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Preface

The Bavarian Graduate School of Computational Engineering’s (BGCE) honours project is a
10-month project where students conduct research on cutting-edge topics in the field of Compu-
tational Engineering, in cooperation with a partner in industry or academia. The BGCE program
is funded by the Elite Network of Bavaria and includes students selected from - but not exclu-
sively - the International Master’s program in Computational Science and Engineering (CSE)
at the Technical University of Munich. The 2017-18 project was titled Interactive preCICE Online
Tutorial and was conducted and supervised in a cooperation between TUM and the University
of Stuttgart.
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Outline and Overview

Purpose of The Document

The purpose of this document is to describe the main outcome of our project - the Interactive
preCICE Online Tutorial website - along with the technology it relies on.

Document Overview

The document provides a timeline view of the project. This means that we will lead you through
the evolution of the project, from the basic architecture and technologies we employed to the
multiple design iterations that led to the final product. The contents of the individual chapters
are summarized below.

CHAPTER 1: INTRODUCTION

To begin with, we provide motivation for the project and introduce the concrete objectives that
we set out to achieve along with key organizational details.

CHAPTER 2: WEB TECHNOLOGY STACK AND SERVER ARCHITECTURE

This chapter describes the technology stack we used for creating the website. We provide a sur-
vey of available web technologies, discuss our design decisions in light of the requirements, and
finally present key features of the technologies we used and the architecture we settled on.

CHAPTER 3: HOSTING AND OTHER PRODUCTION CONSIDERATION

Here we list potential hosts for the website and the licenses for the packages we used for the
website implementation. Furthermore, we discuss where the current backend is hosted and
provide our thoughts on whether this might need to be revised in the future.

CHAPTER 4: PRECICE COUPLING LIBRARY

Before delving into the concrete details of the project, we present a short description of the cou-
pling library preCICE. Here we only discuss aspects of preCICE that are relevant to our tutorial.

CHAPTER 5 : TUTORIAL TEST CASE

This chapter introduces the test case for the interactive tutorial and describes the used simula-
tion software and the corresponding installation processes. Here, we lead you through how we
developed the test case and provide a list of problems that we encountered while installing the
required software.

CHAPTER 6 : SIMULATION: FIRST ITERATION

The first version of the FSI simulation is introduced in this chapter. This includes separate
single-physics fluid- and structure simulations as well as the coupled simulation that was built
on top of the former.
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CHAPTER 7 : SIMULATION: SECOND ITERATION

A completely redesigned version of the FSI simulation is introduced to counteract runtime and
convergence issues with the first version. We describe the approaches we explored to decrease
the runtime of the simulation and measures we took to achieve a convergent simulation.

CHAPTER 8 : SIMULATION: THIRD ITERATION

In this chapter we describe the final version of the simulation that was used for the interactive
tutorial. This version builds on the work introduced in Chapter 7.

CHAPTER 9 : USER STORY

The user story was developed in conjunction with the different versions of the simulation. Here
we talk about the multiple versions of the user story we came up with and implemented on the
website.

CHAPTER 10 : OFFLINE TUTORIAL

As a first step towards an interactive tutorial, a static tutorial was developed and added to the
github-wiki of the preCICE project. This chapter describes the evolution of this offline tutorial.

CHAPTER 11: WEBSITE: FIRST ITERATION

The first version of the website consisted of mock web pages which were meant to serve as a
proof-of-concept. We came up with a basic architecture for the website which persisted through
all three design iterations. This chapter describes this work in detail.

CHAPTER 12: WEBSITE: SECOND ITERATION

The second version of the website added interactivity, such as browser based consoles and a
user story based on playing with the Aitken relaxation parameter. This chapter takes as foun-
dation the work described in Chapter 11.

CHAPTER 13: WEBSITE: THIRD ITERATION

Here we describe the final version of the website along with the interactive tutorial. We talk
about major bug fixes, the final user story, and features developed in the second iteration that
did not make the cut.

CHAPTER 14: USER TESTING

To test the final version of the website, we conducted extensive user testing. In this chapter, we
present our user testing strategy and summarize the data collected from the users. We further
discuss how this feedback led to improvements on the website.

CHAPTER 15: CONCLUSION

Last but not least, we reflect on the things we achieved and mention major directions for future
work on the project.
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1 Introduction

1.1 Motivation

preCICE is an open-source library that allows users to couple existing simulation codes and run
multiphysics simulations. It is currently being developed at the Technical University of Munich
(TUM) and the University Stuttgart.
One of the current objectives of preCICE developers is to introduce the software to a wider
range of customers from both industry and academia. In order to reach this goal, potential
users of preCICE need to get a simple general overview of the software and a first idea about
how to use the library. This is where this honours project comes into the picture. The goal of this
project was to create an interactive online tutorial that allows users to get familiar with preCICE
and demonstrates its capabilities. The tutorial aims to help attract new users to the library and
capture their interest.

1.2 Project Structure

Let us begin by presenting the structure of the project. We define the goals that we set out to
achieve and the expected outcome of the project, and provide the organizational outline – from
a team oriented as well as a time oriented perspective.

1.2.1 Aims and Goals

In the beginning, the client provided us with a list of requirements that the project had to fulfill.
While our focus shifted over the course of the project, the core requirements remained the same.

Essential Deliverables

The following requirements had to be satisfied:

• Website: Develop a minimal interactive online tutorial that realizes all stages of the simu-
lation pipeline – namely setup, simulation, and visualization. In addition, the user has to
be able to step back and forth between the stages in a smooth way.

• Content of tutorials: At least one classical fluid-structure interaction case that demon-
strates various capabilities of the coupling library has to be realized.

• Evaluation: Success of the developed tutorials will be measured by click statistics after
completion of the project.

1



1 Introduction

Nice-To-Have Deliverables

In addition, the project specification contained a list of additional nice-to-have-deliverables:

• Website: visualization of simulation results can be improved in multiple ways (e.g. repre-
sentation, additional user options).

• Content of tutorials: learning experience can be enhanced by embedding YouTube videos
or adding further scenarios.

1.2.2 Team Organization

Since the project involved two separate streams of work, development of the website and prepa-
ration of the tutorial, we decided to split into two teams of three during the initial phase. The
first group was responsible for development of the website, whereas the second group focused
on simulations and worked with preCICE. To ensure that the two teams were working in the
same direction, we held weekly meetings involving both teams.

1.2.3 Timeline

The project was executed in three separate sections or milestones, each with its own objectives.
The milestones represented scheduled contact points with the client where we updated them
on the progress. The deliverables for each milestone represented the starting point for the next
milestone, with a degree of iterative development that incorporated feedback from the client
gathered through the milestone meetings and informal contact. A list of the deliverables for
each milestone can be found below.

1. Website mock-ups and offline version of the first tutorial are presented.

2. Beta version of the interactive tutorial is available online.

3. Final version of the tutorial is online. See also Section 1.2.1.

2



2 Web Technology Stack and Server
Architecture

2.1 Overview and Main Components

A website is a collection of web pages, which can be accessed over the internet under some
communication protocol. We can broadly divide a website into the frontend, code running in the
client browser which is essentially what can be seen on the screen and how it is realized; and the
backend, the code running on a server that manages the data and serves web pages on request.
In the sections to follow, we will go through the history of web development, take a look at
our technology decisions for the frontend and the backend, and discuss certain communication
protocols. First, however, let us take a look at Figure 2.1 which provides a broad overview of
how we decided the essential technology questions in setting up our web application. In the
following subsections, we will deal with each part in detail.

Figure 2.1: Technology Choice Rationales for the Frontend

2.2 Past and Present

There are various technological frameworks for designing the frontend and the backend of a
website. In this section, we will take you on a guided tour of the history of web development.
We will motivate this discussion by talking about broad technological decisions we made before
drilling down into the specifics in the next section.

2.2.1 Website Building Tools versus Own Implementations

There are two main options for building a website. We can either use website building tools,
such as WordPress[1], or implement our own website from scratch. WordPress provides an

3



2 Web Technology Stack and Server Architecture

online editor, which allows us to easily create static webpages. However, if we want to add
dynamic content, we need to use WordPress Hooks. For example, scripts must be added in
”functions.php”. This is not a sustainable architecture for a website with a lot of dynamic con-
tent and it can get quite complicated to maintain the code as the project proceeds. Since an
interactive tutorial primarily relies on dynamic content, we decided to implement a website
from scratch.

2.2.2 Single Page JavaScript Application

A popular way to implement a website from scratch currently is to create a Single Page Appli-
cation (SPA). An SPA is quite similar to a desktop application in that the logic of the application
runs on the client. This solves the page reload problem that comes with delegating the logic to
the server. The code is usually fetched once and any changes, for example due to user action, are
incorporated into the page dynamically. This is also why we now talk about ”web applications”.

There are many ways to create a web application. However, before we get into that, we will
take a brief detour and take a look at the history of web development. To start with, take a look
at Figure 2.2 which depicts the progression of web pages from static to dynamic.

Figure 2.2: Flow Chart of Development Towards Single Page Apps

Static Web Page The first website in history was created at CERN and consisted of static
HTML pages. Figure 2.3 illustrates how such a website works. Looking at the source code
for such a website, we can see the content wrapped in HTML tags without any styling. The
communication model is also very simple. A client sends a request for a particular page to the
server which then retrieves the page from the disk and sends it to the client. In this case, the
URL of a page simply mirrors the local file system on the server.

Figure 2.3: Illustration for Static Web Page

It ought to be obvious that static web pages are insufficient for creating an interactive tutorial. So

4



2 Web Technology Stack and Server Architecture

how do we realize dynamic content? There are two options: server-side scripting and client-side
scripting. Let us take a look at each in turn.

Server Side Scripting Server-side scripting refers to putting the logic of the application on the
server. When a user interacts with a web page, for example she enters her name into a text field,
the data is sent to the server. Depending on the program that handles the text on the server, the
server might render some html, which could just be a custom greeting for this particular user,
and send it back to the client. This allows us to customize the website for each user and hides
the code from the user. With server-side scripting we can often take advantage of page caching
and reduce load times. There are many server-side scripting languages such as Java, PHP, and
Python. Figure 2.4 illustrates how server-side scripting works.

Figure 2.4: Illustration for Server Side Scripting

Client-Side Scripting Client-side scripting, as should be evident from the name, refers to ex-
ecuting the logic of the application on the client. This means that when we open a website, we
will get the entire source code of the application which then runs in the browser. The server in
this scenario is reduced mostly to a database as in Figure 2.5. If we have a website with user
accounts, we might use the server to store user credentials, for example. Client-side scripting is
almost always performed with JavaScript since that is the only language supported by all web
browsers.

Figure 2.5: Illustration for Client Side Dynamic

Model-View-Controller Framework No matter which type of scripting we use, we still need
a way to organize our code in order create a Single Page Application. The most popular pattern
for this purpose is Model-View-Controller (MVC) depicted in Figure 2.6.

5
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The MVC design pattern comes from desktop graphical user interfaces and has become quite
popular in the design of web applications. MVC divides the application into three largely inde-
pendent entities which can be developed separately. The model handles the data and the logic
of the application, the view is a visual representation of the information in the model, while the
controller acts as a bridge between the user and the other two components, updating the model
and/or view as necessary. MVC makes it easy to organize code by attributing it to one of the
three entities and separates the logic of the application from the view. It is important to realize
that it can be incredibly difficult to write maintainable code for web applications without using
an MVC-like framework.

Figure 2.6: Illustration for MVC Framework

Server-Side Model-View-Controller Frameworks Server side MVC frameworks go hand in
hand with the idea of server-side scripting since the server is responsible for rendering HTML
views. Most server-side frameworks provide solutions for routing, templating, object relational
mapping (ORM), middleware, and lots of helper functions. Since these are important concepts,
let us talk about them in a bit more detail.

As mentioned before, in the early days of web development, the URL mirrored the directory
structure on the web server. This is no longer true and we are free to define the structure of the
URL through routing, regardless of what the actual directory structure looks like. Furthermore,
templated views allow us to adapt our application to user actions. For example, imagine a
user logs in to a website and receives a welcome message with her name on it. This is a trivial
example of what we can do with a view template. Finally, ORM solves the problem of storing
objects, in the object oriented sense, in a database by creating a ”virtual object database”. Most
databases do not allow us to directly store non-scalar values and since OOP objects are usually
non-scalar, we cannot directly store them in a database. However, a virtual object database
translates the object into an atomized form and thus allows us to store non-scalar objects.

There are many other features that server-side MVC frameworks provide and there are a lot
of frameworks out there. Table 2.1 lists popular server-side MVC frameworks.

6



2 Web Technology Stack and Server Architecture

Provider Language
ASP.NET C#

Play
Spring Java
Zend

CakePHP PHP
Laravel
Django Python

Rails Ruby

Table 2.1: Providers of Server Side MVC Frameworks

Client-Side Model-View-Controller Frameworks (frontend) The difference between client-
side and server-side MVC frameworks is depicted in Figure 2.7.

Figure 2.7: Progressing from Server Side to Client Side

In order to create a website with a highly interactive UI, we want to use a client-side frame-
work so that UI elements can be changed on the fly. The features that client-side MVC frame-
works provide, for instance, routing, templating, and additional features such as a virtual DOM
in React, help us achieve client-side scripting. Take a look at Table 2.2 for a list of popular client-
side frameworks.

7



2 Web Technology Stack and Server Architecture

Provider Maintainer or Developer/Original Author
ANGULAR Google

BACKBONE.JS Jeremy Ashkenas
Knockout Steve Sanderson

React Facebook, Instagram, and community/Jordan Walke
Redux Dan Abramov
Vue.js Evan You

Table 2.2: Providers of Client Side MVC Frameworks

2.3 Frontend

Having looked at the history of web development and settled on the preliminaries, let us now
delve into the more concrete technology decisions we made. The application that we want to
build relies on interactivity. The user can take multiple paths through the tutorial and at any
given moment, the user will be faced with a task that will depend on her task history. This
means that parts of the UI will be constantly changing and we know that this problem is well
suited for client-side scripting. The problem then reduces to choosing a client-side framework.
We settled on React-Redux.

2.3.1 React and Redux Framework

Why did we settle on React[2] and Redux[3]? Let us discuss what they offer and how that makes
them suitable for our interactive tutorial.

React React is a popular JavaScript library for creating interactive UIs. It was created by Jor-
dan Walke, a software engineer at Facebook, and is currently maintained by Facebook and In-
stagram. In terms of the MVC pattern, React takes care of the views and the logic that goes into
creating them. It provides developers the ability to build components that can then be composed
to create complex UIs. These components are commonly written in JSX which is transformed to
JavaScript and that finally emits html that can be show in a browser.

React has an internal representation of the document object model (DOM), a virtual DOM,
and only updates those parts of the actual DOM that differ from the virtual DOM. There are no
full page reloads; only components that need to be changed are reloaded. Furthermore, we can
also use React to do routing. While its components usually have their own state, we do not use
this and instead rely on Redux for managing the state of our application.

Redux Redux is a JavaScript library that is used to manage the state of a web application. It
provides a central data manager, the ”Redux store”, which can be accessed through JavaScript
functions called selectors. The Redux store is useful since it saves us from distributing the state
of our application over a dozen or more React components. The central store is a basically a giant
JavaScript object and is read-only. Furthermore, Redux can be easily used with other JavaScript
frameworks.

React coupled with Redux makes it easy to design responsive UIs that change with the state
of the application. For example, suppose we have a progress bar in our tutorial application.

8



2 Web Technology Stack and Server Architecture

The progress bar has has multiple views depending on which stage of the tutorial the user is
currently at. This involves examining the Redux store to determine the current route/location,
passing that to the progress bar component written with React. React should then automatically
update the progress bar component when the user moves to a different stage and the state, that
is, route in this example, changes.

2.3.2 TypeScript, SASS, Webpack for Transpilation and Building

While JavaScript is the only language supported by most browsers, it has some serious short-
comings:

• JavaScript does not have static typing.

• Across different browsers, JavaScript supports inhomogeneous features.

• Delayed browser support for new JavaScript features.

• No coherent module import system.

TypeScript Some of the shortcomings listed above can be addressed by using TypeScript. It
is a free open-source programming language with static typing and is a superset of JavaScript.
Since it is a superset, all existing JavaScript programs are valid TypeScript programs.

Transpiled JavaScript In order to run in a browser, our TypeScript code has to be transpiled to
plain JavaScript. Most browsers currently comply with ECMA5 standards and for this reason,
we transpile TypeScript to ECMA5 JavaScript. We can also use JavaScript features from ECMA6
in TypeScript since these features can be implemented by additional ECMA5 code. Figures 2.8
and 2.9 show TypeScript code before and after transpilation. ECMA5 does not have classes but
we still get the same functionality through additional code as in Figure 2.9.

Figure 2.8: TypeScript code Figure 2.9: TypeScript transpiled to ECMA5

9



2 Web Technology Stack and Server Architecture

SASS The natural choice for styling in web applications is CSS. However, as with JavaScript,
there are certain shortcomings in CSS that can make the code hard to maintain as the application
grows. We decided to use Syntactically Awesome Styleheets (SASS), a CSS extension. SASS
provides additional features like variables and nested styles and is compiled to CSS. For details
on implementation, please refer to section 11.1.

Webpack A typical web application written in JavaScript can have hundreds of JavaScript
modules as dependencies. If we were to leave our application distributed over several files, with
hundreds of module dependencies, our application would be incredibly slow since we would
need to perform multiple HTTP requests to fetch modules in order to run code that depends on
them. To circumnavigate this problem, we use a module bundler which will put our JavaScript
code along with the dependencies in a single JavaScript file. Webpack is widely used for this
purpose and is a standard choice.

2.4 Backend Webserver Implementation in NodeJS

Over the past few years, NodeJS has emerged as a leading server scripting language. It is based
on the Google V8 JavaScript interpreter engine and therefore follows the same coding standards
as Google Chrome and Opera web browsers. One of the main advantages of NodeJS, compared
to traditional backend systems implemented for instance in PHP, Perl or Java, is that NodeJS
was developed with modern web application patterns in mind. For instance, NodeJS servers as-
sume fully semantic routing as opposed to PHP interpreters that are still following the very old
idea of mirroring the file system to the clients. Due to the rapid growth of the developer com-
munity, thousands of open-source libraries have been developed and are actively maintained.
Furthermore, the node package manager (npm) is a great tool that helps fetch these JavaScript
modules from a central repository. We made extensive use of npm in our project.

2.5 Communication Protocol Between Frontend and Backend

Having settled on the technologies for the frontend and the backend, all we need to do now is
define the communication protocol between the two.

2.5.1 REST API for the Visualizations of Config Files

Figure 2.10: Request to obtain the visualization of the config.xml file
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In order to obtain visualizations of the current preCICE configuration, a simple Representa-
tional State Transfer (REST) API offers a robust solution. REST offers a few properties which are
particularly advantageous:

• Stateless: the server does not need to maintain a session for different users

• Clientside caching: the client does not need to send a new request if the config.xml file does
not change, even across different browser sessions. It would be also possible to implement
this behavior using localStorage for example, but it is good practice to utilize the built in
browser caching

• Serverside caching: if multiple clients request visualizations for the same config file, the
visualization does not need to be regenerated

All the points above lead to a horizontally (distribute the request load to multiple servers) and
vertically (handle many requests on one server) scalable solution. The concrete implementation
of such an API can be seen in Figure 2.10. It should be mentioned that semantically, a GET
request would make more sense in 2.10, but since the payload (the contents of the config.xml
file) is too big to be encoded as part of the URL, a POST request must be used.

When the project concluded in March 2018, this feature was not implemented since the user
story did not require customized XML files any more, cf. section 6. However this part of the
architecture is still a valid choice and can be implemented in the future.

2.5.2 Websockets for Shell IO

One of the key requirements of the tutorial involves the user being able to run a simulation in
the browser. Naturally, the user should be able to use an emulated terminal in his browser that
sends input to and receives output from the server, where the commands are actually running.
This requirement does not allow us to implement this feature using a REST API since the un-
derlying protocol, HTTP(S), does not support two way communication. Furthermore, terminal
sessions must be maintained on the server which is not possible with a stateless REST API.

Figure 2.11: Architecture between frontend and backend
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Websockets are an established solution for two-way data transfer between a client browser and
a web server. Figure 2.11 shows the basic architecture. In contrast to the request approach in
HTTP, websocket communication is event-based over a persistent connection. Events can be
emitted and listened to from both sides. A sample implementation for the terminal communi-
cation problem discussed above can be seen in Listing 2.1 and Listing 2.2.

In reading these listings, keep in mind that there are several events the server has to listen for:

• connect: A client has connected to the server

• spawn consoles: The client wants to spawn two terminals

• console cmd: The client sends a command.

1 socket.listen("connect", function() {
2 // log connection
3 });
4
5 socket.listen("spawn_consoles", function() {
6 // allocate resources for two consoles
7 // create two console ids
8 socket.emit("spawn_consoles_success", consoleIds);
9 });

10
11 socket.listen("console_cmd", function(console_id: consoleId, cmd) {
12 // check if console_id is valid.
13 // check if the cmds are allowed (have a whitelist of
14 // commands) and execute them. Bind the "console_output"
15 // event like this:
16
17 const proc = spawn(cmd);
18
19 proc.stdout.on("data", (data) => {
20 socket.emit("console_ouput", {
21 console_id: consoleId,
22 stream: "stdout"
23 data,
24 })
25 });
26
27 // same for proc.stderr
28
29 proc.on("close", (code) => {
30 // emit "console_clode" event
31 });
32 });

Listing 2.1: Server websocket

1 socket.connect();
2
3 socket.emit("spawn_consoles");
4
5
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6 // emit this event when the user has typed a command
7 socket.emit("console_cmd", {
8 console_id: "XYZ",
9 cmd: "./StructureSolver ./config.xml N"

10 })
11
12
13 socket.listen("spawn_consoles_success", function([ consoleIds ]) {
14 // save the console ids locally and assign them
15 // to the two forntend terminals. This makes it possible
16 // to place the server output in the right frontend
17 // terminal.
18 });
19
20 socket.listen("console_ouput", function({ console_id: consoleId, data, stream }) {
21 // write the output in the frontend terminal
22 // which has the assigned identifier consoleId
23 // stream can either be stdout or stderr
24 });
25
26 socket.listen("console_exit", function({ console_id: consoleId, exit_code }) {
27 // show also in the frontend that the program has terminated
28 });

Listing 2.2: Client websocket

It is also possible to cache the console output and send the output read from a file instead of
real console output to the frontend. Since the frontend is agnostic to the backend implemen-
tation and its only touch point to the frontend is the websocket interface, no changes in the
frontend are necessary. With the implemented adapter-like pattern in the backend, it is also
possible to define new data sources besides the stdout stream of a program or a file of recorded
output.
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3 Hosting and Other Production Considerations

3.1 Cloud Server Provider

Currently we are hosting our website on the virtual machine provided by the chair. However, in
the future we might want to consider moving to a proper web service provider. There are several
cloud servers that are easy to use and affordable. Below we list some of them and provide an
estimate of the cost for Amazon Web Services in table 3.1.

• Amazon Web Services

• Google Cloud Platform

• IBM Bluemix

• Microsoft Azure

Amazon Web Services frontend
Cloudfront CDN per GB (data transfer) $0.085
S3 per GB per month(storage) $0.0245

backend
Elastic Beanstalk per month $20
L Certificate per month $3
(Possibly) Additional Servers
on Demand(AWS HPC)

per month Depends on specs

Table 3.1: Cost estimate for Amazon Web Services

As of March 2018, when the project concluded, we are running the frontend and backend
on the chair machine while redirecting all frontend traffic through the http://run.coplon.de
domain using a so-called A DNS record. The backend does not need a domain name since
its URL is only used internally in the Redux/React application and is not exposed to the user.
Therefore, the IP address can be used as the URL.

An A record is used when a domain name or subdomain (such as run.coplon.de) is assigned to
a fixed IP address, in our case the IP adress of the VM provided by the chair. Other kinds of DNS
records include CNAME which assigns a domain name another domain name (instead of an IP
address), ALIAS, which is internally the same as CNAME but is a more common expression
when root domain names are created and a URL redirection which shows similar behavior to
the user but is actually an http redirect and not a DNS record.
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Since the code can resolve all its dependencies by itself using the node package manage, the
only requirement is nodeJS on the server. This makes the code portable and provides the possi-
bility to deploy it on a different server in the future without much hassle. In doing so continuous
integration must be set up accordingly. For even faster and more reliable deployment, it could
be useful to bundle the webservers for the frontend and backend into a docker image. Docker
is a container software that adds another layer of abstraction between the OS and the actual
application and thus makes it more portable and isolated from other processes. This enables
multiple running instances across multiple machines and eliminates mostly possible incompat-
ibilities (for instance the exact version of nodeJS is always guaranteed). It can be thought of as
a virtual machine but with less overhead since the Docker VM is just a regular process in the
hosting OS.

However, it is arguable if a docker deployment is worth the effort to introduce automated
docker bundling and deployment since user load is expected to stay comparably low. Therefore
horizontal scalability is not a requirement. Also, the current infrastructure is simpler, only con-
sisting of a centralized backend and frontend and not multiple distributed services, for which
docker would be the natural choice.

3.2 Licenses

Since we are using a lot of external packages, we also need to take a look at the licensing for
these packages. Currently we are using 763 packages in total, and almost all are either open
source or distributed under the MIT License.

Figure 3.1: Packages and Where They are from

The MIT License, as well as most other Open Source licenses like ISC, BSD-3-Clause and
Apache-2.0, only requires an acknowledgement to the original project. Other than that, they
allow free use of the corresponding software if the project is not intended to be patented or
similar. Since these rules do not apply in our context, the licences should not be a problem
factor.
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However, there are licenses like GNU GPLv3 that require the disclosure of the source code
and therefore the corresponding packages are not suitable for our project.
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4 preCICE Coupling Library

As already mentioned in Section 1, the goal of preCICE is to provide all functionality required
for the realization of a multi-physics simulation environment based on reuse of existing single-
physics solvers. Multi-physics simulations involve problems that contain several types of equa-
tions. Examples are fluid-structure interaction, fluid-solid thermodynamics, porous-free flow,
etc.

In the following, we provide a brief overview of the functionality implemented in preCICE
and its features. A detailed and thorough description is provided in [4].

preCICE provides three main ingredients that are necessary for a partitioned multi-physics
simulation:

• Iterative methods for solving an interface fixed-point equation: explicit and various im-
plicit coupling schemes are realized.

• Data mapping for interpolating between non-matching grids at the coupling surface:
preCICE allows the user to choose between nearest-neighbor, nearest-projection and radial
basis function methods.

• Data communication between several solvers: communication methods are based on
MPI ports or TCP/IP sockets.

All above functionalities are provided in a single library API.
It is clear that for coupling arbitrary (including black-box and parallel) single-physics solvers,

preCICE needs high flexibility. Therefore, the latest version of the library works solely with in-
put and output of the involved solvers. Another important feature of preCICE is the ability to
work efficiently with parallel solvers. The library provides fully parallel point-to-point commu-
nication between the involved solvers based on the analysis of the mesh decomposition. This is
a significant advantage as multi-physics simulations are generally run to obtain higher accuracy
compared to single-physics cases and require fine meshes and large amounts of computations.
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5 Tutorial Test Case

In order to create the online tutorial, we came up with an FSI simulation designed to show the
capabilities of preCICE. In this chapter, we will briefly present the software we used for this
purpose and the simulation set up. The software includes preCICE, two solvers and solver
adapters required for coupling.

5.1 Used Software

• CalculiX
A 3D finite element structure solver [5]

• SU2
An open-source CFD solver developed at Stanford [6]

• preCICE
A coupling library for partitioned multi-physics simulations [4]

5.2 Installation of Solvers

In installing the solvers, SU2 and CalculiX, and preCICE, we ran into some issues. These ob-
servations might help the preCICE development team in their efforts to make the library more
popular.

SU2 We installed SU2 through the official github repository using the standard GNU build
system (./configure and make).

CalculiX We downloaded binaries for both CCX (structural solver) and CGX (graphical inter-
face) from the official website.

preCICE As direct dependencies for the preCICE library, Eigen, Boost, MPI and optionally
PETSc had to be installed. We used SCons as our build system. We observed several issues
during this process. For instance, we had trouble installing preCICE on Mac OS systems due to
incorrect behavior of environment variables and non-transparency of the SCons configuration
script. Moreover, the library requires Boost 1.60. This version of Boost is more recent than
the version that is packaged with popular Linux distributions. Therefore, we had to install it
Boost 1.60 solely for preCICE, even though an older version was already present on the system.
Another issue was related to the non-header based Boost libraries. The configuration script did
not check their location and if Boost related environment variables had not been not specified
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5 Tutorial Test Case

Figure 5.1: FSI scenario: fluid flows through the channel from left to right, the solid flap oscil-
lates due to fluid pressure; Figure adapted from [7]

properly, this led to a linking error on the very last stage of compilation. These issues greatly
extended the installation time.

SU2 adapter Installation of the SU2 adapter [7] required modification of the SU2 source code.
We had to include additional functions for the adapter, recompile the whole code together with
the adapter files and link it to preCICE. The modification of SU2 code had to be done by copy-
ing functions from the pdf supplement [7]. We had difficulties with this step since some re-
quired functions were missing, their exact location was not specified and the adapter was not
compatible with the latest version of SU2. For potential users, the SU2 adapter might therefore
present serious challenges. One alternative would be to fork the SU2 code and introduce needed
changes as new versions of SU2 are released.

CalculiX adapter Installation of Calculix adapter [8] required downloading and building ad-
ditional solvers, such as Arpack and Spooles. The absence of a unified build system and the
legacy nature of the software naturally lead to tedious manual modification of makefiles for
each solver in order to produce a working build. After this we built CalculiX from source and
linked it with preCICE. As configuration files for CalculiX are provided in YAML format, we
had to additionally install a C++ based YAML parser.

5.3 Scenario

We simulate a typical example of fluid-structure interaction (FSI) where a fluid flows through a
channel and interacts with an elastic flap that is fixed to the floor of the channel. The geometry
of the setup is depicted in Figure 5.1. The fluid – in this case air – enters the channel from the left,
flows over the flap, and leaves the domain through the outlet on the right. The flap oscillates
due to the fluid pressure building up on its surface. We use SU2 to simulate the fluid flow and
CalculiX for the structure/flap.

The coupling – performed with preCICE – involves the communication of values at the inter-
face between the fluid solver and the structure solver. The pressure exerted by the fluid on the
interface is sent from the fluid to the structure solver, so that the displacement of the flap can be
calculated. The displacement of the flap surface is then sent back to the fluid solver and used as
the new boundary. For more details on the definition of the case and its parameters, see [7].
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6 Simulation: First Iteration

In this chapter, the simulation of the scenario described in Section 5.3 is presented. We deal
with the first version of the test case here. Chapter 7 and 8 introduce improved versions. First,
we discuss two simple uncoupled simulations: one for the fluid and one for the structure part.
In the following we call them single-physics simulations in order to differentiate them from the
multiphysics case described in Section 5.3. The last part of this chapter describes the coupled
multiphysics simulation.

6.1 Fluid Simulation

To begin with, we ran a standard, single physics, computational fluid dynamics (CFD) simula-
tion in order to get familiar with the fluid solver. For running such a simulation with SU2, a con-
figuration file and a mesh file are needed. Since these mesh files have to be in SU2’s own mesh
format, the conversion of meshes generated by different meshing tools can be problematic. We
encountered problems when converting meshes generated with Hypermesh and OpenFOAM’s
blockMesh. In each case, the boundary markers were not converted correctly. For a simple flow
setup like this, the problem can be overcome by writing a python script that directly outputs the
mesh file – without the use of a meshing software.

The configuration file can be adapted from one of the many SU2 tutorials. We chose to solve
the incompressible Navier-Stokes equations with water as the participating fluid. After trying
a few possible settings, the simulation converged and generated a velocity field like the one
depicted in Figure 6.1.

6.2 Structure Simulation

Similarly, to get a basic understanding required for working with CalculiX, we performed sev-
eral simple FEM-simulations. Using meshing tools provided by CalculiX, we created a beam
model consisting of one-dimensional line elements. The beam is fixed on one of its ends, and is
subject to a distributed force acting from the side. The resulting displacement is shown in Figure
6.2 which was generated by using the visualization tool provided with CalculiX. Using this set
up, we were able to accomplish all the steps required for running simulations with CalculiX:
mesh generation, specification of configuration file and visualization.

6.3 Coupled Simulation

In the following, we give a brief overview of the steps required to conduct the coupled simu-
lation for the scenario described in 5.3. More details can be found in the github-tutorial (see
Section 10). To reiterate, we use SU2 for fluid simulation, CalculiX as the structure solver and
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Figure 6.1: Single physics SU2 simulation of incompressible flow

Figure 6.2: Result of FEM simulation with CalculiX, displacement of the beam elements due to
a force acting from the side
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Figure 6.3: Coupled FSI simulation with SU2 and CalculiX

preCICE as the coupling tool between the two. Although this test case is two-dimensional, we
run a three-dimensional simulation with a constant width in y-direction (quasi 2D). Therefore,
we provide 3D meshes to both structure and fluid solvers. This constraint is imposed by Cal-
culiX which only deals with 3D scenarios.

The fluid flow is simulated by solving the incompressible Navier-Stokes equations for laminar
viscous flow. A constant velocity profile is assumed on the left input of the channel and a no-
slip condition is prescribed on the walls of the channel. Before starting the coupled simulation,
we run a single physics fluid simulation to get a good initial velocity field. Afterwards a cou-
pled simulation is started that uses the precomputed results as its initial condition. Therefore,
two configuration files are used. The file for the coupled simulation contains the specifications
required for coupling with preCICE.

The elastic flap is modelled as a three-dimensional elastic structure. The set-up of the config-
uration file barely differs from the configuration used for the single-physics FEM-simulations.
The coupling with preCICE is done by providing an additional xml-file. There we define the
participating solvers and the interfaces where data is exchanged. We also specify the algorithms
used for data mapping between the meshes and the coupling scheme in the xml-file.

After the preparation described in the previous paragraphs, the coupled simulation can be
run by starting both participating solvers independently. A sample result of the simulation is
shown in Figure 6.3.
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7 Simulation: Second Iteration

The first version of the tutorial presented in Chapter 6 is to a large extent based on the config-
uration described in [7]. The simulation clearly demonstrates the capabilities of preCICE for
fluid-structure interaction tasks, but has several problems that prevent us from using it for the
interactive – web-based – tutorial. Most importantly, the runtime is about 30 minutes. Further-
more, the simulation is very sensitive to variations of the parameters. Both issues impede the
construction of a good user story as potential users can be discouraged by the long runtime and
a very limited choice of simulation parameters.

In the following, we present a new simulation setup for the online tutorial, which is still based
on the scenario discussed in Section 5.3. This time, the setup was developed from scratch - we
created new meshes for the solid and fluid parts as well as new configuration files for both
solvers and preCICE. We tried to reduce the complexity of the setup, as our main goal is to
produce a robust and fast simulation that serves well as a basis for the online tutorial.

In order to increase the stability of the setup, we decided to change the geometry of the chan-
nel and the flap. Now, the gap between top of the flap and top of the channel is much wider.
This simplifies the solution of the flow equations. Moreover, the flap is shifted left from the
center. This results in an enhanced flow at the outlet and can lead to more stable simulations.
The updated setup is schematically sketched in Figure 7.1

Figure 7.1: Sketch of the geometry for the new setup.

7.1 Fluid Simulation

As a starting point for the new fluid solver setup, we used the configuration file of the SU2
tutorial that deals with an inviscid bump in a channel [9]. Is is important to note that we decided
to solve the Euler equations instead of the Navier-Stokes system that we previously considered.
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For our setup, the Euler equations lead to more stable simulations and allow the use of less
complicated numerical methods. This decreases the runtime.

In addition, we created several adaptive and uniform meshes with different resolutions using
gmsh [10]. We started from a two-dimensional case with a simple geometry, and iteratively in-
creased the geometric complexity while trying to keep the mesh resolution as coarse as possible.
This is reflected in Figures 7.2–7.4.

Figure 7.2: Simple geometry with uniform
mesh. Figure 7.3: Fine adaptive mesh.

Figure 7.4: Coarse adaptive mesh (used for the final setup).

Finally, we obtained a converging steady-state fluid simulation on a rather coarse mesh. The
resulting velocity field is shown in Figure 7.5. The two-dimensional mesh was then extruded to
a quasi three-dimensional one, so that the obtained result can be used as the initial condition for
the unsteady coupled simulation. See Section 8.3 for more details.
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Figure 7.5: Fluid simulation, velocity in channel direction.

7.2 Structure Simulation

Similarly, we used the CalculiX meshing tool to generate various meshes for the solid structure.
We evaluated their performance for a simple distributed traction, as well as a coupled simu-
lation with SU2. For the final version of the setup we chose a mesh with 5 high-order brick
elements with 20 nodes each – the so-called C3D20 elements [11]. After analyzing the output
of several simulations, we saw that these elements can nicely capture the large deformations
observed during the coupled simulation. In addition, the runtime is moderate as only 68 nodes
are required to represent the entire flap. Figure 7.6 shows the deformation of the flap during a
coupled simulation.
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Figure 7.6: Flap deformation during the coupled simulation.

7.3 Coupled Simulation

In the following, we give a brief overview of the main parameters that were used to couple SU2
and CalculiX. A detailed explanation of the configuration of preCICE and both solvers can be
found in Chapter 10 and in the github-tutorial.

The two solvers were coupled via TCP/IP sockets in an implicit manner. Implicit coupling
was based on fixed point iteration. In order to improve the coupling relaxation, and thus, the
simulation runtime, the Aitken relaxation method was chosen; see Chapter 9. The number and
length of the timesteps was chosen to be the same for both preCICE and SU2 – 160 timesteps of
length 0.03 – as this configuration leads to the fastest and most stable results. This corresponds
to coupling on every timestep.

We tuned various configuration parameters, such as numerical methods and convergence
criteria for both solvers and the preCICE coupling library in order to further speed up the sim-
ulation. Most importantly, we relaxed the convergence criterion (residual) for the fixed point
iteration. This can be justified by the fact that we only aim to provide a qualitatively and visu-
ally insightful simulation. Any simplification of the case, such as solving Euler equations in SU2
and using weaker convergence criteria, makes sense as long as the results are meaningful. In our
setup the results look physical even though the residuals are not decreasing in every timestep.
We also added a watchpoint to the preCICE configuration so that the displacement of the top of
the flap is recorded by preCICE and written to an output file. The resulting displacement can be
visualized using gnuplot [12]. This can be seen in Figure 7.7. As a result, we obtained a coupled
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simulation that runs in under 4 minutes and provides qualitative insight into the nature of fluid
structure interaction. The velocity field at the last time step of the coupled simulation is given
in Figure 7.8.

Figure 7.7: Displacement of the top of the flap.
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Figure 7.8: Result of the coupled simulation: velocity in channel direction after 4.6 seconds.
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8 Simulation: Third Iteration

The third and final version of the simulation builds upon the setup described in 7. As we had
experienced some convergence issues with that setup, the main focus was on getting a simula-
tion that converged nicely. The second challenge was preparing a series of similar setups that
can help the user learn about preCICE and thus, make for a good user story for the interactive
tutorial. For more details on the user story, please refer to 9.

8.1 Fluid Simulation

While the simulation we came up with during the second iteration provided optically appeal-
ing results, it did not converge. The residuals did not decrease in most timesteps but rather,
showed oscillatory behaviour. The results of the simulation were still plausible – possibly due
to the highly accurate initial solution – but for the final setup to be displayed on the website, we
wanted a simulation with decreasing residuals. This was achieved by adjusting the convergence
criteria on all the involved numerical solvers. The criterion for the maximum residual of linear
solvers was set to 10−4, and for the fluid solver to 10−3.5. This led to improved convergence as
the residuals now decrease in every timestep.

The fluid mesh was also changed slightly. On the right hand side, where the fluid flows out,
a part of the mesh was cut off so that the solid flap was positioned in the center of the channel.
This slightly decreased the number of cells and thus had a positive effect on the runtime. The
updated mesh is shown in Figure 8.1

Figure 8.1: Final Fluid Mesh
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8.2 Structure Simulation

The mesh for the solid flap was not changed after the Second Iteration; see 7.2 for the details.
We only played with the material parameters and chose a combination of density and stiffness
that led to results with appealing oscillations. For the final setup, Young’s modulus was chosen
to be 200000 N

m2 and the Poisson ratio was set to 0.3. The density of the material is now 3000 kg
m3 .

8.3 Coupled Simulation

As the convergence criteria for the fluid solver were updated, the criterion for the implicit cou-
pling had to be adjusted as well – we set it to 10−3. It is best practice to set it to a value slightly
larger than the maximum residual for the single-physics simulations, as solving the coupling
equations more accurately than the single-physics ones would unnecessarily increase the run-
time.

We ended up with a setup that fulfilled all our requirements. The runtime is now in the order
of one minute, the simulation converges nicely, and the results look physical. The capabilities
of preCICE are well demonstrated in this test case. Figure 8.2 shows the result of our final
simulation setup after 200 out of 400 timesteps.

Figure 8.2: Output of the final simulation
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9 User Story

Having come up with an adequate simulation setup, we now want to create a user story out
of it that demonstrates the capabilities of preCICE. The user story represents a typical user’s
journey through the website where they learn, step by step, how to start using the coupling
library. Naturally, this requires a great deal of thought and planning in order to keep the user’s
interest and educate him or her about the possibilities and the usage of preCICE.

9.1 First Idea

Our first idea for the user story was to allow users to modify the value of the Aitken relaxation
parameter [13]. This was implemented on the website during the second iteration as mentioned
in Section 12.4. For this, we used the fluid-structure simulation from Chapter 7 with implicit
coupling via fixed point iteration. Such simulations can sometimes suffer from slow conver-
gence, especially if interaction between fluid and structure is strong, as in our scenario. In order
to change the runtime, we can change the value of the Aitken relaxation parameter which adapts
the relaxation rate in each iteration based on the previous iterations. Changing its value thus
gives users the opportunity to play around with the simulation and see how the parameter af-
fects the runtime. For example, after changing the value of the Aitken relaxation parameter from
0.4 to 0.9, the computation time decreases by roughly 10 %. To demonstrate the influence of a
particular Aitken value on the runtime, we implemented a table of highscores, lowest runtimes,
which was shown at the end of each simulation. For details, see Chapter 12.

9.2 Final Version

Changing the Atiken relaxation parameter is a good start, but the user might get a better under-
standing of preCICE if he could adjust more than one single parameter. The simulation setup
derived in Chapter 8 was a good basis for developing a more sophisticated user story that pre-
sented the most important features of preCICE. This change was precipitated by the fact that
the first version of the user story, based on Aitken, did not expose the user to the core features
of preCICE such as different coupling schemes that can radically change the stability and con-
vergence properties of a simulation. Thus, for the final version of the website, we came up with
a five step, sequential user story. In each step, the user runs the simulation developed in Chap-
ter 8 with a different coupling scheme or post-processing method and can observe how these
changes affect the convergence, stability and runtime of the simulation. We start with a basic
setup and gradually introduce the user to more sophisticated coupling schemes motivated by
some problem with the current setup. For example, we introduce implicit coupling schemes
after our first simulation diverges. Let us take now take a look at each step in detail:
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Step 1: Serial Explicit Coupling
The first setup features simplest way of coupling two solvers: explicit coupling. In this scheme,
each solver computes the solution in each timestep independently and the results are simply
mapped between the meshes. This is quite fast and works for FSI simulations if the deformations
are very small. In our case, this provides physical results for a very limited number of timesteps.
So, for the first simulation we use explicit coupling and compute a solution for 20 timesteps.

Step 2: Serial Explicit Coupling – Longer Simulation
After getting our feet wet with the first simulation, the second step allows the user to run the
same simulation for 50 timesteps. This leads to a divergent simulation due to conjunction of
our explicit coupling approach and larger deformations. This is used as a motivation for the
introduction of implicit coupling approaches.

Step 3: Serial Implicit Coupling
After presenting the diverging results of the second step, we introduce the user to implicit cou-
pling. Here, both the solvers iteratively solve each timestep multiple times until the results on
both sides of the interface match. This leads to a stable simulation and we simulate for 400
timesteps. The results thus obtained show a full oscillation of the flap.

Step 4: Serial Implicit Coupling with Post-processing
Having achieved a stable simulation in the third step, we now try to make it faster. Here we in-
troduce Quasi-Newton post-processing in order to speed up the solution of the coupling equa-
tions. This simulation runs slightly faster than the previous one and produces the same results.

Step 5: Parallel Implicit Coupling with Post-processing
In order to significantly improve the runtime, we finally introduce the user to parallel coupling.
In this scheme, both solvers compute each timestep at the same time in parallel rather than in a
serial, alternating fashion. This has a significant impact on the runtime and the results are still
qualitatively the same as for the previous two steps. The user thus ends up with a stable and
fast simulation setup.

After completing the online tutorial, the user is presented a link to a github version of our
tutorial. This offline version is the subject of Chapter 10.
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10 Offline Tutorial

10.1 First Iteration

Before creating an interactive online tutorial, we created a static version of our tutorial which
describes a typical simulation setup with preCICE. This offline version evolved along with our
simulation setups as described in Chapters 6-8. To put this tutorial on the web, we created a
”Wiki” page on a forked version of the preCICE gitHub repository. It consists of a home page
that includes the general description of the test case, similar to the one given in Section 5.3,
as well as presenting the software needed for running the simulation. The four key steps of
the simulation pipeline are described in detail on different pages of this wiki. The wiki home
page provides links to these, as well as some external websites. The first step consists of the
installation of all the software; see Section 5.1. After installing the software, we set up the solvers
and preCICE. This constitutes step two. Step three is the simulation itself and step four includes
the visualization of the results. To get an impression about this tutorial, one can look at the
screenshot in Figure 10.1.

10.2 Second Iteration

After developing the new version of the coupled scenario, as presented in chapter 7, we updated
the github-tutorial and included more information about the preCICE configuration file and
solver parameters. Additionally we provided scripts for plotting the displacement as well as a
handy bash script, based on tmux [14], that allows users to run simulations easily without the
need to explicitly split the terminal. The script also filters out all the unnecessary output. All
used files and the tutorial description are provided on the official preCICE github page.

10.3 Third Iteration

The github tutorial was adapted to the new setup derived in Chapter 8. Only one version of
the configuration is provided, instead of all five versions included in the website. All the pages
on the wiki were revised and have been updated to the latest version of the test case. A few
changes to the github tutorial were also made by people from the preCICE community and they
will actively maintain the tutorial in the future.
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10 Offline Tutorial

Figure 10.1: Home page of the non-interactive Wiki tutorial. URL: https://github.com/
sltmyr/precice/wiki
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11 Website: First Iteration

Armed with the knowledge of the different simulation setups, we can now use them to put the
development of the website in context. As discussed previously, we used a React-Redux frame-
work to implement the website. During the first iteration of the website, we settled technology
decisions, as discussed in Chapter 2, and created mock web pages for the website. In the fol-
lowing sections we will present the mock-ups and take a look at the implementation of various
elements.

11.1 The Elements of Style

While we can use HTML to divide our screen into different regions, it is style that makes a web
page truly come alive. A web page without style is boring and most users would leave as soon
as they find themselves stranded on a page similar to the one in figure 11.1. Even though this
page has the same content as the one in figure 11.7, the latter obviously looks much better.

Figure 11.1: Web Page Without Style

As we discussed in section 2.3.2, we use SASS for styling instead of CSS. To be more specific,
we use SCSS, the latest version of SASS, which is compiled to CSS3. SCSS supports CSS since it
is a CSS superset and provides additional features such as variables and nested styling. Figure
11.2 presents a sample code segment from our implementation of the mock-ups and it shows
how we used these features.
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11 Website: First Iteration

Figure 11.2: Sample Code for SCSS

Variables CSS does not allow us to use variables but SCSS does. We can use variables to store
styles such as background color and border width. With these variables in hand, we can rapidly
change the style on multiple pages.

Nested Styling As we said before, we divide our screen space into several regions. These
regions might be further subdivided in order to accommodate certain components. With nested
classes, we can set general styling features in the outer class, and set the specific ones in the
nested class.

11.2 Composing Structures with React

As mentioned in Section 2.3.1, we use React-Redux as our frontend framework. In what follows,
we will discuss how we used this framework to create the mock-ups. Figure 11.3 shows the
general structure of a mock-up page based on the React framework, with React components
nested inside other React components. This composed structure allows making local dynamic
changes to components that only trigger a local component update.
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11 Website: First Iteration

Figure 11.3: Structure of the Website

With React we only re-render the components that have been changed. This is made possible
by the Virtual DOM provided by React. Referring to figure 11.3, the copyright and preCICE
label will never change during the the tutorial. Therefore, we placed them in the Root layer. The
progress bar and the buttons will be present on all web pages for the duration of the tutorial
and therefore they were placed in the Tutorial layer. The ”Steps” layer represents the four basic
steps in tutorial and it will have a different layout for each of these steps.

11.3 Tutorial Mock-Ups

With the general structure of the web pages having been defined, we shifted our attention to
deciding the actual structure of the website. For this, we looked at the typical simulation setups
in the offline tutorial. Thus, we came up with five different pages: Landing Page, Step One for
introducing the test case, Step Two for the setup, Step Three for the simulation itself, and Step
Four for visualization of the results. Since the basic structure of the final website is the same as
this version, most of what is said below also applies to the final iteration.

Landing Page This is the first page users see when they open the website. After clicking the
”Start Now” button they can begin the tutorial. Figure 11.4 shows the Landing page of our
website.
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Figure 11.4: Landing Page of the Website

Introduction Page Before the users start the tutorial, we want to give them a brief overview of
the tutorial. This page presents the simulation scenario, mentions the solvers, and explains how
we use preCICE to couple the solvers. Figure 11.5 shows a screenshot of this page.

Figure 11.5: Introduction of the Tutorial

Step Two Page In this step the users are taken on a guided tour of the preCICE XML config-
uration file. The page is divided into three region as in 11.6. The users first get a general idea
of the role the XML file plays in coupling solvers using preCICE in the ”What To Do” section.
The XML editor is in the middle and it shows the configuration file for the simulation scenario
presented on the previous page. In the ”Explanation” section, the users might be instructed to
change certain parameters in the file and how this will affect the simulation. At this stage of the
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11 Website: First Iteration

development, we thought this step might be later divided into several sub-steps, depending on
the tutorial stories we would come up with. As you go through the next few chapters, you will
see how these forecasts were realized.

Figure 11.6: Step Two of the Website

Step Three Page In this step, the users will run the two solvers simultaneously in two separate
consoles as in figure 11.7. Again, in the ”What To Do” section, the users can get a general
idea of the tasks they have to perform in this section. Here our plans for the future included
convergence plots for the solvers and visualization of other relevant metrics.

Figure 11.7: Step Three of the Website

Step Four Page The last part of the tutorial is the visualization step. The users will be able
to see the results of the simulation on this page. The ”What To Do” here explains the results.
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11 Website: First Iteration

Figure 11.8 shows the Step Four page.

b

Figure 11.8: Step Four of the Website

Progress Bar and Buttons We added a progress bar to the tutorial in order to provide the user
with an estimate of how much time it might take her to finish the tutorial. The buttons at the
bottom of the page are obviously for navigation. The ”NEXT” button can be used to skip the
current step. The ”Validate” button did not make it to the final version of the website and was
meant to function simultaneously for input validation and as a ”submit” button.

11.4 The Redux Store

As described in Chapter 2, we use Redux to manage the state of our application. Figure 11.9
illustrates the Redux work flow.

Figure 11.9: Redux Work Flow
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From Figures 11.5 through 11.8, we can see that the progress bar changes depending on which
step we are at currently. This is one case where we make use of the Redux store to re-render the
progress bar component written using React. We extract the route from the Redux store, use
it to determine our current location, and based on that we define how the progress bar should
look like. We use a similar technique to decide what the buttons should do on each step. We
then map the Redux state to the React component props(which stands for property in a React
component) for our components and then whenever the state changes, our React components
that should be affected by this state change are automatically re-rendered.

11.5 Data Visualization

During the first iteration of the website, data visualization was still an open question. We hadn’t
yet decided what to visualize and how to visualize it. We came up with some ideas that are listed
in table 11.5 along with how much effort we thought it would take to implement these ideas. We
include these relics to present an accurate historical record of the development of the project.

Which Data Source Concurrent
/Afterwards

Visualization Tool Effort

Console
Output

Console Output Concurrent Moderate

Current
Steps
(Progess of
Simulation)

Console Output Concurrent Progress Bar Medium

Coupling
Iterations
per Time
Step

Console Output Concurrent JS Chart Library Medium

Coupling
Residual

Console Output Concurrent JS Chart Library Medium

Domain
(Velocity
Field,
Heat Field,
Structural
Deforma-
tions)

Output Files Afterwards (1) Paraview Scripting Mode
(2) Pre-rendered Image for
Web Viewer
(3) Fully Functional Paraview
Instance on Server with Re-
altime Communication to
Front

(1) Medium
(2) High
(3) Very High

Table 11.1: Analysis of Data Visualization

These decisions were much easier to make once we had settled on a preliminary version of
the user story.
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12 Website: Second Iteration

The second iteration of the website differed from the initial version mainly by the features added
for the second milestone. These additional features together with the first iteration, constituted
a base working version of the tutorial website.

12.1 General Settings and Landing Page

In implementing the new features, we made certain improvements that were not immediately
visible on the website. Let us first take a look at those.

Figure 12.1: Landing Page

• Deployment on the virtual machine

After running the first prototype in a development environment on the virtual machine,
we changed to the robust, production ready node process manager pm2. pm2 is used
widely in production environments by many companies including IBM, Microsoft and
PayPal.

• Continuous integration

In order to make our development process faster and more agile, we set up continuous
integration. Whenever someone pushes changes on the master branch of either the fron-
tend or the backend repository, the new version is deployed on our VM. This allowed us
to make quick adaptations when reacting to user feedback later.
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• preCICE logo

The new preCICE logo was released in November 2017 and we included it in the website
during the second iteration. Additionally, clicking on the logo now took you back to the
landing page.

• The figure rendering problem

When it comes to rendering figures for the website, there are multiple concerns that we
need to keep in view. First, we are using React to render the figures. This means that
figures, such as the preCICE logo, should be imported as static elements. Otherwise the
figures might disappear when the user moves between pages.

Another concern is that the figures take up a huge amount of space which makes the
rendering slow. When the website is on the virtual machine, users need to download
all the figures before rendering them and this can take a lot of time. We compressed the
figures and that mitigated the problem to a degree.

• Information and explanation updated to new setup

As you probably know by now, the simulation setups changed in conjunction with the
website. The second iteration of the website, therefore, presented the second iteration of
the tutorial. This required us to adapt the explanations for the first two steps.

• Overlays to help users navigate

To help the users navigate the website, we added overlays to steps two and three. For
further detail please see section 12.3.

12.2 Step One: Introduction

Figure 12.2: Introduction page
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The only change to the page for step one concerned the explanation regarding the new simu-
lation setup.

12.3 Step Two: Setup

• Text Overlays

Figure 12.3: Overlay

When users arrived at the step two page, the first thing they saw was the overlay. This
pointed out the location of the hide button, explained how to interact with the configura-
tion file, and pointed out where they can find explanations on the configuration file. This
feature was left out of the final version of the website.

• New layout and hide function

Figure 12.4: Step 2 new layout Figure 12.5: Step 2 when explanation is
hidden
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The mock-up layout for this step was too crowded. In order to solve this problem we
moved the explanation for step two to the top. We also added the ”Hide” button to the
top right of the page to allow the users to collapse the explanation.

• Interaction with the configuration file

One of the goals of the tutorial is to provide information on the configuration file. To
achieve this, we divided the configuration file into sections depending on the function of
the relevant tags. By clicking on these sections, users can get more information about the
current section in the panel on the right.

• Modal box

Figure 12.6: Step 2 with modal box

If a user clicks the ”NEXT” button before going through the configuration file, a modal
box shows up informing them about the sections they missed. The modal box allows you
to jump directly to one of the sections that you missed or to skip to the next step. This
feature was only included for the first simulation in the final design.

• Slider for Aitken relaxation parameter

Figure 12.7: with relaxation value 0.4 Figure 12.8: with relaxation value 0.9
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As described in chapter 9, our first version of the user story relied on allowing the users
to change the Aitken relaxation parameter after they had performed their first simula-
tion. When users came back to Step Two after their first simulation, the explanation panel
transformed into a slider that allowed them to change the value of the parameter.

• Tooltips for additional information

Figure 12.9: Step 2 with a tooltip

Some users might want to know more about the configuration file. They can do this by
using the ”?” tooltips scattered throughout the text in the explanation panel. Pointing at
one of these symbols will bring up a a box with further details.

12.4 Step Three: Simulation

• UTF-8 encoding for socket communication

We switched from Array Buffers to utf8 encoding for backend communication through
websockets. Without the additional overhead of converting between encodings, the code
becomes leaner. The loss in transmission speed is negligible. The biggest performance
penalty lies in layouting and rendering in the browser

• Architectural changes to prevent browser from crashing

Our first prototype had a major issue with the consoles. When running the simulation, the
browser would become unresponsive after about 20 seconds. Using the chrome developer
tools for profiling JavaScript performance, it became clear that the problem was caused by
frequent re-rendering. Figure 12.10 provides a screenshot that depicts this. Every time the
browser receives a piece of console output from the backend, it has to scroll the console
window down and thus it needs to rerender parts of the window. Furthermore, every
piece of console output is put into a separate element. Since console output can arrive
several times per second, the browser crashed when it had to recalculate the position of
too many elements. This usually happened when the browser had already received a large
part of the console output.
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Figure 12.10: Layouting after scrolling (triggered by componentDidUpdate) is the biggest per-
formance penalty, especially when there is already a lot of text

In order to solve this issue, a complete rewrite of the console component was necessary.
We were using a third party library in the first prototype. Now we are using our own im-
plementation. The new implementation strikes a good balance between creating too many
elements (which is the case if a new element gets created for each line of console output)
and creating bigger elements (which is the other extreme, putting all the text into one ele-
ment). New elements are now created for each 1000 lines of code and there is always only
one element that undergoes mutation. This reduces the amount of computation required
when rerendering. All unchanged elements (their content size based dimensions) do not
have to be recalculated, only their positions when scrolling. Furthermore since we now
have fewer elements, repositioning when scrolling down happens in a reasonable amount
of time.

• Cached console output

To test our website with a local backend without a preCICE installation, we started to
develop interchangeable output sources for the console output. In addition to actually
running the simulation and working with real time output, it was now also possible to
read the output from a text file and send its contents, within a given timespan, to the fron-
tend. While this was only implemented for local development purposes, this might open
the door to highly resource friendly backend hosting. If we only have a discrete set of
simulation configurations, it makes sense to cache the output for each in a text file and use
that on request.

• Overlay

As in Step Two, we also added an overlay with explanations for Step Three. This can be
seen in Figure 12.11.
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Figure 12.11: Step 3 with Overlay

• Layout

Figure 12.12: Step 3 new layout Figure 12.13: Step 3 with a running
simulation

Like Step Two, the mock-up for Step Three was too crowded. When users arrive at Step
Three now, they only see the two consoles and instructions for the current step. The cou-
pling iteration plot and console output explanation could now be accessed by using the
buttons on the top left of the header. This last feature was slightly changed in the final
iteration of the website.

• Buttons disabled while simulation is running

While the simulation is running, the ”BACK” and ”NEXT” buttons were disabled. If a
user clicked on them during this time, they would be greeted by a modal box as in figure
12.14.
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Figure 12.14: Step 3 with modal box

• User story

With the possibility for the user to change the relaxation value, we implemented the first
real interaction of the user with the simulation setup. After a user had performed their first
simulation with the default configuration, they could go back to Step Two and change the
value of the Aitken relaxation parameter. The configuration value was then sent to the
backend where the simulation was started with a configuration file that contained the
specified numerical value for the relaxation parameter.

• Convergence plot and progress bar

Figure 12.15: Step 3 with convergence plot

Starting the simulation brought up the coupling iteration plot to the foreground. This
window also contained a progress bar for the simulation. Users could also access this
from the buttons on the top left, as described above. These features were also redesigned
in the final iteration of the website.
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• Console output explanation

Figure 12.16: Step 3 with output explaining section

Using the tabs on the coupling iteration window, users could shift between the explanation
for Calculix and SU2 output. At that point, we were planning on developing this feature
further in the next iteration of the website. However, as we will describe in Chapter 13,
the user story was completely redesigned and therefore, this feature did not make the final
cut.

• Simulation High Score

Figure 12.17: Step 3 with high score table

The runtime time for each simulation was stored in the Redux Store in the frontend. Once
the simulation ended, a highscore list was displayed with the simulation runtimes in as-
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cending order. This was designed to help the users see how changing the Aitken param-
eter affected the runtime. Since we rethought our user story for the last iteration, this
feature was also not included in the final version.

12.5 Step Four: Visualization

• Button for going back to step 2

As described before, the user story for the second iteration revolved around changing the
Aitken relaxation parameter. Once a user had performed their first simulation, they could
go back to Step Two using a button on the Step Four page.

• Visualization for the output

During the second iteration, we had tabs for the various visualization graphs we included
in this step, as in Figures 12.18 and 12.19 . Furthermore, without running the simulation,
the user wasn’t able to visualize the results as shown in Figure 12.20. However, this part
was again completely redesigned for the final iteration.

Figure 12.18: Visualization of the veloc-
ity field

Figure 12.19: Visualization of the dis-
placement of the flap

Figure 12.20: Nothing simulated
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The final iteration of the website is based on the user story described in Section 9.2. This required
a complete redesign of certain features of the website. Furthermore, the rerendering problem
described in Chapter 12 persisted and we spent a great deal of time on solving it. In order to
improve user experience, we also incorporated user feedback, gathered primarily in Stuttgart
as described in Chapter 14.

13.1 General Structural Changes

During the second iteration, we had implemented most of the functional features of the website.
However, as described in Section 9.2, we completely redesigned the user story for the final
iteration and extended it to five cases. In order to present this on the website, we needed to
modify the structure of the website. Additionally, some features, such as image compression
and explanations for preCICE configuration, had to be tweaked to make them work as desired.

13.1.1 Structure: Iterative or Serial?

For the second iteration of the website, we only had one test case. The structure of the website
was thus straightforward. As illustrated in figure 13.1, users were guided through the first four
steps and at the last step, they had the opportunity to go back to step two, modify the Aitken
parameter, and run a new simulation. Since we now have five similar simulations in the user
story, each test case should have a similar user interface for the four basic steps for running a
simulation. Thus, the structure of the website was changed from the iterative version in the
second iteration to serial – as in a story.

Figure 13.1: Iterative structure for the second
iteration of the website

Figure 13.2: Serial structure for the third itera-
tion of the website
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The new structure divides the tutorial into five parts and is illustrated in Figure 13.2. The users
first arrive at the landing page and are guided through the four steps of the first simulation, and
can then go to the second part or chapter of the tutorial. The transition between different steps
in different parts is transparent – that is, at any stage of the tutorial, the users can go back to
an earlier step or skip a step. Once a user has finished the tutorial, they arrive at the final page
which provides links to the offline tutorial described in Chapter 10, preCICE, and Coplon.

Implementing the new structure was made easier by the technology decisions we had made
in the beginning of the project. We reused the React components we had created earlier for the
four steps of a simulation and populated them with the appropriate content for the five parts of
the new user story. Once we have these components in hand, we can use Redux to obtain the
current location of the user and render the component with the right content. This structure will
allow developers to easily add further test cases to the website in the future.

13.1.2 Text

Since the main focus of the project was creating a tutorial, the text on the website is therefore
the main medium through which users can be educated about preCICE. It should be detailed
enough to provide information necessary to understand the tutorial test case, but at the same
time it should be succinct enough to not distract the user from the main thrust of the learning
material.

The written material on the website can be divided into two broad categories: information
pertaining to the test cases and explanations for the preCICE xml configuration file. Since a lot
of information is needed for the configuration file, we explained all the tags briefly, especially the
ones that differ from chapter to chapter. We used the tooltips in figure 12.9 to present additional
information that did not fit into the normal flow of the text.

Information relating to the test cases was revised multiple times to include necessary infor-
mation and present a coherent user story that is consistent across all five parts of the final user
story. This required a great deal of deliberation and thinking and both the simulation team
and the website team participated in this task. We consulted papers on preCICE and numerical
methods to write the final version of the text and where needed, point the users to the source
material.

13.1.3 Performance Optimizations

After the second iteration, the real time console output still had performance issues both on the
backend and the frontend. Therefore, on the backend side, caching was dramatically intensified.
Since the backend is now just sending recorded output to the frontend, this implementation is
quite slim and would scale nicely.

On the frontend side, more work was needed. The simulation was running smoothly on Mac
machines, but especially on low-end linux computers, the simulation still got stuck. The final
solution we came up with dramatically reduced the amount of console output shown in the
browser: now we only display the last 1000 lines. Moreover, the number of synchronizations
between backend and frontend was reduced to four per second from ten per second in the
second iteration. We arrived at these numbers by testing our website systematically on various
computers.

53



13 Website: Third Iteration

13.1.4 Housekeeping

The second iteration of the website had several features that were removed or modified for the
final iteration. These changes were primarily motivated by the new user story. In the following,
we list the changes that were made for the final iteration.

Things we deleted:

• Slider for Aitken relaxation parameter

Since the user story was changed, we no longer allow the user to change the relaxation
parameter. We thus deleted the slider and the respective storage for this feature from the
Redux store.

• Overlay in step 2 and step 3

The overlay was designed to guide the user to important features of the user interface.
However, it was deemed that the overlay made the website complicated and clunky.
Therefore, in the last iteration, we tried to make the interface more ”natural” and intu-
itive and as a consequence, removed the overlay.

• Explanation of the output

The console output is mostly related to the two solvers, SU2 and CalculiX. Since this tuto-
rial focuses on almost exclusively on preCICE, the output explanation was deemed super-
fluous.

Things we improved:

• Portablility across browsers

Some CSS features produce different results on different browsers. To provide a consis-
tent user interface, we changed these to more neutral options that led to a consistent user
interface on different browses.

• New progress bar

Since the new user story has five distinct chapters, we added five circles to the progress
bar to indicate the current chapter. The current chapter is indicated by a hollow orange
circle. After the user has completed a chapter, the corresponding circle is painted orange.

• Videos for visualization

The second iteration included multiple visualization plots separated into tabs. While these
plots indicated a moving flap, they were static. We decided it would be much better to do
away with the plots and provide a video which showed the flap actually moving since a
video is much more interesting and intuitive than a static plot.
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• Compression of figures

Some of the figures on the website were too large and led to significant loading times for
the website. In order to reduce network traffic and make the website faster, we decreased
the resolution and compressed these images.

We believe these changes made the website slicker and improved the user experience. Feed-
back from users, presented in Chapter 14, concurs with this assertion.

13.2 Changes to the User Interface

Taking into account feedback from the customer, internal quality assurance, and external user
testing we decided to redesign several components and focus on accessibility and an intuitive in-
terface. This was a multi-step process where we first incorporated feedback from the client. Our
internal quality assurance team then evaluated these changes and came up with suggestions to
further improve the website. The last step was then executed after user testing in Stuttgart.

13.2.1 Major Changes

Major changes to the user interface were motivated by the feedback from the client after the
second milestone and the new user story. Below, we discuss these changes in detail.

• New color scheme

The website now has a new color scheme with a more moderate background color. Many
other colors were adjusted, providing a distraction free interface with only important com-
ponents marked in shiny colors. See, for example, Figure 13.3.

• The coupling iteration plot

Now we introduce the coupling iteration plot in the third chapter of the tutorial since
the first two simulations use explicit coupling. In order to introduce this to the user, the
simulation page for chapter three thus introduces the user to the coupling iteration plot.
This is achieved by using a tabbed display that allows the user to switch between the
explanation and the plot. This feature is displayed in Figure 13.3. Additionally if the user
is especially interested in the coupling iteration plot, she can click on it and zoom in on
the plot, as show in Figure 13.4.
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Figure 13.3: Updated layout of the page during simulation

Figure 13.4: Ability to focus on plot
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• Redesigned landing and final pages

The landing page is an important component of the website since it is the first point of
contact of potential preCICE users with the tutorial. Therefore, we tweaked the landing
page and added a ”Voices of customers” section that can reassure users about the usabil-
ity of the software. Similarly, we designed a final page that provides links to the github
tutorial and the preCICE webpage as potential resources that can help the user learn more
about preCICE. The updated pages are shown in Figures 13.5 and 13.6.

Figure 13.5: Landing page Figure 13.6: Final page

• XML explanations

A large part of the time a user spends on the website is devoted to reading and understand-
ing parts of the preCICE configuration file. Therefore, considerable attention was devoted
to adjusting the look and feel of the configuration file and the corresponding explanation
text. The new user interface for this part is presented in Figure 13.7.

Figure 13.7: Updated page with the description of the xml-file
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• High score

Figure 13.8: Pop-up with elapsed upon finishing the simulation

In the new user tutorial, we have a fixed number of chapters, five, and do not allow user to
explicitly change any parameters. Therefore, now there is no need to display a list of best
running times with respect to some parameter. Instead, we just display the total simulation
time for each part since they usually differ significantly. We assume that the user will be
able to notice the difference and based on it, understand which coupling scheme is better.
To further stress the difference, we point out the reduced simulation time in the text.

• Movement restrictions

During the second iteration, we greyed out the navigation buttons during the simulation.
However, during user testing a common remark was that the user should be allowed to
go back while the simulation is running. Since a significant number of users mentioned
this in the feedback, users can now go back while the simulation is running. Now we also
allow the user to skip the simulation completely and still see prerecorded results of the
simulation in the form of a video. However, if the user has already started the simulation,
we do not allow her to go to the visualization page in order to preserve the integrity of the
consoles in different chapters of the tutorial. An illustration of this functionality is shown
in Figure 13.3. Since the user story is now separated into five distinct chapters, we intro-
duced introduction pages for each chapter. These include discussions of preCICE features
that we demonstrate in each chapter and provide rationale for using these features. An
example can be seen in Figure 13.9.
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13 Website: Third Iteration

Figure 13.9: Intermediate page between different part of the story

13.2.2 Miscellaneous Improvements

In addition to the major visible changes described above, a lot of minor changes were also intro-
duced. Although these fixes are not discussed here in detail, they are essential for a smooth user
experience. These include things like adjusting fonts and spacing, carefully designed margins,
making certain buttons more prominent, providing links to the preCICE and Coplon websites
on the final page, and opening all links in a new tab by default.

13.3 Analytics

An interactive website cannot be considered complete without the facility to to respond to user
behaviour by improving the design. To achieve this, we incorporated a basic version of Google
Analytics into the website. With this basic implementation, we can get statistics about which
pages a user visited, demographics, and how much time a user spent on a certain page. This
basic implementation can be extended to also capture certain events triggered by the user. For
example, we can log every time a user runs a simulation and see whether the users are actu-
ally running the simulations. Improving the analytics capability can be a particularly fruitful
direction for further development of the website.
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14 User Testing

One the biggest issues in developing a user interface is that it is hard to predict a priori what
users expect from a particular website. Sometimes even the users themselves do not know what
they actually want before using the interface. A trial-and-fix strategy is thus the only way to
improve the website. Of course, the trial step need not be random but can be guided by the vast
amount of knowledge that web developers have gathered over the last three decades.

Even though we had tested the website internally, we recognized that it was very important
to conduct real world trials. Often times developers in a team can acquire a particular view
of the website that is not shared by ordinary users. This is a common bias among people who
spend a great deal of time developing a product. Fortunately, we were provided the chance to
perform user testing at the University of Stuttgart with students attending a course on numerical
simulation. This was particularly fruitful since these students belong to a part of the audience
this tutorial is targeting.

We decided to acquire user feedback over two dimensions: quantitative and qualitative. For
quantitative feedback, we designed a questionnaire with Google Forms. This allowed us to get
hard numbers on what users thought of particular features of the website. Since we designed
this questionnaire ourselves, we recognized that it would be subject to the same biases we men-
tioned above. Therefore, besides the questionnaire, we also decided to interview the users after
they had finished the tutorial. This qualitative feedback was quite helpful since the users men-
tioned certain problems and provided suggestions which were not reflected in the quantitative
feedback. Below, we summarize the feedback we received from the users. Note that we also
categorize open ended questions in the questionnaire as qualitative feedback.

14.1 Quantitative Feedback

To date, 41 participants have filled out the questionnaire. Table 14.1 and 14.2 present the ques-
tions, results and an analysis of the responses. The results seem to be promising. After finishing
the tutorial, most of the users said they understood the test case and were curious to learn more
about preCICE.
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14 User Testing

Table 14.1: Questions and Result from the questionnaire
General Questions

How many years of experience do you
have with CFD?

1 year : 35.7%
0.5 years : 21.4%

More than half of the users had no
more than a year of experience in
CFD. Most of the users were students
who might have first gotten in touch
with CFD in the lecture.

How many years of experience do you
have with computational numerics?

3 years : 35.7%
4 years : 28.6%

Even though the majority of the users
were beginners in CFD, most of them
already had experience in computa-
tional numerics.

From 0 to 3, how familiar are you with
Fluid-Structure-Interaction (FSI)?

1: 64.3% Most of the users were not very famil-
iar with FSI.

Which of the following numerics soft-
ware packages do you know?

SU2: 14.3%
Calculix: 14.3%

Most of the users did not know the
solvers we are using for the simula-
tions.

Simulation Scenarios
Is the main difference between the
simulations clear?

yes: 100% All the users understood the main dif-
ference between the simulations

Do you think you would be able to
adapt the preCICE configuration to a
similar setup?

yes: 92.9% Most of the user were confident they
can adapt the preCICE configuration
to a similar setup.

Do you understand the physical setup
of the simulated case?

yes: 100% In light of this response, the explana-
tion provided on the website is ade-
quate.

Was the given information about pre-
CICE features sufficient?

yes: 87.5% Most of the users thought the informa-
tion was sufficient. We will talk more
about this in Chapter 15.

User Interface
From 0 to 3, how did you like the de-
sign?

1: 20%
2: 26.7%
3: 53.3%

Most users like the design of the web-
site.

From 0 to 3, how did you like the
structure of the website?

1: 20%
2: 26.7%
3: 53.3%

Most users like the structure of the
website.

From 0 to 3, how well did you under-
stand what to do?

1: 6.7%
2: 50%
3: 42.9%

Most of the users understood what to
do which implies that the user inter-
face is easy to follow.

From 0 to 3, how much text did you
skip?

0: 14.3%
1: 64%
2: 21.4%
3: 0%

Here 0 represents no text skipped. As
you can see most users only skipped a
small amount of the text.
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14 User Testing

Table 14.2: General Impression of questionnaire takers
General Impression

From 0 to 3, how curious are you now
to find out more about preCICE?

1: 20%
2: 57.1%
3: 21.4%

The result is promising. 78.5% of users
are curious about preCICE.

From 0 to 3, how confident do you feel
that you can run a preCICE simula-
tion?

0: 7.1%
1: 50%
2: 21.4%
3: 21.4%

Most of the users were not confident
to run a preCICE simulation by them-
selves. However, this might be due to
the fact that most of them did not have
much experience in FSI.

From 0 to 3, how much would you
like to use preCICE for a university
project?

0: 0%
1: 35.7%
2: 35.7%
3: 28.6%

Most users showed interest in using
preCICE for a university project. This
is encouraging.

14.2 Qualitative Feedback

After the user testing session in Stuttgart, we interviewed most of the students and talked to
them about the website personally. We received several helpful suggestions for the website and
we decided to implement some of them. However, we also decided to disregard some sug-
gestions since incorporating them would have led to a bloated website. Below, we provide a
sampling of these suggestions.

Things we have implemented:

• “I would like to go back to the config file explanation while running the test case.”

• “Third simulation does not run well on my Linux machine.”
This problem was fixed before the final presentation.

• “I would like to get more information on Aitken underrelaxation.”
To satisfy this request, we added a link to a paper that introduces Aitken underrelaxation.

Things we decided not to implement:

• “I am not sure if I need to change my own simulation code or configuring preCICE through
the xml file is enough.”
We included a link to the wiki which discusses the setup in detail.

• “If I didn’t know what slip conditions are, I would not understand the test case. Maybe
you should explain them.”
We assume that users interested in preCICE would possess the theoretical background
required to understand the test case. Explaining slip conditions would require us to go
into the mathematical theory of boundary conditions which would clutter up the website.
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15 Conclusion

This is where our journey ends. We reflect on the objectives we accomplished and discuss pos-
sible improvements and extensions for the website.

15.1 Summary

The main goal of our project was to provide a tool that would provide a simple introduction
to preCICE software to potential users. For this purpose, we developed an interactive online
tutorial. To give a gentle introduction and provide a brief overview of the coupling library,
we prepared a series of simple multiphysics fluid-structure interaction (FSI) simulations. The
simulations are organized in the form of a user story that demonstrates various ways to set up
a coupled simulation with preCICE. Each configuration brings its own advantages - such as
increased stability or decreased runtime.

The user story was implemented in the form of an online tutorial that takes users through all
steps of a simulation, from an introduction of the test case to visualization of the final results.
The tutorial is highly interactive and requires active participation on each stage. User experience
was one of the most significant points for our project. Therefore, we actively collected feedback
from users and implemented the suggested improvements during the final stages of the project.

During the project we employed an iterative development approach for both the website and
the tutorial content. In this way, the overall quality of the project was gradually improved over
ten months. For the final milestone, we provided a user story with five stable and fast FSI
simulations, and delivered a website that exhibits consistent behavior across various operating
systems and browsers.

15.2 Outlook to Future Work

Our project creates a solid basis for possible future development. One possible direction is
the extension of the tutorial. It seems appealing to provide an opportunity to choose among
several solvers. This option gives users the freedom to work with their preferred solvers and,
thus, further simplifies introduction to preCICE from the user’s perspective. Taking this idea
to the limit, it might be possible to implement a ”sandbox mode” that allows the user to run
arbitrary coupled simulations from the browser. Another possible field of work is refinement
of the web analytics that we provided. Fine-grained analytics often suggest further ways for
potential improvement of the user experience.
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