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Abstract 

Bike Sharing Systems have witnessed unprecedented growth and significant scholarly 
attention in recent years. Technological advancement, environmental awareness, and the 
demand for socially equitable transport modes were the major contributors to this 
development. However, with the ongoing expansion of these systems, companies are 
faced with the constant need to rebalance them and meet the growing demand. Thus, 
operating companies are always exploring the right tools for flow prediction. 

 This thesis examines three machine learning algorithms and addresses the 
neglected aspect of multiple seasonality in time-series models. The study set out to 
explore the relationship between bike sharing and weather as well as its users. Then the 
four different techniques are developed and evaluated to determine the best performing 
algorithm and suggest further aspects of research in traditional time series models.  

 The research presented here confirms that neural networks deliver the best 
performance. The findings also provide a solid evidence base accounting for complex 
seasonality with traditional time series models  
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Chapter 1 

1. Introduction 

1.1  Background  

Climate change, air quality, fluctuating fuel prices have recently become of primary 
concern and heightened the need for a more sustainable and green mean of transport. In 
the last two decades, there has been a surge of interest in Bikesharing Systems, and they 
have witnessed an expansive growth around major cities. There is concrete evidence that 
Bikesharing Systems play a crucial role economically, environmentally, and provide 
notable health benefits. Bikesharing systems are inexpensive, efficient, flexible and 
accessible. According to Shaheen et al. [1], bikes have the potential of cutting off the 
production of 37,000 kg of carbon dioxide per day compared to a car travelling the same 
distance. The given flexibility of the system, increase the accessibility of the city or the 
area where it is provided, adding the benefit of reaching and contributing to local 
businesses [2].  

 The majority of existing bike sharing systems are docked systems. They have 
docking stations distributed around the city, where users can self-checkout providing 
the choice of picking up a bike from any station and dropping it in any of the available 
stations with free docks. In addition, the reasonable pricing of the system makes it 
appealing for commuter and students alike. It is also a solid solution for the ‘last mile’ 
problem [1], which makes it even more appealing for commuters who use public 
transport. However, the limited docks and bikes available in each station constrain the 
flexibility of the system due to the overwhelming demand contributed by commuters in 
residential and business areas during the morning and evening rush hours.  

1.2 Research Objective and Questions 

This prospective study was designed to investigate the performance of traditional time 
series models and the common machine learning used in prediction the station-based 
hourly flow. It set out to assess three machine learning algorithms; random forest, 
gradient boosting regression tree, and multilayer perceptrons, and ARIMA time series 
model exploring the different seasonality in the system. Surprisingly, there is little to no 
research on modelling the complex seasonality of a bike-sharing system using time series 
models.  

The motivation for this research is addressing the rebalancing issue of the bike 

sharing system. The high demand during the morning and evening peaks results in an 

uneven distribution of bikes. Additionally, forecasting the demand is of tremendous 

commercial value. The goal will be achieved by performing the algorithms as mentioned 

above and examine the seasonality closely to incorporate in the time series model. This 

study aimed to address the following research questions: 
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• Which machine learning algorithm is most suitable to predict the flow, 

and how is it compared to the time series model? 

• How to address the multiple seasonality of bike-sharing system and 

include them in a time series model? 

To address these questions, the primary research goals are: 

• Analyse and visualise the general characteristic of the bike sharing system, and 

the general behaviours of the users under different weather circumstances.  

• Predict the check-in and check-out in the next hour 

• Train the three predictive models; Random Forest, Gradient Boosting Regression 

Tree, and Multilayer Perceptrons 

• Implement the Autoregressive Integrated Moving Average (ARIMA) model with 

multiple seasonality 

• Evaluate the performance as well as the computational costs to train the model 

and tune its hyperparameters 

• Identify the best performing model using the defined performance metrics 

1.3 Research Framework 

Data for this study were collected from Citi Bike Bikesharing system in New York City. 
The top three stations with the highest count of hourly check-in and check-out were 
selected; some station were repeated (Figure 3.11 and Figure 3.10). They are located in 
Manhattan, in either highly attractive touristic areas or business areas, as seen in the 
following figures.  

 

Figure 1.1 Allen St & Stanton St Station [3] 
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Figure 1.2 W 41 St & 8 Ave Station [3] 

 

Figure 1.3 1 Ave & Ee 16 St Station [3] 



 
 

4 
 

 

Figure 1.4 Broadway & E 14 St Station [3] 

My thesis is composed of four themed chapters. Chapter 1 contextualises the 
background and the objective and research questions. Chapter 2 discussed the previous 
studies and state-of-the-art literature in bike-sharing demand prediction. The third 
chapter (Chapter 3) is concerned with the methodology employed for this study. The 
final chapter (Chapter 4) summarises the principal findings of these experiments and 
draw the conclusion and suggestion for further research.   
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Chapter 2 

2. Literature Review 

This chapter is divided into two main sections. The first section gives a brief overview 
of the foundation of shared mobility, its concepts, and classifications. It also examines 
bike sharing in detail. Lastly, the different methodologies frequently implemented to 
analyse bike sharing demand and build a predictive model are summarised. 

 

2.1 Shared Mobility 

This section begins by investigating the concept of a shared economy and how relevant 
it is to form a general understanding of shared mobility. Then, shared mobility is 
defined, and its different types are introduced. Finally, the Bike Sharing System is 
investigated lengthily.  

2.1.1 Shared Economy  

The past two decades have seen rapid growth in shared economy driven by the 
prominence of resources scarcities and the attempt to merge both offline and online 
worlds [4]. However, only in the last decade, the term “shared economy” has propelled 
to the forefront of research. Shared economy is defined as “a socioeconomic system 
enabling an intermediated set of exchanges of goods and services between individuals 
and organisations which aim to increase efficiency and optimisation of underutilised 
resources in society” [5]. Accommodation and transport are amongst the major 
underutilised sectors that commonly implement shared economy concepts [4], [6]. For 
example, Airbnb and Uber are some of the successful business models that early adopted 
this scheme, that was built upon underutilisation as their driving force [4]. 

 To date, previous studies highlighted three main components that are associated 
with shared economy, namely economic, social, and environmental [4]–[6]. These are 
three key aspects of sustainability, which is another product of shared economy. The 
economic component supports creating new business ventures and the overall growth 
of the economy. The social component identifies inequality among individuals and is 
employed as a tool for raising awareness about overconsumption and tie the society 
together in a collaborative manner. Both economically and socially, shared economy 
benefits individuals in controlling their spending habits and creating a new source of 
revenue. Social economy indirectly impacts the environment; through the reuse of 
existing services and goods, and thus less raw materials are used, and individuals 
become more aware of their consumption behaviour. Additionally, the booming of 
technology in recent years and the rapid development of social networks and electronic 
devices served as an enabler for the outspread and promotion of shared economy [7].  
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 Lastly, Cohen et al. concluded seven unique features of sharing business models. 
1. Platforms for collaboration, 2. Underutilised resources, 3. Peer-to-peer interactions, 4. 
Collaborative governance, 5. Mission-driven, 6. Alternative funding, and 7. Technology 
reliance [5, p. 3]. 

2.1.2 Shared Mobility Definition and Different Forms 

Shared mobility is a component and a forerunner of shared economy and technological 
advancement. It is defined as “the shared use of a vehicle [..] that enables users to have 
a short-term access to transportation modes on an ‘as-needed’ basis” [8, p. 4]. Shared 
mobility is classified into the following categories: 

1. Carsharing 
2. Micro-mobility: Bike Sharing (BS), scooter sharing 
3. Personal vehicle sharing: Peer-to-peer (P2P) carsharing and fractional ownership 
4. Ridesharing: Carpooling 
5. Shuttle service 
6. Vanpooling 
7. Ride-sourcing and transport network companies (TNCs): Ride-hailing  
8. Courier network services (CNS) 

In the first two forms of shared mobility, users pay a membership fee or a time-based 
fee to get access to the vehicles. They are considered on-demand services that do not 
require advanced booking. The operating companies, which in this case also own the 
fleet vehicles, are responsible for insuring, maintaining, and storing those shared 
vehicles as well as paying any fees required for the usage of public spaces or parking to 
the authorities. In peer-to-peer carsharing, operating companies utilises privately owned 
vehicles, but the owners are responsible for the maintenance of their vehicles.  

Ridesharing and ride-sourcing are on-demand services that also utilise the use of 
privately owned vehicles. The driver of the vehicle; would it be the owner or another 
person hired by the owner, subcontracted by the operating company. Carpooling rides 
requires passengers to have the same origin and destination or en route between the 
origin and destination. Vanpooling deploys the same concept as carpooling but on a 
larger scale.  

Shuttle services are mostly seen in transport terminals and have a fixed origin and 
destination. Courier network services connect users to companies or individuals to 
facilitate package delivery.  

2.1.3 Bike Sharing 

Bike Sharing Systems were developed primarily as a result of environmental concerns 
by non-profit organisations. Bike Sharing went through a series of four generations. The 
first Bike Sharing System emerged in July 1965 in Amsterdam. A fleet of fifty bikes was 
painted white, hence the name White Bikes (or Free Bike Systems). The bicycles were 
distributed around the urban city centre unlocked. Similar systems were later developed 
in La Rochelle, France, in 1974 and Cambridge, the United Kingdom, in 1993. These early 
implementations of free bike systems are categorised as the first-generation. This 
generation failed due to theft and vandalism. Shortly after, the second-generation of Bike 
Sharing System emerged as a coined-deposit system in 1993 in Copenhagen, Denmark, 
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which marks the first appearance of docking stations. Users deposit a small fee that was 
around 3 Euros to unlock the bicycle. [1], [9], [10] 

 Nevertheless, this system was also susceptible to theft because of the user’s 
anonymity. The third generation IT-based systems integrated advanced technology to 
overcome this issue, allowing the operating company to track the bicycle’s usage and 
location as well as accessing user information. The system included a kiosk and a user 
interface technology for reservations, pick-up, and drop-off. The first third-generation 
system appeared in 1998 in Rennes, France, where users used a smartcard to unlock the 
bicycle. Lastly, the fourth-generation systems are characterised as demand-responsive 
and multimodal systems. A fourth-generation system may or may not incorporate 
docking stations, or it could be a hybrid of both systems. It is integrated with public 
transportation and other mobility sharing systems. It also incorporates an innovative 
bicycle redistribution and advanced IT-infrastructure, such as GPS tracking. [1], [9], [10] 

2.1.3.1 Service Models 

Bike Sharing systems follow three service models:  

1. Station-based Bikesharing systems (SBBS) 
2. Dockless Bikesharing systems (DBSS) 
3. Hybrid Bikesharing systems.  

In the station-based system, each station has multiple docks where users can unlock 
a bike and drop it off in any of the designated stations. The trip could be either a one-
way or a round trip. Users can quickly locate available bikes through the system’s mobile 
application that uses GPS tracking. Dockless Bikesharing systems allow users to pick up 
and drop off the bike within a specific geographical radius. Hybrid systems are a 
combination of both systems, where the user can opt to either pick up a dockless bike or 
a bike from a station and drop off the bike in a station or a non-station location. [11] 

 Both station-based and dockless systems carry a level of convenience to users; 
the former, with its distinctive locations, guarantees availability at the same place daily 
and a definitive start and end location. While the latter removes this obligation of 
planning the starting and ending points, and additional costs for stations’ maintenance 
and balancing. However, SBBS users may encounter some issues locating an available 
dock to drop off the bike. Although DBSS mitigate this issue, yet users have to abide by 
parking the bike in an accessible and legal spot. Otherwise, this will increase the level of 
uncertainty of bikes’ availability and accessibility. Moreover, incurring additional costs 
to locate and balance bikes’ distribution throughout the operating area. On the other 
hand, hybridisation of the bike sharing systems could help to alleviate these issues and 
attain the benefits of both systems [12], [13]. 

 Regardless of the service model applied, the trip purpose is highly dependent on 
the type of users, long-term (Subscribers) or short-term (Customers). However, the 
majority of trips made on weekdays are commuting trips from/to work or education, 
while trips on the weekends are for leisure and sightseeing. [14] 

2.2 Demand Modelling and Forecasting 

This section gives a brief overview and findings of the recent research in BS demand 
modelling and forecasting methods. The first subsection focuses on the prevailing 
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methodologies and algorithms for bike usage prediction, and the second subsection is 
concerned with the concluded prediction methods applied in this research.  

2.2.1 Modelling and Forecasting 

A large and growing body of literature focuses particularly on forecasting bikes’ or 
docks’ availability in Station-Based Bikesharing systems. Operating companies are 
continually trying to optimise their redistribution system to “minimise the financial and 
environmental costs” [13] and, in return, ensure users’ satisfaction. Real-time monitoring 
provides an intelligent management system but usually not sufficient to provide a robust 
one. Therefore, predicting the behaviour of users and bikes movement between stations 
is essential. 

Previous research has examined both time series forecasting methods and machine 
learning methods in a univariate and multivariate setting, respectively. A univariate 
method involves only one variable typically indexed by time, which is also the predicted 
value. A multivariate method involves multiple variables that compose the independent 
variable(s), known as the predictor variable, and the dependent variable(s), known as 
the predicted variable. 

Researchers developed several approaches to tackle the rebalancing issue and 
predict the availability of bikes. Kaltenbrunner et al. [15] based their approach on time 
series forecasting methods for predicting hourly station-level bike availability; they used 
naïve methods as their baseline approach and conducted an Auto-Regressive Moving 
Average (ARMA) model. Naïve approaches are considered cost-effective 
computationally, but they are rigid methods. Therefore, they are mainly set as baseline 
methods for comparison. ARMA model is a univariate time series forecasting method 
that is more sophisticated than the naïve methods, as it considers the variation of the 
predicted variable over time. In their case study of the Bicing Bikesharing system in 
Barcelona, Spain, Kaltenbrunner et al. [15] concluded that their ARMA model 
outperformed the naïve approaches. They also indicated that by incorporating the 
information of spatially close stations into the ARMA model, improved their prediction. 
However, there are significant drawbacks associated with the use of their approach. 
ARMA models cannot identify stations’ non-stationarity. Their approach assumes that 
the mean and variance of available bikes in each station is stationary over time. 

 Yoon et al. [16] developed an application, CityRide, using data from Dublin, 
Ireland BSS to predict bike availability in the next 5 and 60 minutes. The created 
application is a “spatio-temporal prediction system” based on the Auto-Regressive 
Integrated Moving Average (ARIMA) model. ARIMA model is another univariate time-
series forecasting model that can capture the seasonal trend. Yoon et al. [16] extended 
their ARIMA model by using different clustering methods to obtain the spatial 
correlation between stations; Voronoi region, K-Nearest Neighbour (KNN), and Linear 
Regression based method. Their attempt to use three different clustering methods were 
cumbersome as they delivered significantly similar error terms.  

Overall, the approaches mentioned above were unable to incorporate 
meteorological factors that influence the demand significantly. Gallop et al. explored the 
relationship between weather and bike users’ behaviour. It has conclusively been shown 
that temperature is mainly a significant factor [17]–[19]. Additionally, precipitation, high 
humidity, high wind speed, and snow are negatively correlated with Bikesharing 
demand [17], [19], [20] 
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 Machine learning methods are multivariate methods, and one of their 
advantages is that they allow the addition of meteorological data as predictor variables, 
thus capturing the complexity of the demand problem. Ensemble learning and Neural 
Network (NN) are currently the most prevalent methods for investigating bikes 
availability and flow. Gradient Boosting Regression Tree (GBRT) and Random Forest 
(RF) are the most adopted ensemble learning methods in predicting clustering-based or 
station-based short-term and long-term demand. In station-based prediction, machine 
learning algorithms have shown to outperform linear models  [21], [22]. 

Li et al. [23] conducted a cluster-based prediction and integrated the weather 
information into their data. First, they utilised a bipartite clustering algorithm as a 
geographical clustering method to account for the correlation between stations; then, 
they used GBRT to predict the global lending amount of bikes in the next hour. Finally, 
a multi-similarity-based inference model predicted the rent proportion across clusters 
and the inter-cluster transition. Their baseline method included historical average (HA), 
ARMA model, a hierarchical prediction based on K-Nearest Neighbour (HP-KNN), and 
a uniform geographical grid clustering (GC), which GBRT showed outperformance over 
them with plausible results for anomalous periods.  

Some researchers adopted the hierarchical demand prediction method, where 
they either predicted the demand from a global level, i.e., the system demand, to a 
cluster-level, or from a cluster-level to station-level [24], [25].  Liu et al. [25] predicted the 
demand before and after the expansion of CitiBike, New York Bikesharing system. They 
utilised a Bi-Clustering method using the point-of-interests (POIs) and Voronoi Regions 
extracted from Google Map API and taxi trips records. POIs were employed to distribute 
the demand and the Voronoi region to divide the system into service areas, i.e., 
functional zones (FZ). Their data included trip distance preference, zone-to-zone 
preference, and zone characteristics. As their baseline, they used RF, KNN regression, 
NN, and GBRT for station-level prediction, and FZ+GBRT for their hierarchical demand 
prediction. They firstly predicted the functional zones demand and distributed it 
considering the Voronoi region POI structure to each station. Their proposed FZ+RF 
model and FZ+GBRT baseline model both have shown smaller error terms, with FZ+RF 
hierarchical model outperforming them.  

Yang et al. [26] predicted the total lending amount of station clusters in the next 
hour and compared the performance of linear and non-linear prediction models, namely 
Ordinary Least Squared (OLS), Poisson Regression, Regression Tree (CART), and 
Gradient Lifting Tree (GBRT). They introduced a new clustering method; the bottom-up 
hierarchical clustering method, which considers spatial constraints, and examined their 
models on three selected clusters regarding their accuracy and time consumption. The 
input data featured time and weather predictors as well as the lending amount in the 
previous hour, day, and week. The accuracies of their prediction models were relatively 
the same, with GBRT being the worst in terms of time consumption, mainly due to 
extensive parameter tuning. They concluded that the accuracy of their models improved 
by clustering compared to station-based models, and linear models are the optimal 
prediction models.  

Collectively, these studies relied on utilising and optimising different clustering 
methods while using similar baseline methods and machine learning algorithms for 
prediction with and without integrating weather information. Similarly, Hulot et al. [27] 
utilised different reduction methods but to optimise and reduce the complexity of 
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station-level demand prediction models. They were able to achieve better accuracy and 
reduction in computational time.  

Yang et al. [28] proposed a spatio-temporal mobility model to predict the hourly 
check-ins and check-outs on a station-level. Their proposed mobility model was 
implemented for check-in estimation, while RF was adopted for check-out estimation. 
Consequently, each model carried out different parameters. Their proposed model 
included the number of bikes checked in and out, the probability of bikes transiting from 
a particular station to another, and the cumulative distribution function (CDF) of trip 
duration between station pairs. In contrast, RF included time factors, meteorology, and 
real-time bike availability. Both models outperformed their baseline model, which 
included HA and ARMA. Moreover, their proposed mobility model established a 
foundation for further research in rebalancing methods for Bikesharing. 

 Ruffieux et al. [29] studied real-time short-term and long-term predictions of bikes 
and slots availability focusing on two machine learning algorithms; RF and 
Convolutional Neural Network (CNN). They proposed a system to collect open-source 
data and examined the algorithms’ accuracy using past and pseudo-live data. The data 
included the bike network, weather, and holiday information. RF showed promising 
results in short-term forecasting, i.e., not more than 6 hours. In comparison, CNN was 
better suited for long-term forecasting.  

Wang et al.  [30] carried out a station-based short-term prediction of the number 
of available bikes using a month-long data without the inclusion of meteorology or time 
factors. They developed two Recurrent Neural Network (RNN) models, Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), and used RF as their baseline 
method. Although LSTM and GRU exhibited relatively similar results, GRU was more 
accurate and faster to train. Additionally, their RF model did not include any complex 
hyperparameter tuning and showed favourable result with short time intervals.  

2.2.2 Conclusion 

Thus far, previous studies tended to focus on clustering optimisation in terms of 
clustering-based forecasting, in which some stations lose their individuality. 
Nevertheless, some of these studies neglected the weather data despite their significant 
effect on Bikesharing demand. On the other hand, the majority of station-based 
forecasting were centred around machine learning algorithms with no regard to 
traditional time series forecasting except ARMA, which was mainly utilised as a baseline 
method and has shown many drawbacks. Furthermore, studies that employed the 
ARIMA model neglected the seasonality effect on demand. 

This study examines and compares the ARIMA model considering the complex 
seasonality of Bikesharing demand and the three prominent machine learning 
algorithms: Random Forest, Gradient Boosting Regression Tree, and Neural Network, 
specifically Multilayer Perception (MLP). 
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Chapter 3 

3. Methodology 

This chapter is concerned with the methodological approach taken to achieve the 
objective of this study. A quantitative case-study approach was adopted to assess and 
determine the model that has the ability to deliver the most accurate prediction results 
of station-based check-ins and check-outs.  

An overview of the targeted Bikesharing system is given, followed by an outline 
of the data sets collected. Afterwards, data analysis and visualisation of the whole 
system and the chosen stations for this study is performed. Lastly, a detailed explanation 
of the models performed. 

3.1 Citi Bike 

The data collected for this study is the open-source trip data taken from Citi Bike 
Bikesharing system in New York. It is a privately owned Bikesharing system launched 
in May 2013 and named after its first sponsor Citi Bank and currently operated by Lyft. 
The system is operational in New York City boroughs as well as in Jersey City, New 
Jersey. Citi Bike is a docked system with more than 750 stations; they are continually 
adding more stations and expanding to other boroughs in New York City. Moreover, 
they recently added e-bikes to their operational fleet in New York City. 

 The Citi Bike interactive stations map is colour-coded in proportion with the 
number of docks available in each; where red indicates that there are no bikes available, 
yellow indicates relatively short supply, green indicates an abundance of bikes, and grey 
indicates inactive stations. Additionally, when a user selects a station, the map shows 
the number of docks and the number of bikes (classic or electric) available. [3] 

 Users firstly need to register, and they can either opt to become annual members 
(subscribers) or one-time users (customers) with a single-trip pass or a day pass. Annual 
members can enjoy unlimited rides for the first 45 minutes with the additional cost of 
$0.15 per minute beyond the 45-minutes limit. Day passes include unlimited rides for 
the first 30 minutes with the additional cost of $4 per 15 minutes beyond the 30-minutes 
margin. [31] 

 Users have multiple options to start their rides, as following: 

1. Citi Bike mobile application 
2. Station kiosk 
3. Lyft mobile application 
4. Bike Key 

For the first three options, the users enter the single-use 5-digit code provided 
into the dock’s keypad to unlock a bike. In contrast, the bike key is simply inserted into 
the dock’s slot to unlock a bike. 
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The scope of this study focuses on trips made within New York City, specifically 
the Bronx, Brooklyn, Manhattan, and Queens. 

3.2  Data Collection 

The data sets collected for this study are the trip data sets from Citi Bike and New York 
City hourly weather data for the period between November 2018 and November 2019. 
The following subsections present the details of both data sets.  

3.2.1 Trip Data 

The trip data sets collected for this study are available through the Citi Bike website as 
downloadable zipped files of monthly trip data. Trip data between November 2018 and 
November 2019 of the city of New York were downloaded and unzipped. Preliminary 
inspection of the data showed that each row represents a trip and includes the following 
information: 

1. Trip duration (in seconds) 
2. Start time and date 
3. Stop time and date 
4. Start station name 
5. End station name 
6. Station ID 
7. Station latitude and longitude  
8. Bike ID 
9. User Type (Customer or Subscriber) 
10. Gender (0: Unknown; 1: Male; 2: Female) 
11. Year of birth 

Trips made by staff for inspection, from/to test stations, and trips less than 60 
seconds were removed by Citi Bike themselves. [32], [33] 

3.2.2  Weather Data 

The hourly weather data were obtained from a secondary source that provides historical 
weather data with different time aggregation; daily, hourly, or sub-hourly [34]. The same 
period used for the trip data was used to download the historical weather data for New 
York City, which are available as CSV (Comma-separated values) files.  

 The hourly weather data were downloaded in the US imperial system, and 
included the following information: 

1. Location 
2. Address 
3. Resolved Address 
4. Latitude 
5. Longitude 
6. Date time 
7. Info 
8. Id 
9. Name 
10. Cloud cover (percentage) 
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11. Minimum temperature (in Fahrenheit) 
12. Maximum temperature (in Fahrenheit) 
13. Temperature (in Fahrenheit) 
14. Heat index (in Fahrenheit) 
15. Wind chill (in Fahrenheit) 
16. Precipitation (in inches) 
17. Precipitation cover (percentage) 
18. Dew point (in Fahrenheit) 
19. Relative humidity (mean percentage) 
20. Visibility (in miles) 
21. Wind speed (miles per hour) 
22. Wind direction 
23. Weather type 
24. Snow depth (in inches) 
25. Sea level pressure (in millibars) 
26. Wind gust (miles per hour) 
27. Conditions 

Further descriptions and indication of each column are further discussed in 
section 3.3.2 and 3.5  below. 

3.3 Data Analysis 

This subsection begins by laying out the tools and software used to perform data pre-
processing and analysis. The architecture of data pre-processing is shown in Figure 3.1. 
Data pre-processing includes exploring, combining, and cleaning the data for further 
analysis and modelling.  

The first step in this process was to pre-process the weather data and extract the 
useful features needed for this study. After that, the trip data were pre-processed and 
split into check-in/out trips. Finally, the trip data set was aggregated on an hourly basis 
and merged with the weather data to extract the top 3 stations used for modelling.  

3.3.1 Software and Tools 

Python 3.0 was the programming language used to analyse the data. Python is a versatile 
and efficient language that is faster than the most common programming languages 
used in data science and analytics. It has a wide variety of well-developed libraries and 
frameworks and is fully supported for big data and machine learning. The libraries and 
modules used for this study are as follow: 

• Data analysis and manipulation: Pandas 

• Numerical computation: NumPy 

• Visualisation and plotting: Matplotlib, Seaborn, Missingno 

• Date and time manipulation: Datetime 

• Missing data methods: Fancyimpute 

• Geospatial data: GeoPandas, Shapely 

• Holidays: Holidays  

• Machine learning: Scikit-Learn, TensorFlow, Keras 

• Statistical models: Statsmodels, Pmdarima 

• Optimisation: Hyperopt 
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Google Cloud Platform (GCP) was used throughout this study, specifically 
Cloud Storage and AI Platform. A bucket was created in Cloud Storage to upload the 
data files and later save the processed data for further analysis and modelling. A 
notebook instance was created in AI Platform with the following specifications: 

• Environment: Debian 10 operating system 

• Machine configuration: 8 vCPUs, 64 RAM 

Jupyter notebook was the integrated development environment (IDE) used to 
perform the analysis. In addition, Tableau was used for visualisation to extract insights 
into the trip data post-cleaning using a Windows Laptop with an i5 processor and 8 GB 
RAM. 

 

Figure 3.1 Data Pre-processing Framework 

3.3.2 Data Pre-processing 

The data sets obtained were broken into multiple files; 13 files for trip data and two files 
for weather data. Therefore, the first step was to concatenate the files before data 
cleaning. Some of the common data problems are missing data, duplicate rows, and 
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column types. Both data sets were checked for these problems, with a slight variation 
between the two data sets given in their respective subsection. 

3.3.2.1 Weather Data  

The architecture of cleaning weather data is given in Figure 3.2.  

 

Figure 3.2 Weather Data Cleaning Architecture 

Data Concatenation 
The weather data consisted of two files, which were easily loaded onto two data frames 
and concatenated onto one data frame. The data frame consisted of 10945 rows and 27 
columns.  

Columns Removal 
Unnecessary columns were removed upon preliminary inspection of the columns, 
namely, location, resolved address, wind direction, latitude, longitude, name, sea level 
pressure, id, info, minimum and maximum temperature, wind gust, cloud cover, and 
lastly, snow depth.  

The remaining columns are defined as following [35]: 
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2. Date-time: refers to the date and hour 
3. Temperature: the air temperature in that time period in Fahrenheit 
4. Heat Index: the apparent temperature in Fahrenheit, which is a combination of 

air temperature and relative humidity. Generally, It is calculated when the air 
temperature reaches 80°F or above, and relative humidity reaches 40% or above 
[36] 

5. Wind chill: the apparent temperature in Fahrenheit, which is a combination of 
air temperature and wind speed. Generally, It is calculated when the air 
temperature reaches 40°F or below, and wind speed is five mph or higher [37]. 

6. Precipitation: the amount of any form of precipitation (drizzle, rain, sleet, snow, 
ice pellets, graupel, or hail) fell or predicted to fall in the respective time period 
in inches 

7. Precipitation cover: the probability of precipitation in percentage 
8. Dew point: the air temperature in Fahrenheit at which a relative humidity of 

100% is achieved [38] 
9. Relative humidity: the ratio in  
10. Visibility: the percentage of present water vapour to maximum water vapour 

given at the same temperature.  
11. Weather type & Conditions: the state of the weather in the respective time period, 

weather type is more detailed and elaborate than conditions.  

The date-time was set as an index to ensure a continuous and ordered time series 
when extracting additional features and checking for missing data.  

Feature Extraction 
Upon preliminary inspection of missing data, heat index and wind chill showed the 
highest missing values combined. Heat index and wind chill both refer to the apparent 
temperature with respect to either relative humidity or wind speed. Therefore, a new 
feature, apparent temperature, was created combining the two features using more 
precise equations for different temperatures, relative humidity, or wind speed 
conditions. 

If the temperature is less than or equal to 50°F and wind speed is less than or 
equal to 3 mph, Equation 3.1 is used, indicating wind chill. Calculating the heat index is 
more complicated than wind chill; two equations are used with some adjustment made 
accordingly with the temperature and relative humidity measurements. Equation 3.2 is 
used when the temperature is higher than 80°F. If the calculated heat index is higher 
than 80°F, then Equation 3.3 is used instead. Equation 3.4 is subtracted from Equation 
3.3 when Relative humidity is less than 13%, and the temperature is between 80°F and 
120°F. On the other hand, if Relative humidity is more than 85%, and the temperature is 
between 80°F and 87°F, Equation 3.5 is added to Equation 3.3. [39], [40]  

 If the temperature, relative humidity, and wind speed did not meet any of the 
criteria collectively, the apparent temperature is equal to the air temperature.  

 

𝑊𝑖𝑛𝑑 𝐶ℎ𝑖𝑙𝑙 = 35.74 + (0.6215 × 𝑇) − (35.75 × 𝑊𝑖𝑛𝑑0.16) + (0.4275 × 𝑇 × 𝑊𝑖𝑛𝑑0.16) 

Equation 3.1 Wind Chill [39] 

𝐻𝑒𝑎𝑡 𝐼𝑛𝑑𝑒𝑥 = 0.5 × (𝑇 + 61.0 + ((𝑇 − 68.0) × 1.2) + (𝑅𝐻 + 0.094)) 
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Equation 3.2 Heat Index 1 [40]  

𝐻𝑒𝑎𝑡 𝐼𝑛𝑑𝑒𝑥 = −42.379 + 2.0401523 × 𝑇 + 10.14333127 × 𝑅𝐻 − 0.22475541 × 𝑇 × 𝑅𝐻
− 0.00683783 × 𝑇2 − 0.05481717 × 𝑅𝐻2 + 0.00122874 × 𝑇2 × 𝑅𝐻
+ 0.00085282 × 𝑇 × 𝑅𝐻2 − 0.00000199 × 𝑇2 × 𝑅𝐻2 

Equation 3.3 Heat Index 2 [40] 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 =
13 − 𝑅𝐻

4
× √

17 − |𝑇 − 95|

17
 

Equation 3.4 Adjustment 1 [40] 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 =
𝑅𝐻 − 85

10
×

87 − 𝑇

5
 

Equation 3.5 Adjustment 2 [40] 

After estimating the apparent temperature, wind chill and heat index columns 
were comparable to the estimated values, and thus removed from the dataset.  

Missing Data 
Missing weather data can be due to faulty weather sensors during data acquisition, data 
loss, or human error, causing deletion by mistake. Moreover, missing values can be 
categorised into three different categories; missing completely at random (MCAR), 
missing at random (MAR), or missing not at random (MNAR), which implies the 
missingness of the variable in relation to the variable itself or other variables [41]. All the 
weather information is equally essential to forecast the demand; therefore, missing data 
techniques were applied to handle missing data.  

The weather type column values were missing when the condition column value 
indicated ‘clear’ weather, which implied that there is a systematic relationship between 
the missingness of weather type values and the observed condition values, but not the 
weather type values itself satisfying the condition of MAR. Consequently, all missing 
data in the weather type column were set to ‘clear.’  

The remaining columns with missing data are of a numerical type. Analysis of 
the amount and randomness of the missing data were firstly carried out, then finding 
the best missing data technique to acquire accurate measurements were employed.  

Figure 3.3 is a graphical analysis of how complete the data is. There were 10945 
rows, of which 242 (2.21%) missing values of wind speed, 28 (0.26%) missing values of 
visibility, and 1 (0.009%) missing values of dew point and relative humidity each. To 
further understand the missingness of the data, the location of the missing data was 
visualised over time since the weather is a time-series data, as seen in Figure 3.4. Most 
missing values were during October 2018 and October 2019. The sparkline on the side 
summarised the nullity in the data. The number at the bottom is the total number of 
columns (11), and the number in the middle (8) is the total number of valid values in a 
row. Hence the maximum number of missing values in a row was 3. The graph also 
indicated that visibility and wind speed were MCAR; missingness had no relationship 
between any values. At the same time, the other missing values might correlate in terms 
of missingness. Figure 3.5 described the correlation between the missing values, and 
Figure 3.6 displayed the pattern of missingness. They both confirmed that there is a 



 
 

18 
 

strong correlation between dew point and relative humidity; thus, dew point and 
relative humidity were MAR. 

 

Figure 3.3 Completeness of Weather Data 

 

Figure 3.4 Missingness of Weather Data 
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Figure 3.5 Weather Data Dendrogram 

 

Figure 3.6 Missing Data Heat Map 

Notable examples of missing data techniques are imputation, e.g., mean 
imputation or regression imputation, and model-based methods [41]. Three methods 
were used: mean imputation, KNN, and multivariate imputations by chained equations 
(MICE). Mean imputation substitute the missing values with the mean of the non-null 
values. KNN selects the K nearest non-null data points and substitutes the missing 
values with their average. MICE perform multiple regression over a random sample of 
data and substitute the missing value with their average. Overall, MICE exhibits 
robustness over the other imputation techniques, which is most suitable for MAR data 
[42].  
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An OLS model of the non-null values was set as a baseline to evaluate the 
outcome of the three methods for all four columns, respectively. Through the different 
variables, the three methods have the same r-squared adjusted, but by graphically 
examining the density plot of each (see Appendix), KNN has shown the closet resembles 
the shape of the original data. As a result, KNN was used to impute all the missing data.  

Saving Data 
The weather data was updated with the imputed data using the KNN method and 
rechecked for any missing data to ensure correct imputation. Then, the index was 
reverted into a column and reset. Lastly, the data was saved into a CSV file.  

3.3.2.2 Trip Data 

The architecture of cleaning and pre-processing trip data is given in Figure 3.7.  

 

Figure 3.7 Trip Data Cleaning and Pre-processing Architecture 

Data Concatenation 
The trip data consisted of multiple files; loading each file separately into a data frame is 
tedious. Globbing is the process of pattern matching for file names using a wild card, ‘*’ 
or ‘?’. Hence, the trip data were matched with *.csv using globbing, returning a list of 
the trip files names. The list was then concatenated to a data frame and saved as a new 
CSV file.  

Missing Data 
The trip data consisted of 21873141 rows, of which 143 contained null values, as seen in 
Figure 3.8. The longitudes/latitudes of the null values were inconsistent and did not 
match with any of the current stations’ longitudes/latitudes, which indicated faulty 
entries. In conclusion, the rows with missing values only accounted for 0.0006%, which 
is insignificant and were removed.  
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Figure 3.8 Trips Missing Data 

Trip Duration 
As per mentioned in Section 3.1  above, the first 45 minutes and 30 minutes of each ride 
are included for annual members and one-time users, respectively. Users are charged an 
additional cost for exceeding these limits. Therefore, an assumption has been made that 
users would not use the service for more than 2 hours as the cost increases exponentially.  

 Trips lasting longer than 2 hours could indicate a stolen or faulty bike or a bike 
that was not appropriately docked. Additionally, stations are distributed within a 2 
minutes bike ride [43]. Thus, trips that are less than 2 minutes could indicate an 
incomplete trip or the time it took the user to undock and dock the bike back.  

 The data were checked for trips that lasted more than 2 hours (7200 seconds) and 
less than 2 minutes (120 seconds). There were 59572 trips longer than 2 hours and 375661 
trips less than 2 minutes, approximately 2% of the data. These trips were considered 
anomalous and were removed.  

Data Types 
Data type is a set of values that define the classification of the data [44]. The data type 
should indicate the correct format of the values in each column. Accordingly, ensuring 
that columns are set to the correct data type is a crucial part of data cleaning to create an 
accurate model. For example, numeric columns can be strings or vice versa. 
Additionally, categorical data should be converted to ‘category’ data type, which in 
return, make the dataset smaller in memory and more uncomplicated to utilise in further 
analysis.  

 Figure 3.9 shows the data types of columns before cleaning. The first step in this 
process was to convert the start/end into date-time. Prior to converting gender and user 
type into ‘category,’ the gender numerical values were mapped to indicate their actual 
values. Finally, the start/end station name was converted to ‘category’ to save memory. 
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Figure 3.9 Trips Data Types  

Stations 
This step was adopted to assess the stations’ names and ids and their unique values. It 
also complemented the Trip Duration step. First, station information was gathered from 
multiple resources from 2017 till 2020 [45]–[47] and loaded as a separate data frame. 
Once the names and ids were extracted from the station data frame, they were compared 
with the names and ids in the trip data. The results of the comparison have shown that 
the naming of the stations may slightly differ over time in the station data but updated 
in the recent data and the trip data. Also, some stations have been removed or relocated, 
thus having a different longitude and latitude. Overall, these modifications did not affect 
the results of the analysis and modelling.  

 Lastly, trips with a duration of 2 minutes (120 seconds) were checked if they 
started and ended at the same station, which resulted in none.  

Boroughs 
This step was used to extract additional features from the data (borough) to ensure that 
the trip data obtained were within New York City only. Firstly, A shapefile of the 
boroughs’ boundaries was acquired [48]. Secondly, the unique values of the stations with 
their latitude/longitude were extracted from the trip data. A dictionary was created 
combining the information from the shapefile and the station data, which included each 
station id (key) and its distinctive borough (value).  

 New features were added to the trip data; start borough and end borough, 
mapping the information from start/end station columns. Start/end borough columns 
were checked for nullity. The end borough column contained 107 null values, which 
upon further investigation, revealed that those trips ended in New Jersey. Given that the 
sum was trivial, they were dropped.  

Saving Data 
The cleaned trip data with their newly added attributes were saved into a CSV file and 
further analysed in section 0 

3.3.2.3 Data Aggregation 

This process was repeated twice for hourly check-ins and check-outs trips separately. 
Prior to commencing the data aggregation, a ‘merge’ column was derived from the 
start/stop time column comprising the date and the hour only. An ‘hour’ column was 
then derived from the ‘merge’ column. Both columns were converted to date-time types. 
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The trip data were then grouped by start/end station id, merge, and user type columns 
and aggregated based on the ‘hour’ column. The resulting data frame was pivoted to get 
separate columns for customers and subscribers. Then, the null values, which indicated 
no users, were replaced by zero. 

 Time attributes were extracted from the resulting data frame. First, the month, 
day columns were created. The day column was mapped to show the name of the day 
instead of numbers. Once the day column was set, the weekend column was created, 
referring to whether the day was a weekend (Saturday and Sunday) or not. Then, a 
holiday column was added using the ‘holidays’ library to get New York City holidays. 
Afterwards, a working day column was created as well to indicate the day was neither 
a holiday nor a weekend. Lastly, a season column was added with respect to the official 
start and end dates of each season in the United States [49]. 

 Once all the time attributes were extracted, the weather data was loaded and 
prepared for merging. The weather information was already hourly based; therefore, 
only a ‘merge’ column was added to set for merging with the trip data. After merging, a 
‘count’ column was created, summing the values of customers and subscribers. Lastly, 
all the unnecessary columns were dropped. 

 Finally, the top 3 stations with the highest count of hourly demand in both 
datasets were extracted for modelling, as seen in Figure 3.11 and Figure 3.10. 

3.4 Data Description & Visualisation 

This section moves on to describe in greater detail the CitiBike Bikesharing system and 
the final data used for modelling. The following is considered under the umbrella term 
exploratory data analysis (EDA).  

3.4.1 Users 

Figure 3.12 presents the gender distribution across the system, and what can be clearly 
seen is the high percentage of male riders compared to females rides, almost three times 
more. It shows that men are more likely to use the service than women.  

The majority were between the ages of 25 and 35, yet high rates can also be 
noticed between the age of 35 up to 50 (Figure 3.13). It is also noted that men between 
the age of 35 and 42 tended to use the service more than women of the same age range, 
as seen in Figure 3.14 and Figure 3.15. The figures only show ages up to 75, but the actual 
data contained ages above 75 up to 135, which are considered outliers or inaccurate data. 
Nevertheless, the trips were legit; it may indicate that users were not willing to share 
their age.  

Approximately 90% of the users were subscribers; it can be deduced that most 
users opted to become members (Figure 3.16). What is striking in Figure 3.17 is the 

Figure 3.11 Top Check-outs Stations Figure 3.10 Top Check-ins Stations 
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general pattern of usage of different user types during the week. Subscribers used the 
service more during the weekday rather than on the weekends, whereas customers were 
more likely to use it on the weekends, concluding that subscribers are more likely to be 
employees or students.  

 

Figure 3.12 Gender Distribution 

 

Figure 3.13 Age Distribution 
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Figure 3.14 Age Distribution by Gender (Female) 

 

Figure 3.15 Age Distribution by Gender (Male) 

 

Figure 3.16 User Type Distribution 
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Figure 3.17 User Type Distribution (Weekday) 

3.4.2 Stations 

The location of the station is one of the main factors that influence the demand 
immensely [50]. Both the top 10 start and end stations are located in Manhattan, as seen 
in Figure 3.18 and Figure 3.19. Manhattan is the highest populated borough in New York 
City, which explains the high volume of demand and stations. They are located around 
a lot of touristic attractions, offices, and universities, thereby explaining the usage 
pattern of subscribers.  

Pershing Square North station is a good illustration with the highest demand for 
starting and ending trips. It is located in front of Grand Central Terminal, which is 
excellent evidence of bike-rail intermodality and potentially provides a solution for the 
last mile problem. It is also a key access point to historical and touristic attractions, 
restaurants, and shopping areas.  

E 17 & Broadway is the second-highest demand station for starting and ending 
trips as well. It is located next to the famous Union Square, a pedestrian plaza and park. 
It is also notable for its landmarks, green markets and businesses, and its attraction for 
street artists and protesters.  



 
 

27 
 

 

Figure 3.18 Top 10 Start Station Locations 

 

Figure 3.19 Top 10 End Station Location 

 By contrast, the bottom stations are located away from the central New York City, 
mostly in Queens and Brooklyn. All bottom stations in Brooklyn and Queens are located 
in the periphery of the system. Bressler station is the only station that is now closed, but 
the others are still existing as Citi Bike studies its expansion. (Figure 3.20 and Figure 3.21) 

Manhattan is highly packed with stations; therefore, it is understandable that 
some stations are more attractive than others, causing the closure of the least attractive. 
NYCBS Depot – Delancey, 58th St Depot, W 39 St & 9 Ave stations are currently closed. 
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On the other hand, University Pl & E 14 St station was relocated. (Figure 3.20 and Figure 
3.21) 

 

Figure 3.20 Bottom 10 Start Station Locations 

 

Figure 3.21 Bottom 10 End Station Location 

3.4.3 Trips 

As shown in Figure 3.22, the trip duration distribution is skewed to the right, with the 
mode being around 5 minutes. Trip durations spread from 2 minutes up to 120 minutes, 
which is explained by the data cleaning process. The highest density can be observed 
between 2 and 9 minutes. 
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Figure 3.22 Trip Duration Histogram 

Closer inspection of trip duration trend by months, Figure 3.23 shows that there 
has been a steady decline from November 2018 to January 2019, a gradual increase 
reaching its peak in June 2019, then it drops again from September 2019. The variability 
of trip duration is most likely attributed to weather conditions, as bike users tend to cycle 
more in warm conditions. Figure 3.24 confirms it; the same pattern can be seen, the 
gradual decline from January to February, then the continual growth reaching a peak in 
September.  

 

Figure 3.23 Trip Duration Trend (Monthly) 
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Figure 3.24 Monthly Trip Count 

Figure 3.25 and Figure 3.26 shows that there are two peak periods during the 
weekdays: 8 am and 5-6 pm, which are most likely influenced by the subscribers’ 
proportion and indicates work/education trips. 

 

Figure 3.25 Daily Trip Count – Start 
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Figure 3.26 Daily Trip Count – End 

Table 3.1 infers the trip duration statistical according to the user type. It shows 
that customers usually made longer trips than subscribers, and they have a larger 
standard deviation from the average. The percentage shows that they are not regular, 
and most likely used by tourists or on holiday. 

Finally, plotting the trip duration across different ages, it is clearly seen that users 
at a younger age (16-25) made longer trips than older users. What stands out is the sharp 
peak at age 50; they made two times longer trips than regular users between the age of 
35 and 70.  (Figure 3.27) 

  

Table 3.1 Trip Duration Summary 
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Figure 3.27 Average Trip Duration by Age 

3.4.4 Weather-Related 

Bike-sharing systems are highly affected by seasons. The summer has the highest trip 
count compared to other seasons, followed by spring then autumn (Figure 3.29). 
Customers were explicitly influenced by season when compared to subscribers, with a 
significantly smaller proportion in winter than subscribers (Figure 3.28).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.29 Trip Count by Seasons Figure 3.28 Trip Count by Season (User-Specific) 
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Figure 3.30 further confirms that the weather influenced the users’ usage 
patterns. The amount the trips made were remarkably high in clear weather condition 
and significantly decreased with the condition getting worse.  

 

Figure 3.30 Trip Count by Weather Condition 

Figure 3.31 reveals that there has been a steady rise in the number of trips made 
when the temperature increased. It shows that users preferred warmer temperatures 
than the colder temperatures. What strikes is the dramatic decline in the trip count when 
the temperature exceeded a certain degree. 
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Figure 3.31 Average Trip Count by Temperature 

Other weather conditions, when combined with the temperature, also greatly 
influence the trip count. When the relative humidity reached a certain degree outside 
the human comfort zone, the trip count decreased (Figure 3.32). Similarly, more trips 
were made when the wind speed was within a manageable level; then, they decreased 
as the wind speed increased (Figure 3.33).  

 

Figure 3.32 Average Trip Count by Relative Humidity 
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Figure 3.33 Average Trip Count by Wind Speed 

More visualisations are in the Appendix. 

3.5 Data Modelling 

This section presents the different models used in this study, their hyperparameter, and 
the different algorithms used to find the best set of hyperparameters, and finally, their 
implementation. 

3.5.1 Random Forest 

In 2001, Leo Breiman introduced the Random Forest algorithm [51]. It is an ensemble 
machine learning algorithm that uses Classification and Regression Trees (CARTs); 
hence it can be used either as a classification or a regression model. RF fits several trees 
by selecting a random subset (bootstrap sample) of the predictors from the original data 
and outputs a classification or a regression prediction. The final output depends on the 
original problem definition, whether it is a classification or a regression problem; it is 
either the mode of the classes for classification or the mean prediction for regression. RF 
is less prone to overfitting due to the Law of Large Numbers (LLN) [51], as a result of 
training multiple trees simultaneously. This theorem states that the output from multiple 
training is more likely to be close to the expected value and thus obtaining a smaller 
variance compared to an individual model. 

 The data used for training an RF model do not require normalisation or pre-
processing; the latter depends on the programming language and library used. The 
number of trees trained is a hyperparameter that can be tuned to obtain an optimal 
model. Further hyperparameters are discussed in subsection 3.5.5  

3.5.2 Gradient Boosting Regression Tree 

Gradient Boosting Regression tree is another ensemble machine learning algorithm 
based on the work of Leo Breiman and developed by Friedman [52]–[54]. It can be used for 
both classification and regression problems. It behaves similar to RF in the manner of 
fitting multiple trees, but it instead fits them in a sequential manner. The trees in 
Gradient Boosting are considered weak learners individually, and it builds a robust 
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model by trying to minimise the errors of the previous trees each time a tree is added. 
Thus, attributing to a longer training time than RF. 

 Similarly, the training data does not require normalisation or pre-processing; the 
latter also depends on the library used. GBRT has fewer hyperparameters than RF 
involved in tuning. Further details on hyperparameter optimisation supplied in 
subsection 3.5.5  

3.5.3 Artificial Neural Network 

Artificial Neural Networks (ANNs) are computational models that try to replicate the 
way the human brain process information. ANN consists of multiple neurons, which are 
the processing units and interconnected by nodes. A simple of ANN consists of a single 
neuron 𝑖 (also called Perceptron) that receives the sum of multiplication of n inputs 
(𝑥1, 𝑥2, … , 𝑥𝑛) by their weights (𝑤1, 𝑤2, … , 𝑤𝑛), in which a bias is added, then an 
activation function is applied to get a single output, as seen in Equation 3.6 and Figure 
3.34. 

𝑓(𝑥) = 𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 

Equation 3.6 

Different ANNs have different topology according to the problem definition; 
consequently, the activation function to be used—further discussion of activation 
functions in subsection 3.5.3.2. 

 

Figure 3.34 ANN Example [55] 

3.5.3.1 Multilayer Perceptron (MLP) 

Multilayer Perceptrons (MLP) with Back Propagation (BP) learning algorithm is a kind 
of feedforward artificial neural network, also called a multilayer feedforward neural 
network. MLP consists of three layers: an input layer, a hidden layer, and an output 
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layer, all consisting of non-linear (linear for the output activation function in case of 
regression) activated neurons, where each layer only affects the layer on the right, hence 
the name feedforward. (Figure 3.35) [56] 

 

Figure 3.35 MLP Example [56] 

An MLP with a BP learning algorithm tries to minimise the cost function; 
obtaining a closer predicted value to actual value, by adjusting the initial weights used 
in the feedforward step by means of backpropagation.  

 

3.5.3.2 Activation functions 

Activation functions are used in neural networks to produce an output from the 
previous layer, which is used as an input for the second layer. The activation function 
used relies on the problem definition, whether it is a regression or a classification 
problem. 

The following activation functions were used in this thesis, which are the most 
popular ones used for a regression problem: 

• Linear; the output is not confined by any range. (Figure 3.36) 

𝑓(𝑥) = 𝑥, (−∞, ∞) 

• Rectified Linear Unit (ReLu): returns a positive output. (Figure 3.37) 

𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≤ 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

= max {0, 𝑥} 

• Softplus: a variation of ReLu, it is the smooth version of ReLu. (Figure 3.38) 

𝑓(𝑥) = ln(1 + 𝑒𝑥) 
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Figure 3.36 Linear Activation Function [57] 

 

Figure 3.37 ReLu Activation Function [58] 

 

Figure 3.38 Softplus Activation Function [59] 

3.5.4 Autoregressive Integrated Moving Average (ARIMA) 

Time series is a sequence of data that is recorded in a timely manner over regular 
intervals. Time series data have different features that might not all be present, such as 
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trend, seasonality, and cyclicality. A trend is an increase or decrease in values over time. 
Seasonality and cyclicality infer that the data have a pattern that either repeated with or 
without fixed intervals, respectively. Forecasting a time series falls into two categories: 
univariate time series forecasting and multivariate time series forecasting. The former 
uses only the previous values of the time series, while the latter uses additional 
predictors (i.e., exogenous data) to forecast. 

ARIMA is a univariate time series model. It is also written as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), 
where 𝑝 is the order of the AR term, 𝑑 is the differencing order, and 𝑞 is the order of the 
MA term. The AR term describes the number of lags of the observations to use as 
predictors. The I term describes whether or not the data are differenced. The MA term 
describes the number of lags of the errors to use as predictors. [60]  

The general formula of an ARIMA model can be written as: 

∅(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 ,    {𝑍𝑡} ~ 𝑊𝑁(0, 𝜎2) 

Equation 3.7 ARIMA Equation [61] 

 Where ∅(𝑍) and 𝜃(𝑍) are polynomials of degrees 𝑝 and 𝑞, respectively. [61] 

 Data require differencing if it is non-stationary, which indicates that the data is a 
function of time. Various tests are conducted to test stationarity, including the 
Augmented Dickey-Fuller test (ADH Test) and Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS test) (trend stationary). ADF test checks if the data has a unit root, thus indicating 
a non-stationary data. While KPSS test checks if the data is stationary around a 
deterministic trend. [62] 

Bike-sharing demand is a stochastic phenomenon; therefore, it was necessary to 
perform both tests. The results have shown that the demand is difference stationary, thus 
differencing the data yielded stationary stochastic data—further results in Chapter 4. 

 Moreover, the autocorrelation (ACF) and partial autocorrelation (PACF) plots 
are used to find the order for the MA term and AR term, respectively. The ACF plot 
describes the correlation between the error of the lagged observations. The PACF plot 
describes the correlation between the time series and its lags. In this study, the 
AutoArima from the Pmdarima library was used at the end of the time series analysis to 
find the order of the ARIMA model with the lowest AIC, i.e. Akaike Information 
Criterion. AIC is a performance metric usually used for time series models; the lower the 
AIC, the better the model and its predictability power. 

 Traditionally, the ARIMA model is used for non-seasonal time series. In case the 
data exhibit defined seasonality, Seasonal ARIMA (SARIMA) is used instead. None the 
less, seasonal ARIMA does not perform well with long seasonality and cannot deal with 
multiple seasonality as well. Therefore, a modified version of the ARIMA is used, where 
the seasonality is transformed into Fourier terms. This modified version is referred to as 
ARIMAX, where the X refers to exogenous variables. The Fourier term, in this case, are 
the exogenous variables. [63], [64] 

 The data used in this study are hourly data. Hourly data exhibit three types of 
seasonality; yearly, weekly, and daily. The data used are only a year-long; therefore, only 
weekly and daily seasonality are considered. 
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3.5.5 Hyperparameter Optimisation 

Hyperparameter tuning is a fundamental part when training a model, as 
hyperparameters determine how the model is learning. For the machine learning models 
used in this study, these hyperparameters need to be initialised first before training. 
However, finding the optimal set of hyperparameters is a complicated task. 
Consequently, several time-saving optimisation algorithms are used to achieve better 
performance. An optimisation algorithm searches the hyperparameter space to find the 
best combination of hyperparameters to minimise the loss function of the validation set 
or cross-validation on the training set.  

 The most common optimisation algorithms are [65], [66]: 

• Grid Search: It is an exhaustive search algorithm, in which a model is built from 
all possible combinations of hyperparameters in the space of given to build a 
model to find the optimal set of hyperparameters.   

• Random Search: a model is built from different randomly selected combinations 
of hyperparameters from the space of given hyperparameters to find the optimal 
set. It is more favourable with high dimensionality space. 

• Bayesian Optimisation: similar to random, yet it searches the space rather 
intelligently. It constantly evaluates the selected hyperparameters based on the 
current model and updates them accordingly. 

Figure 3.39 shows how different optimisation algorithms behave in a given space of 
hyperparameters. 

 

 

Figure 3.39 Different Hyperparameter Optimisation Algorithms [66] 

 The following subsections provide details about the different hyperparameters 
tuned in each model. 

3.5.5.1 Random Forest Hyperparameters 

The initial hyperparameters were the default set by the library (sklearn), except for 
maximum depth (10), out-of-bag score (True), and evaluation function (Mean Absolute 
Error). The optimal set of hyperparameters was obtained using Bayesian Optimisation 
with 50 iterations, and they are [67]: 

• Number of estimators: ‘the number of trees in the forest’, with a range of (1, 2000) 
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• Maximum depth: ‘the maximum depth of the tree’, with a range of (1, 50) 

• Minimum samples split: ‘the minimum number of samples required to split an 
internal node’, with a range of (1, 10) 

• Minimum samples leaf: ‘The minimum number of samples required to be at a 
leaf node’, with a range of (1, 10) 

• Maximum features: ‘the number of features (variables) to consider when looking 
for the best split’, with a range of (1, 122), where the 122 are the number of 
variables after transformation. 

3.5.5.2 Gradient Boosting Hyperparameters 

The initial hyperparameters were the default set by the library (sklearn), except for 
maximum depth (10), and evaluation function (Mean Absolute Error). Unlike RF, GBRT 
has fewer hyperparameters. The hyperparameter optimisation was done using Bayesian 
Optimisation with 50 iterations, and they are [68]: 

• Number of estimators: ‘The number of boosting stages to perform ‘, with a range 
of (1, 2000) 

• Learning rate: ‘learning rate shrinks the contribution of each tree by 
learning_rate. There is a trade-off between learning_rate and n_estimators‘, with 
a range of (-3, 1) 

• Minimum samples split: ‘the minimum number of samples required to split an 
internal node’, with a range of (1, 10) 

• Maximum depth: ‘maximum depth of the individual regression estimators ‘, 
with a range of (0, 25) 

• Minimum samples leaf: ‘The minimum number of samples required to be at a 
leaf node’, with a range of (1, 10) 

• Maximum features: ‘the number of features (variables) to consider when looking 
for the best split’, with a range of (1, 122), where the 122 are the number of 
variables after transformation. 

3.5.5.3 Neural Network Hyperparameters 

In MLP, constructing a simple network aid in preventing overfitting, and thus the 
process of hyperparameter tuning made easier. It is recommended using Random Search 
to obtain the optimal parameters, but the space of the given hyperparameter is 
considerably small; therefore, Grid Search has been used. The MLP trained for each 
station consists of three layers, an input layer, a hidden layer, and an output layer. The 
hyperparameters tuned were optimised separately in the same order given, either 
separately or in pairs as stated: 

• Batch size and number of epochs: batch size is the number of samples drawn 
from the data, where the sample itself is referred to as a mini-batch. Neural 
networks use these mini-batches to update the weights. That being said, the 
batch size determines how many times the neural network update its weight per 
epoch. As a result, the neural network trains faster. The most common batch 
sizes used in the literature are 32, 64, 128, and 256, which were used in tuning 
this hyperparameter. On the other hand, an epoch is one cycle in which the 
whole data is trained. Usually, the number of epochs used are large to allow the 
network to learn. Nevertheless, when the obtained error of the validation data 
set gets higher, it means that the network is overfitting. Therefore, choosing the 
right number is crucial. The numbers selected for the epochs were 20, 30, and 50 
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since the MPL is simple. The two hyperparameters were optimised together, as 
they influence each other.  

• Optimisation algorithms: also called optimiser, it the algorithm the neural 
network uses to update its weight and reduce the error. The most common 
optimisers are Stochastic Gradient Descent (SGD), Root Mean Square prop 
(RMSprop) and Adaptive Moment Estimation (Adam). These optimisers were 
included in hyperparameter tunning, along with Adam with Nesterov 
momentum (Nadam) 

• Learning rate (LR) and momentum: Depending on the optimiser obtained from 
the previous step. The learning rate and momentum were tunned, as some 
optimisers include only the learning rate while other requires both parameters. 
The range for the learning rate was (0.001, 0.01, 0.1, 0.2, 0.3), while for the 
momentum was (0.0, 0.2,0.4,0.6,0.8,0.9) 

• Network weight initialisation: it describes how the initial weight was distributed 
between the different variables. The distributions included were, uniform, 
normal, LeCun uniform, Glorot uniform, Glorot normal, He normal, and He 
uniform. 

• Neuron activation function: as discussed previously, only the three functions 
above were used; ReLu, Softplus, and Linear. 

• Output activation function: ReLu, Softplus, and Linear. 

• The number of neurons: the number of neurons in the input layer, that yields a 
minimum error. 

The initial MLP was trained with 122 neurons in the input layer (equals the number 
of variables), the weights were initialised using a uniform distribution and ReLu as an 
activation function. The Linear activation function was used in the output layer.  

3.5.5.4 ARIMAX 

ARIMAX do not require any hyperparameters tuning. However, a stepwise search 
similar to Grid Search was used to find the best order of Fourier terms for daily and 
weekly seasonality using AutoArima to include in the final model. 

3.5.6 Implementation 

The hourly aggregated data set of each station was split into training and testing sets. 
For reasons of comparison between the different models, the data dating from Nov. 01, 
2018, till Oct. 31, 2019, was used as the training set and the first week of November (Nov. 
01, 2019, till Nov. 07, 2019) was used as the testing set.  

 Further inspection of each station data, 8 Ave & W 33 Station had zero demand 
for more than 24 hours consecutively, which may indicate closure for maintenance or 
inspection. Therefore, the following station with the highest hourly demand in both 
check-ins and check-out was used instead, as seen in Figure 3.11 and Figure 3.10. 

 The implementation of machine learning models followed the architecture seen 
in Figure 3.40. 

3.5.6.1 Data Transformation 

The dependent variables used for machine learning models were: 

1. Month: 1 – 12  
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2. Day: name of the weekday 
3. Hour: 0 – 24  
4. Weekend: 0 or 1, 1 indicating a weekend 
5. Season: name of the season 
6. Holiday: 0 or 1, 1 indicating a holiday 
7. Working day: 0 or 1, 1 indicating a working day 
8. Weather type: a detailed description of the weather condition in a given hour, 

contains 52 unique values, either a single or multiple types combined, such as 
partially cloudy, light rain, mist, light snow, heavy snow, lightning without 
thunder, thunderstorm, fog, etc. 

9. Conditions: a concise description of the weather condition in a given hour, 
contained only six unique values. The conditions were, clear, partially cloudy, 
‘rain, clear’, ‘rain, overcast’, overcast, and ‘rain, partially cloudy.’ 

10. Temperature  
11. Apparent temperature 
12. Relative humidity 
13. Precipitation 
14. Precipitation cover 
15. Dew point 
16. Visibility 
17. Wind speed  

The first nine variables are categorical, and the remaining are numerical. RF and 
GBRT do not necessarily require the data to be transformed. Nonetheless, using the 
sklearn library, this option is not provided; consequently, they cannot handle categorical 
data. On the other hand, NN requires the data to be normalised and transformed. 

As a result, the categorical variables were transformed using a one-hot encoder, and 
the numerical variables were normalised using standardisation. This process was 
repeated for three models. 
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Figure 3.40 Implementation Architecture 

3.5.7 Cross-Validation (CV) 

Cross-validation is usually necessary for hyperparameter tuning. The data is split into 
k-fold, where one fold is held back, and the model is trained using the seen data, the 
process is repeated k times. The data used is a time-series data; hence, the time-series 
split provided by the sklearn library was used. It splits the data at a fixed interval 
without shuffling. In this study, 3-fold cross-validation was used.  

3.5.8 Evaluation Metrics 

The model performance is evaluated using three categories: computational time, Mean 
Absolute Error (MAE), and Root Mean Squared Error (RMSE).  

3.5.8.1 Computational Time 

The time it took each algorithm to complete a model using the training set is the main 
criterion to be considered. However, the time consumed for hyperparameters 
optimisation is also considered. 

Loading Data 

Data 
Transformation 

Hyperparameters 
Tuning & CV 

Final Model 

Initial Model 
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3.5.8.2 Mean Absolute Error 

Mean absolute error (MAE) ‘measures the average magnitude of the errors in a set of 
predictions, without considering their direction’ [69]. 

  

𝑀𝐴𝐸 =
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𝑛
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3.5.8.3 Root Mean Squared Logarithmic Error 

Root mean squared logarithmic error (RMSLE) is a quadratic scoring that measures the 
average magnitude of the log of the error. 

𝑅𝑀𝑆𝐿𝐸 = √
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Chapter 4 

4. Results & Conclusion 

4.1 Results 

This section presents the results of the four models performed. GBRT and ARIMAX 
model tend to produce negative values; it is a common statistical practise to convert 
those negative values to zero in such case. Accordingly, the error terms were recalculated 
after obtaining the prediction dataset, which gave slightly different errors due to 
eliminating all the negative values.  

The following machine learning subsections are organised as follow.  

• The hyperparameter optimisation results 

• The error terms for the final model (training set) 

• The computational costs for training the initial models and final models, and time 
consumed to obtain the hyperparameters 

• Visualisations of the actual values and the predicted values.  

The ARIMAX model subsection is organised as follow. 

• ACF and PACF plot 

• Fourier terms result for daily and weekly seasonality 

• ARIMAX model and residual plots 

• ARIMAX error terms  

• ARIMAX computational time 

• Visualisations of the actual values and the predicted values 

4.1.1 Random Forest 

4.1.1.1 Hyperparameter Optimisation Results 

Table 4.1 RF Hyperparameters of Check-out Stations 

Station Name 
Max. 

Depth 
Max. 

Feature 

Min. 
Samples 

Leaf 

Min. 
Samples 

Split 

No. of 
Estimators 

Allen St & Stanton 
St 

22 
29 3 7 

1689 

W 41 St & 8 Ave 34 108 1 2 1595 

1 Ave & E 16 St. 45 45 1 7 460 
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Table 4.2 RF Hyperparameters of Check-in Stations 

Station Name 
Max. 

Depth 

Max. 
Feature 

Min. 
Samples 

Leaf 

Min. 
Samples 

Split 

No. of 
Estimators 

Allen St & Stanton 
St 

32 
113 1 8 

50 

1 Ave & E 16 St. 36 121 0 2 1686 

Broadway & E 14 St 39 23 0 6 621 

 

4.1.1.2 Final Model Error Terms 

Table 4.3 RF Model Errors of Check-out Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 3.0147 0.5749 

W 41 St & 8 Ave 4.8206 0.5788 

1 Ave & E 16 St. 3.8363 0.4346 
 

Table 4.4 RF Model Errors of Check-in Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.7024 0.5193 

1 Ave & E 16 St. 3.712 0.4533 

Broadway & E 14 St 3.5791 0.4064 

 

4.1.1.3 Computational Time 

Table 4.5 RF Computational Time of Check-out Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton 
St 

1 min 45 sec 10 min 11 sec 
39 sec 

W 41 St & 8 Ave 2 min 18 sec 13 min 16 sec 2 min 23 sec 

1 Ave & E 16 St. 1 min 59 sec 11 min 40 sec 17.6 sec 
 

Table 4.6 RF Computational Time of Check-in Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton St 2 min 19 sec 11 min 21 sec 3.94 sec 

1 Ave & E 16 St. 2 min 10 sec 18 min 11 sec 2 min 48 sec 

Broadway & E 14 St 2 min 20 sec 14 min 8 sec 14 sec 
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4.1.1.4 Visualisation 

The following are the plots of the check-out stations: 

 

Figure 4.1 RF Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.2 RF Predicted vs Actuals - W 41 St & 8 Ave 

 

Figure 4.3 RF Predicted vs Actuals - 1 Ave & E 16 St. 
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The following are the plots of the check-ins stations: 

 

Figure 4.4 RF Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.5 RF Predicted vs Actuals - 1 Ave & E 16 St. 

 

Figure 4.6 RF Predicted vs Actuals - Broadway & E 14 St 
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4.1.2 Gradient Boosting Regression Tree 

4.1.2.1 Hyperparameter Optimisation Results 

Table 4.7 GBRT Hyperparameters of Check-out Stations 

Station Name 
Learning 

Rate 
Max. 

Depth 
Max. 

Feature 

Min. 
Samples 

Leaf 

Min. 
Samples 

Split 

No. of 
Estimators 

Allen St & 
Stanton St 

0.7933 4 23 4 9 1257 

W 41 St & 8 
Ave 

0.0813 8 102 2 5 68 

1 Ave & E 16 
St. 

0.0922 16 22 2 4 1428 

 

Table 4.8 GBRT Hyperparameters of Check-in Stations 

Station Name 
Learning 

Rate 
Max. 

Depth 
Max. 

Feature 

Min. 
Samples 

Leaf 

Min. 
Samples 

Split 

No. of 
Estimators 

Allen St & 
Stanton St 

0.0533 6 70 1 7 1499 

1 Ave & E 16 
St. 

0.0522 10 120 2 6 144 

Broadway & E 
14 St 

0.1002 4 15 6 7 524 

 

4.1.2.2 Final Model Error Terms 

Table 4.9 GBRT Errors of Check-out Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.8095 0.5177 

W 41 St & 8 Ave 4.5753 0.5488 

1 Ave & E 16 St. 3.6239 0.4192 
 

Table 4.10 GBRT Errors of Check-in Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.5578 0.4917 

1 Ave & E 16 St. 3.8882 0.4857 

Broadway & E 14 St 3.0958 0.3436 
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4.1.2.3 Computational Time 

Table 4.11 GBRT Computational Time of Check-out Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton 
St 

41 min 38 sec 16 min 55 sec 
 

W 41 St & 8 Ave 44 min 3 sec 9 min 53 sec 4.48 sec 

1 Ave & E 16 St. 40 min 43 sec 16 min 26 sec 36.6 sec 
 

Table 4.12 GBRT Computational Time of Check-in Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton St 41 min 30 min 58 sec 42.9 sec 

1 Ave & E 16 St. 40 min 35 sec 11 min 8 sec 10.6 sec 

Broadway & E 14 St 42 min 30 sec 14 min 11 sec 2.56 sec 

 

4.1.2.4 Visualisation 

The following are the plots of the check-out stations: 

 

Figure 4.7 GBRT Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.8 GBRT Predicted vs Actuals - W 41 St & 8 Ave 
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Figure 4.9 GBRT Predicted vs Actuals - 1 Ave & E 16 St. 

The following are the plots of the check-in stations: 

 

Figure 4.10 GBRT Predicted vs Actuals – Allen St & Stanton 

 

Figure 4.11 GBRT Predicted vs Actuals – 1 Ave & E 16 St 
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Figure 4.12 GBRT Predicted vs Actuals – Broadway & E 14 St 

4.1.3 Neural Network (MLP) 

4.1.3.1 Hyperparameter Optimisation Results 

1. Batch size and epochs 
2. Optimisation algorithm 
3. Learning rate and momentum (LR. and/or mom.) 
4. Network weight initialisation 
5. Input activation function 
6. Output activation function 
7. Number of neurons 

Each number in the table corresponds to the mentioned hyperparameters, respectively. 

Table 4.13 MLP Hyperparameters of Check-out stations 

Station Name 1 2 3 4 5 6 7 

Allen St & 
Stanton St 

128, 
50 

RMSprop 
lr. 0.001 

mom. 0.2 
Normal ReLu Linear 91 

W 41 St & 8 
Ave 

64, 
30 

Adam Lr. 0.001 
LeCun 

uniform 
ReLu ReLu 122 

1 Ave & E 16 
St. 

32, 
30 

RMSprop 
lr. 0.001 

mom. 0.4 
Normal ReLu Softplus 61 

 

Table 4.14 MLP Hyperparameters of Check-in stations 

Station Name 1 2 3 4 5 6 7 

Allen St & Stanton 
St 

32, 
20 

Nadam 
Lr. 

0.001 
Glorot 

uniform 
ReLlu Linear 91 

1 Ave & E 16 St. 
32, 
20 

Nadam 
Lr. 

0.001 
Glorot 

uniform 
ReLlu ReLlu 122 

Broadway & E 14 
St 

32, 
20 

Adam 
Lr. 

0.001 
Glorot 

Normal 
ReLlu Linear 61 
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4.1.3.2 Final Model Error Terms 

Table 4.15 MLP Error of Check-out Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.6991 0.5237 

W 41 St & 8 Ave 4.0774 0.4956 

1 Ave & E 16 St. 3.4179 0.4021 
 

Table 4.16 MLP Error of Check-in Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.2846 0.4612 

1 Ave & E 16 St. 3.663 0.4719 

Broadway & E 14 St 2.8382 0.3225 

 

4.1.3.3 Computational Time 

Table 4.17 MLP Computational Time of Check-out Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton St 7.65 sec 3 min 16.8 sec 5.77 sec 

W 41 St & 8 Ave 7.95 sec 2 min 30.1 sec 8.78 sec 

1 Ave & E 16 St. 7.62 sec 4 min 29.6 sec 10.3 sec 
 

Table 4.18 MLP Computational Time of Check-in Stations 

Station Name Initial Model Hyperparameter Opt. Final Model 

Allen St & Stanton St 7 sec 2 min 54.8 sec 11.3 sec 

1 Ave & E 16 St. 7.63 sec 2 min 44.8 sec 7.39 sec 

Broadway & E 14 St 8.61 sec 2 min 50.9 sec 11.6 sec 
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4.1.3.4 Visualisation 

The following are the plots of the check-out stations: 

 

Figure 4.13 MLP Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.14 MLP Predicted vs Actuals - W 41 St & 8 Ave 

 

Figure 4.15 MLP Predicted vs Actuals - 1 Ave & E 16 St. 
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The following are the plots of the check-in stations: 

 

Figure 4.16 MLP Predicted vs Actuals – Allen St & Stanton St 

 

Figure 4.17 MLP Predicted vs Actuals – 1 Ave & E 16 St. 

 

Figure 4.18 MLP Predicted vs Actuals – Broadway & E 14 St 
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4.1.4  ARIMAX 

4.1.4.1 ADF & KPSS Results 

All the examined stations were stationary using the ADF test and non-stationary using 
the KPSS test indicating the series is difference stationary. The time-series data were 
differenced once to obtain stationarity.  

4.1.4.2 Fourier Terms Results 

Table 4.19 Fourier terms order of Check-out Stations 

Station Name Order of daily seasonality  Order of weekly seasonality  

Allen St & Stanton St 12 2 

W 41 St & 8 Ave 12  -  

1 Ave & E 16 St. 12 2 

 

Table 4.20 Fourier Terms Order of Check-in Stations 

Station Name Order of daily seasonality Order of weekly seasonality  

Allen St & Stanton St 12 2 

1 Ave & E 16 St. 12 3 

Broadway & E 14 St 11 3 

 

4.1.4.3 ARIMAX Model & Residual Plots 

The obtain the order of the ARIMA model, AutoArima was used with a maximum value 
of 3 for both 𝑞 and 𝑝. 

Table 4.21 ARIMAX Order of Check-out Stations 

Station Name Model order 

Allen St & Stanton St (0, 1, 2) 

W 41 St & 8 Ave (0, 1, 3) 

1 Ave & E 16 St. (0, 1, 2) 

 

Table 4.22 ARIMAX Order of Check-in Stations 

Station Name Model order 

Allen St & Stanton St (0, 1, 3) 

1 Ave & E 16 St. (0, 1, 3) 

Broadway & E 14 St (1, 1, 3) 
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4.1.4.4 ARIMAX Error Terms 

The error terms were recalculated again after obtaining the predictions. 

Table 4.23 ARIMAX Errors of Check-out Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 3.2898 0.5979 

W 41 St & 8 Ave 5.4595 0.7009 

1 Ave & E 16 St. 4.385 0.5278 
 

Table 4.24 ARIMAX Errors of Check-in Stations 

Station Name MAE RMSLE 

Allen St & Stanton St 2.8716 0.5479 

1 Ave & E 16 St. 3.9321 0.5436 

Broadway & E 14 St 3.8045 0.4275 

 

4.1.4.5 ARIMAX Computational Time 

Table 4.25 ARIMAX Computational Time of Check-out Stations 

Station Name Fourier Terms ARIMAX Predictions 

Allen St & Stanton St 2 h 8 min 59 sec 32.5 sec 1 h 27 min 47 min 

W 41 St & 8 Ave 1 h 54 min 7 sec 24.3 sec 1 h 11 min 38 sec 

1 Ave & E 16 St. 1 h 58 min 57 sec 28.4 sec 1 h 28 min 56 sec 
 

Table 4.26 ARIMAX Computational Time of Check-in Stations 

Station Name Fourier Terms ARIMAX Predictions 

Allen St & Stanton 
St 

1 h 56 min 27 sec 
28.5 sec 

1 h 21 min 25 sec 

1 Ave & E 16 St. 4 h 56 min 5 sec 57.2 sec 2 h 24 min 5 sec 

Broadway & E 14 St 2 h 48 min 23 sec 1 min 1 sec 32 min 35 sec  
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4.1.5 Visualisation 

The following are the plots of the check-out stations: 

 

Figure 4.19 ARIMAX Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.20 ARIMAX Predicted vs Actuals - W 41 St & 8 Ave 

 

Figure 4.21 ARIMAX Predicted vs Actuals - 1 Ave & E 16 St. 
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The following are the plots of the check-ins stations: 

 

Figure 4.22 ARIMAX Predicted vs Actuals - Allen St & Stanton St 

 

Figure 4.23 ARIMAX Predicted vs Actuals - 1 Ave & E 16 St. 

 

Figure 4.24 ARIMAX Predicted vs Actuals - Broadway & E 14 St 
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4.2 Findings & Discussion 

An initial objective of this study was to analyse the bike sharing system. This study 

confirms that the demand is affected by weather yet highly associated with time and 

seasons. These results seem to be consistent with other research which found that neural 

networks are of the highest performance when compared to ensemble models. It could 

be argued that the positive results were due to the ability of neural networks to find the 

relation between highly correlated variables. None the less, both random forest and 

gradient boosting regression tree are non-linear model, yet extracting the feature 

importance would positively contribute to better performance.  

Stochastic phenomena with complex and multiple seasonality are rather hard to 

model with traditional time series model, but the results obtained are encouraging. 

Hourly data exhibit yearly seasonality as well, but the data used was only a year long. It 

is more likely that the performance would improve with a more extended period. 

Besides, the weather information provided in the machine learning algorithms could 

suggest why these algorithms performed better. 

 

4.2.1 Comparison in Terms of Hyperparameters/parameters 

RF and GBRT have almost the same number of hyperparameters which makes it less 
complicated to tune. The hyperparameters were optimised using Bayesian Optimisation, 
which allowed for all the hyperparameters to be in the same search space. Nevertheless, 
the search builds a model from a randomly selected combination and try to optimise it. 
In some cases, the initial hand-selected model may perform better than the optimised 
one. Moreover, the need to repeat the optimisation or increase the number of iteration 
might be necessary to obtain the optimal combination. In one of the model, increasing 
the depth manually, enhanced the performance by two decimal points. The process had 
to be repeated up to three times in some cases.  

 On the other hand, neural networks have more complicated hyperparameters 
and require much expertise. The hyperparameters were being tuned in a step-wise 
manner using grid search. Therefore, it was challenging to acquire the optimal set; there 
is always the possibility of a different outcome when repeating the process. In addition, 
going a step back was needed at times. 

 ARIMAX has the least amount of parameters. AutoArima was set to a step-wise 
search similar to a grid search. The value of 𝑝 and 𝑞 provided were small to avoid a 
complex model. In addition, AutoArima indicates ‘inf’ next to orders that has a unit root 
close to 1 in order for it not be selected.  

4.2.2 Comparison in Terms of Computational Time 

RF models were relatively faster than its counterpart; GBRT, due to its parallel 
computation property, which can be seen when comparing the initial models. The 
accelerated performance was attributed by the ability of the RF model to build the trees 
simultaneously, where GBRT builds each tree based on performance the previous one. 
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ARIMAX models were the most computationally expensive algorithms. The 
multi-step prediction took twice as much to find the order of the two Fourier terms. 
Finding the order of the Fourier terms and the model itself, consumed more than training 
the other models collectively. None the less, machine learning algorithms have the 
advantage to predict all the values at once, unlike the multi-step model. The durations 
sometimes fluctuated due to the virtual machine, whether it is using its full CPU capacity 
or not; this problem was not faced with the other algorithms.  

 Thus far, regardless of the complexity of the MLP models, they were the fastest 
to train and tune.  

4.2.3 Comparison in Terms of Errors 

ARIMAX was the worst algorithm in all the stations. Nonetheless, the plots of predicted 
and actual values were closest to the pattern of usage in each station but shifted. 
Comparatively, MLP models had the best performance and the lowest error term in all 
model. Surprisingly, GBRT models had lower errors than RF models, especially after 
adjusting the negative values to zero. 

4.3 Conclusion & Further Research 

 This study is set to examine the bike sharing demand characteristics and compare 

the station-based machine learning algorithms to the traditional time series model 

ARIMA. This study has found that generally, neural networks have better performance. 

The findings also suggest that the traditional time-series model with the right modelling 

could predict the demand accurately. A key strength of the present study was the 

modelling of an ARIMA model with multiple seasonality for a bikesharing demand 

forecasting which lays the groundwork for future research into investigating the 

prediction of micro-mobility with multiple seasonality using traditional time series 

modelling.  

 This would be a fruitful area for further work in investigating time series model 

that deals with multiple seasonality in the transport sector, as much of research can be 

seen in microeconomic and the stock market.  

 A further study could assess how to expand these models to predict the flow of 

all stations simultaneously using the same micro-period or less, using the likes of 

bigQuery and other automation tools and techniques.  
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Appendix 

A. Further Visualisation 

 

Figure A.1 Wind Speed Density Plot 

 

Figure A.2 Dew Point Density Plot 
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Figure A.3 Relative Humidity Density Plot 

 

Figure A.4 Visibility Density Plot 
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Figure A.5 Day of the Week (Hourly) vs Trip Count  – Subscribers 

 

Figure A.6 Day of the Week (Hourly) vs Trip Count – Customers 
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Figure A.7 Start Stations by Demand Density 

 

Figure A.8 End Stations by Demand Density 
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Figure A.9 Top 10 Stations – Start 

 

Figure A.10 Top 10 Stations – End 
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Figure A.11 Bottom 10 Stations – Start 

 

Figure A.12 Bottom 10 Stations – End 
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Figure A.13 Daily Trip Count Distribution – Start 

 

Figure A.14 Daily Trip Count Distribution - End 
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Figure A.15 Daily Trip Count – Start (Subscribers) 

 

Figure A.16 Daily Trip Count – Start (Customers) 
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Figure A.17 Daily Trip Count – End (Subscribers) 

 

Figure A.18 Daily Trip Count – End (Customers) 
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Figure A.19 Weekly Count by Season (Subscribers) 

 

Figure A.20 Weekly Count by Season (Customers) 
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Figure A.21 Hourly Count by Season (Subscribers) 

 

Figure A.22 Hourly Count by Season (Customers) 


