
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Machine Learning with the Sparse Grid
Density Estimation using the Combination

Technique

Cora Charlotte Moser

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Machine Learning with the Sparse Grid
Density Estimation using the Combination

Technique

Maschinelles Lernen mit der Dünngitter
Dichteschätzung unter Verwendung der

Kombinationstechnik

Author: Cora Charlotte Moser
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: M.Sc. Michael Obersteiner
Submission Date: September 15, 2020

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, September 15, 2020 Cora Charlotte Moser

Acknowledgments

I want to acknowledge

• . . . my advisor, Michael Obersteiner, for his continuous support throughout the
whole process of creating this thesis and the associated implementation,

• . . . my good friend, Hendrik Möller, for his help in frequently proofreading this
thesis, as well as being available for all LATEX-related questions at any given time,

• . . . all my other friends and family for their love and support.

Abstract

This thesis depicts, how density based supervised and unsupervised machine learning
in the form of classification and clustering can be performed with sparse grids, which
were built using the combination technique. Therefore the sparseSpACE framework,
an environment for computing arbitrary operations with the combination technique,
was expanded by a wrapper, which provides an interface for density based machine
learning and integrates the already existing implementation of density estimation.
Classification wants to learn, which points of an input set are more likely to accept
a certain class to then label unknown new data accordingly. Clustering on the other
hand labels completely unknown input based on similar properties between points.
To accomplish that, a "nearest-neighbor-graph" connecting most of the set is built and
then reduced according to the estimated density, constructing new clusters. Such
high-dimensional machine learning tasks are usually infeasible to compute with full
grid density estimation, so the use of a sparse grid based approach is utilized. The
implemented algorithms for both machine learning tasks are evaluated by testing and
analyzing various sets of data.

Diese Arbeit beschreibt, wie überwachtes und unüberwachtes maschinelles Lernen im
Sinne von Klassifikation und Clustering mithilfe der mit Kombinationstechnik erstellten
Dünngittern ausgeführt werden kann. Dazu wurde das sparseSpACE-Framework,
welches eine Umgebung für Berechnungen mit der Kombinationstechnik bietet, um
einen Wrapper erweitert, der eine Schnittstelle für dichtebasiertes maschinelles Lernen
bietet und die bereits vorhandene Dichteschätzungs-Funktionalität integriert.
Die Klassifizierung will anhand eines Eingabedatensatzes lernen, welche Punkte darin
welche Klassen annehmen, um so unbekannte Daten zu klassifizieren. Clustering
hingegen kategorisiert Datensätze komplett neu anhand von erkannten Ähnlichkeiten
zwischen den Punkten. Zu diesem Zweck wird ein "Nearest-Neighbor-Graph" erstellt,
der die meisten Punkte miteinander verbindet und der mithilfe der Dichtefunktion so
reduziert wird, dass neue Kategorien entstehen. Solch mehrdimensionales maschinelles
Lernen is normalerweise ungeeignet für Berechnungen mit Vollgittern, weshalb ein
Dünngitteransatz benutzt wird. Die implementierten Algorithmen für beide Arten des
maschinellen Lernens sind mit mehreren Datensätzen getestet und analysiert worden.

iv

Contents

Acknowledgments iii

Abstract iv

List of Notations vii

1 Introduction 1

2 Theoretical Background 2
2.1 Full Grids . 2

2.1.1 Nodal basis . 3
2.1.2 Hierarchical basis . 7

2.2 Sparse Grids . 12
2.2.1 Combination Technique . 13
2.2.2 Adaptive refinement . 16

2.3 Machine Learning with Sparse Grids . 17
2.3.1 Density Estimation . 18
2.3.2 Classification . 21
2.3.3 Clustering . 23

3 Implementation 26
3.1 The sparseSpACE-framework . 26
3.2 The DEMachineLearning wrapper . 27

3.2.1 The Classification class . 27
3.2.2 The Clustering class . 30

4 Results 36
4.1 Classification . 37

4.1.1 Full vs. Sparse grids . 37
4.1.2 Minimal vs. Maximal Level . 45
4.1.3 Static data sets . 46
4.1.4 Under- and Overfitting . 48
4.1.5 Learning to testing ratio . 48

v

Contents

4.2 Clustering . 50
4.2.1 Full vs. Sparse grids . 50
4.2.2 Clustering in more dimensions . 56
4.2.3 Varying number of nearest neighbors 57
4.2.4 Varying cutting threshold . 58

5 Conclusion 59
5.1 Summary . 59
5.2 Outlook . 59

List of Figures 61

List of Tables 66

Bibliography 67

vi

List of Notations

Notation Description

R All real numbers including 0.
N All natural numbers excluding 0.
N0 All natural numbers including 0.
O Big-O notation.
~a The vector~a.
A The matrix A.
~K Vector with all entries being the constant K.
◦ Substitution for binary operators =, ≤, ≥, +, −.
~a ◦~b The binary operator ◦ is applied component-wise to vectors~a and~b.

Φ(x) The standard hat function.
Ω̄ Domain of all grid points in one dimension.
Ω̄d Domain of all grid points in d dimensions.
` Discretization level of a one-dimensional grid.
~̀ Discretization level vector of a d-dimensional grid.
h` Mesh size of a `-level grid.
~h~̀ Mesh size vector of a ~̀ -level grid.
x`,i Grid point at index i of a `-level grid.
~x~̀ ,~i Grid point at index vector~i of a ~̀ -level grid.
Φ`,i(x) Hat basis function over grid point x`,i.
Φ~̀ ,~i(~x) Hat basis function over grid point x~̀ ,~i.
V` Function space of a `-level full grid.
V~̀ Function space of a ~̀ -level full grid.
Wk Sub function spaces of V` with 1 ≤ k ≤ `.
W~k Sub function spaces of V~̀ with~1 ≤~k ≤ ~̀ .
U
⊕

V The direct sum of sets U and V.
u`(x) Interpolation function based on a `-level full grid.
u~̀ (~x) Interpolation function based on a ~̀ -level full grid.

vii

List of Notations

Notation Description

~|`|1 Norm, which describes the sum of a level vector ~̀ .
~|`|∞ Norm, which describes the maximal level `i of the level vector. ~̀

V(s)
n Function space of a hierarchical sparse grid with level n in all

dimensions.
`min The minimal level of a combination-technique sparse grid.
`max The maximal level of a combination-technique sparse grid.
Ω(c)

`min,`max
Combination-technique sparse grid.

V(c)
`min,`max

Function space of a combination-technique sparse grid.
Ω~̀ Component grid of a combination-technique sparse grid.
V(c)
~̀ Function space of a component grid.

u(s)
n (~x) Interpolation function based on a hierarchical sparse grid.

u(c)
`min,`max

(~x) Interpolation function based on a combi.-technique sparse grid.
|Vn| Number of grid points of a grid with function space Vn.
‖u− ũ‖p Lp-error of the approximated function ũ.
f̂kernel(x) Kernel-approximated density function.
f̂grid(~x) Grid-approximated density function.
f̂sgrid,N(~x) Sparse-grid-approximated density function with N total grid points.
(· , ·)L2 L2 inner product of a pair of basis functions.
Dtrain Training set of a classification problem.
C Number of classes for a classification problem.
g(~x) Mapping function of a classification problem.
ĝ(~x) With density estimation approximated mapping function.
Dtrain,j Subset of Dtrain with every class being j.
f̂ j(~x) With set Dtrain,j approximated density function.
D Input set for a clustering problem.
td Density threshold of a clustering problem.
R(td) All input points in D with a density above td.
tc Edge cutting threshold of a clustering problem.
ei,j Edge between two points ~xi and ~xi.
~xmid(i,j) Exact midpoint of two points ~xi and ~xi on ei,j.
f̂mid(i,j)(~xi, ~xj) Density estimation function evaluating the density of ~xmid(i,j).

viii

ix

1 Introduction

Machine Learning today is a multifarious field in computer science. With the era of
big data, which describes huge amounts of data not suited for manual processing, the
need for automated methods of data analysis arises [1]. Those methods care to not
strictly memorize patterns in data, but to learn them and understand their general
rules. Machine Learning is therefore usually divided into the two main categories
supervised and unsupervised learning, and sometimes also into the third minor category
reinforcement learning. The former two are often described in the context of classification
and clustering.
There are various ways to perform machine learning tasks on some sets of data, one
possibility is with the use of estimated density functions. Those can be constructed with
the use of grids. A regular full grid with d dimensions and n equidistant grid points in
every dimension, i.e. points with the same spacing, contains a total of nd grid points,
whereas the grid-dimension is dependent on the data-set-dimension. This is the cause
of a significant problem: The number of grid points on a full grid and therefore the
complexity of the machine learning task increases exponentially with the dimension d.
This problem is often described as the curse of dimensionality.
To tackle this issue Zenger presented in 1991 the approach of sparse grids [2], which
efficiently reduces full grids to keep as much information as possible while also forcing
a low complexity and error.
Zenger, Griebel and Schneider expanded on this in 1992 [3] and presented the combi-
nation technique, which is an alternative method to construct sparse grids and more
importantly easier to implement than any previous approaches.
Chapter 2 provides a basic understanding about full and sparse grids and presents
approaches to perform classification and clustering with sparse-grid-based density
estimation. Then in chapter 3 the algorithms and procedures for the implementation,
which was created in the scope of this thesis, are explained. Results of this implementa-
tion are described in chapter 4. Lastly chapter 5 summarizes the implementation and
all its achieved results and provides suggestions for further research.

1

2 Theoretical Background

This chapter provides step-by-step insights into the interpolation on full grids and sparse
grids, density estimation, classification and clustering. As part of sparse grids especially the
combination technique is explained, as well as a brief introduction to adaptive refinement is
given.

2.1 Full Grids

A one-dimensional full grid possesses n points xi with i ∈ [0, n− 1], which each is
used as the input of one basis function bi(x) of a family of basis functions. Each output is
then factored by a weight wi and summed up to the interpolation function u(x):

u(x) :=
n−1

∑
i=0

wi · bi(x) (2.1)

There are many families of basis functions to choose from, each having certain properties
suitable for different applications. In section 2.1.1 and section 2.1.2 two approaches are
discussed, the nodal basis and the hierarchical basis. In the context of this thesis both are
based on the well known linear hat function Φ(x) (see Figure 2.1):

Φ(x) := max (1− |x| , 0) (2.2)

−2 −1 1 2

1

x

y Φ(x)

Figure 2.1: The standard hat function Φ(x) plotted in the domain [−2, 2].

2

2 Theoretical Background

2.1.1 Nodal basis

For simplification purposes the problem of constructing the nodal basis is first abstracted
to one dimension then expanded to d dimensions in this section.

One-dimensional nodal basis

The one dimensional unit interval Ω̄ := [0, 1] is considered to be the domain of all grid
points. The discretization level ` of a grid divides it into a mesh with ` equidistant parts,
which each have a mesh size of h` := 2−` [4]. There are two different ways to sample
the grid points, with or without boundaries. For the sake of simplicity only the case
without boundary points is discussed. If one were to consider the boundary points,
adjustments to the boundary basis functions would have to be made later. With this
the grid points are indexed as follows:

x`,i := i · h`, 0 ≤ i ≤ 2` with boundary points (2.3)

x`,i := i · h`, 1 ≤ i ≤ 2` − 1 without boundary points (2.4)

Because the grid boundary points are omitted in all methods of this chapter, the number
of sample points in a grid with level ` is always exactly 2` − 1.
To get a family of basis functions with the set of indices I` :=

[
1, 2` − 1

]
to interpolate

on a grid with level `, the standard hat function is applied to every sample point so
that its maximum is right above the center of a mesh piece. Therefore the basis function
Φ`,i(x) for grid point xi has the support [x`,i − h`, x`,i + h`] and one basis function with
index i can be rewritten as:

Φ`,i(x) := Φ
(

x− x`,i

h`

)
= max

(
1−

∣∣∣∣ x− x`,i

h`

∣∣∣∣ , 0
)

(2.5)

This family of basis functions is usually called nodal or Lagrange basis [4]. Using these
basis functions the function space V` (see Figure 2.2) is defined as:

V` := span
{

Φ`,i | i ∈ I`
}

(2.6)

V` can then be used to interpolate the function u`(x) on a `-level 1D grid by weighting
every basis hat function Φ`,i(x) by a weight factor w`,i and summing them up afterwards
(see Figure 2.3):

u`(x) := ∑
i∈I`

w`,i ·Φ`,i(x) (2.7)

3

2 Theoretical Background

Figure 2.2: Example of nodal basis function space V3 with level 3 and hat functions
Φ3,i(x) on grid points x3,i with i ∈ I3 := [1, 7]. The boundary points are
indicated with thin dotted black lines on the left and right borders.

Figure 2.3: Example of a level 3 grid interpolated function u3(x) with weights w3,i
(indicated by vertical gray dotted lines) and the nodal basis function space
V3. The boundary points are indicated with thin dotted black lines on the
left and right borders.

4

2 Theoretical Background

Multi-dimensional nodal basis

When adapting the one dimensional nodal basis approach to d dimensions, the domain
of all grid points turns into Ω̄d := [0, 1]d and the level and indices adapt into vectors ~̀

and~i with d entries each:

~̀ := (`1, . . . , `d) The level of the grid in every dimension (2.8)
~i := (i1, . . . , id) The index of a grid point in every dimension (2.9)

A grid is separated into a mesh with equidistant hyper rectangles with varying mesh
size in each dimension. So the mesh size also needs to be defined as a vector:

~h~̀ :=
(
h`1 , . . . , h`d

)
= 2−~̀ (2.10)

As the boundary points are not considered, the set of index vectors is expanded to

I~̀ :=
{
~i ∈Nd |~1 ≤~i ≤ 2~̀ −~1

}
(2.11)

with~1 := (1, . . . , 1) and the vector of all grid points is defined as (see Figure 2.4):

~x~̀ ,~i :=
(
x`1,i1 , . . . , x`d,id

)
, ~i ∈ I~̀ (2.12)

For each of those grid points the basis function Φ~̀ ,~i(x) is constructed as the tensor
product of the linear one-dimensional basis function Φ`,i(x) in each dimension with

the support ∏d
j=1

[
x`j,ij − h`j , x`j,ij + h`j

]
(see Figure 2.5):

Φ~̀ ,~i(~x) :=
d

∏
j=1

Φ`j,ij(xj) (2.13)

Analogous to the one-dimensional approach (see equation 2.6) the function space V~̀ is
constructed as follows:

V~̀ := span
{

Φ~̀ ,~i |~i ∈ I~̀
}

(2.14)

And therefore the multi-dimensional interpolation function u~̀ (~x) is defined as:

u~̀ (~x) := ∑
~i∈I~̀

w~̀ ,~i ·Φ~̀ ,~i(~x) (2.15)

5

2 Theoretical Background

Figure 2.4: Example of a 2-dimensional grid with level 4 in the first and level 2 in
the second dimension. The grid points x(4,2),~i have the index set I(4,2) :=
((1, 1), . . . , (15, 3)).

Figure 2.5: Example of the tensor product approach to generate the 3D base functions
Φ(2,1),(1,1)(x), Φ(2,1),(2,1)(x) and Φ(2,1),(3,1)(x) (right) with the 2D base func-
tions Φ2,1(x), Φ2,2(x) and Φ2,3(x) (left) of level 2 and the 2D base function
Φ1,1(x) (middle) of level 1.

6

2 Theoretical Background

2.1.2 Hierarchical basis

The hierarchical approach is quite similar to the nodal approach. But instead of directly
building the function space V` out of all basis functions with level ` in the current
dimension, all previous function spaces Wk with 1 ≤ k ≤ ` are build first with the key
difference that the points from previous levels are omitted. Those Wk are then summed
up to reconstruct the nodal space V` [4].
As with the nodal approach, the one-dimensional case is discussed first and then
expanded to d dimensions.

One-dimensional hierarchical basis

The domain of all grid points in one dimension is again Ω̄ := [0, 1] and the discreti-
sation level ` again defines the mesh size h` := 2−` of a level ` grid. But in contrary
to the nodal approach, only every sample point with an odd index is considered. The
boundary sample points are dismissed and the grid points are indexed as follows:

x`,i := i · h`, 1 ≤ i ≤ 2` − 1 i odd (2.16)

So the number of sampled points on a grid of level ` will always be 2`−1. With this the
new index set is

Iodd,` :=
{

i ∈N | 1 ≤ i ≤ 2` − 1, i odd
}

, (2.17)

but the support of one basis function Φ`,i(x) at grid point x`,i is still [x`,i − h`, x`,i + h`]
and the definition of the basis function itself also doesn’t change (see equation 2.5). This
family of basis functions with the new set of indices is called hierarchical basis [4]. Note
that in this basis the individual basis functions are pairwise disjoint (see Figure 2.6).
To interpolate functions with this basis, the function space V` has to be created. There-
fore every sub-function space Wk with 1 ≤ k ≤ `

Wk := span
{

Φ`,i | i ∈ Iodd,`
}

(2.18)

has to be created first. After that they can be all summed up to V` (see Figure 2.7):

V` :=
⊕

1≤k≤`
Wk (2.19)

The corresponding interpolation function is constructed as follows (see Figure 2.8):

u`(x) := ∑
1≤k≤`

∑
i∈Iodd,k

wk,i ·Φk,i(x) (2.20)

7

2 Theoretical Background

Figure 2.6: Example of hierarchical sub function space W3 with level 3 and hat functions
Φ3,i(x) on grid points x3,i with i ∈ Iodd,3 := [1, 3, 5, 7].

Figure 2.7: Side by side comparison of the construction of the function space V` with
the nodal approach (right) and the hierarchical approach (left) [taken from
5].

8

2 Theoretical Background

Figure 2.8: Example of a level 3 grid interpolated function u3(x) (indicated by the bold
dotted black line) with weights w3,i (indicated by vertical gray dotted lines)
and the hierarchical basis function space V3 (right). The sub function spaces
Wk with k ∈ [1, 3] summed up together build the level 3 function space V3

(left).

Multi-dimensional hierarchical basis

As with the adaptation of the nodal basis to d dimensions, the domain of all grid points
becomes Ω̄d := [0, 1]d. Also level, indices and mesh size become vectors ~̀ ,~i and ~h~̀
accordingly with d entries each (see equation 2.8, equation 2.9 and equation 2.10). The
index set however differs from the multi-dimensional nodal approach, because only
every grid point with an odd index number is considered [4]. So the index set is defined
as:

Iodd,~̀ :=
{
~i ∈Nd |~1 ≤~i ≤ 2~̀ −~1, ∀j ∈~i : j odd

}
(2.21)

With this the vector of all grid points is defined as:

~x~̀ ,~i :=
(

x`1,i1 , . . . , x`d,id

)
, ~i ∈ Iodd,~̀ (2.22)

The basis function Φ~̀ ,~i(~x) for the multi-dimensional hierarchical basis again is con-
structed with the tensor product approach (see Figure 2.5) and has once again the
support ∏d

j=1

[
x`j,ij − h`j , x`j,ij + h`j

]
for each grid point. Therefore the definition of the

multi-dimensional hierarchical basis function is the same as for the multi-dimensional
nodal approach (see equation 2.13).

9

2 Theoretical Background

To construct the d dimensional function space V~̀ , again every sub function space W~k
with~1 ≤~k ≤ ~̀ has to be created first (see Figure 2.9):

W~k := span
{

Φ~̀ ,~i(~x) |~i ∈ Iodd,~̀

}
(2.23)

Summing all sub function spaces W~k up, the full function space V~̀ is obtained:

V~̀ :=
⊕

~1≤~k≤~̀
W~k (2.24)

The corresponding interpolation function is then defined as:

u~̀ (~x) := ∑
~1≤~k≤~̀

∑
~i∈Iodd,~̀

w~k,~i ·Φ~̀ ,~i(~x) (2.25)

10

2 Theoretical Background

Figure 2.9: Example of the construction of all 2D sub function spaces W~̃k
with ~̃k ∈

[(1, 1), (3, 3)] for the 2D function space V(3,3) with level 3 using the tensor
product approach.

11

2 Theoretical Background

2.2 Sparse Grids

To convert full grids into sparse grids two definitions about the multi-dimensional level
of a grid must be considered, the ~|`|1-norm and ~|`|∞-norm [4]:

~|`|1 :=
d

∑
j=1

∣∣`j
∣∣ sum of levels in all d dimensions (2.26)

~|`|∞ := max
1≤j≤d

∣∣`j
∣∣ the maximal level of all d dimensions (2.27)

The hierarchical function space V~̀ can then be redefined as

Vn := V~n =
⊕

~|`|∞≤n

W~̀ , (2.28)

whereas ~n := (n, . . . , n) describes a vector of length d with the entry n each. This
means that every with this definition created hierarchical based function space has the
same discretization level in every dimension.
This full grid space Vn can then be abstracted to the sparse grid space V(s)

n by only
summing those W~k of Vn up, whose combined levels or rather the ~|`|1-norm are below
the threshold n + d− 1 (see Figure 2.10):

V(s)
n :=

⊕
~|`|1≤n+d−1

W~̀ (2.29)

This leads to the interpolation functions un for the full and u(s)
n for the sparse grid

space:

un(~x) := ∑
~|`|∞≤n,~i∈I~̀

w~̀ ,~i ·Φ~̀ ,~i(~x) (2.30)

u(s)
n (~x) := ∑

~|`|1≤n+d−1,~i∈I~̀

w~̀ ,~i ·Φ~̀ ,~i(~x) (2.31)

To measure the efficiency of the sparse grid approach in comparison to the full grid
approach, for both the amount of sample points is weighted up against the accuracy.
The order of degrees of freedom or rather the number of grid points for the full and
sparse grid spaces are then

|Vn| := O
(

2nd
)

(2.32)∣∣∣V(s)
n

∣∣∣ := O
(

2n · nd−1
)

, (2.33)

12

2 Theoretical Background

Figure 2.10: Example of the 9 sub spaces for levels ~|`|∞ ≤ 3 (left, gray and black grids)
which together form the full grid function space V3 and the corresponding
sparse grid space V(s)

3 (right), which consists of all 5 sub spaces with levels
~|`|1 ≤ 4 (left, black grids above the dashed line) [taken from 6].

which show a significant reduction in complexity for the sparse grid space in compari-
son with the full grid space. Meanwhile the estimated accuracy in the Lp-norm only
slightly increases for the sparse grid space in comparison to the full grid space:

‖u− un‖p := O
(
4−n) (2.34)

‖u− u(s)
n ‖p := O

(
4−n · nd−1

)
(2.35)

So the sparse grid approach balances with increasing dimension d the rise in complexity
and error by letting d influence both only in logarithmic terms. With this the curse of
dimensionality can be overcome by some extent.

2.2.1 Combination Technique

The so called combination technique is another way to construct sparse grids by linearly
combining certain independent anisotropic full grids between a minimal level `min and a
maximal level `max [3]. That means to build a d-dimensional sparse grid Ω(c)

`min,`max
in the

function space V(c)
`min,`max

with the combination technique, all full grids Ω~̀ , also called

component grids, with the function space V(c)
~̀ and the domain

L(c) :=
{
~̀ ∈Nd | ∀`j ∈ ~̀ : `min ≤ `j ≤ `max, 1 ≤ j ≤ d

}
(2.36)

13

2 Theoretical Background

Figure 2.11: Example of a sparse grid Ω(c)
1,3 with `min = 1 and `max = 3 (left) constructed

by the linear combination of five component grids. Those are added
whenever q = 0 and therefore αq = 4 and subtracted whenever q = 1 and
therefore αq = 3 (right) [taken from 4].

for their level vectors ~̀ are considered. For each component grid Ω~̀ the corresponding
interpolation function is u~̀ (~x) (see equation 2.15 and equation 2.25).

To construct the sparse grid Ω(c)
`min,`max

, the sample points of every component grid
Ω~̀ are either added to or subtracted from the resulting sparse grid. The constraints
for addition or subtraction are set by the iteration step or rather the hyperplane q
with q ∈ [0, d− 1] and the ~|`|1-value of a component grid, which will furthermore
represented with αq:

~|`|1 = αq (2.37)

αq := `max + (`min · (d− 1))− q (2.38)

Every component grid Ω~̀ with its ~|`|1-value αq is added
(

d−1
q

)
times for every even-

valued q and analogously subtracted
(

d−1
q

)
times for every odd-valued q (see Fig-

ure 2.11 and Figure 2.12). This is done in order to prevent sample points from overlap-
ping with each other.
This now leads to the construction of the interpolation function [3]:

u(c)
`min,`max

(~x) :=
d−1

∑
q=0

(−1)q ·
(

d− 1
q

)
∑

~|`|1=`max+(`min·(d−1))−q, ~̀∈L

u~̀ (~x) (2.39)

14

2 Theoretical Background

Figure 2.12: Example of all two-dimensional nodal based regular grids from level 1 to
level 4 with boundaries. To create a sparse grid Ω(c)

1,4 with this function
space, all blue component grids are added for the hyperplane 0 and all red
component grids are subtracted for the hyperplane 1 [taken from 6].

Note that Ω(c)
`min,`max

is just a regular full grid if `min = `max, because there is only one
possible level vector in L(c) for that case.
When computing the order of degrees of freedom, for every component grid the number
of partial solutions their size are combined:∣∣∣V(c)

`min,`max

∣∣∣ := O
(

d · `max
d−1
)
×O

(
2`max

)
(2.40)

Because those partial solutions are computed on full grids, which there are significantly
more applications for, the combination technique is usually simpler to implement than
the hierarchical sparse grid approach and therefore widely used [6]. Also parallel im-
plementation can be accomplished easily, because all component grids can be computed
independently.
However, the Lp-error of the combination technique is roughly the same as the hierar-
chical sparse grid approach with:

‖u− u(c)
`min,`max

‖p := O
(

4−`max · `max
d−1
)

(2.41)

15

2 Theoretical Background

2.2.2 Adaptive refinement

A sparse grid can be adaptively refined in certain areas to shift computation accuracy to
predominantly more or away from less important parts of the grid. This is useful for
problems, which show significantly differing characteristics in two or more areas [6].
Also computation time can be reduced by mostly ignoring points, which contribute
less to the overall solution, while simultaneously keeping the error as low as possible.
In both so far discussed sparse grid approaches every area of a grid is refined evenly in
one step of increasing the discretization level. With adaptive refinement only specific
grid points can be selected for further refinement, e.g. based on the information of the
local estimated error [6].
To achieve this, to all those selected grid points their respective children in the next
hierarchical discretization level are added to the grid if they aren’t already present.
Because most algorithms on sparse grids traverse through the hierarchical structure,
if points are added that can be reached though a different hierarchical route, those
missing path points are added as well (see Figure 2.13).

Figure 2.13: Example of three adaptive refinement steps of a sparse grid without bound-
aries. On a level 2 sparse grid, the most left point is selected for further
refinement (left) and all its surrounding children added (middle). After
yet another refinement step the missing path points (marked in gray) from
previous discretization steps must also be added (right) [taken from 6].

16

2 Theoretical Background

2.3 Machine Learning with Sparse Grids

This section discusses how sparse grids (see section 2.2) can be used to approximate
a density function on some data set and then with this perform supervised and
unsupervised learning, here classification and clustering.
A density function lets the machine learning algorithm learn the structure of some
input data by teaching it, where sample points are more or less likely to occur [7]. This
in turn helps the algorithm derive how to operate on said data. The construction of
this density function is affected by the curse of dimensionality for high-dimensional
sets of data, hence sparse grids are a good approach to tackle this problem.
Two main problems arise with machine learning, overfitting and underfitting (see Fig-
ure 2.14). The first one describes the use of too many details being modeled and thus
reducing the accuracy of the machine learning results, e.g. by valuing noise as much
as relevant data. Underfitting is the exact opposite and occurs when relevant data is
disregarded. In chapter 4, section 4.1.4 an explicit example will be given to provide a
better understanding of those two terms.

Figure 2.14: Example of a learning algorithm charged with the task of creating a cur-
vature from some given points. On the left it cannot grasp the shape of
the function (underfitting). In the middle it adapts the function well to the
given points. On the right it assigns the single samples too much weight
and estimates the curve incorrectly (overfitting) [taken from 7].

17

2 Theoretical Background

2.3.1 Density Estimation

The purpose of density estimation is the construction of an estimated density function f̂
using the data set S := {~x1, . . . , ~xM} ⊂ Rd of M samples from an unknown distribution
with the unknown probability density function f [8]. In general density estimation
methods can either be parametric or nonparametric. Parametric density estimation
assumes that there is additional information given about the structure of the distribution
besides S, nonparametric does not.
The most popular method of nonparametric density estimation is based on kernels.
Kernels in one dimension are estimated for every xi ∈ S with usually the Gaussian
kernel function:

K(x) := (2π)−
1
2 · e− x2

2 (2.42)

They are then linearly combined to construct the one-dimensional estimator

f̂kernel(x) :=
1
M

M

∑
i=1

K
(

x− xi

h

)
, (2.43)

whereas h is the bandwidth or rather the smoothing coefficient. Because the computa-
tion of f̂ depends on the number of sample points M, kernel based density estimation
can become quite expensive for large data sets. To overcome this, the data can be
mapped onto a grid, which summarizes multiple sample points ~xi ∈ S on single grid
points. But this approach suffers from the curse of dimensionality, because the resulting
grid is a regular full grid and therefore the number of these grid points increases
exponentially. As explained in section 2.2, sparse grids can remedy this problem to
some extent.
The basic idea of grid based density estimation is to formulate a highly-overfitted guess
fε of the density function f and then use spline smoothing to turn this into the more
representative approximation f̂ in a suitable function space V [8] so that the following
equation holds:

f̂grid(~x) = argmin
u∈V

∫
Ω
(u(~x)− fε(~x))

2 d~x + λ‖Lu‖2
L2 (2.44)

This equation ensures the closeness of f̂grid to the initial guess fε, while also regulating
its smoothness with ‖Lu‖2

L2 , whereas the regularization parameter λ > 0 controls the
degree of smoothness [9].
With all test functions s ∈ V and fε =

1
M ∑M

i=1 δ~xi , whereas δ~xi is the Dirac delta function
centered on sample point ~xi, this leads after some transformations to:∫

Ω
u(~x) · s(~x)d~x + λ

∫
Ω

Lu(~x) · Ls(~x)d~x =
1
M

M

∑
i=1

s(~xi) (2.45)

18

2 Theoretical Background

Using the sparse grid approach, the finite sub function space V(s)
n ⊂ V (see section 2.2)

or in case of using the combination technique each anisotropic full grid space V(c)
~̀ ⊂ V

(see section 2.2.1) for the sparse grid space V(c)
`min,`max

is considered. The set of all basis

functions in V(s)
n or V(c)

~̀ and their corresponding coefficients are defined as:

~Φ := (Φ1, . . . , ΦN) all N basis functions in V(s)
n or V(c)

~̀ (2.46)

~α := (α1, . . . , αN) all N corresponding coefficients (2.47)

Note that~α is still unknown at this point and has to be computed in order to construct
the approximated density function:

f̂sgrid,N(~x) :=
N

∑
i=1

αi ·Φi(~x) (2.48)

Therefore the following equation must hold for all Φ ∈ ~Φ:∫
Ω

f̂sgrid,N(~x) ·Φ(~x)d~x + λ
∫

Ω
L f̂sgrid,N(~x) · LΦ(~x)d~x =

1
M

M

∑
i=1

Φ(~xi) (2.49)

Because f̂sgrid,N is a linear combination of all basis functions Φi ∈ ~Φ, this can be
rewritten as a linear equation system:

(R + λC)~α =~b (2.50)

R, C and~b are computed with:

Ri,j =
(
Φi, Φj

)
L2 =

∫
Ω

Φi(~x) ·Φj(~x)d~x (2.51)

Ci,j =
(
LΦi, LΦj

)
L2 =

∫
Ω

LΦi(~x) · LΦj(~x)d~x (2.52)

bi =
1
M

M

∑
j=1

Φi(~xj) (2.53)

This linear equation system can then be simplified by replacing the matrix C with the
unit matrix I in favor of penalizing non-smooth functions:

(R + λI)~α =~b (2.54)

For more details, please refer to [8].
Figure 2.15 shows the construction of f̂ with a data set and its corresponding sparse
grid.

19

2 Theoretical Background

Figure 2.15: Example of the construction of a density function with a sparse grid of
level 3. The data set "Circles" (top left) [taken from 10] serves as input S for
the density estimation function. Sample points are mapped onto certain
sparse grid points (top right). The density function f̂sgrid,17 (bottom) is
constructed with the constraint that equation 2.49 must hold for the basis
functions on every grid point of the sparse grid.

20

2 Theoretical Background

2.3.2 Classification

The goal of classification is to train an algorithm to map some input ~x onto some
output class label y within a finite set of classes y ∈ [1, C], whereas C is the number
of all possible class assignments [1]. Learning is performed on a given training set
Dtrain := {(~xi, yi)}N

i=1 of N total training input points. Each training input ~xi consists
of so called features or attributes, and is assigned a corresponding training output or
response variable yi ∈ [1, C].
There are different types of classification. For C = 2, the problem is called binary
classification, for C > 2 the term multi-class classification is used. Also class assignments
can be combined, e.g. when one input ~xi is assigned two or more different classes at
once, in which case the term is multi-label classification.
Learning can be performed with different approaches. Noteworthy are decision trees,
neuronal networks, k-nearest neighbors and bayes-classification. Here the function
approximation approach is discussed, where the unknown evaluation function g, for
which

yi = g(~xi), 1 ≤ i ≤ N (2.55)

holds, is approximated as ĝ with the help of the training set Dtrain. This approximated
function ĝ can then map any unknown input ~̃x onto one class within the given set
ỹ ∈ [1, C].

Density-based classification

Applying this to the estimation of a density function, which was discussed in section
2.3.1, the training set of a classification problem can be used to create a method, where
density estimation is used to construct a mapping function ĝ. This is achieved by
separating the training set Dtrain into C parts with Nj equally-labeled inputs each (see
Figure 2.16):

Dtrain,j :=
{(
~xi, yj

)}Nj
i=1 , 1 ≤ j ≤ C (2.56)

For every subset Dtrain,j a corresponding density function f̂ j is then constructed. To
map any unfamiliarly labeled input ~̃x onto one class, the output f̂ j(~̃x) for all j ∈ [1, C]
is calculated and the class j to the corresponding density function f̂ j, which evaluates
the highest, is assigned to the given input. The mapping function ĝ can therefore be
defined as (see Figure 2.17):

ĝ(~x) := yj, f̂ j(~x) ≥ f̂k(~x) ∀k ∈ [1, C] (2.57)

21

2 Theoretical Background

Figure 2.16: Example of a given "Moons" training set set Dtrain (left) [taken from 10],
which is split into its sub training sets Dtrain,1 and Dtrain,2 (right).

Figure 2.17: Example of performing density estimation on sub training sets Dtrain,1 and
Dtrain,2 of the initial training set Dtrain (see Figure 2.16) independently to
construct the mapping function ĝ(~x).

22

2 Theoretical Background

2.3.3 Clustering

With clustering the goal is to let a computer algorithm analyze a given input set
D := {~xi}N

i=1 to find similar properties, create so called clusters for the most interesting
ones and then categorize every input into one of those clusters. Because this is done
completely autonomously by the algorithm without any additional information given
other than the input itself, this is also often called knowledge discovery [1]. Since the
properties of a cluster are unknown before execution of the algorithm, the clustering
problem is much less defined than the classification problem and verifying results are
much harder. The obvious advantage however is that clustering does not require an
expert to supervise the algorithm or manually label the input before execution. Real
world machine learning tasks can be rather complex and one or multiple labels are
often not enough to represent a certain group of inputs, hence letting the computer
handle the labeling results in more representative classes or clusters.
Discovering clusters can be done with various procedures. The most common procedure
types are centroid-based or k-means, connectivity-based or hierarchical, distribution-
based, grid-based or density-based clustering [11].

Density-based clustering

Taking a closer look at density-based clustering, the basic idea is to select all regions
within the input set with a relatively high density of input points compared to the
surrounding areas, whereas each of those regions represents one cluster. [12].
The first step of density-based clustering is to build the estimated density function f̂
for the input set D, which can be based on a sparse grid (see equation 2.48). Defining
then a density threshold td, all input points ~xi ∈ D with an estimated density above this
threshold are filtered into one region R(td):

R(td) :=
{
~xi ∈ D | f̂ (~x) ≥ td

}
(2.58)

This region can consist of one or more connected components, indicated by valleys
between input points in R(td) (see Figure 2.18).
However, determining how many connected components there are or which input
points can be assigned to which connected component can be quite difficult to imple-
ment. The algorithm created utilizes the k-nearest-neighbor-graph approach to connect
every input point ~xi to its k-nearest neighbors and uses the estimated density function f̂
to determine, which graph edges should be cut to construct the connected components.
Selecting those edges can be done in various ways, e.g. all edges overlapping with
previously described valleys could be omitted. An intuitive approach is to estimate the
density for an edge and omit it, if its density is below a certain cutting threshold tc.

23

2 Theoretical Background

Figure 2.18: Example of the density distribution of a one-dimensional input set D. All
input points xi with f̂ (xi) ≥ td (marked in yellow) are filtered into R(td),
which consists of two connected components. Between those there is a
valley of points x̃i /∈ R(td) [taken from 12].

The most simple, but not necessarily most accurate way to accomplish this is to
determine the midpoint ~xmid(i,j) of two points ~xi and ~xj connected by an edge and
computing its density:

f̂mid(i,j)(~xi, ~xj) := f̂
(

1
2
·
(
~xi +~xj

))
(2.59)

Omitting every edge ei,j with its density f̂mid(i,j) ≤ tc results in n ∈ N0 independent
graphs, which each is a detected cluster. All points which are left without any connect-
ing edges are considered noise and are either removed or connected to their nearest
cluster. Note that if all edges of the k-nearest-neighbor graph were omitted and n = 0,
all input points ~x ∈ D are considered noise. In this case the algorithm can either fail,
consider each point its own cluster or simply connect all points to a single cluster.
After all clusters are determined, depth-first-search can be used to assign every input
point its corresponding cluster.
Figure 2.19 shows the step-by-step procedure of the described clustering algorithm.

24

2 Theoretical Background

Figure 2.19: Example of the procedure of clustering a "Moons" data set [taken from
10] (top left) with a density estimation based on a combination-technique
sparse grid with `min = 1 and `max = 6 (top mid). With this the 15-nearest-
neighbor graph is build (bottom left) and then cut into two connected
components with a cutting threshold of tc = 0.25 (bottom mid). Note that
there was detected some noise (marked in green), which was added to its
nearest corresponding cluster. After that each data point is assigned one of
those two clusters with recursive depth-first-search (mid right).

25

3 Implementation

In the scope of this thesis, a density-based classification and clustering algorithm was
implemented into the python framework Sparse Grid Spatially Adaptive Combination
Environment, short sparseSpACE1, which was created by Michael Obersteiner. The in
2020 by Lukas Schulte integrated Density Estimation functionality [13] was used to
estimate the density functions for both machine learning algorithms.
This chapter first provides a short introduction to the existing implementations and
functionalities of the sparseSpACE framework in section 3.1, including the implemen-
tation of the aforementioned density estimation functionality, before explaining the
DEMachineLearning wrapper in section 3.2, which combines density based classification
and clustering algorithms in one python module.

3.1 The sparseSpACE-framework

Originally created to numerically integrate high dimensional functions with the spatially
adaptive combination technique, the sparseSpACE framework nowadays also supports
the implementation of arbitrary grid based operations with various alterations of the
combination technique. Every in the framework implemented operation is a subclass
of the GridOperation superclass and is to be found in the module with the same
name. Solving an operation is done with the help of one of the available combination
technique classes, e.g. for the standard combination technique the StandardCombi class
is used. Also the type of grid used for any computation can be specified by one of the
available grid subclasses located in the Grid module, which all provide some utility for
the underlying operations, e.g. returning the number of total grid points for a given
discretization level.
The DensityEstimation class, derived from GridOperation, implements the estimation
of a density function as explained in chapter 2, section 2.3.1 on TrapezoidalGrids with
the help of the StandardCombi class. For a more detailed explanation on this, please
refer to [13].

1https://github.com/obersteiner/sparseSpACE

26

https://github.com/obersteiner/sparseSpACE

3 Implementation

3.2 The DEMachineLearning wrapper

Because the underlying density estimation functionality for both in chapter 2, section
2.3.2 and 2.3.3 discussed machine learning algorithms is already integrated into the
sparseSpACE framework, it makes sense to design a wrapper as an interface for the classi-
fication and clustering algorithm. This wrapper was realized as the DEMachineLearning

module, which contains the three classes DataSet, Classification and Clustering.
As machine learning is usually performed on some data set D, it can be helpful to have
a certain utility class available, which provides various functionalities for data sets, e.g.
separating them based on labels for classification tasks or scale them to a certain range.
For this purpose the DataSet class was implemented to facilitate the implementation of
the Classification and Clustering class, presented in section 3.2.1 and section 3.2.2.
A DataSet object mainly consists of a tuple with two entries, whereas the first one
contains the actual data and the second one the corresponding label to every sample
point.
For a tutorial on how to use the DEMachineLearning interface, please refer to the
corresponding IPython-Notebook-Tutorial2 in the sparseSpACE framework.

3.2.1 The Classification class

The basic functionality of the Classification class is to learn the distribution of some
classes in an initial data set D and then label samples of arbitrary input data sets based
on the performed learning. This process can be split into four separate key steps:

• Preprocessing of the initial data set D into Dtrain and possibly Dtest.

• Learning the structure of Dtrain with density estimation.

• Mapping classes on Dtest, if specified before, or on arbitrary new data sets based
on the previously performed learning.

• Evaluating the received results.

The next few sections describe this pipeline in more detail, while simultaneously giving
a brief overview of the program structure of the Classification-implementation with
some python pseudo-code.

2https://github.com/obersteiner/sparseSpACE/tree/master/ipynb

27

https://github.com/obersteiner/sparseSpACE/tree/master/ipynb

3 Implementation

Classification: Preprocessing

When initializing a Classification object, preprocessing is done automatically. The
constructor accepts one required parameter, a DataSet object as initial data set D,
and four optional parameters, whereas the splitting percentage is the one most worth
mentioning. This parameter determines, which percentage of D should be used as the
training set Dtrain and consequently which remaining part should be the testing set
Dtest for evaluation purposes. It defaults to 1 or 100%, meaning an empty training set.
Before splitting, D is scaled to the range [0, 1] for the DensityEstimation algorithm,
which is part of the subsequent learning process. The reason for this is the underlying
sparse grid and its basis functions (see chapter 2). Furthermore not only the training
subset Dtrain ⊆ D is extracted, it is also further divided into C sub training data sets
Dtrain,j with j ∈ [1, C], whereas C is the number of total classes in Dtrain, preparing the
algorithm for the upcoming learning process (see Figure 3.1).
With two optional constructor parameters can also be specified, whether an even
distribution among classes in the training set should be forced or a random distribution
of samples in D before splitting should be ensured.

def preprocessing(initial_dataset, splitting_percentage):

initial_dataset.scale_range([0, 1])

length_data = len(initial_dataset)

data_train = initial_dataset[:splitting_percentage * length_data]

data_test = initial_dataset[splitting_percentage * length_data:]

list_train_subsets = data_train.divide_into_subsets_by_class()

Figure 3.1: Python pseudo-code of the basic implementation of the preprocessing step
in the Classification class.

Classification: Learning process

After a Classification object is created and consequently all training subsets Dtrain,j
are determined, the operation perform_classification (see Figure 3.2) can be called
on mentioned object to start the learning process. Here for every training subset or
rather individual class one density estimation is performed to create classificators,
which are stored within a protected list in the Classification object. Parameters
for the perform_classification method include all necessary parameters to create a
DensityEstimation object, i.a. the minimal and maximal level of the underlying sparse
grid or the regularization parameter λ. The learning process can only be executed once
per object.

28

3 Implementation

def perform_classification(min_level, max_level, lambd):

list_classificators = []

for subset in list_train_subsets:

list_classificators += subset.density_estimation(min_level,

max_level,

lambd)

testing data is evaluated directly if present

if data_test is not empty:

data_test_computed = classify_new_data(data_test)

evaluate_classification(data_test, data_test_computed)

Figure 3.2: Python pseudo-code of the basic implementation of the learning step in the
Classification class.

Classification: Labeling process

Once the learning process on a Classification object is completed, either all samples
of Dtest are directly labeled, if it was created in the preprocessing step (see Figure 3.2,
bottom), or a completely new DataSet object D̃ can be classified based on the performed
learning (see Figure 3.3). In both instances each classificator created in the learning
process is evaluated for all samples of either Dtest or D̃ and the corresponding class of
one classificator, which evaluated the highest for a given sample, is assigned to that
sample.

def classify_new_data(new_dataset):

computed_classes = []

for sample in new_dataset:

list_densities_for_sample = []

for classificator in list_classificators:

list_densities_for_sample += classificator(sample)

argmax(x) returns the position for the max value in list x

computed_classes += argmax(list_densities_for_sample)

return new_dataset.add_classes(computed_classes)

Figure 3.3: Python pseudo-code of the basic implementation of the labeling step in the
Classification class.

29

3 Implementation

Classification: Evaluation

To evaluate the computed labeling of the testing or any new input data set, a list of
all consecutive computed classes is compared component-wise with the classes of the
used data set. This results in a list of equal length with the entry 0 for every correct
and 1 for every incorrect labeling. Summing all values within this list up results in the
total number of incorrectly classified samples (see Figure 3.4). Besides the evaluation of
correct or incorrect classifications, the time used for learning and labeling is measured
and can be returned in the evaluation step.

def evaluate_classification(original_dataset, computed_dataset):

list_results_labeling = []

original = original_dataset.get_classes()

computed = computed_dataset.get_classes()

for class_orig, class_comp in zip(original, computed):

list_results_labeling += class_orig != class_comp

return sum(list_results_labeling)

Figure 3.4: Python pseudo-code of the basic implementation of the evaluation step in
the Classification class.

3.2.2 The Clustering class

The purpose of the Clustering class is to label each sample of an input data set D,
which may or may not already have assigned labels to its samples. The resulting
classified data set can then e.g. be used for a classification task. This clustering process
can be divided into six key steps:

• Preprocessing of the initial data set D.

• Learning the structure of D with density estimation.

• Building the full nearest-neighbor-graph.

• Cutting aforementioned graph based on the learned density.

• Determining the connected components or clusters.

• Evaluating the received results.

Again the next few sections give further insight into this pipeline, while also presenting
the structure of the basic Clustering-class-implementation with python pseudo-code.

30

3 Implementation

Clustering: Preprocessing

The Clustering class has a similar composition like the Classification class, which
is why preprocesing also happens right after initializing a Clustering object. Because
there is not much information available to a clustering algorithm other than the input
data set D itself (see chapter 2, section 2.3.3), not much preprocessing has to be done
except of again scaling D to the range [0, 1] (see Figure 3.5). Nonetheless beside the
required parameter of the input set, two important other parameters can be specified
optionally; the number of nearest neighbors k, which defaults to 5 and the edge-cutting-
threshold tc, which defaults to 0.25 or 25%. Both are used in the subsequent processes
of building and cutting the nearest-neighbor-graph.

def preprocessing(initial_dataset, nearest_neighbors, threshold):

initial_dataset.scale_range([0, 1])

the two parameters 'nearest_neighbors' and 'threshold', which are

here passed to the constructor are needed for later steps in the

clustering algorithm

Figure 3.5: Python pseudo-code of the basic implementation of the preprocessing step
in the Clustering class.

Clustering: Learning process

Like for the Classification class, once a Clustering object is initialized and prepro-
cessing is completed, the perform_clustering operation (see Figure 3.6) can be called
on said object to initiate the learning process. A DensityEstimation operation is per-
formed on the whole initial data set D to receive a clusterinator or density function
based on D, which is used for determining the edges to cut out of the full nearest-
neighbor-graph after it is build. Parameters for the perform_clustering operations
again mainly consist of the parameters used for initializing the DensityEstimation

object.

def perform_clustering(min_level, max_level, lambd):

clusterinator = initial_dataset.density_estimation(min_level,

max_level,

lambd)

Figure 3.6: Python pseudo-code of the basic implementation of the preprocessing step
in the Clustering class.

31

3 Implementation

Clustering: Building the nearest-neighbor-graph

The full nearest neighbor graph is build with the sklearn.neighbors module [10],
which fits one data set D̃1 onto another one D̃2 and detects all k nearest_neighbors

(constructor parameter, see Figure 3.5) in D̃2 for every sample in D̃1. Here this is
utilized by fitting the initial data set D onto itself, hence finding all k nearest neighbors
for every sample within D. This however results in every sample having itself as
one detected nearest neighbor, which is why actually k + 1 nearest neighbors have
to be detected. After that all redundant edges are removed and the resulting list of
all connecting edges is stored into a protected list within the Clustering object (see
Figure 3.7).

def build_nearest_neighbor_graph():

nearest_neighbors += 1

'neighbors' contains all edges, also those with redundancy

neighbors = initial_dataset.fit(initial_dataset, nearest_neighbors)

list_all_edges = list(neighbors.remove_redundant_edges())

Figure 3.7: Python pseudo-code of the basic implementation of the nearest-neighbor-
graph-building step in the Clustering class.

Clustering: Cutting the nearest-neighbor-graph

After the nearest-neighbor-graph is built, the previously estimated density function
(see Figure 3.6) and the cutting threshold (constructor parameter, see Figure 3.5) are
used to cut all edges below said threshold, constructing a reduced version of the initial
nearest-neighbor-graph. There are two separate sub-steps to this process; finding
clusters in places with high density and assigning evaluated noise to those clusters. See
Figure 3.8 for the corresponding python pseudo-code.
For the first sub step the midpoint ~xmid(i,j) of each edge in the nearest-neighbor-graph
is detected and its density value f̂mid(i,j) (see equation 2.59) is calculated. With the
DensityEstimation variable extrema, which stores the minimal and maximal value
of a density function, the total density percentage of f̂mid(i,j) can be computed. If this
percentage is below the threshold parameter, its corresponding edge is removed from
the nearest-neighbor-graph.
This removal of edges possibly results in some noise, i.e. samples, whose edges were all
omitted. To assign each noise sample exactly one possible cluster in sub step two, the
set of noise samples Dnoise is fit onto the data set, whose samples each have at least one
connecting edge, Dconnected, to find exactly one nearest-neighbor-edge for each noise

32

3 Implementation

sample. Those edges are then added to the existing ones to build the final connected
components.

def cut_nearest_neighbor_graph():

remove all edges below the threshold

for edge in list_all_edges:

midpoint = (edge.get_point(0) + edge.get_point(1)) / 2

density_midpoint = clusterinator(midpoint)

perc_mid = density_midpoint / clusterinator.extrema.max_value

if perc_mid < threshold:

list_all_edges.remove(edge)

'list_all_edges' now contains all edges above the threshold

noise edges need to be added

connected_samples = list_all_edges.get_contained_samples()

noise_samples = initial_dataset.remove(connected_samples)

exactly 1 connected for each noise sample has to be found

noise_edges = list(noise_samples.fit(connected_samples, 1))

list_all_edges += noise_edges

Figure 3.8: Python pseudo-code of the basic implementation of the nearest-neighbor-
graph-cutting step in the Clustering class. Divided into the two sub steps
"finding clusters" (top) and "appending noise" (bottom).

Clustering: Finding the connected components

With the nearest-neighbor-graph built, cut according to the threshold, and all noise
edges added to the graph, all connected components already exist within the graph
structure; the algorithm only has to detect them. This is done by recursive depth-first-
search (see Figure 3.9), which starts at one sample in D and visits new samples by
traversing the given edges in list_all_edges (see Figure 3.8). Every sample visited
that way is marked as "visited" and once no samples can be reached through edges
anymore, another "unvisited" sample in D is selected for the same process. Repeating
this until no more samples in D are unvisited results in a list of subsets of D, which
form the connected components or clusters. Each component’s samples are then labeled
with some label y ∈ [0, C− 1], whereas C is the number of detected clusters.

33

3 Implementation

def find_connected_components():

unvisited = initial_dataset.get_all_samples()

connected_components = []

while unvisited is not empty:

start_sample = unvisited[0]

component = depth_first_search(unvisited, start_sample, [])

connected_components += [component]

for y, component in enumerate(connected_components):

for sample in component:

sample.set_label(y)

def depth_first_search(unvisited, current_sample, component):

component += [current_sample]

unvisited.remove(current_sample)

connecting_edges = list_all_edges.filter_connecting(current_sample)

for edge in connecting_edges:

connect_sample = edge.connecting(current_sample)

if connected_sample is in unvisited:

c = depth_first_search(unvisited, connect_sample, component)

component += [c]

return component

Figure 3.9: Python pseudo-code of the basic implementation of the detection step for
the connected components in the Clustering class.

34

3 Implementation

Clustering: Evaluation

When evaluating the results of the Clustering class, the assumption that the initial
data set possesses labels to begin with is made. However with the evaluation two
problems arise: The number of detected clusters can differ from the number of original
ones and also the labeling of detected and original clusters may not necessarily be
consistent, e.g. a correctly detected cluster can be labeled with y1, when its original
label was y2.
The solution here is to determine the difference ∆ = Ccomputed − Coriginal, whereas
Ccomputed is the number of computed and Coriginal the number of original clusters.
When ∆ > 0, the ∆ smallest clusters in connected_components (see Figure 3.9) only
contain incorrectly mapped samples, which are omitted directly from the evaluation.
The cases ∆ = 0 and ∆ < 1 don’t make a difference for the rest of the evaluation,
which iterates over all sets of indices, each for one label in connected_components,
and filters all samples in the initial data set at given index set for the largest original
cluster. The indices of all samples in this cluster are then the indices of the correctly
labeled samples in connected_components for the given label and the rest is added to
the samples, which were labeled incorrectly.

def evaluate_clustering():

number_original_clusters = initial_dataset.get_number_labels()

number_computed_clusters = len(connected_components)

difference = number_computed_clusters - number_original_clusters

number_wrong = 0

if difference > 0:

all 'difference' smallest clusters are definitely wrong

wrong_clus = connected_components.smallest_clusters(difference)

number_wrong += wrong_clus.get_total_number_samples()

connected_components.remove(wrong_clus)

initial_dataset.remove(wrong_clus)

for label in connected_components.get_labels():

indices_label = connected_components.get_indices(label)

compare_samples = initial_dataset[indices_label]

number_correct = compare_samples.get_largest_cluster()

number_wrong += len(compare_samples) - number_correct

return number_wrong

Figure 3.10: Python pseudo-code of the basic implementation of the evaluation step in
the Clustering class.

35

4 Results

In this chapter various results of the implementation discussed in chapter 3 will be
presented and analyzed. All data sets used for analyzation are taken from the scikit-learn
API reference1 and the underlying combination-technique implementation is part of the
sparseSpACE2 framework designed by Michael Obersteiner.
Results are organized into section 4.1 for classification results and section 4.2 for
clustering results. At the beginning of each section some data sets with corresponding
performance measures, which compare full with sparse grids for the respective machine
learning method, are presented. Then for classification various combinations of `min and
`max for combination-technique sparse grids in low and high dimensions are analyzed.
The remaining results for each section are of more specific nature, i.e. confusion
matrices and varying learning percentages for classification and analyzation of tc and k
with respect to accuracy and complexity for clustering.
Data sets taken from scikit-learn for analyzation are either directly loaded or fetched
from the API and therefore static in nature or randomly generated with artificial data
generators. For the purpose of this chapter five generated data set types were selected
for analyzation:

• The "Circles" data set; a well known 2D data set with two concentric circles and
two corresponding classes. Suited mainly for classification, because the circles are
too close to each other to perform well on clustering (see section 4.2).

• The "Moons" data set; an also well known 2D data set with two interleaving
half circles and two corresponding classes. Suited for both classification and
clustering.

• The "Classification" data set; varying in number of classes and dimensions, this
set is as the name suggests mainly used for classification purposes.

• The "Blobs" data set; also varying in number of classes and dimensions, this
set is mainly used for clustering purposes, but can also serve as a more trivial
classification problem.

1https://scikit-learn.org/stable/modules/classes.html
2https://github.com/obersteiner/sparseSpACE

36

https://scikit-learn.org/stable/modules/classes.html
https://github.com/obersteiner/sparseSpACE

4 Results

• The "Gaussian Quantiles" data set; again varying in number of classes and
dimensions, this set is only really useful as a classification problem. It stands out
because of its relatively bad approximation through sparse grids due to its shape
(see Figure 4.5).

Since for most test cases one performance measurement was computation time, note
that the computation of all results presented here were done on a home computer3.
Performing the same tests on e.g. a high performance data center like the LRZ4 will
probably result in lower computation times.

4.1 Classification

Classification on some data set D is usually evaluated by separating D into a learning
and testing data subset. As explained in chapter 3, the percentage of D chosen for
training the algorithm can be manually adjusted with the sparseSpACE classification
implementation. This section shows and explains results of all previously stated
classification problems in terms of how input parameters like discretization levels `

and `max, the number of classes, dimensions and the training subset percentage affect
output accuracy, measured in the percentage of correctly mapped training points, and
complexity, measured in time for the algorithm to run.

4.1.1 Full vs. Sparse grids

Starting with the comparison of how well sparse grids perform on the classification
tasks in comparison to full grids, some generated two- and three-dimensional data sets
(see Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4) are used to compare accuracy and
complexity based on (maximal) discretization levels of the grids used for classification
on those sets. For every data set, the number of samples amounts to 5000, the training
percentage was set to 80% and `min = 1 for every corresponding sparse grid.

3Quad-Core CPU @ 4.00GHz, 16 GB DDR4 RAM @ 2666MHz
4https://www.lrz.de/

37

https://www.lrz.de/

4 Results

Figure 4.1: Accuracy and complexity based on discretization levels ` and `max between
1 and 6 for the classification tasks of data sets "Cirlces" with 5% noise (top)
and "Moons" with 15% noise (bottom).

38

4 Results

Figure 4.2: Accuracy and complexity based on discretization levels ` and `max between
1 and 6 for the classification tasks of data sets "Classification" (top) and
"Blobs" (bottom) with 4 classes each.

39

4 Results

Figure 4.3: Accuracy and complexity based on discretization levels ` and `max between
1 and 6 for the classification tasks of data sets "Blobs" (top) and "Gaussian
Quantiles" (bottom) with 10 classes each.

40

4 Results

Figure 4.4: Accuracy and complexity based on discretization levels ` and `max between
1 and 5 for the classification tasks of the three-dimensional data sets "Classi-
fication" (top) and "Blobs" (bottom) with 8 classes each.

41

4 Results

General observations

The accuracy of every data set at level 1 for both full and sparse grid seems to be
100
C %, whereas C is the number of classes. The reason for this is that at such a low

level, every training point is mapped onto a single class. Because the classes are evenly
distributed among all samples for the shown data sets, at least one class is always
mapped on correctly. Also interesting to note is that the sparse- and full-grid-accuracy
of all examples seem to hit a maximal value at some level, which is most of the time
slightly below 100% because of the integrated noise.
In line with the number of grid points (see equation 2.33 and 2.40) does the complexity
of each full grid computation exceed the one of its corresponding sparse grid. Even
for all only two-dimensional examples, the complexity for full grids in comparison to
sparse grids clearly shows here:

O
(

22`
)

complexity of a 2D full grid (4.1)

O
(

2`max · `max

)
complexity of a 2D sparse grid (4.2)

Even more so for the three-dimensional examples in Figure 4.4:

O
(

23`
)

complexity of a 3D full grid (4.3)

O
(

2`max · `max
2
)

complexity of a 3D sparse grid (4.4)

All while the accuracy curves for each sparse and full grid computation seem to accept
relatively low discrepancies, except for the "Circles", 3D-"Classification" and especially
"Gaussian Quantiles" data sets. Two main reasons for this come to mind: Adaptively
unrefined, borderless sparse grids approximate sample points in the corners worse than
any other ones. When a data set has relatively many corner points, a full grid pulls
ahead of a sparse grid in terms of accuracy. For the same reason circular shaped clusters
of data or whole data sets also are suboptimal for computations on sparse grids, because
they will be interpreted as rectangular shaped data on lower levels (see Figure 4.5). This
becomes even more clear when looking at the way a combination-technique-sparse-grid
is constructed (see Figure 4.6).
Easy to miss but interesting nonetheless is the fact that for some examples the com-
putation time of the same set differs for full and sparse grid computations at level 1.
This should not happen, since at this level both grids have the exact same amount of
grid points. A possible explanation for this could be fluctuations in the corresponding
computation medium, e.g. some other processes the CPU has run at the same time.

42

4 Results

Figure 4.5: Example of a classification task with `min = 1 and `max = 6 for a two-
dimensional "Gaussian Quantiles" data set with 10 classes and 80% learning
data. Because of the sparse grid construction of all 10 density functions
(top), circles of testing samples appear to be mapped with a rectangular
shape (bottom right).

43

4 Results

Figure 4.6: Example of the step-by-step construction of the density function for some
"Circles" data set with the combination technique with `min = 1 and `max = 4.
The result can be seen in the top right corner.

44

4 Results

`min \ `max 1 2 3 4 5 6

1 50.0% 50.5% 72.0% 87.8% 88.9% 95.4%
2 53.4% 83.6% 94.0% 96.6% 97.0%
3 81.8% 96.7% 97.1% 97.1%
4 97.2% 97.4% 97.6%
5 97.4% 97.6%
6 97.5%

`min \ `max 1 2 3 4 5 6

1 0.007s 0.009s 0.017s 0.043s 0.095s 0.761s
2 0.025s 0.024s 0.063s 0.710s 2.225s
3 0.021s 0.682s 1.570s 2.180s
4 0.342s 1.016s 1.830s
5 0.382s 1.627s
6 1.586s

Table 4.1: Accuracy (top) and complexity (bottom) of the "Circles" data set (see Fig-
ure 4.1) for the two input parameters minimal level `min and maximal level
`max.

4.1.2 Minimal vs. Maximal Level

Since a combination-technique sparse grid is defined trough its minimal and maximal
level, a varying proportion of those two parameters can be interesting to analyze. In
general the closer `min and `max are, the more "full-grid-like" a sparse grid becomes,
until the case for `min = `max results in a regular full grid. In Table 4.1 the accuracy
and complexity based on those two input parameters for the "Circles" data set from
Figure 4.1 are shown. As expected do higher input level parameters result in a rise of
accuracy. Interesting however is the fact, that for all instances of 1 < `min < `max the
complexity exceeds both the sparse grid with a minimal level of 1 and more importantly
the regular full grid. This has to do with the constraints for which the anisotropic full
grids are chosen. Looking at this specific example for a two-dimensional combination-
technique sparse grid, all anisotropic full grids are added when ~|`|1 = `max + `min and
subtracted when ~|`|1 = `max + `min − 1 (see equation 2.38). Whenever `min nears `max,
less anisotropic full grids have to be combined, but in return those are more complex.
E.g. a single regular full with `min = `max seems to be less complex than a combination
of some "almost-full-grids" with `min = `max − 1.

45

4 Results

Figure 4.7: Accuracy (left) and complexity (right) of four from scikit-learn loaded static
data sets. Accuracy is measured by the percentage of correct mappings of
the testing data. Complexity is measured by the computation time of the
classification task and displayed on a logarithmic scale.

4.1.3 Static data sets

Besides generated data sets scikit-learn also provides static ones specifically for classifi-
cation tasks. Here a subset of five loaded data sets was selected to show comparable
meta results for the sparseSpACE implementation of classification and similarities of
complexity for different dimensions:

• The "Digits" data set; 64-dimensional with 10 classes and 1797 samples.

• The "Breast cancer" data set; 30-dimensional with 2 classes and 569 samples.

• The "Wine" data set; 13-dimensional with 3 classes and 178 samples.

• The "Iris" data set; 4-dimensional with 3 classes and 150 samples.

Figure 4.7 shows the accuracy and complexity of all four sets with input parameter
1 ≤ `max ≤ 4. As in section 4.1.1 every accuracy seems to hit a certain maximal value
or ceiling at some level, which does not significantly increase with higher levels. Also
as observed previously in section 4.1.1, the accuracy at level 1 for every data set seems
to be 100

C % with the number of classes C. An exception to this is the "Breast Cancer"
set, because unlike all other sets, both its classes are not evenly distributed among all
samples. Their sampling ratio is approximately 60/40, which explains the accuracy of
slightly below 40% for the "Breast Cancer" set at level 1.

46

4 Results

Figure 4.8: Confusion matrix for the accuracy results with `min = 1 and `max = 4 of the
"Digits" data set from the scikit-learn API.

The complexity for all four data sets appears to behave logarithmically. This is because
the dimension only has a logarithmic influence on the complexity of sparse grids, while
the level still influences it exponentially (see equation 2.33 and 2.40).
An interesting data set for further analyzation is the "Digits" data set, whose classes
each represent an arabic digit and whose values describe an pixelated image of its
corresponding class or digit. Since humans can intuitively map images of digits to its
actual number, it is interesting to see how a computer algorithm tackles this problem.
To exactly see, which digits were recognized correctly and which digits were confused
with each other, a confusion matrix can be build (see Figure 4.8). Interesting to note are
here, that digits 3, 8 and 2, 7 were confused with each other quite regularly but not
necessarily symmetrically, i.e. 2 was never mistaken for 7, while 7 was mistaken for 2
31% of the time. Also the algorithm seems to have some trouble generally mapping the
digits 1, 3, 5, 8 and 9 correctly.

47

4 Results

Figure 4.9: Example of under- and overfitting for the classification task with `min = 1
based on a "Classification" data set with 5000 samples and 80% learning
percentage. Underfitting only really occurs for the case of `max = 1, where
the algorithms does not have any relevant information about the classes
and simply maps every sample onto the same class. Overfitting occurs for
`max = 9 and higher, because the high amount of hat functions makes the
algorithm focus too much on unimportant information.

4.1.4 Under- and Overfitting

As briefly explained in chapter 2, section 2.3, a regular problem for machine learning
tasks is under- and overfitting. For all previous examples in section 4.1.1 and section
4.1.3, underfitting occurred whenever the maximal value or ceiling was not already hit
for a low enough level. Overfitting could not be seen for any example yet. However if a
sparse grid with a high enough level would be used for a classification task, the high
amount of hat functions would result in an overestimation of certain noise samples.
This then would be the reason for overfitting (see Figure 4.9). To remedy this problem,
the λ-parameter of the underlying density estimation could be adjusted accordingly to
return a certain "smoothness" to the density function despite its many hat functions.

4.1.5 Learning to testing ratio

For all previous examples in this section, the learning percentage of an exemplary data
set was always set to 80%. To get an understanding of how this percentage impacts
accuracy of a classification task in general, some examples with different learning
percentages are given in Figure 4.10. Note that there seem to be no significant changes
in accuracy when changing the ratio of learning to testing data. Interesting however
are some fluctuations for which learning percentage the accuracy is the highest, e.g.

48

4 Results

Figure 4.10: Comparison of the accuracies for the classification tasks "Circles" and
"Moons" with 5000 samples each, "Iris" and "Wine" with varying learning
percentages.

for the "Wine" data set a 60% learning subset seems to result in a higher accuracy than
80%. One possible reason for this could be overfitting, which seems to happens for 80%
already at level 4.

49

4 Results

4.2 Clustering

Since for a clustering task there is no information about its input data set D available
besides the sample points themselves, results are hard to verify and analyze. One
possibility to calculate the accuracy of the results from some clustering task is to
remove the labeling of some known clustered data set, perform clustering on it and
then compare the calculated clusters with the original labeling. This technique will be
used for analyzation in this section. Again all five generated data set types mentioned
at the start of chapter 4 will be used to show and explain the results of some clustering
tasks by analyzing how certain input parameters like discretization levels ` and `max,
the number of labels, the number of k nearest neighbors and the cutting threshold tc

affect output accuracy, measured in the percentage of correctly clustered sample points,
and complexity, measured in the time for the algorithm to run.

4.2.1 Full vs. Sparse grids

As already explained for classification in section 4.1.1, full grids approximate sample
points near the corners better than sparse grids do. Because of that it can be interesting
to see how a clustering algorithm labels clusters near the corners of the domain Ω̄d and
if full grids perform relatively better that sparse grid in comparison to classification
tasks. The two following figures (see Figure 4.11 and Figure 4.12) show the accuracy
and complexity for clustering tasks of some data sets with 5 nearest neighbors and
a cutting threshold of tc = 0.25 each for varying discretization levels. The minimal
level is 1 in every example. The first two data sets contain 2500 and the last two 1000
samples.

50

4 Results

Figure 4.11: Accuracy and complexity based on discretization levels ` and `max between
1 and 6 of the clustering tasks for data sets "Cirlces" with 5% noise (top)
and "Moons" with 15% noise (bottom).

51

4 Results

Figure 4.12: Accuracy and complexity based on discretization levels ` and `max between
1 and 6 of the clustering tasks for data set "Blobs", once with 4 classes (top)
once with 8 classes (bottom).

52

4 Results

General observations

If two clusters are too close to each other, the algorithm is not able to detect where
it should cut certain edges. For Figure 4.11 this can clearly be seen for the "Circles"
data set; the two concentric circles are interpreted as one and the algorithm is never
able to achieve a higher accuracy than approximately 50%. At some level overfitting
occurs for the full grid task and the algorithm overestimates the number of clusters to
calculate. However if the level is high enough and the algorithm is able to detect the
correct edges to cut, accuracy can near 100% as seen for the "Moons" example at full
grid level 5 in the same figure. Full grids generally seem detect the right edges at an
lower level than sparse grids, but are also prone to overfitting much earlier.
When looking at the two "Blobs" examples in Figure 4.12, the algorithm can clearly
detect clusters with a high enough distance between them as seen in the example with
only 4 labels. However when clusters are interleaving, the algorithm has difficulties
to decide, which edges to cut and most of the time creates new bigger clusters, which
then contain multiple true clusters. Figure 4.13 and Figure 4.14 show the differences
of the clustering tasks for a full and sparse grid, both with a discretization level of 6,
based on the "Blob" data set with 8 clusters. At level 5 overfitting already occurs for the
full grid as seen in the graph of Figure 4.12, bottom mid, and by the many different
computed clusters in Figure 4.14, bottom left. For the same discretization level the
clusters computed with a sparse grid begin to be mostly correct, with the originally
four interleaving clusters building only two computed ones. Also some clusters near
the corners seem to have relatively many detected noise samples in comparison to
other clusters for the sparse grid, which originates from their worse approximation
of corner points, but does here not really impact the resulting accuracy, because the
chosen discretization level is high enough.
Complexity for all two-dimensional examples still seems to hold to O

(
22`) for full

and O
(
2`max · `max

)
for sparse grids (see equation 4.1 and 4.2). However one thing to

note is that in comparison to classification, the number of samples heavily impacts
the complexity of an algorithm, because every clustering task has to review nk edges,
whereas n is the number of samples and k the number of outgoing edges of every
sample or rather the number of nearest neighbors.
An also interesting observation is that at level 6 and for dimension 2, the sparse grid
complexity seems to exceed the full grid complexity for every example. To find the
reason for this further research has to be carried out.

53

4 Results

Figure 4.13: The "Blobs" example with 8 clusters from Figure 4.12, bottom. Located at
the top right is the corresponding 5-nearest-neighbors-graph, whose edges
haven’t been cut yet. The corresponding density estimation with ` = 6
based on a full grid and with `min = 1 and `max = 6 based on a sparse grid
can be seen at the bottom left and right.

54

4 Results

Figure 4.14: Continuation of the example stated in Figure 4.13. With the previously ob-
tained density estimations, the uncut 5-nearest-neighbor-graph from before
was cut for each one of them (top). With this the connected components or
clusters are computed (bottom).

55

4 Results

Figure 4.15: Comparison of the the complexity of four different "Blobs" data sets, each
with 1000 samples, 5 clusters, 5 nearest neighbors, tc = 0.25, `min = 1 and
a different dimension d, whereas 2 ≤ d ≤ 5.

4.2.2 Clustering in more dimensions

With the equation for the number of grid points of sparse grids (see equation 2.33 and
equation 2.40), the complexity of a clustering task is assumed to rise exponentially
with increasing discretization level `max and logarithmically with rising dimension d.
Figure 4.15 shows this based on the example of some "Blobs" data sets in dimensions 2,
3, 4 and 5 with 5 classes each. Interesting is here however that aforementioned relation
of `max, d and the complexity only seems to hold for `max ≥ 4, seeing as the complexity
for `max < 3 seems to be generally lower for higher dimensions, with the exception of
slight fluctuations for dimension 4 and 5 at level 1 and 2. One possible reason for the
inconsistency before and after level 4 could be related to the relatively high spacing
between clusters in high dimensions for only five possible labels: With such a small
amount of labels it is more likely at lower levels that some edges were omitted than
it is on higher levels. This consequently means that up until level 4, the evaluation of
edges is more expansive than the evaluation of the underlying sparse grid.

56

4 Results

Figure 4.16: Accuracy and complexity based on discretization level `max between 1
and 6 and the number of k nearest neighbors for the clustering tasks of
generated data sets "Moons" with 15% noise (top) and "Blobs" with 4
clusters (bottom).

4.2.3 Varying number of nearest neighbors

As explained in section 4.2.1 does the number of k nearest neighbors affect the complex-
ity of a clustering algorithm additionally by nk, whereas n is the number of samples in
the input set D. If and how k can also have an impact on the accuracy will be discussed
in this section. Figure 4.16 displays accuracy and complexity based on discretization
level and k neighbors for the clustering tasks of two exemplary data sets "Moons" and
"Blobs" with 4 clusters, each with 1000 samples. Every task has parameters `min = 1
and tc = 0.25. For both data sets, the linear additional complexity of nk seems to hold
true, since there is no exponential rise in complexity for higher k-values. The number of
nearest neighbors however seems to have little effect on the accuracy for both examples,
with the exception that the accuracy for k = 1 seems to near 0% fairly quickly. A
possible reason for this could be that every edge essentially connects one part of a
cluster with the corresponding other one, resulting in overfitting as early as `max = 1.

57

4 Results

Figure 4.17: Accuracy and complexity based on discretization level `max between 1 and
6 and the cutting threshold tc for the clustering tasks of generated data
sets "Moons" with 15% noise (top) and "Blobs" with 4 clusters (bottom).

4.2.4 Varying cutting threshold

Figure 4.17 again displays accuracy and complexity of the same two examplary data
sets from Figure 4.16, with the exception of varying cutting threshold tc and static
number of neighbors k = 5 for every clustering task. When looking at the accuracy of
both examples, it appears that extremely high or low thresholds result in an overall
worse performance than thresholds at around 40%, whereas higher values of tc let
overfitting occur at lower levels. Complexity seems to decrease with rising tc-value; a
possible explanation for this being that a higher value results in more edges to be cut
and therefore less edges for depth-first-search to traverse to detect the clusters.
An interesting observation is the heavy fluctuation of both accuracy and complexity for
the "Moons" example at level 2 for tc = 0.7. Here accuracy suddenly drops to nearly 0%,
before rising again sharply at the next level. What happened here is that the algorithm
probably detected one cluster for every sample, hence resulting in as many separate
depth-first-search traversals, which explains the sudden rise in complexity.

58

5 Conclusion

This chapter provides a summary of all important achieved results in chapter 4, as well
as presenting possible improvements for the implementation discussed in chapter 3
and giving insight into related works.

5.1 Summary

The implementation of the supervised and unsupervised machine learning tasks clas-
sification and clustering into the sparseSpACE framework shows, that with the use
of sparse grids, higher dimensional machine learning tasks can be computed in a
reasonable amount of time, while also approximating a corresponding full grid solution
fairly well. This is exceptionally valuable for real-life machine learning task, since those
are usually very high dimensional, e.g. learning the structure of an image, where every
pixel represents one dimension. Also since unsupervised learning is usually more
complex than supervised learning, the reduction in complexity that comes with the
use of sparse grids makes them even more appealing for those unsupervised learning
tasks.
As the results in chapter 4 show, the complexity of full grids for dimensions d ≤ 3 and
a low enough discretization level is generally still feasible, so that the use of sparse
grids is preferable for dimensions d ≥ 4.

5.2 Outlook

The implementation discussed in chapter 3 works as intended, but is still limited
by certain factors, which provides some room for improvement. Mainly only data
sets, whose samples all consist of the data type float, can be used as input for the
implementation. So a possible addition could be to either map arbitrary data types of
input sets to the float data type or to implement the support of more data types for the
machine learning algorithms.
Some other limiting factors are derived directly from the harder to define unsupervised
learning tasks. The presented implementation uses a rather intuitive approach to decide,
which edges of a full nearest-neighbor-graph should be cut to receive the resulting

59

5 Conclusion

clusters. A possible improvement sees the adaptive selection of an edge-cutting-threshold
according to the surrounding density or a more precise evaluation of the density of
an edge, e.g. computing the average density of a valley between two points. In the
same scope, the best relation between the cutting threshold and the number of nearest
neighbors in terms of accuracy and complexity could be determined automatically
for specific scenarios to maximize the performance. Also since the implementation of
the clustering algorithm seems to have a relatively high complexity for cutting edges
compared to evaluating the sparse grid for tasks with discretization levels smaller than
four, a general code optimization in terms of run time is worth considering.
Other possible improvements include changes and additions to the underlying density-
estimation-implementation, like the use of spatially adaptive sparse grids, which was
implemented and also integrated into the DEMachineLearning wrapper in 2020 by
Markus Fabry [14].

60

List of Figures

2.1 The standard hat function Φ(x) plotted in the domain [−2, 2]. 2
2.2 Example of nodal basis function space V3 with level 3 and hat functions

Φ3,i(x) on grid points x3,i with i ∈ I3 := [1, 7]. The boundary points are
indicated with thin dotted black lines on the left and right borders. . . . 4

2.3 Example of a level 3 grid interpolated function u3(x) with weights w3,i
(indicated by vertical gray dotted lines) and the nodal basis function
space V3. The boundary points are indicated with thin dotted black lines
on the left and right borders. 4

2.4 Example of a 2-dimensional grid with level 4 in the first and level 2
in the second dimension. The grid points x(4,2),~i have the index set
I(4,2) := ((1, 1), . . . , (15, 3)). 6

2.5 Example of the tensor product approach to generate the 3D base functions
Φ(2,1),(1,1)(x), Φ(2,1),(2,1)(x) and Φ(2,1),(3,1)(x) (right) with the 2D base
functions Φ2,1(x), Φ2,2(x) and Φ2,3(x) (left) of level 2 and the 2D base
function Φ1,1(x) (middle) of level 1. 6

2.6 Example of hierarchical sub function space W3 with level 3 and hat
functions Φ3,i(x) on grid points x3,i with i ∈ Iodd,3 := [1, 3, 5, 7]. 8

2.7 Side by side comparison of the construction of the function space V` with
the nodal approach (right) and the hierarchical approach (left) [taken
from 5]. 8

2.8 Example of a level 3 grid interpolated function u3(x) (indicated by the
bold dotted black line) with weights w3,i (indicated by vertical gray
dotted lines) and the hierarchical basis function space V3 (right). The sub
function spaces Wk with k ∈ [1, 3] summed up together build the level 3
function space V3 (left). 9

2.9 Example of the construction of all 2D sub function spaces W~̃k
with

~̃k ∈ [(1, 1), (3, 3)] for the 2D function space V(3,3) with level 3 using the
tensor product approach. 11

61

List of Figures

2.10 Example of the 9 sub spaces for levels ~|`|∞ ≤ 3 (left, gray and black
grids) which together form the full grid function space V3 and the
corresponding sparse grid space V(s)

3 (right), which consists of all 5 sub
spaces with levels ~|`|1 ≤ 4 (left, black grids above the dashed line) [taken
from 6]. 13

2.11 Example of a sparse grid Ω(c)
1,3 with `min = 1 and `max = 3 (left) con-

structed by the linear combination of five component grids. Those are
added whenever q = 0 and therefore αq = 4 and subtracted whenever
q = 1 and therefore αq = 3 (right) [taken from 4]. 14

2.12 Example of all two-dimensional nodal based regular grids from level 1
to level 4 with boundaries. To create a sparse grid Ω(c)

1,4 with this function
space, all blue component grids are added for the hyperplane 0 and all
red component grids are subtracted for the hyperplane 1 [taken from 6]. 15

2.13 Example of three adaptive refinement steps of a sparse grid without
boundaries. On a level 2 sparse grid, the most left point is selected for
further refinement (left) and all its surrounding children added (middle).
After yet another refinement step the missing path points (marked in
gray) from previous discretization steps must also be added (right) [taken
from 6]. 16

2.14 Example of a learning algorithm charged with the task of creating a
curvature from some given points. On the left it cannot grasp the shape
of the function (underfitting). In the middle it adapts the function well
to the given points. On the right it assigns the single samples too much
weight and estimates the curve incorrectly (overfitting) [taken from 7]. . 17

2.15 Example of the construction of a density function with a sparse grid
of level 3. The data set "Circles" (top left) [taken from 10] serves as
input S for the density estimation function. Sample points are mapped
onto certain sparse grid points (top right). The density function f̂sgrid,17
(bottom) is constructed with the constraint that equation 2.49 must hold
for the basis functions on every grid point of the sparse grid. 20

2.16 Example of a given "Moons" training set set Dtrain (left) [taken from 10],
which is split into its sub training sets Dtrain,1 and Dtrain,2 (right). 22

2.17 Example of performing density estimation on sub training sets Dtrain,1

and Dtrain,2 of the initial training set Dtrain (see Figure 2.16) independently
to construct the mapping function ĝ(~x). 22

62

List of Figures

2.18 Example of the density distribution of a one-dimensional input set D.
All input points xi with f̂ (xi) ≥ td (marked in yellow) are filtered into
R(td), which consists of two connected components. Between those there
is a valley of points x̃i /∈ R(td) [taken from 12]. 24

2.19 Example of the procedure of clustering a "Moons" data set [taken from
10] (top left) with a density estimation based on a combination-technique
sparse grid with `min = 1 and `max = 6 (top mid). With this the 15-
nearest-neighbor graph is build (bottom left) and then cut into two
connected components with a cutting threshold of tc = 0.25 (bottom
mid). Note that there was detected some noise (marked in green), which
was added to its nearest corresponding cluster. After that each data point
is assigned one of those two clusters with recursive depth-first-search
(mid right). 25

3.1 Python pseudo-code of the basic implementation of the preprocessing
step in the Classification class. 28

3.2 Python pseudo-code of the basic implementation of the learning step in
the Classification class. 29

3.3 Python pseudo-code of the basic implementation of the labeling step in
the Classification class. 29

3.4 Python pseudo-code of the basic implementation of the evaluation step
in the Classification class. 30

3.5 Python pseudo-code of the basic implementation of the preprocessing
step in the Clustering class. 31

3.6 Python pseudo-code of the basic implementation of the preprocessing
step in the Clustering class. 31

3.7 Python pseudo-code of the basic implementation of the nearest-neighbor-
graph-building step in the Clustering class. 32

3.8 Python pseudo-code of the basic implementation of the nearest-neighbor-
graph-cutting step in the Clustering class. Divided into the two sub
steps "finding clusters" (top) and "appending noise" (bottom). 33

3.9 Python pseudo-code of the basic implementation of the detection step
for the connected components in the Clustering class. 34

3.10 Python pseudo-code of the basic implementation of the evaluation step
in the Clustering class. 35

4.1 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 6 for the classification tasks of data sets "Cirlces" with 5%
noise (top) and "Moons" with 15% noise (bottom). 38

63

List of Figures

4.2 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 6 for the classification tasks of data sets "Classification" (top)
and "Blobs" (bottom) with 4 classes each. 39

4.3 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 6 for the classification tasks of data sets "Blobs" (top) and
"Gaussian Quantiles" (bottom) with 10 classes each. 40

4.4 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 5 for the classification tasks of the three-dimensional data
sets "Classification" (top) and "Blobs" (bottom) with 8 classes each. . . . 41

4.5 Example of a classification task with `min = 1 and `max = 6 for a two-
dimensional "Gaussian Quantiles" data set with 10 classes and 80%
learning data. Because of the sparse grid construction of all 10 density
functions (top), circles of testing samples appear to be mapped with a
rectangular shape (bottom right). 43

4.6 Example of the step-by-step construction of the density function for
some "Circles" data set with the combination technique with `min = 1
and `max = 4. The result can be seen in the top right corner. 44

4.7 Accuracy (left) and complexity (right) of four from scikit-learn loaded
static data sets. Accuracy is measured by the percentage of correct map-
pings of the testing data. Complexity is measured by the computation
time of the classification task and displayed on a logarithmic scale. . . . 46

4.8 Confusion matrix for the accuracy results with `min = 1 and `max = 4 of
the "Digits" data set from the scikit-learn API. 47

4.9 Example of under- and overfitting for the classification task with `min = 1
based on a "Classification" data set with 5000 samples and 80% learning
percentage. Underfitting only really occurs for the case of `max = 1,
where the algorithms does not have any relevant information about the
classes and simply maps every sample onto the same class. Overfitting
occurs for `max = 9 and higher, because the high amount of hat functions
makes the algorithm focus too much on unimportant information. . . . 48

4.10 Comparison of the accuracies for the classification tasks "Circles" and
"Moons" with 5000 samples each, "Iris" and "Wine" with varying learning
percentages. 49

4.11 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 6 of the clustering tasks for data sets "Cirlces" with 5% noise
(top) and "Moons" with 15% noise (bottom). 51

4.12 Accuracy and complexity based on discretization levels ` and `max be-
tween 1 and 6 of the clustering tasks for data set "Blobs", once with 4
classes (top) once with 8 classes (bottom). 52

64

List of Figures

4.13 The "Blobs" example with 8 clusters from Figure 4.12, bottom. Located
at the top right is the corresponding 5-nearest-neighbors-graph, whose
edges haven’t been cut yet. The corresponding density estimation with
` = 6 based on a full grid and with `min = 1 and `max = 6 based on a
sparse grid can be seen at the bottom left and right. 54

4.14 Continuation of the example stated in Figure 4.13. With the previously
obtained density estimations, the uncut 5-nearest-neighbor-graph from
before was cut for each one of them (top). With this the connected
components or clusters are computed (bottom). 55

4.15 Comparison of the the complexity of four different "Blobs" data sets, each
with 1000 samples, 5 clusters, 5 nearest neighbors, tc = 0.25, `min = 1
and a different dimension d, whereas 2 ≤ d ≤ 5. 56

4.16 Accuracy and complexity based on discretization level `max between 1
and 6 and the number of k nearest neighbors for the clustering tasks of
generated data sets "Moons" with 15% noise (top) and "Blobs" with 4
clusters (bottom). 57

4.17 Accuracy and complexity based on discretization level `max between 1
and 6 and the cutting threshold tc for the clustering tasks of generated
data sets "Moons" with 15% noise (top) and "Blobs" with 4 clusters (bottom). 58

65

List of Tables

4.1 Accuracy (top) and complexity (bottom) of the "Circles" data set (see
Figure 4.1) for the two input parameters minimal level `min and maximal
level `max. 45

66

Bibliography

[1] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
isbn: 0262018020.

[2] C. Zenger. “Sparse Grids”. In: Parallel Algorithms for Partial Differential Equations
(1991), pp. 241–251.

[3] M. Griebel, M. Schneider, and C. Zenger. “A Combination Technique For The
Solution Of Sparse Grid Problems”. In: Iterative Methods in Linear Algebra (1992),
pp. 263–281.

[4] T. Gerstner and M. Griebel. “Sparse Grids”. In: Encyclopedia of Quantitative Finance
(2008). url: https://ins.uni-bonn.de/media/public/publication-media/
sparsegrids_j8NLaMi.pdf?name=sparsegrids.pdf.

[5] M. Bader. Algorithms for Scientific Computing – 1D Hierarchical Basis. 2017. url:
https://www5.in.tum.de/lehre/vorlesungen/asc/ss17/hierbas_1D.pdf.

[6] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. “Spatially adaptive sparse grids
for high-dimensional data-driven problems”. In: J. Complexity 26 (Oct. 2010),
pp. 508–522. doi: 10.1016/j.jco.2010.04.001.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url:
http://www.deeplearningbook.org.

[8] B. Peherstorfer, D. Pflüger, and H.-J. Bungartz. “Density Estimation with Adaptive
Sparse Grids for Large Data Sets”. In: SDM. 2014.

[9] D. Pfander, G. Daiß, and D. Pflüger. “Heterogeneous Distributed Big Data Clus-
tering on Sparse Grids”. In: Algorithms 12 (Mar. 2019), p. 60. doi: 10.3390/
a12030060.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[11] C. Aggarwal and C. Reddy. DATA CLUSTERING Algorithms and Applications. Aug.
2013.

67

https://ins.uni-bonn.de/media/public/publication-media/sparsegrids_j8NLaMi.pdf?name=sparsegrids.pdf
https://ins.uni-bonn.de/media/public/publication-media/sparsegrids_j8NLaMi.pdf?name=sparsegrids.pdf
https://www5.in.tum.de/lehre/vorlesungen/asc/ss17/hierbas_1D.pdf
https://doi.org/10.1016/j.jco.2010.04.001
http://www.deeplearningbook.org
https://doi.org/10.3390/a12030060
https://doi.org/10.3390/a12030060

Bibliography

[12] A. Azzalini and G. Menardi. “Clustering Via Nonparametric Density Estimation:
the R PackagepdfCluster”. In: Journal of statistical software (Jan. 2013). doi: 10.
18637/jss.v057.i11.

[13] L. Schulte. “Sparse Grid Density Estimation with the Combination Technique”.
Bachelor’s thesis. Technical University of Munich, Mar. 2020.

[14] M. Fabry. “Spatially adaptive Density Estimation with the Sparse Grid Combina-
tion Technique”. Master’s thesis. Technical University of Munich, Sept. 2020.

68

https://doi.org/10.18637/jss.v057.i11
https://doi.org/10.18637/jss.v057.i11

	Acknowledgments
	Abstract
	Contents
	List of Notations
	Introduction
	Theoretical Background
	Full Grids
	Nodal basis
	Hierarchical basis

	Sparse Grids
	Combination Technique
	Adaptive refinement

	Machine Learning with Sparse Grids
	Density Estimation
	Classification
	Clustering

	Implementation
	The sparseSpACE-framework
	The DEMachineLearning wrapper
	The Classification class
	The Clustering class

	Results
	Classification
	Full vs. Sparse grids
	Minimal vs. Maximal Level
	Static data sets
	Under- and Overfitting
	Learning to testing ratio

	Clustering
	Full vs. Sparse grids
	Clustering in more dimensions
	Varying number of nearest neighbors
	Varying cutting threshold

	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables
	Bibliography

