
Jean-Matthieu Gallard

Technical University of Munich (TUM)

Department of Informatics

Garching, 21. April 2017

ExaHyPE, an Exascale Hyperbolic PDE Engine

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 671698.

Horizon 2020 project in the FETHPC call

“Towards Exascale High Performance Computing”

(New mathematical and algorithmic approaches)

ExaHyPE participants:

• TUM: Michael Bader, Jean-Matthieu Gallard, Leonhard Rannabauer

• Durham Univ.: Tobias Weinzierl, Dominic Charrier, Benjamin Hazelwood

• Univ. Trento: Michael Dumbser, Francesco Fambri, Maurizio Tavelli

• LMU Munich: Alice Gabriel, Kenneth Duru

• Frankfurt IAS: Luciano Rezzolla, Sven Köppel, Alejandro Cruz Osorio

• RSC: Alexander Moskowsky & Co.

• BayFOR: Robert Iberl, Teresa Kindermann (project management)

• associated: Leibniz Supercomputing Centre and JSCC RAS

2Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

The ExaHyPE Project

1. What is ExaHyPE

2. ExaHyPE’s component

3. Code Generation

4. Some benchmarks

5. Outlook

3Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Outline

ExaHyPE Goal: a PDE “engine” (as in “game engine”)

• Enable medium-sized interdisciplinary research teams to realize extreme-scale

simulations of grand challenges within one year

• Focus on hyperbolic conservation laws and specific numerics

• Concentrate on two specific grand challenges in the project:

4Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Towards an Exascale Hyperbolic PDE Engine

ExaHyPE Goal: a PDE “engine” (as in “game engine”)

• Enable medium-sized interdisciplinary research teams to realize extreme-scale

simulations of grand challenges within one year

• Focus on hyperbolic conservation laws and specific numerics

• Concentrate on two specific grand challenges in the project:

5Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Towards an Exascale Hyperbolic PDE Engine

Astrophysics: merger of binary

system of neutron stars (FIAS)

ExaHyPE Goal: a PDE “engine” (as in “game engine”)

• Enable medium-sized interdisciplinary research teams to realize extreme-scale

simulations of grand challenges within one year

• Focus on hyperbolic conservation laws and specific numerics

• Concentrate on two specific grand challenges in the project:

6Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Towards an Exascale Hyperbolic PDE Engine

Seismology: regional earthquake

simulation (LMU)

Requirements for Exascale Algorithms:

• Avoid data-transfer/communication and synchronisation

• Maximize arithmetic intensity and maximize “science per flop”/“science per Watt”

• Dynamic load balancing with lightweight adaptive response

 Focus on High Order Discretisation and Adaptivity in Space and Time

7Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Towards an Exascale Hyperbolic PDE Engine

8Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Components of the ExaHyPE Engine

Application Layer – user provides:

• C/Fortran code for PDEs

ExaHyPE toolkit generates:

• core routines, templates for

application-specific functions

• kernels tailored to discretization

order, number of quantities, etc.

Peano framework:

• hybrid MPI+Intel TBB parallelism

• data structures for parallel AMR

9Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Engine Architecture and Application Interface

Desired Optimizations:

• Loop vectorization

• Efficient data access

• Matrix-tensor multiplications: Intel’s Libxsmm

Constraints posed by:

• Memory access: seamless integration with other user code fragments required

• Matrix multiplication: Libxsmm doesn’t implement entire BLAS

10Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Code Generation: Optimizations and Constraints

Fortran notations vs stride access for matrix multiplication:

11Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Libxsmm: Accessing Matrices in Tensor

Cases:

• EulerFlow 3D

- No sources, no NCP

- 5 quantities

• GRMHD

- No sources, but NCP

- 19 quantities

• Z4 Kerr-Schild

- Sources + NCP

- 54 quantities

Hardware:

• Intel Xeon E5-2697v3 (HSW)

• Single core measurements

Compiler:

• Intel compiler 16.0.4 for C++ (icpc)

• gfortran v4.9

• Aggressive optimization options

-fast -fstrict-aliasing -std=c++0x

-restrict -no-ipo -ip -xCORE-AVX2 -fma

12Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Benchmark cases

• Small number of quantities: scaling with order

• Big number of quantities: plateau instead of further scaling

13Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

0

2

4

6

8

10

12

14

3 4 5 6 7 8

G
F

L
O

P
/s

Order

EulerFlow, nVar=5

STP (Kernel) Volume Integral

0

2

4

6

8

10

12

14

3 4 5 6 7 8

G
F

L
O

P
/s

Order

Z4, nVar=54

STP (Kernel) Volume Integral

Gflops measurements, single core HSW

Libxsmm called on sliding slices of the tensor to perform Matrix-Matrix

multiplications

gemm(&A[i*X],&B[0],&C[i*Y]);

Problem:

A and C slices not reused

⤷ A and C not in L1 cache

⤷ need to be fetched from L2/L3/RAM

⤷ bottleneck in performances

Solution:

Customize generated gemms to use L1 prefetching

14Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Probable cause of the plateau in libxsmm

15Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Runtime Breakdown

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

3

4

5

6

7

8

O
rd

er

3 4 5 6 7 8

STP (Kernel) 36.99% 41.28% 45.14% 48.90% 57.97% 64.03%

STP (NCP) 4.29% 3.71% 3.67% 3.81% 3.66% 3.71%

STP (Flux) 19.47% 16.77% 16.68% 16.70% 14.81% 13.54%

STP (Source) 2.64% 3.25% 3.14% 2.58% 1.97% 1.55%

Boundary Cond. 0.81% 1.57% 1.56% 1.44% 1.20% 0.95%

Volume Integral 1.05% 1.35% 1.28% 1.30% 1.07% 1.35%

Surface Integral 1.05% 1.35% 1.28% 1.30% 1.07% 1.35%

Riemann (Kernel) 4.23% 5.15% 3.99% 4.07% 2.37% 1.78%

Riemann (NCP) 4.40% 2.86% 1.60% 0.85% 0.44% 0.24%

Solution Up. 0.43% 0.58% 0.59% 0.58% 0.45% 0.34%

StableTimeStep 0.49% 0.56% 0.54% 0.46% 0.38% 0.26%

Other, Non-Kernel 24.15% 21.57% 20.54% 18.03% 14.63% 10.89%

Z4, Runtime breakdown

16Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

• Overhead and user function cost goes down (relatively)

• SpaceTimePredictor becomes more and more dominant

Runtime Breakdown trends

0%

10%

20%

30%

40%

50%

60%

70%

3 4 5 6 7 8

%
 o

f
to

ta
l r

u
n

ti
m

e

Order

Relevant trends (Z4)

STP (Kernel) Other, Non-Kernel Sum of STP+Riemann's User-functions

• Optimized kernels make ExaHyPE faster than the Fortran prototype from

Trento.

• User functions not negligible anymore.

• Bottleneck with libxsmm identified, potential solution proof of concept

tested successfully.

• Still need good scaling tests once current problem with generic code

identified and solved

17Jean-Matthieu Gallard (TUM) | ExaHyPE, an Exascale Hyperbolic PDE Engine

Outlook

