk in dimension k ∈ [d]. �k,l(p) denotes the error estimate from
the component grid with level vector l and combination coefficient cl. To obtain the
error for the whole component grid a 1D hierarchization is utilized to solve a system of
linear equations. See [13] for the complete calculation.
This error estimator splits error values equally among the descendents of the hierarchical
surplus they are associated with. In [13], the set of these descendents is denoted as
leaves(p) for the ancestor p. Leaves of level ≤ 1 are ignored.

Tree Rebalancing Although the error measure should ensure a balanced but precise
refinement, the grid can nonetheless be overfitted towards certain areas. This could
occur for example if there is a preponderance of data in one area together with small
limit of grid points or a high error tolerance. The algorithm would then refine towards
the area with the most data while neglecting other areas and run out of allowed grid
points or pass the error threshold before these other areas can be refined. To counteract
such imbalances, an algorithm to rebalance the grid was introduced [13]. This algorithm
is based on the balancing of binary search trees. See figure 2.7 for an example. For
the sparse grid this means moving level 1 from the center of the domain towards the
boundary. This is applied recursively through the hierarchy to "flatten" it, i.e. decrease
the maximum level. A safety factor s is included to prevent premature rebalancing,
which would result in redundant back and forth rebalancing [13].

13

2 Theory

Figure 2.7: Rebalancing of the refinement trees. Left: Initial refinement tree (equal
for both dimensions) with clear unbalance and corresponding sparse grid
below. Right: Refinement tree after rebalancing (for both dimensions) and
corresponding sparse grid below. The point in the subspace with level vector
l = (1, 1) is marked in red for both situations[13].

14

2 Theory

2.2 Density Estimation

Density estimation is the act of estimating the probability density function f underlying
a data set S = x1, . . . , xM ⊂ Rd. Generally, density estimation approaches can be
distinguished between parametric and non-parametric estimation [17][11][1]. Para-
metric estimation relies on known or assumed properties of the underlying density.
Such an assumption might be that the density can be described using a mixture or
combination of standard density functions like the Gaussian or binomial distribution.
Non-parametric approaches do not rely on such knowledge or assumptions, which
makes them more suited in cases where aforementioned properties are not known or
can not be reasonably assumed. These approaches still rely on so-called hyperparame-
ters - the learning rate in a neural network for example - and can be quite sensitive to
the tuning of these hyperparameters to achieve good results [1].

Kernel Based Density Estimation

In kernel based density estimation, which is a common type of non-parametric density
estimation[9], the estimation f̂ of the underlying density is constructed by placing a
non-negative kernel function K onto the data points xi :

f̂ =
1
M

M

∑
i=1

K
�

x − x1

h

�
. (2.30)

A common choice for a kernel function is the Gaussian kernel [16]

K(x) = (2π)
−1
2 e

−x2
2 . (2.31)

The parameter h is the smoothing coefficient, also called the bandwidth. The bandwidth
of a kernel determines the "reach" that the kernel placed on a data point has to its
surrounding. See Figure 2.8 for a comparison of two densities estimated with low
and high bandwidth, respectively. The performance of the kernel density estimator is
influenced by the choice of the kernel function K and the bandwidth h. Furthermore,
the evaluation of f̂ depends on the number of data points M in the data set S. Density
estimation with sparse grids on the other hand is dependent on the number of grid
points, which are usually far fewer than the data points.

Density Estimation with Sparse Grids

For density estimation with spare grids the basis of the approximation is the basis
function φ centered on the grid points. The general idea is to start with an initial guess

15

2 Theory

Figure 2.8: Kernel density estimation of a gaussian. On the left is the data set to be
estimated, the middle shows the kernel density estimation with a bandwidth
of 0.01, the right with bandwidth 0.1.

fe with

f� :=
1
M

M

∑
i=1

δxi , (2.32)

where δxi is the Dirac delta function which is centered on the data points xi, similar to
how the kernel is placed in kernel density estimation. This guess is then refined using
spline smoothing to obtain a better approximation f̂ such that

f̂ = arg min
f∈V

�

Ω
(f (x)− fe(x)2)dx + λ �Λ f �2

L2 (2.33)

Here the regularization term �Λ f �2
L2 is used to control the smoothness of the resulting

density function, while the coefficient λ > 0 controls the balance between accuracy and
smoothness. Λ represents a differential operator. with W(1) as the set of basis functions
of the sparse grid space V(1), a function f̂ (x) ∈ V(i) is to be determined so that

�

Ω
f (x)φ(x)dx + λ

�

Ω
Λ f (x) · Λφ(x)dx =

1
M

M

∑
i=1

φ(xi) (2.34)

holds for all φ ∈ W(1). This equation can be expressed as the system of linear equations

(R + λC)α = β, (2.35)

with Rij = (φi, φj)L2 , Ci,j = (Λφi, Λφj)L2 and βi =
1
M ∑M

j=1 φi(xj). Here (·, ·)L2 denotes
the standard L2-inner product of two basis function on the domain Ωd:

(φl,i, φl,i)L2 =
�

Ωd
φl,i(x)φl,i(x)dx (2.36)

16

2 Theory

By choosing a suitable regularization operator Λ, the system of linear equations can be
simplified to

(R + λI)α = β, (2.37)

where C has been replaced with the identity matrix I. While this regularization operator
no longer preserves moments, these properties are not needed for estimating density
functions [16]. Solving the system of equations 2.37 for α gives the coefficients of the
basis functions in the grid. Since the calculation of the R-matrix depends solely on
the sparse grid and is independent of the data set, the calculaton of the R-matrix and
the β-vector can be split into a separate online/offline phase. In the offline phase, the
matrix R + λI can be pre-calculated and stored for reuse in other (component-)grids.
In the online phase the system of equations 2.37 is solved. This reduces the complexity
of solving 2.37 from O(N3) to O(N2) [17].

2.3 Classification

Classification denotes the separation of data into classes based on one or more crite-
ria. These criteria can include various feature or patterns of the data points. Usual
approaches for classification are either supervised or unsupervised. In supervised
approaches, the algorithm or method in question is given a training set, usually a partial
subset of the complete data set with class labels, to learn the features and patterns of
the data set.
The goal is then to construct a function p̂ : Rd → K that assigns class labels from the
the set of classes K = {1, . . . , k} ⊂ N to the data points [1] [5] [11]. Classification with
sparse grid density estimation can be accomplished with two approaches, one based
on estimating the densities of the classes themselves and one based on estimating the
boundaries between classes.
The first approach starts by separating the training data based on classes. Then the den-
sity of each class is estimated separately, each with their own grid[15]. The classification
of the test data is performed by evaluating the data points from the test data with each
grid and assigning the point to the class whose grid evaluated with the highest value.
Figure 2.9 gives an example for such a classification with the two moon data set.
The second approach uses a binary one-vs-others split of the training data instead. As
before, the training data is not separated per-se, but data points not in the class to
be estimated are given the same label to designate as the "other" in the one-vs-other
approach. The resulting densities consist of "hills" and "valleys", with the hills being
the estimated class in question and the valleys being the regions of the other classes.
Determining the class label for the test data is done by evaluating on the grid and
choosing the highest value, as before.

17

2 Theory

An advantage of using this approach is that adaptive methods, like the dimension-wise
adaptive refinement, allows focusing specifically on the regions with class boundaries.
This can be accomplished by using a misclassification based error estimator for the
refinement, because it gives a higher error in regions where class boundaries meet/over-
lap. An example for the one-vs-others approach is in figure 2.9.

Figure 2.9: Single class and one-vs-others classification of a two moons data set. The
leftmost figure is the data set, the rightmost figure is the one-vs-other
classification. The middle figures are the single class density estimations.

18

3 Implementation

In this section the Framework used will be covered. Firstly, a general introduction of
the SparseSpACE and its capabilites. Secondly, the new additions to the Framework
will be explained in-depth with pseudo code for better illustration of the functionality.

3.1 SparseSpACE Framework

The SparseSpACE framework [22] - created by Michael Obersteiner et al. [13] - is a
modular, Python based framework for working with a variety of Sparse Grid algorithms.
Currently implemented methods include the Sparse Grid Combination Techniques in
standard and adaptive configurations, featuring advanced adaptive algorithms like
Single Dimension Adaptivity - which was introduced in [13] - and the split-extend
algorithm introduced in [14]. The standard combination technique, as well adaptive
methods, such as the single dimensional adaptive approach introduced in [13] and the
split-extend method introduced in [14], can be combined with a variety of operations
and error measures for the adaptive algorithms.
Operation options currently include integration, interpolation and density estimation,
the latter of which was previously implemented for the standard Combination tech-
nique in [20] and was expanded to also work with dimension wise refinement for this
thesis.
Error measures for the adaptive algorithms include variations of volume-, surplus and
misclassification based ones, where the misclassification based ones have been imple-
mented for this thesis and will be explained in more detail in subsection 3.2. The frame-
work also supports several different grid types like Trapezoidal-, ClenshawCurtis- or
GaussLegendreGrids. These grids provide useful methods for implementing density
estimation, such as checking whether a point lies on the boundary of the grid or
obtaining the coordinates of a point. For the implementation of density estimation for
the dimensionally adaptive algorithm, a global trapezoidal grid was the solution most
suited within the given timeframe.
A recent addition by Cora Moser [10] is a manager class for the purpose of handling
classification within the framework. It allows easy execution of multi-class classification
with the standard combination technique. For this thesis, the manager was extended to
allow usage of single dimensional refinement, as well as using a binary one-vs-others

19

3 Implementation

approach in the density estimation. For a more comprehensive look at this classification
management, refer to [10]. Furthermore, with the help of Obersteiner the calculations
for the linear system in 3.1 have been vectorized using NumPy [12].

3.2 Density Estimation for dimension-wise Refinement

Figure 3.1: Contour plot of a 2-dimensional non-symmetric hat function. The do-
mains in each dimension are ([0, 1], [0, 1]) , with the function centered on
(0.25, 0.25)

In the case of dimension-wise refinement, the algorithm for density estimation works
very similar to the standard combination technique with a few differences. The main
effort is again in obtaining the solution for the linear System

(R + λI) = α. (3.1)

Since the points on the component grids are not necessarily equidistant, the basis func-
tion centered on the points and spanning to the neighboring points are not guaranteed
to be symmetric. An example of such an asymmetric function is in figure 3.1, depicting
the asymmetric hat function in 2D.
While calculating the values of the R matrix using the inner product

Rij = (φi, φj)L2 (3.2)

20

3 Implementation

remains unchanged, obtaining the supports has become more complicated. Unlike with
the standard combination technique, the supports can no longer be obtained by using
the meshsize, but must instead be explicitly found. This is achieved by determining
the coordinates of the neighboring points and by determining the domains of the
grid points involved in the calculation of each R-value. Given the set of grid point
coordinates C ∈ Rd × R|ld|, where |ld| denotes the number of grid points for the given
level of the component grid in the respective dimension. The domains for a single grid
point p ∈ C can be obtained by building the set of domains in each dimension D with

Di = {[a, b] | a = arg max
ci

(0, ci), ci ∈ Ci, ci ≤ pi, b = arg min
ci

(1, ci), ci ∈ Ci, ci ≥ pi}
(3.3)

Where pi is point p’s coordinate in the i-th dimension. The neighbors of p are simply
the coordinates at the boundary of the domain of p that are also in the set of grid point
coordinates C. They are obtained by building the set

N = {n | n = (n1, . . . , nd)
T, ai ≤ ni ≤ bi, [ai, bi] ∈ Di, n ∈ C, n �= p}, (3.4)

where Di are the domains of the point p in each dimension. Calculating the inner
product is also changed, since the basis function is sometimes non-symmetric, but
since the non-symmetric hat function is linear, it can still be easily solved analytically.
The following equation shows the integral used in calculating the inner product for a
non-symmetric hat function:

� c

b

� b

a
φi(x)φj(x)dx =





γa(b, mi, b)− γa(a, mi, b) + γb(c, mj, b)− γb(b, mj, b) full overlap
ρ(b, m, a, b)− ρ(a, m, a, b) partial overlap
0 no overlap

(3.5)
where

ρ(x, m, p, q) =
m2x2(p + q)

2
− m2x3

3
− x(mp + 1)(mq − 1) (3.6)

γa(x, m, p) =
(m(p − x)− 1)3

3m
(3.7)

γb(x, m, p) =
(m(p − x) + 1)3

3m
(3.8)

The framework now also gives the option of calculating the integral of the inner product
numerically. Algorithm 3.2 shows the construction of the R matrix modified for the
dimension wise refinement case.
Calculation of the α-vector is virtually unchanged. As with the standard combination,

21

3 Implementation

the value of each element is obtained by summing up the contributions of each data
point xj in the data set and scaling by 1

M , where M is the size of the data set:

bi =
1
M

M

∑
j=1

φixj (3.9)

The only difference here is that φi uses a non-symmetric version of the basis function if
the domain of grid point i is not symmetric. See 3.1 for the complete algorithm.

Reusing old values Since the changes for building the R matrix add considerable
overhead by having to explicitly determine the domain of each grid point involved, a
few performance optimizations were implemented.
By exploiting the fact that, firstly, only smaller and smaller regions within the Grid
get refined with each iteration, secondly that the basis functions are centered on the
grid points, thirdly they often have the same domain size and shape and fourthly, that
the integral of the inner product of two basis functions is invariant to rotation, a large
amount of values computed in previous iterations and for component grids within the
same iteration can be reused.
For reusing values for the calculation of the R matrix, the domain overlap of the
functions and its neighbors need to be determined pairwise. If the hat function is
symmetrical, the overlap between all neighbors within the same manhattan distance
along the dimension wise grid point indices are the same. Even if the domain is non-
symmetric, the integral of the inner product is still invariant to rotation, meaning that
all grid point pairs whose distances in each dimension are a permutation of each other
can be reused. This means that for every grid point, up to 2d − 1 fewer calculations need
to be made. This is especially useful, if the R-values need to be calculated numerically.
For reusing values calculated for the α-vector, the regions affected by the last iterations
refinement need to be determined. Any α-values within or neighboring a new point,
need to be recalculated, while the rest can be reused. To avoid running through the
entire data set and having to check if each point is within the affected domain, d-many
sorted index sets - where d is the dimensionality of the grid - were used to allow
narrowing the data set to points only within the affected domain.
The old α-values are stored per component grid in a python dictionary, and indexed
by the coordinate stripes of their grid points, where coordinate stripes refers to the
d-many vectors c(d) = (c(d)0 , . . . , c(d)2l−1)

T containing the coordinates of each grid point
for each single dimension.
To determine the closest matching point set, the coordinate stripes of the new and
old component grids are compared in each dimension and any points not in the old

22

3 Implementation

point set are collected in a point difference set. The coordinate stripe set that produced
the point difference set with the lowest magnitude denotes the closest matching set.
Algorithm 3.4 gives the pseudo code for this procedure.
The dictionary with old b values gets updated with every refinement step, with only
the values of the previous refinement step being saved, while older values are discarded.

Figure 3.2: Density estimation for two separate Gaussians within the same domain.
Note the value increases of the z-axis from left to right.

One-vs-others density estimation Another addition is the a binary one-vs-others
split for density estimation. The class labels are hereby separated into {1,−1} to
be used as signs for the calculation of the α-vector of 3.1. When working with the
classification manager, the label/sign of the "others" set O is further weighted by the
ratio �C�

�O� , where �C� is the number of samples for the class to be estimated and |O|
the number of samples for the other classes, changing the label set to {1,−�C�

�O�}. See
Algorithm 3.1 for when this (weighted) sign is used in the calculation.
The main purpose of the one-vs-others split is to mitigate misclassifications at coarse
resolutions, near class boundaries or lopsided class distributions. Since the class
assignment for a sample is done by selecting the maximum evaluation of the respective
grid classifier, a sample can be mislabeled, because the domain of a grid point may
extend past the class boundary and into the neighboring class density. Which density
has the higher value in that case comes down to which class has a higher amount
of samples in that specific region. The values of the density increase overall with
larger and larger amounts of data - see Figure 3.2 - which means that for lopsided
class distributions, this problem can become more pronounced if the classes are not
separated well enough. The one-vs-others split mitigates this problem by steepening
the slopes near class boundaries.

23

3 Implementation

Misclassification error measure A new error measure for refinement based on the
misclassification rate of a validation set was added for this thesis. Usage of this error
measure requires class labels to be passed along with the data set and the one-vs-others
flag of the density estimation to be set.
At the start of each refinement, a validation set is split off from the training data. The
validation set is sampled randomly from the training data, with an equal amount
of samples taken for the class to be estimated and the "others" label. At the end of
the refinement the validation set is added back into the training data. Subsequent
refinement steps sample a new validation set each time.
To calculate the misclassification rate, the validation set is first evaluated on the current
grid. Then all samples falling within the currently considered (sub-)domain are labeled
based on the sign of their evaluation. The labels are compared to the ground truth and
the number of wrongly labeled points are summed up. The final sum then weighted by
the size of the currently considered (sub-)domain.

24

3 Implementation

Algorithm 3.1 calculate α vector

P ← Grid Points
P ← Old Grid Points
M ← |Data|
N ← |GridPoints|
α ← (0, . . . , 0)T ∈ RN

α̂ ← old_α_vector

point_domains ←

{[a, b] ∈ Rd|
a = arg min

|pd−p�d|
({p�|p�d <= pd, p� ∈ P, p ∈ P}, d ∈ [0, . . . , dim]),

b = arg min
|pd−p�d|

�
{p�|p�d >= pd, p� ∈ P, p ∈ P}, d ∈ [0, . . . , dim]

�
}

old_point_domains ←

{[a, b] ∈ Rd|
a = arg min

|pd−p�d|

�
{p�|p�d ≤ pd, p� ∈ P, p ∈ P}, d ∈ [0, . . . , dim]

�
,

b = arg min
|pd−p�d|

�
{p�|p�d ≥ pd, p� ∈ P , p ∈ P}, d ∈ [0, . . . , dim]

�
}

for i ∈ [0, . . . , N] do
domi ← point_domaini ∈ point_domains
if domi ∈ old_point_domains then

αi = α̂i
end if

end for
for i ∈ [0, . . . , N] do

if αi = 0 then
for x ∈ M do

αi = αi + φi(x) · sgn(x)
end for

end if
end for

25

3 Implementation

Algorithm 3.2 calculate R matrix

N ← number_of_grid_points
R ← ((0, . . . , 0)T, . . . , (0, . . . , 0)T) ∈ Rd × Rd

R� ← old_R_values
for i ∈ [0, N] do

for j ∈ [i, N] do
overlap ← get_overlap(pi, domi, pj, domj)
if overlap ∈ R� then

Ri j ← R�(overlap)
Ri j ← R�(overlap)

else
r ← integral(pi, domi, pj, domj)
Ri j ← r
Rji ← r
R�(overlap) ← r

end if
end for

end for

Algorithm 3.3 calculate overlap between grid point domains

N ← number_of_grid_points
G = Grid point set
pi ← (pi,1, . . . , pi,d) ∈ G
pj ← (pj,1, . . . , pj,d) ∈ G
domi ← (ai, bi), where (ai, bi) is the domain of φi centered on pi
domj ← (aj, bj), where (ai, bi) is the domain of φj centered on pj
widths ← {}
distances ← {}
for m ∈ [0, . . . , d] do

w ← max(ai, aj)− min(bi, bj)

x ← |pi,m − pj,m|
widths.append(w)
distances.append(x)

end for
sort(widths)
sort(distances)
return (widths, distances)

26

3 Implementation

Algorithm 3.4 Find closest old α vector

C ← old_grid_coordinate_stripes
Ĉ ← new_grid_coordinate_stripes
dim ← grid_dimensions
for ĉ ∈ [0, . . . , |Ĉ|] do

for d ∈ [0, . . . , |dim|] do
for i ∈ [0, . . . , |ĉ|] do

if ĉi /∈ C then
new_pointsc,d,i = ci

end if
end for

end for
end for
differences ← {|p| | p ∈ new_point_set, new_point_set ∈ new_points}
closest_match ← arg min

|di f f |∈di f f erences
(di f f erences)

return old_α_values(closest_match

27

4 Evaluation

This chapter will cover evaluations on model and real world data. The dimension-
wise density estimation is evaluated based on a variety of criteria. Firstly, how well
the estimated density matches the given model data in shape compared to the stan-
dard combination technique and kernel density estimation and how it compares to
kernel density estimation within various metrics, like average sample difference, KL-
divergence and Pearsson correlation. Secondly, a classification based evaluation. The
single dimensional refinement method is compared against the standard combination
technique with a variety of data sets, like the two moon data set, Gaussian quantiles
and the iris data set. The results are evaluated based on accuracy for the amount of
points used and the runtime for the amount of points used.

4.1 Density Estimation

4.1.1 Cross data set

Figure 4.1: Cross data set.

The cross data set is generated with "lines" by using a uniform density in each
dimension, with parameters [a, b] = [0.45, 0.55] and [a, b] = [0, 1], respectively. The
Cross data set is simply two different line sets overlapping. The purpose is mainly
to test the adaptivity of the single dimensional refinement approach. The standard

28

4 Evaluation

combination and kernel density estimation act as control and comparison. Figure
4.1 shows line and cross data set, Figures 4.2, 4.3 and 4.4 show the results for the
standard combination technique, the single dimensional refinement and kernel density
estimation, respectively.
The standard combination technique performs very well. One can see that the even
distribution of points across the domain is a bit wasteful, since the data is only within
an narrow range of the domain. This is expected behaviour, since the standard combi-
nation technique has no adaptive capabilities. The total number of grid points used
(including all component grids) for level 5 is 273 and 95 for level 4.
As Figure 4.3 shows, the single dimensional refinement has no trouble adapting to this
simple data set. Since the cross is simply two lines overlapped, the density of points in
the overlap is roughly double that of the rest of the domain covered by a single line,
which results in a higher density of grid points in the center. With the last refinement
of the dimension-wise method, the grid consists of 166 points. Comparing the grid
with level 4 and 5 of the standard method, the dimension-wise method offers a good
compromise between the level 5 and 4.
The kernel density estimation gives good results as well. The only caveat is, that the
bandwidth of the kernel may need to be increased, if the data set is too sparse, to obtain
a sufficiently smooth approximation. Figure 4.4, left, shows what happens when the
bandwidth is set too low. Setting the bandwidth too high on the other hand can result
in an over-smoothed approximation, which can be seen in Figure 4.4 on the right.

Figure 4.4: Density estimation for the cross data set with KDE. From left to right the
kernel bandwidths are 0.01, 0.05 and 0.1.�

Avg sample difference
KL-divergence

�
kde bandwith=0.01 kde bandwith=0.05 kde bandwith=0.1

dimension-wise
�−
−

� �
0.075
0.119

� �
0.048
0.106

�

Table 4.1: Average sample difference and KL-divergence between the solution of
dimension-wise method and the kernel density estimation. Pearson cor-
relation is not applicable for this data set. Lower average sample distance
and KL-divergence indicate a closer match to the kernel density estimation.

29

4 Evaluation

Figure 4.2: Density estimation for the cross data set with the standard combination
technique with max levels 3 to 5 and the final grid for level 5.

Figure 4.3: Density estimation for the cross data set with the dimension-wise spatially
adaptive method for the first and second refinement.

30

4 Evaluation

Figure 4.5: Two Gaussian data set.

4.1.2 Two Gaussians

Two Gaussian distributions with the same standard deviation, but differing means are
generated and used as a single dataset. The number of samples drawn is 250 for each
Gaussian, for a total of 500. This setup is to explore how the dimension-wise spatial
refinement behaves when the density is split up into multiple localities.
The standard combination technique performs well in capturing the shape and bound-
ary of the Gaussians, as can be seen in figure 4.6. Level 3 already captures the shape
of the Gaussians. Further refinement merely refines the boundary of the density. The
drawback here is that there are a lot of points in the upper left and lower right corner
that are wasted, since there is not much data there.
Since the dimension-wise refinement is adaptive, one would expect the grid points to
be distributed more local towards the data compared to the standard combination tech-
nique. Looking at figure 4.7, some local refinement can be observed in the component
grid plots, but the final sparse grid depicted Figure 4.7 reveals, that this refinement is
not concentrating on the upper right and lower left corners, where the data is located.
Since the granularity of the refinement is only in the dimension and not in the location
itself and because of the parent node requirements for valid sparse grids, the final grid
ends up very similar to the standard combination technique.
Still, the final grid 4.7 appears a bit lopsided towards one side, but repeating the same
trial with newly generated data might end up with the grid leaning towards the other
side, depending on how the drawn samples are distributed for each Gaussian. As for
the amount of points used, the final grid of the dimension-wise method has 177, a
middle ground between the 95 and 273 points of level 4 and 5 of the standard method.
Since level 3 already captures the shape of the Gaussians fairly well, increasing to level
4 is only worth it if the boundary of the Gaussians is of importance. The 177 points
used by the dimension-wise method are already too much for such a simple data set.

31

4 Evaluation

As one would expect, the kde with Gaussian kernel has no problem estimating Gaus-
sians, as can be seen in Figure 4.8. As before, the choice of bandwidth relative to the
amount of samples greatly influences the smoothness of the final estimation. In this
case a bandwidth of 0.1 captures the original distributions the best.

Figure 4.8: Density estimation for the two Gaussians data set with KDE. From left to
right the kernel bandwidths are 0.01, 0.05 and 0.1.�

Avg sample difference
Pearsson correlation

�
kde bandwith=0.01 kde bandwith=0.05 kde bandwith=0.1

dimension-wise
�

0.261
0.476

� �
0.039
0.847

� �
0.023
0.849

�

Table 4.2: Average sample difference and KL-divergence between the solution of
dimension-wise method and the kernel density estimation. KL-divergence
is not applicable for this data set. Lower average sample distance and high
Pearson correlation indicate a closer match to the kernel density estimation.

32

4 Evaluation

Figure 4.6: Density estimation for the two Gaussians data set with the standard com-
bination technique with max level from 3 to 5 and the final grid for level
5.

Figure 4.7: Density estimation for the two gaussians data set with the dimension-wise
spatially adaptive method for the first and second refinement.

33

4 Evaluation

4.1.3 Circle

Figure 4.9: Cirle data set.

The circle data set was created with scikit-learn, again with a sample size of 500 data
points. This data set presents much greater challenge for the standard combination
technique and the dimension-wise method compared to the previous ones. This is
because the grid based approach is less well suited for non-axis aligned data. The
donut shape introduces further complications, since there is a large area of the domain
not covered, but the data is still distributed over the whole range when considering
each dimension seperately. So the data requires fine local resolution to properly capture
the smooth, narrow curve of the circle which is spread over the whole domain, while
simultaneously large areas contain no data at all.
Figure 4.10 shows that the standard combination technique performs adequately at
higher levels. At lower levels, the shape of the estimation is more square in shape than
round, due to the fact that distribution of grid points themselves are, of course, grid
based. With higher levels, a rounder shape for the estimation starts to emerge.
For the dimension-wise method, the contour for each refinement are depicted in Figure
4.11. The result of the dimension-wise spatially adaptive method looks very similar to
standard combination technique. While there is a little bit of refinement towards the
edges and a few "missing" points in the middle of the domain compared to the standard
combination technique, the overall result is still fairly regular. Further refinement would
grow the number of points near the edge more than the number of points at the center,
but at the refinement level depicted in Figure 4.11 signs of overfitting can already be
observed, so further refinement would be counterproductive.
The final count of grid points is 188 for the dimension-wise method, 273 for level 5
and 95 for level 4 of the standard combination technique. While the result for the
dimension-wise method is more "rounded" in the corners compared to level 4 of the
standard method, it needs more than twice as many points to achieve that result. Due

34

4 Evaluation

to the low amount of data points, the regular shape and coverage of the domain the
standard method is the more efficient option in this case.
As for the kde estimation, given a decent choice for the bandwidth, like 0.05 or 0.1 in
the middle and right of Figure 4.12, the results capture the original distribution best.
Since the kernels are placed directly on the data points, the locality can be captured
much more closely.

Figure 4.12: Density estimation for the circle data set with KDE. From left to right the
kernel bandwidths are 0.01, 0.05 and 0.1.�

Avg sample difference
Pearsson correlation

�
kde bandwith=0.01 kde bandwith=0.05 kde bandwith=0.1

dimension-wise
�

0.143
0.480

� �
0.015
0.816

� �
0.006
0.767

�

Table 4.3: Average sample difference and KL-divergence between the solution of
dimension-wise method and the kernel density estimation. KL-divergence
is not applicable for this data set. Lower average sample distance and high
Pearson correlation indicate a closer match to the kernel density estimation.

35

4 Evaluation

Figure 4.10: Density estimation for the circle data set with the standard combination
technique with max level from 3 to 5 and the final grid for level 5.

Figure 4.11: Density estimation for the circle data set with the dimension-wise spatially
adaptive method for all three refinement steps and the final sparse grid.

36

4 Evaluation

4.2 Classification

This section covers classification evaluation with both artificial and real data sets. The
Classification is done using the classification manager added by Cora Moser [10].
For each data set, both the standard combination technique and the dimension-wise
method were evaluated with two different configurations. The first configuration was
density estimation on a single class, with the dimension-wise method using the guided
volume error measure for refinement. The second configuration used the one-vs-other
approach, with the dimension-wise method using the misclassification error measure
for refinement.
All data sets were also evaluated using successive max levels and point limits for the
standard combination technique and dimension-wise spatially adaptive refinement,
respectively. The results were examined in terms of the accuracy per number of points
and the number of points generated for the runtime. Although, if the data set in
question is in 2D, meaning that it can be properly visualized, these plots were omitted
in favour of contour plots. Also note that the dimension-wise method was not executed
iteratively, meaning that for each level increase for the standard combination technique,
the dimension-wise method was redone from scratch with a new point limit. This was
done for three reasons. Firstly, so that the overhead of the dimensional refinement can
be observed. Secondly, for higher point limits/levels the runtime comparison favors
the dimension-wise method by default since it is iterative. Thirdly, since the framework
is still unoptimized, the absolute values of the runtimes are of little interest.

4.2.1 Two Moons

Figure 4.13: Two moons data set. The first class is colored blue, while the second class
is in orange.

37

4 Evaluation

The two moon data set - a staple set for classification algorithms - consists of two
interleaving half-circles. The set was created using the scikit learn framework with a
sample size of 1000, with 500 samples for each class. 100 randomly chosen samples
were split off as a test set. Figure 4.14 depicts the solution obtained with the standard
combination technique with a maximum level of 4. The solutions on the top are for
the first class and the bottom for the second class. The left side was obtained with the
single class density estimation, while the right side used the one-vs-others approach.
Figure 4.16 gives the classification results for the first configuration on the left, with the
second configuration on the right.
The density estimation for the dimension-wise method are depicted in Figure 4.15. As
with the standard combination technique, the first and second class are on the top
and bottom, respectively, while the first configuration is on the left and the second
configuration on the right. Figure 4.17 shows the classification results for the obtained
solutions also with the the first configuration is on the left and the second configuration
on the right.
Test accuracy for all methods and configurations was at 89% ± 0.5, with the dimension-
wise method in the first configuration performing the best. The number of grid points
used for level 4 are, as before, 95. The dimension-wise method used 62 and 64 points
for classes 1 and 2 in the first configuration. In the second configuration, the numbers
increase to 90 and 74, making the dimensional refinement the better option in terms of
efficiency.

38

4 Evaluation

Figure 4.14: Contour plots of the standard combination solutions. One-vs-others ap-
proach with misclassification error measure is on the right, standard ap-
proach on the left.

Figure 4.15: Contour plots of the dimension-wise spatially adaptive solutions. One-
vs-others approach with misclassification error measure is on the right,
standard approach on the left.

39

4 Evaluation

Figure 4.16: The calculated classes for the standard combination solution. The left
side is for the single class density estimation, while the right is for the
one-vs-others approach.

Figure 4.17: The calculated classes for the dimension-wise method. The left side is for
the single class density estimation with the guided volume error measure,
while the right is for the one-vs-others approach with the misclassification
error measure.

40

4 Evaluation

(a) First class. Single class estimation. (b) First class. One-vs-others approach.

(c) Second class. Single class estimation. (d) Second class. One-vs-others approach.

Figure 4.18: Final sparse grids of the dimension-wise spatially adaptive solutions. The
top grids are for the estimation of the first class, the bottom for the second
class. The left side is for the single class density estimation with the guided
volume error measure, while the right is for the one-vs-others approach
with the misclassification error measure. The right side shows a clear focus
on towards the middle, where the boundary between the two classes is
located.

41

4 Evaluation

Figure 4.19: Data set for Gaussian quantile classification. The first class is in blue, the
second in orange and the third in green.

4.2.2 Gaussian Quantiles

The set of Gaussian quantiles consists of the quantiles for a given d-dimensional
Gaussian separated into c-many classes. It consists of a set of (hyper-)circles, with each
successive one placed within the previous and a blob in the middle. See Figure 4.19
for a 2D example of the data set. The data set was evaluated in 2 dimensions. The
data set was created with a sample size of 1000 and a test set size of 20%, meaning 200
test samples. Note that the test set samples are split evenly across all classes. Figure
4.20 shows the resulting densities for the standard combination technique and the
single dimensional refinement, respectively. The classes are ordered from top to bottom,
starting with class_0, while the first and second configuration are on the left and right,
respectively.
Both the standard combination technique and the dimension-wise method achieved
above 90% test accuracy for the 2D data set, with the standard combination technique
achieving 91% and 92.5% accuracy with the first and second configuration, while
the dimension-wise method achieved 91.5% and 93.5% with the first and second
configuration, respectively.
The amount of points for the standard combination technique are 723 at level 6, while
the dimension-wise method only used an average of 392 points in the first configuration
and an average of 348 points in the second configuration. In terms grid point efficiency
for achieved accuracy, the dimensional refinement is the clear winner in this case.

42

4 Evaluation

(a) First class. Single class estimation. (b) First class. One-vs-others approach.

(c) Second class. Single class estimation. (d) Second class. One-vs-others approach.

(e) Third class. Single class estimation. (f) Third class. One-vs-others approach.

Figure 4.20: Contour plots of the standard combination solutions for Gaussian quantile
classification. The single class estimation is on the left, the one-vs-others
approach with misclassification error measure is on the right.

43

4 Evaluation

(a) First class. Single class estimation. (b) First class. One-vs-others approach.

(c) Second class. Single class estimation. (d) Second class. One-vs-others approach.

(e) Third class. Single class estimation. (f) Third class. One-vs-others approach.

Figure 4.21: Contour plots of the dimension-wise spatially adaptive solutions for Gaus-
sian quantile classification. The single class estimation is on the left, the
one-vs-others approach with misclassification error measure is on the right.

44

4 Evaluation

Figure 4.22: Classification results for Gaussian quantile classification for the standard
combination technique. The result for the first configuration is on the left,
and the right is for the second configuration.

Figure 4.23: Classification results for Gaussian quantile classification for the dimension-
wise method. The result for the first configuration is on the left, and the
right is for the second configuration.

45

4 Evaluation

Figure 4.24: Final sparse grids of the dimension-wise spatially adaptive solutions for
Gaussian quantile classification.

46

4 Evaluation

4.3 Classification on Real Data

4.3.1 Iris flower data set

The iris flower data set was collected by Sir Ronald A. Fisher for his 1936 paper "The
use of multiple measurements in taxonomic problems" [3]. The data set consists of 50
samples from each of three species of iris (iris setosa, iris virginica and iris versicolor)[8].
Four features were measured from each sample: the length and the width of the sepals
and petals, in centimeters. This puts the dimensionality of the data set at 4, with a
sample size of 150, divided into 3 classes.
Figure 4.25 shows the resulting accuracy per points used for the first configuration -
with and without tree rebalancing on the right and left, respectively - for the dimension-
wise method. The results for the second configuration are depicted in figure 4.26. Note
that the accuracy for the dimension-wise method is at 100% in figure 4.26, which makes
the red line hard to distinguish from the top of the graph. Even at the lowest amount
of points used, the accuracy is above 90%. Comparing figures 4.25 and 4.26 reveals
that the standard combination technique achieves more consistent results in the first
configuration than the second one, where the accuracy "dips" before recovering with
the next higher level. The reverse is true for the dimension-wise method.

47

4 Evaluation

Figure 4.25: Comparison of the results for the iris flower data set with the second con-
figuration. The top two graphs compare points used to accuracy achieved
without tree rebalancing on the left and with rebalancing on the right. The
bottom two graphs compare the accuracy for the amount of points used
also with and without rebalancing on the left and right. For this data set,
the rebalancing slightly increases the amount of points used.

48

4 Evaluation

Figure 4.26: Comparison of the results for the iris flower data set with the second con-
figuration. The standard combination technique is in blue, the dimension-
wise method in red. The top two graphs compare points used to accuracy
achieved without tree rebalancing on the left and with rebalancing on the
right. The bottom two graphs compare the runtime for the amount of
points used also with and without rebalancing. Despite fewer points being
used with rebalancing, the runtime is not affected.

49

4 Evaluation

4.3.2 Italian wine data set

These data are the results of a chemical analysis of wine grown in the same region
in Italy but derived from three different cultivars[23]. The analysis determined the
quantities of 13 constituents found in each of the three types of wine. The 13 features
are in order: Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Fla-
vanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315
of diluted wines and Proline. The set is divided into 3 classes, with 59, 71 and 48
samples, respectively. The challenge for the sparse grid algorithms lies mostly in the
low number of samples for such a high dimensional data set.
The figures are set up the same as in the iris flower data set. Figure 4.27 is for the first
configuration, with and without tree rebalancing, while figure 4.28 is for the second
configuration. Again, the plots compare the accuracy per point and the runtime per
point used. Test accuracy is good in lower levels and for a low amount of points for
both algorithms. Increasing the number of points actually decreases the accuracy for
the dimension-wise method, while for the standard combination technique it continues
to rise up until the last level. Considering that the number of points used in the
dimension-wise method rises much faster than the standard combination technique
it indicates that the dimension-wise method quickly overfits the data set. Using tree
rebalancing only exacerbates the problem in this case, since it increases the number of
points used, as opposed to decreasing them like in the iris data set.
In the second configuration, the amount of points used by the dimension-wise method
is far greater than in the first configuration, even though the limit for the number of
points was to the same for both, the amount of points the current maximum level of
the standard combination technique would use. While the dimensional refinement
can exceed this limit to complete its last refinement step it is not allowed to refine
past the next higher higher level in each component grid. Thus the likely reason for
this excessive use of points is that many more component grids were added in during
the refinement steps. Due to the high dimensionality of the data set and the fact that
the one-vs-others approach includes the entire data set, refinement in many locations
across many component grids can quickly grow the amount of points.

50

4 Evaluation

Figure 4.27: Result comparison for the italian wine data set with the first configuration.
The standard combination technique is in blue, the dimension-wise method
in red. The top two graphs compare points used to the accuracy that was
achieved. The bottom two graphs compare the runtime for the amount of
points used. Left and right is without and with rebalancing, respectively.
For this data set rebalacing greatly influences accuracy and the amount of
overfitting for higher point numbers.

51

4 Evaluation

Figure 4.28: Result comparison for the italian wine data set with the second configura-
tion. The top two graphs compare points used to the accuracy that was
achieved. The bottom two graphs compare the runtime for the amount of
points used also with and without rebalancing on the left and right. Left
and right is without and with rebalancing, respectively. Here rebalancing
decreases the amount of points used while raising the accuracy.

52

4 Evaluation

4.3.3 Breast cancer data set

Features are computed from a digitized image of a fine needle aspirate (FNA) of a
breast mass[2]. They describe characteristics of the cell nuclei present in the image.
Ten real-valued features are computed for each cell nucleus: radius (mean of distances
from center to points on the perimeter), texture (standard deviation of gray-scale
values), perimeter, area, smoothness (local variation in radius lengths), compactness

(perimeter2

area−1.0), concavity (severity of concave portions of the contour), concave points
(number of concave portions of the contour), symmetry, fractal dimension ("coastline
approximation" - 1).The total amount of attributes is 32. The data set has 569 samples,
separated into the two classes benign with 357 samples and malignant with 212.
The standard combination technique achieves good accuracy in the first configuration,
but below 50% (roughly 37%), accuracy with the one-vs-others approach. As for the
dimension-wise method, the accuracy is similar with around 73% to 82%. When
rebalancing is turned off it performs slightly better than when it is is enabled. The
results for the second configuration are similarly bad as for the standard combination
technique. The accuracy stays around 37%, with only the very last evaluation for
the dimension-wise method jumping to around 84%. When calculating the ratios for
each class - 37.25% for malignant and 65.9% for benign - the results for the second
configuration match closely, indicating that in the failed evaluations all samples are
assigned to the first class only.
Like with the wine data set, the amount of points used in the later evaluations of the
dimensional refinement grow excessively large.

53

4 Evaluation

Figure 4.29: Result comparison for the breast cancer data set with the first configuration.
The top two graphs compare points used to accuracy achieved. The bottom
two graphs compare the runtime for the amount of points used also with
and without rebalancing on the left and right. Left and right is without
and with rebalancing, respectively. Here rebalancing derceases accuracy
significantly in evaluations with higher points limits.

54

4 Evaluation

Figure 4.30: Result comparison for the breast cancer data set with the second config-
uration. The top two graphs compare points used to accuracy achieved.
The bottom two graphs compare the runtime for the amount of points
used. Left and right is without and with rebalancing, respectively. Since
both methods have very low accuracy and because the point count for
the dimension-wise method is so much higher, the line for the standard
combination technique is hidden in the top two graphs.

55

5 Conclusion and Outlook

In this thesis density estimation was implemented for the dimension-wise spatially
adaptive refinement combination scheme. This method was then evaluated and com-
pared to density estimation with the standard combination technique and the kernel
density estimation using a variety of model and real world data. For evaluating the
density estimation, the ability of each grid-based approach to match the given data
distribution was evaluated by visual similarity and amount of points used. Further-
more, the dimension-wise method was compared to the kernel density estimation
with the measures of the average sample distance, the Kullbeck-Leibler divergence
and the Pearson correlation. Additionally, classification on model and real world data
were conducted to compare the performance of the dimension-wise spatially adaptive
refinement to the standard combination approach.
The density estimation with dimension-wise refinement gave good results, but was not
as efficient for the simple data sets with few samples when compared to the standard
approach. Depending on the shape of the data, the refinement might result in grids
that are very similar to the standard combination technique, like for the circle data set.
Measuring the dimension-wise method against the kernel density estimation with the
average sample distance, the Kullbeck-Leibler divergence and the Pearson correlation
also produced favorable results.
The classification results for the two-moons and Gaussian quantile data sets show the
strength of the dimensional refinement, being able to achieve similar or superior results
with fewer grid points. The classification of the real world data produced mixed results.
For the iris data set the one-vs-others approach with the misclassification error measure
performed perfectly with the dimension-wise method, while the standard combination
technique experienced a small dip in accuracy. When using the single class estimation
with the guided volume error, the standard combination approach outperformed the
dimensional refinement in terms of accuracy per point used. With the wine data set,
the dimension-wise method achieved better accuracy in the first configuration than the
standard method, but only with rebalancing enabled. Using the second configuration,
the standard combination technique was better, although the dimension-wise method
came close in terms of accuracy when using rebalancing, but with a far higher amount
of points used.
For the breast cancer data set the dimensional refinement performed poorly compared

56

5 Conclusion and Outlook

to the standard method, except for the highest point limit in the second configuration,
where the accuracy inexplicably jumped to over 80% from around 37%.
All in all, the dimension-wise method achieves good results, but should be investigated
further to find the reason for the excessive refining for the breast cancer and wine data
sets.
While iterative refinement with successive points limits or stopping criteria, like an
accuracy threshold, were not used for this thesis, they are already implemented in
the framework. Using this can greatly speed up finding a satisfactory solution for
a given problem compared to the standard combination technique since it requires
recalculation of every component grid with each level. Thus for practical purposes, the
dimension-wise spatially adaptive refinement is superior.
Further possible improvements to the framework would be the implementation of the
reuse of grid values across the classes. Currently, when using the classification manager,
each grid is built and refined independently. Since the calculation of the R-matrix
values are independent of the data, they can easily be shared across multiple classes,
saving significant amounts of calculations across all component grids for each separate
grid. Also, since they all use the same data set in the one-vs-others configuration, with
only parts of the data being relabeled for each class, they could share α-vector values
across classes.
Another avenue to explore would be the use of pre-processing. For example, since
the dimensional refinement works better with axis-aligned data, principal component
analysis might improve accuracy.
More generally, since the framework is python based, there are inherent efficiency
limitations to the software. Python does not feature robust parallelization capabilities
and is restricted to single core execution. Extending the framework with Cython or
porting the algorithms to the C++-based SG++ framework would allow larger and more
complex data sets to be processed in a reasonable time frame. This might also make
it a more competitive alternative to other methods that have enjoyed great popularity
and thus sophisticated optimizations, like neural networks for example.

57

Bibliography

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2009. isbn:
978-0387310732.

[2] Breast Cancer Data Set. 1995. url: https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic).

[3] Sir Ronald A. Fisher. “The use of multiple measurements in taxonomic problems.”
In: Annals of Eugenics (1936), pp. 179–188. url: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x.

[4] J. Garcke. “A dimension adaptive sparse grid combination technique for machine
learning.” In: (2006).

[5] J. Garcke, M. Griebel, and M. Thess. “Data Mining with Sparse Grids.” In: (2001).

[6] M. Griebel. “Sparse Grids and Related Approximation Schemes for Higher
Dimensional Problems.” In: (2005). url: http://www.iam.uni-bonn.de/sfb611/.

[7] M. Griebel, M. Schneider, and C. Zenger. “A Combination Technique for the
solution of Sparse Grid Problems.” In: (1990).

[8] Iris Data Set. 1936. url: https://archive.ics.uci.edu/ml/datasets/Iris/.

[9] A. J. Izenman. “Review Papers: Recent Developments in Nonparametric Density
Estimation.” In: Journal of the American Statistical Association (1991), pp. 205–224.
doi: 10.1080/01621459.1991.10475021.

[10] C. Moser. “Machine Learning with the Sparse Grid Density Estimation using
the Combination Technique.” Bachelor Thesis. Technische Universität München,
2020.

[11] K. P. Murphy. Machine Learning - A Probabilistic Perspective. 2012.

[12] NumPy. url: https://numpy.org/.

[13] M. Obersteiner and H-J. Bungartz. “A generalized spatially adaptive sparse grid
combination technique with dimension-wise refinement.” Article. Technische
Universität München, 2019.

[14] M. Obersteiner and H.-J. Bungartz. “A Spatially Adaptive Sparse Grid Combi-
nation Technique for Numerical Quadrature.” Article. Technische Universität
München, 2019.

58

Bibliography

[15] B. Peherstorfer, D. Pflüger, and H.-J. Bungartz. “Classification with Probability
Density Estimation on Sparse Grids.” In: Sparse Grids and Applications - Munich
(2014), pp. 255–270.

[16] B. Peherstorfer, D. Pflüger, and H.-J. Bungartz. “Density Estimation with Adaptive
Sparse Grids for Large Data Sets.” In: Proceedings of the 2014 SIAM International
Conference on Data Mining (2014). doi: 10.1137/1.9781611973440.51.. url:
https://epubs.siam.org/doi/10.1137/1.9781611973440.51.

[17] B. Peherstorfer, D. Pflüger, and H.-J. Bungartz. “Model Order Reduction of
Parametrized Systems with Sparse Grid Learning Techniques.” Dissertation.
Technische Universität München, 2013.

[18] D. Pflüger. “Spatially Adaptive Refinement.” In: Sparse Grids and Applications of
Lecture Notes in Computational Science and Engineering. 2014.

[19] D. Pflüger. “Spatially Adaptive Sparse Grids for High-Dimensional Problems.”
Phd. Technische Universität München, 2010.

[20] L. Schulte. “Sparse Grid Density Estimation with the Combination Technique.”
Bachelor Thesis. Technische Universität München, 2020.

[21] S. A. Smolyak. “Quadrature and interpolation formulas for tensor products of
certain classes of functions.” In: Dokl. Akad. Nauk SSSR (1963), pp. 1042–1045.

[22] sparsSpACE framework. url: https://github.com/obersteiner/sparseSpACE.

[23] Wine Data Set. 1991. url: https://archive.ics.uci.edu/ml/datasets/wine.

59

