
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Linear Equation Solvers on GPU
Architectures for Finite Element Methods in

Structural Mechanics

Peter Wauligmann

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Linear Equation Solvers on GPU
Architectures for Finite Element Methods in

Structural Mechanics

Lineare Gleichungslöser auf GPU
Architekturen für Finite-Elemente-Methoden

in der Strukturmechanik

Author: Peter Wauligmann

Supervisor: Univ.-Prof. Dr. Michael Bader

Advisors: Tobias Opel, M.Sc.

Hayden Liu Weng, M.Sc. (hons)

Submission Date: 15.04.2020

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.04.2020 Peter Wauligmann

Abstract

Many scientific computing applications rely on linear equation solvers for numerical
simulations. Moving away from traditional parallelization models, we investigate
possibilities to accelerate linear equation solvers by using hybrid architectures consisting
of CPUs and GPUs. The targeted equation systems originate from finite element method
simulations in structural mechanics performed by CalculiX. We review existing iterative
and direct solvers for shared memory and GPU parallelization. Iterative methods
cannot compete with direct strategies for the given benchmark matrices because of
stagnating convergence. Direct solvers are known to be memory demanding and thus a
block-wise offloading scheme was identified as the most promising approach to utilize
GPGPU.

Instead of developing a new solver we evaluate that PaStiX implements this strategy
very efficiently and performs well for relevant matrices. An in-depth analysis is
conducted to find bottlenecks and potential enhancements. A general weakness is
the amount of sequential and unaccelerated code before and after the factorization.
To reduce the effect of Amdahl’s law, those sections are extended with OpenMP and
CUDA. The PCI Express bus is the factorization’s bottleneck. Two optimizations are
presented to relieve it. Firstly, a mixed precision strategy that allows computation in
float instead of double and thus halves the amount of data to be sent. In total, this
method leads to 46% and 20% higher performance in pure CPU and hybrid mode.
Secondly, the effects of using pinned memory are analyzed. On average, the enhanced
bandwidth leads to 20% faster factorization but does not improve the total computation
time since allocating pinned memory is costly. For most matrices, an absolute speedup
is achieved when using the same memory range for 7 or more factorizations.

Finally, PaStiX is integrated into CalculiX and, in fact, reusing is not only possible for
pinned memory buffers but also for reordering permutations. This way, the scalable
numerical parts of PaStiX account for 66.1% instead of 26.8% of the computation time.
Previously, CalculiX used the CPU-based library PARDISO. Depending on the input
deck, the enhanced PaStiX solver runs between 2.6 and 12.7 times faster. Considering
the entire CalculiX application, an average speedup of 3.1 for the CPU and 4.4 for the
hybrid version is achieved based on the original implementation.

iii

Contents

1 Introduction 1

2 Fundamentals 3
2.1 Structural Mechanics and the Finite Element Method 3

2.1.1 Governing Equations . 3
2.1.2 Finite Element Method . 5
2.1.3 Solving Non-Linear Problems . 7

2.2 Sparse Matrices . 8
2.2.1 Coordinate Format (COO) . 9
2.2.2 Compressed Sparse Row Format (CSR) 9
2.2.3 Compressed Sparse Column Format (CSC) 9

2.3 Hardware Considerations . 10
2.3.1 Graphical Processing Units . 10
2.3.2 Amdahl’s Law . 11

2.4 Direct Methods for Solving Systems of Equations 12
2.4.1 Gaussian Elimination Algorithm and LU Decomposition 13
2.4.2 Cholesky and LDLT Decomposition 16
2.4.3 Sparsity and Reorderings . 17
2.4.4 Supernodal Methods and Trees . 21

2.5 Iterative Methods for Solving Systems of Equations 22
2.5.1 Matrix Splitting . 22
2.5.2 Preconditioning . 23
2.5.3 Krylov Subspace Methods and Preconditioned GMRES 24

3 Analysis and Related Work 26
3.1 Hardware Configuration . 26
3.2 Problem Sets . 27
3.3 CalculiX . 27

3.3.1 CalculiX’s Matrix Format . 29
3.4 Sparse Direct Solvers . 30

3.4.1 Accelerator Implementations . 31

iv

Contents

3.4.2 Hybrid Implementations . 32
3.5 Sparse Iterative Solvers . 33
3.6 PaStiX . 34

4 Mixed Precision in PaStiX 39
4.1 Single and Double Precision . 39
4.2 Half Precision . 43

5 Optimizations for PaStiX 46
5.1 Parameter Tuning . 46
5.2 Pinned Memory . 50
5.3 Parallel Matrix Preprocessing . 52

5.3.1 Parallel Permutation of a Matrix in CSC Format 53
5.3.2 Transpose of a Structurally Symmetric Matrix 54
5.3.3 Performance Evaluation . 56

5.4 GPU-Accelerated Iterative Refinement . 57

6 PaStiX Integration in CalculiX 61
6.1 Conversion of CalculiX’s Matrix Format 61
6.2 Reusing Matrix Patterns . 62

6.2.1 Reusiability Optimization . 63
6.3 Evaluation . 64

6.3.1 Amortized Performance of PaStiX 65
6.3.2 Total CalculiX Acceleration . 67

7 Conclusion 69
7.1 Future Work . 70

List of Figures 71

List of Tables 73

Bibliography 74

v

1 Introduction

Numerical simulation is the method behind many significant scientific and industrial
achievements. Possible application areas are meteorology, biology and engineering.
Most people are influenced by such simulations in their everyday life. In some cases,
this influence is very direct and obvious. A weather forecast, for example, is based
on numerical simulation and something that many people consult before planning
outdoor activities. In other domains the application is more subtle and therefore harder
to recognize. Designing a sophisticated car requires more than one type of simulation.
Experts in structural mechanics simulate the deformation behavior and operational
life span. Specialists in aerodynamics determine the optimal shape of the vehicle body
by performing computational fluid dynamics simulations and finally thermodynamic
engineers use simulations to adjust the heat flow inside the car’s engine.

The characteristic and goals of simulations vary based on the field of application.
One thing they have in common is that an analytical solution does not exist for most
problems and thus numerical approximation is the best way to assess the physical
situation without performing expensive experiments. Numerical algorithms work
on a discretization of the continuous problem, which is also called a mesh in this
context. In three-dimensional models those usually consist of cuboids, tetrahedrons
or hexahedrons. The objects in computational simulations have to follow the laws of
physics. These are expressed in partial differential equations (PDEs) and also depend
on the application domain. Laws of physics are inherently continuous and so are the
associated PDEs. Thus, based on the mesh discretization, the equations have to be
discretized likewise. The most popular discretization methods can be categorized into
finite difference, finite volume and finite element methods.

In this work we analyze structural mechanics simulations using finite element methods.
These usually require, in contrast to other discretization schemes, solving multiple
systems of equations. For typical geometries, one solving process requires the execution
of around 2 to 200 TFLOPs. In this context, 1 TFLOP stands for 1012 floating point
operations. This is usually the most compute intensive part of the whole simulation
process. To handle this load in reasonable time, a system that is able to perform multiple
TFLOPs per second is desirable. The traditional approach to reach high performance

1

1 Introduction

is to deploy a cluster system of multiple compute nodes that communicate with each
other in order to perform a joint simulation. In this work, however, we avoid distributed
memory parallelization and try to maximize the performance on a single node. To
elevate the computational capacity of a node, the central processing unit (CPU) can
be assisted by accelerator hardware. In this work, we analyze the acceleration of the
solving step for structural mechanics simulations using a graphical processing unit
(GPU).

Solving a linear system of equations can be done with direct or iterative methods.
Both approaches and other important fundamentals are introduced in chapter 2. In
chapter 3 we consider the hardware and benchmark data selected for this project and
evaluate existing direct and iterative solvers. We identify the direct solver PaStiX as the
most promising library for our purposes and subsequently develop a mixed precision
strategy for it in chapter 4. Chapter 5 introduces further individual optimizations to the
solver in order to prepare it for efficient and productive use in the simulation software
CalculiX. The integration into CalculiX and tailored optimizations are described in
chapter 6. Eventually, chapter 7 reviews the contributions of this thesis and discusses
possible future work.

2

2 Fundamentals

To understand the essence of this work, certain knowledge from different areas is
required. This chapter intends to assist the reader with an introduction into selected
topics. For more in-depth background knowledge, the reader can consult the mentioned
literature.

Section 2.1 introduces the governing equations for a basic example in structural me-
chanics. In section 2.2 sparse matrices and their most important storage schemes are
presented. Section 2.3 covers GPUs and the caveats when programming them. Finally,
the sections 2.4 and 2.5 introduce direct and iterative methods for solving linear systems
of equations.

2.1 Structural Mechanics and the Finite Element Method

Simulations in structural mechanics are performed in order to predict how a real object
performs under load. Depending on the problem formulation, the governing equations
can be linear or non-linear. This section briefly introduces the physical problem, its
discretization and how non-linearity is handled.

2.1.1 Governing Equations

The purpose of computational models in structural mechanics is to evaluate stresses
and deformations based on input geometry and forces. Because general methods for the
required techniques are too complex and not mandatory to understand the essentials of
this work, we only provide a brief introduction based on the simple 1D axially loaded
bar problem discussed in [Cha20] and visualized in figure 2.1.

The loaded bar model is parametrized with four variables:

1. The length of the bar L.

2. The cross section A.

3

2 Fundamentals

L

x RfWall

Figure 2.1: 1D axially loaded bar.

3. The loaded force R.

4. The Young’s modulus E, which describes the material’s stiffness.

Additionally we assume

• A constant cross section

• Linear elastic, isotropic, homogeneous material

• Centric load

Based on the balance of forces fWall = f (x) = R the stresses σ are

σ(x) =
f (x)

A
=

R
A

.

Due to Hooke’s Law, which states σ = Eε, the strain ε can be expressed as

ε(x) =
σ(x)

E
=

R
AE

.

Using the strain-displacement relations (ε(x) = δ(x)
x) the displacements inside the bar

are given by

δ(x) =
Rx
AE

.

Further, we need the equation in differential form, which is used in numerical methods.
By satisfying the equilibrium equation Aσ = A(σ + ∆σ), it follows that

A
dσ

dx
= 0 =⇒ A

dEε

dx
= 0.

This time, we can apply the strain-displacement relation in its differential form (ε = du
dx)

4

2 Fundamentals

leading to the final differential equation

AE
d2u
dx2 = 0

and its boundary conditions
u(0) = 0

σ(L) = 0 =⇒ AE
du
dx

∣∣∣∣
x=L

= R.

Based on this differentially derived equation, called the strong form, an equivalent weak
form of the equation can be arranged which is required for the finite element method.
We will not cover that step in this work, but motivated readers might want to consult
[Oña].

2.1.2 Finite Element Method

The finite element method (FEM) is a general protocol for approximating solutions
of partial differential equations (PDEs). The main concept is to subdivide a geometry
into many smaller elements that again consist of nodes. There are many different
implementations of the finite element method but most of them feature the following
characteristics:

1. Geometric Discretization: The continuous problem domain is transformed into
a discrete geometry, which is then further divided into elements consisting of
nodes.

2. Variational Method: Definition of basis and shape functions for element-wise
interpolation based on node values.

3. Algebraical Equation Solver: Solving of a system of equations that was derived
based on the PDEs, shape functions and initial values.

4. Post Processing: Error Analysis, possible adaptive refinement and highlighting of
key data.

All of the characteristics are already widely researched and the state-of-the-art tech-
niques for each of them have become very complex. To still provide an intuition for the
reader, we show how the FEM can be applied on the 1D axially loaded bar. A more
detailed explanation for this case is presented in [Ban07].

5

2 Fundamentals

h h h

N1 N2 N3 N4

Figure 2.2: Node partitioning of the axially loaded bar, inspired by [Ban07].

First, the geometry is divided into three elements and four nodes, resulting in the mesh
and basis functions Ni shown in figure 2.2. Based on the PDEs weak form∫ L

0
AE

du
dx

d(δu)
dx

dx = Rδu|x=L

we restructure the system of equations, so that it has the form

Ku = f

where u are the unknowns, K the stiffness matrix and f the right hand side containing
the loaded forces. K and f are defined as

Ki,j =
∫ L

0
AE

dNj

dx
dNi

dx
dx

fi = Nj R|x=L

where Ni is defined as the basis function of a node i. Each entry Ki,j represents an
interpolation of values between node i and j. This relation is symmetric for linear
models. If a node i does not have overlapping basis functions with a node j, the entry
Ki,j will be zero. For the example geometry the non-zero entries are K1,1, K1,2, K2,1, K2,2,
K2,3, K3,2, K3,3, K3,4, K4,3 and K4,4. Due to the nature of the linear basis functions, dNi

dx is
either 1

h or −1
h . Considering the boundary conditions

u(0) = 0 and AE
du
dx

∣∣∣∣
x=L

= R.

the system of linear equations Ku = f is

6

2 Fundamentals

AE
h

1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

 ·

0

u2

u3

u4

 =

0

0

0

R

 .

After obtaining the node-based displacements u, the element-based displacements and
stresses can be computed by interpolating over the node-values once more using their
basis functions.

It is interesting to note that the stiffness matrix in the example is identical to the one
that is obtained using an order one central differences scheme of the finite difference
method. Nevertheless, for more complex problems, the finite element method allows
more flexibility and is therefore the most popular discretization strategy in structural
mechanics.

2.1.3 Solving Non-Linear Problems

Non-linearity is naturally introduced by geometry and material [Rus15]. Moreover,
situations in which two objects make contact lead to heavily non-linear behavior.
According to [Rus15], contact is made in the following cases:

1. A body approaches a rigid surface and which results in its deformation.

2. Two bodies approach and subsequently deform each other.

3. Two separated zones of one body touch.

In most cases, non-linear equations cannot be solved directly and the iterative Newton-
Raphson method is applied to solve such an equation f (x) = 0. The iteration formula
is

xi+1 = xi −
f (xi)

f ′(xi)

for one variable and

xi+1 = xi −
(

d f (x)
dx

∣∣∣∣
x=xi

)−1

f (xi) = xi − KT
−1 f (x)

7

2 Fundamentals

for multiple variables. KT is the tangential stiffness matrix of the finite element method.
Since determining the inverse of KT is not feasible, the system

KT∆x = − f

is solved for ∆x every iteration where ∆x = xi+1 − xi. This solving step of a system of
linear equations is the process we want to accelerate in this work. More information on
non-linearity in structural mechanics can be found in [Rus15].

2.2 Sparse Matrices

Sparse matrices are matrices that contain many entries ai,j = 0. They often emerge
when dealing with discretized geometries. Those could be interpreted as graphs with
coordinates. And just like adjacency matrices can represent a graph, we can arrange
matrices to describe the influence of one discrete element on another. Since many
elements only influence their direct neighbors, most of the matrix’s entries are zero.
Storing such matrices naively would require an immense amount of memory because
the number of entries scales quadratically with the number of elements. Fortunately,
only the non-zero entries have to be stored, together with a mapping that allows to
identify each entry’s row and column. Many different storing strategies exist and every
application uses the one that is optimal for their requirements. They differ in memory
consumption and the order in which the values are stored in memory. In this section we
introduce several storage schemes that are relevant for this work. More formats can be
found in [Saa03]. To facilitate the reader’s comprehension we will provide conversions
of the matrix in equation (2.1) for each of the presented storage schemes.

A =

1 0 4 0 0 6

0 0 0 9 0 0

5 0 2 0 0 0

0 7 0 3 0 0

0 0 0 0 10 0

8 0 0 0 0 0

(2.1)

m = n = 6 nnz = 10

8

2 Fundamentals

2.2.1 Coordinate Format (COO)

The coordinate representation of a sparse matrix is the most intuitive way to describe a
sparse matrix. Each non-zero value is stored in combination with its row m and column
n. The required memory is given by 3 · nnz.

Table 2.1: Matrix of equation (2.1) in coordinate format

rows 1 3 6 4 1 3 2 4 5 1
cols 1 1 1 2 3 3 4 4 5 6

values 1 5 8 7 4 2 9 3 10 6

2.2.2 Compressed Sparse Row Format (CSR)

Like the coordinate format, the compressed sparse row format contains the associated
row for each value. However, instead of storing all the column indices, only offsets to
the first value in each row are provided. The values have to be in row-major order. The
required memory is given by 2 · nnz + m + 1.

Table 2.2: Matrix of equation (2.1) in CSR format

rowptr 1 4 5 7 9 10 11
cols 1 3 6 4 1 3 2 4 5 6

values 1 4 6 9 5 2 7 3 10 8

2.2.3 Compressed Sparse Column Format (CSC)

The compressed sparse column format is closely related to the compressed sparse
rows format. The values are stored in column-major order. Instead of pointers to the
beginning of each row, it stores pointers to the beginning of each column. The required
memory is given by 2 · nnz + n + 1.

Table 2.3: Matrix of equation (2.1) in CSC format

rows 1 3 6 4 1 3 2 4 5 6
colptr 1 4 5 7 9 10 11
values 1 5 8 7 4 2 9 3 10 6

9

2 Fundamentals

2.3 Hardware Considerations

2.3.1 Graphical Processing Units

Graphical processing units (GPUs) were invented in the late 90s [McC10]. Whilst
early models contained specialized processing units for rendering and projections,
later models introduced more versatile compute units that allowed general purpose
computation. With the introduction of CUDA, a programming interface for NVIDIA
devices, general purpose computing on graphical processing units (GPGPU) became
popular [McC10]. The sheer number of compute units, called CUDA cores for NVIDIA
devices, provides massive parallelism and performance. Due to the lack of individual
scheduling units, multiple cores are forced to perform the same operation in each cycle.
In Flynn’s taxonomy, the parallelization model of modern GPUs is classified as “Single
Instruction Multiple Data” (SIMD). In the past, there have been vector processor that
followed the SIMD model but they have not been successful for long. GPUs, however,
became an integral part of modern computer architectures for scientific computing.

The performance progression of CPUs has been described by Moore’s law [Mac11] for
over 50 years. It says that every two years, for the same cost, the number of transistors
on a CPU chip doubles. The increase in clock frequency stagnated already around
2005 because heat production and energy consumption became too high. That is why
the additional transistors were used to put multiple cores on one chip to increase the
performance through multi-threading. Over the last decade, experts have predicted
and finally announced that Moore’s law is no longer valid [Wal16]. CPU manufacturers
are not able to keep up the pace as transistors cannot become much smaller with
the current technology. This progression favors GPUs because they can host far more
computing units than CPUs. This has been the reason why modern GPUs perform more
floating point operations per second (FLOP/s) than CPUs. Nvidia’s current flagship
card, Tesla V100, contains 2560 CUDA cores [NVI17] and a pricewise comparable
Intel Xeon 8280 contains 28 cores with 2 compute units each [Cor19b]. Of course
one has to consider that the CPU cores can perform vector instructions on 8 double
precision values simultaneously at a much higher clock frequency. Nevertheless, the
sheer number of CUDA cores outperform the CPU in theoretical peak performance.
This performance advantage remains only if developers are able to write highly parallel
applications, which is far more difficult considering the SIMD nature of GPUs. To
support the platform developers who are facing this challenge, CPU and GPU vendors
offer optimized libraries for standard algorithms. These can be BLAS libraries (Intel
MKL, cuBLAS) or domain specialized solutions (cuDNN, MIOpen).

10

2 Fundamentals

In a classical CPU+GPU architecture, one CPU is connected to one GPU via PCI Express
[Wil13]. The GPU has its own memory and address range. The classical architecture
can be extended by additional GPUs. Unfortunately, the PCI Express connection is
not able to keep up with the main and device memory. Thus, it tends to become a
performance bottleneck for applications that cannot avoid frequent communication
between CPU and GPU.

Table 2.4: Comparison of different memory types [Shi19; Aja09; NVI17].

Bandwidth in GB/s
DDR4 60+

PCI Express 3.0 16
PCI Express 4.0 32
GPU’s HBM2 900

2.3.2 Amdahl’s Law

Another important consideration when developing a GPU application concerns Am-
dahl’s Law. A GPU can never fully replace a CPU because it lacks the ability to
reasonably host an ordinary operation system. Therefore a hybrid implementation that
benefits from the strength of each processing unit is necessary to achieve convincing
performance. Ideally, CPU and GPU are both fully occupied during the execution of
the application. Otherwise Amdahl’s law becomes relevant:

S(f , p) =
1

f + 1− f
p

(2.2)

Amdahl’s law (eq. 2.2) gives an upper bound on speedup S depending on the number
of processors p and the fraction of sequential parts f in an application [HM08]. Given in-
finite resources and perfect parallelization (limp→∞), Amdahl’s law results in a speedup
of 1

f . The law is usually applied to shared or distributed memory parallelizations but
can naturally also cover implementations for accelerators.

We consider an example in which a program is accelerated by a GPU. The CPU’s
theoretical peak performance of 1 TFLOP/s are complemented by the GPU’s 7 TFLOP/s.
We assume that only the numerical parts of the application can be parallelized and the

11

2 Fundamentals

initialization and finalization cannot. For the CPU version, the numerical part accounts
for 16 seconds. The initialization and finalization both require 2 seconds, so that in
total 80% of the program can be accelerated by the GPU. Applying Amdahl’s law will
let us determine an upper bound for the speedup of an hybrid implementation.

f =
2 + 2

20
= 0.2 ∧ p =

1 + 7
1

⇒ S(0.2, 8) =
1

0.2 + 0.8
8

=
10
3

= 3.33 (2.3)

Equation (2.3) shows that a perfect speedup of 8 for the computational part results in a
total speedup of 10

3 = 3.33. This illustrates that even though the GPU offers tremendous
performance, the overall speedup will be mediocre if the parts without acceleration are
higher than a few percent. One of the main considerations during the design phase
of HPC applications has to be the maximization of parallelizable and accelerateable
procedures.

2.4 Direct Methods for Solving Systems of Equations

This section shortly reviews how to directly retrieve x from the linear equation

A · x = b

where A is a nonsingular n × n matrix. x and b are vectors of size n. For a more
detailed introduction into direct methods readers can consult [DER87].

The common direct methods for solving systems of equations make use of the fact that
the equation

L · U · x = b

is easy to solve, when L and U are triangular matrices. By applying forward and
backward substitution, a solution for Ax = b is obtained. Forward substitution
represents solving the equation

Ly = b.

Based on the solution y, backward substitution with

Ux = y

is performed. The choice of an efficient algorithm to obtain a triangular matrix decom-
position depends on the system’s properties. This is shown in table 2.5. Matrices A
that are m × n with m 6= n require other strategies, such as the QR decomposition.

12

2 Fundamentals

Table 2.5: Most triangular matrix decomposition algorithms are specialized for certain
matrix types.

Algorithm Matrix Type

Cholesky Symmetric Positive Definite
LDLT Symmetric

LU Regular

2.4.1 Gaussian Elimination Algorithm and LU Decomposition

Even though the Gaussian elimination algorithm can be used for more than one purpose,
this work will focus on solving systems of linear equations. The two-step algorithm
first aims at eliminating the lower triangular entries of a matrix A. This is achieved
by scaling individual rows and subtracting one row from another. Within this section,
the algorithms are performed on generic 3 × 3 matrices to illustrate the algorithms’
behavior.

We consider the system of linear equations
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ·

x1

x2

x3

 =

b1

b2

b3

 =⇒

a1,1 a1,2 a1,3 b1

a2,1 a2,2 a2,3 b2

a3,1 a3,2 a3,3 b3

 .

During the execution of the algorithm we call the diagonal entries, which we subtract
from lower triangular entries, pivots. Given that all entries are nonzero, the first pivot is
a1,1. To eliminate the lower triangular entry a2,1, the first row is scaled so that a1,1 = a2,1.
Therefore, the so called multiplier is l2,1 = a2,1/a1,1. Analogously, for eliminating a3,1

the multiplier is l3,1 = a3,1/a1,1. Then we subtract the scaled first row to obtain

a1,1 a1,2 a1,3 b1

0 a2,2 − l2,1 · a1,2 a2,3 − l2,1 · a1,3 b2 − l2,1 · b1

0 a3,2 − l3,1 · a1,2 a3,3 − l3,1 · a1,3 b3 − l3,1 · b1

 .

The tasks for pivot a1,1 are now completed, and the step is repeated with the next
pivot a2,2. The multiplier becomes l3,2 =

a3,2−l3,1·a1,2
a2,2−l2,1·a1,2

and then the scaled second row is
subtracted from the third row.

13

2 Fundamentals

a1,1 a1,2 a1,3 b1

0 a2,2 − l2,1 · a1,2 a2,3 − l2,1 · a1,3 b2 − l2,1 · b1

0 0 a3,3 − l3,1 · a1,3 − l3,2 · (a2,3 − l2,1 · a1,3) b3 − l3,1 · b1 − l3,2 · (b2 − l2,1 · b1)

The resulting matrix is of triangular shape which enables us to peform simple backward
substitution. The LU decomposition algorithm is very similar to the Gauss elimination.
The only difference is that we store the multipliers in a matrix

L =

1 0 0

l2,1 1 0

l3,1 l3,2 1

 =

1 0 0

a2,1/a1,1 1 0

a3,1/a1,1 (a3,2 − l3,1 · a1,2) / (a2,2 − l2,1 · a1,2) 1

 .

The upper triangular matrix is stored as

U =

u1,1 u1,2 u1,3

0 u2,2 u2,3

0 0 u3,3

 =

a1,1 a1,2 a1,3

0 a2,2 − l2,1 · a1,2 a2,3 − l2,1 · a1,3

0 0 a3,3 − l3,1 · a1,3 − l3,2 · (a2,3 − l2,1 · a1,3)

 .

Blocked Algorithm

The common LU factorization does not allow the use of level 3 basic linear algebra sub-
programs (BLAS 3) which require the problem formulation in matrix-matrix operations.
This can be done by applying a block Gaussian elimination or block LU decomposi-
tion [Huc17]. Furthermore, it enables coarse grained parallelism, which increases the
parallel efficiency for shared, distributed or accelerator based implementations. The
algorithm is self-recursive. In each recursion a decomposition of four blocks, as shown
in equation (2.4), is considered.

(
A1,1 A1,2

A2,1 A2,2

)
=

(
L1,1 0

L2,1 L2,2

)
·
(

U1,1 U2,1

0 U2,2

)
(2.4)

=

(
L1,1 · U1,1 L1,1 · U1,2

L2,1 · U1,1 L2,1 · U1,2 + L2,2 · U2,2

)
(2.5)

14

2 Fundamentals

The algorithm consists of five steps:

1. Subdivide A into four blocks.

2. (Recursively) Perform the LU algorithm on A1,1.

3. Perform triangular solves on L2,1 · U1,1 = A2,1 and L1,1 · U1,2 = A2,1 to obtain L2,1

and U1,2.

4. Compute L2,1 · U1,2 and subtract it from A2,2 to obtain A2,2 = L2,2 · U2,2.

5. (Recursively) Perform the LU algorithm on A2,2.

In practice, the matrix is usually not split into four blocks. A finer blocking can be
used to perform the algorithm in a partially loop-based approach which is visualized
in figure figure 2.3.

Already Factorized

Recurse

Compute Contributions (TRSM)

Compute Updates (GEMM)
and Recurse

Figure 2.3: Visualization of block LU procedure.

This algorithm requires only two external functions to operate efficiently. Step 2 and 5
are merely self-recursive invocations until the blocks cannot be subdivided any further.
To reduce the call stack one could consider a threshold block width, so that the recursion
is replaced by a scalar LU algorithm. The BLAS 3 operation TRSM can perform the
triangular solve for multiple columns, which is exactly the behavior required for step 3.
In step 4, GEMM is applied to obtain the matrix product.

Performance Considerations

Before optimizing an implementation of the block LU factorization, it is important
to evaluate the performance critical properties. The main question is whether the

15

2 Fundamentals

algorithm is compute- or memory-bound. A compute-bound problem is limited in
performance because the hardware does not provide enough compute power, which we
measure in FLOP/s. A memory-bound problem exhausts the bandwidth of the main
memory while the processing units are not fully occupied.

In the previous paragraph, we evaluated that the block LU factorization largely con-
sists of matrix multiplications (GEMMs) and triangular solves on matrices (TRSMs). Both
operations are known to be compute bound, as their asymptotic computational inten-
sity increases linearly with the problem size [PB12]. The computational intensity is
measured in FLOPs per byte. A general matrix multiplication (C = α · A · B + β · C)
for squared matrices of size n requires the transfer of 4 · n2 values and computation of
2 · n3 FLOPs. For double precision this implies

Computational Intensity(GEMM) =
FLOPs

transferred bytes
=

2 · n3

8 · 4 · n2 =
n
16

.

TRSM performs triangular solves not just on a single vector (TRSV), but on a whole matrix
(L · X = αA). It requires n3 FLOPs and 5n2+n

2 memory transfers. These imply

Computational Intensity(TRSM) =
FLOPs

transferred bytes
=

n3

4 · (5n2 + n)
≈ n

20
.

In general we cannot assume squared blocks but the asymptotic values hold nonethe-
less.

We can use the arithmetic intensity to calculate the block size for which an operation
transitions from memory- to compute-bound. Given that a computer provides 500
GFLOP/s in double precision and 50 GB/s memory bandwidth, problems with arith-
metic intensity below 10 are memory-bound. For the mentioned characteristics the
threshold is n = 160 for GEMM and n = 200 for TRSM. In the block LU algorithm, the
block size will, due to the recursive domain decomposition, eventually become smaller
than the threshold and thus a mixture of compute and memory bound operations is
performed.

2.4.2 Cholesky and LDLT Decomposition

Instead of performing the decomposition

A = L · U

16

2 Fundamentals

one could store the diagonal explicitly in the form of

A = L · D · U.

For symmetric matrices, in which ai,j = aj,i, it can be deduced that li,j = uj,i. and
therefore L = UT. This enables to rewrite the LDU factorization as

L = UT ∧ A = LDU =⇒ A = LDLT

This modification leads to the situation in which only half of the operations are
required because the computation of the upper triangular matrix U can be omitted.
The decomposition can be further simplified as into

A = LDLT = (LD
1
2)(D

1
2 L) = L LT.

This procedure is known as the Cholesky factorization. However, it is only applicable
for symmetric positive definite matrices, because the expression D

1
2 requires computing

the square root. If the matrix is not symmetric positive definite, the diagonal values
might be negative.

2.4.3 Sparsity and Reorderings

The previous sections consider only dense matrices. Sparse matrices, as they appear in
most numerical simulations, require additional considerations to work efficiently and
as intended. One could think that sparse GEMM and TRSM operations could be applied to
create a sparse version of the dense block LU algorithm, presented in section 2.4.1. The
problem is that the LU factorization of a sparse matrix A is not necessarily as sparse as
A.

A L U
1 1 1 1 1
1 2 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

 =

1 0 0 0 0
1 1 0 0 0
1 −1 1 0 0
1 −1 2 1 0
1 −1 2 2

3 1

 ·

1 1 1 1 1
0 1 −1 −1 −1
0 0 −1 −2 −2
0 0 0 3 2
0 0 0 0 5

3

 (2.6)

nnz(A) = 13 ∧ nnz(L + U) = 25 ⇒ f ill In(A, L + U) =
25
13

17

2 Fundamentals

The exemplary matrix in equation (2.6) shows how a matrix, in which more than half of
the entries are zero, becomes a dense matrix when performing LU factorization. In this
context, fill-in describes the ratio between entries in the factorized and original matrix.
To minimize the fill-in, row and column permutations can be applied. This process
is called reordering. When the sparsity pattern of a matrix is symmetric, we want to
preserve that property and restrict the reordering to symmetric permutations in which
rows and columns are always permuted simultaneously. The reordering is expressed in
the permutation matrix P so that the modified matrix can be expressed as PAPT.

For the example presented in equation (2.6), a simple reordering that swaps rows and
columns 1 and 5 greatly improves the situation, as shown in equation (2.7).

P =

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

=⇒ PAPt =

1 0 0 0 1

0 2 0 0 1

0 0 1 0 1

0 0 0 1 1

1 1 1 1 1

(2.7)

After performing the reordering on the example matrix, the LU factorization is already
almost complete. Only the triangular matrices have to be extracted, which leads to less
required operations and a fill-in of 1. This is a very artificial example but it shows how
crucial a sophisticated reordering can be for sparse matrix factorization.

In this section we will briefly review two kinds of graph-based reordering algorithms
and apply them the matrix and graph visualized in figure 2.4. The graph format has
the advantage that partitioning algorithms can be performed more trivially.

× × × ×
×× × ××

××× × ×
× × ××

× × × × ×
×× × × ×

× ×× ×
× × ×× ×
× × ××

× × ×
× × × ×

× ××× ×
×× × ×

× × × ×
× ××× ×

× × ×

61514

831

45 1311

12 7

16

10

9

2

Figure 2.4: Sparsity pattern and graph representation of the matrix used for presenting
the algorithms in this section.

18

2 Fundamentals

Bandwidth Minimizing Algorithms

A banded matrix is a sparse matrix where ai,j = 0 for |i − j| > m. m describes the
semi-bandwidth of the banded matrix and can be interpreted as the farthest distance
from an off-diagonal element to its closest diagonal element. The bandwidth of a
matrix is then given as 2m + 1. The advantage of banded matrices is that the Gaussian
elimination only produces fill-in within the band structure. A common algorithm to
obtain a reordering, that transforms an unstructured matrix into a banded matrix, is
the reverse Cuthill McKee algorithm (RCM) [DER87]. The transformation of the sample
matrix pattern from figure 2.4 is provided in figure 2.5. The banded structure is clearly
recognizable and the bandwidth is m = 5.

× ×××
× × ×

× × ××
×× ×× ×
× ××× ×

× × × ×
× × ×× ×

×××× ×
× × ×

× × ××
× × ×× ×

× ××× ×
× × ××

× × ××
×××××
××××

Figure 2.5: Sparsity pattern of figure 2.4 reordered with the RCM algorithm

Dissection Based Algorithms

The bandwidth minimizing approach presented in the previous section reduces the fill-
in but does not support massive parallelization. The block LU factorization introduced
in section 2.4.1 does allow to perform TRSM and GEMM in parallel but only for a single
pivot block. The diagonal blocks always have to be performed in order. Especially for a
banded matrix, the solve and update tasks are either not enough to allow fine-grained
parallelism or too small to enable high arithmetic intensity.

An ordering is required that allows factorizing multiple diagonal blocks in parallel.
Such ordering techniques are based on the (nested) dissection graph algorithms. The

19

2 Fundamentals

goal is to permute the entries so that we obtain a matrix of the form

PAPT =

A1,1 0 A1,3

0 A2,2 A2,3

A3,1 A3,2 A3,3

 . (2.8)

Using this strategy, the factorization of blocks A1,1 and A2,2 can be executed completely
independently and therefore in parallel. The nested dissection algorithm splits the
graph representation into three partitions. Two of those should be as large as possible
but are not allowed to contain any direct neighbor-vertices. To achieve that, the third
partition, which should be as small as possible, hosts the vertices that act as separators.
These vertex separators appear in our dissected matrix from equation (2.8) as A1,3, A2,3,
A3,1, A3,2 and A3,3. A1,1 and A2,2 represent the two partitions that were split from each
other.

The graph in figure 2.4 requires at least three vertex separators to achieve a balanced
partitioning, as shown in figure 2.6. The resulting sparsity pattern, displayed in
figure 2.7, shows the typical structure of a matrix reordered by a dissection algorithm.
This enables simple application of the block LU algorithm because the matrix is
partitioned into blocks already.

The algorithm is called nested because like the block LU factorization, it is usually
applied on the diagonal blocks recursively. The right graph of figure 2.4 shows the
result of a second level recursion on our sample matrix.

1183

956

102 164

12 13

1

7

14

15

1383

1245

92 166

10 11

1

7

14

15

Figure 2.6: Graph partitioning for nested dissection applied to the graph of figure 2.4.
The right graph is the result of one additional recursion. Redish nodes
represent vertex separators.

20

2 Fundamentals

×× ×
×× × ××

× ×× ×
×× ×××

×××× ×
××××

×× ×
××× × ×
×× × ××

× ×× ×
×× ×××

×××××
×××× ×

× × ×
× × × ×
× ××

×× ×
×× × ××

××× ×
×××× ×
××××

×× ×××
×× ×
×× ×××

××× ×
×××××
××× ×

× × × ××
×× ×× ×

× × ××
× × × ××
× × × ×

Figure 2.7: Sparsity pattern of figure 2.4 reordered with the nested dissection algorithm.
The right matrix is the result of one additional recursion.

A common observation is that the vertex separators become smaller in deeper levels of
recursion. This leads to the situation in which the blocks become small and the arith-
metic intensity low. To avoid such situations, the recursion is terminated prematurely
and a bandwidth minimizing algorithm like RCM is applied.

2.4.4 Supernodal Methods and Trees

In the previous section we discussed how to minimize the fill-in and how to maximize
the parallelism by finding a suited reordering. In this section we introduce further
techniques for the data structure of a direct solver and a more strategic approach for
parallelization.

L and U cannot be stored in the same data structure as A because the fill-in alters the
sparsity pattern and the factorized matrix is much denser than the original. Moreover,
to use classical BLAS operations the values should not be stored in CSC or CSR but
as a dense matrix. This is why the non-zero blocks retrieved by the nested dissection
algorithm are stored individually as dense matrices. Since those block also contain
zeros, we give up sparsity for a better-performing storage format. Due to the fill-in,
many of the zeros that are stored explicitly become non-zero later anyways. The data
structure is still partially sparse because many of the blocks contain exclusively zeros
and are therefore omitted. In this context, the variables of each diagonal block and
their contributions to other rows and columns are considered supernodes.

The nested dissection can also be interpreted as a tree data structure, which is then called
the elimination tree [DER87]. It stores the vertex separators of each recursive invocation

21

2 Fundamentals

and the remaining vertices of the final recursion level as nodes. The elimination tree
for the right matrix of figure 2.7 is visualized in figure 2.8.

12, 13

3, 4, 5 9, 10, 11

6

1, 2 7, 8

14, 15, 16

Figure 2.8: Elimination tree generated for the right matrix of figure 2.7.

The advantage of this data structure is that it already provides the dependencies
between supernodes. To perform the factorization, TRSMs and GEMMs associated to a
supernode, all of the node’s children have to be processed first. The tasks for each of
the leaf supernodes are independent and can be performed in parallel. For the sample
matrix, this applies to the variables 1 to 5 and 7 to 11. Once the updates for variables 7
to 11 are completed, the factorization for the parent supernode (12, 13) can begin.

With these techniques we can compute large factorizations efficiently in parallel using
dense BLAS 3 operations.

2.5 Iterative Methods for Solving Systems of Equations

Direct solving methods have several disadvantages, such as fill-in, required storage
and the lack of simple parallelization approaches. Iterative methods intend to avoid
these issues by keeping the matrix A unchanged during computation. The goal is still
to solve Ax = b, although in iterative methods this solution is obtained by improving
the error of a starting vector x0 iteratively. The process xk+1 := Φ(xk) is driven by the
iteration function Φ, which is chosen such that lim

k→∞
Axk − b = 0 [Huc17]. The most

fundamental work in this field is [Saa03] and should be considered for a thorough
introduction, as this work merely provides a brief overview.

2.5.1 Matrix Splitting

The most basic approach for iterative methods is the splitting method in which the
matrix A is split into two matrices M − N = A. The iteration step can then be written

22

2 Fundamentals

as
Mxk+1 = Nxk + b = (M − A)xk + b.

A splitting-based process, named Jacobi iteration, uses M = D and N = −(L +

U), where D are the diagonal entries and L and U the upper and lower triangular
submatrices [Saa03]. This leads to the iteration step

Dxk+1 = −(L + U)xk + b. =⇒ xk+1 = −D−1(L + U)xk + D−1b.

Because L + U = A − D, we can rewrite that equation as

xk+1 = −D−1(A − D)xk + D−1b = xk + D−1(b − Axk) = xk + D−1rk

where rk = b − Axk is the residual for a solution xk. The Jacobi method is only
convergent for diagonal dominant matrices and known to be slow in convergence
[Saa03]. Nevertheless, it is very easy to implement and parallelize for modern computer
architectures, because only common BLAS operations such as matrix-vector and vector-
vector multiplications are required. Other iteration processes such as the Gauss-Seidel
method are faster in convergence but more difficult to parallelize.

2.5.2 Preconditioning

The basic iterative methods are, compared to direct solvers, efficient in computation
and cheap in storage but often converge only slowly for matrices that deviate heavily
from the identity matrix. A preconditioner M ≈ A can be used to transform the matrix
so that

M−1Ax = M−1b

has to be solved instead of the original system. It is important that an approximate trans-
formation M−1A ≈ I can be found efficiently. Otherwise computing the preconditioner
M−1 might take longer than is gained by faster convergence.

One example is the Jacobi preconditioner for which M = D, as introduced in the
previous section. The result is a scaled matrix D−1A in which all diagonal entries are
1. For most cases, Jacobi preconditioning does not improve convergence significantly
unless they are just poorly scaled[Wat15]. A more general preconditioner is the
incomplete LU method (ILU) in which an approximate LU factorization M = LU + ε

is performed. To avoid fill-in, only the non-zero entries in the matrix are processed
during the factorization. Of course, this leads to a significant error ε but assures
that the preconditioner is fast and memory-saving. Sometimes ε is too large and the

23

2 Fundamentals

preconditioning does not improve the convergence behavior of the iterative method. In
such cases, a certain level of fill p can be allowed during the factorization, resulting in
so called ILU(p) preconditioners.

Since the inverse of M = LU is not known, the application of an ILU preconditioner has
to be performed via forward and backward substitution, as introduced in section 2.4.

2.5.3 Krylov Subspace Methods and Preconditioned GMRES

Most matrices in large applications are not necessarily diagonally dominant and
therefore, the splitting methods are only rarely used. Krylov subspace methods,
such as GMRES and BiCGStab, are the most popular algorithms for asymmetric
indefinite matrices since their introduction in the early 1990s. Because the mathematical
foundation is complex and not directly related to the contribution of this work, we do
cover mathematical theory but focus on the algorithmic aspect.

A Krylov subspace Km(A, r) is spanned by linear combinations of the basis {r, Ar, ..., Ar}
where r is the residual b − Ax [Saa03]. Many algorithms based on the Krylov subspace
exist. We introduce GMRES with right preconditioning, given in listing 2.1. The
generalized minimal residual method (GMRES) minimizes the residual norm over
x0 + Km. For the right-preconditioned algorithm, the basis of the Krylov subspace K is
{r0, AM−1r0, ..., (AM−1)m−1r0}.

1 r = b − Ax0
2 β = ‖r‖2
3 v1 = r/β
4 for j = 1 to m:
5 w = AM−1vj
6 for i = 1 to j:
7 hi,j = (w, vi)
8 w = w − hi−jvi
9 hj+1,j = ‖w‖2

10 vj+1 = w/hj+1,j
11 Vm = [v1, ..., vm]
12 Hm = {hi,j}1≤i≤j+1,1≤j≤m
13 ym = argmin‖βe1 − Hmy‖
14 xm = x0 + M−1Vmym

Algorithm 2.1: GMRES with right preconditioning [Saa03].

24

2 Fundamentals

Initially, the residual r, its norm β and the first vector v1 of the Krylov subspace’s
orthonormal basis V are computed. The preconditioner M−1 is applied in every
iteration. Subsequently, starting from line 6, an Arnoldi process is applied to obtain
the remaining vj and the associated Hessenberg matrix H. Then, the residual can be
minimized in the form of the least squares problem

‖b − Ax‖2 = ‖b − A(x0 + Vmy)‖2 = ‖βe1 − Hmy‖2.

Finally, the preconditioner can be applied to the linear combination Vmym and the result
xm is retrieved.

Further analysis with regards to computational considerations will be discussed in
section 5.4.

25

3 Analysis and Related Work

In this chapter we analyze the problem of solving linear equations with regards to
our hardware configuration and the application in non-linear structural mechanics.
Therefore, section 3.1 introduces the computer architecture on which the benchmarks for
this project are executed. In section 3.2 the problem sets that are generated by CalculiX
and used as input for performance benchmarks are presented. In section 3.3 CalculiX,
it’s exotic sparse matrix format and the role of the equation solver are discussed.
Existing implementations of direct and iterative solvers are analyzed in section 3.4 and
section 3.5. In section 3.6 the direct hybrid solver PaStiX is evaluated thoroughly with
respect to the hardware configuration and the problem sets.

3.1 Hardware Configuration

As part of this thesis, many benchmarks are performed to judge the effectiveness of
applied optimizations. To obtain comparable results every benchmark is performed
on the same hardware configuration. We refer to the computer as “T1”. The CPU is
an Intel Xeon Gold 6244 of the Cascade Lake generation released in 2019 [Cor19a]. It
has 8 cores and provides a high frequency between 3.6 GHz and 4.4 GHz with Intel
Turbo Boost. The equipped GPU is an NVIDIA Tesla V100 [NVI17]. Although it was
already released in 2017, it is still the company’s flagship card. It comes with 32 GB
of high bandwidth memory (HBM2) and 2560 FP64 (double precision) compute cores.
With a frequency of 1.53 GHz their accumulated performance is 7.8 TFLOP/s. In single
(FP32) and half precision (FP16) they perform two and four times more operations.
The V100 has additional compute units called tensor cores. They are restricted to half
precision and mainly benefit machine learning applications, which have less demands
to accuracy. Nevertheless, they elevate the performance of FP16 computations to 125
TFLOP/s.

The connection between GPU and main memory is PCI Express 3.0 with a maximum
bandwidth of 15.75 GB/s [Aja09]. The main memory itself is DDR4 and transfers data
to the CPU on 6 channels at in total 141 GB/s [Shi19].

26

3 Analysis and Related Work

When not otherwise mentioned, benchmarks are performed on T1 with 8 threads and
GPU support.

3.2 Problem Sets

In this work we consider geometries that represent parts of a jet turbine, such as casings
and blades. As the geometries have different properties, the matrices generated by
CalculiX show distinctive characteristics. Those of the first iteration of each input deck
are shown in table 3.1. We are performing benchmarks based on these nine inputs
because they represent different characteristics that are common in structural mechanics.
They are chosen based on their characteristics:

• Sample 1 and 3 are symmetric matrices because they do not contain contact
elements. Sample 1 is, in contrast to sample 3, indefinite because it features ties.
For these matrices, the LDLT algorithm can be applied.

• The simulation of some parts require finer geometries than others and therefore
the resulting matrices are larger than others. The size is an important variable
because it is the main influence for required memory, which is limited on GPUs.
Larger geometries also tend to require more operations to solve. Therefore, they
might allow more parallelism.

• The density of matrices depends on how the geometry is constructed. A denser
matrix tends to introduce more fill-in and number of required operations for
direct methods.

Furthermore, we will refer to the input decks as J1 to J9 and their first iteration’s
matrices as M1 to M9. The matrices are representative because they do not change
fundamentally during the application of CalculiX.

3.3 CalculiX

CalculiX is an open source software for finite element simulations [DW98; Dho17]. It
supports a wide range of analysis types, including static, dynamic, frequency and heat
transfer. The FEM software is able to handle linear and non-linear behavior. CalculiX
mirrors the interface of the commercial software abaqus to increase the usability for
existing input decks. As introduced in section 2.1, FEM simulations require solving

27

3 Analysis and Related Work

Table 3.1: Matrices used for benchmarks in this work.

Matrix Type n nnz density
M1 Symmetric 1.260 · 106 1.333 · 108 8.396 · 10−5

M2 Asymmetric 0.779 · 106 1.203 · 108 19.824 · 10−5

M3 Symmetric PD 4.983 · 106 4.069 · 108 1.639 · 10−5

M4 Asymmetric 1.898 · 106 1.430 · 108 3.970 · 10−5

M5 Asymmetric 2.263 · 106 3.536 · 108 6.905 · 10−5

M6 Asymmetric 3.847 · 106 4.355 · 108 2.943 · 10−5

M7 Asymmetric 2.222 · 106 1.963 · 108 3.976 · 10−5

M8 Asymmetric 2.053 · 106 2.617 · 108 6.209 · 10−5

M9 Asymmetric 1.231 · 106 2.066 · 108 13.634 · 10−5

systems of linear equations. Since solving equations is a complex and much researched
topic, CalculiX delegates this task to a specialized third party library.

Normally, one of the following libraries is used:

• SPOOLES, an open source solver developed in 1999 [AG99].

• PARDISO, a closed source solver that exists in two versions [SG04]. One is
maintained by the original developer while the other one is distributed as part of
Intel’s MKL. In this paper we consider Intel’s instance of the application and are
referring to that when mentioning PARDISO.

In general, PARDISO is known to be faster than SPOOLES and many other direct
solvers [SHG04]. Therefore, we will use CalculiX with PARDISO as the baseline for this
work.

CalculiX implements shared memory parallelization with POSIX threads. To figure out
the impact of the solver on CalculiX, we perform a profiling. As shown in figure 3.1,
59.1% or more of CalculiX’s execution time is spent on solving systems of linear
equations. CalculiX uses an internal sparsity format that is introduced in the next
section. PARDISO requires the input matrix in CSR, which makes it necessary to apply
a conversion algorithm. This takes between 0.18% and 13.73% of the total computation
time. The conversions for J1 and J3 are very fast because they are in symmetric form,
for which the storage formats barely differ.

28

3 Analysis and Related Work

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅0

20

40

60

80

100

C
om

pu
ta

ti
on

Ti
m

e
in

%

Solver (PARDISO) Matrix Format Conversion Other

Figure 3.1: Structure of CalculiX’s computation time with PARDISO. Benchmarked on
T1 with 8 threads.

3.3.1 CalculiX’s Matrix Format

The simulation software CalculiX uses a rather exotic sparse matrix format that excels in
storing (structurally) symmetric matrices as they arise from FEM simulations [Dho17].
A structurally symmetric matrix has non-zero entries at positions that are mirrored
along the diagonal. In contrast to ordinary symmetric matrices, these mirrored values
can be different. Apart from two things, the format used by CalculiX resembles the CSC
format. Firstly, all of the diagonal entries are stored in an individual array. Secondly,
the upper triangular entries are stored in row-major order after the lower triangular
values, which are stored in column major order. The number of values and offsets
that have to be stored for symmetric matrices is given by 2 · m + 1 + nnz

2 , when nnz
is the number of off-diagonal non-zeros. Structurally symmetric matrices require an
additional nnz

2 values. CalculiX’s representation of the matrix from equation (2.1) is
provided in table 3.2.

This storage format conveys advantages and disadvantages:

1. The row indices only have to be stored for values of the lower triangular matrix
instead of all values.

29

3 Analysis and Related Work

2. In case the matrix is not only structurally but fully symmetric, values of the upper
triangular matrix can be omitted, further decreasing the memory demands.

3. Diagonal values are efficiently accessible. For FEM applications, the diagonal
entries should not be zero and thus, no unnecessary values are stored.

4. The values are stored in a combination of row-major and column-major order.
Consequently, they are not suited to be processed by standard implementations
of operations like sparse matrix-vector or matrix-matrix multiplication.

Table 3.2: Matrix storage in CalculiX’s format.

columnptr 1 3 4 4 4 4 4
row 3 6 4

diagonal values 1 0 2 3 10 0
L values 5 8 7
U values 4 6 9

3.4 Sparse Direct Solvers

All efficient LU-based solvers use nested dissection as the foundation of their algo-
rithms. It splits the matrix intro partitions which allows supernodal and multifrontal
approaches. Using the latter, the update tasks are not performed immediately but only
once for every target block. To accomplish this, contribution blocks have to be stored for
every update task [DRS16]. This requires more effort and does not necessarily pay off
for single node parallelization. Therefore, the focus of this work will be on supernodal
solvers, as they require less organizational overhead and the scalability is sufficient for
shared memory and accelerator-based implementations.

Solvers that are based on multifrontal methods are, for example, MUMPS [Ame+00]
and SPOOLES [AG99]. Both have been around for more than 20 years. In contrast to
SPOOLES, MUMPS is still maintained and optimized. PARDISO [SG04] and PaStiX
[HRR02] are known for supernodal methods. They have also been in development for
over 20 years. PARDISO has been regarded as the fastest solver for indefinite systems
in the past [SHG04].

All mentioned solvers are parallelized for shared memory, distributed memory or both
models.

30

3 Analysis and Related Work

3.4.1 Accelerator Implementations

In theory, LU factorization should be portable to GPU architectures with modest effort.
The arithmetic intensity is high and required BLAS 3 operations such as GEMM and TRSM
perform very well. There are two problems why there are only few sparse direct solver
implementations for GPUs:

1. The memory of the GPU is much smaller than the main memory. No matter how
sophisticated the reordering algorithm is, a sparse direct solver will in general
produce fill-in. Using state-of-the-art graph partitioning libraries, the fill-in for
our asymmetric benchmark matrices is on approximately 15 and tends to increase
with the size of the matrix. For the benchmark matrices, this means that the
storage of LU possibly exceeds 50 GB. Many modern GPUs specialized for HPC
provide 12 to 16 GB; a few provide 32 GB.

2. The sparsity lowers the arithmetic intensity. While static blocking strategies
for dense solvers always allow ideal block sizes for large BLAS 3 operations,
sparse solvers have to work with the blocks provided by nested dissection. The
problem will quickly become memory-bound, when mostly small blocks are
formed. One could allow more fill-in to obtain a coarser blocking and therefore
better performance. This, however, stands in conflict with the first problem.

This implies that for a full acceleration of the program only small matrices can be used
as input. This is not feasible because of two reasons: A modern solver should be able to
handle all the matrices currently considered state-of-the-art. Moreover, small matrices
lead to lower arithmetic intensity and the whole point of GPU accelerations is lost. This
is not completely true for the solving step of direct solvers. Existing GPU libraries
offer fast triangular solves for applying LU on many right-hand sides. Given that there
are enough right-hand side vectors, high arithmetic intensity is guaranteed. For the
Newton-Raphson method considered in this work, the system has to be solved for only
one right-hand side in each iteration. This makes factorization the dominating part in
computational complexity.

As part of this work, we tested the GPU-solver SSIDS [Bav16], that provides a GPU
implementation of the LDLT algorithm. We did not receive a valid result in reasonable
time for the symmetric matrices M1 and M3.

Due to a lack of full-GPU parallelizations for the LU algorithm, we tested the QR
implementation of cuSolver. Compared to the LU factorization it requires more op-
erations but therefore provides numerical stability and allows non-squared matrices.

31

3 Analysis and Related Work

Unfortunately, the solver provided by Nvidia, cuSolver, could not compute our sample
matrices due to a lack of GPU memory.

3.4.2 Hybrid Implementations

For the applications considered in this work, a hybrid strategy is currently the most
effective way to implement a GPU-accelerated direct solver. It solves the previously
identified problems:

• Operations on small blocks that have low arithmetic intensity can be performed
on the CPU.

• The data for operations on large blocks can be transferred to and from the GPU
when needed. Device memory is freed once associated operations on the GPU
finish. The matrices can consequently be as large as the main memory allows.

Nevertheless, the approach also introduces a new problem. As mentioned in sec-
tion 2.3, the PCI Express bus is the bandwidth bottleneck. Compared to a full-GPU
parallelization, the hybrid implementation challenges this bus far more:

1. The dense matrix blocks, which include the fill-in, have to be transferred from
the CPU to the GPU. In a GPU-only version, the transformation from sparse to
dense could be done on the GPU and only the sparse matrix would be sent via
PCI Express.

2. The dense matrix blocks will be sent one-by-one leading to multiple small transfers
instead of a single large transfer. The overall throughput will be less due to
organizational overhead and latency.

Research on hybrid implementations has been done, but in most cases the development
did not go beyond experimental stage [Luc+10; KP09; Geo+11; CW+11]. Two established
libraries have introduced optional GPU offloading strategies. Like most experimental
hybrid solvers, SuperLU [Li05; SVL14] performs threshold based offloading, in which
the scheduling between GPU and CPU is done statically and based on the arithmetic
intensity of individual operations. A performance model that considers FLOP/s and
memory transfer can theoretically determine, whether GPU or CPU can perform an
operation faster. Eventually, this leads to a scheduling in which blocks beyond a certain
threshold size are sent to the GPU. The hybrid version of SuperLU did, in contrast to
the CPU version, not return valid results. Therefore we did not perform further tests
with SuperLU.

32

3 Analysis and Related Work

The second established LU factorization library that features optional GPU offloading
is PaStiX. As this work centers mostly around PaStiX, possible improvements to it and
its integration in CalculiX, we introduce and analyze it separately in section 3.6.

3.5 Sparse Iterative Solvers

When implementing iterative solvers there is usually not much room for fundamental
innovation. The most popular and versatile algorithms based on Krylov subspace
methods, such as GMRES and BiCGSTAB, were introduced in the 1990. Variations of
these are a must have for larger iterative solvers. At least as important as the iterative
method is the preconditioner. That is where the libraries differ. Most libraries offer
diagonal and ILU preconditioning; some offer SPAAI or Multigrid methods.

Adapting the general iterative methods for GPU architectures is trivial because they
mostly rely on sparse matrix vector multiplications (SpMV). Compared to its older sibling,
GEMM, this operation has a constant arithmetic intensity. It is still a great application
for the GPU because the SpMVs work on the same matrix, which merely has to be
transferred to the device once. As a result, many GPU-supporting iterative libraries
exist.

Before testing the performance difference between these solvers, we have to show that
the iterative method shows convergence in reasonable time. Therefore we benchmark
GMRES with block Jacobi and ILU preconditioning for M2. The state-of-the-art solver
PARDISO can solve this matrix directly in less than 40 seconds. We apply the OpenMP
version of the iterative solver Ginkgo [Anz+19] to measure which precision we can
achieve iteratively within 40 seconds.

The results visualized in figure 3.2 show very slow convergence behavior that stagnates
before reaching acceptable performance. The block Jacobi preconditioning improves the
convergence speed slightly. Unfortunately, the ILU preconditioning does not provide
any advantage. While ILU(p) methods with higher levels of fill-in could further improve
the effectiveness, it also introduces new problems. Instead of one large SpMV operation,
small triangular solves are performed which leads to slower performance. Moreover,
with more allowed fill-in, the memory requirements to the device are growing.

We performed further tests, including the libraries AMGX [Nau+15] and MAGMA
[Agu+09] but the results were very similar to the ones presented in figure 3.2. Estima-
tions on the conditioning of our benchmarking matrices returned condition numbers
between 1010 and 1014, which we consider mediocre but not ill conditioned. We believe

33

3 Analysis and Related Work

0 50 100 150 200 250 300 350 400

100

10−1

10−2

10−3

10−4

Iteration

R
es

id
ua

lN
or

m
R

ed
uc

ti
on

GMRES
GMRES with block Jacobi
GMRES with ILU

Figure 3.2: Convergence behavior for GMRES with different preconditioning strategies.

that the matrix has to be arranged differently by the simulation software to make
iterative solvers more effective. Since this exceeds the scope of this thesis, we will
further focus exclusively on direct solvers.

3.6 PaStiX

PaStiX is a direct sparse linear equation solver that was developed by researchers at
INRIA around 2000 [HRR02; Pic+17]. The algorithms provided by the library are
Cholesky, Hermitian, LDLT and LU factorization. It was improved constantly over the
past 20 years and the result is a highly optimized solver. PaStiX uses a supernodal
right-looking approach. The procedure is conventional for a direct solver:

1. Determine a reordering permutation to reduce the fill-in and generate a potential
block data structure.

2. Analyze the problem through symbolic factorization.

3. Factorize numerically by applying Cholesky, Hermitian, LDLT or LU factorization.

4. Solve the system through forward and backward substitution.

5. Refine iteratively in case the solution is numerically inaccurate.

34

3 Analysis and Related Work

During the first decade of its development, PaStiX was parallelized for shared and
distributed memory with POSIX threads and MPI. Later, the library was extended by
task based parallelization through PaRSEC and StarPU [Lac+14; Lac15]. This conveys
two major advantages:

• The functionality and hardware-aware optimizations are only loosely coupled,
which allows easier maintainability with regards to performance portability. The
PaStiX researchers showed that their task-based approach with PaRSEC, did not
introduce significant overhead compared to the previous NUMA-aware pthreads
implementation.

• By splitting the work and data into many small tasks, a selection of those can be
scheduled to the GPU. In PaStiX these tasks consist of GEMMs and TRSMs.

Even though offloading compute-intensive tasks to the GPU is not a new idea [Luc+10;
KP09; Geo+11; CW+11], it has not be done before in a task-based fashion for a supern-
odal direct solver. First, we assess how PaStiX performs for the benchmark matrices. To
achieve proper results we use a sophisticated guess for tunable parameters. The specific
parameter selection and the reasoning behind it are discussed in section 5.1. The
performance results for M1 to M9 are shown in figure 3.3. PaStiX clearly outperforms
PARDISO with CPU and hybrid mode for cases in which many operations are required,
such as for M3, M5, M6 and M9. For other matrices, the libraries perform similarly.
In those cases, the GPU provides less to no speedup. Since only the factorization step
is GPU-accelerated, we measure it separately to get more insight in the offloading
behavior.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

50

100

150

200

250

To
ta

lC
om

pu
ta

ti
on

Ti
m

e
in

s

PaStiX CPU PaStiX CPU+GPU PARDISO

Figure 3.3: Baseline comparison of PaStiX and PARDISO.

35

3 Analysis and Related Work

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

0.5

1

1.5

TF
LO

P/
s

CPU CPU+GPU

Figure 3.4: Baseline comparison of PaStiX’s CPU and hybrid performance during fac-
torization.

The results visualized in figure 3.4 show that the CPU performs around 500 TFLOP/s
and the hybrid version up to 1.8 TFLOP/s. While the CPU reaches more than 50%
of its theoretical peak performance, the hybrid version is far off from the potential
7.8 TFLOP/s of the V100. To explain this gap we will construct an approximate
performance model to calculate an upper bound with regards to the PCI-Express
bottleneck. Therefore, recall that

FLOPGEMM(n) = 2n3 FLOPTRSM(n) = n3

For this performance model we must not use the computational intensity because that
considers all memory transfers and we only want to consider those between the CPU
and GPU. PCI Express provides independent bidirectional transfer. Thus, we only
have to consider the initial or final transfer. Moreover, we assume that multiple tasks
associated with the same supernode are performed on the GPU. For M9, we know that
the ratio of TRSM to GEMM operations is approximately 1 to 3. This is exactly the situation
visualized in figure 3.5. To execute all those tasks on the GPU, 49 blocks of size n2 have
to be transferred. The number of FLOPs is 12 · FLOPTRSM(n) + 36 · FLOPGEMM(n) = 84n3.
The computational intensity with regards to the PCI Express transfers is consequently

84n3

8 · 49 · n2 =
3n
14

FLOPs per byte.

Given the block size n and the bandwidth between CPU and GPU β, an upper bound
for the FLOP/s the hybrid version can perform when only restricted by the PCI Express
bus is

PHybrid ≈ PCPU +
3n
14

· β.

36

3 Analysis and Related Work

GEMM

GETF

TRSM

Figure 3.5: Tasks associated to one supernode. The LAPACK operation GETRF is always
executed on the CPU. Only TRSM and GEMM can be offloaded.

To identify reasonable values for the unknowns in the above equation, we have to make
further approximations.

1. As shown in figure 3.4, PCPU ≈ 500 GFLOP/s = 500 · 109 FLOP/s.

2. The maximum block size n is 1024. This limit is based on the parametrization
discussed in section 5.1. A higher limit would decrease the number of tasks and
therefore the degree of parallelism.

3. The unoptimized bandwidth for host to device memory transfer is approximately
7.0 GB/s. This is based on the measurements performed in section 5.2. Thus,
β ≈ 7.0 · 109.

Using these values, the approximated upper bound for performance in FLOP/s is

PHybrid ≈ 500 · 109 +
3 · 1024

14
· 7.0 · 109 = 2.036 · 1012 FLOP/s ≈ 2 TFLOP/s

The performance model reaches higher FLOP/s than any of the benchmarks. With
1.73 TFLOP/s M9 is the closest. The other matrices are far off. However, recall that
the performance model is very approximate and only an upper bound. It assumes
that large blocks are ready to be processed constantly and the performance is only
restricted by the PCI-E bandwidth. In reality many of the blocks are smaller than 1024,
which reduces the computational complexity. Small blocks result from geometries that
are easy to partition. Large blocks originate from strongly connected clusters in the
geometry. Especially leafs and lower nodes of the elimination tree tend to be small and

37

3 Analysis and Related Work

large blocks are only ready for computation once their children in the elimination tree
are completed [Lac+14].

The performance decisive parameters β and n cannot be optimized trivially. The blocks
are generated based on the reordering. Enlarging them artificially does increase the
performance but not necessarily the total computation time since more unnecessary
instructions are performed. The ratio between TRSM and GEMM operations also impacts
the performance but it depends on the sparsity pattern and cannot be altered either.
Merely the bandwidth β can be optimized. This will be discussed in section 5.2.
Furthermore, we can double the computational intensity by computing the factorization
in single instead of double precision. This idea is pursued in section 4.1.

0 10 20 30 40 50 60 70 80 90 100

M1
M2
M3
M4
M5
M6
M7
M8
M9
∅

Computation Time in %

Reordering Analysis and Symbolic Factorization
Initializing Internal CSC Datastructure Initializing LU Datastructure

Factorization Solving
Iterative Refinement Other

Figure 3.6: Structure of PaStiX’s computation time in hybrid mode.

Besides the already very optimized factorization, PaStiX has to perform many other
steps. Figure 3.6 shows how much time is spent for the benchmark matrices in each
step. In its current state, PaStiX spends only a quarter of the total computation time in
the factorization step. To use PaStiX efficiently we have to optimize and parallelize the
remaining three quarters. Section 5.3 elaborates on this process for the initialization of
the internal CSC data structure. Other steps that are difficult to optimize, such as the
reordering, analysis and symbolic factorization, are dealt with in section 6.2.

38

4 Mixed Precision in PaStiX

Mixed precision methods switch between different floating point data types during
the execution of an algorithm. Common precision levels are half, single and double.
The motivation is simple: In most processing units two single precision operations can
be executed instead of one double precision operation. For GPUs the same relation
extends to half and single precision.

For direct solvers, a common strategy is to perform the factorization in lower and
the iterative refinement in higher precision [But+07; Bab+09; Hai+18]. Thus, the
factorization runs faster and by performing the refinement in higher precision, the final
result should be as accurate as in fixed precision computation with high precision. The
key factor for achieving speedup through this technique is fast convergence during
iterative refinement. Otherwise it might require more time than is gained by the faster
factorization.

In this chapter we explore the possibilities of implementing a mixed precision strategy
in PaStiX. Section 4.1 introduces and evaluates a hybrid implementation for single and
double precision. Section 4.2 discusses the option to perform selected operations on
the GPU in half precision.

4.1 Single and Double Precision

PaStiX offers computation in either single and double precision, but not mixed precision.
As shown in figure 4.1, the factorization performs much faster in single than in double
precision.

Simulation tools in structural mechanics usually run in double precision because the
Newton-Raphson method might converge slower and high accuracy is desired in
general anyways. Using the pure single precision mode of PaStiX for such applications
would have two disadvantages:

39

4 Mixed Precision in PaStiX

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
1

1.5

2

Matrix

Sp
ee

du
p

CPU CPU+GPU

Figure 4.1: Speedup by performing the factorization in single instead of double preci-
sion.

1. The iterative refinement converges slower, because the arising numerical errors
are much larger.

2. The result obtained from iterative refinement might reach the targeted residual of
10−12. This does not imply that a residual of 10−12 is achieved with regards to the
matrix in double precision.

A mixed precision approach for PaStiX is to perform the factorization and the solving
in single precision, followed by the iterative refinement in double precision. PaStiX
implements the right preconditioned GMRES algorithm presented in section 2.5.3. The
preconditioner M = LU is very effective because it is, apart from numerical errors,
identical to A. The challenge for a mixed precision implementation is to incorporate
the preconditioner, whose matrices L and U are in single precision, into the refinement
in double precision. There are two possibilities:

1. Cast LU from float to double so that the iterative refinement including the
preconditioning can be performed in double precision.

2. Keep the preconditioner in single precision and cast the input vector from double
to float. In each iteration the preconditioner is applied in form of a forward
and backward substitution to solve LUx = b. Therefore, we can cast x and b to
float in order to perform the preconditioning in single and the rest of GMRES
in double precision.

40

4 Mixed Precision in PaStiX

Both approaches are viable mixed precision methods, but the latter approach surpasses
the former in multiple aspects:

• The LU, which consists of dense blocks, requires up to 30 GB for the benchmark
matrices in single precision. Casting that many values takes considerable time
and possibly negates the advantage gained by mixed precision. Casting a vector
of at most 40 MB in each iteration is less time consuming.

• The LU matrix is dominating the total memory consumption and when we per-
form the factorization in single instead of double precision, the required memory
for LU is halved. When the matrix is cast from float to double afterwards, the
memory advantage is lost. Instead, the required memory capacity is now one and
a half times more, because during the casting LU is kept in both accuracies.

• Applying the preconditioner in double precision might reduce the number of
required iterations. Nevertheless, this effect is very weak because the LU still
originates from single precision factorization. On the contrary, the speedup
achieved by executing the forward and backward substitution in single precision
is almost 2. Therefore, it outweighs the disadvantage of slightly more iterations.

We implement the mixed precision approach in which the input vector is cast from
double to float and back in every iteration. As shown in table 4.1, the number of
required iterations to reach a residual of 10−12 is much higher with the new mixed
precision approach. However, this is to be expected since both the initial solution vector
and the preconditioning are less accurate. GMRES converges for each of our benchmark
matrices in less than 20 iterations.

The results presented in figure 4.2 show that the new mixed precision implementation is
performing better than the original solver with fixed double precision. However, while
the CPU version achieves a speedup between 13.27% and 84.57%, the hybrid version
performs only between 6.83% and 49.24% faster than its fixed precision equivalent.
Firstly, it can be observed that mixed precision performs better for more time consuming
factorizations, such as for M3, M5, M6 and M9. Moreover, the matrices for which many
iterations of refinement are required, such as for M1, M7 and M9, obviously demand

Table 4.1: Required iterations in double and mixed precision.

Matrix 1 2 3 4 5 6 7 8 9
Double Precision 1 0 0 1 0 1 0 0 0
Mixed Precision 8 6 6 5 4 4 8 6 19

41

4 Mixed Precision in PaStiX

more time for solving and refinement. Since the backward and forward substitution
that is applied for solving and preconditioning is not accelerated by the GPU, the hybrid
version performs especially poorly in these cases. The lack of a hybrid implementation
is discussed in section 5.4. Finally, the GPU also achieves less speedup because the
factorization itself does not benefit from the switch to single precision as much as the
CPU, which shown in figure 4.1.

0 10 20 30 40 50 60 70 80 90 100

M1

M2

M3

M4

M5

M6

M7

M8

M9

∅

Computation Time in s

Hybrid+MixedHybrid+DoubleCPU+MixedCPU+Double
Solve
Factorize

Figure 4.2: Impact of the mixed precision implementation on CPU and hybrid solver.
Solve times include solve and iterative refinement step. Factorize times
include internal CSC initialization, LU initialization and factorization step,
as all of those are influenced by the new precision scheme. The benchmarks
are performed on T1 with 8 threads and optionally with Nvidia V100.

42

4 Mixed Precision in PaStiX

4.2 Half Precision

After successfully introducing a mixed precision approach in which the factorization is
done in single and the refinement in double precision, a next step is to further lower the
accuracy of the factorization to half precision (FP16). Half precision is not supported
by ordinary CPUs but with the rising popularity of machine learning, it became a
popular feature in GPUs. The NVIDIA V100 of our benchmark system, for instance, can
theoretically perform up to 125 TFLOP/s in half precision [NVI17]. In case of PaStiX,
the computationally dominant operation during the factorization is GEMM, for which an
efficient half precision implementation exists in cuBLAS (hgemm).

The 125 TFLOP/s are performed partially by so-called tensor cores (TC), that only
work with 16-bit inputs. They can perform GEMMs in which the scalar multiplications
are calculated in FP16, but the accumulation in FP32. Therefore, it produces more
accurate results than the pure FP16 operation. This approach has been tested before
on MAGMA, a library that solves Ax = b directly for dense matrices, and achieved a
speedup of up to 4 [Hai+18]. The expectations for PaStiX in the context of structural
mechanics simulations are significantly lower for two reasons:

1. PaStiX is a solver for sparse matrices and has to deal with lower computational
intensity compared to MAGMA.

2. In [Hai+18], only matrices A with condition numbers κ(A) ≤ 106 were consid-
ered. The matrices we are benchmarking as part of this work have mediocre
conditioning (κ(A) > 108) and we expect them to converge slower during iterative
refinement. This is underlined by [CH17], in which convergence for GMRES in
half precision is only guaranteed for (κ(A) ≤ 108).

Furthermore, we agree with the decision made in [Hai+18]. Only GEMMs should be
performed in half precision, as this is usually the dominating computational part and
its conditioning is better than TRSM’s. The program’s structure with respect to precision
is therefore:

Factorization

{ (FP32) GETRF for small diagonal blocks
(FP32) TRSM for contributions
(FP16) GEMM for updates
(FP32) solve by applying LU
(FP64) GMRES with (FP32) preconditioning

To perform GEMM in half precision, casting it from single precision is required. We do so
on the GPU after the blocks in single precision have been transferred because it is easier

43

4 Mixed Precision in PaStiX

to implement. A more efficient approach concerning the memory bandwidth between
CPU and GPU would compress them before the transfer to GPU in order to relieve
the PCI Express bus. The casting is performed with the command __half2float and
__float2half provided by CUDA. To test the numerical behavior for half precision
computations we test one version which uses FP16 · FP16 = FP16 and a second one
that uses FP16 · FP16 = FP32 provided by the tensor cores. These operations are titled
cublasHgemm and cublasGemmEx in the cuBLAS library. For solving the benchmark
matrices we scale them by a factor of 10−5 because otherwise the numerical values
would exceed the range of FP16, which is −65504 ≤ x ≤ 65504. As shown in table 4.2,
the tensor core multiplication introduces far less additional iterations than the pure
half precision operation.

Table 4.2: Iterations until a residual of 10−12 is reached with the two half precision
operations in comparison to the FP64/FP32 implementation.

Matrix 1 2 3 4 5 6 7 8 9
cublasSgemm 8 6 6 5 4 4 8 6 19
cublasGemmEx 400+ 6 6 6 6 6 10 8 25
cublasHgemm 400+ 36 75 54 57 60 400+ 400+ 400+

Up to this point, the half precision implementation is a proof of concept to analyze
the numerical behavior. The version is not optimized for efficiency and performance
measurements are not meaningful. For the following reasons we decide to not pursue
the idea of half precision further:

• Even though the tensor core matrix multiplication showed promise with regards
to the numerical behavior, fast convergence could not be guaranteed for every
test case.

• The scaling would require a sophisticated approach. A numerical analysis has to
be performed in advance, based on which a customized scaling or normalization
technique could be performed.

• The current bottleneck of the application is the PCI Express bus, not the computa-
tional power. In our proof of concept, the matrix is still transferred to the GPU in
single precision state. No matter how fast the casting and tensor core multiplica-
tion is performed by the GPU, the PCI Express bottleneck still exists. Therefore,
an approach to this problem would be to cast the values to half precision before
sending them to the GPU. A problem is that normally GEMMs are executed sub-
sequently to TRSMs so that the data already resides on the GPU. Conducting the

44

4 Mixed Precision in PaStiX

initial transfer in half precision would require that TRSM is performed in single
precision as well. Moreover, using the tensor core operation the result has to be
transferred back in single precision anyways so that the actual bottleneck still
exists for the return transfer. Considering this, only true half precision can relief
the PCI Express bus.

• With our implementation enabling the tensor cores to unlock the maximum
potential of the Nvidia V100 is not possible. The deployment of tensor cores in
cuBLAS is limited to GEMMs where K, LDA, LDB and LDC are multiples of 8 and M is
a multiple of four. To fulfill these criteria, padding has to be inserted into PaStiX’s
dense block data structure.

The implementation of the above mentioned features and optimizations could po-
tentially lead to an overall performance gain for matrices that do not demand much
iterative refinement. Nevertheless, the required effort exceeds capacity of this work.

45

5 Optimizations for PaStiX

In this chapter we discuss several independent ideas for optimizations in PaStiX that
increase the performance in different ways. First, section 5.1 elaborates on parameters
exposed by PaStiX and how to tune them for applications in structural mechanics.
In section 5.2, we discuss the utilization of CUDA’s pinned memory to improve the
performance during factorization. Section 5.3 covers the OpenMP parallelization of
the sparse matrix preprocessing. Finally, Section 5.4 introduces a partially accelerated
iterative refinement implementation.

5.1 Parameter Tuning

PaStiX offers a variety of parameters that impact the overall performance. Many are
negligible or related to unused features. Most important for our purposes are the
following five parameters:

1. Selection of a partitioning library (SCOTCH [PR96] or METIS [KK98]).

2. Selection of a scheduling library (PaRSEC [Bos+13] or StarPU [Aug+11]).

3. Upper bound for the width of supernodes, called column blocks in the context of
PaStiX’ data structure (MAX_BLOCKSIZE).

4. Splitting width for column blocks (SPLIT_SIZE).

5. Column width threshold for enabling 2D instead of 1D tasking (TASKING_THRESHOLD).

The first two parameters are easy to choose because they are binary choices. Whether
SCOTCH or METIS performs better for our benchmarking matrices is mainly impacted
by two factors. The time required for computing the reordering and number of
operations that have to be performed during factorization. For M1 to M9, these
characteristics are shown in figure 5.1. While the reordering permutations produced by
the libraries lead to a similar factorizations, SCOTCH performs the nested dissection

46

5 Optimizations for PaStiX

based algorithm much faster than METIS. Therefore, we decide to use it for further
purposes.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

1

2

3

Speedup of Scotch Compared to Metis

Ratio of Proposed FLOPs by Scotch to Metis

Figure 5.1: Comparison of SCOTCH and METIS for the benchmarking matrices.
SCOTCH is on average twice as fast but produces slightly worse reorderings.

The second binary choice is between the two scheduling libraries PaRSEC and StarPU.
We set this parameter based on the performance during factorization. As shown in
figure 5.2, PaRSEC clearly outperforms StarPU in hybrid execution mode. When
restricted to CPU computation, PaRSEC is only slightly faster.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

1

2

3

4

5

TF
LO

P/
s

StarPU (CPU) PaRSEC (CPU) StarPU (Hybrid) PaRSEC (Hybrid)

Figure 5.2: Performance comparison of StarPU and PaRSEC in single precision.

47

5 Optimizations for PaStiX

The remaining three parameters are integer values and depend on each other. The
PaStiX data structure for LU consist of column blocks that are formed based on the
elimination tree generated by nested dissection. The initial structure may look like the
left matrix of figure 5.3. The problem with this blocking is that the amount of parallelism
is limited since only 3 tasks exist. Furthermore, the load cannot be distributed evenly
because the load for each task varies heavily. To avoid such behavior, large column
blocks are further divided into smaller column blocks. The rule for this splitting is that
every block having a width larger than MAX_BLOCKSIZE is split into as many chunks
so that each has a width larger or equal to SPLIT_SIZE. To increase the amount of
parallelism even more, the 1D tasks are split into 2D tasks. To avoid the creation of
many small tasks, which would lead to significant scheduling overhead, the 2D splitting
is performed only on column blocks with more than TASKING_THRESHOLD horizontal
entries.

already computed U

30 50 100

already computed U

30 50 5050

Figure 5.3: Effects of splitting parameters with MAX_BLOCKSIZE = 60, SPLIT_SIZE =
50 and TASKING_THRESHOLD = 40. For simplicity, we assume that the
matrix is dense. The first block is smaller than MAX_BLOCKSIZE and
TASKING_THRESHOLD. Therefore, it is not split. The second block is split
into multiple 2D tasks as it is larger than TASKING_THRESHOLD. The right-
most block is further split into two column block of size SPLIT_SIZE because
it is larger than MAX_BLOCKSIZE.

With the standard configuration of PaStiX (MAX_BLOCKSIZE=320, SPLIT_SIZE = 160,
TASKING_THRESHOLD=160) our benchmarks perform poorly, especially when enabling
offloading to GPU. This is because the default parameter configuration leads to many
small blocks, which is great for load balancing but devastating for the arithmetic inten-
sity of BLAS 3 operations. We found much better configurations (MAX_BLOCKSIZE=2048,

48

5 Optimizations for PaStiX

SPLIT_SIZE = 1024, TASKING_THRESHOLD=128) that massively increased the FLOP/s
for the factorization. With such a configuration, 2D splittings are still performed for
smaller columns but larger columns are not split as much anymore.

A model that predicts the performance of the factorization based on a certain splitting
is desirable but not feasible to implement because it varies from matrix to matrix. The
approach of manual experiments that led to the configuration mentioned above is not
very satisfying either. To assess the problem scientifically, we perform automatic tuning
for the three parameters. For this, we use the external python module OpenTuner
[Ans+14], which offers a wide variety of machine learning-based optimization algo-
rithms for the purpose of automatic tuning. We only have to provide the range of the
three input parameters and specify how the feedback value is returned to the library. In
this case, the feedback value is the computation time required for the factorization.

0 20 40 60 80 100 120 140 160 180

2

4

6

8

10

12

Tuning Iteration

Fa
ct

or
iz

at
io

n
Ti

m
e

in
s

Baseline
Sophisticated Guess
Autotuner

Figure 5.4: Progression of automatic tuning with OpenTuner using M2 as input. Bench-
marked on T1 with 8 threads and GPU support.

The results of the automatic tuning shown in figure 5.4 indicate that our sophisticated
guess is close to the optimal configuration. Only a few runs of the auto tuner were
slightly faster. Because the optimal blocking parameters also depend on the specific
problem, a more sophisticated parameter tuning is desirable for future application.

49

5 Optimizations for PaStiX

5.2 Pinned Memory

As introduced in section 2.3.1, host and device address spaces are disjoint. The CPU
cannot access device memory and the GPU cannot access host memory. The exchange
of data is performed via cudaMemCpy. The default process for host to device transfer
consists of two steps. First, the CPU allocates a separate buffer and fills it with data to
be sent. Only then the GPU is allowed to copy data from the buffer to GPU memory.
The intermediate buffer is required because otherwise the data might be evicted from
main memory while it is transferred to the GPU. It is non-pageable memory and
therefore called pinned memory [Wil13].

20 22 24 26 28 210 212 214 216 218 220 222

0

2

4

6

8

10

12

14

Transfer size in KB

Ba
nd

w
id

th
in

G
B/

s

Pageable, HtoD
Pageable, DtoH
Pinned, HtoD
Pinned, DtoH

Figure 5.5: Memory bandwith with and without pinned memory. Device to host
transfers achieve higher bandwidth than the host to device transfers.

It is possible to allocate pinned memory manually, so that additional buffers are not
required and the GPU can copy the data via direct memory access (DMA). Therefore,
the memory has to be allocated by the host with cudaMallocHost instead of a regular
malloc. As shown in figure 5.5, the bandwidth for large chunks almost doubles for
host to device communication and slightly increases for device to host communication
when using pinned memory. The main drawback is that the allocation is costly. As
shown in figure 5.6, allocating 6 GB of pinned memory takes approximately one second.
6 GB/s is slightly slower than memory transfer with ordinary pageable memory and
therefore, allocating memory with cudaMallocHost is only advantageous when data is
transferred from or to a pinned buffer multiple times.

50

5 Optimizations for PaStiX

20 22 24 26 28 210 212 214 216 218 220 222

0

2

4

6

Allocated Memory in KB

G
B/

s

cudaMallocHost

Figure 5.6: Performance of allocating pinned memory using cudaMallocHost.

PaStiX does currently not use pinned memory optimizations, even though the factoriza-
tion benefits from higher CPU-GPU bandwidth, as shown in figure 5.7. The tasks that
are already scheduled to the GPU would be pushed to and popped from the device
faster. Moreover, smaller tasks which have previously been computed on the CPU,
might be scheduled to the GPU now because the penalty for memory transfer is less
significant. The problem, however, is that data from the pinned buffer is not transferred
to the GPU more than once. Even worse, since not all of the blocks are computed on
the GPU, some elements in the allocated memory range are never send to the GPU.
This means that pinned memory does not provide any overall speedup, since allocating
takes more time than is gained by faster transfers.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

1

2

3

4

5

T
FL

O
P/

s

Pageable+Double Pinned+Double Pageable+Float Pinned+Float

Figure 5.7: Performance impact of pinned memory on PaStiX’s factorization.

51

5 Optimizations for PaStiX

The drawback of allocating pinned memory ranges can be amortized when the same
buffer is used for more than one factorization process. Iterative methods, such as
the Newton-Raphson method, are used in simulation tools to approximate non-linear
equations. In each iteration a linear equation has to be solved and therefore, the
expensive to allocate pinned memory can be reused. Since the required buffer size
might vary slightly between the iterations, an overestimation of the first iteration’s
demands should be used to avoid situations in which the memory buffer has to be
reallocated. For the benchmark inputs of this work, the overhead of pinned memory
allocation and faster factorization are presented in table 5.1. With these values a break-
even-point that shows how many iterations are required for pinned memory to be
faster in total computation time, can be computed. This break-even-point is reached
after at most 7 iterations for double precision and even earlier for single precision.

Table 5.1: Computation of a break-even-point for the usage of pinned memory with
matrices in double precision.

Matrix 1 2 3 4 5 6 7 8 9
Storage in GB 8.0 14.8 41.6 18.8 51.6 59.1 19.1 21.5 47.5

Time for Allocation in s 1.3 2.4 6.8 3.1 8.4 9.7 3.3 3.5 7.8
Factorization Advantage in s 0.29 0.48 3.59 0.86 3.44 2.67 0.74 0.54 3.57

Break-Even-Point 4.48 5 1.89 3.6 2.44 3.63 4.46 6.48 2.18

5.3 Parallel Matrix Preprocessing

In PaStiX there is an important step prior to the factorization. It is titled “Initialize
Internal CSC” and as shown in section 3.6, it requires between 11% and 35% of the
computation time, which in many cases is longer than the actual factorization. The
tasks performed in this step are:

1. Structuring the matrix in a block-scheme based on the analysis.

2. Applying the reordering permutation to the sparse matrix.

3. Transposing the sparse matrix in order to process the upper triangular matrix
U analogously to the lower triangular matrix L and to use it during iterative
refinement for row-major based algorithms.

52

5 Optimizations for PaStiX

The first task is negligible with regards to performance and therefore only the latter
two tasks are discussed in this section. The general flow of these tasks is not optimal
in the original PaStiX implementation, so that the reordering was applied to both the
source and the transposed matrix. Moreover, the mixed precision approach introduces
a new challenge to this step. The reordered and transposed matrix has to be available in
single precision for factorization and in double precision for iterative refinement. That
is why we propose a new task flow that minimizes the use of expensive permutation
and transpose functions. As shown in figure 5.8, reordering and transposing only have
to be performed once. Merely the casting which is computationally low-cost has to be
performed twice.

Adouble Adouble Adouble

Asingle Asingle

reorder transpose

cast

cast

Figure 5.8: Task Flow for Matrix Preprocessing

5.3.1 Parallel Permutation of a Matrix in CSC Format

The application of the reordering itself is a symmetric permutation of the sparse input
matrix. Given a permutation vector p, this affects every array of the CSC format
introduced in section 2.2:

• The changes in colptr are trivial. The number of elements in each row can be
computed based on colptr. These can then be permuted and accumulated to
form a new colptr.

• The changes to rows are trivial only on first sight. Each row index can be mapped
accordingly and no copies have to be created. However, initially the entries per
column in rows were sorted in ascending order. After the mapping, this is not
the case anymore. PaStiX and many other libraries demand that elements are
stored in order so that the matrix can be iterated over meaningfully. Given that
each column has an entry, the number of vectors that have to be sorted equals the
number of equations.

53

5 Optimizations for PaStiX

• The values always have to match the indices of rows. Since rows was rearranged,
values has to be permuted identically.

To optimize the application of the reordering, we parallelize the sorting invocations
using OpenMP. Additionally, we replace the default C sort function qsort with C++’s
std::sort. The sort invocation is supposed to permute values analogously to rows.
This can be achieved by sorting an array of ascending indices with regards to rows and
applying the resulting permutation to the both arrays. The scaling of the implementa-
tion is evaluated in section 5.3.3.

5.3.2 Transpose of a Structurally Symmetric Matrix

Computing the transpose of a structurally symmetric matrix in CSC format is the same
task as converting a structurally symmetric matrix from CSC format to CSR format.
The CSC’s colptr is the CSR’s rowptr and analogously the CSC’s rows are CSR’s cols.
What has to be done computationally is restructuring the values from column-major to
row-major order. This problem is very fundamental and has been analyzed thoroughly
for asymmetric matrices [Wan+16]. The fact that the pattern is symmetric makes the
problem much easier and most high-level libraries targeting sparse matrices do not offer
the standalone functionality. Moreover, we do not want to introduce further external
dependencies for such a minor task. Therefore, we present our own approach to this
problem.

To swap each entry with their diagonally mirrored entry, the values have to be iterated.
This happens in a nested loop construction displayed in listing 5.1. The outer loop
iterates over the number of columns n. Based on colptr, the inner loop iterates over
the non-zero entries of each column. The known facts for the currently iterated entry
are the column of the entry, the number of preceeding entrys in the same column and
the row of the entry through rows. With this information, we have to acquire the same
data for the mirrored entry. The column is easy to deduct because the row of the source
element is the column of the target element. The difficult part is figuring out the offset
to the first entry of the row. We know the column of the source element and therefore
the row of the target element, but not how many non-zero entries in the same column
precede it. In listing 5.1 we show two approaches to solve that problem. One is fast
but strictly sequential, while the other one has a worse computational complexity but
allows parallelism.

The first algorithm makes use of the fact that the loop iterates the matrix sequentially
columnwise from the leftmost column to the rightmost column. Using that information,

54

5 Optimizations for PaStiX

1 memset(temp, 0, sizeof(int) * colptrIn[n]);
2 for(int i = 0; i < n; i++){
3 for(int j = colptr[i]; j < colptr[i + 1]; j++){
4 // Strictly Sequential Version
5 offset[j] = temp[rows[j]]++;
6
7 // Parallelizable Version
8 int length = colptr[rows[j] + 1] - colptr[rows[j]];
9 int* rowsWithOffset = rows - colptr[rows[j]];

10 offset[j] = binarySearch(rowsWithOffset , 0, length - 1, i);
11 }
12 }

Listing 5.1: Two approaches to compute the number of preceeding elements in the same
row of an entry in a CSC matrix.

the offset to the first entry in each row can be computed. Due to symmetry, this is
identical to the targeted offset to the first entry in each column.

The second algorithm utilizes that the target entry’s row is known. Based on that, binary
search can find the correct position inside the target column. As shown in figure 5.9,
the parallel algorithm scales well but even with the maximum number of supported
threads, the parallelized algorithm takes more time than the sequential counterpart.
On a machine with 16 cores the implementations would most likely perform equally.
For now, we choose the sequential implementation.

Once the target position for each element is known, the transpose is a simple mapping
that can be parallelized trivially using OpenMP.

1 2 4 8
0

1

2

Threads

Ti
m

e
in

s

Sequential Algorithm

Parallel Algorithm

Figure 5.9: Performance comparison of the two approaches for computing row offsets.
The measurements are based on M2 executed on T1.

55

5 Optimizations for PaStiX

5.3.3 Performance Evaluation

Besides the algorithms introduced in the previous two sections, casting from double
to float is also performed in parallel. The graphs in figure 5.10 show that reordering
and casting scale well, considering that this is obviously a memory-bound problem.
Since we decided to use the sequential algorithm for computing the transpose, only
the swapping of values is parallelized. Thus, the poor speedup when executing with 8
threads was expected. The parallel efficiency of the total step is 50% when using all of
the available cores.

1 2 4 8

1

2

4

8

#Threads

Sp
ee

du
p

Reodering

Transpose

Casting

Total

Figure 5.10: Speedup for shared memory parallelization of maxtrix preprocessing. The
measurements are based on M2 executed on T1.

Reusing Capability

In chapter 6, a concept will be introduced in which PaStiX is called repeatedly with the
same sparsity pattern but different numerical values. In such cases, we have to perform
the reordering and the computation of the transpose only partially because some of the
circumstances have not changed. The application of the reordering was dominated by
sorting row indices. The sorting delivered a permutation vector based on which rows
and values are reordered. Once the vector has been computed, it is correct as long as
the sparsity pattern of the input matrix does not change. By keeping this permutation
array between PaStiX invocations in memory, we avoid sorting and therefore lower the
computational complexity of the step. A similar approach can be used for computing
the transpose which was dominated by finding the indices of mirrored elements. The

56

5 Optimizations for PaStiX

1 2 4 8
1

2

4

8

16

32

#Threads

Sp
ee

du
p

Without Reusability

With Reusability

Figure 5.11: Performance comparison of the matrix preprocessing. The baseline for the
calculated speedup is the original (sequential) PaStiX code. With Reusability
assumes that the permutation order for the reordering and the column
offsets for the transpose are known. The measurements are based on J2
executed on T1.

offset to the first entry in each row can be kept in memory so that it does not have to
be computed again in further PaStiX invocations with the same sparsity pattern.

The data visualized in figure 5.11 shows that the entire step is now up to 7.3 time faster
compared in the original implementation. When PaStiX is called subsequently with the
same sparsity pattern, a speedup between 5.7 with one thread and 32.3 with 8 threads
over the original implementation is achieved.

5.4 GPU-Accelerated Iterative Refinement

The successful introduction of a mixed-precision strategy has the side effect that more
iterations of iterative refinement are required. As visualized in figure 4.2, the time spent
on iterative refinement is only slightly less than the time spent on the factorization. Until
now, it is merely parallelized with POSIX threads for the CPU. A GPU implementation
does not exist. In theory, iterative methods for linear systems of equations do benefit
from accelerators, as discussed in section 2.5. A problem is the need of a precisely
approximating preconditioner. In section 3.5 it was determined that a very effective
preconditioner is required for the benchmark matrices to converge reasonably fast.
The ILU preconditioning tested as part of this work was not a precise approximation

57

5 Optimizations for PaStiX

and did not improve the convergence behavior. PaStiX’s preconditioning strategy
is to use the factorized matrices L and U as preconditioners. Because of numerical
errors during the factorization, this preconditioner is not totally accurate. At most one
iteration is required for the benchmark matrices, when double precision is used for the
factorization and less than 20 iterations when mixed precision is used.

As introduced in section 2.5.2, the preconditioner has to be applied in each iteration in
form of forward and backward substitutions, further named solving. GMRES without
preconditioning is dominated by sparse matrix vector multiplication (SpMV) whose
computational complexity is constant. The same does apply for the triangular solves
applied to the preconditioner. The pitfall is that for our benchmark matrices the LU
used by the preconditioner has 7 to 20 times more entries than the sparse matrix A that
is used for SpMV. Therefore, the computation time of the iterative refinement step is
clearly dominated by the application of the preconditioner.

An efficient GPU implementation of the iterative refinement would perform as many
operations as possible on the device. Unfortunately, the solving that is part of precondi-
tioning cannot be reasonably accelerated. As shown in table 5.1, LU is very large and
generally does not fit into memory, especially when considering that the sparse input
matrix has to be stored in addition. Moreover, the constant computational intensity
makes it a very inconvenient application. Consider M6 for which LU requires 25.8
GB of memory in single precision. Given a bandwidth of 12.35 GB/s, the transfer
time is 2.1 seconds. The CPU requires in total 3.7 seconds for the iterative refinement.
This means that the GPU implementation must be more than twice as fast as the CPU
implementation, in order to achieve an overall speedup.

Therefore, we accelerate every operation of GMRES except those concerning the pre-
conditioning. The existing iterative refinement implementation already offers a pseudo-
object oriented interface that can be extended by GPU functionality. As introduced in
listing 2.1, the operations required by the algorithm are SpMV, DOT, AXPY, SCAL, NRM2,
GeMV, ROT, ROTG and TRSV. Except SpMV, those functions are provided by cuBLAS and
are integrated in a straight-forward approach. For the SpMV operation we deploy
LightSpMV [LS15]. At the time of its release, the authors claimed that it performs
better than CUSP and cuSPARSE [LS15]. In contrast to PaStiX, LightSpMV requires
the sparse matrix in CSR format. The conversion is analogous to the implementation
in section 5.3.2. The library excels with its dynamic scheduling that balances the load
much better than the static scheduler used in the original implementation of SpMV in
PaStiX. In general the right-preconditioned GMRES algorithm, which was introduced
in section 2.5.3, is computationally structured as follows:

58

5 Optimizations for PaStiX

1. Compute r0 and v0 using SpMV, norm2, scal.

2. Apply preconditioner using solve and subsequent SpMV.

3. Perform Arnoldi Process using dot, axpy, norm and scal.

4. Find ym by applying Givens rotations using rot and rotg.

5. Obtain the final xm using trsv and gemv.

As mentioned earlier, the main problem is that the solve operation (w = M−1v) cannot
be performed efficiently on the GPU. Therefore, the vector w is transferred from GPU
to CPU. Then, the CPU-based solve algorithm is applied and subsequently the result
v is sent back to GPU. Considering that solve operates on multiple GB of data, the
transfer times of the two vectors is negligible.

A general prerequisite for executing the sparse matrix vector multiplication on the GPU
is that the input data (A, x and b) are in the device’s memory. For x and b the transfer
times are once more negligible but the matrix A in CSR format and double precision
requires noticeable time. The data sizes and estimated transfer times are shown in
table 5.2. One key strategy when programming for GPUs is to hide memory transfers by
concurrent computation. In this case, the regular solving has to be performed prior to
the iterative refinement in order to obtain an initial solution. We use cudaMemcpyAsync
to asynchronously transfer the sparse matrix to the GPU while performing solve on
the CPU. A synchronizing barrier is placed before the first appearance of SpMV for
which the sparse matrix is required as input.

Table 5.2: GPU transfer times for sparse matrices in comparison to the solve times.

Matrix 1 2 3 4 5 6 7 8 9
Memory in GB 2.14 1.93 6.55 2.30 5.68 6.99 3.16 4.20 3.32

Estimated Transfer Time 0.30 0.27 0.92 0.32 0.80 0.98 0.44 0.59 0.47
solve Time 0.34 0.34 0.96 0.38 0.57 0.71 0.37 0.38 0.64

Performance Evalutation

First, we measure the new implementation’s performance under the assumption that
no preconditioning has to be applied. This is the classical GMRES procedure in which
we expect the GPU to heavily outperform the CPU. The data visualized in figure 5.12
supports this hypothesis. The GPU implementation achieves speedup between 9.3 and

59

5 Optimizations for PaStiX

16.9 compared to the the CPU version. Without preconditioning the algorithm is not
interesting for practical purposes. Therefore, the hybrid algorithm with preconditioning
and initial device memory transfers is evaluated next. The data in figure 5.13 shows that
the hybrid implementation is faster than the pure CPU version. The advantage, however,
is not very significant because the preconditioner, which accounts for a large fraction of
the total time, is still performed on the CPU. Nevertheless, the new implementation is
faster for all benchmark matrices and we include it in the productive implementation.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

5

10

15

G
PU

Sp
ee

du
p

Figure 5.12: Performance comparison of CPU and GPU implementations of GMRES in
PaStiX without preconditioning. Executed on T1 with 8 threads.

M1 M2 M3 M4 M5 M6 M7 M8 M9 ∅
0

3

6

9

12

C
om

pu
ta

ti
on

Ti
m

e
in

s

PaStiX CPU PaStiX CPU+GPU

Figure 5.13: Speedup for hybrid implementation of iterative refinement with precondi-
tioning. To include memory transfer times, the entire solve- and refinement-
step is considered. Executed on T1 with 8 threads.

60

6 PaStiX Integration in CalculiX

The previous two chapters discuss optimizations for the hybrid solver PaStiX. In this
chapter we present its integration into the FEA software CalculiX. The loose coupling
between CalculiX and external equation solvers makes the integration uncomplicated.
Merely the interface between CalculiX and PARDISO has to adapted slightly for PaStiX.
A conversion from CalculiX’s own matrix format to CSC is necessary. This is discussed
in section 6.1. Section 6.2 introduces a method with which data from previous iterations
of the Newton-Raphson method can be reused for further computation which leads
to significant reduction of total computation time. Finally we evaluate the amortized
performance of PaStiX over multiple iterations in section 6.3.

6.1 Conversion of CalculiX’s Matrix Format

CalculiX’s internal matrix format is very similar to the CSC format which PaStiX uses.
They are introduced in section 2.2.3 and section 3.3.1. A conversion to the CSR format,
which PARDISO requires, is already implemented but behaves very poorly with regards
to performance. Otherwise, we could have applied it with slight modifications because
a structurally symmetric CSC matrix is identical to the transpose of a CSR matrix.

In CalculiX’s matrix format, the lower triangular values are stored in column-major
order and the upper triangular values in row-major order. This means that the upper
triangular matrix has to be transposed and then combined with the lower triangular
matrix. Since finding the transpose was already discussed and evaluated in section 5.3.2,
we can simply apply the same algorithm. Therefore, the performance behavior of the
conversion is similar to the algorithm presented in section 5.3.2 and we omit further
evaluations.

61

6 PaStiX Integration in CalculiX

6.2 Reusing Matrix Patterns

The most significant weakness of PaStiX is that the majority of the time is not spent on
the very highly optimized factorization. Considering the optimizations discussed in
the previous chapters, the time-wise dominating part of PaStiX is the computation of a
reordering performed by SCOTCH with around 40%. Unfortunately, most reordering
libraries offer only distributed memory parallelizations. Shared memory or accelerator-
based approaches exist but they are mostly considered experimental.

Nevertheless, this performance bottleneck can be mitigated by exploiting a property of
solving non-linear equations in CalcuilX. The linear solver is invoked repeatedly to ap-
proximate the solution for a system of non-linear equation as presented in section 2.1.3.
During these iterations, the pattern of the matrix changes only slightly because the
relations between elements remain mostly the same. Merely between contact elements,
previously active connections can become inactive and the other way around. For
the matrix representation this means that the number of equations remains the same
during an invocation of the Newton-Raphson method. The number of matrix entries
may increase or decrease. The numerical values always change because of the iterative
algorithm. In many cases, entries that were non-zero originally become zero in a
subsequent iteration. Then, we can simply invoke PaStiX with the same matrix pattern
as before. Values of the matrix entries that became zero have to be set to 0.0 explicitly.
Since the sparsity pattern forwarded to PaStiX and SCOTCH is the same, the computed
reordering is also the same and we can simply reuse the reordering computed during
the previous iteration. The same applies to the analysis and symbolic factorization step
of PaStiX.

J1 J2 J4 J5 J6 J7 J8 J9 ∅
1

2

3

4

5

Sp
ee

du
p

Figure 6.1: Speedup when reusing sparsity patterns compared to when it is not reused.

62

6 PaStiX Integration in CalculiX

Naturally, the number of required operations for the factorization might be slightly
higher because we consider matrix entries that are zero anyways, but the time saved
by skipping the reordering is much more significant, as is shown in figure 6.1. This
performance behavior is directly related to the structure of PaStiX’s computation
time presented in figure 3.6. The input deck J9, for instance, benefits less from this
optimization because the factorization step already dominated the computation time in
the original version.

To convey the speedup of figure 6.1 to the real application, a high reusability of
iterations is required. Reusing the ordering and analysis steps requires that the non-
zero positions of the current matrix are a subset of those in the previous invocation.
Otherwise the reordering might lead to disastrous fill-in and factorization performance.
Moreover, the data structures that are prepared during the analysis step belong to a
certain sparsity pattern. The number of iterations in which reusing can be applied with
are shown in table 6.1 for the benchmark matrices.

Table 6.1: Reusing capability for the benchmark cases.

Job 1 2 3 4 5 6 7 8 9
Total iterations 7 36 1 125 97 10 165 248 21

Reused Iterations 6 33 0 111 77 5 135 208 15
Reusability 86% 92% 0% 89% 79% 50% 82% 84% 71%

6.2.1 Reusiability Optimization

To further increase the reusability ratio, we have to elaborate on the reason for unstable
matrix patterns. An execution of CalculiX usually consists of multiple steps that
are specified in an input deck. The steps perform different tasks such as applying
individual loads and performing frequency or thermal analysis instead of static analysis.
When switching from one step to another, the sparsity pattern and even the number of
equations can change and therefore the ability to reuse cannot be guaranteed. Within
the steps, a possibly non-linear equation has to be solved approximately and this
requires usually around 10 iterations of the Newton-Raphson method. The positioning
of non-zero entries changes between iterations because the simulation includes contact
areas which were introduced in section 2.1.3. Elements that have been tagged by the
user as contact elements are likely to switch between active and inactive during the
Newton-Raphson method. To make sure that the sparsity pattern does not change

63

6 PaStiX Integration in CalculiX

during one step, we assume that every possible contact element is active. This has two
side effects:

1. The matrix that is forwarded to PaStiX has slightly more entries than absolutely
necessary, which means that more operations have to be performed during the
factorization.

2. The algorithm of CalculiX that activates and deactivates contact elements between
iterations is not required anymore, which saves time.

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅

1

1.2

1.4

1.6

1.8

R
el

at
iv

e
C

ha
ng

e

Reusability Required Operations

Figure 6.2: Impact of contact approximation on reusability and factorization.

Figure 6.2 shows the gain in reusability compared to the additional number of op-
erations. J1 and J3 do not have contacts areas and thus perform unchanged. The
increase in operations is below 10% for every job and therefore negligible, especially
when considering that more operations usually lead to more FLOP/s. The number
of additional iterations in which reusing can be applied varies from case to case. The
highest relative change can be observed for J6 in which 9 instead of 5 out of 10 iterations
can be reused.

6.3 Evaluation

In this section, we evaluate PaStiX’s and CalculiX’s performance with focus on the
optimizations performed as part of this work.

64

6 PaStiX Integration in CalculiX

6.3.1 Amortized Performance of PaStiX

For analyzing PaStiX in the context of CalculiX and structural mechanics, we focus
on the computation time spent on solving the systems of linear equations and ignore
the overhead generated by CalculiX. The presented performance measurements in this
subsection are therefore calculated by accumulating isolated computation times of
PaStiX invocations for each input deck.

One problem identified during the analysis was that numerical computation in form of
factorization, solving, and refinement on average merely amounted to 26.8% of PaStiX’s
computation time. This was less than the time spent on computing a reordering
permutation and only slightly more than the time required for initializing the internal
CSC data structure. To counter that behavior, we heavily optimized the latter step by
enhancing the overall program flow and parallelizing it with OpenMP. We could not
optimize the reordering itself but reusing sparsity patterns helped reducing the number
of SCOTCH invocations.

Figure 6.3 clearly underlines the positive effects of these implementations. On average,
the numerical parts of PaStiX now amount to 66.1% of its total computation time. Only
for J3, where reusing sparsity patterns is not possible, the ratio is 25%. The figure also
shows the impact of the mixed precision feature which leads to a massive increase of
required time for iterative refinement compared to the original measurements visualized
in figure 3.6.

Furthermore, we evaluate the performance in comparison to the previously used
PARDISO solver. PARDISO’s computation times are also amortized. The comparison
is not entirely equitable because PARDISO could also benefit from reusing reordering
permutations. Nevertheless, the results presented in figure 6.4 do show that the new
implementation outperforms the original PARDISO configuration even more than in
the initial analysis. Instead of speedups between 0.95 and 3.5, which the unmodified
PaStiX library achieved for individual invocations, the optimized hybrid version reaches
amortized speedups between 2.6 and 12.7. The CPU implementation is 44% faster
on average when using mixed precision features. When offloading to the GPU, this
effect reduces to 23%. The advantage of GPU offloading is visualized in figure 6.5.
The average speedup is 1.7 in mixed and 2.1 in double precision. The symmetric jobs
J1 and J3 achieve the least speedup. J3 only consists of one iteration and is therefore
not eligible for pinned memory and reusing features. The small J1 suffers from low
computational intensity.

65

6 PaStiX Integration in CalculiX

0 10 20 30 40 50 60 70 80 90 100

J1
J2
J3
J4
J5
J6
J7
J8
J9
∅

PaStiX Computation Time in %

Reordering Analysis and Symbolic Factorization
Initializing Internal CSC Datastructure Initializing LU Datastructure

Factorization Solving
Iterative Refinement Other

Figure 6.3: Amortized structure of PaStiX’s computation time in hybrid and mixed
precision mode. Executed on T1 with 8 threads.

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅
0

2

4

6

8

10

12

Sp
ee

du
p

CPU+Double CPU+Mixed GPU+Double GPU+Mixed

Figure 6.4: PaStiX’s performance for CPU and hybrid version in mixed and double
precision. The baseline is PARDISO’s amortized runtime. Executed on T1
with 8 threads.

66

6 PaStiX Integration in CalculiX

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅
0

1

2

3

4

Sp
ee

du
p

Double Mixed

Figure 6.5: GPU speedup of PaStiX’s amortized performance in CalculiX. The speedup
is computed based on the identical implementation just without GPU of-
floading. The computation times are amortized over as many iterations as
required for each input deck.

6.3.2 Total CalculiX Acceleration

To assess the impact of the new solver we measure the performance of CalculiX with
PaStiX integrated. For the original implementation, PARDISO’s computation time on
average amounts to 71.8% of the total time, which is visualized in figure 3.1. The
updated ratios for the hybrid PaStiX solver in mixed precision are shown in figure 6.6.
With 49.98% and 48.33% the solver and the rest of CalculiX require almost the same
amount of time. Additionally, optimizations introduced in section 6.1 lead to faster
matrix format conversion, which only amounts to 1.7% now instead of 6.9%.

Since the time spent within the equation solver is around 50% of the total time, the
speedups that were presented in figure 6.4 and figure 6.5 almost halve when considering
CalculiX’s total computation time. This is displayed in figure 6.7. For our benchmark
cases, the optimized software runs on average 3.1 times faster for pure CPU computation
and 4.4 times for hybrid computation. The variance in performance for different input
decks is very significant. Small or linear cases tend to achieve merely between 1 and 2
TFLOP/s during factorization and therefore barely perform twice as fast as the original
implementation. Jobs that require a lot of operations, such as J5 and J9, produced up to
5 TFLOP/s and reach speedups up to 7.42.

67

6 PaStiX Integration in CalculiX

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅0

20

40

60

80

100

C
al

cu
liX

C
om

pu
ta

ti
on

Ti
m

e
in

%

Solver (PaStiX) Matrix Format Conversion Other

Figure 6.6: Structure of CalculiX computation time with PaStiXin hybrid and mixed
precision mode. Executed on T1 with 8 threads.

J1 J2 J3 J4 J5 J6 J7 J8 J9 ∅
0

2

4

6

8

Sp
ee

du
p

CPU+Double CPU+Mixed GPU+Double GPU+Mixed

Figure 6.7: CalculiX performace comparison with PARDISO and PaStiX as solvers. The
speedup is calculated with the original CalculiX version with PARDISO as a
solver. Executed on T1 with 8 threads.

68

7 Conclusion

In this work we analyzed the options for possible GPU acceleration of linear equation
solvers in the context of applications in structural mechanics. The goal was to accelerate
the FEM simulation software CalculiX. We showed that classical iterative methods
with block Jacobi or ILU preconditioning do not converge within reasonable time
and are not an option that can be considered. In general, there are two approaches
for the acceleration of direct solving methods. A pure GPU implementation is not
feasible due to the fact that the entire matrix has to reside on the device memory and
this is not possible for large geometries. Thus, a hybrid strategy, in which BLAS 3
operations with high computational intensity are offloaded to the GPU, was identified
as the most promising approach. The software PaStiX implements this approach most
convincingly by defining its algorithm for the task-based scheduling library PaRSEC.
PaRSEC manages dependencies between tasks and schedules them to multiple CPU
cores or GPUs.

By activating GPU offloading, PaStiX’s factorization step gained on average a perfor-
mance boost of 100% for our benchmark cases. By implementing pinned memory
optimizations, we were able elevate this to 155%. This shows that the data transfer
between CPU and GPU is the bottleneck of the hybrid strategy. Further optimization
of GPU kernels will therefore not lead to significant total performance gain. Instead,
we implemented a mixed precision feature that allows factorization to be executed in
single precision. Since a very accurate result is required, iterative refinement is applied
afterwards in double precision. PaStiX is memory-bound but this feature still succeeds
because the float values transferred between main and device memory are half the
size of the double values. Factorization in single precision runs 97% faster on the CPU
and 72% faster using the hybrid mode. Including the additional iterative refinement,
which we partially accelerated, total speedups of 1.46 and 1.2 are achieved for CPU and
hybrid version.

Nevertheless, the overall performance suffered too much from the effects of Amdahl’s
law. The factorization and iterative refinement procedures are parallelized and op-
timized extensively but only accounted for 26.8% of the total execution time when
deploying 8 threads and GPU. Massive overall speedup could further be achieved by

69

7 Conclusion

optimizing and parallelizing the remaining 73.2%. First, we optimized the sparse matrix
preprocessing which amounted to almost a quarter of the total computation time. Using
8 threads, it is now 7.3 times faster than the previously sequential implementation.
Eventually, the reordering and analysis step were the remaining large sequential steps.
Instead of parallelizing those, we modified the invocation of PaStiX inside CalculiX
such that we possibly invoke it with the same sparsity pattern in subsequent iterations.
This way we can reuse the reordering permutation and analysis data in 90% of the
PaStiX invocations. This increases the ratio of numerical computation (factorizing,
solving and refinement) to 66.1% of PaStiX’s total computation time. Ultimately, the
optimized hybrid equation solver returns a solution on average 7.0 times faster than the
previous implementation that utilized the multi-threaded library PARDISO. Replacing
the PARDISO solver in CalculiX by the optimized PaStiX implementation results in a
speedup of 3.1 for the pure CPU mode and 4.4 when enabling GPU offloading.

7.1 Future Work

We performed several optimizations for PaStiX and with the current hardware there
is only little room for further performance improvements. The LDLT implementation
could be enhanced as currently only the GEMMs are offloaded to the GPU. As most of the
matrices in structural mechanics are asymmetric and not eligible for LDLT, we did not
prioritize this matter. Furthermore, with the introduction of mixed precision, more iter-
ative refinement is required, which is computationally dominated by preconditioning.
So far we determined that a reasonable execution of such on the GPU is not feasible
because the LU matrices tend to be very large. Similar offloading strategies as for the
factorization might allow partial computation on the GPU. This can potentially reduce
the time required for iterative refinement.

Another problem is that CalculiX itself requires as much computation time as the
equation solver. To keep up with PaStiX’s performance, the rest of CalculiX needs to be
optimized and preferably parallelized for GPGPU.

The most crucial change for PaStiX’s performance will be the introduction of PCI
Express 4.0 for GPUs. We noticed that additional memory bandwidth gained by the
pinned memory optimization translated linearly into general performance increase. PCI
Express 4.0 promises doubled bandwidth which will significantly boost the performance
of PaStiX’s GPU offloading algorithm.

70

List of Figures

2.1 1D Axially Loaded Bar . 4
2.2 Node Partitioning of Axially Loaded Bar 6
2.3 Visualization of Block LU Procedure . 15
2.4 Sparsity Pattern of a Matrix . 18
2.5 Sparsity Pattern of a Matrix Reordered with the RCM Algorithm 19
2.6 Graph Partitioning for Nested Dissection 20
2.7 Sparsity Pattern of a Matrix Reordered with a Dissection Algorithm . . 21
2.8 Elimination Tree Generated by Nested Dissection 22

3.1 Structure of CalculiX’s Computation Time with PARDISO 29
3.2 Convergence Behavior for GMRES . 34
3.3 Baseline Comparison of PaStiX and PARDISO 35
3.4 Baseline Comparison of PaStiX’s CPU and Hybrid Performance during

Factorization . 36
3.5 Tasks Associated to One Supernode . 37
3.6 Structure of PaStiX’s Computation Time in Hybrid Mode 38

4.1 Speedup by Performing the Factorization in Single Precision 40
4.2 Impact of Mixed Precision Implementation on CPU and Hybrid Solver 42

5.1 Comparison of SCOTCH and METIS . 47
5.2 Performance Comparison of StarPU and PaRSEC 47
5.3 Effects of Splitting Parameters . 48
5.4 Progression of Automatic Tuning with OpenTuner 49
5.5 Memory Bandwith with and without Pinned Memory 50
5.6 Performance for Allocation of Pinned Memory 51
5.7 Performance Impact of Pinned Memory on PaStiX’s Factorization 51
5.8 Task Flow for Matrix Preprocessing . 53
5.9 Performance Comparison Approaches for Computing Row Offsets . . . 55
5.10 Speedup for Shared Memory Parallelization of Matrix Preprocessing . . 56
5.11 Performance Comparison of the Matrix Preprocessing Step 57

71

List of Figures

5.12 Performance Comparison of CPU and GPU Implementation of GMRES
in PaStiX without Preconditioning . 60

5.13 Speedup for Hybrid Implementation of Right-Preconditioned GMRES . 60

6.1 Speedup when Being able to Reuse the Sparsity Pattern 62
6.2 Impact of Contact Approximation on Reusability and Factorization . . . 64
6.3 Amortized Structure of PaStiX’s Computation Time including Optimiza-

tions . 66
6.4 PaStiX’s Performance in Comparison to PARDISO 66
6.5 GPU Speedup of PaStiX’s Amortized Performance in CalculiX 67
6.6 Structure of CalculiX Computation Time with PaStiX 68
6.7 CalculiX Performace Comparison with PARDISO and PaStiX as Solvers 68

72

List of Tables

2.1 Matrix Storage in Coordinate Format . 9
2.2 Matrix Storage in CSR Format . 9
2.3 Matrix Storage in CSC Format . 9
2.4 Memory Type Comparison . 11
2.5 Triangular Decompositions . 13

3.1 Matrices used for Benchmarking . 28
3.2 Matrix Storage in CalculiX’s Format . 30

4.1 Required Iterations in Double and Mixed Precision 41
4.2 Required Iterations for Half Precision Approaches 44

5.1 Pinned Memory Allocation Measurements 52
5.2 Size and GPU Transfer Times of Sparse Benchmarking Matrices 59

6.1 Reusing Capability for the Benchmark Cases 63

73

Bibliography

[AG99] C. Ashcraft and R. G. Grimes. “SPOOLES: An Object-Oriented Sparse
Matrix Library.” In: PPSC. 1999.

[Agu+09] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H.
Ltaief, P. Luszczek, and S. Tomov. “Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects.” In: Journal of Physics:
Conference Series. Vol. 180. 1. IOP Publishing. 2009, p. 012037.

[Aja09] J. Ajanovic. “PCI express 3.0 overview.” In: Proceedings of Hot Chip: A
Symposium on High Performance Chips. Vol. 69. 2009, p. 143.

[Ame+00] P. R. Amestoy, I. S. Duff, J.-Y. LExcellent, and J. Koster. “MUMPS: a general
purpose distributed memory sparse solver.” In: International Workshop on
Applied Parallel Computing. Springer. 2000, pp. 121–130.

[Ans+14] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M.
O’Reilly, and S. Amarasinghe. “Opentuner: An extensible framework for
program autotuning.” In: Proceedings of the 23rd international conference on
Parallel architectures and compilation. 2014, pp. 303–316.

[Anz+19] H. Anzt, T. Cojean, G. Flegar, T. Grutzmacher, P. Nayak, and T. Ribizel. “An
Automated Performance Evaluation Framework for the GINKGO Software
Ecosystem.” In: 90th Annual Meeting of the International Associaten of Applied
Mathematics and Mechanics, GAMM. 2019.

[Aug+11] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a
unified platform for task scheduling on heterogeneous multicore architec-
tures.” In: Concurrency and Computation: Practice and Experience 23.2 (2011),
pp. 187–198.

[Bab+09] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P.
Luszczek, and S. Tomov. “Accelerating scientific computations with mixed
precision algorithms.” In: Computer Physics Communications 180.12 (2009),
pp. 2526–2533.

74

Bibliography

[Ban07] Banerjee. Axially loaded bar: The Finite Element Solution. https : / / en .
wikiversity.org/wiki/Introduction_to_finite_elements/Axial_
bar_finite_element_solution. Accessed 30-March-2020. 2007.

[Bav16] E. T. Bavier. “Replicated Computational Results (RCR) Report for A Sparse
Symmetric Indefinite Direct Solver for GPU Architectures.” In: ACM Trans-
actions on Mathematical Software (TOMS) 42.1 (2016), pp. 1–10.

[Bos+13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Don-
garra. “Parsec: Exploiting heterogeneity to enhance scalability.” In: Comput-
ing in Science & Engineering 15.6 (2013), pp. 36–45.

[But+07] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak.
“Mixed precision iterative refinement techniques for the solution of dense
linear systems.” In: The International Journal of High Performance Computing
Applications 21.4 (2007), pp. 457–466.

[CH17] E. Carson and N. J. Higham. “A new analysis of iterative refinement and its
application to accurate solution of ill-conditioned sparse linear systems.”
In: SIAM Journal on Scientific Computing 39.6 (2017), A2834–A2856.

[Cha20] Chatzi. Lecture notes in Method of Finite Elements I. Mar. 2020.

[Cor19a] I. Corporation. Intel Xeon Gold 6244 Processor. https://ark.intel.com/
content/www/us/en/ark/products/192442/intel-xeon-gold-6244-
processor-24-75m-cache-3-60-ghz.html. Accessed 30-March-2020. 2019.

[Cor19b] I. Corporation. Intel Xeon Platinum 8280 Processor. https://ark.intel.
com/content/www/us/en/ark/products/192478/intel-xeon-platinum-
8280-processor-38-5m-cache-2-70-ghz.html. Accessed 30-March-2020.
2019.

[CW+11] D. Y. Chenhan, W. Wang, et al. “A CPU–GPU hybrid approach for the
unsymmetric multifrontal method.” In: Parallel Computing 37.12 (2011),
pp. 759–770.

[DER87] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
USA: Clarendon Press, 1987. isbn: 0198534213.

[Dho17] G. Dhondt. “CalculiX CrunchiX users manual version 2.12.” In: URL http:
www. dhondt. de/ccx 2 (2017).

[DRS16] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. “A survey of direct
methods for sparse linear systems.” In: Acta Numerica 25 (2016), pp. 383–
566.

75

https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Axial_bar_finite_element_solution
https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Axial_bar_finite_element_solution
https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Axial_bar_finite_element_solution
https://ark.intel.com/content/www/us/en/ark/products/192442/intel-xeon-gold-6244-processor-24-75m-cache-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192442/intel-xeon-gold-6244-processor-24-75m-cache-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192442/intel-xeon-gold-6244-processor-24-75m-cache-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html

Bibliography

[DW98] G. Dhondt and K. Wittig. “Calculix: a free software three-dimensional
structural finite element program.” In: MTU Aero Engines GmbH, Munich
(1998).

[Geo+11] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury. “Mul-
tifrontal factorization of sparse SPD matrices on GPUs.” In: 2011 IEEE
International Parallel & Distributed Processing Symposium. IEEE. 2011, pp. 372–
383.

[Hai+18] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. “Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative
refinement solvers.” In: SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE. 2018, pp. 603–613.

[HM08] M. D. Hill and M. R. Marty. “Amdahl’s Law in the Multicore Era.” In:
Computer 41.7 (2008), pp. 33–38.

[HRR02] P. Hénon, P. Ramet, and J. Roman. “PASTIX: a high-performance parallel
direct solver for sparse symmetric positive definite systems.” In: Parallel
Computing 28.2 (2002), pp. 301–321.

[Huc17] Huckle. Lecture notes in Parallel Numerics. Oct. 2017.

[KK98] G. Karypis and V. Kumar. “A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices.” In: University of Minnesota, Department of Computer
Science and Engineering, Army HPC Research Center, Minneapolis, MN 38
(1998).

[KP09] G. P. Krawezik and G. Poole. “Accelerating the ANSYS direct sparse solver
with GPUs.” In: Symposium on Application Accelerators in High Performance
Computing, SAAHPC. 2009.

[Lac+14] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault. “Taking advan-
tage of hybrid systems for sparse direct solvers via task-based runtimes.”
In: 2014 IEEE International Parallel & Distributed Processing Symposium Work-
shops. IEEE. 2014, pp. 29–38.

[Lac15] X. Lacoste. “Scheduling and memory optimizations for sparse direct solver
on multi-core/multi-gpu duster systems.” PhD thesis. 2015.

[Li05] X. S. Li. “An overview of SuperLU: Algorithms, implementation, and
user interface.” In: ACM Transactions on Mathematical Software (TOMS) 31.3
(2005), pp. 302–325.

76

Bibliography

[LS15] Y. Liu and B. Schmidt. “LightSpMV: Faster CSR-based sparse matrix-vector
multiplication on CUDA-enabled GPUs.” In: 2015 IEEE 26th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
IEEE. 2015, pp. 82–89.

[Luc+10] R. F. Lucas, G. Wagenbreth, D. M. Davis, and R. Grimes. “Multifrontal
computations on GPUs and their multi-core hosts.” In: International Con-
ference on High Performance Computing for Computational Science. Springer.
2010, pp. 71–82.

[Mac11] C. A. Mack. “Fifty years of Moore’s law.” In: IEEE Transactions on semicon-
ductor manufacturing 24.2 (2011), pp. 202–207.

[McC10] C. McClanahan. “History and evolution of gpu architecture.” In: A Survey
Paper 9 (2010).

[Nau+15] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, et al. “AmgX: A li-
brary for GPU accelerated algebraic multigrid and preconditioned iterative
methods.” In: SIAM Journal on Scientific Computing 37.5 (2015), S602–S626.

[NVI17] T. NVIDIA. “V100 GPU architecture. the worlds most advanced data center
GPU. Version WP-08608-001_v1. 1.” In: NVIDIA. Aug (2017), p. 108.

[Oña] E. Oñate. “Structural Analysis with the Finite Element Method Linear
Statics Volume 2. Beams, Plates and Shells.” In: ().

[PB12] E. Peise and P. Bientinesi. “Performance modeling for dense linear algebra.”
In: 2012 SC Companion: High Performance Computing, Networking Storage and
Analysis. IEEE. 2012, pp. 406–416.

[Pic+17] G. Pichon, M. Faverge, P. Ramet, and J. Roman. “Reordering strategy for
blocking optimization in sparse linear solvers.” In: SIAM Journal on Matrix
Analysis and Applications 38.1 (2017), pp. 226–248.

[PR96] F. Pellegrini and J. Roman. “Scotch: A software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs.”
In: International Conference on High-Performance Computing and Networking.
Springer. 1996, pp. 493–498.

[Rus15] W. Rust. Non-linear finite element analysis in structural mechanics. Springer,
2015.

[Saa03] Y. Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

[SG04] O. Schenk and K. Gärtner. “Solving unsymmetric sparse systems of linear
equations with PARDISO.” In: Future Generation Computer Systems 20.3
(2004), pp. 475–487.

77

Bibliography

[SHG04] J. A. Scott, Y. Hu, and N. I. Gould. “An evaluation of sparse direct sym-
metric solvers: an introduction and preliminary findings.” In: International
Workshop on Applied Parallel Computing. Springer. 2004, pp. 818–827.

[Shi19] A. Shilov. Kingston Reveals DDR4-2933. https://www.anandtech.com/
show / 14162 / kingston - reveals - ddr42933 - registered - dimms - for -
cascade-lakesp. Accessed 30-March-2020. 2019.

[SVL14] P. Sao, R. Vuduc, and X. S. Li. “A distributed CPU-GPU sparse direct
solver.” In: European Conference on Parallel Processing. Springer. 2014, pp. 487–
498.

[Wal16] M. M. Waldrop. “The chips are down for Moores law.” In: Nature News
530.7589 (2016), p. 144.

[Wan+16] H. Wang, W. Liu, K. Hou, and W.-c. Feng. “Parallel transposition of sparse
data structures.” In: Proceedings of the 2016 International Conference on Super-
computing. 2016, pp. 1–13.

[Wat15] A. J. Wathen. “Preconditioning.” In: Acta Numerica 24 (2015), pp. 329–376.

[Wil13] N. Wilt. CUDA Handbook - A Comprehensive Guide to GPU Programming, The.
Amsterdam: Addison-Wesley, 2013. isbn: 013-3-261-506-.

78

https://www.anandtech.com/show/14162/kingston-reveals-ddr42933-registered-dimms-for-cascade-lakesp
https://www.anandtech.com/show/14162/kingston-reveals-ddr42933-registered-dimms-for-cascade-lakesp
https://www.anandtech.com/show/14162/kingston-reveals-ddr42933-registered-dimms-for-cascade-lakesp

	Contents
	Introduction
	Fundamentals
	Structural Mechanics and the Finite Element Method
	Governing Equations
	Finite Element Method
	Solving Non-Linear Problems

	Sparse Matrices
	Coordinate Format (COO)
	Compressed Sparse Row Format (CSR)
	Compressed Sparse Column Format (CSC)

	Hardware Considerations
	Graphical Processing Units
	Amdahl's Law

	Direct Methods for Solving Systems of Equations
	Gaussian Elimination Algorithm and LU Decomposition
	Cholesky and LDLT Decomposition
	Sparsity and Reorderings
	Supernodal Methods and Trees

	Iterative Methods for Solving Systems of Equations
	Matrix Splitting
	Preconditioning
	Krylov Subspace Methods and Preconditioned GMRES

	Analysis and Related Work
	Hardware Configuration
	Problem Sets
	CalculiX
	CalculiX's Matrix Format

	Sparse Direct Solvers
	Accelerator Implementations
	Hybrid Implementations

	Sparse Iterative Solvers
	PaStiX

	Mixed Precision in PaStiX
	Single and Double Precision
	Half Precision

	Optimizations for PaStiX
	Parameter Tuning
	Pinned Memory
	Parallel Matrix Preprocessing
	Parallel Permutation of a Matrix in CSC Format
	Transpose of a Structurally Symmetric Matrix
	Performance Evaluation

	GPU-Accelerated Iterative Refinement

	PaStiX Integration in CalculiX
	Conversion of CalculiX's Matrix Format
	Reusing Matrix Patterns
	Reusiability Optimization

	Evaluation
	Amortized Performance of PaStiX
	Total CalculiX Acceleration

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

