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The ExaHyPE Project



1. What is ExaHyPE

2. ExaHyPE’s component

3. Code Generation

4. Some benchmarks

5. Outlook
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Outline



ExaHyPE Goal: a PDE “engine” (as in “game engine”)

• Enable medium-sized interdisciplinary research teams to realize extreme-scale 

simulations of grand challenges within one year

• Focus on hyperbolic conservation laws and specific numerics

• Concentrate on two specific grand challenges in the project:
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Towards an Exascale Hyperbolic PDE Engine
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Towards an Exascale Hyperbolic PDE Engine

Astrophysics: merger of binary 

system of neutron stars (FIAS)



ExaHyPE Goal: a PDE “engine” (as in “game engine”)

• Enable medium-sized interdisciplinary research teams to realize extreme-scale 

simulations of grand challenges within one year

• Focus on hyperbolic conservation laws and specific numerics

• Concentrate on two specific grand challenges in the project:

6Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Towards an Exascale Hyperbolic PDE Engine

Seismology: regional earthquake 

simulation (LMU)



Requirements for Exascale Algorithms:

• Avoid data-transfer/communication and synchronisation

• Maximize arithmetic intensity and maximize “science per flop”/“science per Watt”

• Dynamic load balancing with lightweight adaptive response

 Focus on High Order Discretisation and Adaptivity in Space and Time
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Towards an Exascale Hyperbolic PDE Engine
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Components of the ExaHyPE Engine



Application Layer – user provides:

• C/Fortran code for PDEs

ExaHyPE toolkit generates:

• core routines, templates for 

application-specific functions 

• kernels tailored to discretization 

order, number of quantities, etc.

Peano framework:

• hybrid MPI+Intel TBB parallelism

• data structures for parallel AMR
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Engine Architecture and Application Interface



Desired Optimizations:

• Loop vectorization

• Efficient data access

• Matrix-tensor multiplications: Intel’s Libxsmm

Constraints posed by:

• Memory access: seamless integration with other user code fragments required

• Matrix multiplication: Libxsmm doesn’t implement entire BLAS
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Code Generation: Optimizations and Constraints



Fortran notations vs stride access for matrix multiplication:
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Libxsmm: Accessing Matrices in Tensor



Cases:

• EulerFlow 3D

- No sources, no NCP

- 5 quantities

• GRMHD

- No sources, but NCP

- 19 quantities

• Z4 Kerr-Schild

- Sources + NCP

- 54 quantities

Hardware:

• Intel Xeon E5-2697v3 (HSW)

• Single core measurements

Compiler:

• Intel compiler 16.0.4 for C++ (icpc) 

• gfortran v4.9

• Aggressive optimization options

-fast -fstrict-aliasing -std=c++0x  

-restrict -no-ipo -ip -xCORE-AVX2 -fma
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Benchmark cases



• Small number of quantities: scaling with order

• Big number of quantities: plateau instead of further scaling
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Libxsmm called on sliding slices of the tensor to perform Matrix-Matrix 

multiplications

gemm(&A[i*X],&B[0],&C[i*Y]);

Problem:

A and C slices not reused

⤷ A and C not in L1 cache

⤷ need to be fetched from L2/L3/RAM

⤷ bottleneck in performances

Solution:

Customize generated gemms to use L1 prefetching
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Probable cause of the plateau in libxsmm
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Runtime Breakdown
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STP (Kernel) 36.99% 41.28% 45.14% 48.90% 57.97% 64.03%

STP (NCP) 4.29% 3.71% 3.67% 3.81% 3.66% 3.71%

STP (Flux) 19.47% 16.77% 16.68% 16.70% 14.81% 13.54%

STP (Source) 2.64% 3.25% 3.14% 2.58% 1.97% 1.55%

Boundary Cond. 0.81% 1.57% 1.56% 1.44% 1.20% 0.95%

Volume Integral 1.05% 1.35% 1.28% 1.30% 1.07% 1.35%

Surface Integral 1.05% 1.35% 1.28% 1.30% 1.07% 1.35%

Riemann (Kernel) 4.23% 5.15% 3.99% 4.07% 2.37% 1.78%

Riemann (NCP) 4.40% 2.86% 1.60% 0.85% 0.44% 0.24%

Solution Up. 0.43% 0.58% 0.59% 0.58% 0.45% 0.34%

StableTimeStep 0.49% 0.56% 0.54% 0.46% 0.38% 0.26%

Other, Non-Kernel 24.15% 21.57% 20.54% 18.03% 14.63% 10.89%

Z4, Runtime breakdown



16Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

• Overhead and user function cost goes down (relatively)

• SpaceTimePredictor becomes more and more dominant

Runtime Breakdown trends
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• Optimized kernels make ExaHyPE faster than the Fortran prototype from

Trento.

• User functions not negligible anymore.

• Bottleneck with libxsmm identified, potential solution proof of concept

tested successfully.

• Still need good scaling tests once current problem with generic code

identified and solved
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Outlook


