
Technische Universität München

Uppsala Universität

Structural multi-model coupling with

CalculiX and preCICE

by

Alexandre Trujillo Boqué

Master Thesis for the completion of the

degree of MSc in Computational Science

carried out in

Chair of Scientific Computing

Faculty of Informatics

Technische Universität München

for presentation in

Department of Information Technology

Faculty of Science and Technology

Uppsala Universität

Summer 2018

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
University Web Site URL Here (include http://)

Technische Universität München

Uppsala Universität

Abstract

Efficient multi-physics simulations are vital to study interacting systems in science and

engineering. In the field of structural mechanics, multi-physics simulations target in-

teractions between structures with different characteristics. Here, we take a partitioned

approach to the simulation of structure-structure interaction with the FEM program Cal-

culiX and the coupling library preCICE. We aim to speed up the simulation of nonlinear

phenomena via the coupling of linear and nonlinear simulations, restricting nonlinear

treatment only to where required. After validation of the preCICE adapter for CalculiX

with a linear test case, we study the convergence of implicit coupling and the effect of

quasi-Newton methods. The latter prove successful in the acceleration of the coupling.

Afterwards, we study the performance in a nonlinear case. Nevertheless, nonlinear ef-

fects are not strong enough to bring in a performance improvement; thus, we point to

subsequent experimentation.

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

2 Theory 6

2.1 Basic Notions of Computational Structural Mechanics 6

2.2 Domain Decomposition within the Monolithic Frame 9

2.3 Domain Decomposition within the Partitioned Frame 10

2.3.1 Dirichlet-Neumann Coupling . 13

2.3.2 Quasi-Newton Schemes . 15

3 Software in the Project 16

3.1 preCICE - A Coupling Library for Partitioned Multi-Physics Simulations 16

3.1.1 Overview of the Functionality of preCICE 17

3.1.2 Configuration of the Coupling . 18

3.2 CalculiX - A Three-Dimensional Structural Finite Element Program . . . 19

3.2.1 Overview of the Functionality of CalculiX 19

3.2.2 Configuration of the Simulation . 20

3.2.3 Mesh . 21

4 Implementation 22

4.1 Inter-Field Prescription of Boundary Conditions 24

4.2 Implementation of Implicit Coupling . 30

4.3 Structure of the Adapter Code . 31

5 Numerical Studies 33

5.1 Test Cases . 33

5.1.1 Beam Fixed at Both Ends and Loaded by Point Forces 34

5.1.2 Reinforced Pipe Fixed at Both Ends and Loaded by Point Forces . 36

5.2 Validation of the Coupling . 38

5.3 Parameter Dependence Studies . 39

5.4 Study of Error Sources: Splitting Error and Nonlinear Effects 44

5.5 Performance Study . 47

ii

Contents iii

6 Conclusions 50

Bibliography 57

Chapter 1

Introduction

Complex phenomena often involve interactions between multiple systems, of which each

has its own physical characteristics. Individual systems can be simulated with single-

physics solvers, i.e. programs that simulate one physical system with a unique set of

governing equations. Some examples of interaction between systems are fluid-structure

interaction (FSI) in blood vessels, or between the air inside a jet engine and the structures

that make up the engine itself. Systems with these kind of interactions cannot be simulated

by a single-physics solver. Therefore, it is necessary to produce multi-physics software that

is capable of simulating simultaneously several of the subdomains of the full model.

The exponential growth of computational power during the last decades, specially regard-

ing the advances in massive parallelization, has made multi-physics simulations possible

for large problem setups in science and engineering, with enough precision to provide

realistic and meaningful results.

We can distinguish two trends in the development of multi-physics software: monolithic

approaches try to incorporate the full multi-physics simulation into a single solver pro-

gram, and partitioned approaches implement a coupling between single-physics solvers.

In this project, we follow a partitioned approach, which allows us to reuse existing soft-

ware. Development tasks are accelerated when software is reused, since it eliminates the

necessity of producing specific monolithic solvers for each type of interaction problem.

Let us consider the multi-physics concept of modelling interactions between subdomains,

but restricted to working with the same governing equations in all of them. In this thesis,

we study the interaction between subdomains of a structural system, thus the governing

equations belong to the field of structural mechanics. Structure-structure interaction

(SSI) is the name for the phenomenon we aim to model. Our hypothesis is that this kind

1

Introduction 2

of interaction modelling offers an opportunity to improve performance, if the numerical

analysis is adapted to precision requirements and properties of each subdomain.

We use the term multi-model for a multi-physics setup where the subdomains have the

same governing equations, considering that we derive a model that is numerically different

for each subdomain. Specifically, in our setup we aim to couple linear with nonlinear

structure models.

In this project, we implement a framework for partitioned structure-structure interaction

modelling with the finite element program CalculiX [1] as structural mechanics solver, and

the coupling library preCICE [2, 3]. To this end, a non-intrusive, black-box philosophy

is employed, meaning that CalculiX is adapted[4] with minimal changes to the code and

all the coupling operations are performed externally by preCICE, with the software setup

shown in Figure 1.1.

Figure 1.1: Software architecture of a two-solver preCICE setup. Adapted CalculiX
solvers use the preCICE library for coupling tasks without depending on a central in-

stance.

This report is structured as follows: in the remaining of this chapter, we detail the moti-

vation of the thesis and provide the background with a literature review. Next, in Chapter

2, we introduce the concepts and formulation of the theoretical framework. After that, in

Chapter 3, we take a look at the existing software that plays a role in this project: the

coupling library preCICE and the finite element program CalculiX. In Chapter 4, we de-

scribe the implementation of the preCICE adapter for CalculiX and how SSI functionality

has been incorporated into it. Following that, in Chapter 5, we present numerical studies

and give an interpretation of the results obtained. Finally, we discuss the conclusions of

the project in Chapter 6.

1.1 Motivation

A partitioned structure-structure interaction model implies a decomposition of the spatial

domain with integration steps performed independently in each subdomain. Our strategy

towards a more efficient simulation is based on this decomposition.

Introduction 3

We aim to execute multiple instances of single-physics structural solvers in parallel, re-

stricting nonlinear treatment to subdomains known to present nonlinear behaviour. Ex-

amples of such subdomains are impact or crack regions. Each instance of the solver is

referred to as a participant of the simulation. Participants should only use the amount of

computational resources needed to achieve the desired precision in the subdomain they

have been assigned to. For this purpose, in this project, we restrict to switching between

linear and nonlinear treatment of the problem by the single-physics solver.

Thus, a local numerical adaptation of the model to the requirements of the system is

expected to optimize resources and improve performance, but only as long as the overhead

from coupling the solvers does not impede it.

Besides model customization, we should also be able to achieve speedup by means of

scaling the parallelization of the setup. This is almost a requirement, as commonplace

problem sizes get bigger. Currently, CalculiX only supports shared-memory paralleliza-

tion, a situation that limits the number of threads we can run the simulation on; with a

partitioned approach to modelling we know that we can get past this limitation.

A further reason to use a partitioned coupling scheme with a black-box philosophy is that

it contributes to a fast-paced development; since we make use of already existing single-

physics solvers, which have been tested in many applications and constitute the standard

of academia and industry. This methodology does not require the additional development

of stand-alone specific tools for each kind of interaction problem.

Finally, despite being outside the scope of this project, it is worthwhile to mention that

SSI can also be applied to models of independent structures whose interactions need to

be modelled, a common situation in engineering. Since we implement and test a general

structure-structure coupling tool, it can also be applied to this type of SSI problems, not

only to individual structures that are internally partitioned into subdomains.

1.2 Background

Research efforts in multi-physics have been growing in the last decades as many issues

come along with the scaling of hardware architecture [5]. The multi-physics commu-

nity has faced the challenge of designing algorithms that fulfill convergence and stability

requirements introduced by coupling schemes, without hampering performance. Many

researchers have focused on the numerical methods inherent in multi-physics simulations,

while others have studied their software architecture aspects.

Introduction 4

The diversity of applications and strategies possible in multi-physics makes the amount

of existing software solutions impossible to review here. For an exhaustive survey of

multi-physics frameworks developed until 2015, see [6].

Instead, we focus the literature review on structure-structure interaction. We distinguish

monolithic and partitioned solution strategies. It is convenient to review the research

in partitioned approaches for FSI, as many of the concepts developed therein have been

incorporated into partitioned approaches for SSI.

The monolithic approach to the coupled structural mechanics problem is usually addressed

with the application of dual Schur decomposition in Newmark based integrators [7], an

algebraic perspective where the equations of all subdomains are integrated in composite

matrix systems, by means of connectivity matrices and Lagrange multipliers. Explicit

and implicit integrators can be coupled this way, imposing continuity of velocities be-

tween subdomains, at the interface or coupling surface, as in [8–10]. Coupling schemes

have incorporated multi-time stepping, multi-scale, and other techniques to adapt the

discretization to local properties of subdomains. Geometric and time step incompatibil-

ities are handled with strategies such as the Mortar method or the Arlequin framework

[11–14]. Another method used for domain decomposition in structural mechanics is the

finite element tearing and interconnection (FETI) [15]. Model order reduction methods

[16] reduce the amount of degrees of freedom in the system, by defining a superelement

in the mesh, where inner nodes are removed and only boundary nodes remain. The re-

duced model is solved separately and incorporated as part of the original one, in what

can be seen as a coupling between both models. Monolithic methods have been shown to

converge in presence of strong nonlinear behaviour, in all or part of the structure [17].

Partitioned coupling [18] in an FSI simulation has been studied extensively, whereas for

SSI it has not been exhaustively explored. A partitioned method for FSI is implemented

in [19]. The use of implicit coupling, with a fixed point iteration, as the coupling method

has been introduced along with imposition of boundary conditions. To this end, parti-

tioned Newton methods have been used to evaluate the exact Jacobian of the coupling

surface [20], but this is an expensive method. Besides, it is not suitable for a black-box

situation, where we do not know the discretization of the coupling surface performed by

the solver. Therefore, quasi-Newton schemes are often necessary to approximate the Ja-

cobian [21–23]; these methods accelerate the fixed-point iterations in the implicit coupling

procedure. Further advancements have extended quasi-Newton schemes pursuing stabi-

lization and convergence acceleration, by using information of previous iterations [24–26].

Since quasi-Newton schemes are relevant for our project, we return to them in Section

2.3.2. Multigrid techniques [27] and reduced order models [28] have also been incorporated

into the partitioned approach. Partitioned techniques, like monolithic ones, often involve

Introduction 5

a dual Schur decomposition framework, but with a non-intrusive methodology [22, 29],

that leads to a less explicit formulation. As a side note, FSI simulations with partitioned

coupling present a source of stability and convergence problems, due to time splitting,

known as the added-mass effect [30, 31]. To the best of our knowledge, this issue has not

been observed nor described for SSI simulations.

Chapter 2

Theory

In the previous chapter, we have introduced the concept of multi-physics, and more specif-

ically, structure-structure interaction. We have given an overview of recent developments

that have contributed to the feasibility of large-scale SSI simulations.

In this chapter, we present the mathematical framework of SSI. We start with a simple

computational method for the simulation of mechanics in solid structures, applying a finite

element analysis. The formulation of the numerical method is then extended via domain

decomposition to an analysis of a union of subdomains. This is done within monolithic

and partitioned frames. The latter is the approach we have implemented and tested in

this project.

2.1 Basic Notions of Computational Structural Mechanics

In the following lines we present the equations of a computational structural mechanics

problem without damping[8, 10, 32], derived from a finite element method (FEM). Our

model defines and computes dynamic variables in a mesh. As can be seen in Figure 2.1, a

mesh is determined by the position of nodes and the configuration of elements, following

the FEM formulation.

Let us consider an elastic, deformable solid that occupies a domain Ω. Newton’s second

law of motion states that the acceleration of each particle in the solid depends on its mass

and the forces that act upon it. This law can be expressed for all particles as a system of

differential equations. Since these particles belong to a solid structure, there are strong

internal forces acting between them. Additionally, there might be external forces coming

from mechanical loads or an external force field.

6

Theory 7

Figure 2.1: Example of a typical 3D FEM model of a solid. Green dots are the nodes
of the mesh, and each cube is an element. Element type here is 8-node brick element.

As a first step of the FEM, we write the differential equations of motion in weak form.

Afterwards, we discretize them in the spatial domain, expressing the continuous physical

functions as a linear combination of test functions. This formulation defines a mass matrix

for the structure, that depends on the mass and connection geometry of its particles.

Thus, the FEM leads us to the spatially discretized equations of motion for the solid, in

matrix form,

MÜ(t) + Fint(U(t)) = Fext(t) (2.1)

for times t ∈ [0, T], where U(t) is the vector of nodal displacements for all nodes of a mesh

defined in Ω, at time t; Fint and Fext are the vectors of internal and external forces acting

on the structure, respectively; and M is the mass matrix. Assuming linear elasticity, we

have

Fint(U(t)) = KU(t), (2.2)

with a stiffness matrix K, containing the elastic properties of the structure.

For time discretization of (2.1), we use the Newmark [7] family of numeric time schemes1.

Firstly, we divide the time domain in N time steps, with ∆t = T/N . We use the conven-

tional notation U(tn) ≡ Un to indicate values at time step n.

Displacements and velocities U̇(t) = dU(t)
dt are computed for each time step with

1CalculiX does not run with the original Newmark time integrator, but the principles of discretization
in the method implemented there are the same as here.

Theory 8

Un+1 = Un + ∆tU̇n + ∆t2(
1

2
− β)Ün + ∆t2βÜn+1 (2.3)

U̇n+1 = U̇n + ∆t(1− γ)Ün + ∆tγÜn+1 (2.4)

where parameters β ∈ [0, 1
2] and γ ∈ [0, 1] characterize the numeric method.

CalculiX uses a revision [33] of the HHT α-method [34] for direct integration dynamic

analyses [35]. The latter, in turn, builds on the Newmark method, incorporating an ad-

ditional α parameter to the motion equations, in order to introduce numerical dissipation

for an improved stability:

MÜn+1 + (1 + α)KUn+1 − αKUn = Fext, n+1, n = 0, 1 . . . N − 1. (2.5)

When α = 0 we recover a classic Newmark method.

It is also important that we mention the type of element used to define the mesh for the

finite element method in our test cases. In the first one (see Section 5.1.1), we use volume

elements, specifically twenty-node brick elements with reduced integration. In the second

one (see Section 5.1.2), we use three-node shell elements. These elements have eight and

three integration points, respectively, where displacements and forces are computed. In

the case of twenty-node elements, values at integration points must be extrapolated to the

nodes. Location of nodes and integration points in the elements is shown in Figure 2.2.

Figure 2.2: Location of: (A) nodes in a twenty-node brick element. (B) integration
points in a twenty-node brick element with reduced integration. (C) nodes and integration

points in a three-node shell element. Images taken from the CalculiX Manual [35].

To prevent confusion in the following chapters, please note that the terms implicit and

explicit, when used with respect to the contents of this section, refer to time integration.

An explicit method computes values of the next time step using information of the current

one. A priori, this requires relatively small time step lengths for stability. Contrarily, an

implicit method computes values of the next step as a function of variables both of the

current time step and the next one. This usually requires a fixed-point iteration or more

complex procedures, but implicit methods are more stable and can thus be implemented

Theory 9

with larger time step lengths. In the description of our implementation, however, we use

the terms explicit and implicit mainly to refer to a classification of partitioned coupling

schemes, as explained in Section 2.3.

2.2 Domain Decomposition within the Monolithic Frame

We presented the time integrator of a Newmark method for structural mechanics. Now,

we define a partition of the full domain Ω into subdomains Ωk, connected by coupling

surfaces2 Γkl ≡ Ωk∩Ωl, as in Figure 2.3. Note that all pairs of adjacent subdomains overlap

at the respective interface; therefore, as long as the meshes match, nodes in that interface

are inside both subdomains. From now on, we indicate data structures corresponding to

each spatial subdomain by using the subindices k.

Figure 2.3: Partition of a 3D domain Ω into subdomains Ω1 and Ω2, by means of the
definition of a surface as the interface Γ12. In the case we have matching meshes, nodes

at the interface are shared between subdomains.

This spatial decomposition implies a partition of the Newmark time integrator, often

referred to as time splitting. A partition of the global system of motion equations, by

means of a dual Schur decomposition, results in an additional term, the linking forces,

and a continuity condition for one of the kinematic quantities of the system (W),

MÜ
k
(t) + Fk

int(U(t)) = Fk
ext(t) + Fk

link∑
k

CkWk = 0
(2.6)

2The terms interface or patch are also used to refer to coupling surfaces.

Theory 10

The structure of connectivity matrices Ck depends on the geometry of the model and

its partition into subdomains. Linking forces verify the equilibrium through Lagrange

multipliers Λ,

Fk
link = CkΛ, (2.7)

then displacements and velocities can be integrated as in the previous section, for all

subdomains. For further details, a partition of the time integrator of the HHT α-method

is studied in [36].

In this section we have presented the formulation of domain decomposition within a

monolithic frame. On that account, let us define clearly what we mean by a monolithic

approach, as opposed to partitioned. We use the term monolithic when the governing

equations (2.6) include the linking forces Fk
link, and they are solved by a program working

with a mesh that represents the entire domain. Alternatively, the approach is partitioned

when solver programs consider the equations without linking forces terms. Then, we

incorporate extra algorithmic steps, in which variables are exchanged between solvers

in order to impose boundary conditions at the coupling surface. Note that within a

monolithic frame, we still perform an algebraic partition, or splitting, of data structures

and time integrators.

Many monolithic approaches implement subcycling along with splitting of the time inte-

grator. Subcycling, also known as multi-time stepping, means that, for each subdomain,

time discretization is performed with different step lengths. Additional considerations are

necessary in that case. However, we do not cover this case here.

2.3 Domain Decomposition within the Partitioned Frame

The partitioned approach also involves a dual Schur decomposition, but it is performed

following the idea of non-intrusive coupling [29].

Starting from the monolithic decomposition we have just seen, a first step towards a

partitioned frame is to uncouple the system of equations [10]. We can separate, in (2.6),

those terms corresponding to each subdomain (free problem), and the linking terms, in

such a way that the governing motion equations take the form:

MkÜ
k
free + Fk

int(U
k) = Fk

ext

MkÜ
k
link = Fk

link.
(2.8)

Theory 11

Once in this form, a parallel computing strategy seems mostly convenient. Variables

corresponding to the free problem of each subdomain, and the linking terms, are computed

in separate threads every time step.

However, this is still a monolithic approach, according to the definitions given in the

previous section. We can go one step further, and avoid the calculation of the linking

terms altogether. Instead, we calculate only the free problem of each subdomain, and

then we force the synchronization of dynamic quantities at the coupling surface. To this

end, we exchange certain variables at the interface after every time step.

In a differential formulation, continuity of all the dynamic quantities has to be guaranteed

at the interface. However, for numerical reasons, in a discrete formulation, only one

dynamic quantity can be prescribed at the boundary of a subdomain. Thus, we can couple

the simulations of each pair of adjacent subdomains with the prescription of two different

dynamic quantities at their interface. For instance, we can exchange displacements and

forces, with each solver sending one and receiving the other.

Formally, the linking term of (2.8) is substituted in the partitioned approach for an

imposition of Dirichlet and Neumann boundary conditions in every interface, which brings

the dynamic equilibrium. This is explained in detail in the following section.

From an implementation point of view, vectors of displacements and forces must be acces-

sible by an external coupling agent during the simulation, so that they can be exchanged.

In this project, the coupling library preCICE takes care of these tasks.

Depending on how variables are exchanged, we consider two types of coupling schemes

(see flow diagrams in Figure 2.4):

• Explicit/weak coupling: every time step, interface values are exchanged and the

simulation is advanced without convergence check. Therefore, solvers run just once

per time step, but neither stability nor accuracy are guaranteed.

• Implicit/strong coupling: every time step, after the exchange of values, solvers are

executed repeatedly in a fixed-point iteration until convergence is reached, according

to a measure based on displacements and/or forces at the interface, e.g. a residual.

Provided that simulations are stable in each subdomain, when the coupling is im-

plicit the global simulation is unconditionally stable, since we recover the monolithic

solution every time step. The fixed-point iteration add an extra layer of complexity

to the computation, therefore, it is convenient to use convergence acceleration tech-

niques such as Aitken underrelaxation or quasi-Newton schemes, to reduce execution

time. Quasi-Newton schemes are introduced in Section 2.3.2.

Theory 12

Figure 2.4: Implicit/explicit coupling schemes for a bipartite domain. Continuous
line arrows indicate execution flow. Superindices indicate time discretization, subindices
indicate subdomain. (A) Explicit coupling scheme. Data is directly exchanged and the
simulation is advanced to the next time step. (B) Implicit coupling scheme. After data
exchange, the simulation is advanced only if convergence is reached, otherwise the solvers

must iterate again for the same time step.

Aside from being explicit or implicit, coupling schemes are classified as (see Figure 2.5):

• Serial: if the participants run alternately in one processor.

• Parallel: if the execution is carried out simultaneously in separate threads, and

synchronized when variables are exchanged.

Regarding multi-time stepping, in this explanation, for simplicity, we restrict to the case of

equal and constant time step for all subdomains. We do the same in our implementation,

as can be seen in Chapter 4. Later on, once the method is validated, subcycling can be

incorporated.

Theory 13

Figure 2.5: Serial/parallel coupling schemes for a bipartite domain. Execution flow and
data exchange indicated by the arrows. Superindices indicate generic iterations (time step
or fixed-point iterations), subindices indicate subdomain. (A) Serial execution. Only one
solver is executed at the same time, using interface data from the other one, which means
that for the second solver this data is from the same iteration. (B) Parallel execution.
Both solvers are executed in parallel, using interface data from the previous iteration.

2.3.1 Dirichlet-Neumann Coupling

To implement partitioned coupling, we prescribe boundary conditions (BCs) at the inter-

faces Γkl of all pairs of adjacent subdomains Ωk and Ωl.

In models of computational mechanics, continuity of kinematic quantities and momentum

conservation through the interface are guaranteed via prescription of Dirichlet and Neu-

mann BCs. Before jumping into the explicit formulation of the BCs, we must remember

the expression of the conservation of momentum in a solid structure with no external

forces,

ρÜ(t)−5 · σ = 0, (2.9)

where ρ is the density of the solid; σ is the Cauchy stress tensor, and can be understood

as an expression of internal forces acting between subdomains k and l in the structure

Theory 14

in relation to the deformation caused. Subsequently, it is related to the change of the

areas of their mutual interfaces Γkl [24]. This conservation law is expressed in terms

of an equilibrium between the second derivative of displacements, acceleration, and the

divergence of the stress tensor. The divergence here can be interpreted as the local outward

flux of the stress field, or the gradient of pressure. For each bipartite system, considered

independently, the consequence is that two conditions are needed at the interface to

impose a mechanical equilibrium: a kinematic condition and a dynamic one, which are

the Dirichlet and Neumann BCs, respectively.

A Dirichlet BC prescribes values for a function on the boundary. This can be formulated

for the displacements field as

U(t)
∣∣
Γ

= f(r, t), r ∈ Γ, (2.10)

which is the kinematic equilibrium condition.

A Neumann BC prescribes values for the derivative of a function on the boundary. In

the case of structural mechanics, the Neumann BC is defined with the normal derivative.

The normal derivative gives the rate of variation of a function in the direction normal

to the boundary. Conventionally, the normal vector is taken pointing outwards from the

domain where the BC is prescribed. In fluid-structure interaction, the conservation law

(2.9) is formulated in the continuum, which leads to the dynamic condition

n̂f · σf = −n̂s · σs (2.11)

where n̂ are unit vectors normal to Γ, and subscripts f and s indicate the fluid and struc-

ture subdomains, respectively. However, in the case of structure-structure interaction, we

can integrate the stress tensor and obtain the forces at the nodes instead of differential

stresses. Thus we rewrite the dynamic condition, and Neumann BC for partitioned SSI,

as

F(t)
∣∣
Γ

= g(r, t), r ∈ Γ, (2.12)

where F(t) is the vector of nodal forces, containing internal forces as well as external

loads. In Chapter 4 we see how boundary conditions are applied as force loads.

In practice, we prescribe Dirichlet and Neumann BCs in a conjugate manner, to ensure

equilibrium. The method consists in the appropriate definition of functions f(r, t) and

g(r, t), in such a way that values of displacements and forces at Γ are exchanged between

subdomains every time step.

To this end, for an interface Γkl, we identify displacements Ul(t) as f(r, t) in (2.10), and

forces Fk(t) as g(r, t) in (2.12). Thus, we write the prescription of Dirichlet and Neumann

Theory 15

BCs, with superscripts indicating time discretization,

Ui+1
k

∣∣
Γkl

= Ui
l

∣∣
Γkl

Fi+1
k

∣∣
Γkl

= Fi
l

∣∣
Γkl
.

(2.13)

We explain the implementation of this scheme in Section 4.1.

2.3.2 Quasi-Newton Schemes

Fixed-point iterations for implicit partitioned coupling have a high computational cost if

they are implemented without an acceleration technique.

A possibility is to use quasi-Newton (QN) schemes, based on multisecant methods (see,

for instance, [23]). The residual system R at the coupling interface, i.e. the difference

between the solution of the two last iterations in the subset of nodes located at the

interface, is used to perform Newton-like update steps. An exact method requires the

inverse Jacobian of the residual, J−1
R , which is expensive to compute. QN schemes re-use

vectors of previous iterations, in order to find an approximation of the inverse Jacobian

of R after every iteration, J̃−1
R .

Once a specific residual R is defined for displacements or forces, a QN method starts

building two matrices. Columns of V are the displacements or forces computed in previous

iterations, and columns of W are the residuals, or a related quantity, of previous iterations

as well.

Finding an approximation to the inverse interface Jacobian corresponds to solving the

overdetermined system

(J̃i
R)−1Vi = Wi, (2.14)

with subindices i used to indicate the time step. In our implementation, the condition to

find (J̃i
R)−1 is to minimize its norm in a least squares problem. This type of QN scheme

is referred to as interface quasi-Newton – inverse least-squares (IQN-ILS).

The performance of quasi-Newton schemes can be increased incorporating information of

previous time steps. Matrices V and W are extended accordingly.

Additionally, by filtering out columns with values below a threshold to prevent linear de-

pendence between these columns, a significant performance improvement can be achieved

[37]. We study the effects of filtering in the numerical studies of Section 5.3.

Chapter 3

Software in the Project

We have presented the theoretical framework of structure-structure coupling, following

both the monolithic and partitioned approach. Specially, we have focused on the con-

cepts of partitioned coupling and the necessary techniques for validity, efficiency and

stabilization of the corresponding algorithms.

In this chapter, we give an overview of the software that plays a role in our implementation

of partitioned structure-structure coupling. On the one hand, we have the finite element

program CalculiX. It plays the role of the single-physics solver in our framework, providing

a solution for the structural mechanics problem in every subdomain. On the other hand,

we have the coupling library preCICE, that provides the functionality to couple the single-

physics simulations. Every instance of CalculiX that we execute is seen by preCICE as a

participant of the simulation.

3.1 preCICE - A Coupling Library for Partitioned Multi-

Physics Simulations

The coupling library preCICE (Precise Code Interaction Coupling Environment) was de-

veloped as an external tool to be called by the participants of the simulation, i.e. the

single-physics solvers, while they run in parallel, in such a way that turns a set of inde-

pendent simulations into a multi-physics one, via surface coupling. It is written in C++

and has a high-level API for integration with the solvers.

The basic idea of preCICE is to bring flexibility to implementations of partitioned coupling

schemes with the possibility of using existing state-of-the-art solvers, both opensource and

commercial, and not necessarily written in C++; instead of having to develop new software

solutions adapted to each kind of interaction problem. Following this idea, integration

16

Software in the Project 17

of preCICE with these solvers is minimally invasive, it requires but a few changes to the

main routines of the solvers. This is done with an adapter.

A preCICE adapter consists of code that connects the preCICE library with a solver. Part

of this code is in independent files, while the rest is written in the form of modifications

introduced to the solver routines.

Due to the black-box philosophy of preCICE, as few assumptions as possible must be

made regarding the solvers. Considering this, a variety of functions are required to guar-

antee that convergence and stability can be transferred from the subdomains to the full

simulation.

We proceed to describe this functionality and the configuration process. A thorough

description is out of scope here, for exhaustive practical details please refer to the wiki on

GitHub [38].

3.1.1 Overview of the Functionality of preCICE

Let us briefly explain the functionality of preCICE:

• Explicit/implicit and serial/parallel coupling: all four combinations of coupling

schemes, described in Section 2.3, are available in preCICE.

• preCICE introduces acceleration techniques in fixed-point iterations, to improve

stability and to reduce the number of iterations needed for convergence. The ap-

plication of these techniques is referred to as post-processing. Numerical methods

available in preCICE for post-processing are constant and Aitken underrelaxation,

as well as two quasi-Newton methods.

• Technical realizations for communication can be done by means of MPI ports,

TCP/IP sockets or communication via files. Sockets are the recommended option

for an optimal balance between robustness and performance.

• In the general case, we assume non-matching meshes of the models at the interface.

To handle this, preCICE incorporates a set of functions for data mapping between

the meshes used by the solvers. There are two alternatives to define a constraint

for these functions, consistent and conservative, indicating whether constant val-

ues must be exactly mapped or integral values preserved, respectively. Mapping

methods can be projection-based or use radial basis functions to interpolate the

values. Two projection-based methods are available. Nearest-neighbour mapping

connects each node in the target mesh with the closest node from the source mesh.

Software in the Project 18

Nearest-projection mapping firstly orthogonally projects nodes of the target mesh

onto elements of the source mesh, and then performs linear interpolation using nodal

values from the element of the source mesh. When meshes are known to be matching

at the interface, mapping is not numerically necessary; still, in practice, a nearest-

neighbour criterion is used for a coincident one-to-one mapping. This is the case in

all the setups of this project.

• Non-matching time step sizes are supported, currently with a constant extrapolation

in time. Further methods for handling non-matching temporal discretizations are

currently under development [39].

3.1.2 Configuration of the Coupling

To configure any preCICE coupled simulation, it is necessary to prepare an XML file that

is read at runtime, where we indicate parameters for several areas:

• Coupling data: indicate which variables are exchanged in the simulation.

• Coupling meshes: define the meshes and associated variables.

• Coupling participants: establish the relations between participants of the simulation,

meshes and the coupling data previously defined. Indicate the direction of data

exchange (read-write) for each participant, and the type of interpolation for data

mapping between meshes.

• Communication: specify the channel of communication between processors.

• Coupling scheme: indicate whether the coupling is serial or parallel, and explicit or

implicit. Also give numerical parameters for the simulation such as time step length

or maximum time steps allowed. Depending on the choice of scheme, further details

must be given to configure the convergence criteria for the fixed-point iteration; and

which post-processing technique, if any, will be used, as well as parameters for it.

A sample XML configuration file is presented in Annex A.1.

Extra YAML configuration files are required by the preCICE adapter for CalculiX, one

per participant. In these files, we point to the corresponding XML file, and configure the

adapter. A sample YAML configuration file is presented in Annex A.2.

Software in the Project 19

3.2 CalculiX - A Three-Dimensional Structural Finite Ele-

ment Program

CalculiX [1] is a software package that solves several types of field problems with the finite

element method [32]. Analysis types available in CalculiX belong mostly, but not exclu-

sively, to structural mechanics and thermodynamics. The coupling of transient structural

mechanics simulations requires a direct integration dynamic analysis. In such an analysis,

global equations of motion are integrated in time, which can be done with an implicit or

explicit method. For our setup, we have opted for an implicit dynamic analysis, which is

specially convenient for nonlinear systems.

For the integration of CalculiX with preCICE, we need an adapted version of the main

routines of the former, which make up part of the preCICE adapter for CalculiX (see

Chapter 4).

The main routine of CalculiX, and a small part of the subroutines directly called by it,

are written in C; while the rest of the subroutines are in FORTRAN.

3.2.1 Overview of the Functionality of CalculiX

Dynamic analyses with CalculiX calculate the response of a structure to dynamic loading.

CalculiX uses an improved version of the Hilber-Hughes-Taylor method [33] to integrate

the equations of motion. The resulting system of equations is solved with a direct solver,

that can be chosen among several alternatives.

The analysis can take into account geometrically nonlinear effects, which is necessary for

large displacements. In that case, a nonlinear strain tensor is used, and every time step a

Newton iteration is performed.

Boundary conditions are defined for arbitrary node sets, and stored in internal variables

of the Calculix routines. During the simulation, BCs are prescribed every time step to the

indicated nodes. This procedure is suitable for the exchange of boundary values between

participants, by manipulating the internal variables of CalculiX.

Time step length in CalculiX can be adaptive or fixed. For a coupling scheme without

subcycling, such as the one in our implementation, a fixed time step length is adequate.

Software in the Project 20

3.2.2 Configuration of the Simulation

A CalculiX job is configured with an input file where the user specifies required and

optional parameters, indicated in the input file by predefined keywords. The amount of

options is far too large for an exhaustive review, therefore we describe only those relevant

for our project. For a detailed explanation, please refer to the CalculiX documentation

[35].

Here we provide an explanation of keywords:

• INCLUDE: this keyword is used to import mesh files, which contain nodal coor-

dinates as well as element type and nodes-element correspondence. For coupling

purposes, additional files are imported to specify the subset of nodes located at the

coupling surface. Furthermore, if external forces act on the structure, another file

contains the subset where external boundary conditions (not related to coupling

operations) need to be prescribed.

• BOUNDARY: here we prescribe Dirichlet BCs, giving values for the displacements

in a set of nodes previously defined. Dirichlet BCs in CalculiX are also called single

point constraints (SPC), since they are prescribed independently to single node.

• CLOAD: here we prescribe Neumann BCs, giving values for the nodal forces in a set

of nodes previously defined. Discrete Neumann BCs in CalculiX are also referred

to as concentrated loads, since they are applied independently to each node. To be

able to apply a concentrated load to a node, it can’t be already fixed by a SPC. A

time-dependent amplitude can be defined to prescribe variable loads.

• MATERIAL: here we give values for the physical parameters of the structure. For a

linear elastic model of a solid, CalculiX requires a mass density ρ, a Young modulus

E, and a Poisson ratio ν.

• DYNAMIC: this keyword is used to indicate that we run a dynamic analysis; and

to specify various parameters including but not restricted to:

– Time step length ∆t.

– Whether ∆t is adaptive or not.

– Total duration of the simulation.

– Use of explicit or implicit integration.

• STEP: in CalculiX, we can configure a job so that it consists of more than one

consecutive simulation. Each simulation is a step, not to be confused with the

time step ∆t, which in the CalculiX environment is referred to as time increment.

Software in the Project 21

Each step will generally have different parameters. The STEP keyword is used to

separate parts of a configuration file belonging to different simulation steps. It can

also indicate additional options, for instance whether the simulation is taking into

account geometric nonlinearities.

For a sample CalculiX input file, see Annex B.

3.2.3 Mesh

A mesh is a discretized geometric description of the structure, which is needed by a finite

element solver to run an analysis. Formally, a mesh consists of:

• A list of nodes, each defined as a point in a 3D space with a unique identifier.

• A list of elements, indicating their type. Each element is defined as the set of nodes

that lie in the boundary of the element, with a unique identifier.

The CalculiX package includes a graphic tool, CalculiX GraphiX, which can be used

to define a geometry for a finite element model. In this way, a mesh representing the

geometry can be obtained in the native format of CalculiX. Then, the mesh is prepared

to be read by the solver program.

Chapter 4

Implementation

In the previous chapter, we have presented the software tools that constitute the basis

upon which we have developed an extension to deal with structure-structure interaction

problems. In this chapter, we describe the preCICE adapter for CalculiX [4], which

was firstly implemented for conjugate heat transfer, later on for dynamic fluid-structure

interaction [40], and has now been extended to handle SSI cases.

Firstly, we must understand the way we augment FSI functionality. Simulations of FSI

with the preCICE adapter for CalculiX rely also on another solver with its respective

preCICE adapter, to simulate the fluid side of the physical system. Just as in the SSI

case, the simulation is coupled by means of the prescription of Dirichlet and Neumann

boundary conditions on the interface (see Section 2.3.1). To this end, the adapters obtain

and map values of displacements and forces at the interface from the solvers, and keep

them in a specific data structure. Then, they send these values to the other solver.

Specifically, the following exchange takes place:

• The preCICE adapter for CalculiX writes displacements from the internal data

structures of CalculiX into the preCICE interface, and reads forces from the pre-

CICE interface into the internal variables of CalculiX.

• The preCICE adapter for the fluid solver writes forces from the internal variables

of the fluid solver into the preCICE interface, and reads displacements from the

preCICE interface into the internal variables of the fluid solver.

Accordingly, in the FSI implementation, two of the exchange operations were implemented

in the adapter for CalculiX, and the other two in the adapter for the fluid solver. Thus,

in order to incorporate SSI, it is necessary to extend the adapter for CalculiX with the

implementation of two new operations:

22

Implementation 23

• Read displacements from the preCICE interface into the internal variables of Cal-

culiX.

• Write forces from the internal variables of CalculiX into the preCICE interface.

Once these operations are implemented, we can run an SSI simulation with two CalculiX

participants. The implementation of all read-write operations in the adapter for CalculiX

is described in Section 4.1. Note that on the one hand, one of the two participants

exchanges values in the same direction as the structural participant in an FSI simulation.

On the other hand, the other participant sends and receives variables in the same direction

as the fluid participant. Thus, the functions that need to be implemented in the adapter

are needed for the latter, as can be seen in Figure 4.1.

Figure 4.1: Simulation setup and exchange of variables with two CalculiX participants,
coupled via calls to preCICE functions from the adapted main routines of CalculiX (the
adapter). Data structures are created by each adapter, to prepare the interface data (Γ)
to be exchanged when the simulation is advanced, following a decentralized peer-to-peer
approach. CalculiX1 needs the new read and write operations, while CalculiX2 makes

use of the functions already implemented for FSI.

The basic idea of the adapter is to introduce commands to the main solver loop in CalculiX,

in order to:

• create a data structure, SimulationData, to handle access to internal CalculiX

variables and store coupling data to control the simulation, such as the time step.

• create another data structure, PreciceInterface, a member of SimulationData,

to keep the configuration of the coupling interface. For instance, node identifiers

and data mapping vectors.

• take control of the time step in CalculiX, and set up implicit coupling iterations

with checkpointing.

• steer the simulation and execute the exchange of variables, in accordance with the

configuration and preparation of data.

The adapter code is completely open-source and accessible in [4]. For a close examination

of the relevant sections of code, indications are given in Section 4.3.

Implementation 24

4.1 Inter-Field Prescription of Boundary Conditions

Let us describe in detail now the procedure of exchange of values at the interface, that

implements the prescription of boundary conditions needed for a partitioned coupling

approach. The definition and indexing of all internal CalculiX variables mentioned here

can be found in the CalculiX manual [35].

Every time step, each participant of the simulation executes internal solving subroutines

that read the current vector of nodal displacements (state of the simulation) and the

boundary conditions, and then compute nodal forces and displacements for the next time

step. These results are kept in the internal variables vold (displacements) and fn (forces)

of CalculiX.

Boundary conditions, which are read and applied by the solver subroutines, are kept in the

variables xboun (displacements, single point constraints) and xforc (forces, concentrated

loads). Values stored in these variables, before being modified by the adapter, are those

defined in the CalculiX input file described in Section 3.2.2.

The adapter stores pointers to all these vectors, and calls the high-level preCICE functions

Precice ReadCouplingData and Precice WriteCouplingData. The former is called every

time the adapter needs to read the results from the current iteration from vold and fn;

the latter, when the adapter needs to modify the values of xforc and xbound so that

in the current iteration, values received from the other solver are prescribed as BCs.

How CalculiX internally incorporates the prescribed BCs into the differential equations

is beyond scope here, the reader is referred to the CalculiX manual for insight.

We describe now the high-level read and write functions:

• Precice ReadCouplingData: the function takes a SimulationData instance as ar-

gument and checks from the corresponding PreciceInterface which type of data

has to be read, displacements or forces. As we mentioned earlier, the adapter was

initially implemented for conjugate heat transfer, and therefore all functions support

working with temperature, heat flux, and convection. Displacement increments are

also supported, and needed for FSI. A switch statement handles each of these cases.

Knowing the data type, the function calls a lower-level function to configure the

reading, this function is a generic one from the preCICE core and not part of the

adapter, precicec readBlockVectorData. It takes as arguments the data type ID,

the number and ID of nodes of the coupling surface and a pointer to a buffer,

nodeVectorData, to hold the values.

Next, the buffer is passed to a helper function. Values are mapped from PreciceIn-

terface to SimulationData; this requires an index mapping function.

Implementation 25

Let us now take a look at an excerpt of the function code. In the case of reading

forces, Precice ReadCouplingData executes the following commands:

case FORCES:

precicec_readBlockVectorData(interfaces[i]->forcesDataID ,

interfaces[i]->numNodes , interfaces[i]->preciceNodeIDs ,

interfaces[i]->nodeVectorData);

setNodeForces(interfaces[i]->nodeVectorData , interfaces[i]->numNodes ,

interfaces[i]->xforcIndices , sim ->xforc);

break;

and for reading displacements:

case DISPLACEMENTS:

precicec_readBlockVectorData(interfaces[i]->displacementsDataID ,

interfaces[i]->numNodes , interfaces[i]->preciceNodeIDs ,

interfaces[i]->nodeVectorData);

setNodeDisplacements(interfaces[i]->nodeVectorData ,

interfaces[i]->numNodes , interfaces[i]->xbounIndices ,

sim ->xboun);

break;

where sim is an instance of SimulationData and interfaces[i] is an instance of

PreciceInterface in which data of one particular coupling surface is stored; for our

case, a bipartite simulation, there is only one interface, but the adapter is prepared

to handle coupling with additional subdomains.

After seeing the high-level functions, we present the helper ones:

Implementation 26

void setNodeForces(double * forces , ITG numNodes , int * xforcIndices ,

double * xforc)

{

ITG i;

for (i = 0 ; i < numNodes ; i++)

{

// x- component

xforc[xforcIndices [3 * i]] = forces [3 * i];

// y- component

xforc[xforcIndices [3 * i + 1]] = forces [3 * i + 1];

// z- component

xforc[xforcIndices [3 * i + 2]] = forces [3 * i + 2];

}

}

void setNodeDisplacements(double * displacements , ITG numNodes ,

int * xbounIndices , double * xboun)

{

ITG i;

for(i = 0 ; i < numNodes ; i++)

{

// x- component

xboun[xbounIndices [3 * i]] = displacements [3 * i];

// y- component

xboun[xbounIndices [3 * i + 1]] = displacements [3 * i + 1];

// z- component

xboun[xbounIndices [3 * i + 2]] = displacements [3 * i + 2];

}

}

where we can see how the three components of the vector values from PreciceIn-

terface are copied into the BC vectors for each node of the interface, according to

two index mappings, xforcIndices and xbounIndices.

For further details on the low-level functions of the preCICE API, see for example

[37].

• Precice WriteCouplingData: the writing function takes a SimulationData instance

as argument, and firstly checks from PreciceInterface which type of data has to

be written.

Then, depending on the data ID, helper functions store in the preCICE buffer a copy

of the force vector fn, or the displacement vector vold, from SimulationData. The

ID of nodes and an auxiliary variable mt are needed for indexing, but unlike the

case of reading, no additional mapping function is used.

Afterwards, the function calls a lower-level preCICE function to configure the writ-

ing of the buffer, precicec writeBlockVectorData, which needs to be passed the same

arguments as precicec readBlockVectorData.

Implementation 27

We show here an excerpt of the code of Precice WriteCouplingData for writing

forces:

case FORCES:

getNodeForces(interfaces[i]->nodeIDs , interfaces[i]->numNodes ,

sim ->fncopy , sim ->mt, interfaces[i]->nodeVectorData);

precicec_writeBlockVectorData(interfaces[i]->forcesDataID ,

interfaces[i]->numNodes , interfaces[i]->preciceNodeIDs ,

interfaces[i]->nodeVectorData);

break;

and for writing displacements:

case DISPLACEMENTS:

getNodeDisplacements(interfaces[i]->nodeIDs , interfaces[i]->numNodes ,

sim ->vold , sim ->mt , interfaces[i]->nodeVectorData);

precicec_writeBlockVectorData(interfaces[i]->displacementsDataID ,

interfaces[i]->numNodes , interfaces[i]->preciceNodeIDs ,

interfaces[i]->nodeVectorData);

break;

Then, the respective helper functions:

Implementation 28

void getNodeForces(ITG * nodes , ITG numNodes , double * fn, ITG mt ,

double * forces)

{

ITG i;

for (i = 0 ; i < numNodes ; i++)

{

int nodeIdx = nodes[i] - 1;

//x-component

forces [3 * i] = fn[nodeIdx * mt + 1];

//y-component

forces [3 * i + 1] = fn[nodeIdx * mt + 2];

//z-component

forces [3 * i + 2] = fn[nodeIdx * mt + 3];

}

}

void getNodeDisplacements(ITG * nodes , ITG numNodes , double * v, int mt,

double * displacements)

{

ITG i;

for(i = 0 ; i < numNodes ; i++)

{

int nodeIdx = nodes[i] - 1;

//x-component

displacements [3 * i] = v[nodeIdx * mt + 1];

//y-component

displacements [3 * i + 1] = v[nodeIdx * mt + 2];

//z-component

displacements [3 * i + 2] = v[nodeIdx * mt + 3];

}

}

where we can see how the three components of the CalculiX vectors are copied into

the interface vectors, for each node, according to the node IDs from PreciceInter-

face.

We have seen that, in order to map node indices from the BC vectors of CalculiX to the

coupling interface vectors of preCICE, we need specific mapping functions. The adapter

already supported this functionality for forces in xforc, in this project it has been extended

to work for displacements in xboun. We proceed to show the code for this task:

Implementation 29

void getXforcIndices(ITG * nodes , ITG numNodes , int nforc , int * ikforc ,

int * ilforc , int * xforcIndices)

{

ITG i;

for(i = 0 ; i < numNodes ; i++)

{

//x-component

int idof = 8 * (nodes[i] - 1) + 1;

int k;

FORTRAN(nident , (ikforc , &idof , &nforc , &k));

k -= 1;

int m = ilforc[k] - 1;

xforcIndices [3 * i] = m;

//y-component

idof = 8 * (nodes[i] - 1) + 2;

FORTRAN(nident , (ikforc , &idof , &nforc , &k));

k -= 1;

m = ilforc[k] - 1;

xforcIndices [3 * i + 1] = m;

//z-component

idof = 8 * (nodes[i] - 1) + 3;

FORTRAN(nident , (ikforc , &idof , &nforc , &k));

k -= 1;

m = ilforc[k] - 1;

xforcIndices [3 * i + 2] = m;

}

// ...

}

void getXbounIndices(ITG * nodes , ITG numNodes , int nboun , int * ikboun ,

int * ilboun , int * xbounIndices , enum CouplingDataType couplDataType)

{

// ...

case DISPLACEMENTS:

for(i = 0 ; i < numNodes ; i++)

{

// x- component

int idof_x = 8 * (nodes[i] - 1) + 1;

// y- component

int idof_y = 8 * (nodes[i] - 1) + 2;

// z- component

int idof_z = 8 * (nodes[i] - 1) + 3;

int kx, ky, kz;

FORTRAN(nident , (ikboun , &idof_x , &nboun , &kx));

FORTRAN(nident , (ikboun , &idof_y , &nboun , &ky));

FORTRAN(nident , (ikboun , &idof_z , &nboun , &kz));

xbounIndices [3 * i] = ilboun[kx - 1] - 1;

xbounIndices [3 * i + 1] = ilboun[ky - 1] - 1;

xbounIndices [3 * i + 2] = ilboun[kz - 1] - 1;

}

// ...

}

Implementation 30

Note that FORTRAN subroutines must be called to obtain the right indices, but no

changes in these routines are necessary.

Following from what has been already mentioned in the introduction of this chapter and

in Figure 4.1, the functions that have been implemented as extension of the adapter for

SSI are setNodeDisplacements and getNodeForces, i.e. read UΓ and write FΓ, respectively.

4.2 Implementation of Implicit Coupling

The operations above can be part of an explicit or implicit coupling scheme. Accordingly,

the adapter must be able to handle both cases.

An implicit scheme requires, apart from the time stepping loop, an additional checkpoint-

ing strategy to incorporate coupling iterations. The adapter introduces checkpoints that

store the state of the simulation (values of displacements) at the beginning of the sim-

ulation loop, and reload them at the end, as long as the fixed-point iteration has not

converged yet. Once it does converge, a new checkpoint is written with the updated

displacements.

On the contrary, following an explicit scheme, the simulation is advanced to the next time

step every time the solvers are executed, thus checkpointing is not necessary. Therefore,

the code for the explicit case is essentially included in the code for the implicit case. For

that reason, we explain directly the implicit case, which is also the one that offers more

improvement and is thus studied in Chapter 5.

The main routine of CalculiX originally includes a simulation loop over the time steps.

The adapter adds the possibility of reloading the previous time step with checkpointing,

creating a coupling loop over the iterations of an implicit coupling scheme. This loop runs

until the convergence criteria set in the preCICE configuration file are met.

Checkpointing is implemented mainly with two functions:

• Precice WriteIterationCheckpoint : called at the beginning of the time step iteration

when the time step is advanced, stores the values of vold in the auxiliary vector

coupling init v, as well as the current time step and time step length. Note that

latter is not strictly necessary, in absence of subcycling.

Implementation 31

The code of the function reads:

void Precice_WriteIterationCheckpoint(SimulationData * sim , double * v)

{

// Save time step

sim ->coupling_init_theta = *(sim ->theta);

// Save time step length

sim ->coupling_init_dtheta = *(sim ->dtheta);

// Save solution vector v

memcpy(sim ->coupling_init_v , v, sizeof(double) * sim ->mt * sim ->nk);

}

where theta is an internal CalculiX variable for the time step.

• Precice ReadIterationCheckpoint : called at the end of the time step, after the inter-

nal solver iterations, if the coupling has not converged. It copies the displacement

values, written in the last checkpoint to coupling init v, into the solution vector

vold. It also loads the old time step and time step size stored in the checkpoint.

The code of the function reads:

void Precice_ReadIterationCheckpoint(SimulationData * sim , double * v)

{

// Reload time step

*(sim ->theta) = sim ->coupling_init_theta;

// Reload time step size

*(sim ->dtheta) = sim ->coupling_init_dtheta;

// Reload solution vector v

memcpy(v, sim ->coupling_init_v , sizeof(double) * sim ->mt * sim ->nk);

}

4.3 Structure of the Adapter Code

In order to integrate CalculiX with preCICE, we need to introduce slight modifications

into the main routine ccx <version>.c1 of CalculiX, so that it calls the adapted solver

routine nonlingeo precice.c. The latter handles both geometrically linear and nonlinear

cases, despite its name. Furthermore, the adapter also consists of PreciceInterface.c,

CCXHelpers.c, ConfigReader.cpp, and the respective header files. We present a diagram

of the module hierarchy of the adapter in Figure 4.2.

1In this thesis, we employed ccx 2.13.c.

Implementation 32

Figure 4.2: Module hierarchy of the preCICE adapter for CalculiX. Arrows in the di-
agram mean that a routine calls another one or one of its functions. The main program,
ccx <version>, calls nonlingeo precice, a modified CalculiX routine. The latter contains
the main simulation loop, and makes calls to the unmodified CalculiX solver subroutines,
as well as to PreciceInterface, which is not modified but original code. PreciceInterface
contains all the high-level functions for coupling, including the creation of specific data
structures as explained in Section 4.1, and calls ConfigReader to read the YAML config-
uration file. PreciceInterface calls low-level preCICE functions and auxiliary functions
from CCXHelpers to manipulate CalculiX data. ConfigReader and CCXHelpers are also

original code of the adapter.

Chapter 5

Numerical Studies

We have presented the preCICE adapter for CalculiX in the previous chapter, explaining

the implementation of structure-structure interaction functionality.

In this chapter, we begin with a description of two test cases we have set up for experimen-

tation. The first one is a simple model of a beam with linear elastic behaviour, whereas

the second one is more complex: a model of a reinforced pipe with nonlinear behaviour.

In both cases, the system is bipartite; therefore the simulation is run on two instances of

CalculiX, CalculiX1 and CalculiX2.

Afterwards, we present the research questions, along with the tests carried out in order

to answer them, and a discussion of the results. The first research objective is to validate

the coupling, i.e. to confirm the equality of the solutions obtained with a partitioned

approach and a monolithic one. Secondly, we study the dependence of the numerical

behaviour of the model on several parameters. Then, we compare the error caused by the

splitting of the model with the accuracy loss that may arise from the lack of a nonlinear

analysis. Finally, we analyze and compare the performance of monolithic and partitioned

simulations.

5.1 Test Cases

To begin with, we describe the test case geometries, specified as a mesh for the finite

element method. In each case, a full mesh is generated for the complete spatial domain,

and afterwards, it is split in mesh1 and mesh2 via the definition of a splitting plane,

which is the coupling surface. Thus, we guarantee matching meshes on the interface.

Additionally, different mesh sizes are used for the beam test case. We refer to the different

mesh sizes as mesh size A, B and C, starting by the coarsest one. Where we do not

33

Numerical Studies 34

indicate it explicitly, we refer to the coarsest one, mesh size A, since it is used in most

experiments. Furthermore, we explain all the options and values set in the configuration

files of CalculiX and preCICE.

5.1.1 Beam Fixed at Both Ends and Loaded by Point Forces

The first test case is adapted from one of the CalculiX example problems, described in

the manual [35] under the name Cantilever beam. The bending of a simple beam only

requires an inexpensive linear analysis, therefore we employ this example in the validation

of our implementation, in Section 5.2; in parameter dependence studies, in Section 5.3;

and to analyze the influence of convergence measures on the error, in section 5.4.

Description of the Geometry

Consider a rectangular beam of dimensions 1 × 1 × 8 mm. A splitting plane is situated

at z = 6 mm, dividing the beam in two subdomains, beam1 and beam2. The domain is

discretized in a full mesh containing 261 nodes and 32 elements, in mesh size A. Since

we have 3 spatial degrees of freedom (dof) for each node, this means a total of 783 dof.

The coupling surface has 21 nodes, therefore it has 63 dof. Elements, as mentioned in

Section 2.1, are chosen to be twenty-node brick elements with reduced integration. This

is not changed from the original example problem, as they show stable behaviour. Finer

meshes are created with 2945 and 19809 nodes respectively. The distribution of nodes

and elements among meshes can be seen in Table 5.1.

No. of nodes No. of elements
Beam A Beam B Beam C Pipe Beam A Beam B Beam C Pipe

Full mesh 261 2945 19809 5736 32 512 4096 11264
Mesh 1 201 2225 14913 4320 24 384 3072 8448
Mesh 2 81 785 5121 1488 8 128 1024 2816

Coupling surface 21 65 225 72

Table 5.1: Number of nodes and elements for each of the meshes utilized, the partitions
and the coupling surface.

Boundary and Initial Conditions

Boundary conditions are applied to node sets as shown in Figure 5.1.

• Dirichlet BCs: the beam is fixed at both of its 1× 1 mm faces.

• Neumann BCs: a mechanical load F = 0.1 N is applied to five nodes situated in

beam2, in one of the 1× 8 mm faces. The force is normal to the surface, with the

Numerical Studies 35

vector pointing inwards. The loading is applied as a step load, i.e. only during a

reduced number of time steps; specifically, after t = 0.01 s, F is zero.

• Initial conditions: U0 and U̇0 are both zero in the entire domain.

Figure 5.1: Mesh A of the beam test case. In blue: fixed nodes. In magenta: loaded
nodes. In red: nodes of coupling surface. Element edges are shown as well, as black lines.

Parameters and Configuration

The following configuration is common for all tests with the beam:

• The material is a solid with linear elastic behaviour. The following parameter ranges

are chosen to explore the numerical robustness of the method:

– For density: 7.8× 10−14 kg m−3 < ρ < 7.8× 109 kg m−3

– For Young modulus: 210 N mm−2 < E < 2.1× 108 N mm−2

– For Poisson ratio: 0.1 < ν < 0.5

• The type of analysis is dynamic, without taking into account geometric nonlineari-

ties.

• Single point constraints and concentrated loads are indicated, according to the

boundary conditions presented above.

• Time step length, ∆t, is made constant throughout the simulation. Besides, there

is no subcycling, thus ∆t is the same for both participants, CalculiX1 and Cal-

culiX2. We keep ∆t in the range [2.5− 50]× 10−3s.

• Simulation time is fixed at 0.5 s, and the number of time steps is adjusted accord-

ingly, depending on ∆t.

Numerical Studies 36

• The coupling scheme is parallel and implicit, meaning that both participants are

executed simultaneously. The stopping criterion for coupling iterations is a relative

convergence measure, in the range [10−8, 0.1].

• A quasi-Newton inverse least-squares method is used as post-processing technique,

with further parameters.

– Results and residuals from previous iterations of the implicit coupling loop

are reused and incorporated as columns of the matrices from (2.14), used to

estimate the Jacobian of the coupling surface. However, we must indicate a

maximum of reused iterations, to avoid having a similar number of rows and

columns as we incorporate new columns into the matrices, considering that

the number of rows is equal to the number of dof in the coupling surface. For

instance, in mesh A there are 21×3 = 63 dof at the coupling surface, therefore

a maximum of 60 reused iterations avoids the problem.

– To avoid linear dependency between the columns of the interface system, we

use filters that remove columns with entries below a threshold during QR de-

composition. Two filter types are tested: QR1 and QR2 (for details, see [26]

and [37]). Setting a filter requires that we specify a threshold, which we keep

in the range [10−14, 0.1]. Additionally, we perform tests without filtering.

5.1.2 Reinforced Pipe Fixed at Both Ends and Loaded by Point Forces

The second test case is replicated from one of the examples in [8] using the CalculiX

graphic tool cgx. In the reference, an elastic-plastic nonlinear constitutive law with strain

hardening is considered for a reinforced pipe structure.

Therefore, we assume that, in order to obtain accurate values for the displacements with

this test case, its geometric nonlinearities must be taken into account. For this reason,

we use this test case, as explained in Section 5.4, to study the loss of accuracy in the

solution that occurs when these nonlinearities are ignored, i.e. if only a linear analysis is

performed. The difference between results of a linear and nonlinear analysis is referred to

as the error due to nonlinear effects. Then, we compare the error due to nonlinear effects

and the error introduced by another source, the splitting of the model. Later on, we test

the performance of our implementation with this test case, as presented in Section 5.5.

Description of the Geometry

Consider a cylindrical pipe composed of shell elements, of radius 1 m, 8 m long and with

5 mm thickness. The structure has longitudinal and circular reinforcements, 0.1 m high

Numerical Studies 37

and 5 mm thick. Circular reinforcements are situated 1 m from the end of the pipe and 2 m

from each other. Longitudinal ones are placed 90◦ from one another, as seen in Figure 5.2.

The domain is partitioned into two meshes in the same way as the beam; a splitting plane

is situated at z = 6 m and divides the pipe in pipe1 and pipe2.

The mesh has 5736 nodes and 11264 elements, meaning a total of 17208 dof. The cou-

pling surface has 72 nodes with 216 dof. In the reference article, the mesh has 8664

dof. We maintain the choice of element type from the article, three-node shell elements.

Furthermore, in the reference, elements are distributed irregularly over the surface, in an

unstructured mesh. In our reproduction, we do not use this type of mesh, even though

CalculiX and preCICE can handle it. The reason is that we need to set a splitting

plane that defines two subdomain meshes and a coupling surface, which is easier with a

structured mesh. The distribution of nodes and elements among meshes can be seen in

Table 5.1.

Boundary and Initial Conditions

Boundary conditions are applied to node sets as shown in Figure 5.2.

• Dirichlet BCs: the pipe is fixed at both ends.

• Neumann BCs: a mechanical load is applied onto a small set of nodes close to one end

of the pipe, and directed towards the inside. The total force applied is F = 2× 105 N,

distributed among the nodes. The loaded region is located in pipe2. In this case,

the load is constant throughout the simulation, as in the reference example.

• Initial conditions: U0 and U̇0 are both zero in the entire domain.

Parameters and Configuration

With respect to the beam test case, we make the following changes and additions to the

configuration:

• Shell elements require that we specify the thickness of the material. Nodal thickness

is set to 5 mm.

• In [8], the critical time step for the nonlinear case is ∆t = 2.84× 10−7 s. Defined by

the Courant condition, this value depends on element size. However, we take it as

a reference and perform tests with ∆t ∈ [10−8, 10−6]s.

Numerical Studies 38

Figure 5.2: Mesh of the reinforced pipe test case. In blue: fixed nodes. In magenta:
loaded nodes. In red: nodes of coupling surface at z = 6 m. Elements are shown as well,
with edges in black. Note the structured mesh and the reinforcements on the inside;

circular reinforcements are displayed in a lighter colour.

• The number of time steps is 10000.

• We incorporate, as a variable, considering geometric nonlinearities or not.

• The relative convergence measure limit is set to 2× 10−14. The choice of such a

strict convergence measure is due to the fine time scale, which allows us to reduce

the error by setting a smaller convergence measure than in the beam test case.

5.2 Validation of the Coupling

We begin this section with the definition of the error measures used in the numerical

studies, and then give the results of initial validation experiments. We have compared

the displacement fields obtained with our implementation against those obtained with a

monolithic simulation. Both simulations are configured with equal parameters. Naturally,

the partitioned one needs additional coupling configuration.

To quantify the error between two displacement fields, we compute the magnitude of the

difference at each node with an `2-norm, then we compute another `2-norm over all nodes,

Numerical Studies 39

this is:

di = upart,i − umono,i

e =

√∑
i

(d2
i,x + d2

i,y + d2
i,z)

(5.1)

where upart,i and umono,i are the displacement vectors at node i in the partitioned and

monolithic solution, respectively; di are local differences, and e is the absolute error

measure. This measure is used throughout the experiments in the project.

We perform validation tests with the beam test case and the following parameters:

• Material properties corresponding to steel:

– Density ρ = 7800 kg m−3.

– Young modulus E = 2.1× 105 N mm−2.

– Poisson ratio ν = 0.3.

• Time step length ∆t = 0.01 s.

• Relative convergence measure for implicit coupling sub-iterations: 10−4 both for

displacements and forces.

Firstly, we confirm the continuity of displacements at the coupling surface, i.e that values

at the interface nodes in both beam1 and beam2 are equal. In Figure 5.3 we show a

comparison between the maximum error magnitude and the smallest magnitude of the

displacements, at every time step, at the coupling surface. We ascertain that the error is

negligible, and consequently, continuity is confirmed.

After the comparison of values at the coupling surface, we compare displacements in the

entire domain at t = 0.5 s. Observations from Figure 5.4 show that the implementation of

structure-structure coupling is validated, however, the difference we observe in Figure 5.5

points towards an error introduced by the lack of numerical precision in the splitting, to

which we refer in the following sections. Nevertheless, we confirm that the perturbation

from the loading in beam2 is transmitted to beam1, and the resulting displacement field

has a similar profile to that of a monolithic simulation.

5.3 Parameter Dependence Studies

Baseline parameters for parameter dependence studies with the beam test case are:

Numerical Studies 40

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

d
is

p
la

c
e

m
e

n
ts

 (
m

m
)

time (s)

Max. error at coupling surface
Min. displacements at coupling surface

Figure 5.3: In red, we show an upper bound for local errors at the interface in the
partitioned simulation, maxi(||ui,beam1 − ui,beam2||l2), where i refers to the nodes in
the coupling surface, and u is the displacement in one node. We compare it with a
lower bound of the displacements at the interface in a reference monolithic simulation,
mini(||ui,mono||l2), shown in blue. The error is negligible with respect to the values of
displacements, thus, we confirm the continuity of displacements through the interface.

• Material parameters for steel, as in Section 5.2.

• ∆t = 5× 10−3 s and Nsteps = 100.

• Relative convergence measure for implicit coupling: 10−4 for both displacements

and forces.

• Quasi-Newton inverse least-squares post-processing, with filter type QR1 and filter

limit set to 10−4.

We study the variation in the number of iterations required for the implicit coupling

scheme to converge, and we find the range of physical parameters where the simulation

converges. Besides, we identify optimal parameters, where the simulation converges in a

minimum number of iterations. Results are presented in Table 5.2. We see that ranges

of values that correspond to real-world solid materials are found inside the regions of the

parameter space that lead to convergence in the simulations. Values corresponding to

steel show an optimal performance.

Numerical Studies 41

Figure 5.4: Magnitude of nodal displacements (in mm) at t = 0.5 s for the beam test
case. Below, results running one CalculiX instance on the entire domain, i.e. a monolithic
simulation, and above, results of a bipartite simulation with two CalculiX instances,
coupled using the preCICE-CalculiX adapter. We observe a factor of 2 between the
maximum magnitudes of both beams, with the gradient in the partitioned simulation

being more abrupt.

Next, we study the effects of filtering in the performance of quasi-Newton schemes, in

terms of the mean coupling iterations needed to converge in each time step, for several

time step lengths. For this, we vary filter type and limit.

Numerical Studies 42

Figure 5.5: Visualization of the difference (in mm) between displacement fields obtained
with a partitioned and a monolithic simulation. We show the inside of the model, where

the error peaks at four regions near the coupling surface.

ρ (× 7800 kg m−3) 106 105 104 102 10 1 10−1 10−3 10−5

Mean iter. - 33.12 10.58 7.87 7.69 6.82 7.67 7.28 7.3

ρ (× 7800 kg m−3) 10−7 10−9 10−10 10−11 10−13 10−15 10−16 10−17

Mean iter. 8.18 11.05 10.08 21.38 18.96 24.55 76.83 -

E (× 210 000 N mm−2) 0.001 0.01 0.1 1 10 100 1000
Mean iter. - 7.94 7.37 6.82 7.68 7.29 -

ν 0.1 0.2 0.3 0.4 0.5
Mean iter. 7.5 7.77 6.82 7.25 -

Table 5.2: Dependence of mean coupling iterations per time step, with respect to
density ρ, Young modulus E and Poisson ratio ν. Parameter ranges corresponding to
real-world solid materials are near ρ = 7800 kg m−3, E = 210 000 N mm−2, and ν =
0.3; optimal convergence is achieved for these parameters. No result is shown for those

parameter values that do not converge.

We observe a larger amount of iterations in the initial 2-3 time steps, which translates

into an increment of the mean iterations. This occurs also if, instead of applying the load

only in t ∈ [0, 0.01] s, it is applied constantly throughout the simulation. Since we fix

the simulation time and let the number of steps vary, this increment in mean iterations

Numerical Studies 43

depends on time step length. In order to avoid this perturbation, we only consider the

last half of the simulation for the calculation of mean coupling iterations. A comparison

between filter types can be seen in Table 5.3, and results for several time step lengths in

Figure 5.6. Both variants, QR1 and QR2, improve the performance of the quasi-Newton

method, reducing the iterations needed for convergence; QR2 is the more robust one.

We observe that the influence of filtering is highly dependent on time step length: it is

stronger for coarser time steps, and weaker for the finer ones.

Filter limit 10−12 10−11 10−10 10−9 10−8 10−7

Filter type
QR1 7.48 6.52 6.78 6.40 6.72 7.34
QR2 7.48 7.48 6.52 6.54 6.40 6.72

Filter limit 10−6 10−5 10−4 10−3 10−2 10−1

Filter type
QR1 6.50 44.00 415.36 809.50 - -
QR2 6.40 7.08 6.70 6.78 6.90 8.18

No filter 7.48

Table 5.3: Mean coupling iterations per time step for the last half of a 0.5 s simulation
with ∆t = 5× 10−3 s. We compare two variants of filtering techniques for quasi-Newton
methods, QR1 and QR2, using a range of filter limits. When the limit is set to 10−12 or
lower for the QR1 variant (10−11 for QR2), no columns are filtered; therefore, iteration

numbers are the same.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

1e−14 1e−12 1e−10 1e−08 1e−06 1e−04 1e−02

M
e
a
n
 i
te

ra
ti
o
n
s

Filter limit

Δt

0.0025

0.004

0.005

0.01

0.02

0.05

Figure 5.6: Mean coupling iterations per time step for the last half of a 0.5 s simulation
with ∆t ∈ {2.5, 4, 5, 10, 20, 50} × 10−3s. Filtering technique QR2 is used for its
stability. As a reference, for filter limits below 10−12, we see the performance of a QN

method without filtering.

To finish the parameter dependence studies, we perform tests with meshes of different size.

We aim to see the effects of a finer discretization on e and quasi-Newton convergence. In

Numerical Studies 44

finer meshes, we increase the maximum reused iterations, since the coupling surface has

more dof, and more columns from previous iterations can be kept without it leading to an

over-determined system. In Table 5.4, we show an error measure relative to the number

of nodes in each mesh of the beam test case, as well as the mean coupling iterations

and execution time. The simulation does not converge with the same parameters in the

three meshes. The finest mesh requires a different configuration to reach convergence.

No overall accuracy improvement is observed for a finer mesh, whereas the coupling is

significantly slower.

e/Nnodes(mm) Mean iterations Exec. time (s)
Mesh A 4.23× 10−4 8.52 210
Mesh B 6.01× 10−4 49.66 5414
Mesh C - - -

Table 5.4: Absolute `2-norm of the error (e), measured against the monolithic solution
and normalized to the number of nodes, shown for each mesh size of the beam test
case. Mean coupling iterations per time step and execution time are shown as well. The

simulation does not converge with mesh C if parameters are not changed.

5.4 Study of Error Sources: Splitting Error and Nonlinear

Effects

One strategy for performance improvement in simulations of nonlinear phenomena is to

perform a linear analysis, ignoring nonlinearities. Another one is the partitioned approach

we develop in this thesis: a linear analysis in one subdomain, and a nonlinear analysis in

the other one. Both strategies introduce an error: the former lacks nonlinear corrections to

the solution, while the latter incorporates a splitting error into the numerical integration

method, as we have observed in the previous section.

To see the origin of the splitting error, we study the dependence of the global error on the

relative convergence measure limit, on the beam test case. Two error measures are com-

puted for partitioned simulations: with respect to a monolithic reference (e from (5.1)),

and with respect to a partitioned simulation with the minimum relative convergence mea-

sure limit of the range tested, that is, with respect to the most accurate partitioned sim-

ulation. Results are shown in Figure 5.7, for ∆t ∈ {2.5, 4, 5, 10, 20, 50} × 10−3s. Both

error measures are reduced with the convergence measure in the range ∆t ∈ [0.004, 0.01] s.

An error offset puts a limit to this reduction, but only for the error measure with respect

to the monolithic reference simulation. Thus, we conclude that this limit to the accuracy

of our method is introduced by the splitting of the model. We observe that the splitting

error decreases with time step length, in the range ∆t ∈ [0.0025, 0.02] s.

Numerical Studies 45

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e−05 1e−04 1e−03 1e−02 1e−01

e
 (

m
m

)

Relative convergence measure

Δt
0.0025

0.004
0.005
0.01
0.02
0.05

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e−04 1e−03 1e−02 1e−01

e
 (

m
m

)

Relative convergence measure

Δt
0.0025

0.004
0.005
0.01
0.02
0.05

Figure 5.7: Dependence of the error, in the partitioned simulation, on the relative
convergence measure for implicit coupling, for several ∆t. Above, the error is mea-
sured against the monolithic reference, below, against the partitioned simulation with
the strictest convergence criterion. For ∆t ∈ {0.004, 0.005, 0.01} we observe a region
where the error is reduced proportionally to the relative convergence measure in both

plots. Then, an error offset puts a limit to this reduction, but only in the upper plot.

Numerical Studies 46

Comparing errors from both splitting and nonlinear effects, we can evaluate the efficiency

of our partitioned approach, and whether it is beneficial for accuracy. A partitioned linear-

nonlinear approach aims to avoid the accuracy loss of a monolithic linear analysis, but

the splitting error can hamper the strategy if it exceeds the error of the linear analysis.

In Figure 5.8 we show the temporal evolution of both errors in a run of the nonlinear pipe

test case, with ∆t = 10−7s. For the partitioned simulation, we set QR2 filtering with

limit 10−3. We observe a dominance of the splitting error, even though nonlinear effects

grow with time. Increasing the number of time steps in the simulation does not make the

error due to nonlinear effects surpass the splitting error, as the latter escalates faster. For

∆t = 10−8s, results do not change.

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

0e+00 1e−04 2e−04 3e−04 4e−04 5e−04 6e−04 7e−04 8e−04 9e−04 1e−03

e
 (

m
m

)

t (s)

Splitting error
Error due to nonlinear effects

Figure 5.8: Error measure e, plotted against time and computed using a monolithic
nonlinear simulation as a reference. It is shown for a partitioned simulation with nonlin-
ear analyses running on both solvers (blue) and a monolithic linear simulation without
nonlinear corrections (red). For the monolithic linear simulations, e is identified as non-
linear corrections. For the partitioned nonlinear simulation, as the splitting error. We
see how the latter is larger than nonlinear corrections during all the simulation, and the

difference between the two quantities increases over time.

Considering that the source of the splitting error lies in the low order of the approximation

we make in the exchange of variables, we attempt to reduce it via a more sophisticated

interpolation of displacements between time steps. Concretely, we take 1
2(Ui−1 + Ui),

instead of Ui where the new values for one solver in time step i come from the other

solver. Error measures show that the error is reduced a 0.0002%, therefore we deem this

modification ineffective.

Numerical Studies 47

From the experiments in this section, we conclude that the current scenario is only weakly

nonlinear. However, we expect a different situation for another test case.

5.5 Performance Study

We study the performance of partitioned and monolithic setups of the pipe test case. All

simulations are configured to run with ∆t = 10−7s. As in the previous section, for the

partitioned setup we use the QR2 filtering with limit 10−3. Monolithic and partitioned

simulations run on one and two ranks, respectively; with one dedicated rank for each

participant in the partitioned case. We run all tests on a laptop with an 4-core processor

at 2.3 GHz and 16 GB of RAM; running Ubuntu Linux 16.04.

We show a comparison of execution times for all setups in Table 5.5. The partitioned setup

needs an average of 3.71 coupling iterations per time step to converge; together with a

smaller contribution from communication tasks, this produces an overhead, which makes

the partitioned setup 2.5 times slower than any of the monolithic ones. Consider that the

partitioned setup follows a parallel implicit scheme, meaning that both participants run

simultaneously. Timing measures in the partitioned simulation show that the nonlinear

Setup Exec. time (min)

Monolithic
Linear 349

Nonlinear 351

Partitioned Linear-nonlinear 879

Table 5.5: Execution times for several simulation setups, with ∆t = 10−7s and 10000
time steps.

participant, CalculiX2, spends 652 min in advance; while the linear participant, Cal-

culiX1, only spends 12 s in it. The time spent by a solver in this function is an indicator

of the time it spends waiting for the other one. For CalculiX2, this represents 74% of its

total runtime with its assigned processor in an idle state, while it waits for CalculiX1 to

obtain the solution for the current time step. This result does not meet our expectation

of a nonlinear simulation that is more expensive than a linear one, and leads to poor load

balancing.

Therefore, in absence of stronger nonlinear effects, to achieve a better load balancing

and be able to benefit from a partitioned approach, we need to assign more processors

to the linear participant. Additionally, we need a linear domain that is much larger

than the nonlinear one. In that way, the difference in execution time between linear and

nonlinear simulations has more weight in the execution time of the partitioned simulation.

Consequently, the overhead from coupling operations is relatively lower, which makes the

Numerical Studies 48

partitioned setup more efficient. However, the necessary ratio of domain sizes makes this

solution impractical for the current setting.

Thus, we conclude that a partitioned linear-nonlinear setup of the reinforced pipe test

case does not improve the overall efficiency of the simulation.

Figure 5.9: Magnitude of nodal displacements (in mm) at t = 10−3s for a reinforced
pipe in a partitioned linear-nonlinear (above) and a monolithic nonlinear setup (below).

Numerical Studies 49

For illustrative purposes, we plot displacement fields at t = 10−3s in Figure 5.9, for the

monolithic nonlinear and partitioned linear-nonlinear setup.

This section ends the description of the experimentation for the validation of the im-

plementation, and the studies of parameter dependence, error sources and performance.

Based on the results obtained, in the next chapter we draw the conclusions of our project.

Chapter 6

Conclusions

We have extended the range of physical interactions that can be handled by the coupling

library preCICE, with the addition of structure-structure coupling functionality into the

preCICE adapter for the structural FEM solver CalculiX. In order to test this functional-

ity, we have set up partitioned simulations in which two instances of CalculiX are coupled.

For each instance, it is possible to choose whether geometric nonlinearities are taken into

account or not. To guarantee stability of the partitioned approach, we sub-iterate between

both structure solvers in every time step, which we refer to as implicit coupling.

As a starting point, we have validated our implementation with two test cases: a beam

and a reinforced pipe fixed at both ends and loaded by point forces. In order to do this,

we have defined and measured a global error in the displacement field. This error quan-

tifies the difference between the solution of monolithic and partitioned simulations. All

combinations of analysis types (linear-linear, linear-nonlinear, and nonlinear-nonlinear)

are found to be stable and converge to valid solutions. Next, we have identified a lower

bound for the global error. This limit can be seen as we reduce the convergence criteria

of the implicit coupling, and depends on the time step length. It has been recognized

as a numerical error caused by the time splitting; thus, we refer to it as splitting error.

Better time splitting methods are expected to reduce this error. Currently, research is

being carried out to incorporate them into preCICE [39].

Furthermore, we have studied numerical behaviour over a range of physical parameters;

as well as the effect of tuning several numerical parameters to improve performance. Sim-

ulations converge for a range of physical parameters comprising those that correspond

to realistic solid materials. Quasi-Newton methods with filtering techniques have proved

useful to improve the convergence of implicit coupling schemes, provided that their pa-

rameters are correctly tuned.

50

Conclusions 51

Additionally, we have considered the scaling of the partitioned approach, constructing a

large parallel setup with each participant of the simulation running on one rank, with

the definition of additional coupling surfaces for adjacent subdomains. The reason is to

overcome the limitation of shared-memory parallelization in CalculiX. Nevertheless, due

to lack of time, we leave this step for future efforts.

Our main motivation for the implementation of structure-structure coupling is the poten-

tial performance benefit yielded by a partitioned simulation. Nonlinear treatment can be

restricted to a small subdomain that presents nonlinearities, keeping the rest of the simu-

lation linear, and therefore, computationally cheaper. However, nonlinear effects observed

in the pipe test case are not strong enough to cause a significant difference between linear

and nonlinear simulations, neither in the values of the solution nor in performance.

In particular, the weak nonlinear effects pose two issues for our test case:

• Firstly, the splitting error dominates the global error as it surpasses the error due

to nonlinear effects. Therefore, a partitioned linear-nonlinear simulation does not

produce a more accurate solution than a monolithic linear one.

• Secondly, a linear analysis does not result in a significantly faster simulation, since

the nonlinear implicit integrator of CalculiX converges almost as fast. Thus, con-

sidering the overhead due to implicit coupling iterations, the difference in execution

time between linear and nonlinear solver is not enough to make the partitioned

approach faster than a monolithic nonlinear simulation.

To sum up, for a partitioned approach to give benefits, it must be applied to a strongly

nonlinear case. In such a case, the increase in execution time as a result of taking into

account nonlinear effects is presumably larger than the coupling overhead, and the error

due to nonlinear effects is presumably larger than the splitting error. Our pipe test

case is a reproduction from a model in [8]. In that work, it is considered with a nonlinear

constitutive law, thus presenting a strong nonlinearity that justifies a partitioned analysis.

However, in the time frame of our project, we have been unable to reproduce entirely the

nonlinear behaviour of the test case with CalculiX.

In future work, we consider the addition of the option *PLASTIC in the CalculiX input

file, to work with an elastic plastic model instead of simply a linear elastic one, as we

have done in this project. The structural simulation with this parameter might exhibit

the aforementioned nonlinear effects with enough intensity.

Acknowledgements

First of all, I would like to show my most sincere gratitude towards my thesis advisor

Benjamin Uekermann, for his guidance and careful explanations, and for giving me the

opportunity of being part of the development of preCICE.

Secondly, I would also like to thank the people who collaborate in making such a great

open-source tool: for their brilliant work, and for the comments and ideas provided.

For the help in getting started with the adapter code, I also want to thank Alexander

Rusch.

Besides, a special mention to my family, for their unconditional and constant support

throughout these months.

And last but not least, my gratitude also goes to those friends who always asked me about

the thesis work and, through this, helped me organize my ideas.

52

53

Annex A.1: Sample preCICE Configuration xml File

<?xml version="1.0" encoding=’UTF -8’?>

<precice -configuration xmlns:data="data" xmlns:coupling -scheme="coupling -scheme" xmlns:mapping="mapping" xmlns:m2n="m2n" xmlns:post -processing="post -processing">

<solver -interface dimensions="3">

<data:vector name="Forces0"/>

<data:vector name="Displacements0"/>

<mesh name="Calculix_Mesh1">

<use -data name="Forces0"/>

<use -data name="Displacements0"/>

</mesh>

<mesh name="Calculix_Mesh2">

<use -data name="Displacements0"/>

<use -data name="Forces0"/>

</mesh>

<participant name="Calculix1">

<use -mesh name="Calculix_Mesh1" provide="yes"/>

<use -mesh name="Calculix_Mesh2" from="Calculix2"/>

<write -data name="Forces0" mesh="Calculix_Mesh1"/>

<read -data name="Displacements0" mesh="Calculix_Mesh1"/>

<mapping:nearest -neighbor

direction="write" from="Calculix_Mesh1" to="Calculix_Mesh2"

constraint="conservative" timing="initial"/>

<mapping:nearest -neighbor

direction="read" from="Calculix_Mesh2" to="Calculix_Mesh1"

constraint="consistent" timing="initial"/>

</participant >

<participant name="Calculix2">

<use -mesh name="Calculix_Mesh2" provide="yes"/>

<write -data name="Displacements0" mesh="Calculix_Mesh2"/>

<read -data name="Forces0" mesh="Calculix_Mesh2"/>

</participant >

<m2n:sockets from="Calculix1" to="Calculix2" exchange -directory="../" distribution -type="gather -scatter"/>

<coupling -scheme:parallel -implicit >

<participants first="Calculix1" second="Calculix2"/>

<max -timesteps value="100"/>

<timestep -length value="5e-3"/>

<exchange data="Displacements0" mesh="Calculix_Mesh2" from="Calculix2" to="Calculix1" />

<exchange data="Forces0" mesh="Calculix_Mesh2" from="Calculix1" to="Calculix2"/>

<relative -convergence -measure limit="1e-4" data="Displacements0" mesh="Calculix_Mesh2"/>

<relative -convergence -measure limit="1e-4" data="Forces0" mesh="Calculix_Mesh2"/>

<post -processing:IQN -ILS>

<data name="Displacements0" mesh="Calculix_Mesh2"/>

<data name="Forces0" mesh="Calculix_Mesh2"/>

<preconditioner type="residual -sum"/>

54

<filter type="QR2" limit="1e-4"/>

<initial -relaxation value="0.1"/>

<max -used -iterations value="60"/>

<timesteps -reused value="10"/>

</post -processing:IQN -ILS>

</coupling -scheme:parallel -implicit >

</solver -interface >

</precice -configuration >

55

Annex A.2: Sample Adapter Configuration YAML File

participants:

Calculix1:

interfaces:

- nodes -mesh: Calculix_Mesh1

patch: surface

read -data: [Displacements0]

write -data: [Forces0]

precice -config -file: ../ precice -config.xml

56

Annex B: Sample CalculiX Input File

**

** Structure: cantilever beam.

**

**

*INCLUDE , INPUT=CalculixMesh/all.msh

*INCLUDE , INPUT=CalculixMesh/fix1_beam.nam

*BOUNDARY

FIX , 1

*BOUNDARY

FIX , 2

*BOUNDARY

FIX , 3

*NSET ,NSET=Nload

185, 186, 187, 188, 189

*MATERIAL ,NAME=EL

*ELASTIC

210000.0 , .3

*DENSITY

7.8E-9

*SOLID SECTION ,ELSET=Eall ,MATERIAL=EL

*AMPLITUDE , NAME=A1

0., 1.,

.01, 0.,

5., 0.

*STEP , INC =10000

*DYNAMIC

1E-2, 0.5, 1E-2, 1E-2

*CLOAD , AMPLITUDE=A1

Nload , 2, -.1

*NODE FILE

U

*NODE PRINT ,NSET=Nall

U,RF

*END STEP

Bibliography

[1] Guido Dhondt and Klaus Wittig. CALCULIX – A Free Software Three-Dimensional

Structural Finite Element Program. http://www.calculix.de/.

[2] preCICE – A coupling library for partitioned multi-physics simulation. http://www.

precice.org/, .

[3] Hans-Joachim Bungartz, Florian Lindner, Bernhard Gatzhammer, Miriam Mehl,

Klaudius Scheufele, Alexander Shukaev, and Benjamin Uekermann. preCICE

– a fully parallel library for multi-physics surface coupling. Computers and

Fluids, 141:250–258, 2016. ISSN 0045-7930. doi: https://doi.org/10.1016/j.

compfluid.2016.04.003. URL http://www.sciencedirect.com/science/article/

pii/S0045793016300974. Advances in Fluid-Structure Interaction.

[4] preCICE-adapter for the CSM code CalculiX. https://github.com/precice/

calculix-adapter.

[5] David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra,

Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, et al. Mul-

tiphysics simulations: Challenges and opportunities. The International Journal of

High Performance Computing Applications, 27(1):4–83, 2013.

[6] Önder Babur, Tom Verhoeff, and Mark van den Brand. Multiphysics and multiscale

software frameworks: an annotated bibliography. Computer Science Reports, 1501,

2015. ISSN 0926-4515.

[7] Nathan M Newmark. A method of computation for structural dynamics. Journal of

the engineering mechanics division, 85(3):67–94, 1959.

[8] Anthony Gravouil and Alain Combescure. Multi-time-step explicit–implicit method

for non-linear structural dynamics. International Journal for Numerical Methods in

Engineering, 50(1):199–225, 2001.

[9] Anthony Gravouil and Alain Combescure. Multi-time-step and two-scale domain

decomposition method for non-linear structural dynamics. International Journal for

Numerical Methods in Engineering, 58(10):1545–1569, 2003.

57

http://www.calculix.de/
http://www.precice.org/
http://www.precice.org/
http://www.sciencedirect.com/science/article/pii/S0045793016300974
http://www.sciencedirect.com/science/article/pii/S0045793016300974
https://github.com/precice/calculix-adapter
https://github.com/precice/calculix-adapter

Bibliography 58

[10] Alain Combescure and Anthony Gravouil. A numerical scheme to couple subdomains

with different time-steps for predominantly linear transient analysis. Computer meth-

ods in applied mechanics and engineering, 191(11-12):1129–1157, 2002.

[11] Vincent Faucher and Alain Combescure. A time and space mortar method for cou-

pling linear modal subdomains and non-linear subdomains in explicit structural dy-

namics. Computer methods in applied mechanics and engineering, 192(5-6):509–533,

2003.

[12] B Herry, L Di Valentin, and Alain Combescure. An approach to the connection

between subdomains with non-matching meshes for transient mechanical analysis.

International Journal for Numerical Methods in Engineering, 55(8):973–1003, 2002.

[13] P.J. Blanco, R.A. Feijóo, and S.A. Urquiza. A variational approach for cou-

pling kinematically incompatible structural models. Computer Methods in Ap-

plied Mechanics and Engineering, 197:1577–1602, 2007. ISSN 0045-7825. doi:

https://doi.org/10.1016/j.cma.2007.12.001.

[14] Assaf Ghanem, Mohamed Torkhani, Najib Mahjoubi, TN Baranger, and Alain

Combescure. Arlequin framework for multi-model, multi-time scale and heteroge-

neous time integrators for structural transient dynamics. Computer methods in ap-

plied mechanics and engineering, 254:292–308, 2013.

[15] A Prakash and KD Hjelmstad. A feti-based multi-time-step coupling method for new-

mark schemes in structural dynamics. International Journal for Numerical Methods

in Engineering, 61(13):2183–2204, 2004.

[16] Ali Cagatay Cobanoglu, Simon Möß ner, Majid Hojjat, and Fabian Duddeck. Model

order reduction methods for explicit fem. Science in the Age of Experience, 2016.

[17] Arun Prakash, Ertugrul Taciroglu, and Keith D Hjelmstad. Computationally efficient

multi-time-step method for partitioned time integration of highly nonlinear structural

dynamics. Computers & Structures, 133:51–63, 2014.

[18] Carlos A Felippa, KC Park, and Charbel Farhat. Partitioned analysis of coupled

mechanical systems. Computer methods in applied mechanics and engineering, 190

(24-25):3247–3270, 2001.

[19] Serge Piperno and Charbel Farhat. Partitioned procedures for the transient so-

lution of coupled aeroelastic problems–part ii: energy transfer analysis and three-

dimensional applications. Computer methods in applied mechanics and engineering,

190(24-25):3147–3170, 2001.

Bibliography 59

[20] Miguel Ángel Fernández and Marwan Moubachir. A newton method using exact

jacobians for solving fluid–structure coupling. Computers & Structures, 83(2-3):127–

142, 2005.

[21] Hermann G Matthies and Jan Steindorf. Partitioned but strongly coupled iteration

schemes for nonlinear fluid–structure interaction. Computers & structures, 80(27-30):

1991–1999, 2002.

[22] Lionel Gendre, Olivier Allix, Pierre Gosselet, and François Comte. Non-intrusive and

exact global/local techniques for structural problems with local plasticity. Computa-

tional Mechanics, 44(2):233–245, 2009.

[23] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance of a new

partitioned procedure versus a monolithic procedure in fluid–structure interaction.

Computers & Structures, 87(11-12):793–801, 2009.

[24] Joris Degroote and Jan Vierendeels. Multi-level quasi-newton coupling algorithms

for the partitioned simulation of fluid–structure interaction. Computer Methods in

Applied Mechanics and Engineering, 225:14–27, 2012.

[25] Miriam Mehl, Benjamin Uekermann, Hester Bijl, David Blom, Bernhard Gatzham-

mer, and Alexander Van Zuijlen. Parallel coupling numerics for partitioned fluid–

structure interaction simulations. Computers & Mathematics with Applications, 71

(4):869–891, 2016.

[26] R Haelterman, Alfred EJ Bogaers, K Scheufele, B Uekermann, and M Mehl. Improv-

ing the performance of the partitioned qn-ils procedure for fluid–structure interaction

problems: Filtering. Computers & Structures, 171:9–17, 2016.

[27] AH van Zuijlen, S Bosscher, and H Bijl. Two level algorithms for partitioned fluid–

structure interaction computations. Computer Methods in Applied Mechanics and

Engineering, 196(8):1458–1470, 2007.

[28] Jan Vierendeels, Lieve Lanoye, Joris Degroote, and Pascal Verdonck. Implicit cou-

pling of partitioned fluid–structure interaction problems with reduced order models.

Computers & structures, 85(11-14):970–976, 2007.

[29] Lionel Gendre, Olivier Allix, and Pierre Gosselet. A two-scale approximation of the

schur complement and its use for non-intrusive coupling. International Journal for

Numerical Methods in Engineering, 87(9):889–905, 2011.

[30] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass effect in the

design of partitioned algorithms for fluid–structure problems. Computer methods in

applied mechanics and engineering, 194(42-44):4506–4527, 2005.

Bibliography 60

[31] Sergio R Idelsohn, Facundo Del Pin, Riccardo Rossi, and Eugenio Oñate. Fluid–

structure interaction problems with strong added-mass effect. International journal

for numerical methods in engineering, 80(10):1261–1294, 2009.

[32] Guido Dhondt. The finite element method for three-dimensional thermomechanical

applications. John Wiley & Sons, 2004.

[33] Isidoro Miranda, Robert M. Ferencz, and Thomas J. R. Hughes. An improved

implicit-explicit time integration method for structural dynamics. Earthquake Engi-

neering & Structural Dynamics, 18(5):643–653, 1989. doi: 10.1002/eqe.4290180505.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.4290180505.

[34] Hans M Hilber, Thomas JR Hughes, and Robert L Taylor. Improved numerical

dissipation for time integration algorithms in structural dynamics. Earthquake En-

gineering & Structural Dynamics, 5(3):283–292, 1977.

[35] Guido Dhondt. CalculiX CrunchiX USERS MANUAL version 2.13, 2017.

[36] T. Belytschko and Y.Y. Lu. Stability analysis of elemental explicit-implicit partitions

by fourier methods. Computer Methods in Applied Mechanics and Engineering, 95:

87–96, 1992. ISSN 0045-7825.

[37] Benjamin Walter Uekermann. Partitioned fluid-structure interaction on massively

parallel systems. PhD thesis, Technische Universität München, 2016.

[38] The preCICE Wiki. https://github.com/precice/precice/wiki, .

[39] Benjamin Rüth, Benjamin Uekermann, Miriam Mehl, and Hans-Joachim Bungartz.

Time stepping algorithms for partitioned multi-scale multi-physics in preCICE. In

6th European Conference on Computational Mechanics, 7th European Conference on

Computational Fluid Dynamics, 2018.

[40] Benjamin Uekermann, Hans-Joachim Bungartz, Lucia Cheung Yau, Gerasimos

Chourdakis, and Alexander Rusch. Official precice adapters for standard open-source

solvers. In Proceedings of the 7th GACM Colloquium on Computational Mechanics

for Young Scientists from Academia, 2017.

https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.4290180505
https://github.com/precice/precice/wiki

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Background

	2 Theory
	2.1 Basic Notions of Computational Structural Mechanics
	2.2 Domain Decomposition within the Monolithic Frame
	2.3 Domain Decomposition within the Partitioned Frame
	2.3.1 Dirichlet-Neumann Coupling
	2.3.2 Quasi-Newton Schemes

	3 Software in the Project
	3.1 preCICE - A Coupling Library for Partitioned Multi-Physics Simulations
	3.1.1 Overview of the Functionality of preCICE
	3.1.2 Configuration of the Coupling

	3.2 CalculiX - A Three-Dimensional Structural Finite Element Program
	3.2.1 Overview of the Functionality of CalculiX
	3.2.2 Configuration of the Simulation
	3.2.3 Mesh

	4 Implementation
	4.1 Inter-Field Prescription of Boundary Conditions
	4.2 Implementation of Implicit Coupling
	4.3 Structure of the Adapter Code

	5 Numerical Studies
	5.1 Test Cases
	5.1.1 Beam Fixed at Both Ends and Loaded by Point Forces
	5.1.2 Reinforced Pipe Fixed at Both Ends and Loaded by Point Forces

	5.2 Validation of the Coupling
	5.3 Parameter Dependence Studies
	5.4 Study of Error Sources: Splitting Error and Nonlinear Effects
	5.5 Performance Study

	6 Conclusions
	Bibliography

