TUTI

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Dissertation in Informatik

Accurate and Reliable Labeling for Effective
Detection of Android Malware

Aleieldin Salem

D






I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Lehrstuhl IV - Software and Systems Engineering

Accurate and Reliable Labeling for
Effective Detection of Android Malware

Aleieldin Salem

Vollstandiger Abdruck der von der Fakultdt fiir Informatik der Technischen

Universitdt Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Jens GrofSklags, Ph.D.
Priifer der Dissertation:
1. Prof. Dr. Alexander Pretschner
2. Prof. Lorenzo Cavallaro,

King’s College London, UK

Die Dissertation wurde am 05.10.2020 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultit fiir Informatik am 17.02.2021 angenommen.






Acknowledgments

There are no short cuts to any place worth going. A QLA Gy UlSe ) jais Ga sl g2 Y

Amen! In accomplishing this feat, I am infinitely indebted to the following people.

My genuine gratitude goes to Prof. Dr. Alexander Pretschner for giving me the chance
to work on what I am interested in and for his continuous support and encouragement.
Doing this job, I learned how to be more observant and critical yet constructive. I had the
opportunity to pass on whatever little knowledge I accumulated, and I learned how to tune
out all distractions and focus on my goals. Thank you for the opportunity.

I would also like to thank my second supervisor, Prof. Lorenzo Cavallaro, and his group,
particularly Dr. Fabio Pierazzi and Feargus Pendlebury, for their unparalleled hospitality,
for the fruitful discussions that we had at King’s, and for their technical help with my
work. The enthusiasm and positive energy with which you guys pursue solutions for the
problems our community faces is admirable. Kudos!

My colleagues and friends at the chair of Software and Systems Engineering designated
the Eyes-Prizecists: our CB’s, CLGBT’s, Spinning, Grave-yarding, Suguk Halloumi’s, and
inside jokes carried me through tough times. It is an honor and a privilege to know you and
to have worked with you. Dr. Sebastian Banescu, thank you for the hours of discussions
that helped to shape this thesis and its storyline. Amjad and Patrick, thank you for taking
the time to read this thesis and for helping me to make it better. The young men and women
that I had the privilege to teach or advise, thank you for your efforts and for helping me
throughout my employment at the TUM.

My Egyptian friends, whether we went to school together, did our bachelor’s together,
served in the same unit, shared a cubicle in a company, or just randomly met in the streets
of Munich, thank you for the encouraging messages, for visiting as often as you can, and
for keeping me up-to-date with the ridicule and non-sense that manifests everyday in the
old country.

To my family, you have always been my backbone. Thank you for believing in and
supporting my scientific and academic endeavors, both emotionally and financially, without
pressuring me to settle down somewhere, find a wife, and give you loads of grandchildren.

My German family, Dr. Marianne Blank-Huber and Theresa Huber, your love, care, and
awesome food compensated for the absence of my biological family; thank you.

Above all, my incomparably better half, Katharina Huber, every time I utter the words
"Why the heck am I doing this?”, I remind myself that had it not been for this job, we would
not have crossed paths. The best thing I got out of this is not a doctoral title, it is indeed
you. Having said that, I guess credit goes to Saahil and Barbara for organizing that house-
warming party in which we met. :)







Zusammenfassung

Seit Jahrzehnten wird an der Erkennung von Malware mit Hilfe maschinellen Lernens
geforscht. Nichts desto trotz begegnet man schadhaften Anwendungen nach wie vor. Dies
deutet darauf hin, dass die derzeit angewandten Methoden zur Identifizierung von Malware
unzuldnglich sind. Eines der Probleme der Methoden zur Identifizierung von Malware,
das fiir diesen Mangel verantwortlich ist, ist das Problem, der genauen und zuverldssigen
Kennzeichnung der Anwendungen, worauf die Erkennungsmethoden sodann aufbauen.
Verwendet man Kennzeichnungen, die die Schadhaftigkeit von Anwendungen (im
Folgenden Apps genannt) fehlerhaft wiedergeben, riskiert man, dass die Verlasslichkeit
von Studien unterminiert wird, die die von solchen Apps verfolgten Trends untersuchen
und, noch viel wichtiger, dass die Entwicklung wirksamer Methoden zur Identifizierung
von Malware beeintrachtigt wird.

Da es sich letztlich nicht durchfiihren ldsst, eine grofie Anzahl von Apps manuell zu
analysieren und zu kennzeichnen, um exakte Labels zu erhalten, sind Wissenschaftler
dazu gezwungen, sich auf Onlineplattformen, wie VirusTotal zu verlassen, die die Scan-
Ergebnisse unterschiedlicher kommerzieller Anti-Virus-Software bereitstellen. Allerdings
gibt es kein Standardverfahren zur Interpretation dieser Scan-Ergebnisse, um die
Anwendungen zu kennzeichnen. Infolgedessen verlassen sich Wissenschaftler auf ihre
Intuition und wenden Strategien an, die aus dem Stehgreif einen Grenzwert festlegen,
um die Apps in den Datensdtzen zu kennzeichnen, die ihre Erkennungsmethoden
trainieren und bewerten, oder die sie den anderen Forschern als Mafistab zugéanglich
machen. Auch wenn einige der verwendeten Grenzwerte Apps genauer kennzeichnen als
andere, hat die Dynamik von VirusTotal zur Folge, dass die Genauigkeit einst optimaler
Grenzwerte abnehmen kann und die Nachhaltigkeit schwellenwertbasierter Strategien
letztlich untergraben konnte. Obschon der Forschungsgemeinschaft bekannt, werden
die Aspekte einer solchen Dynamik, wie sie sich in den Scan-Berichten von VirusTotal
ausdriicken und wie diese grenzwertbasierte Kennzeichnungsstrategien beeinflussen,
nicht explizit diskutiert. Vor diesem Hintergrund ist das Hauptanliegen dieser Arbeit
anderen Wissenschaftlern Methoden zur Verfiigung zu stellen, mit denen sie die Scan-
Berichte von VirusTotal optimal nutzen koénnen, bis eine stabilere und zuverlédssigere
Plattform zur Verfiigung steht. Zu diesem Zweck werden die Aspekte der Dynamik von
VirusTotal und wie diese die Leistung von grenzwertbasierten Kennzeichnungsstrategien
beeinflusst, die {iber einen lingeren Zeitraum feste Grenzwerte verwenden, aufgezeigt.
Darauf aufbauend wird ein Algorithmus vorgeschlagen, der die gegenwartig optimalen
Grenzwerte zur Verwendung des Kennzeichnens von Android-Apps zu jedem beliebigen
Zeitpunkt identifiziert.

Um es Wissenschaftlern und Wissenschaftlerinnen zu ersparen VirusTotal-Scan-Berichte
jedes Mal, wenn sie eine Android-App mit Hilfe eines grenzwertbasierten Ansatzes
klassifizieren wollen, aufs neue herunterzuladen und zu scannen, wird Maat implementiert.
Maat ist eine systematische und automatisierte Methode, die VirusTotal Scan-Berichte
von Apps analysiert und auf maschinellem Lernen basierende Erkennungsmethoden

vii



trainiert, von denen sich gezeigt hat, dass sie die Kennzeichnungsgenauigkeit von
hypothetisch grenzwertbasierten Kennzeichnungsstrategien, die iiber die Zeit hinweg
immer den bestmdoglichen Grenzwert verwenden, erreichen. Ferner tragen solche
Erkennungsmethoden, die auf maschinellem Lernen basieren, dazu bei, effektivere
Erkennungsmethoden zu trainieren, als ihre grenzwertbasierten Gegenstiicke. Im Ergebnis
stellen Maats Erkennungsmethoden, die auf maschinellem Lernen basieren eine brauchbare
Alternative zu konventionellen grenzwertbasierten Erkennungsmethoden, die fiir die
Dynamik von VirusTotal anfillig sind, dar. Zu guter Letzt werden die Grenzen von
VirusTotal, die wiahrend dieser Forschung begegnet sind benannt und eine Architektur fiir
eine stabilere und verlésslichere Plattform vorgeschlagen, die diese Begrenzungen umgeht.

viii



Abstract

The problem of Machine Learning (ML)-based malware detection has been researched
for decades. However, malicious applications continue to be found in the wild, which
suggests the inadequacy of currently-adopted malware detection methods. Among the
problems facing malware detection methods that might lead to such inadequacy is that
of assigning accurate and reliable labeld to applications used to train and evaluate such
methods. Using labels that inaccurately represent the malignancy of applications (hereafter
apps) risks undermining the reliability of studies that inspect trends adopted by malicious
apps and, more importantly, might impede the development of effective detection methods.

Manually analyzing and labeling large numbers of apps to get accurate labels is infeasible,
which forces researchers to rely on online platforms, such as VirusTotal, that provide
scan results from different commercial antiviral software. Unfortunately, there are no
standard procedures for interpreting these scan results to label apps. Hence, researchers use
their intuitions and adopt ad hoc threshold-based strategies to label the apps in the datasets
used to train and evaluate their detection methods or release to the research community as
benchmarks. Although some of the adopted thresholds may accurately label apps better
than others, the dynamicity of VirusTotal means that the accuracy of once-optimal
thresholds might depreciate, effectively undermining the sustainability of threshold-based
strategies. Albeit known to the research community that VirusTotal is dynamic, the
aspects of such dynamicity, how it manifests in VirusTotal scan reports, and how it
impacts threshold-based labeling strategies are not clearly discussed.

In this context, the main objective of this thesis is to provide the research community
with methods to optimally utilize VirusTotal scan reports until a more stable, reliable
platform is implemented. To that end, we reveal the aspects of VirusTotal’s dynamicity
and how it impacts the performance of threshold-based labeling strategies that use fixed
thresholds over prolonged periods. Based on these findings, we propose an algorithm
that identifies the currently optimal thresholds to use upon labeling Android apps at
any point in time. To relieve researchers of the burden of re-scanning and downloading
VirusTotal scan reports each time they wish to label Android apps using threshold-
based labeling strategies, we implemented Maat, a systematic and automated method
that analyzes VirusTotal scan reports of apps and trains ML-based detection methods
that we found to mimic the labeling accuracies of hypothetical threshold-based labeling
strategies that always utilize the best possible thresholds over time. Furthermore, such ML-
based detection methods contribute to training more effective detection methods than their
threshold-based counterparts. Effectively, Maat’s ML-based detection methods provide a
viable alternative to conventional threshold-based labeling strategies that are susceptible
to VirusTotal’s dynamicity. Lastly, we enumerate all the limitations of VirusTotal we
encountered throughout this research and propose an architecture of a more stable and
reliable platform that mitigates those limitations.

ix






Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter introduces the problem tackled by this thesis and highlights its significance.
It presents the objectives of this work, the research questions it poses, and the solution
proposed to achieve such objectives and address those questions.

CHAPTER 2: ANDROID MALWARE

This chapter presents fundamental concepts about Android apps and the process of
implementing malicious and potentially unwanted versions of such apps. The chapter then
presents an overview of the trends and functionalities adopted by Android malware found
in practice including the nature of the payloads found in them. Lastly, the chapter presents
the subjectivity of labeling malicious apps belonging to different malware types. Parts of
this chapter have previously appeared in peer-reviewed publications [8], [118], and [119]
co-authored by the author of this thesis.

CHAPTER 3: ANDROID MALWARE DETECTION

This chapter provides an overview of Android malware detection, its theoretical limitations,
and the objectives it pursues in practice. In this chapter, we focus on ML-based malware
detection methods and enumerate the challenges hindering effective detection. Parts of
this chapter have previously appeared in peer-reviewed publications [120] and [119],
co-authored by the author of this thesis.

CHAPTER 4: THRESHOLD-BASED LABELING STRATEGIES

This chapter focuses on threshold-based labeling strategies, their structure, advantages,
and disadvantages. It reveals their sensitivity to the dynamicity of VirusTotal, unveils
some limitations of the platform, and how to work around them to choose more stable
thresholds. Parts of this chapter have previously appeared in peer-reviewed publications
[9], and [116], co-authored by the author of this thesis.

CHAPTER 5: MAAT: A FRAMEWORK TO OPTIMALLY UTILIZE VIRUSTOTAL

This chapter presents the main contribution of this thesis: a systematic method, called
Maat, that automatically analyzes VirusTotal scan reports of pre-labeled apps to identify
the set of correct and stable VirusTotal scanners and uses such information to build
ML-based labeling strategies. We describe how the set of correct and stable scanners is
identified along with insights about VirusTotal and its scanners that we made in this
process. Parts of this chapter have previously appeared in peer-reviewed publications [9]
and [116], co-authored by the author of this thesis.

xi



CHAPTER 6: EVALUATING MAAT

This chapter evaluates Maat’s ability to assign labels to apps based on their VirusTotal
scan reports that accurately reflect their ground truths. The chapter also discusses the
impact of such accurate labeling on the performance of ML-based detection methods and,
in general, the role of accurate labeling on the performance of detection methods. Parts
of this chapter have previously appeared in peer-reviewed publications [9] and [116],
co-authored by the author of this thesis.

CHAPTER 7: AN ALTERNATIVE TO VIRUSTOTAL

This chapter recaps the limitations of VirusTotal that were unveiled throughout the thesis
and details the design of an alternative platform that tackles the issues of VirusTotal,
effectively providing the research community with a more reliable, consistent, and stable
source of labels for Android apps. Parts of this chapter have previously appeared in
peer-reviewed publication [116], co-authored by the author of this thesis.

CHAPTER 8: RELATED WORK

This chapter enumerates and discusses related work particularly in the fields of designing
and evaluating Android malware analysis and detection methods and identifies research
gaps relevant for this thesis. Parts of this chapter have previously appeared in peer-reviewed
publications [9], [116], [8], [118], and [119] co-authored by the author of this thesis.

CHAPTER 9: CONCLUSIONS

This chapter summarizes the findings of this thesis and draws conclusions from them to
address the research questions posed in Chapter 1. It discusses the limitations of this work
and suggests different aspects on how to further enhance it.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked or cited explicitly. However, in Appendix H, we detail the parts taken from
each paper and the contribution of the author of this thesis to those papers.

xii



Contents

Acknowledgements

Zusammenfassung

Abstract

Outline of the Thesis

Contents

I. Introduction and Background

1. Introduction

1.1. ML-Based Malware Detection . . . . .
1.2. Problems and Literature Gaps . . . . .
1.2.1. Motivating Example . . . . ..
1.3. Thesis Overview . ... ... .....
1.3.1. Research Questions . . . .. ..
1.3.2. Solutions. .. ..........
1.3.3. Contributions . . .. ... ...
1.34. Datasets ... ..........
14. Structure . . ... ... ... ......

2. Android Malware

21. Android Apps . . . . ..
211. Components. . . ... ... ... ...
212, Compilation . . .. ... ... ...
2.1.3. Distribution . . . . . ... ...

2.2. Structure of Android Malware . . . . . .. ... .. ... ...

2.3. Android Malware Payloads and Functionalities . . ... .. ... ... ...

24. EvasionTechniques . . . . . ... .. ... ... ... ... .. .. ... ...
2.4.1. Identifier Renaming . . ... ... ... ... .. ... ... .. .. ..
242, StringEncryption . . . ... ... .. oL o
2.43. Reflection and Dynamic Code Loading . . . . .. ... ... .....
2.4.4. Anti-Analysis and Disassembly . . . . .. ... ... . ... ... ..

vii

ix

xi

xiii

11
13
13
14
15
18
20

21
22
22
25
26
27
29
30
31
32
32
34

xiii



Contents

II.

2.45. Triggersand Schedulers . . ... ..................... 35
246. AppRepackaging. . .. .. ... ... ... ... ... .. ... 41

2.5. Detection Rates of Android Malware Types . . . . ... ... ... ...... 43
26, SUMMATIY . . . . o v vt 48
Android Malware Detection 51
3.1. Malware DetectioninTheory . . . ... ... .. ... ............. 51
3.2. Malware Detection in Practice . . . . . ... ... ... ... ... ... .. 53
3.3. Malware DetectionMethods . . . . .. ... ... ... .. ... .. ..., 53
3.4. Machine-Learning-Based Detection . . . . . .. ... ... ........... 55
3.4.1. Data Collection and Labeling with AndroZoo and VirusTotal ... 55
3.4.2. Feature Engineering, Selection, and Extraction . . . . . ... ... .. 60
3.43. Training and Validation . . .. ... .. ................. 61
3.4.4. Decision Boundaries of Learning Algorithms . . . . . ... ... ... 63

3.5. Challenges Facing ML-Based Detection . . .. ... .............. 66
3.5.1. The Choice of Features and Classifiers . . . . ... ... ........ 66
3.5.2. The Subjectivity of Malware Labeling . . . . ... ... ........ 67
3.5.3. Performance Decay over Time . .. ... ................ 69
3.5.4. Adversarial Machine Learning . . . .. ... ... ........... 70

3.6, Summary . . . ... 71
Accurate Labeling for Better Detection 73
Threshold-Based Labeling Strategies 75
41. ChoosingaThreshold . .. .......... .. ... .. .. .. ....... 75
4.2. Labeling Accuracy of Threshold-based Labeling Strategies . . . . ... ... 76
4.3. Sensitivity to VirusTotal’s Dynamicity . . ... ... ... ... ... ... 80
4.4. Finding the Optimal Threshold . . . . . ... ... ... ... ..... ... 84
45. Summary . . . ... .. 87
Maat: A Framework to Optimally Utilize VirusTotal 89
51. Overview . . . . . . .. 90
52. Correctness of VirusTotal Scanners . . .. ... ............... 92
5.3. Stability of VirusTotal Scanners . . .. .. .................. 98
5.4. Stability of virusTotal ScanReports . . . . . ... .. ... ... ... .. 100
5.5. Features Extracted from Scan Reports . . . .. ................. 103
55.1. Engineered Features . . .. ... ... ... ... ... . ... . .... 103
55.2. NaivePFeatures . ... .. ... .. ... ........ ... . ..., 104

56. UsingMaat. . . ... ... ... .. ... . ... 104
5.6.1. Preparing the Training Dataset . . . .. ... ... ... ........ 104
5.6.2. Training ML-based Labeling Strategies . . . ... ... ... .. ... 106

Xiv



Contents

5.6.3. Labeling Apps Using Maat’s ML-based Labeling Strategies

57. Summary . . . . ... e

6. Evaluating Maat

6.1. Accurately Labeling Apps . . . .. ... ........ .. .......
6.2. Features Learned by ML-based Labeling Strategies . . . . . . . . ...
6.2.1. Engineered Features . . .. ... ... ... ...........
6.2.2. NaiveFeatures . .. .. ... ... ... ... . .........
6.3. Sensitivity to VirusTotal’s Dynamicity . ... ... ... ......
6.3.1. Impact of VirusTotal’s Dynamicity During Training . . . .
6.3.2. Impact of VirusTotal’s Dynamicity During Test . . . . . . .
6.4. Enhancing Detection Methods . . . . . ... ...............
6.5, Summary . . . ...

7. An Alternative to VirusTotal

7.1. A Summary of VirusTotal’s Limitations . . . . ... ... .......
7.2. Platform Overview . .. .. ... .. .. ... ... ...........
7.3. Challenges and Limitationsof Eleda . . . . ... ... ... ... ...
74 Summary . ...

II1. Related Work and Conclusion

8. Related Work

8.1. DefiningMalware . . . . . ... ... .. ... ... .. . L.
8.1.1. Formal Definitions . . . ... ... ... ... ... .......
8.1.2. Structural and Behavioral Definitions . . . ... ... ... ..
813. Summary . ... .... ... ...

8.2. MalwareDatasets . . . . . . ... . ... ... ...

8.3. Studying VirusTotal . .. .. .. ... ... ... .. ...

8.4. Labeling Strategies . . ... ... ... ... ...... .. .......
8.4.1. Label Unification . . ... ... ... ... ... .. .......
8.4.2. Discerning Malignancy . . ... .................

9. Conclusions

9.1. Addressing Research Questions . . . . ... ...............
9.2. Literature Gaps and Contributions . . . ... ... ... ... .....
93. Limitations . . . . ... ... ... .. ... L
94. FutureWork . . .. ... ...

Bibliography

Glossary

XV



Contents

List of Figures

List of Listings

List of Tables

Appendix
A. Manual AnalysisProcess . . . . ... ... ... ... . L o L
B. BitDefender and PandaVs. AMDApps .. ... .. ... .........
C. Maat’s Engineered Features . . . . ... ... ... .. .............
D. Maat’s Selected Naive Features . . . . ... .. ... ... ... .......
E. Maat’s Hyperparameter Estimation . . ... ... ... ............
F. Homegrown Dataset . . . ... ... ... ....................
G. StaticFeatures . . . . .. ... ... ...
H. Papers Usage and Author Contribution . ... ... ... ...........

191

195

197

Xvi



Part I.

Introduction and Background






1. Introduction

Aware of the threat it poses, detection of malware has been extensively researched in
industry and academia alike. Despite being largely proprietary, antiviral software companies
are believed to continue to rely on semi-automatic, signature-based processes to analyze and
detect malicious applications (hereafter apps). That is, in addition to automated tools that
attempt to identify the nature of an app (i.e., malicious or benign), human analysts are often
summoned to assess the malignancy of apps under test, especially if the aforementioned
tools fail to reach a verdict [98]. If an app is found to be malicious, a representation of this
app (e.g., cryptographic hash digest, Control Flow Graph (CFG), or call graph), is generated
and used as a reference against which representations of new apps discovered in the wild
(e.g., on app marketplaces), are compared. Unfortunately, this process suffers from two
limitations. Firstly, albeit necessary to ensure the accuracy of the labels assigned to apps
(i.e., malicious or benign), involving humans in the analysis process significantly slows it
down and renders it unable to cope with the continuous release of malicious apps. Secondly,
relying on signatures, regardless of their type, confines the detection process only to either
malicious apps that have been encountered before or ones that are very similar to them.
To address such limitations, researchers attempt to devise detection methods that (a) fully
automate the malware analysis and detection processes presumably utilized by antiviral
software firms, and (b) can detect malicious apps beyond its repository of previously-
analyzed and detected apps. To that end, researchers have devised a plethora of detection
methods that attempt to achieve these two goals [115, 139, 145, 131, 132, 79]. One particular
method that gained popularity within the research community is ML-based malware
detection [142]. ML algorithms excel at automatically identifying patterns and common
characteristics shared by data points within a given dataset and recognize such patterns
in data points beyond such a dataset (i.e., out-of-sample data points) [21]. These two
properties of ML algorithms are what researchers rely on to implement ML-based detection
methods that automatically learn characteristics of previously-analyzed malicious apps and
use the learned characteristics to recognize the malignancy of out-of-sample ones.
Although researchers report promising preliminary detection results [44], only a few of
commercial antiviral software are known to utilize ML-based detection [31, 64, 103]. Given
the continuous threat of malware [144, 150, 96] and the dire need for unorthodox detection
methods, the slow adoption of ML-based malware detection implies their inadequacy. In
fact, some researchers have recently been calling for a reboot of the malware detection
research area altogether [74]. The perplexing fact is that developers of different detection
methods usually report promising results in their papers using real-world malware, which
raises the question: how can a given detection method perform well under one particular



1. Introduction

setting (i.e., the one adopted during its evaluation), yet fail to replicate such performance
under another?

1.1. ML-Based Malware Detection

Malware authors tend to focus on platforms and operating systems that are popular among
their victims, regardless of their objectives, viz. exhibition of technical capabilities [105, 25],
monetary profit [142, 147], or sheer vandalism. Given its ubiquity and the willingness of its
users to acquire new apps, the Android platform embodies a lucrative target for malware
authors. Consequently, Android has been continuously targeted by malware authors with
98% of mobile malware instances targeting the Android operating system, users, and app
marketplaces [142, 80]. So, given the vital role mobile devices play nowadays, in this thesis,
we focus on Android malware as a case study of malware analysis and detection.

To identify the potential reasons behind the inability of current ML-based Android
malware detection methods to replicate their performance in controlled evaluation environm-
ents, we start by discussing the typical process of automated Android malware analysis
and detection. The problem of Android malware detection-and malware detection in
general—-can be reduced to that of matching out-of-sample apps to either individual apps
or to multiple apps that depict a malware family, such as DroidKungFu, a malware type,
such as Adware, or to labels that capture their malignancy (i.e., malicious versus benign).
The group of apps to which an app is matched dictates the class of the app. To perform this
matching, detection methods have to rely on repositories of Android apps that have been
pre-labeled. Unknown (malicious) apps are matched against apps in those repositories.

The process of automated ML-based Android malware detection can be abstracted,
as seen in Figure 1.1. Android apps are usually shipped in Android Package (APK)
archives. Such apps can be acquired (step (1)) by crawling Android marketplaces, from
online repositories, or using services, such as AndroZoo [10], that continuously crawl app
marketplaces for new apps and download them. We hereafter refer to such collections of
APK archives as app datasets. The more significant task within this step is that of labeling
the apps in the acquired dataset. Depending on the problem a researcher is attempting to
solve, the labels might range from simple binary labels (e.g., malicious and benign), to more
specific labels that depict the malware families or types of apps.

In essence, ML algorithms are mathematical models that process vectors of numerical
features that represent data points. In step (2), numerical features are extracted—and
further refined (step (3))—from the Android APK archives to represent each app as a feature
vector. The feature vectors along with the labels assigned to each app are used in step
(4) to train a ML algorithm into a model. Training a model tackles the first limitation of
conventional malware detection, namely it automatically finds common characteristics
within the numerical representations of the apps, and uses the identified characteristics to
segregate apps into the different classes dictated by the labels in () (e.g., malicious versus
benign).




1. Introduction

Test app
(i.e., out-of-sample)

(3) Classifier Parameters (a* — &%)
(e.g., RBF kernel, C=1.0)

Select/Extract features

Android APK archives m (4) l Q
A={a1,a9,...,an 2 oI TS
l {a1, a2, i n} (2) App Representation I Training and! . (6)
abelsa = {Malware,Benign, ..., Malware} | Extract o N 1 s 1ot 1 Classifier
xtrac X = {d1,% n} | validation of |
v — = W22, In _’I classifier | (e.g., SVM) #* matches:
labelsa = {Adware,Benign, ..., Trojan} catures 9 ={1,0,...,1} 1 (e.g., SVM) app: @ — #°
v | = T type:
) ) ) ype: Ransomware
labelsa = {Airpush,Benign, ...,Dowgin} return (7) family: Airpush
(1) malicious A None: benign
Adware A
Decision DroidKungFu

about (a*

Figure 1.1.: A universal architecture of ML-based Android malware detection methods
depicting the basic modules used to make decisions about apps’ classes.

The main objective of ML-based detection method is to be able to accurately discern
the classes of apps whose vectors were not used during the training phase (i.e., out-of-
sample apps), effectively tackling the second and main limitation of conventional detection
methods. Given a vector representation (£*) of an out-of-sample (or test) app («*) whose
features mimics the ones extracted from its training counterparts, in step (6), the trained ML
model attempts to match (£*) to a class of feature vectors that share similar characteristics.
In step (7), the model returns the label depicting the class with which (£*) shared the most
characteristics as the predicted label of («*).

The problems hindering the effectiveness of ML-based Android malware detection
methods can dwell in any of the previous operations and modules. For example, extracting
features from the APK archives of apps in the training dataset that do not reflect the class of
the app (e.g., app package name), prevents ML algorithms from finding characteristics that
can effectively segregate malicious and benign apps. Similarly, different ML algorithms are
suited to different types and forms of features extracted from Android apps [72]. Hidden
Markov Model (HMM), for instance, are used with traces of Application Programming
Interface (API) calls made by apps during runtime [120], whereas numerical, embedded
features are more suited for Support Vector Machine (SVM) [15]. In addition to these
two problems of feature engineering and ML algorithm selection, the problem of accurate
labeling is equally significant. Accurately labeling the apps in a dataset used by any
detection method is fundamental to the quality and reliability of the decisions it makes.
If apps are inaccurately or incorrectly labeled (e.g., malicious apps labeled as benign),
regardless of the approach it adopts, the detection method will base its decisions on false
information, effectively making false decisions about the nature of the test apps.

To further motivate the significance of correctly labeling apps used to train and evaluate
ML-based detection methods, consider the illustration in Figure 1.2. Assume that we have
a set of Android malicious (circles) and benign (triangles) apps that are represented using




1. Introduction

classification boundary

T <> xy, classification boundary T classification E)oundary T \
1 \ ]
O ! @ On ! @
A 8 O A / A e A . . ® A A" ®
ha 00 Ao oo an oo s 10
A O A @ A (©} A'® @
A D o © NL o © A A o @ A A% 1" @
O N o ! o
A @ /A ® A o | A7 e
1
To To To )
(a) Unlabeled (b) Labeled with 1 (c) Labeled with p; (d) Labeled with 3

Figure 1.2.: An illustration of the processes of labeling Android apps and using the labeled
apps to train detection methods. Uncolored circles, triangles, and diamond
depict malicious, benign, and unknown (zero-day) apps. Shapes colored in red
indicate a malicious label, shapes colored in green indicate a benign label, and
shapes colored in orange indicate an unknown label.

a two-dimensional feature set, as seen in Figure 1.2a. Now assume that we label these
apps as malicious (red) and benign (green) according to three strategies: (y1), (y2), and
(u3). The labels assigned to the apps are going to impact the decision boundary a detection
methods (e.g., SVM), will attempt to find to separate apps into malicious and benign. The
more accurate a labeling strategy (y;) is, the more precise a detection method can find a
decision boundary between malicious and benign apps, which will impact the labels given
to out-of-sample apps depicted here as an orange diamond. For example, the labeling
strategy used in Figure 1.2b labels the apps in a manner that would put the orange diamond
on the side of malicious apps. In contrast, using a labeling strategy that is more biased
towards labeling apps as benign, the diamond will more likely be on the side of benign
apps, as seen in Figure 1.2c.

In this hypothetical scenario, (y3) labels apps as malicious and benign more accurately
than (y1) and (u2). However, this does not guarantee that the zero-day app is indeed
malicious. Adopting a different feature set or a high-dimensional feature space may
position the app’s representation on a different side of the learned classification boundary.
So, labeling strategies enable detection methods to be trained using more accurate labels
and, in theory, be more effective. This does not impact the detection methods” abilities to
detect apps far from what it has seen before (e.g., because they are newer [44]). As we
discuss later in this chapter, adopting different labeling strategies might create different
perspectives through which researchers assess the effectiveness of their ML-based detection
method differently. For instance, albeit using the same training dataset and the same ML-
based detection method, researchers adopting (1) to label apps in Figure 1.2a will encounter
different detection performance from their detection method than those researchers adopting
(u2), which will discourage the latter group of researchers from further pursuing an
otherwise promising approach to detect Android malware. Consequently, in order to
objectively be able to evaluate the effectiveness of a given ML-based detection method,




1. Introduction

researchers need to ensure that the labels they assign to apps used to train and evaluate the
detection method reflect the ground truth of apps (i.e., malicious and benign), as accurately
as possible.

Given the importance of labeling, in theory, labels should be assigned to apps after
manual static and dynamic inspection of the apps’ structures, codebases, and runtime
behaviors. Nonetheless, the frequent release and discovery of malicious apps and the need
of a large number of apps to train effective ML-based detection methods render manual
labeling infeasible. As a workaround, the research community relies on the labels provided
by online platforms with VirusTotal being the de facto platform to acquire and label
apps [150, 75, 139, 153, 156]. VirusTotal does not label apps as malicious and benign.
Given a hash of an app or its executable, the platform returns the labels given by around 60
antiviral scanners to the app along with information about its content and runtime behavior.
It is up to the platform’s user to decide upon strategies to interpret such information to
label apps as malicious and benign.

1.2. Problems and Literature Gaps

In this section, we discuss the problems associated with relying on VirusTotal to label
Android apps used in training and evaluating ML-based malware detection methods. We
also discuss how the research community addresses each problem, effectively revealing
gaps in the literature we aspire to fill.

We identified four main problems associated with relying on VirusTotal to label
Android apps. First and foremost, relying on online platforms, such as VirusTotal, to
generate the ground truth of Android apps imposes an upper bound on the performance of
(ML-based) detection methods. To explain this, consider the following example: a researcher
downloads the VirusTotal scan reports of Android apps in a dataset they use to test
the detection performance of their newly-devised ML-based malware detection method.
Regardless of how the researcher interprets the scan results in the aforementioned scan
reports to label apps as malicious and benign, the generated labels act as the apps” ground
truth. By definition, the labels predicted by the researcher’s ML-based malware detection
method cannot surpass the generated ground truth, even if such a ground truth is inaccurate.
The predicted labels will, at best, mimic the VirusTotal-based ground truth indicating
a perfect classification accuracy. As we discuss later, the scan result in VirusTotal scan
reports can be interpreted in multiple ways and may in fact be flawed. However, regardless
of the correctness of VirusTotal scan reports and how they are interpreted, this problem
still persists: no detection method can perform better than its ground truth, which is based
on VirusTotal in this case. Unfortunately, there is no clear solution to this problem, and
we do not attempt to find a solution for it in this thesis. Instead, we accept this problem as a
limitation of utilizing VirusTotal to label Apps, and we focus on providing the research
community with insights about how to best utilize VirusTotal and interpret its scan
reports to generate ground truth for Android apps that might better reflect their nature (i.e.,




1. Introduction

malicious and benign).

Secondly, VirusTotal is confined to the labels given by commercial antivirus scanners.
In some cases, such scanners are unable to detect the malignancy of an Android app (e.g.,
zero-day malware). Using VirusTotal to label apps will result into mislabeling this
malicious app as benign, regardless of the utilized strategy to label the app. It follows
that any ML-based detection method that is trained using such an incorrect label would
mislabel similar malicious apps (e.g., belonging to the same malware family), as benign as
well. Correctly labeling the mislabeled malicious app as malicious is, from the perspective
of the ML-based detection methods, a false positive. So, we can state the first problem and
literature gap with using VirusTotal to label Android apps as follows:

Using VirusTotal to label apps: Literature Gap 1

Upon evaluating novel ML-based detection methods using datasets labeled using
VirusTotal, the performance of such methods is bound to the correctness of the
labels given by VirusTotal’s scanners, which cannot always provide accurate
labels that reflect the ground truth of Android apps. In the literature, there are no
clear suggestions on how to work around this problem via, for instance, identifying
VirusTotal scan reports that may contain inaccurate verdicts and, hence, need to
be avoided.

Recall that the role of platforms, such as VirusTotal, is not to help ML-based detection
methods to correctly classify previously-analyzed apps; but rather to train models that
address the limitations of conventional malware detection methods by detecting out-of-
sample malicious apps. However, if the model is trained using inaccurate labels, it is
unlikely that it could effectively separate malicious and benign apps and, in turn, detect
out-of-sample malicious apps. Unfortunately, any platform that relies on the verdicts of
commercial scanners, including VirusTotal, cannot circumvent this problem. The only
other option is to either manually label apps, which is infeasible, or embed human analysts
within the labeling process as suggest in [91]. In order to address this problem in this
thesis, we break this problem into the following subproblems, addressing which could
mitigate the negative impact of the main problem on the accuracy of labeling strateges. An
important assumption in this thesis is that VirusTotal scan reports improve (i.e., in terms
of the accuracy of labels given by different scanners), and stabilize over time. If we can find
indications of stability of VirusTotal scan reports (e.g., age of scan report), then we can
focus on apps whose scan reports are stable and are more likely to help accuractely label
their corresponding apps. In the literature, there are subjective claims that VirusTotal
scan reports stabilize within a specific period of time. Nevertheless, such claims neither
define what is meant by stability nor the method used to estimate this period. That is, there
are no clear methods in the literature to estimate the stability of a VirusTotal scan report.




1. Introduction

Using VirusTotal to label apps: Literature Gap 1.1

In the literature, there are no methods to define or estimate the stability of a
VirusTotal scan report, which can help avoid scan reports that do not reflect
the malignancy of some Android apps.

The second subproblem focuses on the types of Android apps whose scan report usually
take longer time to stabilize. The malignancy of some malware types, such as Adware,
is often debated, which might be reflected in the number of scanners deeming them as
malicious. In addition to some malware types, our experience with scanning in-house
developed malicious apps with VirusTotal suggests that the scanners on the platform
are oblivious to malicious apps that cannot be found in the wild. Lastly, commercial
antivirus software usually need some time to recognize the malignancy of newly-developed
malware. So, the VirusTotal scan reports of new malware instances are expected not to
reflect the malignancy of such apps. In addition to these examples, identifying the types
of apps whose VirusTotal scan reports can be misleading can help researchers to rule
out those apps. Similar to the first subproblem, there are no methods in the literature that
reveal such apps.

Using VirusTotal to label apps: Literature Gap 1.2

In the literature, there are no clear insights on how to identify Android apps whose
VirusTotal scan reports might not reflect their ground truth.

In [44], Pendlebury et al. demonstrated the impact of time on the performance of
ML-based detection method. In what is known as performance decay over time, they
demonstrated that if a detection method exclusively relies on older apps, then it will
eventually lose the ability to accurately classify apps that are more recently developed. So,
ML-based detection methods should be continuously updated with new Android apps
whose VirusTotal scan reports are yet to stabilize or those that belong to some malware
types that are not recognized by all antivirus software as malicious. To be able to label
such new apps, one can rely on the verdicts given by a subset of scanners that proved to be
more accurate than others. However, this presumes that there is a universal and permanent
set of VirusTotal scanners that are accurate across datasets. Given the dynamicity of
VirusTotal, one cannot assert the existence of such a universal set of scanners. To the best
of our knowledge, there are neither studies that identify such a universal set of scanners
nor ones that define a methodology on how identify them.




1. Introduction

Using VirusTotal to label apps: Literature Gap 1.3

In light of VirusTotal’s dynamicity, there are no studies in the literature that argue
for or against the existence of a permanent set of VirusTotal scanners that are
universally correct across different datasets.

The third main problem associated with using VirusTotal to label Android apps is that
there are no standard procedures for interpreting the scan results acquired from VirusTotal
to label apps. Researchers hence use their intuitions and adopt ad hoc threshold-based
strategies to label the apps in the datasets used to train and evaluate their detection methods
or release to the research community as benchmarks. In essence, threshold-based labeling
strategies deem an app as malicious if the number of antiviral scanners labeling the apps
as malicious meets a certain fixed threshold. For example, based on VirusTotal’s scan
reports, Li et al. labeled the apps in their Piggybacking dataset as malicious if at least one
scanner labeled them as malicious [75]. Pendlebury et al. labeled an app as malicious if
four or more scanners did so, and based the evaluation of their tool on such threshold
[44]. Wei et al. labeled apps in the AMD dataset as malicious if 50% or more of the total
scanners labeled an app as such [153]. Finally, the authors of the Drebin dataset [15]
labeled an app as malicious if at least two out of ten scanners they manually selected
courtesy of their reputation (e.g., AVG, BitDefender, Kaspersky, and McAfee) did so.
Using different thresholds significantly hinders comparing the performances of ML-based
detection methods, even if they utilize the same dataset of training apps.

Using VirusTotal to label apps: Literature Gap 2

The lack of standards on how to interpret VirusTotal scan results to label (Android)
apps forces researches to adopt subjective threshold-based labeling strategies to
label apps which might hinder the comparison of different ML-based detection
methods. Moreover, researchers neither specify the reasons behind adopting a
particular threshold nor report the performance of their methods using different
thresholds found in the literature.

Some of the aforementioned labeling strategies may indeed accurately label apps better
than others. However, researchers have found VirusTotal to be a dynamic platform that
frequently changes [101, 91, 92]. Unfortunately, the details of VirusTotal’s dynamicity
and how it impacts the accuracy of threshold-based labeling strategies are not detailed
in the literature. Without knowing how VirusTotal changes, researchers can neither
devise labeling strategies that are more resilient to the platform’s dynamicity nor design

10



1. Introduction

and implement alternative platforms that avoid VirusTotal’s limitations.

Using VirusTotal to label apps: Literature Gap 3

VirusTotal is known within the research community to be a dynamic, volatile
platform. This dynamicity undermines the usage of fixed thresholds to label apps
for prolonged periods. However, no significant details could be found in the
literature about the aspects of its dynamicity, how it impacts the labeling accuracies
of threshold-based labeling strategies, or how it can be circumvented.

The lack of solutions to the aforementioned problems associated with using VirusTotal
to label Android apps used to train ML-based detection methods makes it difficult to
objectively assess their performance. On the one hand, using a threshold-based labeling
strategy that does not accurately reflect the ground truths of apps in a dataset used to
train ML-based detection methods might negatively affect its performance, which leads
their developers to dismiss a rather promising detection approach. On the other hand,
developers of inadequate detection methods might get a false sense of confidence in the
detection capabilities of their detection methods because they perform well, albeit using
an inaccurate labeling strategy [100, 121]. Furthermore, the dynamicity of VirusTotal
prevents the utilization of a fixed threshold for prolonged periods. So, if a ML-based
detection method was evaluated using apps labeled based on VirusTotal scan reports
and a certain threshold at one point in time, it is unlikely that the same threshold can be
used in the future to replicate the initial evaluation results on a newer version scan reports.

1.2.1. Motivating Example

In this section, we give an example of how the problems associated with using VirusTotal
to label Android apps manifest, and how they undermine the objective evaluation of a
malware detection methods. During the evaluation of an Android malware detection
method we implemented, we came across a dubious scenario involving a test app called
TP .LoanCalculator thatis part of the Piggybacking [75] dataset. Despite being labeled
by the dataset authors as malicious, our detection method deemed this test app! as benign
because it had the same metadata (e.g., package name and description), compiler, and
even codebase digest as one benign app? that our detection method kept in a repository of
reference benign apps.

Authors of the Piggybacking dataset labeled apps with the aid of VirusTotal scan reports
using a threshold of one scanner [75]. After querying VirusTotal for the scan reports
of both apps, we found that the test app was labeled malicious by 14 out of 60 antiviral
software scanners, whereas all scanners that deemed the reference app as benign, which
coincides with the authors’ labels. However, we noticed that the scan reports acquired from

12b44135f245a2bd 104c4b50d c9df889dbd8bc79b
2d8472¢f8dcc98bc124bd5144bb2689785e245d83

11


http://tiny.cc/n1omiz
http://tiny.cc/p2omiz

1. Introduction

VirusTotal indicated that the apps were last analyzed in 2013. So, we submitted the apps’
APK archives for re-analysis in November 2018 to see whether the number of scanners
would differ. After re-analysis, the malicious test app had three more scanners deem: it
malicious. More importantly, the number of scanners deeming the benign reference app as
malicious changed from zero to 17 after re-analysis. Ultimately, we found that the reference
app initially labeled and released as part of the Piggybacking dataset as a benign app is, in
fact, another version of a malicious app of the type Adware. The authors of Piggybacking did
not intentionally mislabel apps. The most likely scenario is that, at the time of releasing the
dataset, the reference app was still deemed as benign by the VirusTotal scanners. This
behavior demonstrates the problem with using VirusTotal thatis associated with the first
gap: the detection methods trained using VirusTotal-based labels cannot outperform
the labeling accuracy of VirusTotal itself especially on previously-analyzed and labeled

apps.

The numbers above mean that, at most, about 28.33% of VirusTotal scanners (i.e.,
17 out of 60), deemed both apps as malicious with some renowned scanners, such as
AVG, McAfee, Kaspersky, Microsoft, and TrendMicro continuing to deem both apps
as benign. So, depending on the adopted labeling strategy, both apps may be correctly
classified as malicious. For example, according to the dataset authors’ strategy to label an
app as malicious if at least one scanner deems it so [75], both apps would be labeled as
malicious. The same would not hold for the authors of the AMD dataset who consider
an app as malicious if at least 50% of the VirusTotal scanners deem it malicious [153].
This demonstrates the impact of lacking a standard methodology to devise thresholds that
interpret VirusTotal scan reports to accurately label apps as malicious or benign (i.e., the
problem associated with the second gap).

Lastly, to demonstrate the problem with using VirusTotal to label Android apps
resulting from the third gap, we reanalyzed both apps six months later (i.e., in April 2019),
to check whether the number of VirusTotal scanners deeming them malicious changed.
We found that the number of scanners deeming the test and reference apps as malicious
decreased from 17 to 11 and 10 scanners, respectively. Nevertheless, the number of scanners
deeming both apps malicious increased in July 2020 to be 14 scanners. So, depending on the
point in time the VirusTotal scan reports of both apps were acquired, a threshold-based
labeling strategy using a threshold, such as 12 scanners, would assign different labels to the
apps, which might impact the performance of the detection method relying on those labels
during training.

The literature gaps we discussed in Section 1.2 cause problems with using VirusTotal
to label Android apps used to train and evaluate ML-based detection methods. In this
section, we demonstrated these problems and how they impact the performance of such
methods. In the following sections, we detail the objectives of this thesis and how they
attempt to devise solutions to such problems, effectively addressing the associated literature

gaps.

12



1. Introduction

1.3. Thesis Overview

The infeasibility of manually analyzing and labeling Android apps forces the research
community to use VirusTotal scan reports to label those apps. In the previous sections,
we discussed and demonstrated the problems associated with using VirusTotal to label
apps and how it undermines the objectivity of evaluating ML-based detection methods
meant to detect out-of-sample malicious apps. The main problems we discussed were
related to VirusTotal’s dynamicity, which is not sufficiently discussed within the research
community, that makes it difficult to devise labeling strategies that cope with such a
dynamicity. In this context, the ultimate solution to VirusTotal’s dynamicity is to
replace it with a more stable platform. However, until either VirusTotal addresses
its limitations or an alternative platform is developed and tested, the research community
is expected to continue to use VirusTotal. Furthermore, without revealing the aspects
of VirusTotal’s dynamicity, the research community risks implementing an alternative
platform that suffers from similar shortcomings as VirusTotal. So, the overarching
objective of this thesis is to provide the research community with actionable insights about
VirusTotal, the aspects of its dynamicity, its limitations, and how to optimally interpret
its scan reports to label Android apps accurately.

1.3.1. Research Questions

For each problem and corresponding literature gap we identified with using VirusTotal
scan reports to label Android apps used to train and evaluate ML-based detection methods
(detailed in Section 1.2), we posulate a number of research questions. Addressing these
questions should help us solve or address their corresponding problem and, ultimately,
achieve the main objective of this thesis, viz. optimally utilizing VirusTotal to label
Android apps.

With the first three research questions, we attempt to address the first literature gap
associated with using VirusTotal to label apps. Answering those research questions
should enable us to identify Android apps whose VirusTotal scan reports might not
reflect their ground truth. By ruling those scan reports out or devising special techniques to
interpret them to label the corresponding apps, we can improve the quality of labels based
on the VirusTotal scan reports.

RQ1: How can we deem a VirusTotal scan report of an Android app as stable before
using it to label the app? (addressed in Chapter 5)

RQ2: What are the properties of an Android (malicious) app (e.g., malware type, age,
source), that makes it difficult for VirusTotal scanners to correctly label it?
(addressed in Chapter 2 and Chapter 4)

RQ3: Is there a universal ensemble of VirusTotal scanners that are more correct over
time than others? (addressed in Chapter 5)

13



1. Introduction

The fourth research question is linked with the second literature gap: the lack of standard
methodologies to interpret VirusTotal scan reports in order to label Android apps.
Regardless of the adopted labeling strategy, standardizing the interpretation of VirusTotal
scan reports is expected to eliminate subjective, ad hoc threshold-based labeling strategies
widely-adopted within the research community and, in turn, facilitate comparing the
performance of different ML-based detection methods.

RQ4: How can we standardize the interpretation of VirusTotal scan reports to produce
accurate labels for Android apps? (addressed in Chapter 4, Chapter 5, and Chapter 6)

We address the third literature gap of using VirusTotal by postulating the following
research question. The literature mentions that VirusTotal is a dynamic platform, but
does not detail its aspects of dynamicity and how they impact labeling strategies. Identifying
those aspects enables us to devise labeling strategies or amend existing ones to circumvent
them or minimize their negative impact. This might also contribute to the standardization
of interpreting VirusTotal scan reports to accuractely label apps.

RQ5: What are the aspects of VirusTotal’s dynamicity that impact the performance
of labeling strategies, particularly threshold-based ones? (addressed in Chapter 4,
Chapter 5, and Chapter 6)

Ultimately, VirusTotal needs to be amended or replaced altogether with a more
accurate and stable platform. Without knowing the exact limitations of VirusTotal,
the research community risks implementing alternative platforms that suffer from the
same shortcomings. But answering the following research questions, we should be able to
identify the main limitations of VirusTotal that need to be avoided. The answer to this
research question is only made possible by answering the previous ones.

RQ6: What are the limitations of VirusTotal and how can they be mitigated? (addressed
in Chapter 7)

1.3.2. Solutions

Our solution to answer the research questions postulated in the previous section is two-
fold. Firstly, we studied the performance of different threshold-based labeling strategies
based on VirusTotal scan reports over time. This study revealed an important aspect of
VirusTotal’s dynamicity (RQ5): the platform frequently and randomly changes the sets
of scanners it includes in the scan reports of apps, including scanners that correctly label
those apps. This finding implies that thresholds that were once found to yield accurate
labels cannot be fixed and utilized for prolonged periods. Instead, before labeling Android
apps based on their VirusTotal scan reports, the currently optimal thresholds need to be
re-calculated. Given the popularity and simplicity of threshold-based labeling strategies,
we devised an algorithm to identify the currently optimal thresholds at any point in time

14



1. Introduction

and discussed the conditions that need to be satisfied in order for such an algorithm to be
effective (RQ4).

Secondly, we implemented and evaluated a framework, Maat® that supports two main
functionalities. Maat is a set of tools that automatically analyze a the VirusTotal scan
reports of pre-labeled apps to (a) calculate the labeling accuracy of different VirusTotal
scanners against different malware types and families over time (RQ2), (b) identify the
set of VirusTotal scanners that proved to be the most accurate at labeling apps in
any given dataset over time (RQ3), (c) find the set of VirusTotal scanners that whose
labels do not fluctuate over time (i.e., stable scanners) (RQ3), and (d) trace and plot the
evolution of the number of scanners deeming apps in a dataset as malicious as part
of estimating the time take for a VirusTotal scan report to stabilize (RQ1). More
importantly, instead of having to re-calculate the optimal threshold every time researchers
wish to label apps in their datasets or rely on subjective, ad hoc thresholds, Maat offers an
automated and systematic method to infer adequate labeling strategies as follows. Maat
uses the information gathered from analyzing VirusTotal scan reports of apps in a pre-
labeled dataset to automatically train ML-based labeling strategies that can withstand
VirusTotal’s dynamicity for longer periods of time and, hence, need not to be re-trained
on a regular basis (RQ4). Our evaluation of Maat shows that its ML-based labeling strategies
can match and outperform threshold-based labeling strategies that use the currently optimal
thresholds at accurately labeling Android apps based on their VirusTotal scan reports.
Furthermore, the ML-based detection methods whose feature vectors were labeled using
Maat’s ML-based labeling strategies outperformed those methods whose feature vectors
were labeled by threshold-based labeling strategies. That is, Maat contributed to training
ML-based detection methods more effective at detecting out-of-sample (malicious) apps.

1.3.3. Contributions

At the end of this research, the following contributions are made:

* Revealing the types of Android apps that are difficult for VirusTotal scanners
to correctly label. We reveal in this thesis that VirusTotal scan reports do not
always provide the correct verdicts vis-a-vis the label of an app (i.e., malicious or
benign), which would have negative impacts on labeling strategies that consider such
scan reports as ground truth. In the literature, we found no guidelines on how to
identify Android apps whose VirusTotal scan reports may include misleading scan
results (the first literature gap). In Chapter 2, Chapter 4, and Chapter 5, we reveal
some characteristics of Android apps that correlate with misleading VirusTotal
scan results, including the type of a malicious app (e.g., Adware), how recently

3Maat refers to the ancient Egyptian concepts of truth, balance, harmony, and justice. Our framework builds
ML-based labeling strategies that harmonize the labels given by different VirusTotal scanners to provide
accurate and reliable labels to apps.

15



1. Introduction

was it developed, and whether it can be found on public platforms, such as app
marketplaces.

Identifying the aspects of VirusTotal’s dynamicity, their impact on threshold-
based labeling strategies, and how to counter them. The dynamicity of VirusTotal

and its scan reports undermines the effectiveness of threshold-based labeling strategies,
which continue to be used within the research community. In the literature, we found

no clear description of the aspects of VirusTotal’s dynamicity and how they impact

this type of labeling strategies (i.e., the third literature gap we identified). To address

this gap, in Chapter 4 and Section 5.2, we discuss the elements of VirusTotal’s

dynamicity that undermine the labeling accuracy of conventional threshold-based

labeling strategies that rely on fixed thresholds, which are commonly used within the

research community. Furthermore, we propose a method to find the current optimal

threshold of VirusTotal scanners to be used by threshold-based labeling strategies,
and enumerate the conditions needed to be satisfied in order for this method to be

effective.

A systematic method to automatically analyze VirusTotal scan reports for accurate
labeling and better detection of Android (malicious) apps. Threshold-based labeling
strategies are subjective, susceptible to VirusTotal’s dynamicity, and require frequent
analysis of VirusTotal scan reports to identify the current optimal thresholds.
Unfortunately, the alternative methods that were developed by the research community
remain largely manual, are insufficiently evaluated to verify their impact on the
malware detection process, and do not provide insights to the community on how or
when to be used (i.e., the second literature gap associated with utilizing VirusTotal).
We address this literature gap by implementing and publicly releasing (https://github
.com/tum-i22 /Maat) the source code of Maat (Chapter 5): a framework that provides
the research community with a systematic method to generate ML-based labeling
strategies on-demand based on the current scan results provided by VirusTotal.
The results of our experiments show that Maat’s ML-based labeling strategies are less
sensitive to the dynamicity of VirusTotal, which enabled them to (a) accurately
label apps based on their VirusTotal scan reports more consistently than their
threshold-based counterparts and (b) improve the detection capabilities of ML-based
detection methods (Chapter 6).

Detailing the limitations of VirusTotal and how to mitigate them. There are
voices within the research community that call for the replacement of VirusTotal.
However, without a clear enumeration of the shortcomings of VirusTotal, we risk
implementing alternative labeling platforms that suffer from the same shortcomings
of VirusTotal. Revealing the aspects of VirusTotal’s dynamicity enabled us
to identify four main limitations of VirusTotal that sometimes undermine its
reliability and usefulness. Those limitations are (a) frequent, seemingly haphazard
inclusion and exclusion of scanners in the scan reports of apps, (b) using inadequate

16


https://github.com/tum-i22/Maat

1. Introduction

versions of scanners that are designed to detect malicious apps for other platforms,
(c) refraining from frequently and automatically reanalyzing and re-scanning apps,
and (d) denying access to the history of scan reports. Unless VirusTotal addresses
such limitations, an alternative platform ought to be implemented and adopted by the
research community. In Chapter 7, we propose a blueprint of an alternative scanning
platform, Eleda, that is meant to provide the research community with more reliable
and trustworthy labels.

In implementing the previously-discussed solutions, the following peer-reviewed publications
either have been published or are under review:

1. Salem, A.; Paulus, F; Pretschner, A. Repackman: A Tool for Automatic Repackaging
of Android Apps. In Proceedings of the 1st International Workshop on Advances in
Mobile App Analysis (A-Mobile), 2018.

2. Salem, A.; Pretschner, A. Poking the Bear: Lessons Learned from Probing Three Android
Malware Datasets. In Proceedings of the 1st International Workshop on Advances in
Mobile App Analysis (A-Mobile), 2018.

3. Salem, A.; Schmidt, T.; Pretschner, A. Idea: Automatic Localization of Malicious Behaviors
in Android Malware with Hidden Markov Models. In Proceedings of the International
Symposium on Engineering Secure Software and Systems (ESSoS), 2018.

4. Salem, A.; Hesse, M., Neumeier, ]., Pretschner, A. Towards Empirically Assessing
Behavior Stimulation Approaches for Android Malware . In Proceedings of the 13th
International Conference on Emerging Security Information, Systems and Technologies
(SECURWARE), 2019.

5. Salem, A.; Banescu, S., Pretschner A. Maat: Automatically Analyzing VirusTotal for
Accurate Labeling and Effective Malware Detection. In ACM Transactions on Privacy and
Security (TOPS) [Under Review], 2021.

6. Salem, A. Towards Accurate Labeling of Android Apps for Reliable Malware Detection.
In Proceedings of the 11th ACM Conference on Data and Application Security and
Privacy (CODASPY), 2021.

In addition to the previously enumerated papers, the author of this thesis has co-authored
the following peer-reviewed publications, which tackle relevant problems, related to the
topic of this thesis, but are not part of this thesis:

7. Salem, A GoldRusher: A Miner for Rapid Identification of Hidden Code. In Proceedings
of the 25th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018.

17



1. Introduction

8. Salem, A; Banescu, S. Metadata Recovery From Obfuscated Programs Using Machine
Learning. In Proceedings of the 6th Software Security, Protection and Reverse Engineering
Workshop (SSPREW), 2016. Best Paper Award.

9. Banescu, S; Wuechner, T; Salem, A; Guggenmos, M; Ochoa, M; Pretschner, A. A
Framework for Empirical Evaluation of Malware Detection Resilience Against Behaviour
Obfuscation. In Proceedings of 10th International Conference on Malicious and
Unwanted Software (MALWARE), 2015.

1.3.4. Datasets

In this section, we briefly discuss the composition and the role of the datasets we used in
conducting our experiments to answer the research questions postulated in Section 1.3.1.

The largest dataset we use in this paper is a combination of 24,553 malicious apps from
the AMD dataset [153] and 24,162 benign apps we downloaded from AndroZoo [10]. The
malicious apps of AMD are meant to provide an overview of malicious behaviors that can be
found in Android malware, spanning different malware families (e.g., DroidKungFu[161],
Airpush[42], Dowgin[45], etc.) and different malware types (e.g., Adware, Ransom (ware),
and Trojan). To build the dataset, the authors of AMD only considered apps whose
VirusTotal scan reports indicate that at least 50% of the scanners deem them as malicious,
clustered them into 135 malware families, and manually analyzed samples of each family
to ensure their malignancy. After analysis, the behavior of each family is represented as
human-readable, graphical representation* of the behavior adopted by apps in each of the
135 malware families that can be found in the dataset. The involvement of human operators
in labeling the apps and the high number of scanners deeming them malicious significantly
decreases the likelihood of a benign app being mistakenly labeled as malicious. So, we
consider all apps in the AMD dataset as malicious.

As for the benign apps we acquired from AndroZoo, we downloaded a total of 30,023 apps
that were gathered from the Android official app store, Google Play. Google Play employs
various checks to ensure the sanity of an app upon being uploaded [98], but sometimes
malicious apps make it to the marketplace [150, 82]. So, we only considered apps whose
VirusTotal scan reports indicate that no scanners deemed them as malicious at any point
in time. This criterion does not guarantee that the apps’ scan reports will continue to have
a positives attribute of zero in the future. However, given that the apps were collected
from Google Play, which already employs various checks to ensure the sanity of an app
upon being uploaded to the marketplace [98], we presume that the VirusTotal scan
reports of such apps will not radically change in the future in a manner similar to the apps
discussed in Section 1.2.1. Consequently, we consider all apps in the GPlay dataset that fit
the aforementioned criterion (i.e., 24,162 apps) as benign.

We refer to the combination of apps in the two previous datasets as AMD+GPlay, whose
VirusTotal scan reports are used to train Maat’s ML-based labeling strategies. We

“Example: Airpush family’s first variety (http:/ /tiny.cc/34d86y)

18



1. Introduction

Table 1.1.: A summary of the datasets we utilize in this thesis, their composition, their
sources, and the experiments within which they are used.

Dataset Name Total Apps Source Usage
. o Training ML-based labeling strategies (Chapter 5)
24,553 AMD’s Website
malicious o Demonstrating degrees of malignancy (Section 2.5
AMD+GPlay (nalicious) & e gnancy ( )
o Calculating scanner correctness (Section 5.2)
24,162 AndroZoo’s servers
( ) o Estimating scan report stability (Section 5.3)
6,172 AndroZoo’s servers o Training ML-based detection methods (Chapter 6)
AndroZoo
(unlabeled)
o Testing accuracy of labeling strategies (Chapter 4 and Section 6.1)
Hand-Labeled 100 AndroZoo’s servers
( +24% malicious) o Testing accuracy of ML-based detection methods (Section 6.4)
o Testing accuracy of labeling strategies (Chapter 4 and Section 6.1)
Hand-Labeled 2019 100 AndroZoo’s servers
( +10% malicious) o Testing accuracy of ML-based detection methods (Chapter 4 and Section 6.4)

downloaded the existing scan reports of those apps and found that the overwhelming
majority of the apps in the AMD dataset were last scanned in 2018, albeit spread across
different months. So, we reanalyzed all of those apps in November 2018. Between April 12!,
2019, and November 8", 2019, we reanalyzed all of the 53K apps and downloaded the latest
versions of their VirusTotal reports every two weeks in accordance with Kantchelian et
al.’s recommendations [63]. Aware of the fact that some apps in the dataset are as old as
eight years, we attempted to acquire their older VirusTotal scan reports. Unfortunately,
access to such reports is not available under academic licenses.

The second dataset we use is a random collection of 6,172 apps developed in between 2018
and 2019 and downloaded from AndroZoo. So, we refer to it as AndroZoo throughout this
thesis. Unlike apps in AMD+GPlay, this dataset does not focus on a particular marketplace
or class (e.g., malicious). This dataset is used in Chapter 6 to assess the ability of different
labeling strategies to train more accurate detection methods. This dataset is meant to
simulate the process of a researcher acquiring new Android apps and labeling them to
train a ML-based detection method that detects novel Android malware, that VirusTotal
scanners are yet to assign labels to. So, we use apps in this dataset to statically extract
numerical features from their APK archives, represent them as feature vectors, and use
them for training different types of machine learning classifiers. We use different threshold-
based and ML-based labeling strategies to label those feature vectors prior to training the
aforementioned classifiers.

The trained classifiers are then used to label apps in two small test datasets and compare
the predicted labels with the ground truth. We refer to those small datasets as Hand-Labeled®
and Hand-Labeled 2019°. Both datasets comprise 100 Android apps that were downloaded
from AndroZoo and manually analyzed and labeled, to acquire reliable ground truth. The
exact process we adopted in analyzing and labeling those apps can be found online and in

Shttp:/ /tiny.cc/95bhaz
bhttp:/ /tiny.cc/a7bhaz

19


http://amd.arguslab.org/
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access
https://github.com/tum-i22/Maat#reverse-engineering-apps

1. Introduction

appendix A. The primary difference between both datasets is that apps in the latter were
developed in 2019. We ensured that apps in both datasets do not overlap with apps in
the AMD+GPlay and AndroZoo datasets. We manually analyzed such 200 apps to acquire
reliable ground truth that depicts the apps’ true nature.

1.4. Structure

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of
Android malware, its structure, the payloads and functionalities that it usually includes,
the evasion techniques it implements, and the subjectivity of defining and labeling apps
as malicios. Chapter 3 discusses the theory and practice of malware detection before
focusing on ML-based detection methods, their building blocks, and the challenges that
face them. In Chapter 4, we delve into studying threshold-based labeling strategies and
how VirusTotal’s dynamicity impacts their performance. Chapter 5 introduces Maat, the
method we implemented to automatically analyze VirusTotal scan reports and devise
a ML-based labeling strategy. Chapter 6 is dedicated to evaluating the applicability of
Maat according to three criteria: (a) the ability of Maat’s ML-based labeling strategies to
accurately labeling Android apps according to their VirusTotal scan reports, (b) whether
the trained ML-based labeling strategies can contribute to enhancing the performance of
ML-based malware detection methods and enable them to detect zero-day malicious apps
that VirusTotal scanners fail to recognize as malicious, and (c) whether and how long
can the trained ML-based labeling strategies can withstand VirusTotal’s dynamicity
to accurately label Android apps. Chapter 7 summarizes the limitations of VirusTotal
we identified throughout this thesis and discussed methods to mitigate them. Chapter 8
presents related work. Chapter 9 presents conclusions, insights, and future work.

20



2. Android Malware

This chapter presents fundamental concepts about Android apps and the process
of implementing malicious and potentially unwanted versions of such apps. The
chapter then presents an overview of the trends and functionalities adopted by
Andproid malware found in practice including the nature of the payloads found
in them. Lastly, the chapter presents the subjectivity of labeling malicious apps
belonging to different malware types. Parts of this chapter have previously
appeared in peer-reviewed publications [8], [118], and [119] co-authored by
the author of this thesis.

The Oxford dictionary defines malware! as ”Software that is specifically designed to
disrupt, damage, or gain unauthorized access to a computer system” [73]. Practically and
more technically, the security firm MalwareBytes [85] defines malware as “malicious
program or code that can steal, encrypt, or delete your data, alter or hijack core computer
functions, and spy on your computer activity without your knowledge or permission.” The
majority of other definitions might utilize different terminologies but still revolves around
the same notion of jeopardizing the confidentiality, integrity, and availability of a device,
the apps installed on it, and the data it stores.

To increase the likelihood of infecting more systems, authors of malware usually target
platforms and systems that are more popular among users. Given its popularity and
ubiquity, the Android operating system has been targeted more often by malware [150, 153].
Consequently, we focus on Android malware as a case study in this thesis. In this thesis,
we build on the previous definitions to define Android malware as follows:

Definition

Android malware are Android apps that are deliberately implemented to jeopardize
the confidentiality, integrity, and /or availability of the device (including hardware
components), the apps and services it contains, and the (personal) data it holds with
or without the knowledge of the user.

Similar to other types of malware, Android malware continuously evolves to evade
detection by malware detection methods [118, 142, 53, 158]. However, given the richness of
the Android API and the sensitivity of some of the data stored on user devices (e.g., contacts,

IMalware is a portmanteau of the words malicious and software referring to software that is designed to
damage a computer or a network of computers [90].

21



2. Android Malware

personal photographs, passwords, and so forth), the functionalities of Android malware
differ, which might lead to different views of what constitutes a malicious functionality.
In this chapter, we discuss the structure of Android malware in Section 2.2, the common
functionalities and payloads it usually contains in Section 2.3, and the common techniques
it employs to evade detection and hinder analysis in Section 2.4. Lastly, in Section 2.5,
we discuss how the different structures and functionalities of Android malware, along
with the subjectivity of deeming Android apps as malicious create more consensus among
antiviral software vis-a-vis the malignancy of some malware families and types than others.
However, prior to delving into defining Android malware and discussing its structure,
we briefly discuss the structure of Android apps in general, its components, compilation
process, and how it is distributed in Section 2.1.

2.1. Android Apps

2.1.1. Components

Android apps are primarily written in Java and are typically divided into four main
components, viz. activities, services, broadcast receivers, and content providers [39]. Each
of the aforementioned components—written as Java classes—serves a specific purpose that
contributes to the overall functionality of the app. Activities depict the user interface
element of an app. An activity is a screen containing Graphical User Interface (GUI)
elements (e.g., But ton), that users interact with to carry out a particular task (e.g., sending
an email). Each Android app must declare an activity, referred to as the Main activity, that is
displayed to the user once the app is started. In other words, the Main activity is the app’s
main entry point.

Services are components that carry out background tasks on behalf of the user (e.g.,
updating an app, downloading a resource, and playing music). The rationale behind this
type of component is to execute long-running tasks without blocking or interrupting the
user’s interaction with other activities. In fact, without completing its task or being explicitly
stopped, services can run in the background even if an app is terminated. Consequently,
services do not have any GUI elements and are, hence, oblivious to the user. Services are
usually explicitly started using the startService method.

Broadcast receivers, or simply receivers, are components that are meant to respond to
broadcast messages or notifications from other apps or from the Android system itself. For
example, after they complete a task, services can broadcast a message to inform an app of
the task’s completion. The Android system captures such broadcasts and forwards them to
app components that register or listen to them, namely broadcast receivers. Receivers can
listen to system broadcasts by declaring them as intent-filters. Such broadcasts can be
system broadcasts, such as android. intent.action.PHONE_STATE which intercepts
incoming phone calls, or custom ones, such as com.myapp . CUSTOM_INTENT.

Listing 2.1.: Building an implicit Intent object to send an email.

22



2. Android Malware

Intent email = new Intent (Intent.ACTION_SEND, Uri.parse("mailto:"));
email.putExtra (Intent.EXTRA EMAIL, recipients);

email.putExtra (Intent.EXTRA_SUBJECT, subject.getText ().toString());
email.putExtra (Intent.EXTRA_TEXT, body.getText ().toString());

startActivity (Intent.createChooser (email, "Choose an email client from..."));

The primary method used by the system and Android apps to communicate is via
Intents. Intents are objects whose attributes carry information to other apps. For example,
as shown in Listing 2.1, to send an email using a mailing client app, an intent object is
populated with the list of recipients, the email’s subject, and the email’s body before being
forwarded to the mailing client app. There are two types of intents, viz. explicit and implicit.
On the one hand, explicit intents target specific apps. Apps use this type of intents to
start other components, usually within the same app. In Listing 2.2, the TargetActivity
activity is started using an explicit intent. On the other hand, implicit intents do not
specify target components. Instead, they rely on a parameter, referred to as act ion, that
resembles an intent-filter declared by some apps, effectively narrowing down the apps that
can respond to the broadcasted intent. Upon receiving this type of intents, the operating
system retrieves all apps that register to that particular action and prompts the user to
choose one of them to receive and process the intent. For example, in Listing 2.1, if a device
has multiple mailing client apps installed (e.g., Gmail and K-9), the user will be asked to
choose one app to receive the intent.

The ability to start different app components using intent objects means that Android
apps do not have a single entry point. Unlike conventional Java programs, execution does
not always have to start from the main method; it can start from a broadcast receiver which
registers to incoming phone calls or Short Message Service (SMS) messages, for instance.
This nature of Android apps makes them sometimes harder to analyze and, for instance,
generate CFG’s or call graphs that depict their structures [17].

Listing 2.2.: An explicit Intent to start TargetActivity

// Explicit Intent by specifying its class name
Intent i1 = new Intent (SourceActivity.this, TargetActivity.class);

startActivity (i) ;

The last main component of Android apps is content providers. Content providers
abstract access to data structures that store app data, such as relational databases and
configuration files. However, content providers are not the only way for Android apps to
interact with local and remote data structures. From within other components, different
libraries can be used to load and store data from and to text files, Structured Query Language
(SQL) databases, and network sockets. For example, the package android.database.sqgl

23



2. Android Malware

Figure 2.1.: The typical life cycle of an activity in an Android app [33].

User returns
to the activity

I{:icrll‘c,ggd onCreate () onStart () onResume () éﬁg;llfl}é

User navigqtes User navigates The activity is
to the activity to the activity no longer visible
App Process
Killed onRestart () onStop () onPause ()
l_ - | Another activity comes
Apps with higher into the foreground

priority need memory

Activity
Shut Down onDestroy ()
The activity is finishing or

being destroyed by the system

ite [35] enables Android apps to perform Create, Read, Update, and Delete (CRUD)
operations with SQLite databases.

Being implemented in Java, the Android API follows an object-oriented architecture.
Consequently, all of the aforementioned components are implemented as Java classes.
When a new app is developed, its components have to inherit the pre-existing classes for
activities, services, receivers, providers, and other subordinate components (e.g., Fragments).
For example, all new activities inherit the Act ivity class, whereas all services inherit the
Service class. The inherited classes contain different callback methods that respond to
different stimuli (e.g., GUI events), that are usually overridden to accommodate for the apps’
needs and use cases. Taking the Act ivity class as an example, the class contains methods
such as onCreate, onStart, onResume, and onStop, and onDestroy. Respectively,
these methods are executed whenever the activity is first created and its GUI elements being
built, becomes visible to the user, is being interacted with by the user after a pause, and
is sent to the background and no longer visible to the user. Developers of video playback
apps, such as YouTube, probably need to override the onSt op method to stop playing the
video whenever the app is sent to the background, and override the onRe sume method
to continue playing the video once the app is brought back to the foreground. Together
these callback methods form what is known as a component’s life cycle [39]. For example,
Figure 2.1 shows the typical life cycle of an activity component.

Other components that Android apps usually contain include the android manifest
tile, resource files, and external libraries. Each Android app must have an Extensible
Markup Language (XML) manifest file, called AndroidManifest .xml, that contains the
following information. Firstly, the manifest file contains the app’s package name (e.g.,
com.company .app), its version, and the minimum and maximum Android Software

24



2. Android Malware

Development Kit (SDK) versions it supports. Secondly, and more importantly, the manifest
file enumerates the different components used by the app, their class names, and, if
applicable, the intents they listen to. The manifest file declares the hardware and software
features that the app requires to function properly. For example, an app like Snapchat
needs to be installed on a device that contains a camera. Having mentioned system
resources and features, the AndroidManifest.xml file declares the permissions the
app needs to be granted to access different system resources. In the case of Snapchat,
access to the device’s cameras can only be granted if the app’s manifest file contains the
android.permission.CAMERA. Needless to say, different device resources have different
degrees of sensitivity. Arguably, access to the device’s camera is more sensitive than access to
the internet, given the risk of being spied on by a malicious app. Consequently, permissions
needed to access such sensitive resources are referred to dangerous permissions. Starting
from Android 6.0 (API level 23), dangerous permissions need to be explicitly granted by
users to apps the first time apps request access to a sensitive resource. However, regardless
of their type, all permissions that can be potentially used by an app need to be declared in
the AndroidManifest.xml file.

In essence, resource files comprise XML files that store information about the app’s layout
and miscellaneous values it uses during runtime. Layout resource files enumerate the GUI
elements of app activities, including information about the type of each element, its position
on the screen, texts it displays (e.g., a But t on with the label Login), and callback methods it
reverts to upon interaction. Layout XML files are retrieved during the creation of an activity,
and the GUI elements they include are rendered and displayed to the user by the system.
Often, the same colors and texts are repeatedly used by the aforementioned GUI elements.
To avoid having to modify multiple layout files to change colors or fix a typographical
error, these values are stored in resource files. For example, the strings and colors used
throughout the app are usually stored in the st rings.xml and colors.xml files and are
easily accessible from, both, other XML files and Java classes.

Lastly, some apps might need direct, fast access to system resources. This can be achieved
by writing libraries in C/C++ using the Android Native Development Kit (NDK) and
accessing them from the app’s Java classes. For example, gaming apps usually defer
rendering graphics to C/C++ libraries for better performance. Those libraries are compiled
and shipped with the apps’ Java-based components as shared object libraries.

2.1.2. Compilation

The first step in compiling an Android app is to compile the Java components into Java
Bytecode. This step is carried out in a manner similar to conventional Java applications,
namely using the Java Development Kit (JDK). Optionally, tools such as Proguard are used
to optimize and obfuscate the generated Bytecode [36]. Source code written in C/C++ is
compiled by the NDK’s CMake to fit the architecture on which the app is to be deployed.

In most cases, Android developers implement their apps within an Integrated Development
Environment (IDE)(e.g., eclipse or Android Studio), and use the default Android SDK to

25



2. Android Malware

compile their apps. If so, the generated, and possibly optimized, Java Bytecode is further
translated using the SDK’s dx compiler into DEX, short for Dalvik Executable, Bytecode and
written into a single file called classes.dex. In some cases, developers slightly modify
the app’s codebases (e.g., to fix a bug), and recompile it. Only the affected components will
be recompiled and merged with the original code using the dexmerge compiler, which
also is part of the Android SDK. Other non-standard compilers are utilized to recompile an
Android app from an intermediate representation, called Smali, after being disassembled
using reverse engineering tools. For example, the reverse engineering tool Apktool [14]
uses the dex1ib compiler to recompile apps.

Albeit being optimized for Android, the DEX Bytecode cannot directly execute on Android
devices. Prior to Android 4.4 (KitKat), Android systems adopted a model similar to that for
Java applications, namely to use a Virtual Machine (VM) to fetch, compile, and execute
Bytecode instructions in a Just-In-Time manner. On Android systems, this VM is called
Dalvik Virtual Machine, which fetches DEX Bytecode from the classes. dex file translates
them into machine code, and executes them, which slows down the execution of Android
apps. Starting from Android 4.4, Android systems switched to the Android Runtime (ART)
model, which compiles the entire Android app upon installation to machine code. This
process is referred to as Ahead-of-Time compilation. However, the introduction of the new
runtime system does not change the way Android apps are developed or compiled. That is
to say, Android apps continue to be developed in Java, C/C++, and possibly Kot 1in [95],
and are compiled into DEX Bytecode.

2.1.3. Distribution

Android apps are distributed as ZIP archives that are referred to as APK. This APK archive
contains the app’s codebase in the classes.dex file and the shared object libraries, a
compiled version of the AndroidManifest .xml file, the XML resources files, any external
libraries used by the app (e.g., Java ARchive (JAR) or Dynamic-link Library (DLL) files),
and the developer’s certificate. As part of Google’s policy, every Android app needs to
be signed by its developer(s) [150]. However, this policy allows developers to generate
their own certificates and self-sign their apps. In fact, researchers have found that 99% of
Android apps are self-signed [11]

Signing an app is the last step before distributing it to users, usually via app marketplaces.
App marketplaces are online platforms that host Android apps, allow users to download
and install them, and provide a communication channel between users and app developers
(e.g., via comments and feedback sections). The most renowned app marketplace is Google’s
official marketplace: Google Play. As of late 2018, Google Play hosted 2,031,946 apps [150],
making it the largest marketplace for Android apps. Nonetheless, some countries like China
block access to all Google services, including access to Google Play. So, owners of Android
devices in those countries turn to third-party marketplaces to acquire new apps. Some of
these marketplaces are Tencent, Baidu, AnZhi, and App China.

Depending on their intended target market, developers can upload their apps to one or

26



2. Android Malware

multiple marketplaces. By comparing the apps on Google Play and Chinese marketplaces,
Wang et al. found that 77% of the apps published in Google Play are single-store ones (i.e.,
cannot be found on other marketplaces). A smaller percentage of apps were found to be
published on multiple marketplaces, according to the same study. For example, between
20% and 30% of apps published in Chinese marketplaces can also be found on Google Play
[150].

Upon being uploaded to marketplaces, apps are usually vetted to ensure they do not carry
out any malicious functionalities. According to Wang et al., the majority of app marketplaces
employ some type of app vetting; only eight marketplaces claim to incorporate human
inspections to complement automated vetting processes [150]. The exact description of
combining manual and automatic inspection of apps is usually proprietary and not made
public. To circumvent this security by obscurity policy, researchers have attempted to
fingerprint the vetting processes of marketplaces such as Google Play [98], and found that
apps are automatically analyzed via static and dynamic analysis tools; if such tools fail to
deem apps as benign, a human analyst is consulted to analyze an app.

Despite such vetting processes, malicious apps still manage to evade detection and make
it to the marketplaces [150, 119, 142, 75]. For example, Wang et al. found that at most,
17.03% of apps in Google Play were labeled as malicious by at least one of the antiviral
scanners found on the online platform VirusTotal, whereas this number can rise to
roughly 50% in case of Chinese marketplaces [150]. Consequently, even after the successful
publication of apps, marketplaces continue to vet apps and remove them if they prove to be
malicious. It was found that Google Play manages to remove about 84% of uploaded apps
that are found to be malicious after publication, whereas Chinese marketplaces manage on
average to remove 23.04% of those apps.

2.2. Structure of Android Malware

Android users are continuously in pursuit of apps to customize their devices or to meet
a specific need (e.g., barcode scanning, audio recording, flashlight apps, etc.). Without
implementing similar functionalities, Android malicious apps are unlikely to be downloaded
and installed by users. That is, Android malware authors need to invest time to surround
the malicious functionalities, or payloads, in their apps with benign ones that encourage
users to download them.

There are two main methods to wrap payloads with benign code. Malware authors can
implement both the malicious payloads and the benign code from scratch in what is known
as standalone malware [153, 142, 161]. This model makes the malicious app more stable and
gives its author more control over its behavior. However, it is a distraction for malware
authors from their primary objectives of deploying malicious payloads on the users’ devices.
Furthermore, users tend to trust apps that are developed by renowned firms or developers
and have been downloaded more often. To leverage the benefits of pre-existing trust in
renowned apps and to avoid having to develop benign code from scratch, some malware

27



2. Android Malware

Figure 2.2.: Different methods a malicious payload can be added to an Android app and, if
needed, triggered from within benign code segments. The dashed red nodes
depict the components where the malicious payloads can be added, the blue
dashed circles refer to possible triggers that control the execution of such
payloads, and the blue arrows depict external triggers that might invoke the
malicious payloads (e.g., system notification).

./
— — \l = = -
s s _N( ¥ 1( ol
= Sz N S

(a) (b) (c) () (e)

authors adopt repackaging as their model to implement malicious apps [118, 153, 160].
Repackaged malware [161] or piggybacked apps [75, 76] are benign apps (e.g., Angry
Birds), that have been downloaded, decompiled, and grafted with malicious payloads. We
discuss in Section 2.4.6 the exact technical details of one approach to repackaging Android
apps.

Regardless of how the malicious payloads are added to an app, the structure of Android
malware in terms of the relationship between the malicious and benign code segments can
assume a finite number of forms, as seen in Figure 2.2. We refer to those forms as deployment
methods. Assuming that subfigure (a) depicts the call graph of an Android app with the
nodes depicting different components (e.g., activities), and the edges resembling how they
invoke one another (e.g., via intents or direct method invocations). Subfigure (b) depicts
the case in which the malicious payload is added to one of the pre-existing components, for
example, as a new method or even as statements mingled with the original ones.

To partly conceal the injected payloads or control their execution, malware authors often
wrap those payloads with conditional statements (subfigure (b)) or inject the payloads in
components that register to external stimuli (subfigure (c)), such as receivers [75]. Those
conditional statements and stimuli are referred to as hooks [75], triggers [118], or schedulers
[8, 153]. We discuss different types of triggers and schedulers in Section 2.4.5.

Subfigures (d) and (e) resemble the scenarios in which the malware author opts to create
a new component to host their malicious payloads. The newly-added component can be
invoked either from the pre-existing components or from external sources, viz. other apps
or the Android system itself. Although it avoids interfering with the app’s existing code,
deploying malicious payloads in separate components is less subtle, especially since they
need to be declared at the AndroidManifest .xml file, as discussed in Section 2.1.1.

28



2. Android Malware

Figure 2.3.: The distribution of most common malware types of malicious apps found in
Wei et al.’'s AMD dataset [153].

C——

57.7%

Backdoor

¥ Other Trojan

J/

HackerTool

2.3. Android Malware Payloads and Functionalities

Payloads implement the intentions of the malware authors. In theory, those intentions can
include inflicting a monetary loss on users by sending SMS messages to premium numbers,
deleting the user’s contacts, leaking the current user’s Global Positioning System (GPS)
location, fingerprinting the device via International Mobile Equipment Identity (IMEI), etc.
However, putting aside sheer vandalism and recognition within the malware authorship
community, the majority of malware authors aspire to make monetary profit [140, 161].

The main source of profit for developers and marketplaces is via advertisements [2, 23].
Similarly, Android malware authors tend to develop payloads that generate profit from
advertisements. Android malware that contains this type of payload is usually referred
to as Adware. The main difference between Adware and benign Android apps that use
advertising libraries and servers is that the former aggressively display advertisements
to users and usually gathers sensitive information from the users’ devices without their
knowledge to display more targeted advertisements. Researchers have found that Adware
is the most common malware type to be found in app marketplaces [119, 153]. For example,
Wei et al. gathered a total of 24,553 malicious apps from different app marketplaces, of
which 57.7% belonged to the Adware malware type. As seen in Figure 2.3, the second most
common malware type in Wei et al.’s dataset AMD is Tro jan—SMS, which comprises apps
that silently send SMS messages to premium numbers owned by the malware authors.
The third most common malware type is Ransom, also known as Ransomware, which
generates monetary profit by encrypting the users’ files and decrypting them only if users
pay a ransom to the malware authors.

Manually analyzing a smaller dataset of 200 apps that we downloaded from the AndroZoo
platform [10], we also found that the most common functionality adopted by malicious

29



2. Android Malware

apps is to either to display advertisements to the users or to fingerprint the devices on
which they run (e.g., using methods such as getDeviceID, get SimOperatorName, or
getNetworkOperatorName), prior to leaking such information to advertisement servers.
In other words, the majority of malicious apps in this small dataset belonged to the Adware
malware type. Furthermore, we found that the majority of servers contacted by such apps
were renowned servers that are utilized by malicious and benign apps alike.

The wide adoption of Adware payloads is sensible for the following reasons. Firstly,
the availability of different advertising APIs and libraries makes it straightforward to
implement apps that display apps to the users even if they violate some aspects of user
privacy [89]. Secondly, Adware is a malware type that researchers have disagreed vis-a-vis
its malignancy, often referring to it as grayware or Potentially Unwanted Application (PUA)
instead of malware [153, 15]. Some researchers even omit Adware from their studies
altogether, such as Arp et al. in [15]. This confusion regarding the malignancy of Adware
apps is likely to lead to some of those apps being labeled as benign and, perhaps, making it
to app marketplaces. Lastly, unless the information leaked from a user’s device directly
violates a law, authors of Adware apps may evade the persecution of law enforcement
authorities [137].

The payloads we discussed so far have a common characteristic, namely that they do
not interfere with the functionalities of the benign code segments, which coincides with
Li et al.’s findings that malicious functionalities are usually separated from their benign
counterparts [75]. In other words, even if the code of malicious and benign functionalities
is intertwined, as discussed earlier, the malicious functionalities do not alter the benign
functionalities in the app (e.g., displaying the weather forecast). Fratantonio et al. [46]
gave an example of a payload that delivers its malicious intentions by altering the original
functionality of an app. They gave an example of a navigation app that returns a longer
route between two points on a map to the user instead of the shortest or best possible one. In
this case, the app continues to deliver its functionality (i.e., calculating a route between two
points on a map), but not in an intended manner. In cases of emergency, this modification
to the app’s main, benign functionality can jeopardize the life of an individual in need of
medical care. Technically, without identifying the trigger condition that instructs the app to
return a longer route, this type of payload is challenging to detect solely by monitoring the
app’s runtime behavior.

2.4. Evasion Techniques

In order for their malicious apps to successfully pass the vetting process of app marketplaces
and the scanning of antiviral software that might be used by Android users, malware
authors employ different evasion techniques to conceal the malignancy of their instances
[142]. Some of these evasion techniques alter the structure of the malicious apps’ codebase,
while others modify their runtime behavior to cope with static- and dynamic-based analysis.
However, within the literature, they all fall under the umbrella of code obfuscation. Code

30



10

11

12

13

14

15

16

17

2. Android Malware

obfuscation encompasses techniques that render the source code of an app and/or its
runtime behavior unintelligible to human beings [18]. Originally meant to protect sensitive
code (e.g., license checking within commercial software), obfuscation has been widely
adopted by malware authors to change the appearance of their instances and make it
difficult for human analysts to understand their functionalities [134]. Furthermore, by
changing the appearance of their apps, malware authors are able to evade detection by
antiviral software, especially those that still rely on signature-based detection [67]. In this
section, we discuss six techniques that are known to be frequently utilized by malware
authors to write a malicious app that can evade detection, namely identifier renaming, string
encryption, reflection, and Dynamic Code Loading (DCL), anti-analysis and disassembly,
the usage of triggers and schedulers, and app repackaging.

2.4.1. Identifier Renaming

For the Java segment of Android apps, the most common technique to obfuscate source
code is identifier renaming [38]. This technique alters the names of classes, methods, and
variables from the human-understandable ones that developers use to keep track of and
understand one another’s code to ones that force the reverse engineer to analyze the source
code in order to understand the functionality of each class, method, and variable. For
example, the identifier names in Listing 2.3’s original code indicate that the code belongs to
a calculator class. However, after renaming the identifiers, the functionality of the code is
blurred and not as obvious as before.

Listing 2.3.: Example of the obfuscation technique of identifier renaming.

// Original code

public final class Calculator extends AppCompatActivity({
private TextView inputScreen;
private String currentOperator = "";
private String display = "";

private String result = "";

public String performOperation() {...}

// Obfuscated with identifier renaming
public final class c extends u{
private TextView 1i;
private String j = "";
private String k = "";

private String 1 = "";

31



18

19

2. Android Malware

public String p(){...}

Albeit primitive, identifier renaming is a fast and effective method that is popular among
android developers and malware authors [20]. The most renowned tool that implements
this obfuscation technique is ProGuard, which is included in the Android Studio IDE [36].
More complex obfuscation techniques, including control-flow flattening, opaque predicates,
and instruction set virtualization, can be applied to the C/C++ portion of the Android app,
given the availability of more tools that implement those techniques for the aforementioned
language, for example, Tigress [117].

2.4.2. String Encryption

In addition to identifiers, string objects can also be obfuscated (e.g., using encryption [38]),
to conceal their purpose and the overall purpose of the app. For Android malware, strings
can reveal the Uniform Resource Locator (URL)’s contacted by the malicious app, the
commands it receives from a remote service, or cryptographic keys, which are cues that can
be used by antiviral software to detect those apps [153]. In some cases, entire code segments
(e.g., classes), can be encrypted and stored as strings. These segments are then decrypted
and dynamically loaded by the app during runtime. Wei et al. found that malware authors
use different methods to encrypt or encode these strings (e.g., byte permutation, one-time
pad encryption, and Base 64 encoding [153]). In the majority of cases, the encrypted strings
are decrypted only during runtime. The keys used to decrypt those strings can be stored
locally within the app’s codebase or resource files or on a remote server to prevent it from
being retrieved using static analysis.

2.4.3. Reflection and Dynamic Code Loading

The techniques of reflection and DCL were primarily meant to support the modularity and
maintainability of Java-based apps, such as Android apps. Legitimate app developers
usually rely on these two techniques within gaming apps to, for instance, support in-app
purchases and the addition of new functionalities to apps. Malware authors, in contrast,
use reflection and DCL to deploy their malicious payloads upon request [8, 75, 142]. So,
instead of having the malicious code exposed, the code itself is shipped in a separate text
file often concealed as a database file or a configuration file [107]. The malicious code
will be loaded, parsed, and executed dynamically during runtime, effectively hindering its
discovery using static analysis.

Listing 2.4.: Code snippet extracted from a malicious app belonging to the Obad malware
family and shows the utilization of identifier renaming, string encryption, and
reflection [153].

32



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2. Android Malware

// Obfuscated code
ComponentName v0_3 = this.getComponentName () ;
Object[] v2_2 = new Object[3];

v2_2[2] = 1;
v2_2[1] = 2;
v2_2[0] = v0_3;

Context v1_1 = this.getAplicationContext ();
Object v1_2 = Class.forName (I1§I115.71i1i9TT1(I1§I115.T14iiJ111[104],
T13T113.71119TT1[33]+1, I1JI113.T11iiGIT11([26])).
getMethod (I131119§. 11119111 (I1§I113.11119111[207,
I13I113.114191T11[20]114, 183), null)

.invoke (vl_1, null);

Class<?> v0_2 = Class.forName(I1jI11j.I14113jI11(I13I11j.114439111[107],
I1jI113§.T1413T11[1071124, 79));

int v2 = I19I115.I1ii3I11[1387;

int v4 = I19I115.714ii9I11[127]-1;

v0_2.getMethod (I13I113.1111i91T1(v3, v4, v4 | 69),
Class.forName (I1kI113.T111§IT1(I19T11. 11119111 [7],

I19T113.111i19I11[33]+1, 136)), Integer.TYPE, Integer.TYPE)

.invoke (v1_2, v2_2);

// Deobfuscated code
ComponentName v0_3 = this.getComponentName () ;
Context v1_1 = this.getApplicationContext ();
PackageManager v1_2 = vl_1l.getPackageManager ();
v1_2.getComponentEnabledSetting (v0_3,
PackageManager .COMPONENT ENABLED_ STATE_DISABLED,
PackageManager .DONT_KILL_APP);

As seen in Listing 2.4, the obfuscation techniques of identifier renaming, string encryption,
and reflection are often combined by malware authors. In that figure, Wei et al. demonstrate
how an instance of the malware family Obad utilizes the three techniques to make its code
unintelligible to human analysts. Firstly, all identifiers were renamed to unintelligible
strings, such as Iliijlll and IljIllj. Secondly, method invocations were all made using
reflection. Lastly, the names of methods to be invoked are encoded and stored in a byte
array, called 111i3jI11. The method I13jI11j.I111ijII1 retrieves the target method
from such an array, decodes its name, and invokes it. The deobfuscated code shows that
the obfuscated code uses the PackageManager to disable the current component (e.g.,
activity), without killing the app containing the component. This technique of enabling and

33



10

11

12

13

14

15

16

17

18

2. Android Malware

disabling components alters the runtime behavior of the app, which falls under a type of
evasion technique that is meant to hinder the dynamic analysis of the app. We discuss this
technique later in this section.

2.4.4. Anti-Analysis and Disassembly

Although they make it harder to understand the source code of malicious apps, the previous
techniques still enable analysts to decompile and disassemble Android apps (i.e., into their
Smali representations). Anti-analysis techniques attempt to obfuscate code by preventing
analysts from seeing it altogether. Technically, anti-analysis techniques inject code that, in its
compiled form, is difficult to recognize by disassemblers as valid instructions and are, hence,
ignored [134]. One of the most effective techniques to prevent the effective disassembly
or decompilation of Android apps is that of string encryption because encrypted code
segments are not going to be recognized as valid DEX instructions by decompilers. Other
techniques rely on creating bogus jump instructions. For example, in Listing 2.5, adding
a one to the label 10c_401010 introduces what is known as a rogue byte, which tricks the
disassembler into thinking that the jump location in the jz instruction lands at the byte
8B and translate instructions starting from that point, which leads to a call instructions
that calls a bogus address 8B4C55A0h. This type of technique is usually employed on the
C/C++ level in Android apps to protect important assets to the malware author, such as
encryption keys or addresses to remote control servers.

Listing 2.5.: Example of a jump instruction to a location with a constant value.

74 01 jz short near ptr loc_401010
E8 db 0OE8h
loc_401010+1:
8B 45 0C mov eax, [ebp+0Ch]
8B 48 04 mov eax, [eax+4]

OF BE 11 movsx edx, byte ptr [ecx]

; Manipulated code

7

74 01 jz short near ptr loc_401010+1
loc_401010+1:

E8 8B 45 0C 8B call near ptr 8B4C55A0h

48 dec eax

04 OF add al, OFh

34



19

2. Android Malware

BE 11 83 FA 70 mov esi, 70FA8311lh

2.4.5. Triggers and Schedulers

The obfuscation techniques we discussed earlier are meant to hinder the static analysis of
apps. To hinder dynamic analysis as well, malware authors design their apps to conceal
malicious behaviors within benign ones by delaying or scheduling their execution. Consider,
for example, a malware analyst that examines the runtime behavior of Android apps in
the format of the sequences of the API calls they issue during runtime. Such an analyst
is in pursuit of API calls and their arguments that indicate malicious intentions. If the
malicious code segments are protected via triggers and schedulers, it is likely that the API
calls examined by the analyst will often lack traces of malignancy.

The notion of using triggers to delay and control the execution of malicious payloads
is not unique to Android malware. In fact, Windows-based malware has been utilizing
triggers for decades [134]. Triggers are usually implemented as conditional statements that
control the execution of the malicious code. The conditions that such statements employ are
usually not random and coincide with the malware authors’ vision of how the malicious
app should function. For instance, some malware authors design their malicious apps to
execute their payloads on certain dates and times [30], in specific locations [157], based on
some secret or password remotely sent from the author (i.e., activation code) [133], or if the
environment on which they run satisfies some condition (e.g., not a virtual environment)
[134]. Android malware utilizes the same concepts to implement what we refer to as
time-based, location-based, secret-based, and system-based triggers.

Time-based Triggers As the name implies, time-based triggers execute the malicious
payloads on a specific date and time. This type of trigger has been historically referred to as
time bombs [46, 106]. Listing 2.6 illustrates three time-based triggers that execute malicious
code whenever the current system time and date equal values pre-set by the malware
authors. Malware authors can complicate those conditions using different techniques.
For example, DateTime objects can be directly compared instead of formatted dates, the
conditions can be nested, or less intelligible timestamps (e.g., Epoch timestamps), can also
be utilized.

Listing 2.6.: Examples of time-based triggers.

import java.util.Calendar

Calendar calendar = Calendar.getInstance();

String currentTime = new SimpleDateFormat ("HH:mm",

— Locale.getDefault ()) .format (new Date());

String currentDate = new SimpleDateFormat ("dd-MM-yyyy",

— Locale.getDefault ()).format (new Date());

35



10

11

12

13

14

10

2. Android Malware

String currentDateTime = new SimpleDateFormat ("dd-MM HH:mm",
— Locale.getDefault ()) .format (new Date());
// Execute code everyday at 14:00
if (currentTime.equals("14:00"))
// execute malicious code
// Execute on April 1st, 2020
if (currentDate.equals ("01-04-2020"))
// execute malicious code
// Execute every November 5th at 17:00
if (currentDateTime.equals ("05-11 17:00"))

// execute malicious code

Location-based Triggers Location-based triggers rely on the location of the device on
which the malicious app is running. This location can sometimes be relevant to the app’s
functionalities. For example, researchers at Kaspersky discovered an Android malware,
designated ViceLeaker, that is designed to steal sensitive information from devices of
users in Middle Eastern countries [48]. So, it makes sense for such malicious apps to check
the location of their devices prior to executing their malicious payloads tailored for specific
types of users. The most common technique to retrieve the location of an Android device
is by using its GPS module and location services. The longitude and latitude returned by
the GPS module can be too abstract or might require additional processing to fingerprint
the device’s country. Consequently, malware authors usually infer the device’s location
using the name of the network carrier the device is registered to, the country the device’s
Subscriber Identification Module (SIM) card is registered to, or perhaps the device’s Internet
Protocol (IP) address [4]. Using those API calls are also more subtle than using the location
services, especially since they do not require to be granted permissions. Listing 2.7 illustrates
some techniques to fingerprint the device’s location and use it as a trigger.

Listing 2.7.: Examples of location-based triggers.

// Get instance of the device's telephony manager
TelephonyManager manager = (TelephonyManager)
— getApplicationContext () .getSystemService (Context.TELEPHONY SERVICE) ;

String countryCode = manager.getNetworkCountryIso();
String carrierName = manager.getNetworkOperatorName () ;
String mPhoneNumber = manager.getLinelNumber () ;

// Execute 1f the carrier's country is the United States
if (countryCode.equals ("us"))

// execute malicious code
// Execute 1f the carrier's name is XYZ

if (carrierName.equals ("XYZ"))

36



11

12

13

14

10

11

12

13

14

15

16

17

18

19

20

2. Android Malware

// execute malicious code
// Execute 1f the phone number has a German prefix
if (mPhoneNumber.startsWith ("+49"))

// execute malicious code

Secret-based Triggers This type of trigger relies on secret values or passwords provided
from outside entities to execute malicious code. Typically, secret-based triggers rely on
values that are stored locally within the malicious app as primitive types (e.g., integers,
strings, floats, etc.). In Android apps, such values can either be stored within the app’s
code, in resource files, or external files. The other option is to receive the secret values from
a remote source (e.g., via SMS messages [153, 108]). Malware authors usually design their
instances so that the values they receive will execute certain code segments in accordance
with the authors” intentions. Effectively, the secret values are commands that execute
certain functionalities in malicious apps. This model is usually employed either by botnet
controllers or by authors of Ransom apps [153]. In Listing 2.8, we give examples of a
number of methods Android malware can read secret-values, namely from within the app’s
premises or by receiving them from remote sources.

Listing 2.8.: Examples of secret-based triggers.

import java.io.x;

String secretValue = "mysecret";
// Get input from EditText
EditText editText = (EditText) findViewById(R.id.EditTextl);

String userInput = editText.getText ().toString();
if (userInput.equals (secretValue))

// execute malicious code
// Get string from strings.xml resource file
String resInput = getResources().getString(R.string.Stringl);
if (userInput.equals (resInput))

// execute malicious code

// Get string from received SMS

public void onReceive (Context context, Intent intent) {

if (intent.getAction() .equals (Telephony.Sms.Intents.SMS_RECEIVED_ACTION)) {
String smsSender = "";
String smsBody = "";
for (SmsMessage smsMessage
— Telephony.Sms.Intents.getMessagesFromIntent (intent)) {
smsSender = smsMessage.getDisplayOriginatingAddress|();

smsBody += smsMessage.getMessageBody () ;

if (smsSender.equals (" [AttackerNumber]")

37



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

2. Android Malware

if (smsBody.contains ("LeakContacts"))
// leak user contacts
else if (smsBody.contains ("EncryptDevice"))

// encrypt SD card contents

}

// Receive commands from network

serverSocket = new ServerSocket (8080);
socket = serverSocket.accept ();
output = new PrintWriter (socket.getOutputStream());

input = new BufferedReader (new InputStreamReader (socket.getInputStream()));
// In a thread
while (true) {

String message = input.readLine();

if (message.contains ("execute"))

// execute malicious code

System-based Triggers The name system-based can be misleading given that other types
of triggers rely on values returned by the system as well. For example, time-based triggers
rely on values returned from the Android system as responses to API calls made by apps.
By system-based, however, we refer to system software and hardware properties, such as
the Operating System (OS) version running on the device, the device’s IMEI, or its Media
Access Control (MAC) address. Similar to benign apps, some system properties are checked
to ensure that the malicious apps run within the environments they are meant to run (e.g., a
particular Android OS version). Other system properties are checked as part of a method to
hinder dynamic analysis of malicious apps; malware authors utilize some system-based
triggers that check whether an app is running on a virtual environment (e.g., Android
emulator). Such virtual environments usually leave traces within the system that can be
easily checked by a malicious app. For example, Android emulators usually use a default
IMEI value of 15 zeros. This can be utilized, as seen in Listing 2.9, to infer whether a device
is virtual and, in turn, whether to withhold the execution of malicious code segments.

Listing 2.9.: Examples of system-based triggers.

import java.util.x;
// Check the SDK version of the current system. If more recent than Android 4.4.

— KitKat

38



10

11

12

13

14

2. Android Malware

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT)
// execute malicious code
// Check whether device is virtual
// Get instance of the device's telephony manager
TelephonyManager manager = (TelephonyManager)
— getApplicationContext () .getSystemService (Context.TELEPHONY SERVICE) ;
String imeiNumber = manager.getlmei ();

// Get instance of the device's WiFi manager

WifiManager managerW = (WifiManager) getSystemService (Context . WIFI_ SERVICE);
WifiInfo info = managerW.getConnectionInfol();
String macAddress = info.getMacAddress();

if (macAddress.length > 0 && !imeiNumber.equals ("000000000000000™))

// execute malicious code

Logic-based Triggers The last type of triggers we discuss is one that depends on the
app’s logic rather than values drawn from the underlying system. For example, as seen in
Listing 2.10, a malware author may elect to execute malicious code injected into a calculator
app only if the result of the arithmetic operation performed by the user is 50. It is expected
that such triggers merge with the functionality of malicious apps to evade detection. That
is to say, a calculator app should use a logic-based trigger related to arithmetic operations,
whereas a gaming app can trigger malicious payloads upon, for instance, scoring certain
high scores. So, the conditions used by a logic-based trigger hinge on the app itself and is
up to the creativity of the malware author. Logic-based triggers are similar to secret-based
triggers in terms of relying on secret values to execute malicious code. However, the secrets
on which logic-based triggers rely are intertwined with the app’s functionality and do not
rely on values from outside entities.

Listing 2.10.: Examples of logic-based triggers.

import javax.script.ScriptEngineManager;

import javax.script.ScriptEngine;

// Retrieve arithmetic operation as string

EditText editText = (EditText) findViewById(R.id.EditTextl);

String userInput = editText.getText ().toString();

ScriptEngineManager mgr = new ScriptEngineManager () ;

ScriptEngine engine = mgr.getEngineByName ("JavaScript");

// Use Javascript engine to evaluate input as an arithmetic operation
if (engine.eval (userInput) == 50)

// execute malicious code

If-statement-based triggers are not the only way a malware author can intentionally delay

39



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2. Android Malware

the execution of malicious code. As discussed earlier, Android apps have multiple entry
points, one of which is via broadcast receivers. Malware authors sometimes implement their
apps to trigger malicious code upon receiving system notifications (e.g., android. intent.
action.BOOT_COMPLETED). In Listing 2.8, we give an example of receiving secret values
using an SMS message. The code segment checking this secret or at least retrieving the body
of the received text message will only be triggered if the malicious app registers to system
notifications of new incoming SMS messages. In other words, if-statements, along with
system notifications, can be combined to form more complex triggers, as seen in Listing 2.11.
The malicious payload in this code segment executes upon receiving a new SMS message; if
the message body starts with the string “ak401”, the app checks whether its own codebase
has been modified prior to decrypting a file containing a list of mobile operators the app
targets. If the mobile operator of the current device matches one of the target operators (i.e.,
a system-based trigger), the malicious app dynamically loads the malicious code from a file
called anserver.db.

Listing 2.11.: Combining different types of triggers to hide the apps’s malicious intentions
[107].

String hashValue = "389d90db090£f0£0303030030d986761e03";
// called when an SMS message arrives
public void onReceive (Context ¢, Intent intent) {
String smsMessage = intent.getMessageBody () ;
// checks content of SMS message
if (smsMessage.startsWith ("ak401") {
String certificateHash = this.getCertificate().toString();
// integrity check whether the APK got modified
if (certificateHash.equals (hashValue)) {
// get MCC and MNC codes
String mobileOperator = getNetworkOperator ();
File encryptedFile = readFileFromStorage () ;
File decryptedFile = decryptFile (encryptedFile);
boolean containsMobileOp = false;
Reader bf = new Reader (decryptedFile);
String line;
// checks whether file contains mobile operator
while ((line = br.readLine()) != null) {
if (line.equals (mobileOperator))
containsMobileOp = true;

break;

}

// targeted attack against specific network

40



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

2. Android Malware

if (containsMobileOp) {
// dynamic class loading, expects a dex file,
// even though file suffix is .db
DexClassLoader dcl = new DexClassLoader ("anserverb.db");
Class clazz = dcl.loadClass ("BaseABroadcastReceiver");
Method method = clazz.getMethod ("onStart", Intent.class);
boolean returnValue = (boolean) method.invoke (intent) ;
if (returnvValue == false) {
// target location : aborts delivery message

this.abortBroadcast () ;

Apart from some time-based triggers, the triggers listed above do control whether a
malicious code segment will execute, but do not control how often it will execute. For
example, the malicious code in Listing 2.6 may never execute, if the app is launched on
times and dates that do not match the triggers’” conditions. To increase the likelihood
of malicious code execution yet maintain stealthiness, malware authors usually rely on
the techniques of scheduling [153]. In addition to using conditional statements to trigger
malicious payloads, malware authors can force the frequent execution of particular code
segments. The most common scheduling technique relies on the Timer class [37, 153],
which schedules tasks for future execution in a background thread. So, instead of waiting
for users to start apps and check whether the current system time matches a time-based
trigger, a malware author can include this code in a service that starts upon the completion
of a device boot and checks for the condition every hour, for instance.

2.4.6. App Repackaging

The last evasion technique we discuss is that of repackaging. Unlike standalone malware,
with repackaging, Android malware authors attempt to obfuscate their malicious payloads
by grafting them into pre-existing benign apps. The exact format of those benign apps
seems to be disputed [119]. On the one hand, benign apps can be open source apps (e.g.,
K9 Mail [3]), which facilitates the repackaging process as malware authors need to write
their payloads in high-level languages such as Java and C/C++. On the other hand, benign
apps can take the form of pre-compiled Android apps in the format of APK archives. In this
case, malware authors attempt to disassemble or decompile the code in the classes.dex
file and the shared object libraries, in order to be able to add their malicious payloads. The
first approach is straightforward and does not require further explanation; so, we focus on
the second approach of repackaging.

41



2. Android Malware

Figure 2.4.: A demonstration of the Smali format and the ease of adding new functionality
to existing code. The code in black is the original Smali code we target, and the
code in blue is the Smali code we wish to inject in the original code. The code
snippet on the right shows the merged Smali code after updating the number
of variables to accommodate the newly-inject code [118].

.method public sum(Landroid/view/View;)V -method publjc sum(Landroid/view/View;)V
.locals 3
.prologue ~prologue
new-instance v1, Ljava/util/Random; new-instance v1, Ljava/util/Random;
invoke-direct {vi}, Ljava/util/Random;-><init>()V invoke-direct {vi}, Ljava/util/Random;-><init>()V
const/16 v2, Oxa const/16 v2, Oxa
invoke-virtual {v1,v2}, Ljava/util/Random;->nextInt(I)I invoke-virtual {vi,v2}, Ljava/util/Random;->nextInt(I)I
move-result vi move-result vl
mul-int/1it8 vO, v1, 0x2 invoke-virtual pO, Lcom/test/app/Activityl; ...
.local vO, "out":I ... =>getApplicationContext()Landroid/content/Context;
return-void move-result-object
-end method const-string , "Injected!!"
- - — const/4, 0x
invoke-virtual ) PO, .Lcom/test/app/Act}vltyl; - invoke—static Landroid/widget/Toast; . ..
. —>getApp1:.Lcat10nContext()Landrold/content/(}ontext; ...->makeText (. ..)Landroid/widget/Toast;
move-result-object vO
const-string vi, "Injected!!" move-result-object
const/4 v2, Ox1 i —vi 5 ; .
invoké—static {v0, vi, v2}, Landroid/widget/Toast;. .. invoke-virtual , Landroid/widget/Toast;->show()V
...->makeText (...)Landroid/widget/Toast; mul-int/1it8 vO, vi, 0x2
move-result-object vO -local vOf “out": T
) ) . ) return-void
invoke-virtual {vO}, Landroid/widget/Toast;->show()V end method

Repackaging an Android app with new functionality can be reduced to the process
of manually merging a chunk of code depicting the new functionality (hereafter rider
code) with that of the app’s original code while maintaining the syntactic and semantic
integrity of the app’s original code. Ideally, such code segments should be in a high-level
language, which requires decompiling the app’s code. There are tools, such as Jadx [135],
that decompile DEX Bytecode into Java. However, the process of recompiling the app
after adding the malicious payloads might not be as straightforward [34]. A more stable
approach is to operate on the intermediate level of Smali.

So, repackaging a benign Android app with malicious payloads can, in turn, be reduced
to the process of merging a malicious Smali code within the disassembled Smali code of
the benign app. We use Figure 2.4 to illustrate such process. In this figure, the malware
author attempts to merge the original code (top left) that multiplies a random integer by
two and stores the output in the variable out, with rider code (bottom left) that displays a
Toast dialog with the string "Injected!!”.

The location to inject the rider code is up to the malware author. In this example, we
assume that the malware author opted to inject the rider code right after the generation
of the random integer, and before multiplying it by two. The location chosen to inject the
rider code dictates some minor changes to both the original and rider code snippets to
maintain the stability of the app. For instance, the original code utilizes only three registers
as variables (i.e., v0, v1, and v2), and declares their count using the statement . locals 3.
Since the rider code utilizes the exact same registers, merging both code snippets without
any modification of the registers risks undermining the app’s stability. One solution is to
update the register numbers used by the rider code to v3, v4, and v5, and updating the

42



2. Android Malware

number of registers utilized by the method to six via the . locals 6 statement.

To avoid this confusing situation, an attacker might opt to inject the rider code either at
the very beginning or the very end of a method. This approach circumvents the necessity to
modify register counts, as it separates the functionalities of both the original and rider code.
In other words, the registers used by one code snippet will not be further needed after the
completion of its functionality and can, hence, be safely overwritten. After merging the
code, attackers can re-assemble the new Smali code, sign the resulting APK archive with
their own private keys, and release the new app to their marketplaces of choice. Attackers
usually alter some attributes of the original app (e.g., name, colors, fonts, etc.), to sell the
repackaged app as a new version of the original one.

The previously-described process is constant with a few special cases. Consequently, it
can be automated. Li et al. found that piggybacking benign apps with malicious payloads is
mostly automated with the payloads being usually reused across several piggybacked apps
[75]. This facilitates the mass production of Android malware, making the job of malware
analysts even harder to cope with the large amounts of Android malware existing in the
wild. To shed light on this problem, researchers have implemented tools, such as Repackman
[118] and Packadroid [1], to automatically repackage Android apps with malicious payloads.

2.5. Detection Rates of Android Malware Types

In the previous sections, we differentiated between different types of Android malware
based on the functionalities their payloads deliver. We also discussed that some of these
types might be perceived as less malicious than others based on the damage they may inflict
on Android devices and their users and the legal implications they pose to the authors of
such malware types. In this section, we explore whether different Android malware types
draw different detection rates? from VirusTotal scanners, and attempt to explain the
reasons behind such differences in detection rates, if any. To that end, we used apps in the
AMD dataset because we know their malware families and types. We grouped those apps
by the malware types they belong to (i.e., Adware, Ransom, Trojan, etc.), and for each app
in each group, calculated its detection rate at different points in time between November
2018 and November 8", 2019. We calculate this rate instead of solely considering the total
number of scanners because the total number of scanners included in a VirusTotal scan
report differs from one app to another. Lastly, we averaged the detection rates within every
group at every point in time and plotted them in Figure 2.5. We also tabulate the average
detection rates achieved on November 8", 2019 in Table 2.1.

The results in Table 2.1 show that detection rates indeed differ from one malware type to
another. For example, we found that apps that belong to the Adware type (emboldened
green) have lower detection rates than other malware types, such as Ransom (emphasized
red) and HackerTool (underlined orange). Further, we found that, on average, 51.5% of

2We define the detection rate of a malicious app as the percentage of VirusTotal scanners that managed to
deem it as malicious.

43



2. Android Malware

—d—  Adware
Backdoor
0.65 A HackerTool
Ransom
Trojan
0.60 - )
Trojan-Banker
Trojan-Clicker
w
% 0.55 - Trojan-Dropper
oé Trojan-SMS
R Trojan-Spy
§0.50-
j93
a
0.45 A
0.40 A
0.35 1
— T T T T T T T T T T T
B0 PO DL D OO DO ND LD
N YAV TV S VAN AN (S YV Y VLS
PHFRFI IS E PG E S QY
SIS S IS SIS IR S A A 4
B S S S S S

Scan Dates

Figure 2.5.: The mean detection rates of VirusTotal scanners against different malware
types found in the AMD dataset between November 2018 and November 8,
2019. We found that the spike in performance on August 30", 2019 is due to an
increase in the number of scanners used by VirusTotal to scan the apps in
the AMD dataset, which correctly labeled the apps as malicious. In Chapter 4,
we demonstrate and discuss VirusTotal’s manipulation of the number and
versions of scanners it includes in the scan reports of apps.

44



2. Android Malware

Table 2.1.: The mean, median, and standard deviation of detection rates recorded by all
VirusTotal scanners on apps in the AMD dataset as of November 8", 2019,
grouped by malware type and sorted by the percentage of apps in the dataset.

Malware Types
Metrics

Trojan-Spy
Backdoor
Trojan
HackerTool

Adware
Trojan—-SMS
Ransom
Trojan-Banker

Trojan-Dropper

R |Trojan-Clicker

14163 3219 2148 1851 1047 929 517 347 301

Total Apps per Type (%)
(57.7%) (13.1%) (8.74%) (7.5%) (4.26%) (3.78%) (2.1%) (1.41%) (1.2%) (0.1%)

Mean 0.52 049 045 056 049 050 050  0.52
Detection Rate
Median 0.52 050 046 057 049 051 050 051

Detection Rate

Standard Deviation 0.05 0.05 002 003 007 003 006 010 005 005

Detection Rate

VirusTotal scanners fail to recognize the malignancy of apps in the AMD dataset, which
implies that some threshold-based labeling strategies that label apps as malicious if 50% of
the VirusTotal scanners deem them as such [153] might fail to recognize that an app is
malicious. One possible explanation for such discrepancies in the detection rates among
malware types is that the detection rate of apps in a particular malware type is correlated
with the damage it may inflict on the infected device. However, to check whether this
correlation exists, we first need to rank different Android malware types according to the
damage they inflict, which seems impossible to do. First, we cannot assert, for instance,
that the damage inflicted by all Ransom apps is more than that inflicted by all Trojan apps.
Second, inflicted damage is subjective, and its definition might differ from one individual to
another depending on whether they consider the affected resources (e.g., local files stored
on a device), as important.

The question that follows is: What causes such discrepancies between the detection rates
of different malware types? Antiviral software companies tend not to share the methods
they apply to analyze and label apps [67, 99]. Without access to such information, it is not
possible to conclusively pinpoint the reasons behind the disagreements among scanners.
That is, any answer we give to this question is a matter of speculation and, hence, debatable.

As mentioned in Chapter 1, the typical process of malware analysis and detection that is
presumed to be adopted by anvitiral software companies often involves human analysts
that give the final decision on whether to label an app as malicious or benign. Those
analysts might have different views on what makes an app malicious, which makes the
labeling process subjective. However, we assume that large antiviral software companies
adopt decision processes to deem apps as malicious and benign rather than delegate the
final decision to individual analysts. In [54], Hurier argued that “the decision to classify

45



2. Android Malware

Figure 2.6.: The definition of malware at the intersection of three other notions of user
consents, developer intents, and platform restrictions according to Hurier in
[54]

User
Consents

Developer Platform
Intents Restrictions

an application as malicious relies on an implicit contract between end-users, developers,
and digital marketplaces”, as seen in Figure 2.6. Apps that fail to satisfy this contract (e.g.,
because the end-user was not informed about the intents of the developer or it violated
some platform restrictions), should be labeled as potentially malicious. The goal of the
security experts, in this case, is to report apps that violate such a contract.

Unfortunately, this model of malignancy has two shortcomings. Firstly, not all apps that
fail to clearly state their intentions should be considered suspicious. Moreover, some apps
cannot predict their future behavior beforehand because they are customizable (e.g., via
in-app purchases). Secondly, this model does not capture some of the results we tabulated
in Table 2.1. For example, despite making their intentions clear (i.e., rooting the device as
seen in Figure 2.7), and not violating any platform restrictions, apps in the Lot oor family
were labeled as malicious by many VirusTotal scanners.

We devised a model that might better explain the results above, particularly the disagreem-
ents among antiviral scanners vis-a-vis the labels of Android apps. This model is based on
the assumption that labeling an Android app as malicious is a matter of the perspective(s)
assumed by whoever is labeling the app. In this model, there are three categories of
perspectives that can be considered upon labeling an app and impact its label, namely the
user perspective, the supplier perspective, and the security researcher perspective.

The majority of users do not possess the technical knowledge necessary to deem apps as
malicious or benign. However, if the functionality of an app is continuously interrupted
(e.g., via aggressive advertisements), an app intrudes on their personal lives (e.g., by leaking
intimate photographs), an app denies them access to their data (e.g., contacts), or causes
them financial loss (e.g., via sending SMS messages to premium numbers [108]) they will
indeed deem it as malicious. Any other malicious functionality that is unnoticeable, such as

46



2. Android Malware

Figure 2.7.: A screenshot of the app (959c804a1b621703¢c68196cfc243db8fc7300e4c),

which belongs to the Lot oor malware family during dynamic analysis.

Run visionary
data/local/visis after root pro etes

Set system r/w after root
8 rtition will be mounted r/o after roo ates

Temproot Now!
This will attempt to Tempi

Attempt Permroot Now!

This vill attempt to Permr

Unroot Now!
This will attempt to Unroo

leaking the device’s location or fingerprinting the device for targeted advertisements [19],
might pass as benign for users.

As for suppliers (i.e., app developers, device manufacturers, and marketplace maintainers),
their primary objective is to make a profit. In the case of Android, the majority of profit
is generated via advertisements, as mentioned earlier. Activities that intentionally hinder
profit generation are, therefore, considered undesirable. This includes any activities that
discourage users from using the Android platform because it prevents the suppliers from
realizing their objectives. In this aspect, the users” and supplier’s interests are intertwined.
However, some activities are malicious, such as fingerprinting user devices without their
consent for targeted advertisements, which are often tolerated by vendors because they
contribute to generating profits. According to this line of argumentation, the supplier’s
perspective is that of a compromise between user satisfaction and loyalty and monetary
profit. In other words, any activities that do not prevent users from purchasing Android
devices and acquiring apps from marketplaces whilst abiding by general policies are
considered benign.

The security researcher’s perspective is a neutral one that deems apps as malicious if they
threaten the confidentiality, integrity, or availability of the device or the data it stores. We
differentiate between a security researcher and a malware analyst in that the former does
not adhere to a particular policy or decision process that is enforced by a particular antiviral
software firm. To give an example of this perspective, consider the app xxxaa.wjysqg. com,
which we manually analyzed. We found that the app frequently shares the current longitude
and latitude of the device with the domain yota365. com, which belongs to the people’s

47


http://tiny.cc/xum5jz

2. Android Malware

Figure 2.8.: The perspectives that can be adopted upon labeling (Android) apps as malicious
and benign.

User Supplier

Security Researcher

congress in China. Given that tracking users without their consent has recently been
criminalized in China [70]; this makes the app malicious from ethical, legal, and technical
perspectives. So, regardless of the user and supplier perspectives, a security researcher is
expected to deem the app as malicious.

Using this model, we can hypothesize that the disagreements between different antiviral
scanners regarding the labels of apps as follows. The verdicts given by antiviral scanners
depend on which individual perspective or intersection of perspectives the antiviral firm
maintaining the scanner adopts. For example, if an antiviral company solely adopts the
user perspective, then it might have a strict policy that Adware apps are malicious. Unlike
Hurier’s model, our model can justify why more than 60% of VirusTotal scanners agree
upon the malignancy of HackerTool apps, namely that they happen to adopt the same
perspective(s). Unfortunately, as mentioned above, without access to the decision processes
adopted by antiviral firms to label apps, no model can actually explain why different
scanners dis/agree upon the labels of apps.

2.6. Summary

Despite being relatively easy to implement, Android apps are complex in structure. This
complexity allows malware authors to write sophisticated malicious apps that deliver a
multitude of functionalities and implement different evasion techniques, such as obfuscation,

48



2. Android Malware

dynamic code loading, triggers, and scheduling, which might complicate the process of
analyzing and labeling Android apps. Labeling apps is further complicated by the fluidity
of defining what is malicious. In this chapter, we found that VirusTotal scanners disagree
upon the labels given to the Android apps, with almost 50% of the scanners on average
mislabeling malicious apps in the AMD dataset as benign. This insight will be corroborated
in Chapter 4 that threshold-based labeling strategies that need relatively high percentages
of VirusTotal scanners to deem apps malicious in order to labels apps as such (e.g., 50%
of scanners), would be unable to accurately label malicious apps. Furthermore, we found
that VirusTotal scanners agree upon the malignancy of certain malware types more than
others, which is a concern of (RQ2).

49






3. Android Malware Detection

This chapter provides an overview of Android malware detection, its theoretical
limitations, and the objectives it pursues in practice. In this chapter, we focus on
ML-based malware detection methods and enumerate the challenges hindering
effective detection. Parts of this chapter have previously appeared in peer-
reviewed publications [120] and [119], co-authored by the author of this thesis.

Android malware has been disrupting services, inflicting a monetary loss on individuals
and corporations alike, and undermining trust in the safety of apps and systems, instigating
researchers to devise methods to detect it [69, 115, 32, 16, 57]. Typically, the detection
process includes elements of human expertise. For example, if automated methods fail to
detect a malicious app, a human analyst might be consulted to decide upon the app’s nature.
To cope with the increasing number of malicious apps, the effectiveness and applicability
of fully automated detection methods are researched. However, automated detection
of (Android) malware suffers from theoretical (Section 3.1) and practical (Section 3.2)
limitations that researchers aspire to address or circumvent. In this chapter, we discuss
those limitations that face different approaches to automated malware detection and give
an example of each approach in Section 3.3. Courtesy of its popularity within the academic
research community, in this thesis, we focus on ML-based detection methods as a case study
of automated malware detection and further discuss its components (Section 3.4) and the
issues that hinder it from being more effective against (Android) malware (Section 3.5).

3.1. Malware Detection in Theory

In malware research, the earliest definition of malicious software is usually accredited to
Cohen, who discussed the notion of computer viruses as programs that-akin to the notion
of biological viruses and inspired by John von Neumann’s definition of self-replicating
automata [149]-copy their malicious functionalities to benign programs, so that they can
execute every time the infected benign programs are launched [29, 28]. Along with this
definition, Cohen provided proof that shows that the existence of an automated detection
method that detects computer viruses and, by extension, malicious software is contradictory
[28].

Cohen’s proof is based on a contradictory example of a computer virus (CV), seen in
Listing 3.1, that infects a target executable if and only if it is not detected by a detection
method (D) as a virus. The statement that this virus contradicts is that there exists a detection

51



O ® N U ke W N e

-
o

3. Android Malware Detection

method (D), which is essentially a program that takes in an arbitrary program (P) as an
input and outputs a decision whether (P) is a virus based on its appearance (e.g., call graph,
source code, or control flow graph). It follows that D (CV) should output a value labeling
(Cv) as a virus. However, according to (CV)’s definition in Listing 3.1, the program will
execute its malicious functionality of infecting other executables and do-damage (i.e., act as a
computer virus), if and only if it is not detected by (D). Being detected by (D), (CV) will not
execute its functionality, effectively not acting as a computer virus. So, the definition of (CV)
creates a paradox in which (CV) is deemed as a computer virus, yet does not act like one.

Listing 3.1.: Fred Cohen’s Contradiction of the Decidability of a Virus (CV) [28].

program contradictory-virus:=
{...
main-program:=
{if "D(contradictory-virus) then
{infect-executable;
if trigger-pulled then do-damage;
}
goto next;

}

The proof above does indeed generalize to any malicious software, including Android
malware. In Chapter 2, we discussed the notion of triggers and schedulers that delay
the execution of malicious functionalities within a malicious Android app. Triggers
and schedulers do not need to be as complex as the one in Listing 3.1; any trigger that
prevents a malicious app from acting malicious (e.g., temporal-based trigger), would fit the
description above, which renders the existence of any automated detection method that
always recognizes the malignancy of an app impossible.

In addition to this proof, Adleman related the problem of automatically detecting malware
to Rice’s theorem [109] and the halting problem [146], to show that the problem of malware
detection is undecidable [65, 5]. Recall that Rice’s theorem states that if a program (P) that
can determine whether another program (P’) has a functional property (x) exists, then the
halting problem can be decided, which is indeed not possible. A property of a program (p’)
is called a functional property if (a) it describes input-output (I0) behavior (i.e., how P’s
inputs and outputs are related), and (b) it need not be possessed by all programs. In terms
of Android malicious apps, for example, a functional property can be that an app encrypts
the user’s files upon receiving instructions (i.e., inputs) from a remote server and returns a
confirmation to such a server (i.e., output).

Consider the program (P) to depict an automated detection method (e.g., a ML-based
detection method), the program (P’) to depict a malicious Android app, and the property

52



3. Android Malware Detection

(x) to be, for example, the execution of malicious code after the realization of a conditional
statement. According to Adleman’s proof, detecting the malignancy by of (P’) by unveiling
that it contains the malicious property (x) is undecidable.

3.2. Malware Detection in Practice

The proofs in the previous section imply the impossibility of having an automated malware
detection method that can detect all types of malware. However, the examples given in those
proofs do not reflect the reality of (Android) malware. Firstly, while some antiviral software
attempt to label apps as malicious according to their behaviors, the majority of them rely on
examining apps statically. So, a malicious app does not have to exhibit malicious behaviors
during runtime in order to be labeled as malicious. In fact, it is considered an advantage to
detect the malignancy of an app before it executes on the end user’s device. This is the main
reason behind antiviral software statically basing their judgment of an app’s malignancy
primarily on its structure and codebase. Secondly, antiviral software is never designed for
discerning the halting problem before deciding upon the malignancy of an app.

The practical problem facing automated malware detection is that malicious apps continu-
ously evolve. Malware authors can adapt to their malicious apps being detected by antiviral
software by modifying or entirely re-writing them [67]. Furthermore, malware authors
adopt new Tactics, Techniques, and Procedures (TTP) that are more relevant to the current
technologies used by end-users and the vulnerabilities that can be exploited to infect
their devices. As discussed in Chapter 1, conventional semi-automatic malware detection
methods cannot cope with this continuing evolution. In this context, researchers have
developed a plethora of automated detection methods for different types of malware,
including Android malware, that attempt to mitigate the limitations of their conventional
counterparts [115, 74, 142, 145, 131, 132, 79]. In the following section, we categorize these
malware detection methods with the focus on Android malware and ML-based detection
methods.

3.3. Malware Detection Methods

In Section 1.1, we defined the problem of malware detection as that of matching a never-
seen-before app (i.e., test app), to one or more of the previously-seen malicious or benign
apps stored in a repository. The main differences between Android detection methods
dwell in (a) how they represent and store apps, and (b) how they match test apps to the
ones stored in the repository. There are a multitude of ways to represent Android apps that
includes app call graphs [47], vectors of numerical features extracted from the apps” APK
archives [119, 32, 145], traces of the API calls issued by apps during runtime [120, 87], etc.
These representations can be cateogrized into static and dynamic representations of an app.
Static representations are extracted from apps before being executed. The primary source of
static features is an app’s codebase found in the classes.dex file along with metadata

53



3. Android Malware Detection

Table 3.1.: A categorization of Android malware detection methods.

Static Dynamic
Heuristic-Based Heuristic-Based
(e.g., Codebase Similarity and Compiler fingerprinting) (e.g., Sequence Alignment)
Static Dynamic
ML-Based ML-Based
(e.g., Classification with Linear SVM) (e.g., Anomaly Detection with HMM)

found in the AndroidManifest .xml file. Dynamic representations are extracted from or
depict an app’s runtime behavior (e.g., the sequence of API calls issued by an app during
runtime).

As for the techniques utilized by detection methods, they can also be categorized into two
categories, viz. heuristic-based and Artificial Intelligence (Al)-based. Heuristic-based detection
methods are implemented to reflect the domain knowledge that malware analysts and
researchers possess. Such domain knowledge is usually implemented as simple heuristics
that check for particular patterns encountered by human experts during the analysis of
malware. For example, Stazzere [136] suggests using compiler fingerprinting to detect
Android repackaged malware based on the following assumption: legitimate developers
usually have access to their apps’ source code that they modify within IDEs and, hence,
their apps should be compiled using the dx or dexmerge compilers that ship with the
Android SDK. Consequently, apps that are compiled using third-party compilers used by
reverse engineering tools (e.g., dex1ib), should raise suspicions.

Al-based detection methods usually rely on machine learning algorithms to match apps
to those in the detection method’s repository. Since they mostly rely on machine learning
algorithms, we refer to Al-based detection methods as ML-based detection methods. In
addition to speed and scalability [100, 91], machine learning algorithms can find patterns
that help make decisions about apps’ natures that are not obvious to human researchers.
For example, feature selection algorithms can indicate that malicious apps tend to utilize
more permissions than their benign counterparts [75, 161], which is not easy to spot by
humans.

Combining the categories of app representation and matching techniques leads to four
categories of Android malware detection methods, seen in Table 3.1. In reality, those four
categories are often combined to come up, for example, with hybrid app representations. For
example, Miller et al. implemented a detection method that incorporates expert decisions
about the labels (i.e., malicious or benign), of app representations into the process of training
a machine learning classifier meant to classify Android apps as malicious and benign [91].
In this thesis, we focus on static, ML-based methods to detect Android malware as our
case study. In the following sections, we provide background knowledge about the typical
process of acquiring and labeling Android apps using VirusTotal, statically extracting
and selecting features from the APK archives of such apps, and using the extracted features

54



3. Android Malware Detection

to train and validate different types of ML algorithms to detect Android malware. We
also briefly discuss the internal and external challenges facing static, ML-based detection
methods, including our main focus in this thesis, viz. subjective and inaccurate labeling of

apps.

3.4. Machine-Learning-Based Detection

Despite being fast, lightweight, and reflecting domain knowledge, heuristic-based detection
methods rely on specific assumptions and conditions to be effective. Not only does this
facilitate circumventing them, but it also risks missing some characteristics of Android
(malicious) apps that domain experts (e.g., malware analysts), fail to recognize. With
little help from domain experts, ML-based detection methods are able to automatically
find patterns and characteristics shared by Android (malicious) apps, which can facilitate
correctly classifying Android apps [41, 51]. In fact, ML-based detection is the de facto
detection method within the academic research community [100, 142]. Albeit using different
machine learning algorithms and different types of static and dynamic features, the majority
of ML-based detection methods adopt a standard process that we discuss in the following
sections.

3.4.1. Data Collection and Labeling with AndroZoo and VirusTotal

The ML-based detection process starts with acquiring and labeling a collection of Android
apps in the form of APK archives. In machine learning terms, this set is usually referred
to as the training dataset. The typical process of acquiring Android apps is to manually
crawl app marketplaces in pursuit of newly-uploaded apps, regardless of their malignancy.
This process has been largely automated by platforms such as AndroZoo [10]. The more
challenging process is that of labeling the downloaded apps as benign and malicious.
Ideally, researchers should manually analyze the APK archives of the downloaded apps
and monitor their runtime behaviors to discern their malignancy. Even with the subjectivity
of deeming apps as malicious, as discussed in Chapter 2, manual analysis is expected
to yield labels that accurately reflect the malignancy of apps. However, manual analysis
cannot cope with large numbers of Android apps. So, researchers turn to platforms that
provide (a) collections of Android malicious and benign apps to download, and (b) the scan
results of different antiviral scanners of those apps. There is a number of online platforms
that provide this service, such as Hybrid-Analysis [12], Malwr [86], and OPSWAT [27].
Nevertheless, the most reliable and renowned platform is VirusTotal. So, in this section, we
focus on VirusTotal as the source of Android apps and their labels.

The internal structure of VirusTotal and how it acquires (Android) apps, how it scans
them, and the agreements it has with antiviral scanners is proprietary. However, the
platform provides two main methods of interaction, namely a web interface and an APL

55



3. Android Malware Detection

Figure 3.1.: An illustration of the VirusTotal scan reports retrievable via the platform’s
web interface.

_I _] \ () 11 engines detected this file (4) D
(1) (3)
31192fb2e94d21dbad95134c247e5f8a3d5d251 cdb80464d6f01d0bac2a8aaae 265.77 KB 2019-04-18 00:43:32 UTC
31192FB2E94D21DBA495134C247ESFBA3DSD251 COBB0464D6F01 DOBACZABAAAE apk
android apk checks-gps
I |-
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY | (6)
Alibaba (D) Adbisplay:Android/Youmni.5c0cf414 Avira (no cloud) (1) ADWARE/ANDR.Youmi.P.Gen
CAT-QuickHeal (D) Android.Youmi.A (AdWare) Comodo /94i10p8izcf

ESET-NOD32 ADWARE/ANDR Youmi

(1) A variant Of Android/AdDisplay. Youmi.B F-Secure

Fortinet (D Adware/Youmi.B (2) Ikarus (1) Trojan.Android0S. Mseg

K7GW (D) Adware (0052d8a31) Symantec Mobile Insight (D Advibrary:youmi

re.General (score:9) Ad-Aware () Undetected

Trustlook (D) Android.Malwa

AegisLab () Undetected AhnLab-v3 () Undetected

Using VirusTotal via Web Interface

VirusTotal’s web interface allows users to look up the scan results of apps either by
searching for them using a hash value or by uploading the executable itself (e.g., APK
archive), for analysis. To avoid unnecessary analysis, the platform searches whether an
app has already been analyzed, and offers the user to display the existing scan results. If
the user wishes to reanalyze the app, the platform will re-scan the app using the antiviral
scanners it possesses and will display, as seen in Figure 3.1, the new scan results along with
different information about the queried app, which we highlight using blue squares in the
figure. The platform refers to such displayed information as a scan report.

In the top left of the report (i.e., square (1)), the user can see the number of scanners
deeming an app as malicious out of a total number of scanners used in the report. Details
about the scanners and the labels they give to the app can be seen in square (2). As
mentioned in Section 1.2.1, scanners that deem apps as malicious will have their labels
displayed in red next to their names, those that deem them as benign will have a green
Undetected displayed next to their names, and scanners that did not manage to scan the
app, for an unknown reason, will be grayed out. In square (3), the date and time of the
last time the app was analyzed is displayed. On the top right (i.e., square (4)), the curved
arrow allows the user to reanalyze the app, which effectively re-scans the APK archive
VirusTotal already possesses with the latest version of the antiviral scanners it uses.

VirusTotal allows its users to search for apps using tags, some of which are displayed
in square (5). Those tags are supposed to summarize the type of the app, the type of
its executable, and some of its interesting functionalities. In Figure 3.1, the scan report

56



3. Android Malware Detection

corresponds to an android APK archive that appears to use the GPS module of the device
it runs on. Lastly, as highlighted by square (6), VirusTotal provides the users with
details about the internal structure of the scanned app (e.g., its components, permissions,
and contacted URLs), whether it has any relations with other apps by sharing or reusing
components, the API calls it issues during runtime (if available), and any available verdicts
of researchers that analyzed the app.

Using VirusTotal via API

Despite providing the users with useful information, the web-based VirusTotal scan
reports do not scale to provide information about Android apps in large training datasets,
especially since they need to be retrieved manually. Furthermore, they are not in a machine-
readable format that can help manipulate and process the information they hold (e.g., to
extract numerical features). To cater to a large number of Android apps, VirusTotal
supports retrieving the scan reports of (Android) apps using an API. By signing up to
the platform, users gain access to a public API that limits the number of requests made
to the platform’s servers to a mere four requests per minute. To be able to issue more
requests, users have to apply for a private APIL. Typically, access to private API keys is
granted under commercial licenses. However, the platform provides access to its private
API for the academic research community for a limited amount of time after submitting an
application to the platform’s moderators. In our case, we gained access to a limited version
of VirusTotal’s private API for a total of one year. Under this access, we could issue up
to 20,000 requests per day.

The details of how requests are handled by the platform are also proprietary. Requests
can be made either using cURL, Python, or PHP, and are divided into three categories of
requests, viz. files, URLs and domains and IPs, and comments. Using the files API requests,
users can download the scan reports of apps, upload and scan their APK archives, re-scan
their archives, and download new apps, as seen in Listing 3.2. Similarly, users can scan and
download the scan reports of URLs and domain names. Lastly, the comments API requests
enable users to download any comments made by researchers vis-a-vis an app (i.e., ones
available under the Community tab in Figure 3.1).

Listing 3.2.: Examples of VirusTotal’s APl requests to gather information about Android

apps.

import requests

# Retrieve file scan reports
params = {'apikey': '<apikey>', 'resource': '<filehash>"}
response = requests.get ('https://www.virustotal.com/vtapi/v2/file/report’,

— params=params)

57



10

11

12

13

14

15

16

17

18

19

3. Android Malware Detection

# Upload and scan a file

params = {'apikey': '<apikey>'"}
files = {'file': ('appl.apk', open('appl.apk', 'rb'))}
response = requests.post ('https://www.virustotal.com/vtapi/v2/file/scan',

— files=files, params=params)

# Re—-scan a file
params = {'apikey': '<apikey>', 'resource': '<filehash>"}
response = requests.post ('https://www.virustotal.com/vtapi/v2/file/rescan’',

— params=params)

# Download a file

params = {'apikey': '<apikey>', 'hash': '<filehash>"'}

response = requests.get ('https://www.virustotal.com/vtapi/v2/file/download"',
— params=params)

downloaded_file = response.content

Since our concern is the collection and labeling of Android APK archives, we focus on
the files API requests. To acquire new APK archives, researchers can either download them
from VirusTotal as seen in the previous listing, or from other platforms such as AndroZoo.
To label apps, researchers usually download their VirusTotal scan reports, and employ
different strategies to interpret the information in these reports to deem apps as malicious
and benign. The information in the download scan reports resembles the information found
in their web-based counterparts. However, in the API-based scan reports, the information
is organized in a machine-readable format, namely JavaScript Object Notation (JSON). So,
the information in the web-based scan reports can be found in the API-based ones as keys
and values. For example, the number of scanners deeming an app as malicious is available
under the key positives, the last time and date on which the app has been scanned can be
found under scan_date, and the tags given by VirusTotal to the app are listed under tags.
We summarize the VirusTotal keys that we use in this thesis in Table 3.2.

Labeling Apps using VirusTotal’s Scan Reports

As discussed earlier, the information returned by VirusTotal, as seen in Figure 3.1 does
not directly translate into a label (e.g., malicious and benign). Users of the platform have to
employ some technique to infer a label from such information. The techniques used to infer
labels from VirusTotal’s raw information is usually referred to as labeling strategies,
which we define as:

58



3. Android Malware Detection

Table 3.2.: A summary of the VirusTotal scan report attributes that we use in this thesis.

Name Description Type Example
The time and date on which the} app was first Formatted st r "2015-10-17 06:28:03”
uploaded and scanned on VirusTotal
The time and date on which the app was last
uploaded and re-scanned on VirusTotal
positives The number of scanners deeming an app as malicious int 15
The time and date on which the app was

first_seen

last seen

scan_date . L Formatted str 2019-09-27 02:53:36”
last (re-)scanned without re-submission
”Avira”: {}"detected”: False,
scans A collection of details about the dict of dicts “result”: None,
verdicts of different antiviral scanners "update”: 720190927”,
“version”: ”8.3.3.8"}
tags The list tags given by VirusTotal to an app list of strs contains-elf

The number of times an app was
uploaded to VirusTotal for analysis
total The total number of antiviral scanners in a scan report int 59
The list of permissions requested by an app

as per its AndroidManifest .xml file

The difference in positives between
the current scan_date and the one before it

times_submitted int 3

additional_info.androguard. Permissions list of dicts android.permission.CALL_PHONE

additional_info.positives_delta int -5

A labeling strategy is a combination of techniques that use the attributes available
in a typical VirusTotal scan report to generate a label for an app that reflects its
malignancy (i.e., malicious or benign), malware type, or malware family. These
techniques are usually based on the domain knowledge of the researcher employing
them and/or studying the behavior of VirusTotal and the scanners it uses.

In the absence of standard labeling strategies or procedures that suggest how to devise
labeling strategies, malware analysis and detection researchers are left to devise the
strategies they deem fit to label Android apps based on their VirusTotal scan reports.
Our survey of the literature suggests the existence of two broad categories of labeling
strategies: threshold-based and what we refer to as scanner-based labeling strategies.

Threshold-based labeling strategies deem apps as malicious if the number of scanners
in a scan report that deem the app as malicious meets or exceeds a value (or threshold)
pre-defined by the researchers. The lower bound of the threshold is zero (i.e., no scanners
deeming an app malicious), and its upper bound is the total number of scanners found in the
scan report, which is usually around 60 scanners. A threshold is always a positive number,
especially since a negative value does not represent any number of scanners. In addition
to integer values, thresholds assume float values to represent a percentage of scanners
rather than a particular number [153]. The typical scan report attributes that threshold-
based labeling strategies utilize are the positives and total attributes. Lastly, threshold-based
labeling strategies are usually oblivious to the scanners they base their decisions on. For
example, consider the scan report in Figure 3.1; a threshold-based labeling strategy that
uses the threshold of ten scanners will deem the app represented by this scan report as
malicious regardless of the trustworthiness or reputation of the scanners that deem the app

59



3. Android Malware Detection

as such. This property makes them susceptible to false positives, especially if the threshold
value is low (e.g., one) [63].

Scanner-based labeling strategies are designed to counter this limitation of their threshold-
based counterparts. So, instead of solely relying on the total number of scanners deeming
an app as malicious, they base their decisions on the verdicts given by a subset of scanners
that are known to be more accurate and/or trustworthy. This subset of scanners can be
based on domain knowledge and expertise [15], or on experiments and measurements that
reveal which scanners are more correct and consistent over time [113, 63].

In some cases, the two approaches are combined to devise a hybrid method. For example,
in [15], Arp et al. focused on the verdicts of ten scanners, namely AVG, Avira (formerly
AntiVir), BitDefender, ClamAV,ESET-NOD32,F-Secure, Kaspersky, McAfee, Panda,
and Sophos, and deemed an app as malicious if at least two out of these scanners deemed
it as such. Effectively, it is a crossover between threshold-based and scanner-based labeling
strategies.

3.4.2. Feature Engineering, Selection, and Extraction

Given that machine learning algorithms operate on numerical data, the APK archives have
to be processed to extract numerical and categorical features from them. The extracted
features usually reflect assumptions about what constitutes and reveals the malignancy of
Android apps. For example, based on observations that malicious Android apps request
more permissions than their benign counterparts [75], a feature depicting the total number
of permissions requested by an app might be included in the features extracted from apps
in the training dataset.

The process of coming up with potential features to extract from Android apps is usually
referred to as feature engineering. Features can be statically or dynamically extracted from
APK archives. Ultimately, the result of feature extraction yields a vector of numerical
features (%;) for each Android («;). Each feature vector is usually assigned a label (y;) that
depicts its class. This class can depict its nature (i.e., malicious versus benign), malware
family, malware type, or other categories to which the Android app may belong to. For a
group of Android apps, the collection of their feature vectors and labels is usually organized
into a matrix (X) and a vector (7).

Feature Selection

Feature selection aims at manually or automatically selecting a subset of more relevant or
informative features from feature vectors. The relevance of a feature can be decided upon
manually based on prior knowledge of the problem domain [50], or automatically using
statistical algorithms. Given a matrix (X) containing feature vectors of dimensionality (1),
the primary objective of such statistical algorithms is to search the 2" subsets of features
that can segregate feature vectors of different classes better than other subsets. The most
straightforward search strategy is to exhaustively go over all possible feature subsets in

60



3. Android Malware Detection

pursuit of the best subset. However, the exhaustive search strategy is both time- and
resource-consuming [94]. So, faster and smarter strategies such as greedy hill-climbing,
selection using classification models, and genetic algorithms [71] have been implemented.
At the end of the search for the most relevant features, feature selection algorithms return
weighted feature vectors, in which each feature is weighted according to its importance and
contribution to better classification. It is up to the user to decide upon a threshold that a
feature’s weight needs to meet in order for its corresponding feature to be considered in the
set of selected features. In special cases, the weights are either 0 or 1; features that have a
weight of 1 are included in the final feature vector, whereas features assigned a weight of 0
are excluded [94].

Feature Extraction

Unlike feature selection, feature extraction algorithms do not return a subset of the features
originally retrieved from, for example, Android APK archives; they rather construct new
features from existing ones [51]. There are different feature extraction techniques, of
which Principal Component Analysis (PCA) is the most prominent. PCA attempts to find
relevant and more informative features that segregate data samples of different labels.

Mathematically, the segregation is defined in terms of variance. A feature (x} € £;) of high
variance is assumed to spread data samples in a way that facilitates classifying them. PCA
works on the assumption that a large feature variance corresponds to useful information,
with small variance equating to information less useful [61]. In this context, PCA reduces
the dimensionality of the feature vectors while retaining most of the variation in the dataset
[110]. PCA does not suggest the target dimensionality or the number of new features to
consider. Deciding upon such value is application specific, and is left for the user of PCA
[111]. For instance, if PCA is used to visualize the data samples, the target dimensionality
is chosen to be two or three [110].

3.4.3. Training and Validation

After extraction and selection of features, the numerical representations of the Android APK
archives (X) and their labels () are used to train and validate a machine learning algorithm.
This algorithm depicts the core of ML-based detection methods as it is used to decide upon
the label or class (e.g., malicious and benign), of Android apps based on their numerical
representations. Machine learning algorithms, often referred to as models, are meant to
describe dependencies among data and represent the causalities and correlations between
inputs and outputs [41, 51]. Given a set of observed data (X) and a learning model F(X, 0),
the objective of machine learning is to estimate a set of parameters 0 that minimize the
learning error E(F(X, 0), X). The learning error depicts the difference between the outputs
produced by the learning model F(X, #) and the ground truth (7). The learning process, also
known as the training process, is considered complete once the learning error converges to
a minimum value.

61



3. Android Malware Detection

The learned models can perform a variety of tasks such as classification, regression, and
clustering [41, 21]. Within the domain of malware analysis and detection, both classification
and clustering can be utilized. For example, in some cases, researchers aspire to group
(malicious) apps together to identify families or types [153]. In typical detection scenarios,
however, the main objective is to assign an app («*) a label that depicts, for instance, whether
it is malicious or benign; this task is called classification.

The choice of the model to train largely depends on the training dataset (X) being labeled
or not. In the case of classification, the labels of apps in the training dataset are usually
known via the () vector. If so, the training process is known as supervised learning. Since
every feature vector (£; € X) has a corresponding label (y; € 7), the training dataset can be
represented as D = {(%1,y1), (X2, Y2), -, (%, Yn) }-

The exact technicalities of the training process differ from one model to another (e.g.,
decision tree versus support vector machines). However, in essence, the training process
attempts to estimate a decision boundary that best separates the feature vectors belonging to
different labels or, more technically, minimizes the learning error E(F(X, 0), X). Depending
on the trained model, this decision boundary can be a line equation, a multi-dimensional
plane, or in the case of models such as K-Nearest Neighbors (KNN), a majority vote function.

The trained model is used to assign labels to apps that have not been used during training
(i.e., test or out-of-sample apps). The first step to label such apps is to represent them as
vectors of numerical features (£*) resembling the features used to represent apps in the
training dataset. Using (£*), the trained model estimates the side of the decision boundary
on which the vector resides and, in turn, its estimated label. In our scenario, this side can
be the side of malicious apps versus that of benign apps or the side of the malware family
Airpush versus that of SimpleLocker.

The process of estimating the labels of apps never used in training is referred to as testing,
and should mimic the conditions that the trained models go through after being deployed.
The more accurate the training model can label out-of-sample apps, the better it is said
to generalize. If it cannot generalize well, the trained model is usually said to overfit to its
training dataset. That is, the model learns characteristics specific to the feature vectors in its
training dataset that are not necessarily to be found in out-of-sample feature vectors. To
give an example within the domain of Android malware detection, consider a scenario in
which a ML model is trained using one feature depicting the size of each APK archive in the
training dataset. The trained ML model will learn to separate malicious and benign Android
apps based on the sizes of their APK archives. If the majority of apps were developed
during the same time period (e.g., 2010), the trained ML model would learn the sizes during
that time period. While the trained model is expected to effectively classify Android apps
developed in 2010, it is expected to fail to segregate newer apps based on the sizes of their
APK archives, given that Android apps significantly grew in size between 2010 and 2019.
In this case, the trained model is said to have overfitted to its training dataset.

To ensure that the trained models generalize well before deployment, researchers simulate
the testing process by training a model using a subset of feature vectors in the training
dataset and testing the trained model using the remaining subset of feature vectors. This

62



3. Android Malware Detection

(a) Original Dataset (b) First Iteration (c) Second Iteration (d) Third Iteration

Figure 3.2.: This figure depicts 3-Fold cross-validation. Figure (a) shows the original dataset
that is divided into three equal folds. In figure (b), the first two folds, in red,
are used for training and the remaining fold, in green, is used in testing. In the
second iteration, figure (c), two different folds are used for training. Figure (d)
concludes the validation process as all fold combinations have been exhausted.

simulation process is referred to as validation. The conventional method of performing
validation is to split the training dataset into two-thirds for training, and one-third for
validation [143]. However, this method depicts only one scenario of what the trained
model can encounter during training and testing, which can give a false estimation of
the generalization capabilities of the trained model. To make the validation process more
objective and comprehensive other methods are used to perform validation, including
K-Fold Cross-Validation.

K-Fold Cross-Validation K-Fold Cross-Validation divides the training dataset D =
{(®1,11), (X2,Y2)..., (R4, yn)} into (K) equal portions, or folds. Given a machine learning
model, K-Fold Cross-Validation iterates over (D), systematically or randomly picking
(K —1) folds as the training dataset and the remaining fold as the test dataset of the model.
At every iteration, the classification accuracy of the model is calculated. This process is
carried out for (K) iterations. At the end of the iterations, the recorded (K) accuracies are
averaged to yield the overall accuracy of the classifier on the dataset (D). Figure 3.2 gives
an example of 3-Fold cross-validation. K-Fold Cross-Validation is an intuitive, efficient, and
objective methodology to assess the generalization ability of a model.

3.4.4. Decision Boundaries of Learning Algorithms

In the previous section, we mentioned how different ML classifiers learn how to separate
feature vectors that belong to different classes and uses this separation to classify out-of-
sample feature vectors. Furthermore, we discussed that this separation, which we referred
to as a decision boundary, can assume different formats such as an equation of a line or a
multi-dimensional plane. The question we address in this section is whether the difference
in the format of the decision boundaries learned by different ML classifiers may have an
impact on their classification abilities.

To facilitate understanding the concepts we introduce in this section, we use the visualizat-
ion in Figure 3.3. In this figure, we plot the decision boundaries learned by the ML classifiers
we use later in this thesis to separate two classes in three synthetic datasets (i.e., red circles
and green triangles). The three datasets resemble different scenarios of how the feature

63



3. Android Malware Detection

(gND) seheg aniep ueissnesy (4y) 153104 wopuey INAS Jeaur] (NNM) sioqysia 1sa1e3N-H elep ndu|

‘(Aoeamndoe
3'T) AJISSE[O A[30a110D 0} padeurew IDIJISSe]d ) SI0309A a1njed) aydures-Jo-no jo adejuadrad ayy 1o1dop a3y
oeD Jo 1YS31I w0330 Y} UO SISqUINU ], 'SI0J3A d1n3ed] 1533 aydures-jo-no 1o1dap spuourerp aduero ap
SEaIaYM ‘SISSE]D JUSIdJJIP 0M) 0} Surduo[aq S103094 arnjesy Sururery 1o1dap saf3uern) Usard pue Sa[IID Par A
‘uoryensny[r sTy3 Uy ‘[Gz1] S10309A ainjedy ajdures-jo-no Ajissep A[3091100 03 AJIqe 119y} uo sey uonjeredas
yons joedwr ayj pue s103094 a1njesy sjeredas sunyrIo3[e UOTJLDIISSE[D TIA JUSISJJTP MOY JO UOTeNSN{I UY :'¢'¢ I3y

64



3. Android Malware Detection

vectors belonging to different classes occupy the same dimensional space in relation to
one another. That is, in the bottom dataset, feature vectors that belong to either class
are clustered together in two large groups, which might facilitate separating them via a
straight line drawn between them. Similarly, the feature vectors in the top dataset can be
separated via a higher-dimensional line, especially since they appear to be more intertwined.
However, in the middle dataset, the feature vectors of one class (i.e., green triangles), are
surrounded by the vectors belonging to the other class, which makes it difficult for some
ML classifiers to separate. In this context, the feature vectors in the top and bottom datasets
are said to be linearly separable. The goal of the classifiers in Figure 3.3 is to classify the test
feature vectors depicted as orange diamonds.

There are two factors that impact the shape of the decision boundary learned by ML
classifiers to separate the training feature vectors. Firstly, ML classifiers are designed to
separate feature vectors in different manners. For example, the linear SVM classifiers, which
are used by Drebin, attempt to draw lines between the two classes. Random forests use
their tests and splits to compartmentalize the training dataset. That is, after each split, the
decision trees in the forests isolate the segment of the training dataset that it managed to
capture its ground truth, and perform further tests and splits on the remaining segment.
The second factor that affects the shape of the decision boundaries is the organization of
the feature vectors in the dimensional space. As part of separating different classes, ML
classifiers attempt to identify regions of the dimensional space occupied by feature vectors
of a specific class. In those regions, the classifier is confident that a test feature vector is
likely to belong to the same class. This confidence is depicted by the different degrees of
red, green, and yellow colors in Figure 3.3. As seen in the figure, regions in which green
triangles are the majority have darker green colors, while regions in which the red circles
are the majority have darker red colors. The more mixed the feature vectors are, the lighter
the color of that region.

It follows that the ability to correctly classify out-of-sample feature vectors will differ
from one ML classifier to another and from one dataset to another. In this example, we use
the accuracy metric as our measure of each classifier’s performance. Shown in the bottom
right corner of each subfigure, accuracy measures the percentage of out-of-sample apps
that each classifier managed to classify correctly. Taking the linear SVM classifier as an
example, one can notice that the classifier can accurately classify out-of-sample apps in
the datasets where the training feature vectors are linearly separable (i.e., top and bottom
datasets). However, the classifier’s performance drops to 0.35 for the middle dataset, in
which the apps are not linearly separable. Similarly, the accuracy of the Gaussian Naive
Bayes (GNB) classifier is better on the bottom dataset than on the top dataset, whereas the
accuracy of Random Forest (RF)s is better on the top dataset than on the bottom one.

We relate this example to the problem of Android malware detection using ML-based
detection methods and this thesis as follows. The performance of ML-based detection
methods hinges on how well the ML classifier can separate malicious and benign apps.
What we demonstrated in this example is that some ML classifiers can cope with linearly-
inseparable data, while others cannot, which explains the discrepancies in their performance

65



3. Android Malware Detection

across different datasets. This hinges on the type of features extracted from the APK
archives, which dictate how the feature vectors will occupy the dimensional space in
relation to one another. If the separability of the aforementioned feature vectors coincides
with the chosen ML classifier, the performance of the ML-based detection method is likely
to be high. In other words, there are no ML classifiers that will always perform well on
any types of features extracted from Android apps. This partially explains the results in
Section 6.4: depending on the type of features extracted from the APK archives of apps in
the AndroZoo dataset, some ML classifiers can perform better than others. Furthermore, the
labels assigned to apps in this dataset-which hinges on the employed labeling strategy—
impact the distribution of the feature vectors representing malicious and benign apps in the
dimensional space. This impacts the decision boundaries learned by different ML classifiers,
effectively altering their detection performance.

3.5. Challenges Facing ML-Based Detection

The authors of ML-based Android detection methods usually report promising detection
results. However, as discussed in Chapter 1, Android malicious apps continue to evade
detection and can be found on app marketplaces. In addition to the theoretical and practical
limitations of malware detection that we discussed earlier in this chapter, there are three
main challenges that face ML-based malware detection in general and Android malware
detection in particular. These challenges are related to the method Android apps are labeled
prior to training a detection method, the deterioration of the ML-based detection methods’
performance over time, and proactive malware authors that possess information about the
internal structure of ML-based detection methods and design their malicious apps to evade
detection by such methods (i.e., adversarial ML).

3.5.1. The Choice of Features and Classifiers

In Section 3.4.4, we discussed using an example that the performance of ML classifiers
and, in turn, that of ML-based detection methods depends on the ability of the chosen
ML classifier to separate the feature vectors of malicious and benign apps. It follows that
the type of features extracted from the apps” APK archives plays a vital role in enhancing
the performance of such detection methods. So, the main challenge that faces malware
analysis and detection researchers is to identify or devise numerical features to be statically
or dynamically extracted from Android apps, and match those features to a ML classifier
that can separate them well and, thus, effectively classify out-of-sample Android apps.
Surveying the literature, we found that there is no consensus on which type of features to
use with which classifiers [142, 16]. Instead, the majority of ML-based detection methods
introduce new types of features that are either matched with specific classifiers, or are
evaluated using different classifiers [87,104, 156, 97, 43, 15].

66



3. Android Malware Detection

3.5.2. The Subjectivity of Malware Labeling

The accuracy of the labels that correspond to feature vectors used to train a machine learning
model plays a vital role in the model’s ability to separate feature vectors in the training
dataset and, subsequently, generalize to out-of-sample feature vectors. Recall that machine
learning models attempt to find a decision boundary that best separates two, or more,
classes of feature vectors. If the labels of such feature vectors change, the drawn decision
boundary will also change to cater to the new labels. Consider the illustration in Figure 3.4,
which shows a SVM trying to separate two classes of feature vectors in a 2-dimensional
space. In this illustration, we consider the circles to be feature vectors of malicious apps,
the triangles to be the feature vectors of benign apps, and the diamond to be the feature
vector of an out-of-sample malicious app that we use to validate the quality of the trained
SVM. Those shapes change color according to the strategy adopted to label them prior to
training the classifier. For example, the difference between the left and middle subfigures
in Figure 3.4 is that the label of the right outermost triangle changed from benign (i.e.,
green) to malicious (i.e., red). Changing the label of this app and its feature vector forces
the SVM to estimate a new decision boundary to separate the classes according to the new
labels. Similarly, the subfigure on the right has a different decision boundary to cater to the
different labels.

malicious test app (a*)

1’1‘

A

1
|
|
1
l
A

ad
A B
A
|

4

Figure 3.4.: An illustration of how the decision boundary learned by a SVM will differ in an
attempt to cope with different labels.

The main problem in this example is not in estimating a different hyperplane or decision
boundary; instead, it is a problem of training a SVM that accurately represents the ground
truths of the training feature vectors and can generalize well. In the left subfigure, the SVM
can decently separate malicious and benign apps, which helps train a model that correctly
recognizes the malignancy of the test app (a*) depicted as a diamond. The SVM trained
in the middle subfigure also recognizes the malignancy of the test app; nevertheless, it
trains a model with narrow margins between the positive and negative hyperplanes, which
might misclassify benign test apps as malicious, resulting in a potentially high rate of false
positives. The decision boundaries in the right subfigure depict the opposite case, in which

67



3. Android Malware Detection

malicious apps are mistakenly labeled as benign, resulting in a SVM that misclassifies (a*).
With this hypothetical example, we wish to convey the importance of labeling apps and
their feature vectors as accurately as possible.

Assuming an objective and unbiased expert perspective, accurate labeling of Android
apps can be achieved by manually analyzing and reverse engineering apps, as seen in
Section A. However, a fully manual method cannot cope with the number of apps uploaded
daily to marketplaces, such as Google Play. Private firms (e.g., antiviral software firms)
are said to rely on semi-automatic methods to analyze apps, especially since they have the
resources to recruit malware analysts and researchers that develop such methods. Academic
researchers, however, do not possess such resources and rely on the results returned by
antiviral software. To be objective, researchers attempt to rely on the scan results of as
many antiviral scanners as possible. As discussed earlier, one platform that is renowned
within the academic community that provides such a service is VirusTotal [148]. This
online platform displays to users the scan results of around 60 antiviral scanners (hereafter
scanners), without any bias towards a certain subset of scanners or recommendations on
which scanners to focus on. In this context, it is completely up to the user to decide upon
the scanners they consider in labeling an Android app.

The most common strategy adopted to label apps according to their VirusTotal scan
reports is one that requires a minimum number of scanners to deem an app malicious. If
the number of scanners on VirusTotal that deem an Android app as malicious surpasses
such a minimum number, the app is labeled as malicious; otherwise, the app is deemed as
benign. Effectively, this minimum number is a threshold. So, throughout this thesis, we refer
to this type of labeling strategy as threshold-based labeling strategies. Unfortunately, there
are no standard methods of determining the threshold of VirusTotal scanners that help
to accurately label Android apps, which encourages researchers to adopt different labeling
strategies that conform with their understanding or definitions of malignancy. As seen
in Figure 3.4, different labeling might impact the quality and effectiveness of a ML-based
detection method, especially since it significantly alters the composition of the training and
test datasets.

To demonstrate the impact of varying the threshold of VirusTotal scanners on the
composition of a dataset, we used different thresholds adopted by the academic community
to label Android apps in different datasets according to their VirusTotal scan reports.
In particular, we used thresholds of one [75], four [100], ten [150], and 50% [153]
VirusTotal scanners to deem apps as malicious. As mentioned earlier, the term positives
refers to the number of VirusTotal scanners deeming an app as malicious. As seen in
Table 3.3, the impact of varying the threshold of positives on the composition of a dataset
varies from one dataset to another. For example, the AMD dataset maintains the same
composition among the thresholds of one, four, and ten before radically changing under a
threshold of 50% of scanners. Ironically, a threshold of 50% of scanners is the threshold the
authors of the AMD dataset used to deem apps as malicious.

One observation we can make by examining the data in Table 3.3 is that a threshold of
one VirusTotal scanner seems to be biased towards labeling Android apps as malicious,

68



3. Android Malware Detection

Table 3.3.: The impact of varying the threshold of VirusTotal scanners (i.e., positives),
used to deem Android apps as malicious on the composition of different datasets
we use in this thesis. Apps were labeled using VirusTotal scan reports
downloaded on November 8, 2019.

positives> 1 [75] positives > 4 [100] positives > 10 [150] positives > 50% [153]

Total Apps

Thresholds
Datasets

ma

AMD

24,553 (100%) 0(0%)

24,553 (100%)

0(0%)

24,553 (100%) 0 (0%)

5,492 (22.36%) 19,061 (77.63%)

24,553

Piggybacking

1,820 (66.1%) 925 (33.6%)

1,116 (40.5%)

1,638 (59.47%)

998 (36.23%) 1,756 (63.76%)

58 (2.1%)

2,696 (97.9%)

2,754

GPlay

127 (<1%) 24,035 (99.48%)

5(<1%)

24,157 (99.97%)

1(<1%) 24,161 (=100%)

0 (0%)

24,162 (100%)

24,162

AndroZoo 2,130 (34.50%) 4,043 (65.50%) 1,178 (19.08%) 4,995 (80.91%) 159 (2.57%) 6,014 (97.42%) 5(<1%) 6,167 (~100%) 6,172

Hand-Labeled 33 (33%) 67 (67%) 23 (23%) 77 (77%) 21 (21%) 79 (79%) 2.(2%) 98 (98%) 100

Hand-Labeled 2019 13 (13%) 87 (87%) 6 (6%) 94 (94%) 4(4%) 96 (96%) 0 (0%) 100 (100%) 100

whereas a threshold of 50% of scanners seems biased towards labeling them as benign.
However, only considering the thresholds of four and ten scanners does not seem to stabilize
the composition of datasets such as Piggybacking and AndroZoo. Seeing how the composition
of a dataset changes across different thresholds and given our discussion of how sensitive
ML-based detection methods are to labels, it is expected that different researchers adopting
different thresholds will get different performances from their detection methods even if
they are using the same dataset and the same machine learning algorithm.

Different thresholds seem to depict different views of malignancy and risk levels adopted
by researchers. For example, a threshold of only one VirusTotal scanner might be
adopted by a very cautious researcher who considers Android apps as benign if and only if
no VirusTotal scanners deem them as malicious. A more lenient researcher might opt to
use a threshold of 50% of VirusTotal scanners to deem apps as malicious in order to, for
example, avoid ambiguous malware types such as Adware and Riskware. Nevertheless,
without having a standard or systematic method of labeling Android apps according to their
VirusTotal scan reports, it is difficult to assess the effectiveness of different ML-based
detection methods released by the research community.

3.5.3. Performance Decay over Time

Similar to benign apps, Android malicious apps adopt the same technologies, resources,
and trends to generate monetary profit or deliver the malicious intents of their authors. For
example, in the late 1990s and early 2000s, a large number of services relied on premium
SMS numbers. Malware authors saw this as an opportunity to make a profit, and entire
malware families were implemented to deplete users” mobile phone credits by secretly
sending SMS messages to premium numbers owned by the malware authors [107, 153, 108].
Nowadays, malware authors target newer technologies such as cryptocurrencies and digital
marketing, which are respectively targeted by the malware families XLoader [52] and

69



3. Android Malware Detection

SimBad [26]. Other recent malware families, such as RedDrop, make use of the high-speed
internet connections Android devices usually have access to, and upload recorded audio to
the cloud-storage accounts on Google Drive and Dropbox [6].

Depending on the type of features extracted from the APK archives, the feature vectors
representing apps belonging to those new malware families may look different from those
belonging to older families (e.g., because the type of API calls used by malicious apps
changed over time). From the perspective of an ML-based detection method, those new
feature vectors cannot be matched to many or enough feature vectors of malicious apps
used to train the method, potentially forcing the detection method to label those apps as
benign. Ultimately, this concept drift in the functionality and appearance of malicious apps
[62] is expected to impact the detection performance of once effective detection methods
negatively.

In [44, 100], Pendlebury et al. refer to this problem as temporal experimental bias. They
demonstrated that even the most renowned of detection methods, such as Drebin [15] and
MaMaDroid [87], suffer from performance decay over time. This problem of performance
decay does not necessarily relate to the mediocrity of the trained ML-based detection
methods. It is a natural phenomenon that occurs as Android apps evolve, including
malicious ones. In other words, there are no clear issues in the ML-based detection methods
that need to be addressed by researchers. Pendlebury et al. suggested the frequent re-
training of ML-based detection methods to cope with the release of not only new malicious
apps but with newer versions of old malware families (e.g., obfuscated versions).

3.5.4. Adversarial Machine Learning

Adversarial machine learning is a relatively new challenge that faces machine learning
algorithms in general, including ML-based detection methods [44, 49, 156]. In essence,
adversarial machine learning focuses on altering training or test data points (e.g., APK
archives), to force machine learning algorithms to make false predictions [44]. Formally,
this requires crafting a fake feature vector of (£), designated (#7), that confuses the trained
model (F), which can be formally presented as the following problem [141]:

&f = 2+ 6, = £+ min||z||s.t. F(% + 2) # F(%)

This equation means that adversaries aspire to add some minimal perturbation (é,) or
(z) to the original feature vector (£) that makes the model (F) misclassify the feature vector.
The nature of this perturbation differs from one ML algorithm to another [156], which
requires knowledge of the internal mechanics of the targeted machine learning algorithm
[49]. Given an ML-based Android malware detection method (F) that takes in a feature
vector (%) and returns y’ = 0 indicating that (£) is benign and ¥’ = 1 indicating that (£) is
malicious, assume that the adversary (i.e., malware author), can use (F) as an oracle. That is,
the adversary can send (F) an arbitrary feature vector (%/) and observe its outputy’ = F (&)

70



3. Android Malware Detection

an unlimited number of times. With the knowledge of the feature set used by (F), the
adversary is expected to modify the values in (#/) and send it to (F) until the result y' = 0.

In practice, Android malware authors usually do not have access to information such
as which machine learning algorithm is being used by the ML-based detection method,
or which feature set is being used by the algorithm. So, the closest that such malware
authors can get to adversarial machine learning is to guess which features are being used
by the detection algorithm and which features are more influential than others. Using such
information, malware authors can trace such features to the functionalities of their apps,
and modify or obfuscate them in a manner that will alter their values in the feature vectors
and confuse the machine learning model. Another possible technique is to repackage the
benign apps a ML-based detection method is presumed to utilize as examples of benign
apps, so that the resulting feature vectors of the repackaged, malicious apps look similar to
their original, benign counterparts and, hence, be classified as benign.

3.6. Summary

Despite the theoretical and practical limitations that face it, the problem of automated
(Android) malware detection has been researched for decades. In essence, the problem of
automated malware detection is that of matching an app to a group of apps that depict its
class, family, or type. Focusing on Android malware, we categorized different approaches to
Android malware detection in terms of the representation of Android apps (i.e., static versus
dynamic), and the techniques used to match apps to other apps (i.e., heuristic-based and
ML-based). Given its popularity, we focused on ML-based detection methods and discussed
how machine learning could be used to analyze and detect Android malware. Furthermore,
we discussed the main challenges facing this type of Android malware detection. Each of
the four challenges we discussed has its own line of research, which makes it difficult to
focus on all of them. In this thesis, we focus on the problem of labeling Android apps. In
the following chapters, we introduce methods to reliably and accurately label Android apps
according to their VirusTotal scan reports and study the impact of such methods on the
performance of ML-based detection methods.

71






Part I1.

Accurate Labeling for Effective
Detection

73






4. Threshold-Based Labeling Strategies

This chapter focuses on threshold-based labeling strategies, their structure,
advantages, and disadvantages. It reveals their sensitivity to the dynamicity
of VirusTotal, unveils some limitations of the platform, and how to work
around them to choose more stable thresholds. Parts of this chapter have
previously appeared in peer-reviewed publications [9], and [116], co-authored
by the author of this thesis.

Threshold-based labeling strategies are the de facto method to interpret VirusTotal
scan reports to label apps. However, there are not standard procedures on how to design
these methods, which forces researchers to use their intuitions and choose thresholds based
on their domain knowledge and how they perceive malignancy. Given their popularity, in
this chapter, we delve into studying threshold-based labeling strategies. In (Section 4.1),
we discuss how different thresholds might be chosen. Section 4.2 compares the labeling
accuracy of the threshold-based labeling strategies that are widely used within the literature.
In Section 4.3, we discuss how the dynamicity of VirusTotal impacts the performance of
these threshold-based labeling strategies and unveils the first limitation of VirusTotal.
Lastly, in Section 4.4, we provide actionable insights about the usage of threshold-based
labeling strategies by discussing how to find the currently optimal threshold to use in
labeling Android apps.

4.1. Choosing a Threshold

As mentioned in Section 3.4.1, users of threshold-based labeling strategies adopt a number
between one and the total number of scanners typically found in a VirusTotal scan
report (i.e., around 60), as their threshold of positives. Despite the freedom of choosing the
threshold’s value, in the literature, one can notice the adoption of only a small subset. In
this section, we attempt to identify the reasons behind choosing some specific values as the
threshold for threshold-based labeling strategies.

Surveying the literature, we found two approaches to choosing a value for a threshold. In
the majority of cases, a threshold is chosen as a combination of (a) the researchers” approach
to deeming apps as malicious being more cautious or lenient, and (b) what appears to
be familiar human concepts. For example, a threshold value of one [113, 75] reflects a
more cautious approach to deeming apps as malicious. That is, once an app is deemed
as malicious by any VirusTotal scanner, researchers that adopt this strategy will deem

75



4. Threshold-Based Labeling Strategies

the app as malicious to avoid what they may believe is a risk of a false negative by other
scanners. Researchers that are more concerned with false positives or ones that wish to filter
out ambiguous malware types, such as Adware, may adopt higher thresholds, such as 50%
of scanners [153]. A threshold of 50% of scanners translates to around 30 VirusTotal
scanners, which is a relatively large number of scanners that agree upon the malignancy
of an app compared to a threshold of one scanner. Given the discussion in Section 2.5
about the subjectivity of malware labeling and that around 51.5% of VirusTotal scanners
cannot recognize the malignancy of apps in the AMD dataset, a threshold of 50% seems to
be an exaggerated one. In this case, we argue that the chosen threshold is a combination of
a more lenient approach to label apps as malicious and the concept of a simple majority
(i.e., 50% of votes + 1). Within the literature, there are other thresholds, such as five [7] and
ten [150, 58], that were adopted without adequate justification. Is it because the numbers
five and ten are relatable (e.g., five fingers in a human hand)?

The second approach to choosing a threshold is based on studying VirusTotal and its
scanners over a period of time. Unfortunately, this approach represents a minority of cases.
For example, in [91], Miller et al. concluded their experiments that a value of four depicts
the optimal threshold to label Android apps.

4.2. Labeling Accuracy of Threshold-based Labeling Strategies

The main objective of labeling strategies is to assign labels to apps based on their VirusTotal
scan reports that accurately represent their ground truths. In this section, we discuss
the ability of threshold-based labeling strategies to accurately label apps based on their
VirusTotal scan reports and identify the aspects of VirusTotal’s dynamicity, if any,
and their impacts on the accuracy of those labeling strategies. To do that, we need datasets
that are (a) diverse (e.g., in terms of age and sources), and (b) have an accurate ground truth.
We use the two test datasets that were discussed in Section 1.3.4, namely Hand-Labeled and
Hand-Labeled 2019 because they were randomly crawled by AndroZoo from different app
marketplaces, were developed between 2010 and 2019, and because we manually labeled
them, which we assume makes their ground truth reliable.

We focus on threshold-based labeling strategies that have been utilized by researchers
to train and evaluate novel malware detection methods. In particular, we use thresholds
between one and ten scanners [75, 113, 44, 91, 7, 150, 58], 25% of scanners, 50% of scanners
[153], and the strategy adopted by the authors of Drebin' [15]. For readability, labeling
strategies that use a numerical value for a threshold, say (7), are referred to as vt > 7. For
example, the labeling strategy that uses a threshold of one scanner is referred to as vt >1.

In Figure 4.1, we plot the performance of each labeling strategy on the Hand-Labeled
and Hand-Labeled 2019 datasets between July 5t" 2019 and November 8", 2019 in terms of

1 An app is deemed as malicious if at least two out of the following ten VirusTotal scanners label it as such:
AVG, Avira (formerly AntiVir), BitDefender, ClamAV, ESET-NOD32, F-Secure, Kaspersky, McAfee,
Panda, and Sophos.

76



4. Threshold-Based Labeling Strategies

5 5
S = 205
gﬂ-a 1 . vt>5 §
-A- vt>6 ]
204 ve2 So4
- ve>
034 -H- vt>8 0.3
.3 vt>9
k- vE>10 0.2
02 & xtzu
525
vt>25% o1
0.1 v£>50%
—e— drebin 00
0.0 . .
o o 9 © S > A > o % 3 o 9 © S > A > o ®
¢ ¢ ¢ ¢ ¢ &S U I ¢ ¢ ¢ ¢ & & AV ML
¢ & & & & & & & & & & & & & & & & & & &
B o o ® 3 b3 B B o ® B B o o » 3 b3 B B o
Scan dates Scan dates
(a) Hand-Labeled (b) Hand-Labeled 2019

Figure 4.1.: The labeling accuracy of different threshold-based labeling strategies against
apps in Hand-Labeled and Hand-Labeled 2019 datasets based on their
VirusTotal scan reports downloaded between July 5, 2019 and November
8", 2019. The labeling accuracy is calculated in terms of the MCC score of each
labeling strategy.

the Matthews Correlation Coefficient (MCC) score [129]. For example, in Figure 4.1a, the
labeling strategy vt >1 had an MCC score of about 0.79 based on scan reports downloaded
on July 5, 2019. Conventional metrics, such as accuracy, are unable to capture or penalize
bias towards certain classes in imbalanced datasets. For example, using the accuracy metric

Tgi]{]N ), the vt >50% would have scores of 0.78 and 0.90 for the Hand-Labeled and Hand-
Labeled 2019 datasets, effectively rewarding its bias towards the benign class that comprises
the majority of apps in those datasets. However, MCC is capable of capturing such a bias of
this labeling strategy towards classifying apps as benign and gives a value that objectively
describes the strategy’s performance. The MCC values range from -1 (i.e., all apps were
misclassified) to 1 (i.e., perfect classification), with the value of 0 indicating a classification
ability similar to random classification.

Even within this small period of four months, one can notice that some threshold-
based labeling strategies are more accurate than others. Starting with the performance
of vt >1, while the labeling strategy managed to achieve a decent MCC score on apps
in the Hand-Labeled dataset, its performance noticeably decreased against apps in the
newer Hand-Labeled 2019 dataset. As discussed earlier, low threshold values, such as
one or two scanners, might result in false positives, especially against new apps whose
VirusTotal scan reports are not mature enough. In rare cases, only a few scanners can
recognize the malignancy of apps. However, in most cases, if an app has one or two
VirusTotal scanners deeming it as malicious, then it is most likely to be a false positive.
For example, we noticed that some scanners such as Tencent consistently label any apps

77



4. Threshold-Based Labeling Strategies

(e.g., ed23237e34££47580a99%ac70£35e84b32c05ab1d), that utilize App Inventor? as
malicious apps belonging to the A.gray. inventor.a malware family.

As for (vt >50%), pushing the threshold that high might prevent recently-developed
malicious apps and apps that belong to ambiguous malware types (e.g., Adware) from
being labeled as malicious, resulting in a high number of false negatives. Similar to vt >1,
the older the app and its VirusTotal scan report, the better the performance of vt >50%
and the newer the app, the worse the performance, especially since the malicious apps were
not labeled as malicious by enough VirusTotal scanners to make the 50% mark required
by the strategy to successfully deem them as malicious. In Section 2.5, we found that apps
in the AMD dataset had an average detection rate of 51.5%, and hypothesized that this
might negatively impact the performance of threshold-based labeling strategies that use a
threshold of 50% of VirusTotal scanners to deem apps as malicious. The performance of
vt >50% indeed supports this hypothesis.

Another aspect of how the age of apps and, in turn, the maturity of their VirusTotal
scan reports impacts the performance of different threshold-based labeling strategies can
be seen in the proximity of different MCC lines in Figure 4.1. In particular, in Figure 4.1a,
the lines of almost all threshold-based labeling strategies are close to one another and
exhibit a relatively steady performance (i.e., the performance does not noticeably fluctuate).
However, the MCC lines in Figure 4.1b are more distributed across the figure and exhibit
more fluctuations in performance. For example, on the Hand-Labeled 2019 dataset, the MCC
score of drebin sharply decreased from a little above 0.3 on August 30", 2019 to almost
0.0 on September 13, 2019 only to sharply increase to around 0.45 two weeks later. The
reason behind the proximity in the case of apps in the Hand-Labeled dataset is that their
positives values are high enough to accommodate threshold values up to at least 15 scanners,
which is represented by the vt >25% labeling strategy. The novelty of malicious apps in the
Hand-Labeled 2019 means that their positives values are much lower in comparison, which
prevents thresholds higher than six scanners from achieving high MCC scores. This claim
can be verified upon examining the mean, median, and standard deviation of the positives
attribute for malicious and benign apps in both datasets over the same period of time. As
seen in Figure 4.2, the positives attribute of malicious apps in the Hand-Labeled dataset stays
within the range of 15 to 20. Even with a standard deviation of ten scanners, the range
of scanners needed to label malicious apps in this dataset correctly remains between 7.6
and 20 scanners. As for the malicious apps in the Hand-Labeled 2019 dataset, their positives
values have mean and median values around seven, ranging between 2.89 scanners and
10.91 scanners. The benign apps in both datasets have mean and median values that are
almost zero with a negligible standard deviation of at most one scanner. So, any threshold
values above three are guaranteed to avoid false positives.

In Figure 4.1, we notice that only a subset of values of the positives attribute allows
the labeling strategies using thresholds between three and six VirusTotal scanners (i.e.,

2 App Inventor is a visual programming environment maintained by MIT that enables non-technical users to
develop apps for Android [60].

78


http://tiny.cc/l945jz

4. Threshold-Based Labeling Strategies

(a) Mean positives (b) Std. Deviation positives (c) Median positives

Figure 4.2.: The mean, standard deviation, and median of the positives attributes found in
scan reports of apps in the Hand-Labeled and Hand-Labeled 2019 datasets between
July 5%, 2019 and November 8", 2019.

vt>3,vt>4,vt>5,and vt >6), to outperform all other threshold-based labeling strategies
on both datasets in terms of the MCC score. Recall that the positives attribute is the number
of VirusTotal scanners that deem an app as malicious. So, the question is, why does a
range of VirusTotal scanners between three and six achieves the best MCC scores on
both datasets.

We hypothesize that there might be a number of VirusTotal scanners at least between
three and six that synchronize the labels they assign to apps within the same period of time
either because they the same detection engine [157, 22] or because they copy one another’s
verdicts [88]. We used association rule mining to investigate whether there is a group of
VirusTotal scanners that collectively and correctly label malicious apps. Association
rule mining attempts to associate items that usually occur together according to a history
of transactions [81]. For instance, given three separate transactions of items bought in a
supermarket (Milk, Eggs, Yogurt), (Milk, Apple, Corn), and (Milk, Eggs, Beer), association
rule mining can conclude that the items Milk and Eggs were bought together 67% of
the time, which is referred to as support. We retrieved the list of VirusTotal scanners
that correctly deem apps in the Hand-Labeled and Hand-Labeled 2019 datasets as malicious
according to our manually-assigned ground truths. We found no evidence that the same
set of three to six VirusTotal scanners always correctly deem apps as malicious in either
dataset. However, some VirusTotal scanners correctly deemed apps in both datasets
as malicious more often than others. For example, for 95% of the malicious apps in the
Hand-Labeled dataset, the scanner ESET-NOD32 deemed them as malicious; ESET-NOD32
also deemed 89% of the malicious apps in the Hand-Labeled 2019 dataset as malicious.
Similarly, the scanner SymantecMobileInsight correctly deemed 82% and 89% of
malicious apps in the Hand-Labeled and Hand-Labeled 2019 datasets as malicious. Other
VirusTotal scanners occasionally appeared alongside those two scanners to correctly
deem apps in both datasets as malicious. This results into mining association rules such as
{ESET-NOD32, SymantectMobileInsight, Cyren}, {ESET-NOD32, SymantectMobi

79



4. Threshold-Based Labeling Strategies

leInsight, Fortinet}, and {ESET-NOD32, SymantectMobileInsight, Ikarus},
etc. In summary, the rules mined from both datasets suggest that for each app, different
VirusTotal scanners appear alongside more reliable, consistent scanners to deem an app
malicious. Despite this change in scanners, for 67% of the apps in both datasets, the mined
rules contained an overall number of scanners that fell within a range of three and six. The
remaining 33% of apps had rules, including an even larger number of scanners.

To conclude this section, the results of the association rule mining of VirusTotal
scanners correctly deeming malicious apps in the Hand-Labeled and Hand-Labeled 2019
datasets suggest the following. It seems that are a few scanners that are usually associated
with correctly labeling malicious apps in both datasets as malicious. However, the number
of those scanners is not large enough to fall within the range of three to six. This range of
scanners is achieved through other scanners that occasionally appear in the scan reports
of malicious apps and correctly label them as malicious. So, why do these scanners
occasionally appear in the scan reports and not persist along with the ESET-NOD32 and
SymantecMobileInsight scanners to form alarger set of correct and persistent scanners?

4.3. Sensitivity to VirusTotal’s Dynamicity

In Section 1.2.1, we gave an example of VirusTotal’s dynamicity and argued its potential
impact on the performance of threshold-based labeling strategies: changing the optimal
values of thresholds that help threshold-based strategies to assign labels to apps that
accurately reflect their ground truths. In the previous section, despite finding that a range
of thresholds between three and six yields the best MCC scores on the Hand-Labeled and
Hand-Labeled 2019 datasets, we noticed that the performance of labeling strategies utilizing
these thresholds fluctuates at different points in time especially against the latter dataset.
For example, as seen in Figure 4.3, the MCC scores of the vt >4, vt >5, and vt >6 labeling
strategies fluctuate between 0.89 and 0.76 between September 27", 2019 and November
8" 2019. Moreover, using association rule mining, we found that the set of VirusTotal
scanners that correctly deem malicious apps in both datasets as malicious appears to change
with the exception of a few scanners. In this section, we investigate whether the reason
behind such a fluctuation is indeed the dynamicity of VirusTotal.

Firstly, to check whether the threshold range of three to five scanners still helps threshold-
based labeling strategies to accurately reflect the ground truths of apps in the Hand-Labeled
and Hand-Labeled 2019 datasets, we calculated the MCC scores achieved by threshold-based
labeling strategies using thresholds between two and nine VirusTotal scanners based on
scan reports downloaded on November 8", 2019. Based on the plot in Figure 4.4, we found
that the optimal threshold range of three-to-five scanners found on September 27!, 2019
ceased to exist for the following reasons. First, on the Hand-Labeled dataset, the performance
of vt >3 increased to match that of vt >4, whereas vt >5 maintained the same MCC score.
Second, the performance of threshold-based labeling strategies on the Hand-Labeled 2019
dataset decreased gradually in two stages. After a steady performance with thresholds two

80



4. Threshold-Based Labeling Strategies

e A)
091 > . 09
.f\iyé:_\_" - .——u [, - . I p
~— g N RN P4 SN 7\
- e N , N
\\ . AN - AN
w w L%

%
e
3
~
/

5] i< S \
3 3 | [ |
9 9
o 9
=07 4 =07 A
064 —o— vt>3 061 —— vt>3
vt>4 >4
t>5 t>5
-B- vt>6 -8 >
0. T 0.5
H O 3 o N > A\ > o o H S 3 o N > A\ > o g
& & ¢ ¢ s & S & & & ¢ & S
¢ & & & & & & & & & O & & & & & & & & &
I A O
Scan dates Scan dates
(a) Hand-Labeled (b) Hand-Labeled 2019

Figure 4.3.: The labeling accuracy of threshold-based labeling strategies using thresholds
between three and six scanners against apps in Hand-Labeled and Hand-Labeled
2019 datasets based on their VirusTotal scan reports downloaded between
July 5t 2019 and November 8", 2019. Accuracy is calculated in terms of the
MCC of each labeling strategy.

and three, the performance of threshold-based labeling strategies drops with vt >4 to 0.76
MCC score. With a threshold of seven VirusTotal scanners, the performance drops again
to an MCC score of 0.61 and stabilizes for vt >8 and vt >9. That makes the new range of
optimal thresholds for apps in the Hand-Labeled 2019 dataset to be between two and three
scanners. Consequently, the intersection of the best-performing thresholds on both datasets
yields a new range of optimal thresholds, namely three VirusTotal scanners.

While the performance of threshold-based labeling strategies on both datasets contributed
to the change of the optimal range, the performance of such strategies on the Hand-Labeled
2019 had the most impact. So, in understanding the reasons behind the change in the
optimal range of thresholds, we focus on the performance of threshold-based labeling
strategies on the Hand-Labeled 2019 dataset.

We start by identifying which type of apps (i.e., malicious or benign), caused the change
by examining their specificity (%) and recall (T—lf) scores instead of the MCC score. We
found that the performance of vt >3, vt >4, and vt >5 on benign apps in the Hand-Labeled
2019 dataset did not change; that is these labeling strategies correctly labeled the same
benign apps at both points in time. Nonetheless, we found that these labeling strategies
respectively had recall scores of 0.7, 0.6, and 0.6 on November 8", 2019 instead of 0.8, 0.8,
and 0.8 on September 27", 2019. Since the total number of malicious apps in this dataset is
ten, we can investigate the differences in the positives values in their scan reports and the
different VirusTotal scanners that deemed them malicious on both dates. In Table 4.1, we
detail the change in the positives values in terms of the VirusTotal scanners that deemed

81



4. Threshold-Based Labeling Strategies

Figure 4.4.: A comparison of the MCC scores achieved by threshold-based labeling
strategies with thresholds between two and nine scanners on the Hand-Labeled
and Hand-Labeled 2019 as per VirusTotal scan reports downloaded on
September 27", 2019 and on November 8", 2019.

Labeling Strategies

MCC Scores
o o
~ ~
o o

e
o
o

060 7 —@— Hand-Labeled

~@- Hand-Labeled (2019-09-27)
0.55 1 Hand-Labeled 2019
Hand-Labeled 2019 (2019-09-27)

0.50

vt>2
vt>3
vt>4
vt>5
vt>6
vt>7
vt>8
vt>9

the apps as malicious which (a) were added to the scan reports on November 8", 2019, (b)
were removed from the September 27" 2019 scan reports, and (c) changed their verdicts
between both dates.

Three apps out of ten did not encounter any change in their positives values. Nonetheless,
one? of these apps maintained the same value of positives because two VirusTotal
scanners changed their verdicts, namely zillya changed its verdict from benign to
malicious and Trustlook changed its verdict vice versa. We looked up the versions
of these two scanners and found that the version of Trustlook remained at 1.0 between
September 27" 2019 and November 8, 2019, whereas that of zi1lya slightly changed
from 2.0.0.3911 to 2.0.0.3946, which indicates an update. In fact, we found that VirusTotal
only updated the versions of Zillya and K7GW and kept the same versions of all other
scanners. So, the change in verdicts, we presume, is due to a technical decision made
by firms maintaining those two scanners that were propagated to the scanners via new
signatures databases.

However, VirusTotal contributed to altering the performance of vt >3, vt >4, and
vt>5 by removing scanners that correctly deemed two apps malicious from their scan
reports. We use VirusTotal’s API to download the scan reports of apps; in this context, a
removal of a scanner verdict means that we could not find its verdict in the downloaded

37658f70aebacccfa9f3e900{8ae689603cc19d0b

82


http://tiny.cc/lzm5jz

4. Threshold-Based Labeling Strategies

Table 4.1.: The evolution of positives for apps in the Hand-Labeled 2019 dataset that we
deemed malicious after manual analysis and a detailed view of the VirusTotal
scanners that were added /removed or changed their verdicts between September
27t" 2019 and November 8", 2019 and how that affected the performance of
vt>3, vt >4, and vt >5. The check mark (v) depicts whether the threshold-
based labeling strategy managed to detect the malicious app.

positives positives Added Removed Flipped to  Flipped to
App’s SHA1 Hash vt>3 vt>4 vt>5
(September 27t" 2019) (November 8",2019)  Positives Positives Positive Negative
8a9... 0 0 - - - -
ESET-NOD32

bdo. .. 5 3 - Fortinet Cyren - v

Ikarus
765... 7 7 - - Zillya  Trustlook v v v
Sbe. .. 12 13 Ikarus - - - v v v
6da. .. 7 6 - - - Trustlook v v v
c70. .. 13 13 - - Symantec Zoner v v v

AegisLab
bIf. .. 10 12 Ikarus - McAfee v v v
K7GW
zillya
ata. .. 8 11 Fortinet - - v v v
Zoner
ESET-NOD32
Fortinet

90e. .. 6 1 - - Cyren

Ikarus

Yandex
0d5. .. 1 1 - - - -

scan report under the scans attribute. On the GUI interface of VirusTotal, this is
usually displayed as a gray “Unknown” next to the scanner’s name. In particular, the
scanners ESET-NOD32, Fort inet, and ITkarus were removed from one* app’s scan report,
effectively reducing its positives value from five on September 27!, 2019 to only three on
November 8", 2019. This change prevented the vt >4 and vt >5 labeling strategies from
correctly deeming the app as malicious. The same scanners along with Yandex were not
included in the second® app’s November 8", 2019 scan report, which brought the value of
positives from six to one, putting the app beyond the reach of all of the three aforementioned
strategies.

Unfortunately, we cannot identify the reasons behind VirusTotal’s decision to alter
the set of scanners it includes in an app’s scan report. It is a puzzling fact that VirusTotal
added the Ikarus and Fortinet scanners to the scan reports of some apps, whilst
removing them from the reports of others. The more confusing fact is that the removed
scanners contain the ESET-NOD32 scanner, which we found to have correctly labeled

4bd97c85d38bd5bfc5e29b05b1a3a81b12949065a
590e6ac481fdd497152234f1cd5bec6d40f50037

83


http://tiny.cc/j6m5jz
http://tiny.cc/2an5jz
http://tiny.cc/hen5jz
http://tiny.cc/ufn5jz
http://tiny.cc/jgn5jz
http://tiny.cc/4kn5jz
http://tiny.cc/ghn5jz
http://tiny.cc/dnn5jz
http://tiny.cc/gon5jz
http://tiny.cc/fpn5jz
http://tiny.cc/a2m5jz
http://tiny.cc/g3m5jz

4. Threshold-Based Labeling Strategies

the apps as malicious on September 27!, 2019. This seemingly haphazard inclusion and
exclusion of scanners within periods as small as two weeks contribute to the frequent
change of the currently optimal range of thresholds. While such change does not impact
older apps, such as the ones in the Hand-Labeled dataset, its impact is noticeable on newer
apps, such as the ones in the Hand-Labeled 2019 dataset. With this set of measurements, we
unveil the first limitation of VirusTotal, which has a direct impact on the performance of
threshold-based labeling strategies, viz.:

VirusTotal Limitation 1

VirusTotal frequently changes the set of scanners it includes in the scan reports
of apps over time by including and excluding the verdicts of scanners regardless
of the quality of those verdicts. In some cases, particularly with newly-developed
malicious apps, this frequent change causes the performance of threshold-based
labeling strategies that accurately labeled those apps as malicious at one point in time
to fluctuate over time. Effectively, this frequent change undermines the utilization of
fixed thresholds.

4.4. Finding the Optimal Threshold

In the previous section, we found that VirusTotal changes the set and versions of
scanners it includes in the scan reports of apps. This change impacts the long-term labeling
accuracy of threshold-based labeling strategies. For example, between September 27, 2019
and November 8, 2019, Vi rusTotal’s dynamicity caused the decrease of vt >4’s MCC
score from 0.89 to 0.76 (i.e., a decrease of 14.61%). However, we also noticed that during
this period the labeling strategies vt >2 and vt >3 maintained their MCC scores, and that
of vt >1 had an increase of MCC score. This suggests that the previously-discussed aspects
of VirusTotal’s dynamicity cause threshold-based labeling strategies to trade places in
terms of the most accurate ones. In other words, at any given moment in time, a (different)
subset of threshold-based labeling strategies will depict the most accurate labeling strategies
(i.e., optimal thresholds). So, researchers can use a reference set of Android apps whose
ground truth is known, download their latest VirusTotal scan reports, compare the
labeling accuracy of all thresholds between one and 60 and choose the threshold that yields
the best score. In this section, we investigate the feasibility of this brute force approach to
identify the optimal thresholds of VirusTotal scanners at any point in time.

Algorithm 1 depicts a simple algorithm to find the current threshold of VirusTotal
scanners that yields the most accurate labels. To assess the quality of labels given by
different threshold-based labeling strategies, this algorithm requires the presence of a
dataset (A) of pre-labeled Android malicious and benign apps. As mentioned earlier in
this paper, the most reliable ground truth (y) can be generated using manual analysis and
app labeling. Without such a reliable ground truth () that acts as a reference to compare

84



4. Threshold-Based Labeling Strategies

Algorithm 1 An algorithm to find the current optimal threshold of VirusTotal scanners
to use in labeling Android apps.

1: procedure FINDCURRENTOPTIMALTHRESHOLD(A, 7y)
2 tmpResults = { }
3 foralla € A do
4 truth = 7,
5: response = VirusTotal.rescanApp(x)
6 if response == True then
7 report = VirusTotal.downloadReport(x)
8 if report = Null then
9: positives, = report[”positives”]
10: forallt € {1,2,3,...,60} do
11: if positives, > T then
12: label, =malicious
13: else
14: label,, =
15: tmpResults[vt > T].append(label,)
16:

17: bestThreshold ="
18: bestScore = 0.0
19: forallt € {1,2,3,...,60} do

20: currentScore = calculateScore(tmpResults[vt > T], )
21: if currentScore > bestScore then

22: bestScore = currentScore

23: bestThreshold = vt > T

return bestThreshold, bestScore

85



4. Threshold-Based Labeling Strategies

against, one has to choose a subjective threshold (7) that one believes represents the nature
of apps in (A) and use it as ground truth () If so, the only threshold that would generate
labels mimicking () would be () itself. Effectively, we wind up with the exact problem of
choosing subjective thresholds based on personal views, as discussed in Section 4.1.

Relying on manual analysis already introduces infeasibility to the algorithm. However,
assuming the existence of pre-labeled apps, another problem arises. As discussed earlier,
the immaturity of newly-developed Android malware and the dynamicity of VirusTotal
lowers the values of the positives attribute in the scan reports of those apps, which, in turn,
lowers the thresholds needed to label them accurately. Without access to newly-developed
Android malware, researchers risk choosing thresholds based on the scan reports of old
malicious apps, which are much higher than the thresholds required to detect new malware.
For example, in Figure 4.1, if a researcher only has access to the Hand-Labeled dataset, on
October 11/, 2019, they might opt to use the drebin labeling strategy because it exhibits
stable performance of high MCC scores. However, this labeling strategy will perform much
worse on newer apps in the Hand-Labeled 2019 dataset (i.e., it does not generalize to newer
malicious apps). Consequently, researchers adopting this brute force approach to finding
the currently optimal thresholds need to continuously update their reference datasets with
newly-developed and discovered Android (malicious) apps.

If the reference dataset (A) satisfies the previous conditions of being diverse, regularly
updated, and accurately labeled, then identifying the currently optimal threshold can be
performed as follows. For each app in the dataset (Va € A), the latest scan report of («) needs
to be acquired. Firstly, the user has to issue a re-scan request to VirusTotal, which takes
around five minutes to complete (line 5). As discussed earlier, this request can be issued
using the platform’s web interface or using the APl interface. In general, under the academic
license, a total of 20K requests can be issued per day. So, depending on the size of the
reference dataset (A), the process of rescanning all apps might take days. Furthermore, we
recently were forbidden from issuing this type of request using our academic license. As of
the date of writing this thesis, we are unaware of whether VirusTotal prevents academic
licenses from issuing this type of request or whether we are encountering an individual
technical difficulty. We consider the decision of VirusTotal not to automatically and
regularly rescan apps as another limitation of the platform:

VirusTotal Limitation 2

VirusTotal does not rescan the apps it possesses on a regular basis and delegates
this task to manual requests issued by its users. One direct consequence of this
decision is prolonging the process of acquiring up-to-date scan reports of apps.
Furthermore, in our experience, VirusTotal does not allow issuing rescan requests
using academic licenses.

. J

In line 7, after the rescan requests are completed, researchers need to download the
up-to-date scan reports from VirusTotal. Similar to the rescan API requests, download

86



4. Threshold-Based Labeling Strategies

requests are limited to 20K requests per day, which might add a few more days to the
process. Between lines 8 and 23, the process becomes straightforward. Using thresholds
(T) between one and 60, the labels of apps in (A) are calculated and stored in a temporary
structure under the key vt > 7 (line 15). The stored labels are then compared against the
ground truth (7), and a score is calculated, say MCC. The threshold-based strategy that
yields the best score is returned to the user as the currently optimal one.

To sum up, in theory, the process of finding the currently optimal threshold of scanners
by comparing the performance of all possible thresholds is straightforward. However, in
order for this process to be effective, a reference dataset of manually pre-labeled apps needs
to be at the researchers’ disposal. Moreover, given the dynamicity of VirusTotal and
the immaturity of the scan reports of newly-developed Android (malicious) apps forces
researchers to keep such a reference dataset up-to-date, which is not feasible given the
design of VirusTotal, which delegates the re-scanning of apps to its users.

4.5. Summary

In this chapter, we focused on the most intuitive labeling strategies used to interpret
VirusTotal’s scan reports into labels, namely threshold-based labeling strategies. Surveyi-
ng the literature, it seems that researchers choose fixed thresholds based on their understand-
ing of what is malicious. Nevertheless, our measurements show that only a subset of
thresholds should be used to label Android apps. Furthermore, we found that the older the
apps, the more mature their VirusTotal scan reports, which is reflected in the positives
values being high enough to enable different threshold-based labeling strategies to label
apps as malicious accurately, which will help us address (RQ2). Our measurements revealed
one aspect of VirusTotal’s dynamicity (RQ5): the platform seems to frequently and
randomly alter the set of scanners it includes in an app’s scan report, which sometimes
causes the removal of scanner verdicts that correctly labeled the apps. This change
negatively affects the ability of threshold-based labeling strategies to recognize the malignan-
cy of apps, particularly newer apps whose scan reports have fewer scanners that deem
them as malicious. Furthermore, the frequency of such a change prevents researchers
from using fixed thresholds to label apps, effectively forcing them to identify the currently
optimal threshold before labeling Android apps. As part of our solution to address (RQ4),
we devised an algorithm to identify the currently optimal threshold by brute-forcing all
possible values of thresholds, viz. between one and 60. Despite its theoretical simplicity,
identifying the currently optimal threshold by trying all possible thresholds faces a number
of limitations. Firstly, researchers need access to a reference dataset of (manually) pre-
labeled Android apps, which need to be frequently updated in order to find thresholds
that generalize to newly-developed Android (malicious) apps. Secondly, VirusTotal’s
design decision to delegate the re-scanning apps to users significantly prolongs the process
of finding the optimal threshold, provided that it is still available under academic licenses.
Consequently, there is a need for labeling strategies that can find an optimal method to

87



4. Threshold-Based Labeling Strategies

interpret VirusTotal’s scan reports without the need for the regular re-scan and reanalysis
of such scan reports.

88



5. Maat: A Framework to Optimally Utilize
VirusTotal

This chapter presents the main contribution of this thesis: a systematic method,
called Maat, that automatically analyzes VirusTotal scan reports of pre-
labeled apps to identify the set of correct and stable VirusTotal scanners
and uses such information to build ML-based labeling strategies. We describe
how the set of correct and stable scanners is identified along with insights about
VirusTotal and its scanners that we made in this process. Parts of this
chapter have previously appeared in peer-reviewed publications [9] and [116],
co-authored by the author of this thesis.

In the previous chapter, we discussed the subjectivity of choosing the optimal thresholds
to label Android apps based on their VirusTotal scan reports. Using subjective threshold-
based labeling strategies to label apps might yield inaccurate labels that negatively impact
the performance of malware detection methods and hinder the comparison of malware
detection approaches that use different thresholds to label apps. However, we found that
there is a subset of thresholds that can yield more accurate labels than others. Unfortunately,
given the dynamicity of VirusTotal, researchers have to identify the current optimal
thresholds, which entails a semi-automatic process that is infeasible to perform on a
regular basis. In summary, threshold-based labeling strategies suffer from the problems of
subjectivity, sensitivity to VirusTotal’s dynamicity, and the infeasibility of brute-forcing
the current optimal thresholds.

Our framework, Maat, is designed to address these problems as follows. First, to avoid the
subjectivity of threshold-based labeling strategies, Maat provides the research community
with a systematic and standardized method to analyze VirusTotal scan reports to devise
labeling strategies. Second, Maat’s processes of analyzing VirusTotal scan reports and
of devising ML-based labeling strategies are on-demand and fully automated. Third, the
resulting ML-based labeling strategies do not rely on a fixed number of VirusTotal
scanners to label apps as malicious and benign. Instead, using two different types of
features extracted from VirusTotal scan reports, Maat relies on ML algorithms to identify
the currently correct and stable VirusTotal scanners, which makes them less susceptible
to the dynamicity of VirusTotal and the changes it introduces to apps’ scan reports.

In this chapter, we discuss the process that Maat adopts to extract features (Section 5.5)
from VirusTotal scan reports to train ML-based labeling strategies. We first give an
overview of how such labeling strategies are built (Section 5.1), then detail how certain

89



5. Maat: A Framework to Optimally Utilize VirusTotal

features are extracted from scan reports in Section 5.2, and Section 5.3. Lastly, we enumerate
the types of features extracted from the scan report of Maat’s training dataset (Section 5.5).
The results of our measurements helped decide upon the features to extract from VvirusTotal
scan reports to train ML-based labeling strategies that we evaluate in Chapter 6.

5.1. Overview

Prior to delving into the measurements and experiments we performed, we briefly discuss
how our framework, Maat, analyzes VirusTotal scan reports to build ML-based labeling
strategies. As seen in Figure 5.1, Maat starts by analyzing the VirusTotal scan reports
of apps in the training dataset that are reanalyzed via VirusTotal and downloaded at
different points in time (i.e., fo, t1, ..., t;). The training dataset that Maat uses to train ML-
based labeling strategies comprises the scan reports of apps in the AMD+GPlay dataset
gathered between November 2018 and November 8t 2019.

In phase (1) from Figure 5.1 we identify the VirusTotal scanners that achieve an
average overall correctness score! of at least 90% between November 2018 and November
8" 2019 as the most correct scanners. Maat also finds the scanners that changed their
verdicts at most 10% of the time (i.e., were stable 90% of the time). The output of this phase
is an intersection of the most correct and stable VirusTotal scanners. These scanners are
considered in the next phase to extract features from the scan reports. The exact processes
we adopted to find the most correct and stable scanners are detailed in Section 5.2 and
Section 5.3, respectively.

In phase (2), we extract features from the VirusTotal scan reports of apps in the
AMD+GPlay dataset. That is, each app in the dataset will be represented as a vector of
numerical features extracted from its most recent VirusTotal scan report. There are two
types of features we extract from the reports, namely engineered features and naive features.

Engineered features attempt to leverage the insights we gained from the previous sections
(e.g., which scanners are correct). Firstly, based on the output from phase (1), we consider
the verdicts given to apps in the training dataset only by the set of most correct and stable
scanners. To accommodate the impact of time on the maturity of an app’s scan report,
we also include the age of a scan report in years, the number of times an app has been
submitted for (re)analysis (i.e., times_submitted), the positives attribute, and the total attribute
in this feature set. Lastly, to capture any patterns that Android (malicious) apps share
in terms of functionalities and runtime behaviors, we extract from the VirusTotal scan
reports the permissions that apps request in their AndroidManifest .xml files, and the
tags given to them by VirusTotal (e.g., checks-gps, contains-elf, sends-sms, etc.).

Naive features do not consider the outputs of phase (1). With naive features, we consider
only the verdicts given by all VirusTotal scanners to the apps in the training dataset. So,

IThe correctness score is based on Mohaisen’s definition [92] and calculated against the ground truths
given by the authors of AMD [153] to apps using their hybrid analysis process that combines reliance on
VirusTotal scan reports and manual analysis as discussed in Section 1.3.4.

90



5. Maat: A Framework to Optimally Utilize VirusTotal

Figure 5.1.: The process adopted by Maat to construct ML-based labeling strategies by
analyzing VirusTotal scan reports and training a random forest to label apps
as malicious and benign according to their VirusTotal scan reports.

a*.report

D

ay.report

Tax
ay.report @

§°
N
§
$

to

i’lesl/al)

(Tay,Yay)

Q)

(‘%2427?7’"2)

Qy, . TEPOTL,
(iaz s Yao )

\ /

Train Grid/Random

VirusTotal Reports
[ ]
Select Best Features
L]
Search Random Forest

aj.report
tim ag.report

ST

/o \

malicious benign

Analyze VirusTotal Reports

<
%
2,

— | Extract Features from

Q. report

DO
=
—

w
=
—

IS
~

—~
—_
~—

the feature vector extracted from a VirusTotal scan report will be a sequence of integers
depicting the labels given by each scanner to an app (i.e., -1 for not scanned, 0 for scanned
and deemed benign, and 1 for scanned and deemed malicious). For example, assume
that the scan report of an arbitrary app («*) contained scan results of three scanners, that
respectively deemed (a*) as malicious, malicious, and benign; the feature vector depicting
this scan report will be (£,+ = (1,1, 0)). With naive features, we allow ML-based labeling
strategies to utilize the verdicts of all VirusTotal scanners regardless of their correctness
or stability.

Phase (3) is an optional phase that selects the most informative features extracted from the
training dataset’s VirusTotal scan reports, so that the decision trees that use the max_depth
parameter can randomly select features from a set of more informative ones. To avoid having
to choose the number of features to select arbitrarily, we utilize the SelectFromModel
[126] technique to select the most informative features automatically. In essence, this
technique selects features based on the importance given to them by a model (e.g., logistic
regression, support vector machine, decision trees, etc.). For example, during training,
decision trees iteratively utilize a criterion (e.g., Gini index), to decide upon the next feature
to consider in splitting data points into two, or more, classes; in our case, this feature could
be a scanner’s verdict regarding the label of an app. Ultimately, the trained tree will compile
a set of features that it used during splitting and assign an importance value to each one of
them. The SelectFromModel feature selection technique uses such importance values
and returns to the user those features with importance values more than a preset threshold
(i.e., 1 x 107° in the case of decision trees). For our experiments, we rely on decision trees
as the model used by the SelectFromModel technique to extract the most informative

91



5. Maat: A Framework to Optimally Utilize VirusTotal

features.

We envision the process of utilizing the features extracted from VirusTotal scan reports
to label apps as a series or combination of questions, such as how many scanners deem the app
malicious? how old is the app? does a renowned scanner (e.g., AVG) deem the app as malicious? The
machine learning classifier that mimics this model, we reckon, is a decision tree. In order
not to rely on the decisions made by a single tree, Maat trains ML-based a labeling strategy
as a collection of trees or a random forest using the framework scikit-learn. To estimate
the hyperparameters (e.g., the maximum depth each tree is allowed to grow), that train the
most effective forests, we use the technique of grid search [127] to select from among a set of
parameters listed in Appendix E.

The output of phase (4) is a random forest that takes a vector of numerical features
extracted from an app’s VirusTotal scan report and returns a label depicting the class
of the app (i.e., 1.0 for malicious and 0.0 for benign). Effectively, this random forest is a
labeling strategy. In phase (5), given the VirusTotal scan report of an arbitrary Android
app, the report is represented as a feature vector that matches the features used by the
random forest (e.g., naive versus engineered features), and is used to predict the app’s class.

5.2. Correctness of VirusTotal Scanners

The results in Table 2.1 imply that some VirusTotal scanners fail to recognize the
malignancy of some malicious apps and that some are more correct than others. As part
of extracting engineered features to train ML-based labeling strategies, in this section, we
describe the process adopted by Maat to find the set of the most accurate VirusTotal
scanners during a given period of time. Given the scan reports of apps in the training
dataset gathered over a period of time, Maat builds on Mohaisen et al.’s definition of
scanner correctness to identify the set of correct VirusTotal scanners over this period. In
[92], Mohaisen et al. defined correctness as follows: For a given dataset, the correctness
of an antiviral scanner is the number of correct detections normalized by the size of the
dataset. We extend this definition in two manners. First, we include benign apps in the
calculation of the correctness score. Second, we extend the correctness score to be based
on other metrics apart from the accuracy metric (i.e., Tgi{]N ), including the MCC score,
recall (1}'), and the F; score. In this thesis, we rely on the accuracy metric in calculating the
correctness of VirusTotal scanners.

For each VirusTotal scanner, Maat calculates the number of apps in the AMD+GPlay
dataset that it managed to correctly label as malicious and benign and divides that number
by the size of the dataset. The correctness scores of each scanner at various points in
time are then averaged. Scanners whose correctness scores are greater than or equal to
0.90 are included in the set of correct VirusTotal scanners. We chose the number 0.90 to
tolerate any fluctuations in the correctness rate that may occur, for example, due to changing
policies on how to label ambiguous malware types, such as Adware, or the temporary use
of inadequate versions of scanners. So, the definition of a correct scanner we adopt in this

92



5. Maat: A Framework to Optimally Utilize VirusTotal

thesis is:

A correct VirusTotal scanner is one that achieves a correctness score greater than
or equal to a value between 0.0 and 1.0 (default: 0.90) on any given dataset of pre-
labeled apps. The score is defined in terms of a metric, such as accuracy, MCC,
recall, F; score, etc., and is meant to depict the ability of the VirusTotal scanner to
correctly assign labels to apps in the dataset that reflect their ground truth.

Using a value of 0.90 and the accuracy metric, we retrieved as list of 18 scanners
that Maat identified to be correct between November 2018 and July 5" 2019 on the
AMD+GPlay dataset, namely AhnLab-V3, Avira, Babable, CAT-QuickHeal, Comodo,
Cyren,DrWeb, ESET-NOD32,F-Secure,Fortinet, Ikarus, K7GW, MAX, McAfee, NANO—
Antivirus, Sophos, SymantecMobileInsight, and Trustlook. In Section 5.6, we
discuss why we chose this time period to extract the set of correct scanners. This list
noticeably differs from the ten scanners Arp et al. used in 2014 to label apps in their Drebin
dataset [15]; only five Drebin out of ten are included in Maat’s list of correct scanners.
Apart from deeming them as popular and trustworthy, the authors did not mention why
they chose those ten scanners. Intuitively, Arp et al. used a different set of Android apps
and older versions of scan reports, which may imply that the set of correct scanners might
change from one set of Android apps to another and from time to time. So, we hypothesize
that there are no set of VirusTotal scanners that are universally correct on different
datasets. To find support for or against this hypothesis, we retrieved the set of scanners
that maintained correctness scores of 90% or higher over a period of time for the AMD,
AMD+GPlay, GPlay, Hand-Labeled and Hand-Labeled 2019 datasets (i.e., the datasets with
known ground truths).

Since we downloaded the apps in the Hand-Labeled and Hand-Labeled 2019 datasets after
downloading apps in the AMD+GPlay dataset, we started re-scanning and downloading
their latest VirusTotal scan reports at later points in time, viz. starting from July 5/, 2019
instead of November 2018. So, to perform an objective measurement, we retrieved the
list of correct VirusTotal scanners for the AMD+GPlay, Hand-Labeled, Hand-Labeled 2019
datasets within the same time period, namely between July 5t" 2019 and November 8",
2019. As seen in Table 5.1, the set of VirusTotal scanners that have correctness scores
of at least 0.90 differ from one dataset to another, despite being based on scan reports
downloaded within the same period. Only a set of five scanners is shared by all datasets,
viz. ESET-NOD32, Fortinet, Ikarus, McAfee, and SymantecMobileInsight.

The results in Table 5.1 suggest that the set of VirusTotal scanners that are correct over
time might change depending on (a) the time period within which the VirusTotal scan
reports were gathered, and (b) the dataset itself and its composition in terms of benign
and malicious apps. In Chapter 4, we revealed one aspect of VirusTotal’s dynamicity,
namely that it frequently changes the set of scanners included in the scan reports of apps.

93



5. Maat: A Framework to Optimally Utilize VirusTotal

Table 5.1.: The set of VirusTotal scanners that had accuracy-based correctness scores of at
least 0.90 between July 5t" 2019 and November 8!, 2019. Emboldened scanners
depict the intersection of the sets of correct scanners of the four datasets.

Dataset Scanner(s) Total
AhnLab-V3,Avira, CAT-QuickHeal, Comodo, Cyren,
AMD+GPlay DrWeb, ESET-NOD32, F-Secure, Fortinet, 18
( +50.04% malicious) Ikarus, K7GW, MAX, McAfee, NANO-Antivirus,

Sophos, SymantecMobileInsight, TheHacker, Trustlook
Avira, CAT-QuickHeal, DrWWeb, ESET-NOD32, F-Secure,

AMD

(malicions) Fortinet, Ikarus, MAX, McAfee, NANO-Antivirus, 12
Sophos, SymantecMobileInsight
Hand-Labeled AhnLab-V3, CAT-QuickHeal, Cyren, ESET-NOD32, Fortinet, Ikarus, 1
( +24% malicious) K7GW, McAfee, Sophos, SymantecMobileInsight, Trustlook

Ad-Aware, AegisLab, AhnLab-V3, Alibaba, Arcabit,

Avast-Mobile, BitDefender, ClamAV, Cyren, Drieb,
ESET-NOD32, Emsisoft, F-Secure, FireEye, Fortinet,

GData, Ikarus, Jiangmin, K7AntiVirus, K7GW,

Kaspersky, Kingsoft, MAX, MalwareBytes, McAfee, 37

McAfee-GW-Edition, MicroWorld-eScan,Microsoft,
NANO-Antivirus, Qihoo-360, SUPERAntiSpyware,
SymantecMobilelInsight, Trustlook, ViRobot,
Yandex, ZoneAlarm, Zoner

Hand-Labeled 2019
( +10% malicious)

Consequently, in calculating the correctness of a VirusTotal scanner, we only consider
the VirusTotal scan reports in which the scanner is included as a measure of fairness
to the scanner. The decision to only focus on scan reports in which the verdict of the
VirusTotal scanner under study is included impacts metrics that do focus on the total
number of scanned malicious (P) and benign (N) apps, such as accuracy (TgiiTNN), recall
(%), and specificity or negative recall (%). Metrics that do not consider the (P) and (N)
values, such as MCC, are not going to be affected by this decision. Despite that decision we
made, VirusTotal’s changing of the set of scanners it includes in the scan reports of apps
can still impact the correctness of a scanner as follows. Say that a scanner (¢) was included
in 90 VirusTotal scan reports of a dataset of 100 Android apps. Moreover, consider that
(0) managed to correctly classify all of those 90 apps, earning it a correctness score using the
accuracy metric of 0.90. If VirusTotal removes the verdicts of (¢) from the scan reports
of 20 apps, depending on which verdicts were removed, the accuracy-based correctness
of () would be between 80 out of 80 (i.e., 1.0) and 70 out of 80 (i.e., 0.87), which is already
enough to exclude (¢) from the set of correct scanners for this dataset of 100 apps. One can
notice this impact in Table 5.1 as the set of correct VirusTotal scanners extracted from
the AMD+GPlay dataset using VirusTotal scan reports downloaded between November
2018 and July 5%, 2019 slightly differs from the set extracted from the same dataset between
July 5t 2019 and November 8, 2019. In particular, the scanner Babable was excluded
from the set of correct scanners in the latter period. Upon further investigation, we found
that the verdicts of Babable were, on average, included in 77% of the VirusTotal scan
reports of apps in the AMD+GPlay dataset between November 2018 and July 5, 2019 as

94



5. Maat: A Framework to Optimally Utilize VirusTotal

opposed to only 18.6% between July 5, 2019 and November 8", 2019, which brought down
its correctness from slightly above 0.90 to 0.59.

As for the composition of the dataset, we noticed that the larger the number of apps
pre-labeled as benign in a dataset, the bigger the set of correct scanners we can retrieve
from it. Another way of looking at this is that the larger the number of apps pre-labeled
as malicious in a dataset, the smaller the set of correct scanners we can retrieve from it.
In theory, scanners should be assessed equally based on their ability to correctly label
malicious and benign apps. That is, true positives are not more worthy than true negatives.
In this context, we used the balanced dataset AMD+GPlay of malicious and benign apps
to find the set of VirusTotal scanners that accurately label both classes of apps. We also
attempted to understand whether there is a correlation between the composition of a dataset
and the number of correct scanners we can retrieve from within a given period. Mislabeling
a benign app as malicious (i.e., false positives) is known to have more of a negative effect
on the reputation and, hence, antiviral scanners” popularity than mislabeling a malicious
app as benign [112]. Consequently, antiviral scanners are said to be reluctant to label apps
as malicious and opt for assigning a label of benign to apps by default. This reluctance
makes it difficult to assess whether a benign label given by an antiviral scanner to an app is
a result of analyzing the apps and consciously labeling it as benign or just a default label.
Labeling an app as malicious, however, may imply a thorough analysis process that led to
deeming an app as such, especially given the negative impacts of false positives. So, we
speculate that benign apps alone do not reveal the detection ability of an antiviral scanner.
Similar to the problem of defining malignancy that we discussed in Section 2.5, we cannot
assert why and how antiviral scanners deem apps as malicious or benign without access to
their internal analysis and detection processes.

We extract the list of correct VirusTotal scanners as part of Maat’s process to train
ML-based labeling strategies. However, one of the research questions postulated in this
thesis was to check whether there is a universal set of VirusTotal scanners that are more
correct than others over time and across datasets (i.e., (RQ3)). The answer depends on
the definition of a universal set. If researchers expect that set of scanners to maintain the
same scanners, then the answer is no. The combination of VirusTotal’s dynamicity
and the composition of a dataset in terms of benign and malicious apps causes this set
to change on a regular basis. However, in our measurements, we noticed that there is a
subset of scanners that persist across different datasets, viz. the five scanners ESET-NOD32,
Fortinet, Tkarus, McAfee, and SymantecMobileInsight. For these datasets during
that particular period of time, this set of five scanners can be considered as a universal set of
(correct) scanners. To conclude, unless the universality of VirusTotal scanners is confined
to particular datasets and time periods, given VirusTotal’s dynamicity, there is no point
behind pursuing a set of VirusTotal scanners that persists across different datasets and
time periods.

To further investigate the aspects of VirusTotal’s dynamicity, we used Maat’s API
to tabulate and visualize the correctness of VirusTotal scanners to provide its users
with further insights about the performance of different scanners over time. For example,

95



5. Maat: A Framework to Optimally Utilize VirusTotal

Table 5.2.: The change in the correctness rates of the Drebin VirusTotal scanners on apps
in the AMD dataset between November 2018 and November 8", 2019, grouped

by malware type.
Drebin Scanners

Malware Types AVG Avira BitDefender ClamAV ESET F-Secure Kaspersky McAfee Panda Sophos
Adware 0.01-0.01 091,7099  045\0.0  010—0.10 0.98,70.99 0.53,70.99 0.26,70.33 0.95,/0.99 0.92,7095
Backdoor 092,093 096,/099  097\01  0.61-0.61 099,10 089,099 098098 0.99-0.99 0.98,70.99
HackerTool 099,710  0.99-0.99 0.810.81 089,10 075075 099099 0995099
Ransom 098,099 099510  098\00 0057006 099,10 089,71.0 099,710  0.99,1.0 0995099
Trojan 0843084 096,10  0.88\001  0.10N\0.07 096096 075710 0.88-0.88 0.99,41.0 0.97,70.98
Trojan-Banker 0987099 099099  099\00  0.09-0.09 099,10 092,710 099099  0.99,71.0 0.99,71.0
Trojan-Clicker 096,10  1.0-10 LON00 0329032 1010 087,710  096M\090  10-1.0 1.0-1.0
Trojan-Dropper 098,099 0967099  096\0.03  0.10,70.11 097,7099 080,099 097,098  0.98,1.0 097,709
Trojan-sMs 088088 099710  098\00  024\,0.15 099099 0.88,/1.0 0987099  0.99,71.0 0995099
Trojan-Spy 005,087 0.99,/1.0 LONOO 001001 099,710 0.61-10 099099  0.99,41.0 0995099
Overall Correctness 0347040 094710  0.68\002  0.15\,0.13 099,10 066,099 0577061 0.97,1.0 0.95,70.97

Figure 5.2 displays the correctness scores of ten scanners utilized by Arp et al. in [15] to label
apps in the Drebin dataset. These scanners are AntiVi r2 AVG, BitDefender, ClamAvV,
ESET, F-Secure, Kaspersky, McAfee, Panda, and Sophos. We refer to this group of
scanners as the Drebin scanners.

The results in Table 5.2 depict the evolution of the overall accuracy-based correctness of
the Drebin scanners on the AMD dataset according to VirusTotal scan reports downloaded
during November 2018 and on November 8", 2019 along with the correctness per malware
type. Focusing solely on the overall correctness rates, it is evident that some scanners
are indeed more correct than others (e.g., ESET, McAfee, and Sophos). The following
observations can be made upon considering the correctness rates per malware type. Firstly,
scanners that have decent overall correctness usually score high correctness rates on all
malware types. As for the correctness rates per malware type, on the one hand, some
scanners achieve high correctness rates on the majority of malware types yet struggle with
others. For example, AVG and Kaspersky appear to struggle with apps belonging to the
Adware malware type (emphasized red). On the other hand, some scanners excel against
particular malware types, such as BitDefender and ClamAV, which continue to correctly
detect the HackerTool malware type. As seen in emboldened green, BitDefender and
ClamAV appear to score decent correctness rates on the HackerTool malware type, whilst
struggling with all other types. Lastly, some scanners, such as Panda, appear to struggle
on all malware types, even though some apps in the AMD dataset are as old as 2010 [153].

The recorded performances of some scanners in Figure 5.2 do not coincide with the

2AntiVir refers to the antiviral scanner developed by Avira, which is the name that VirusTotal uses for
this scanner now.

96



5. Maat: A Framework to Optimally Utilize VirusTotal

1.0 A

‘_ /
094 / Bl | v/ -k- AVG

h u Avira

] BitDefender
ClamAV
ESET-NOD32
—H- F-Secure

f

Correctness

Kaspersky

K &~ -9 - McAfee
Panda

0.6 —@&— Sophos

W

o
~
\
\
>
]
>
1
»
]
*
1
\
Y
1
»
1
>
1
1
»
1
>
1
'S

0.5 A

%
o |

Q>

N 9 x R

® N VD S VAT N oS 2 b " " " "

VXX EE N QSO S
FFFF IS S
LS S AU S S S S S N R S S S S N

a

Scan dates
Figure 5.2.: The overall correctness rates of the Drebin scanners on apps in the AMD+GPlay
dataset between November 2018 and November 8", 2019.

reputation of those scanners in the market. For example, despite its mediocre performance
as reported by VirusTotal, BitDefender continues to be given good reviews by users
on the Google Play marketplace and, more importantly, on platforms that assess the
effectiveness of antiviral software such as AV-Test [59]. Given that VirusTotal states that
the versions of scanners it uses “may differ from commercial off-the-shelf products. The [antiviral
software] company decides the particular settings with which the engine should run in VirusTotal”
[148], we compared the VirusTotal version of BitDefender against the one that can
be found on the Google Play app marketplace. We found that, as of September 2019, the
version used by VirusTotal for BitDefender is 7.2, whereas the versions available on
Google Play have codes between 3.3 and 3.6. The 7.2 version of BitDefender corresponds
to a free edition version developed for Windows-based malware that targets older versions
of Windows such as Windows XP [83]. The positive reputation that BitDefender has
in the market suggests that using its adequate version (i.e., the one that is designed to
detect Android malware), would yield a detection performance better than the version
on VirusTotal. To verify this, we downloaded and installed the latest version of the
BitDefender scanner from the Google Play marketplace, installed it on an Android
Virtual Device (AVD), and used it to scan ten apps randomly sampled from the AMD
dataset. Unlike the results obtained from VirusTotal that the scanner is unable to detect
any of those malicious apps, we found that BitDe fender detects 70% of the sampled apps.
Similar to the case of BitDefender, we found that VirusTotal uses a version of the
Panda that is not dedicated to Android malware. So, we repeated the exact measurement
above using the same ten malicious apps and the proper version of Panda and found

97


https://github.com/tum-i22/Maat#bitdefender-and-panda-on-virustotal-versus-reality

5. Maat: A Framework to Optimally Utilize VirusTotal

that such a version can detect 30% of the apps instead of none as per the version used by
VirusTotal.

So, do some antiviral software companies believe that offering older versionson VirusTotal
will encourage users to download their products instead of relying on the online version
available on VirusTotal? Do such companies enforce a fee on VirusTotal in order to
use their latest products, which the latter did not agree to? Answering those questions
is not in the scope of this thesis and, in fact, impossible to answer on behalf of antiviral
software companies. Nevertheless, these findings reveal another aspect of VirusTotal’s
dynamicity that impacts the verdicts of the scanners it uses: the platform changes the
versions of the scanners it uses to scan apps submitted by users. The platform uses the
same versions of scanners to label malicious apps targeting different operating systems
[116]. Some antiviral scanners may be oblivious to such a change because, for instance, their
different versions share the same signatures database. Others, however, may be negatively
affected because their versions use different databases, each of which contains signatures
of malware targeting a certain platform or operating system. So, this aspect of dynamicity
defines the third limitation of the VirusTotal:

VirusTotal Limitation 3

VirusTotal may replace the versions of scanners with inadequate ones that are not
designed to detect Android malware based on the request of the scanner’s vendor or
managing firm, as stated by VirusTotal itself.

5.3. Stability of VirusTotal Scanners

The results in Section 4.3 and Section 5.2 reveal two aspects of VirusTotal’s dynamicity
that might impact the labeling accuracies of some scanners. In particular, these two aspects
cause the accuracies of some VirusTotal scanners to fluctuate. To train reliable ML-
based labeling strategies, Maat attempts to rely on VirusTotal scanners that do not often
change the labels they assign to Android apps (i.e., stable scanners). Maat identifies stable
VirusTotal scanners over a period of time by considering those scanners whose certainty
score exceeds 0.90. That is certainty is a property of one scanner.

A scanner’s certainty score is calculated as follows. The labels given by the scanner to
each app in the training dataset (i.e., AMD+GPlay), over a period of time are retrieved.
Regardless of the correctness of the labels, the certainty score is calculated by dividing

the total number of the most common label (i.e., malicious versus ) by the total
number of labels.
As an example, say that the scanner (¢) had the labels L = {malicious, ,

malicious,malicious} foranapp («)over four points in time. Since the label malicious
is the most common label in (L), the certainty score will be three (i.e., counts of malicious),
divided by a total of four labels yielding a percentage of 0.75. We can represent this as the

98



5. Maat: A Framework to Optimally Utilize VirusTotal

following formula certainty(c, «) = %”W To calculate the certainty score for an

entire dataset, Maat averages the scanner’s certainty scores achieved on individual apps in
this dataset.

Similar to the case with the correctness scores, Maat’s default threshold of the certainty
score is 0.90 to allow for marginal fluctuations in the labels given to apps by scanners, which
might be a result of VirusTotal excluding those scanners from the apps’ scan reports or
changing their versions to inadequate ones. So, we define a stable VirusTotal scanner in
this thesis as follows:

Definition

A stable VirusTotal scanner is one that achieves an average certainty score of
at least 0.90 on apps in a given dataset over a period of time. This score indicates
that, on average and regardless of the correctness of the assigned label, the scanner
maintained the same label it assigns to an app 90% of the time.

Using this threshold, Maat retrieved a set of 44 scanners (i.e., 74.5% of all VirusTotal
scanners) that had certainty scores of at least 0.90 on apps in the AMD+GPlay dataset
between November 2018 and July 5%, 2019. One can notice that the number of correct
scanners calculated during the same period on the same dataset significantly differs (i.e.,
18 versus 44). This is due to correctness and stability adopting different perspectives.
On the one hand, correctness is concerned with finding VirusTotal scanners that give
labels to apps that reflect their ground truth. However, in addition to internal changes
of labels, VirusTotal’s dynamicity might cause the labels given by scanners and, in
turn, their correctness to fluctuate. On the other hand, any definition of stability does not
guarantee correctness. For example, over the past three years, we tracked the verdicts
given by VirusTotal scanners to a repackaged, malicious version® of the K9 Mail open
source app [3] that has been developed by one of our students during a practical course
(see Section F). Despite being a malicious app of type Ransom, the scanners continued to
unanimously deem the app as benign since February 8, 2017, even after analyzing and
re-scanning the app. Another example is an app* that we repackaged three years ago; the
app continued to be labeled as benign by all scanners until only K7GW recognized the app’s
malignancy in July 2019 and labeled it as a Trojan. That is, a stable VirusTotal scanner
may give consistent labels to an app that are incorrect according to its ground truth. By
combining these two concepts as we discuss in Section 5.5, we attempt to find VirusTotal
scanners that consistently give the correct labels to apps.

3aa0d0f82c0a84b8dfc4ecdas89a83f171cf675a%
466c16d79db25dc9d602617dae0485fa5ae6e54b2: A calculator app grafted with a logic-based trigger that
deletes user contacts only if the result of the performed arithmetic operation is 50.

99


http://tiny.cc/ryn5jz
http://tiny.cc/vzn5jz

5. Maat: A Framework to Optimally Utilize VirusTotal

Table 5.3.: The evolution of the VirusTotal scan reports for
S5cfda85debe5e9a7341b4eeed01d92807ed29552 between December
3" 2018 and November 8, 2019.

o ® o O o o K o b o o © o o K~ = 10 ®
o S i [oN] (== (o] (e} (o] (e} i S — o i [e\] i (o] (e}

q = & & b o O O NN % B B A A D D
72T IILLLAY LA

2 2 2 2 2 2 2 DS S S S

S © 2 © 2 © 2 © 2 2 2 2 © o 2 o o o

8 8 8 8 &8 8 &8 &8 8 8 8 8 a8 8 8 8 8§

positives 39 39 31 33 34 30 32 32 31 32 33 25 30 29 29 26 30 29

total 60 58 57 61 61 60 61 62 60 60 61 56 60 59 59 55 61 61
Negatives (total-positives) | 21 19 26 28 27 30 29 30 29 28 28 31 30 30 30 29 31 32
positives_delta 2 0 8 2 1 -3 2 0 -1 1 1 -8 5 -1 0 -3 4 -1

‘ Negatives Delta ‘ x 27 2 -1 3 -1 1 -1 -1 0 3 -1 0 0 -1 2 1

5.4. Stability of VirusTotal Scan Reports

In the previous section, we devised a score to estimate the stability of the labels given
to one or more apps by one VirusTotal scanner. However, estimating whether one or
more scanners give consistent labels to a dataset of apps does not address the concern of
whether a researcher should trust that the VirusTotal scan report of an app is stable
in light of VirusTotal’s dynamicity. That is, we differentiate between the stability of a
VirusTotal scanner in terms of the consistency of labels it gives to an app (x) over time
and the stability of the VirusTotal scan report of (¢). Addressing this concern requires
answering the question of how can we deem a VirusTotal scan report of an Android app
as stable before using it to label the app itself as malicious or benign (i.e., (RQ1))? In this
section, we attempt to address this research question. To answer this question, one needs to
define what exactly does stability mean. In other words, what are the conditions that need
to be achieved in order to deem a VirusTotal scan report stable?

In the literature, the primary condition used to define the stability of a VirusTotal scan
report is the positives attribute [91, 63], which depicts the number of scanners deeming
an app as malicious. If this number did not change after re-analysis, then the app’s scan
report can be assumed to have stabilized, even if the scanners that deem the app malicious
have changed. This difference in positives is captured by another attribute ina VirusTotal
scan report, viz. positives_delta. According to this definition of stability, once the value of
positives_delta switches to zero, the VirusTotal scan report can be considered as stable.

With that in mind, consider the data in Table 5.3, which belongs to an app of type Ransom
that was first seen on VirusTotal on May 11, 2015. According to the positives_delta==
criterion, the app appeared to have stabilized on January 8, 2019 (i.e., four years after being
first seen on VirusTotal). However, reanalyzing the app after three months (i.e., on April
12'") indicates that eight scanners seized to deem the app as malicious, rendering the value
of positives_delta to -8. The number of VirusTotal scanners deeming the app as malicious

100



5. Maat: A Framework to Optimally Utilize VirusTotal

(positives) and the total number of scanners that scanned the app (total) continue to fluctuate
across different re-analysis points that are merely two weeks apart. This example suggests
that a definition of stability according to the criterion positives_delta==0 is inadequate, given
the dynamicity of VirusTotal. Similarly, considering the complement of the positives
attribute (i.e., the number of scanners deeming an app as benign), does not offer a more
stable alternative. As seen in the table, the negatives value, calculated as the difference
between total and positives, fluctuates over time, albeit with a relatively smaller delta. In
general, the alternative definition of stability should refrain from defining stability in terms
of a specific value or attribute (e.g., positives_delta==0 or total==61).

A more relaxed definition of stability of a VirusTotal scan report relies on a range of
values for one particular attribute, say positives rather than an absolute one. That is, instead
of deeming a VirusTotal scan report as stable once the positives_delta hits zero, researchers
can define a range of values within which changes in the value of an attribute are tolerated.
For example, in Table 5.3, if we tolerate changes in the positives attribute within a range of
+10 scanners, then the scan reports of the app Scfda85debe5e9a7341b4eeed01d92807
ed29552 are already stable. Similarly, a range of £7 scanners for the negative attribute
implies that the app’s scan reports are already stable. The main problem with such a
definition of stability is that it introduces subjectivity. The dynamicity of VirusTotal
and the possibility of having different ranges per malware types and app ages prevent us
from deeming a particular range as a universally adequate one to estimate the stability of
VirusTotal scan reports.

Assuming that the attribute and the range of its values were standardized (e.g., positives+10
scanners), we still need to examine the VirusTotal scan reports of an app over a period
of time to ensure that the value of the standard attribute indeed remained within the
designated range. For example, how long does positives in a given VirusTotal scan
report need to remain with a range of £10 scanners before the scan report is deemed
stable? Answering this question introduces two problems. Firstly, researchers need to
acquire older versions of the VirusTotal scan report they are attempting to deem as
stable. Unfortunately, in addition to not automatically and regularly re-scanning apps,
VirusTotal does not grant access to the scan history of apps. So, researchers have to build
their history of a VirusTotal scan report by re-scanning the app and downloading its new
scan report moving forward. While this approach is effective for newly-developed Android
(malicious) apps, it does not reflect the evolution of the VirusTotal scan reports of older
apps whose scan reports are less sensitive to VirusTotal’s dynamicity, as discussed in
Section 4.3. The second problem is that specifying a period of time for which an attribute
needs to remain within a particular range for the VirusTotal scan report to be deemed
as stable is per se subjective and might differ depending on the researcher’s views, app’s
malignancy, app’s malware type, and so forth.

101



5. Maat: A Framework to Optimally Utilize VirusTotal

VirusTotal Limitation 4

VirusTotal does not grant access to academic researchers to the history of scan
reports of apps previously added and scanned on the platform, even if such apps
were added by the academic community itself. In fact, we are not sure whether
VirusTotal keeps or discards the current scan reports of apps prior to re-scanning

apps

Another method to define stability is to designate a VirusTotal scan report of an app
as stable after a particular period of time. Within the context of Windows-based malware,
Miller et al. suggested that it takes approximately one year for VirusTotal scan reports
to stabilize [91], whereas Kantchelian et al. argued in [63] that this period can be as brief
as four weeks [63]. This period of time is usually estimated in terms of attributes found in
the VirusTotal scan reports of apps. For example, one can estimate the period it takes
for a scan report to stabilize by calculating the difference between the date on which the
attribute positives_delta converged to zero and the date on which the app was first seen on
VirusTotal (i.e., the first_seen attribute). As discussed and demonstrated in the previous
section, the dynamicity of VirusTotal causes the values of attributes in a VirusTotal
scan report to fluctuate. So, even if an attribute reaches a target value, the platform’s
dynamicity is likely to cause this value to change in the future. Secondly, the choice of
an attribute to estimate the time taken for a scan report to stabilize and its target value is
subjective.

To conclude this section, in light of VirusTotal’s dynamicity and limitations, in order
to estimate whether the VirusTotal scan report of an app is stable or not, a researcher
has to choose an attribute in the VirusTotal scan report (e.g., positives), a range of values
within which the value of the chosen attribute needs to remain, and a time period within
which the values of the chosen attribute are to be monitored. Given the lack of standards
on how to use VirusTotal in general, choosing these values will be delegated to each
researcher leading to the same problem with choosing a threshold to label apps as malicious
or benign (see Chapter 4). We argue that VirusTotal’s dynamicity renders the pursuit of
criteria to deem a VirusTotal scan report as stable rather infeasible, which has also been
recently confirmed by researchers within the research community [162]. In this context,
in designing Maat we differentiate between the stability of an individual VirusTotal
scanner and that of a VirusTotal scan report. Maat does not attempt to judge the stability
of a VirusTotal scan report prior to using it. Instead, it identifies the scanners that
give stable verdicts to apps in the training dataset based on the certainty score defined in
Section 5.3. That is, Maat uses the verdicts of stable scanners regardless of whether a scan
report has stabilized.

102



5. Maat: A Framework to Optimally Utilize VirusTotal

5.5. Features Extracted from Scan Reports

In this section, we recap on the type of features that Maat extracts from the VirusTotal
scan reports of its training dataset and relate them to the insights we gained from the
measurements performed in the previous sections. As mentioned in Section 5.1, there are
two types of features that Maat can extract from scan reports, namely engineered and naive.

5.5.1. Engineered Features

The engineered features Maat extracts from scan reports (listed in appendix G and online)
can be divided into three categories. In the first category of features, Maat considers the
verdicts of VirusTotal scanners that had a correctness score and a certainty score of at
least 0.90. As seen in Section 5.2 and Section 5.3, the performance of some correct scanners,
such as F-Secure, fluctuates over time (i.e., not stable), whereas the stability of scanners in
general does not guarantee correctness. To mitigate both issues, Maat relies on the verdicts
given by the intersection of correct and stable scanners. Taking the intersection between
the 18 correct scanners the 44 stable scanners yields a set of 16 VirusTotal scanners that
include all the correct scanners apart from F-Secure, which already exhibited fluctuation
in detection performance (see Section 5.2), and Trustlook. The reason behind this is that
the continuity of correctly labeling apps leads to the stability of labels. In other words, if a
scanner is consistently accurate at giving the same, correct label to an app, it is ipso facto
a stable scanner. This relationship between correctness and stability, as discussed before,
does not go the other way around (i.e., stability does not imply correctness).

The second category of features is based on attributes found in VirusTotal scan reports
that imply the age and, perhaps, the maturity of the app and its scan report. Maat extracts
the age of the app’s scan report as the difference between the extraction date and that
of first_seen along with the times_submitted attribute, the positives attribute, and the total
attribute. In our analysis, we noticed that older malicious apps have higher ranges of
positives and total values than newer ones. For example, as of November 8" 2019, the
malicious apps in the AMD dataset have an average positives value of 26.26+5.53: a number
newly-developed malicious apps and benign ones are unlikely to reach. So, we thought
that such values might assist Maat to discern malicious, benign, and ambiguous malicious
apps.

The third and last category of engineered features is meant to approximate the structure
and behavior of apps. In Chapter 2, we discussed that malicious apps tend to adopt similar
structures, re-use libraries, exploit similar vulnerabilities, or share the same codebases. We
assume that such trends can be reflected in the permissions these apps request and the
tags assigned to them by VirusTotal. So, as part of the engineered features, we include
the list of permissions (not) requested by the app and the tags (not) assigned to them by
VirusTotal.

In total, Maat extracts 372 features from the VirusTotal scan report of each app. Having
discussed the impact of the curse of dimensionality on the performance of ML algorithms,

103


https://github.com/tum-i22/Maat/#EngineeredFeatures

5. Maat: A Framework to Optimally Utilize VirusTotal

we implemented Maat to select the most informative features from this feature set. In
Chapter 6, we discuss the types of features selected from the entire corpus of engineered
features.

5.5.2. Naive Features

Naive features comprise the verdicts of all VirusTotal scanners, regardless of their
correctness or stability. With this set of features, as mentioned earlier, we allow Maat’s
random forests to identify and choose the VirusTotal scanners that train the most
effective ML-based labeling strategies. We use this type of feature for three reasons. First,
naive features are fast and easy to extract from VirusTotal scan reports. Second, we wish
to investigate whether allowing Maat’s random forests to select scanners would yield a set
of scanners that overlap with the ones identified using the measurements in Section 5.2 and
Section 5.3. Third, we wish to assess whether the second and third categories of engineered
features help Maat train better ML-based labeling strategies or hinder their performance.

The dimensionality of naive features is 60 scanners. However, we also allow Maat to
select the most informative features (i.e., scanner verdicts, in this case). As of November 8",
2019, using the scan reports of apps in the AMD+GPlay dataset, the set of scanners selected
from the full corpus of naive features comprised 16 scanners listed in appendix D.

5.6. Using Maat

As discussed in Section 1.3.2, we implemented Maat as an API to support researchers with
the analysis of VirusTotal scan reports and the extraction and visualization of insights
about VirusTotal scanners over time. For example, in the previous sections, we showed
how Maat could be used to find the set of correct and stable VirusTotal scanners based on
the VirusTotal scan reports of Android apps in a given dataset over a period of time. In
this section, we describe how Maat can be used to train ML-based labeling strategies that are
used to label arbitrary Android apps as malicious and benign based on their VirusTotal
scan reports. We do not describe the technical details of what commands to issue or how to
implement source code that leverages Maat’s API to achieve the aforementioned tasks; these
details can be found on Maat’s online (https:/ /github.com/tum-i22 /Maat) user manual.
In Figure 5.3, we visualize the typical process of using Maat to train ML-based labeling
strategies to label apps based on their VirusTotal scan reports. We detail this process in
the following sections.

5.6.1. Preparing the Training Dataset

Maat’s users need to gather the scan reports of pre-labeled Android malicious and benign
apps that Maat can use as the training dataset for ML-based labeling strategies. Maat does
not extract features from the APK archives of apps. So, the APK archives of those apps

104


https://github.com/tum-i22/Maat

5. Maat: A Framework to Optimally Utilize VirusTotal

Figure 5.3.: Maat’s process of training ML-based labeling strategies to label Android apps

based on their VirusTotal scan reports.

[
l User Input(s):

Path to training VirusTotal reports (An)
Path to test VirusTotal reports (A™)

Scan time(s) (T) =

{to,t1, s ta}

Features to extract= engineered V naive

Correctness metric= accuracy V mccV ...

Correctness Score Threshold during (7')= 0.90 (default)
Certainty Score Threshold during (7')= 0.90 (default)

[ )
. User Output(s):

Estimated labels for apps in (A*) L* = label"Va* € A™ = {malicious,
Path to saved trained model

Path to enumeration of learned features

(3) Labeling apps using trained strategies

VirusTotal

Maat
- - Alter hyperparameters Maat’s ML-based
N 7N TN labeling strategy
i \ At t g \
A 3 List of '\ J X =3*Va™ € An | J
extracted -
Feature features Represent Training
== Extraction [~~~ VirusTotal |[—~———- - and - =" ==
(enginereed reports as Validation
features only) feature vectors
Load scan f .. . . t
reports o P
ports of | (2) Training ML-based labeling strategies !
n 1 1
| |
C ~ w — Load scan
Me~— g Ne—— relz%ti of
- to *
% | (ay.apk, malicious) . E 0’ .report
S (cp.apk, malicious)| 2 g alo report
g ;
| (agz.apk, ) [a) 3| ol .report
=i - + — vee
§ (vq.apk, malicious) é (ef.apk, Unknown) g ali report
= . S
(o -apk, ) MUnknown) ? \—/
-
Input(s): F{put(s): SHA256(c)) al* report
SHA256(av1)
SHA;S.G(a ) Output(s): [ at report

(1) Preparing the Training Dataset

105



5. Maat: A Framework to Optimally Utilize VirusTotal

do not need to be downloaded; any unique representation of the apps (e.g., Secure Hash
Algorithms (SHA) or Message Digest (MD5) hashes of their content), would suffice. Given
the APK archives or hashes of apps in the training dataset, Maat’s users need to possess at
least one version of the VirusTotal scan reports of those apps (i.e., at time (). This can
be acquired by downloading the current version of VirusTotal scan reports of the apps
in the dataset. The downloaded reports are used to extract the features discussed in the
previous section. At the end of the feature extraction phase, the training dataset used by
Maat to train ML-based labeling strategies would comprise the following. For each app
(#) in the dataset (A), using at least one VirusTotal scan report of the app (a'.report),
Maat extracts features from the report and yields a vector of numerical feature (£,) and a
label (y,) that depicts the class of («) (i.e., malicious or benign). The accuracy of the labels
assigned to apps and their feature vectors in the training dataset is the responsibility of
Maat’s users. Users can either manually analyze the apps themselves or rely on previous
(manual) analysis. In this thesis, for example, we rely on the manual analysis conducted by
Wei et al. in [153] to label apps in the AMD dataset as malicious.

Maat can use just one scan report per app to train its ML-based labeling strategies.
However, the framework can also use multiple versions of VirusTotal scan reports per
app that depict the labels given by VirusTotal scanners to each app at different scan
dates. Using multiple scan reports per app is used to find VirusTotal scanners that
are correct and stable over time, which makes the results more resilient to VirusTotal’s
fluctuations. This is relevant to users wishing to train ML-based labeling strategies using
engineered features. However, Maat users wishing to use multiple scan reports per app to
train ML-based labeling strategies can only gather future scan reports because VirusTotal
does not grant access to the history of scan reports per app. In this thesis, we gathered the
VirusTotal scan reports of apps in the AMD+GPlay dataset starting from late November
2018 to July 5, 2019 to be able to compare the performance of ML-based labeling strategies
trained using engineered and naive features.

5.6.2. Training ML-based Labeling Strategies

Once the training dataset is ready and prepared, the users of Maat can use its API to train
ML-based labeling strategies. The only other input that Maat users need to specify is
the type of features they wish to be extracted from the VirusTotal scan reports in the
training dataset. If the user opts to utilize the engineered features, then they can specify
the correctness metric to be used (e.g., accuracy versus MCC), the threshold of correctness
needed to be met by a VirusTotal scanner to be considered as a feature (defaults to 0.90),
and the threshold of the certainty score needed to be met by a VirusTotal scanner to be
considered as a feature (also defaults to 0.90). No parameter values need to be specified in
the case of utilizing naive features.

As mentioned in Section 5.1, Maat handles the processes of selecting the more informative
features extracted from the scan reports and the hyperparameters of the ML model it returns,
which is a random forest of a 100 decision trees (by default). At the end of the training

106



5. Maat: A Framework to Optimally Utilize VirusTotal

phase, Maat returns a random forest that achieved the best training accuracy on the training
dataset after using 10-Fold cross-validation. The random forest is serialized and stored on
the user’s disk, along with the list of features that are used by this random forest. Effectively,
Maat relieved the user of the burden of having to decide upon the attributes or features to
extract from the VirusTotal scan reports of training apps. Even in the case of engineered
features, which are manually engineered, Maat selects a subset of those features that are
more informative than others without user intervention. Furthermore, we implemented
Maat to yield the same random forests upon using the same training dataset and labels to
enable the reproduction of results by different researchers using the same training dataset
and labels.

We consider Maat and its ML-based labeling strategies to be a complement the brute-
forcing algorithm introduced in Section 4.4 to find the currently optimal threshold of
VirusTotal scanners to label apps instead of choosing a subjective fixed threshold in
terms of standardizing the process of interpreting VirusTotal’s scan reports to label
Android apps (RQ4). However, Maat’s ML-based labeling strategies are built to be more
resilient to the dynamicity of VirusTotal than their threshold-based counterparts. This is
made possible by relying on the verdicts of 100 decision trees that comprise the verdicts
of multiple VirusTotal scanners that Maat found reliable during the training phase.
Consequently, VirusTotal’s manipulation of the versions or verdicts of scanners will
be confined to a subset of the aforementioned decision trees, which we hypothesize that
it does not have a noticeable impact on the random forest’s labeling accuracy. We test
this hypothesis in Chapter 6. Thus, using Maat’s ML-based labeling strategies, there is
no need to regularly acquire the current VirusTotal scan reports of apps in the training
dataset and retrain the random forests. In other words, we hypothesize that users can use
Maat’s ML-based labeling strategies trained at one point in time to label Android apps for
longer periods than the optimal thresholds acquired via the brute force algorithm. As for
the diversity of the training dataset used by Maat, the results discussed in Section 4.3 and
tabulated in Table 5.1 suggest that there is a subset of VirusTotal scanners that prove
to be accurate at labeling apps regardless of the age and composition of the dataset. We
implemented Maat to attempt to identify those scanners and rely on their verdicts in the
random forests it trains. So, we hypothesize that the age of apps used in Maat’s training
dataset and the maturity of their VirusTotal scan report may not impact their labeling
performance against new apps (e.g., in the Hand-Labeled 2019 dataset). If true, then unlike
the brute force algorithm, Maat’s training dataset need not be updated and labeled on
regular basis to be able to accurately label newly-developed Android apps based on their
VirusTotal scan report.

5.6.3. Labeling Apps Using Maat’s ML-based Labeling Strategies

Given the path to the file containing the serialized ML-based labeling strategy, the path
to the features this labeling strategy uses, and the path to the VirusTotal scan report
of a test app, Maat will attempt to label the app as malicious or benign as follows. First,

107



5. Maat: A Framework to Optimally Utilize VirusTotal

Maat loads the ML-based labeling strategy and deserializes it into a random forest classifier.
Second, Maat parses the features stored into the features file. Third, the framework extracts
the features expected by the loaded random forest from the test app’s VirusTotal scan
report and represents them as a feature of numerical features. Lastly, Maat uses the random
forest to predict the class (i.e., malicious or benign), of the feature vector and returns the
result to the user.

This process is used by Maat as part of two experiments that the framework currently
supports by Maat. On the one hand, users can use a pre-trained Maat’s ML-based labeling
strategy to label a dataset of test apps and compare the predicted labels to some ground
truth. In this case, the user is assessing the labeling accuracy of Maat’s labeling strategies.
On the other hand, users can use pre-trained labeling strategies to label apps whose ground
truth is unknown. Maat uses the predicted labels alongside features extracted from those
apps (which are to be supplied by the user) to train and validate ML-based detection
methods. This type of experiment emulates the process of a researcher labeling a newly-
acquired dataset of Android apps to evaluate a ML-detection method they implemented.
The evaluation of the trained ML-based detection method can be carried out against test
apps whose ground truth labels are known to assess the impact of Maat’s labeling strategies
on the detection ability of the ML-based detection methods.

For convenience, we implemented tools that utilize Maat’s API to automate both experim-
ents. That is, the tools handle the training of Maat’s ML-based labeling strategies using
the specified training dataset, labeling (test) apps, training ML-based detection methods
based on those labels and supplied feature vectors, labeling test apps using the trained
detection methods, and visualizing the results. As mentioned earlier in this section,
Maat’s user manual, documentation, and source code can be found on Maat’s website
(https:/ /github.com/tum-i22 /Maat).

5.7. Summary

One main objective of this thesis is to standardize the utilization of VirusTotal scan
reports to label (Android) apps in ways that bypass VirusTotal’s dynamicity. In Chapter 4,
we identified aspects of the platform dynamicity that negatively impact threshold-based
labeling strategies and proposed an algorithm to find the currently optimal thresholds
that should be used by researchers to label apps based on their VirusTotal scan reports.
However, to cope with the dynamicity of VirusTotal, the proposed brute-force-based
algorithm suffered from its own limitations, including the continuous acquisition and
(manual) labeling of new apps used by the algorithm to find the currently optimal threshold.
To complement the brute force algorithm and mitigate its limitations, we implemented
Maat. Via its API and tools that utilize it, Maat is designed to help the research community
address some of the issues we discussed in Section 1.3.1, such as finding indications of
whether a VirusTotal scan report has stabilized (RQ1), whether there exists a set of
VirusTotal scanners whose verdicts are consistent and correct across different datasets

108


https://github.com/tum-i22/Maat

5. Maat: A Framework to Optimally Utilize VirusTotal

(RQ3), and further unveiling aspects of VirusTotal’s dynamicity that might hinder
accurately labeling Android apps as malicious and benign. More importantly, Maat enables
researchers to train ML-based labeling strategies that focus on the verdicts of correct and
stable VirusTotal scanners rather than a number of random scanners deeming an app as
malicious. We hypothesize that the structure of Maat’s ML-based labeling strategies make
them less susceptible to VirusTotal’s dynamicity and can, hence, be used to accurately
label apps based on their VirusTotal scan reports for longer periods of time without
having to constantly re-scan apps, download their up-to-date VirusTotal scan reports,
and retraining the labeling strategies. Effectively, this should make Maat’s ML-based
labeling strategies a viable alternative to their threshold-based counterparts, including ones
that are devised using our proposed brute force algorithm. In the next chapter, we evaluate
Maat’s ML-based labeling strategies to test the aforementioned hypotheses.

109






6. Evaluating Maat

This chapter evaluates Maat’s ability to assign labels to apps based on their
VirusTotal scan reports that accurately reflect their ground truths. The
chapter also discusses the impact of such accurate labeling on the performance of
ML-based detection methods and, in general, the role of accurate labeling on the
performance of detection methods. Parts of this chapter have previously appeared
in peer-reviewed publications [9] and [116], co-authored by the author of this
thesis.

Given the popularity of VirusTotal and the unlikelihood of it being replaced anytime
soon, in Section 1.3, we set the main objective of this thesis to find or devise methods that
help the research community with optimally utilizing VirusTotal given its dynamicity
and limitations. One important aspect of such an optimal utilization is to devise methods
that standardize the interpretation of VirusTotal scan reports to label (Android) apps as
malicious or benign and yield labels that better reflect the malignancy of those apps (i.e.,
(RQ4)). To that end, in Chapter 4, we proposed an algorithm that can identify the currently
optimal number of VirusTotal scanners that can be used by threshold-based labeling
strategies to label apps as malicious and benign. Unfortunately, due to VirusTotal’s
dynamicity and limitations, the proposed algorithm can only be useful under specific
circumstances that cannot be met by all researchers viz., possession of diverse datasets
of Android apps and their VirusTotal scan reports, access to commercial licenses, and
significant manpower to manually label apps. In Chapter 5, we described a framework,
Maat, that we implemented to automate the process of analyzing VirusTotal scan reports
and train ML-based labeling strategies with minimal intervention from its users. We
hypothesize that Maat and the ML-based labeling strategies it trains can mitigate the
limitations of the proposed algorithm and provide the research community with a standard,
effective method to interpret VirusTotal scan reports to label (Android) apps accurately.
This makes our evaluation of Maat towards verifying this hypothesis take two dimensions.
On the one hand, we attempt to verify whether Maat indeed mitigates the limitations of the
brute force algorithm proposed in Section 4.4. On the other hand, we wish to evaluate Maat
ML-based labeling strategies” performance in comparison to conventional threshold-based
labeling strategies so that we could declare it as a viable replacement for the subjective
labeling strategies. To give a clear structure to our evaluation, in this chapter, we extend the
research questions (RQ4) and (RQ5) and address each one in a separate section.

Concerning the first dimension of evaluating Maat’s ML-based labeling strategies, recall
that the main limitations of the brute force algorithm proposed in Section 4.4 are two-fold.

111



6. Evaluating Maat

Firstly, the algorithm required the existence of a diverse dataset of pre-labeled malicious
and benign apps that should always be extended with newly-acquired and labeled apps.
Secondly, to be able to calculate the currently optimal threshold of VirusTotal scanners,
the apps in the aforementioned dataset need to be re-scanned via VirusTotal and their
scan reports need to be downloaded. For Maat’s ML-based labeling strategies to mitigate
those limitations, it should (a) not require the frequent acquisition of new apps to be
included in its training dataset, and (b) be able to accurately label apps for longer periods
of time before needing re-training. We capture these two requirements via the following
research questions:

RQ4.1: For how long can a Maat trained ML-based labeling strategy maintain the correct
labels it assigns to apps?

RQ5.1: How does VirusTotal’s dynamicity impact the structure and performance of ML-
based labeling strategies?

Mitigating the limitations of the brute force algorithm does not necessarily imply that
Maat’s ML-based labeling strategies are a viable alternative to threshold-based labeling
strategies and have the potential of being the standard method used to label (Android)
apps based on their VirusTotal scan reports. These ML-based labeling strategies should
also prove to be better than their conventional threshold-based counterparts in terms of
assigning labels to apps that better reflect their ground truth. The second dimension of
evaluating Maat’s ML-based labeling strategies is concerned with testing whether these
strategies can outperform threshold-based labeling strategies. In particular, we assess
the performance of Maat’s ML-based labeling strategies against that of threshold-based
labeling strategies, including ones adopting the currently optimal threshold according to
the brute force algorithm according to two criteria. In Section 6.1, we verify whether Maat’s
ML-based labeling strategies trained at one point in time can maintain labeling accuracies
in the future that rival those achieved using threshold-based labeling strategies that adopt
the current optimal thresholds. The second set of experiments in Section 6.4 compares
the impact of threshold-based labeling strategies versus that of Maat’s ML-based labeling
strategies on the effectiveness of ML-based detection methods against out-of-sample apps
over time. With these two sets of experiments, we wish to answer the following research
questions:

RQ4.2: How does the labeling accuracy of Maat’s ML-based labeling strategies compare to
the accuracy of threshold-based labeling strategies over a period of time?

RQ4.3: What kind of features are learned by Maat’s ML-based labeling strategies? And how
do they impact the performance of those strategies?

RQ4.4: What is the impact of Maat’s ML-based labeling strategies on the performance of ML-
based detection method in comparison to that of threshold-based labeling strategies?

112



6. Evaluating Maat

6.1. Accurately Labeling Apps

In this set of experiments, we attempt to address the research questions (RQ4.1) and (RQ4.2),
namely whether Maat’s ML-based labeling strategies trained at one point in time can sustain
a labeling accuracy similar to or better than threshold-based labeling strategies for longer
periods of time. We trained Maat ML-based labeling strategies using VirusTotal scan
reports of apps in the AMD+GPlay dataset downloaded on November 2018, and used the
trained strategies to label apps in the test datasets Hand-Labeled and Hand-Labeled 2019
datasets between July 5t 2019 and November 8", 2019. In the experiments, we used
ML-based labeling strategies that use the two types of features mentioned in Section 5.5
(i.e., engineered versus naive) and trained using the technique of grid search. The reason
behind focusing on grid search is that-although it takes between three and seven hours to
find the best random forests—it guarantees to find the best solution, whereas randomized
search favors pace and returns the best random solution it found within a given period of
time or number of attempts. That is, every time a randomized search technique is executed,
a different random forest is returned. We also included labeling strategies that used the
SelectFromModel technique to select the most informative features. For readability, we
shorten the names of ML labeling strategies in the following manner: engineered and
naive features are referred to as Eng and Naive, respectively, grid search and randomized
search are referred to as GS and RS, respectively, and strategies that use selected features
are referred to using Sel. For example, a labeling strategy that uses selected engineered
features and the grid search techniques will be referred to as Eng Sel Gs.

In addition to the ML-based labeling strategies, we calculate the labeling accuracies
of two types of threshold-based labeling strategies against apps in the Hand-Labeled and
Hand-Labeled 2019 datasets. First, we use a threshold-based strategy that uses the optimal
threshold at each scan date (between July 5, 2019 and November 8, 2019) identified
using the brute force algorithm (see Algorithm 1) on the AMD+GPlay dataset. We refer
to this labeling strategy as the Brute-forced Thresholds. Second, we use labeling strategies
that use the thresholds that would achieve the best labeling accuracy (in terms of the MCC
score) on both of the Hand-Labeled and Hand-Labeled 2019 datasets. These labeling strategies,
which we refer to as Best Thresholds, are meant to simulate a scenario in which a researcher
always manages to find the thresholds that yield the best possible MCC scores on the test
datasets. To the best of our knowledge, there are no methods discussed in the literature
that can do that. Thus, the performance of these thresholds depicts an upper bound on the
performance of threshold-based labeling strategies on the test datasets. By comparing the
labeling performance of Maat’s ML-based labeling strategies to that of the Best Thresholds,
we are effectively comparing the performance of the former to the best possible performance
of a threshold-based labeling strategy, as part of assessing the potential of the ML-based
labeling strategies to replace threshold-based labeling strategies.

In Figure 6.1 and Figure 6.2, we plot the labeling accuracies of ML-based, Brute-forced,
and Best Threshold labeling strategies in terms of the MCC score against apps in the
Hand-Labeled and Hand-Labeled 2019 datasets between July 5%, 2019 and November 8,

113



6. Evaluating Maat

10 1.0
091
081 )
&——== -
07{ ¥----¢
£ 0.6 1 g0
5
& (.5 —@— Brute-forced Thresholds A 054
9 0057 —e— Brute-forced Thresholds
o] Best Thresholds Y
=04 Eng GS 2018 =04 Best Thrm;glss
—4- Eng GS 2019-04-12 N 5afve gz 2010-04-12
031 Eng GS 2019-04-26 031 Noive a8 20190426
— - -05- N -
021 Eng GS 2019-05-10 024 —#- Naive GS 2019-05-10
Eng GS 2019-05-24 ’ Naive GS 2019-05-24
0.1 ~®- Eng GS 2019-06-07 0.1 —®- Naive GS 2019-06-07
Eng GS 2019-06-21 Naive GS 2019-06-21
0.0 T T T T T T T T T T 0.0 - - - - - - - - - -
") S 4 N > A > o g B
¢ & ¢ ¢ ¢ ¢ ¥ S s & &8 & & & S
& & & ¢ © ¢ ¢ & O 9 9 O O O ¢ ¢ o
o S o S B S D S S o '19\ '1/“\ ')/Q\ ')/Q\ q/“\ ,LQ\ ’],QN WQ\/ WQ\’ r&'\r
Scan dates Scan dates
(a) Eng GS on Hand-Labeled (b) Naive GS on Hand-Labeled
1.0 10
—8— Brute-forced Thresholds
094 Best Thresholds o
Eng GS 2018
081 GS 2019-04-12
07 GS 2019-04-26 0.7 —®— Brute-forced Thresholds
G5 2019-05-10 Best Thresholds
, 06 G5 2019-05-24 , 064 Naive GS 2018
g G5 2019-06-07 g -#- Naive GS 2019-04-12
Lm“) 054 G 2019-06-21 Lm)“ 051 Naive GS 2019-04-26
1 o---e 9] —#- Naive GS 2019-05-10
S04 . ¥ 04
Naive GS 2019-05-24
031 034 ~@- Naive GS2019-06:07 , o Py
Naive GS 2019-06-21
024 0.2 4 \ /
014 014
0.0 4 0.0 hd
. . . . . . . . . . . . . . . . . . . .
o S) & © $ > o > o ® o S) & © S > 3 ®
P A AP A AP T A P A CLAPOMC L
CHCIC . P ¢ & & & & & & & & &
o o ® ® ® P P P » » » o o o ® ® ® w“ P P
Scan dates Scan dates

(c) Eng GS on Hand-Labeled 2019

(d) Naive GS on Hand-Labeled 2019

Figure 6.1.: The labeling accuracies achieved by Maat’s ML-based labeling strategies Eng
GSand Naive GS trained with scan reports downloaded in between November
2018 and June 21%, 2019 against apps in the Hand-Labeled and Hand-Labeled 2019
datasets over time.

114



6. Evaluating Maat

2019. Each of the ML-based labeling strategies used in this experiment were trained using
VirusTotal scan reports of apps in the AMD+GPlay dataset at one point in time between
April 12,2019 and June 21%, 2019. For example, the green line with triangles depicts the
labeling performance of Maat ML-based labeling strategies trained using VirusTotal
scan reports of apps in the AMD+GPlay dataset downloaded in November 2018. The
difference between the two figures is that Figure 6.2 plots the labeling accuracy of ML-based
labeling strategies trained using selected features extracted from the VirusTotal scan
report rather the full corpus of features (see Section 5.5).

We made a number of observations based on the MCC scores in Figure 6.1 and Figure 6.2,
that we represent as an enumeration for better readability.

1. Thelabeling accuracy of Brute-forced labeling strategies is among the worst-performing
labeling strategies, especially against apps in the Hand-Labeled 2019 dataset. This
performance demonstrates the need for a temporally diverse dataset in order for
the brute force algorithm to be useful, as discussed in Section 4.4. Given that
the AMD+GPlay dataset does not contain apps developed in 2019, the identified
thresholds were high (i.e., between 10 and 13 scanners), which are much higher than
the current values of the positive attribute in the VirusTotal scan reports of the
newly-developed apps in the Hand-Labeled 2019 dataset.

2. The MCC scores of Maat’s ML-based labeling strategies mimic—and often overcome-
the scores of the Best Threshold labeling strategies, especially upon using the naive
features.

3. In general, ML-based labeling strategies trained using naive features appear to achieve
labeling accuracies on both test datasets Hand-Labeled and Hand-Labeled 2019 that are
more stable than their counterparts using engineered features.

4. Lastly, the performance of both types of features seems to fluctuate over time, albeit
not with the same rate or severity. Using selected features seems to decrease or
remove such fluctuations, especially upon using the naive feature set. Furthermore,
the fluctuations are usually more visible in the MCC scores resulting from labeling
apps in the Hand-Labeled 2019 dataset. As discussed and demonstrated in Section 4.3,
VirusTotal’s manipulation of scanners in the scan reports of newly-developed
apps has a greater impact on the accuracies of labeling strategies, especially upon
labeling malicious apps given that only a small subset of VirusTotal scanners label
them malicious. On November 8, 2019, for example, this aspect of VirusTotal’s
dynamicity prevents almost all labeling strategies from correctly labeling two out of
ten malicious apps in the Hand-Labeled 2019 datasets after removing three scanners
from their scan reports that correctly labeled them as malicious.

With these observations, we can address the research questions (RQ4.1) and (RQ4.2) as
follows. Regarding (RQ4.1), we found that using the naive feature set to train Maat ML-
based labeling strategies enables those strategies to maintain a steady labeling accuracy that

115



6. Evaluating Maat

10 10
091
081
074
£ 0.6 1 5061
& 05| — Bruteforced Thresholds & o5
g Best Thresholds g%~ Brute-forced Thresholds
=044 Eng Sel GS 2018 2 04d Best Thresholds
—4- Eng Sel GS 2010-04-12 Naive Sel GS 2018
0.3 Eng Sel GS 2019-04-26 03] ~#- vaive ;ei gz ggigg:’;é
Nai -04-
—#- Eng Sel GS 2019-05-10 arve se
024 . ol o5 2010.05.24 02 —%- Naive Sel GS 2019-05-10
ng se e Naive Sel GS 2019-05-24
014 ~®- Eng Sel GS 2019-06-07 014 —®- Naive sel GS 2019-06-07
Eng Sel GS 2019-06-21 Naive Sel GS 2019-06-21
0.0 . . . . . . . . .
0.0 41— . . . . . . . . .
") S 4 o N > A > £ <
¢ ¢ ¢ ¢ ¢ ¢ ¢ S & & & & S
& & & & & & & & & & o o oS oS oS o o o> = o
'\9 q/Q '19 (19 WQ (19 Q/Q q/Q ()/Q q/Q '19\ '1/“\ '}é\ ')/Q’\ ’)/Q\ ,LQ\ ’],QN WQ\/ ’LQ\’ WQ'\
Scan dates Scan dates
(a) Eng Sel GS on Hand-Labeled (b) Naive Sel GS on Hand-Labeled
1.0 1.0
097 & oy A= ~ 091
Ssa-” S S~ N
0s * * o TN 05 ]
~y e .
074 a e-———a. - 0.7 1
VAN RIS
, 06 Y A Te--———0----0--——-9 , 06
2 7 £
s 'Y 2 g o
205 205 1
o E'”*Tf:'ce: L"’em'ds O | —e— Brute-forced Thresholds
~ e o
204 i i So4- Best Thresholds
Eng Sel GS B
Naive Sel GS 2018
03 —4- Eng sel Gs igiz-gtiz 039 -4~ Naive Sel GS 2019-04-12
Eng Sel GS - Naive Sel GS 2019-04-26
021 —#- Eng Sel GS 2019-05-10 027 - Naive sel GS 2019-05-10
011 Eng Sel GS 2019-05-24 014 Naive Sel GS 2019-05-24
| -®- Eng Sel GS 2019-06-07 : -®- Naive Sel GS 2019-06-07
001 Eng Sel GS 2019-06-21 004 Naive Sel GS 2019-06-21
. . . . . . . . . . . . . . . . . . . .
o S 2 G D A g 52 o H S Qv ° D 4 o o
§ B N S 5 > b » o S § ¥ N P 5 e 7 » o S
N N & & F N ,N'“ N g N N N N N N N S Y
R A A
L 5 + + + + + + + + L L L L w + + + + +
Scan dates Scan dates

(c) Eng Sel GS on Hand-Labeled 2019 (d) Naive Sel GS on Hand-Labeled 2019

Figure 6.2.: The labeling accuracies achieved by Maat’s ML-based labeling strategies Eng
Sel GSandNaive Sel GS trained with scan reports downloaded in between
November 2018 and June 21%, 2019 against apps in the Hand-Labeled and Hand-
Labeled 2019 datasets over time.

116



6. Evaluating Maat

is similar to that of the upper bound of labeling accuracy (i.e., the MCC scores of the Best
Threshold labeling strategies). With a few exceptions, the steady performance of ML-based
labeling strategies spanned periods between one year (i.e., between November 2018 and
November 8, 2019), and seven months (i.e., between April 12", 2019 and November 8",
2019), which answers the research question. These periods, however, are subject to two
types of constraints. Given VirusTotal’s dynamicity, we cannot guarantee the steadiness
of the performance of ML-based labeling strategies in the future. So, we can only treat
the period of seven to 12 months as an upper bound. Moreover, we cannot generalize the
claim that Maat’s ML-based labeling strategies can maintain similar labeling accuracy for
a period of seven to 12 months after training. Instead, we should confine this period to
the training dataset AMD+GPlay and the test datasets Hand-Labeled and Hand-Labeled 2019
datasets. Thus, the answer to (RQ4.1) is that-using the aforementioned training and test
datasets—Maat ML-based labeling strategies can maintain similar labeling accuracy for a
period between seven and 12 months after training, unlike the Brute-forced thresholds that
need frequent re-training.

The answer for (RQ4.2) is two-fold. Firstly, we noticed that the labeling accuracy of
Maat’s ML-based labeling strategies in terms of the MCC score is generally better than that
of the Brute-force thresholds on both test datasets over time. Secondly, using the naive
feature set, the ML-based labeling strategies achieve MCC scores that are similar to the
upper bound of scores represented by the performance of the Best Thresholds labeling
strategies. In the next section, we attempt to understand the reasons behind the fluctuating
performance of ML-based labeling strategies using engineered features as opposed to those
using the naive ones.

6.2. Features Learned by ML-based Labeling Strategies

In the previous section, we noticed that the labeling accuracy of Maat’s ML-based labeling
strategies using the naive features set is, by and large, more stable over time and closer
to the upper bound MCC scores achieved by the Best Threshold labeling strategies. In
this section, we attempt to identify the reasons behind these performances by examining
the features learned by the random forests constituting the ML-based labeling strategies,
effectively addressing (RQ4.3).

6.2.1. Engineered Features

In Figure 6.3, we show an example of the decision trees trained using engineered features
based on VirusTotal scan reports of the training dataset AMD+GPlay downloaded in
November 2018. We found that on this date, the decision trees within the train random
forests had almost identical structures and features, whether trained using the full or
selected corpus of the engineered feature set (i.e.,, Eng GSor Eng Sel GS). Asseen in the
figure, the tree uses a mixture of the feature categories mentioned in Section 5.5.1, namely

117



6. Evaluating Maat

Figure 6.3.: An example of a decision tree trained using grid search and all engineered
features Eng GS extracted from apps in the AMD+GPlay dataset in November
2018.

Positives <= 2.5
entropy = 0.9953
samples = 100.0%
value = [0.54, 0.46]

class = Benign

(" Total<=245 \ ( Positives <= 15.5

entropy = 0.002 entropy = 0.0028
samples = 54.0% samples = 46.0%
value = [1.0, 0.0] value = [0.0, 1.0]

L class = Benign ) class = Malicious

\

/—‘m\ Babable <= 0.0

entrop.
o entropy = 0.1667
samples = 54.0% samples = 0.4%

value = [1.0, 0.0]
class = Benign

value = [0.02, 0.98]
7 class = Malicious

Age <= 7.3625 ( MAX<=05 )
entropy = 0.0464 entropy = 1.0
samples = 0.4% samples = 0.0%

value = [0.01, 0.99] value = [0.5, 0.5]
class = Malicious L class = Benign Y,

4
entropy = 0.0
samples = 0.0%
value = [1.0, 0.0]

class = Benign

attributes found in the apps’ scan reports (e.g., positives and total), features that indicate the
age of an app, and the verdicts of some VirusTotal scan reports (e.g., Babable and MAX).
The tree’s structure allows it to accurately classify Android apps in the Hand-Labeled and
Hand-Labeled 2019 datasets as follows. First, the left subtree classifies apps after checking
the ratio of positives to total attributes in the scan report, which allows it to cater to newly-
developed malicious apps. That is if the number of scanners is less than 2 (i.e., positives<2.5)
and the total number of scanners in the scan reports is less than 24 (i.e., total>24.5), the tree
assumes that the app is newly-developed yet around 9% of scanners deem it malicious,
and in turn, labels the app as malicious. Otherwise, if the total number of scanners is more
than 24, the tree considers the app’s scan report to be mature (i.e., old app), yet only a
small subset of scanners deem it as malicious; in this case, the tree considers the positives to
be false positives and deems the app as benign. For our test datasets, we found that this
subtree is effective at classifying benign apps and minimizing false positives.

118



6. Evaluating Maat

The tree’s right subtree checks the positives attribute again and labels apps as malicious
if more than 16 scanners deem an app malicious. This check helps identify old malicious
apps whose VirusTotal scan reports have matured to include values of positives higher
than these thresholds. As per November 8, 2019, 99.65% of the malicious apps in the
AMD+GPlay dataset and 67% of those in the Hand-Labeled test dataset had positives values
greater than or equal to 16. However, this check does not help classify newly-developed
malicious apps, such as those in the Hand-Labeled 2019 dataset. In this case, the tree checks
the verdict of the Babable scanner. If the scanner deems an app malicious, it checks the
verdict of another scanner (i.e., TrendMicro’s MAX), and deems the app as malicious or
benign according to this scanner’s verdict. Effectively, the tree deems the app as malicious
if two scanners, which we found to be among the correct scanners for the AMD+GPlay and
Hand-Labeled 2019 datasets in Section 5.2, deem the app malicious. If Babable finds the
app benign, the tree makes a final check about the age of the app being less than 7.3 years.
However, this check can be ignored because, regardless of the outcome, the tree assigns the
app to the majority class in this subtree, which is malicious.

For apps in our test datasets, we found that benign and malicious apps are labeled
according to the following decision paths. On the one hand, benign apps are classified
using the left subtree after satisfying the conditions that positives< 2 AND total > 25. On
the other hand, malicious apps in the Hand-Labeled dataset were labeled malicious after
satisfying the conditions positives > 3 AND positives > 16. However, given their novelty,
malicious apps in the Hand-Labeled 2019 datasets were labeled malicious after satisfying
the conditions positives> 3 AND Babable < 0.0. Upon further investigation of the app’s
scan reports, we found that they are correctly classified whenever VirusTotal excludes
Babable from their scan reports. Furthermore, we found that the MAX scanner never
detected any of those apps. So, effectively, the apps were labeled as malicious if the check
Babable == —1is true. Although this check is effective at labeling apps as malicious, it
does not make sense to label apps based on the absence of a scanner. This is an example of
how VirusTotal’s first limitation of including and excluding scanners in the scan reports
of apps might impact the way Maat’s ML-based trees are trained. To conclude, it appears
that combining different attributes found in the VirusTotal scan reports of apps in the
AMD+GPlay dataset enables ML-based labeling strategies to maintain a steady and decent
labeling accuracy over time.

As for the performance of ML-based labeling strategies trained at different points in time,
we found that the main reason behind their underperformance is their shallowness. We
found that-whether they use all of the engineered features or a selected subset of them-all
decision trees in random forests trained between April 12", 2019 and June 7', 2019 employ
only one check making them shallow trees of depth! one. In Section 6.3, we explain the
reasons that led to training random forests with such a shallow depth. With this depth, the

IThe conventional definition of a depth is associated with a node in a tree. That is, the depth of a node is
the number of edges from the node to the tree’s root node. In this section, we use depth to refer to the
maximum number of checks employed by a decision tree to make a decision

119



6. Evaluating Maat

checks-gps <= 0.5
gini = 0.4998
samples = 100.0%
value = [0.49, 0.51]
class = Malicious

sends-sms <= 0.5
gini =05
samples = 100.0%
value = [0.5, 0.5]
class = Malicious

android.permission. RESTART_PACKAGES <= 0.5
gini = 0.5
samples = 100.0%
value = [0.5, 0.5]
class = Malicious

iFase

() (b) (©) (d)

ESET-NOD32 <= 0.5
jini = 0.5

value = [0.5, 0.5]
class = Malicious

samples = 87.4%
value = [0.55, 0.45]
class = Benign

.9%
value = [1.0, 0.0]
class = Benign

Figure 6.4.: Four randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and all engineered features Eng GS
extracted from VirusTotal scan reports of apps in the AMD+GPlay dataset
downloaded on April 12, 2019.

tree is unable to represent apps in the training dataset, which is apparent in the impurity
of the leaf nodes. For example, the left leaf node in Figure 6.4b shows that 54% of the
remaining apps are benign, and 46% are malicious; apps will be labeled as benign because
the majority class, in this case, is benign. Later in this chapter, we explain why trees of
depth one can be trained using either type of features, viz. engineered and naive.

Despite being all of the depth one, some of the decision trees in these random forests are
more effective than others. For example, the decision tree in Figure 6.4a uses the verdict
of ESET-NOD32 to classify apps, which we showed in Section 4.2 and Section 5.2 to be a
consistently correct scanner. While effective, this type of tree is susceptible to VirusTotal’s
first limitation: frequent change in the set of scanners included in scan reports. So, for
it to be effective, this tree needs to exist with similar trees that use the verdicts of other
reliable scanners. Unfortunately, as seen in Figure 6.4b and Figure 6.4c, other decision trees
trained on April 12", 2019 use features that fail on their own to represent patterns found
in either the training dataset AMD+GPlay or the test datasets. For example, in Figure 6.4c,
the decision tree relies on the checks-gps tag to label apps. This VirusTotal tag does not
help discern the malignancy of an app, especially since using the GPS module is common
among malicious and benign apps alike. In fact, relying on such tags might lead to noisy
trees, such as the one in Figure 6.4d, which further decreases the overall performance of the
random forest.

As seen in Figure 6.5, using a selected subset of the engineered features yields decision
trees that are confident about their labels, as indicated by the Gini values in the leaf
nodes. Checks that did not yield confident labels, such as the VirusTotal tags and the
permissions requested by an app, are excluded. The decision trees rely on either the verdicts
of scanners that we found to be correct in Section 5.2 on the AMD+GPlay dataset or scan
report attributes such as positives and total. While selecting features helped increase the
performance of ML-based labeling strategies using engineered features, they still failed to
perform well on the Hand-Labeled 2019 dataset. The reason for this is two-fold. Firstly, relying

120



6. Evaluating Maat

NANO-Antivirus <= 0.5
gini=05
samples = 100.0%
value = [0.5, 0.5]
class = Malicious

ESET-NOD32 <= 0.5
gini=05
samples = 100.0%
value = [0.5, 0.5]
class = Malicious

gini = 0.0226
samples = 50.1%
value = [0.99, 0.01]
class = Benign

gini = 0.0213

sampl 3% sam| o
value = [1.0, 0.0] value = [0.99, 0.01]
class = Benign class = Benign

(a) (b) (c) (d)

Figure 6.5.: Four randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and selected engineered features Eng
Sel GS extracted from VirusTotal scan reports of apps in the AMD+GPlay
dataset downloaded on April 12th 2019.

on the verdicts of only one scanner makes the decision tree susceptible to VirusTotal’s
dynamicity and the resulting first limitation. Regardless of the correctness and stability of
the scanner, it risks being excluded from the scan reports of apps, which forces a decision
tree to label all apps as benign. Secondly, the scan report attributes of positives and total are
also susceptible to VirusTotal’s dynamicity. More importantly, using threshold values
such as five (i.e., Figure 6.5b) might suit the older apps in the AMD+GPlay dataset, where
the malicious apps have positives values usually greater than ten and benign values of zero
positives. However, such low values may not generalize to newer apps where only a small
subset of VirusTotal scanners might already recognize their malignancies.

To conclude this section, we found that Maat ML-based labeling strategies using engineered
features can yield good labeling accuracies on our test datasets that are steady over time if
the depth of these trained decision trees is more than one. This depth enables the random
forests constituting the ML-based labeling strategies to use a combination of different
attributes found in a VirusTotal scan report to label the apps as malicious and benign.
In contrast, random forests with decision trees of depth one are incapable of accurately
labeling apps, especially if they use scan report attributes other than the verdicts of a
VirusTotal scanner.

6.2.2. Naive Features

Using naive features and grid search Naive GS, we found that the random forests that
make up the ML-based labeling strategies had three different structures and depths. The
random forest trained using this type of feature on November 2018 had depths of ten checks.
For readability, in Figure 6.3, we show parts of an example decision tree that belongs to this
random forest. The decision tree in the figure checks the verdicts of different VirusTotal
scanners, some of which we found to be correct in Section 5.2, such as Fortinet and
Ikarus, along with others, such as Cyren. However, checking the verdicts of these
different scanners yield pure leaf nodes that are confident about the class of an app (i.e.,

121



6. Evaluating Maat

Qihoo-360 <= 0.5
0.49¢

CAT-QuickHeal <= 0.5
497

samples = 53.8%
value = [1.0, 0.0]
class = Benign

VIPRE <= -05
am
valde = [0.31. 0.19]

Kingsoft <= -0.5
gini = 0.0002
class = Benign

GData <= -0.5
gini = 0.001
samples = 3.8%

samples = 50.1%
value = [1.0, 0.0] value = [1.0, 0.0]
class = Benign class = Benign

@ oo

(a) Using all naive features (b) Using selected naive features

P
value = [1.0, 00]

Ikarus <= 0.5
gini = 0.0001
class = Benign

Figure 6.6.: Two decision trees trained using grid search and naive features Naive GS and
Naive Sel GS extracted from apps in the AMD+GPlay dataset in November
2018.

Gini index of zero). Although this random forest had decent and stable MCC scores on
both test datasets, one can notice the presence of checks similar to the Babable example
with engineered features, namely checks that rely on the absence of a scanner’s verdict. For
example, the fourth node and its two child nodes check whether the verdicts of the scanners
Jiangmin, VIPRE, and Kingsoft do not exist in the scan report being processed.

This type of checks does not exist in decision trees trained using selected naive features.
As seen in Figure 6.6b, decision trees in the Naive Sel GS random forests had depths
of four, and their structures were different from the ones trained with all naive features
in two aspects. First, they relied on the verdicts of correct scanners. That is we did not
find any decision trees that rely on the verdicts of VirusTotal scanners, such as GData,
Alibaba, or Kingsoft. Second, they relied on the verdicts of scanners that are included
in the scan reports and checked whether each scanner deemed an app as malicious or
benign rather than whether the scanner’s verdicts were absent from the scan report. The
performance of Naive Sel GS ML-based labeling strategies mimicked that of their Naive
GS counterparts on the Hand-Labeled dataset. However, on the newer Hand-Labeled 2019
dataset, that performance decreases in terms of MCC scores by about 0.1, albeit remaining
stable.

122



6. Evaluating Maat

gini=0.001

samples = 53.9% samples = 53.6%
value = [1.0, 0.0] value = (1.0, 0.0]
class = Benign class = Benign

class = Benign

(a) April 12,2019 (b) May 10", 2019 (c) June 7", 2019

Figure 6.7.: Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and all naive features Naive GS
extracted from VirusTotal scan reports of apps in the AMD+GPlay dataset
downloaded on April 12,2019, May 10, 2019, and June 7, 2019.

The depth of four does not seem to hinder the performance of ML-based labeling
strategies using naive features. As seen in Figure 6.7 and Figure 6.8, using an average
depth of four, the labeling strategies that used both all and selected naive features had MCC
scores of such strategies trained at different points in time were (a) stable over time, and
(b) matched and in some cases outperformed those of threshold-based labeling strategies
using the current optimal threshold. The primary difference between random forests
trained using Naive GS and Naive Sel GS was the utilization of correct and stable
VirusTotal scanners. On the one hand, Naive GS decision trees relied on the verdicts
of a mixture of correct scanners (e.g., Sophos, ESET-NOD32, and NANO-Antivirus)and
other less reliable scanners to label apps. On the other hand, Naive Sel GS exclusively
relied on the verdicts of correct and stable scanners, as identified in Chapter 5. In both cases,
we noticed that the deeper the decision trees grow, the lower the number of malicious apps
that need to be labeled. For example, in all six decision trees in Figure 6.7 and Figure 6.8,
by the time the last check is performed, less than 1% of the malicious apps remain to be
classified. So, it seems that the checks employed by the decision trees attempt to identify
malicious apps first, and the remaining apps are being classified as benign.

As for the performance of both types of ML-based labeling strategies on the test datasets,
we noticed that labeling strategies using Naive Sel GS had fewer fluctuations in MCC
scores over time on both datasets than its Naive GS counterpart. Moreover, the mediocre
performance of ML-based labeling strategies trained using Naive GS on April 26, 2019
increases upon using selected naive features. The reason for that we found is that using
selected naive features (i.e.,, Naive Sel GS), the depth of the random forests increases

123



6. Evaluating Maat

gini = 0.0
samples = 49.6%
value = (1.0, 0.0]
class - Benign

(a) April 12, 2019 (b) May 10", 2019 (c) June 7", 2019

Figure 6.8.: Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and selected naive features Naive
Sel GS extracted from VirusTotal scan reports of apps in the AMD+GPlay
dataset downloaded on April 12/, 2019, May 10, 2019, and June 7', 2019.

from one to four to resemble the structure of other Naive Sel GS random forests. We
visualize the structure of Naive GS and Naive Sel GS ML-based labeling strategies
trained on this date in Figure 6.9. On the one hand, random forests trained using all
naive features (seen in Figure 6.9a) result into decision trees that employ only one check
of different VirusTotal scanners. The more reliable and correct the scanner is (e.g.,
NANO-Antivirus or SymantecMobileInsight), the more confident are the labeling
decisions. Decision trees that rely on the verdicts of scanners, such as Baidu, are likely to
yield unconfident labels. On the other hand, using selected naive features yields random
forests with decision trees of an average length of four, which rely on the verdicts of four
scanners, most of which we found to be correct and stable.

In summary, we found that using naive features, Maat trains ML-based labeling strategies
whose random forests comprise decision trees of depth between three and four. Without
feature selection, these decision trees use the verdicts of different VirusTotal scanners,
some of which were not among the set of correct scanners that Maat identified in Section 5.2.
While including the verdicts of those scanners did not significantly decrease the labeling
accuracy of ML-based labeling strategies that use them, they may have introduced noisy
checks in the strategies” random forests that may have contributed to the fluctuation of
their performance especially against the Hand-Labeled 2019 dataset. Selecting the subset
of VirusTotal scanners whose verdicts are more informative during training (i.e., using
selected naive features), led to training random forests of the same depth but rely exclusively
on the verdicts of VirusTotal scanners that we found correct in Section 5.2. The performance
of ML-based labeling strategies that use selected naive features (i.e., Naive Sel GS),is

124



6. Evaluating Maat

(a) Using all naive features (b) Using selected naive features

Figure 6.9.: Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and naive features extracted from
VirusTotal scan reports of apps in the AMD+GPlay dataset downloaded on
April 26", 2019. The two trees on the left were trained using all naive features

Naive GS and the tree on the right was trained using selected naive features
Naive Sel GS.

125



6. Evaluating Maat

better and closer to that of Best Thresholds labeling strategies and exhibits almost no
fluctuations over time on both test datasets.
The insights gained in this section can help us address (RQ4.3) as follows:

¢ We found that naive features train ML-based labeling strategies that have higher and
more stable MCC scores on both test datasets than their counterparts trained using
engineered features.

* For both types of features, we found that selecting the most informative features boosts
the labeling accuracies of ML-based labeling strategies and relatively smoothens the
fluctuations of their MCC scores over time.

¢ We found that decision trees that rely on the verdicts of between three and four
VirusTotal scanners, which we found to be correct and stable on the training
dataset AMD+GPlay, yields the best and most stable MCC scores. In fact, we found
that the majority of these decision trees correctly label malicious apps after consulting
only one of those correct VirusTotal scanners. However, the trees are built to
consult other VirusTotal scanners in case the previous scanner labeled the apps
as benign, or its verdict was not included in the scan report (see VirusTotal’s first
limitation). Effectively, the decision trees label an app as malicious only if one out of
three to four correct VirusTotal scanners deem them as such. Otherwise, the app is
assumed to be benign.

¢ The structure of Maat’s ML-based labeling strategies using selected naive features
appears to be more resilient to VirusTotal’s dynamicity than threshold-based
labeling strategies in general. First, recall that VirusTotal sometimes uses inadequate
versions of otherwise competent scanners (i.e., third limitation), which causes the
verdicts of such scanners to be incorrect, especially against malicious apps. By
selecting only the verdicts of VirusTotal scanners that are correct, Maat’s ML-
based labeling strategies can mitigate this limitation. Second, basing the label of an
app on the verdicts of between three and four correct VirusTotal scanners helps
these ML-based labeling strategies yield accurate labels even if the verdicts of one or
two of such scanners were not present in the scan report of an app (i.e.,, VirusTotal’s
first limitation). Furthermore, since the final label of an app is based on the labels
given by 100 decision trees using different combinations of VirusTotal scanners,
the likelihood of this aspect of VirusTotal’s dynamicity to impact the decision of
enough trees to lead to an incorrect final decision is low.

To conclude, relying on the verdicts of a three to four VirusTotal scanners appear
to help Maat’s ML-based labeling strategies achieve high labeling accuracy that is steady
over a period of time between seven and 12 months, as discussed in the previous section.
Furthermore, the structure of decision trees in the random forests that constitute these
ML-based labeling strategies appear to be resilient to some aspects of VirusTotal’s
dynamicity. However, as seen in Section 6.1 and in this section, the structures of Maat’s

126



6. Evaluating Maat

ML-based labeling strategies differ depending on the utilized feature set and the scan
date on which the strategies were trained. We hypothesize that such differences are due
to VirusTotal’s dynamicity. In the next section, we attempt to identify the aspects of
VirusTotal’s dynamicity that impact the structure of the trained random forests of Maat’s
ML-based labeling strategies, effectively addressing RQ5.1.

6.3. Sensitivity to VirusTotal’s Dynamicity

We hypothesized that the difference in the structure of some ML-based labeling strategies
using different feature sets (i.e., engineered versus naive), along with the fluctuations of
their labeling accuracies, may be due to the dynamicity of VirusTotal. In this section, we
attempt to find out whether virusTotal’s dynamicity has an impact on the structure and
labeling accuracy of Maat’s ML-based labeling strategies (i.e., (RQ5.1)).

6.3.1. Impact of VirusTotal’s Dynamicity During Training

In Section 6.1, we mentioned that Maat uses the technique of grid search to find the
hyperparameters that yield the most accurate random forests that constitute Maat’s ML-
based labeling strategies. One of those hyperparameters controls the maximum allowed
depth of all decision trees in the random forest (i.e., max_depth). We varied the value of
max_depth to be one, four, ten, and None (i.e., no limitation), and allowed the technique of
grid search to identify the value that yields the best validation accuracy (TEIIEN ) achieved
using the technique of cross-validation, which we set to be ten-fold. In our case, this
accuracy is calculated by splitting the scan reports of apps in the AMD+GPlay dataset into
ten folds, train the random forests using nine of those, and using the remaining one-tenth
as a validation dataset. The final validation accuracy is an average of all ten accuracies
achieved on the ten validation datasets. We found that the validation accuracies achieved
by random forests of different depths are very close to one another. For example, for Naive
GS ML-based labeling strategies trained on April 26", 2019, we found that the validation
accuracies achieved by random forests with max_depth values of one, four, ten, and None
were 1.0, 0.9999794703346335, 0.9999794703346335, and 0.9999589490951507, respectively.
Based on those values and despite the insignificant difference in validation accuracies,
the grid search algorithm suggested the random forests with max_depth of one as the best
random forest on April 26/, 2019. As discussed in the previous sections, a depth of one
does not help the ML-based labeling strategies to accurately label apps, especially newly-
implemented ones (e.g., the apps in the Hand-Labeled 2019 dataset), which is apparent in the
labeling accuracies of the ML-based labeling strategies trained on the aforementioned date.
We experimented with forcing the max_depth value to be as high as 10. The results obtained
from such decision trees were indeed better than those obtained from their counterparts of
depths one. However, they did not perform better than decision trees with depths of three
and four, whose validation accuracies were the highest.

127



6. Evaluating Maat

As discussed in Section 5.5, we implemented Maat in a deterministic manner so that
using the same VirusTotal reports would yield the same random forest. Thus, the only
variable that would cause two random forests trained using the VirusTotal scan reports
of apps in the same dataset (i.e., AMD+GPlay), but on two different dates, say April 12" 2019
and April 26" 2019, to have different max_depths is the content of the VirusTotal scan
reports, which differed on both dates. We already discussed that VirusTotal frequently
changes the set of scanners it includes in the VirusTotal scan reports of apps. This change
need not be significant to impact the depths of Maat’s ML-based labeling strategies. For
example, on April 261" 2019, the difference between the validation accuracy of random
forests with depths one and four was merely 0.00002053. This means that out of one tenth of
the total number of apps in the AMD+GPlay datasets (i.e., 48,715 x 0.1 = 4,871), an average
of 0.10 (i.e., 4,871 x 0.00002053 = 0.100011895) apps gets misclassified in the validation
dataset. Since this value is an average, we can assume that at some validation folds, a
few apps out of 4,871 are misclassified. We found that between April 12#, 2019, and April
26", 2019, only 15% of the apps in the AMD+GPlay dataset had the exact same verdicts.
Furthermore, between these two dates, almost 85% of the apps had at least one verdict
change, 51.65% had at least two verdicts change, and 23.4% had at least three verdicts
change. This change of verdicts between the two dates, we assume, might cause a difference
in validation accuracies enough to make Maat favor random forests with a maximum depth
of four rather than one.

6.3.2. Impact of VirusTotal’s Dynamicity During Test

Another aspect of the ML-based labeling strategies’ sensitivity to VirusTotal’s dynamicity
is evident in the fluctuations of their MCC scores over time, especially on the Hand-Labeled
2019 (i.e., during testing the labeling accuracy of the trained strategies). The frequent change
in the scanners used in the scan reports of these new apps affects the attributes extracted
from these scan reports (e.g., positives), and the verdicts given by scanners. In turn, the
performance of labeling strategies that use both types of features is affected. As discussed
earlier, using selected features seems to stabilize the performance of ML-based labeling
strategies, especially those using naive features. However, on November 8" 2019, one
can notice the decrease in the MCC scores of even the most stable strategies (i.e., Naive
Sel GS).In Section 4.3, we demonstrated VirusTotal’s limitation of manipulating the
scanners in the scan reports of malicious apps in the Hand-Labeled 2019 dataset, which
affected the performance of threshold-based labeling strategies that once yielded the best
labeling accuracies. Similarly, since Naive GS and Naive Sel GS labeling strategies
solely rely on the verdicts of VirusTotal scanners to label apps as malicious, removing
a number of them from the scan reports of apps is expected to impact the decision trees
that rely on their verdicts to label apps. For example, given that they are among the
correct and stable scanners that Naive Sel GS relies on, removing the verdicts of the
ESET-NOD32, Fortinet, and Ikarus scanners from the scan report of the malicious
app 90e6ac481£dd497£152234f1cd5bec6d40£50037 will have a negative impact on

128



6. Evaluating Maat

decision trees that employ these scanners. Fortunately, the decision trees of such labeling
strategies combine the verdicts of different scanners, which keeps the misclassifications
to a minimum. That is the highest drop in MCC scores for the Naive Sel GS strategies
between October 25", 2019 and November 8", 2019 is 0.14 which is a decrease of 18%.

To conclude this section, we gained the following insights about the impact of VirusTotal’s
dynamicity on the structure and labeling performance of Maat’s ML-based labeling strategies,
effectively addressing (RQ5.1):

* VirusTotal’s frequent and unexpected manipulation of the set and versions of
scanners it includes in scan reports of (Android) apps (i.e., its first and third limitations),
impacts apps that are almost ten years old in the AMD+GPlay dataset. Albeit smaller
than those encountered by newly-developed apps, these changes cause insignificant
changes in the VirusTotal scan reports used by Maat to train its ML-based labeling
strategies and, in turn, the validation accuracies of random forests using different
hyperparameters. We found that these changes might cause Maat to favor random
forests with shallow depths (e.g., one), which yield ML-based labeling strategies that
are incapable of accurately labeling apps based on their VirusTotal scan reports,
especially newly-developed ones in the Hand-Labeled 2019 dataset.

¢ The same limitations of VirusTotal cause the fluctuations in the performance of
some Maat ML-based labeling strategies. In the previous sections, we found that using
selected naive features stabilizes these fluctuations and helps the ML-based labeling
strategies maintain high MCC scores mimicking those of the Best Thresholds (i.e.,
the upper bound of labeling accuracy). However, similar to other labeling strategies,
Maat’s ML-based labeling strategies using selected naive features are constrained by
the quality of the verdicts in VirusTotal scan reports. So, as seen on November gth
2019, virusTotal’s removal of the verdicts of three scanners that correctly labeled
two malicious apps from their scan reports had a negative impact on the ML-based
labeling strategies as well.

6.4. Enhancing Detection Methods

The second criterion we use to evaluate the applicability of Maat’s ML-based labeling
strategies is their ability to contribute to training more effective ML-based detection
methods (i.e., (RQ4.4)). In Chapter 1, we discussed that inaccurate labeling of apps used to
evaluate detection methods might have a negative impact on their detection performance.
By addressing this issue of labeling accuracy, we can contribute to helping the research
community focus on developing effective detection methods rather than being consumed
by devising labeling strategies that accurately label apps in their training datasets. The
main hypothesis we wish to test in this section is that using labeling strategies that yield
labels reflecting the ground truth of apps (i.e., malicious and benign), should lead to more
effective detection of out-of-sample apps. That is, based on their labeling performance in

129



6. Evaluating Maat

the previous section, we hypothesize that Maat’s ML-based labeling strategies—in particular
ones using selected naive features—will contribute to training ML-based detection methods
that are more effective than ones trained using conventional labeling strategies.

First and foremost, we focus on ML-based detection methods given their popularity
within the academic community [100, 139, 142, 156, 16]. In essence, we train different ML
classifiers using static features extracted from the AndroZoo dataset. The feature vectors
are then labeled using different threshold-based and ML-based labeling strategies. We
test the detection abilities of such classifiers by assessing their ability to label apps in the
Hand-Labeled, and Hand-Labeled 2019 datasets correctly. For readability, we use the shorter
term classifier was labeled instead of classifier, whose feature vectors were labeled.

There are a plethora of approaches to using static features and ML algorithms to detect
Android malware. We utilize a detection method that is renowned in the research community
and has been used by different researchers as a benchmark [44], namely Drebin [15]. The
Drebin approach comprises three components: a linear support vector machine Linear
Support Vector Machine (SVC) to classify apps, a set of static features extracted from
Android apps that spans all app components, permissions, URLs, etc., and the drebin
labeling strategy. In particular, given a dataset of Android APK archives, Drebin method
collects all component names (e.g., activities), permissions, URLs found in all of those apps
and consider each unique occurrence as a feature. For each identified feature, if an app’s
APK archive contains this feature (e.g., requests particular permissions), the corresponding
feature in the app’s feature vector will set as 1.0; otherwise, it will be set as 0.0. Using
an implementation of Drebin’s feature extraction algorithm, we extracted a total of 71,260
features from apps in the AndroZoo dataset. Those feature vectors are labeled based on the
VirusTotal scan reports of their apps using the drebin labeling strategy we introduced
before (see Section 5.2). Lastly, a SVC model is trained using the training feature vectors
(i.e., AndroZoo).

In addition to Drebin, we use the following classifiers: KNN [122], RF [123], SVM [15],
and GNB [123]. Given that the KNN and RF classifiers can have different values for
their hyperparameters, we used the technique of grid search to identify the classifiers that
yielded the best validation accuracies and used them as representatives of those classifiers.
Consequently, we refer to these to classifiers as KNN and RF. To train these classifiers,
we statically extracted numerical features from the APK archives of apps in the AndroZoo,
which depict information about the apps” components [124, 123], the permissions they
request [15, 154], the API calls found in their codebases [113, 159], and the compilers used
to compile them [136].

The labeling strategies we consider in this experiment are the conventional threshold-
based strategies of vt>1, vt>4, vt>10, vt>50%, and drebin, the threshold-based
labeling strategies that use thresholds brute-forced at each point in time, threshold-based
labeling strategies that use the best threshold at each point in time, and Maat’s ML-based
labeling strategies that had the highest MCC scores in the previous set of experiments,
namely Naive GS and Naive Sel GS. In assessing the performance of different ML-
based detection methods, we are not concerned with absolute values that indicate the

130



6. Evaluating Maat

~@— Brute-forced Thresholds ~@— Brute-forced Thresholds
Best Thresholds 0.9 0.9 4
1~ e P -4
0.8 0.8 \\. s £2<. P At |
) 3 ol GRS SN~ 4 -+
07 A 071 B q 7K Llasaa Al
2R SN AN -
064 @ S A 06 .
g ~. N
1A e A g\ | i
ss 2090012 & 05 T L SN V & 05 E
2
% 04 V *\\ NG 5 04 \0
. o] 2 »
O
<o\ /

2 N"w
«
\\ y
»
[0 Ak
i ‘(\
1 \‘,
//.
\z

/
00 — k-4 - 00+ #——lim -~ — =~~~
—— T
——
H S \2 o N > N\ > o §
S N Y SRS P O H LS D D P @
QTN F S I A AR G G RN R
ISR I GO
S > LS a S B S L% S a ’]/6\ "]/Q’\ ’)/QN 19\ ']9\’ ']/Q’\ q/Q’\ (9\ W/Q\ ’]/6\
Scan dates Scan dates
(a) Hand-Labeled (b) Hand-Labeled 2019

Figure 6.10.: The MCC scores achieved by the Drebin classifiers labeled using different
threshold-/ML-based labeling strategies against the Hand-Labeled and Hand-
Labeled 2019 dataset between July 5%, 2019 and November 8", 2019.

quality of the classifier and the features it is trained with. Instead, we are interested in their
performance with respect to one another.

In Figure 6.10 we plot the classification performance of Drebin classifiers labeled using
different labeling strategies against apps in the Hand-Labeled and Hand-Labeled 2019 datasets
in terms of MCC score. Each point on any line depicts a date on which the apps in the
training dataset, AndroZoo, were re-scanned, and their up-to-date VirusTotal scan reports
were downloaded. Using the up-to-date VirusTotal scan reports of apps in the AndroZoo
dataset, we label the feature vectors of those apps as malicious and benign with the help
of a given labeling strategy; then, a classifier is trained using the labeled feature vectors.
After training, the classifier is used to classify the feature vectors of apps in the Hand-Labeled
and Hand-Labeled 2019 as malicious and benign. The recorded predicted labels are then
compared against the ground truth we generated for apps in these datasets by manually
analyzing them, as discussed in Section 1.3.4, and an MCC score is calculated to depict the
prediction’s accuracy. Given that the lines depicting the MCC scores of different classifiers
are intertwined, we tabulate their MCC scores in Table 6.1 for better readability.

Studying these performances, we made the following observations:

1. The first observation we made was that the performance of Drebin classifiers is better
on the Hand-Labeled 2019 dataset than on the older Hand-Labeled dataset. The reason
behind this is that apps in the AndroZoo dataset were developed between 2018 and
2019. Probably, features extracted from these apps are expected to be similar to apps in
the Hand-Labeled 2019 dataset more than to those in the Hand-Labeled dataset, especially
since the Drebin feature set is designed to identify similarity in the components and
features utilized by the Android apps in the training dataset. This proximity in feature

131



6. Evaluating Maat

Table 6.1.: Detailed view of the MCC scores achieved by the Drebin classifiers labeled using
different threshold-/ML-based labeling strategies against the Hand-Labeled and
Hand-Labeled 2019 dataset between July 5%, 2019 and November 8, 2019.

Scan Date
Labeling Strategy
Hand-Labeled

Brute-forced Thresholds 0.00 0.00 000 018 024 018 0.00 0.00 0.00 0.18

2019-07-05
2019-08-02
2019-08-30
2019-09-27
2019-10-25

2019-07-19
2019-08-16
2019-09-13
2019-10-11
2019-11-08

Best Thresholds 028 034 043 044 038 024 022 050 056 0.50
vt>1 021 024 015 028 031 027 035 025 031 031

vt >4 026 022 032 043 038 024 022 024 039 036

vt>10 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00
vt>50% 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00
drebin 0.00 0.08 0.08 0.00 008 0.08 028 0.00 015 0.05
Naive GS 2018 059 041 053 055 061 048 051 036 055 0.55
Naive GS 2019-04-12 027 029 039 025 020 030 038 033 049 0.26
Naive Sel GS 2018 054 051 060 055 059 054 072 038 055 0.55

Naive Sel GS 2019-04-12 050 047 048 047 053 052 048 043 058 047
Hand-Labeled 2019
Brute-forced Thresholds 0.30 0.00 030 019 033 033 030 027 053 043

Best Thresholds 073 0.67 073 0.80 067 0.65 070 0.66 073 0.76
vt>1 018 018 019 018 024 026 034 025 040 0.37

vt >4 073 0.66 080 073 076 070 073 0.78 0.80 0.73

vt>10 053 023 043 038 033 033 043 027 048 048
vt>50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
drebin 023 0.00 010 010 002 0.04 014 019 023 0.19
Naive GS 2018 084 076 073 0.63 080 076 070 0.67 0.80 0.78
Naive GS 2019-04-12 084 078 080 078 078 0.84 071 0.67 0.80 0.82
Naive Sel GS 2018 071 0.69 063 0.69 071 0.69 069 071 0.69 0.62

Naive Sel GS 2019-04-12 076 0.80 080 076 076 0.76 073 0.80 073 0.84

132



6. Evaluating Maat

space, as discussed in Section 3.4.4, helps Drebin’s SVC classifier identify patterns
shared by malicious and benign apps better.

2. Secondly, we found that using best threshold at each point on time along with Maat’s
ML-based labeling strategies helps the Drebin classifier achieve better MCC scores
than threshold-based labeling strategies that use fixed thresholds over time (e.g.,
vt>1,vt>10,and vt >50%), and better than the Brute-forced Thresholds. Moreover,
the average MCC scores of Drebin classifiers labeled using Maat’s ML-based labeling
strategies is higher than that of classifiers labeled using the Best Thresholds at each
scan date. As seen in Section 6.1, Maat’s ML-based labeling strategies using (selected)
naive features and the Best Thresholds labeling strategies achieved the highest and
steadiest MCC scores that depict their labeling accuracies.

3. The results in Table 6.1 show that using labeling strategies that had the highest MCC
scores for labeling accuracy contribute to training ML-based detection methods that
achieve the best MCC scores, which supports the hypothesis that the more accurate
and reliable a labeling strategy is, the more effective are the detection methods that rely
on apps labeled by such a strategy. However, we noticed a number of exceptions that
contradict this hypothesis. For example, the Naive GS ML-based labeling strategies
trained in November 2018 and the Naive GS strategies trained on April 12th 2019
had almost the same labeling accuracy against apps the Hand-Labeled dataset (see
Figure 6.1). Despite this similarity, the Drebin classifiers labeled using the latter
strategy noticeably underperforms in comparison to the former one. This behavior
switches on the Hand-Labeled 2019 dataset: the performance of Drebin classifiers
labeled using Naive GS 2018 almost mimics that of those labeled using Naive GS
trained on April 12, 2019, despite the former being less able to label apps in this
dataset accurately.

In general, we noticed that MCC score of each Drebin classifier differs depending on the
utilized labeling strategy and the scan date of the VirusTotal scan reports this strategy
uses to label apps. In addition to these two factors, we noticed that the utilized classifier
also impacts these scores. Figure 6.11 shows the MCC scores achieved by the KNN, RF, and
GNB classifiers against the same test datasets using the same labeling strategies. Similar to
the Drebin classifier, the MCC scores achieved by these three classifiers show that Maat’s
ML-based labeling strategies contribute to training more effective detection methods than
their threshold-based counterparts, in spite of using a different set of features to represent
the apps in the training and test datasets. However, unlike the Drebin classifier, the MCC
scores of the KNN, RF, and GNB classifiers seem to be stable across different scan dates,
especially on the Hand-Labeled 2019 dataset. The values of these scores seem to differ
from one classifier to another. On the Hand-Labeled 2019 dataset, for instance, the average
MCC scores of the KNN, RF, and GNB classifiers were 0.64, 0.89, and 0.43, respectively.
So, it seems that the features used to represent apps in the training dataset and the type
of ML classifier also impact the performance of a detection method. This helps us to

133



6. Evaluating Maat

—@— Bruteforced Thresholds —@— Brute-forced Thresholds
Best Thresholds 0.9 - 0.9 4 Best Thresholds
vt>1 vt>1
-4 v 084 084 -4 vt>4
vt>10 vt>10
- vt>50% — vt>50%
drebin 0719 0719 & . drebin
. Naive G TN - . Naive G
-@ Naive GS 2018 06 1 g GrmmEm b i A ~ar -@ Naive GS 2018
Naive GS 2019-04-12 @ % . Naive GS 2019-04-12
-k Naive Sel GS 2018 5 5 —A Naive Sel GS 2018
Naive Sel GS 2019-04-12 & 0.5 @ 054 Naive Sel GS 2019-04-12
Y 9]
9] 9]
=04 S 04
Ay ,:‘_.-—:
[ 9 g -
034 Y .3
bt 03
024
0.1
0.04 EEY TP 0.0
T © T S T a T © T S T o T a T ~ T © < T T T T T T T T T T
I A R G NN e D F P D> P
T F S S § & & & & S
P PP 8 o & & & O O O O O
B M M N S NI M S I NN q/@ q/@ ’9\ q,B\’ q/@ q/@ W@ ’&x q/@, q/@
Scan dates Scan dates

(a) KNN with Hand-Labeled (b) KNN with Hand-Labeled 2019

—@— Brute-forced Thresholds —@— Brute-forced Thresholds
Best Thresholds 094 Best Thresholds
vt>1
-+ 0.8 084 - ve>a
vt210
-+ > — vt>50%
drebin 074 07 drebin
@ Naive GS 2018 -@ Naive GS 2018
9067 g 067 Naive GS 2019-04-12
g 5 —A Naive sel GS 2018
& 0.5 & 05 Naive Sel GS 2019-04-12
Y 9]
% )
S 041 04
—pr”
03] ¥-oa=
0.2 4
0.14
0.0 1 ';_"——' 0.0 1
& O I
S o0 S R A L A IR ARV
CHN & NN S S S o
B SRS I S R
LI M S S S S S S
Scan dates Scan dates

(c) RF with Hand-Labeled (d) RF with Hand-Labeled 2019

1.0 10
—@— Brute-forced Thresholds —@— Brute-forced Thresholds
Best Thresholds 094 094 Best Thresholds
vt>1 vt>1
-4 vezd 084 08 - vt>a
vt210
— vt>50% -
drebin 079 074
- - Naive GS 2018
P 0.6 q 5 0.6 1 Naive GS 2019-04-12
—A: Naive Sel GS 2018 ] i —A: Naive Sel GS 2018
Naive Sel GS 2019-0412 & 0.5 ? 0.5 Naive Sel GS 2019-04-12
Y ]
9] 9]
=044 =
cehed b= ——f-=f=-
el === =g Sie b st i S |
034 \ /\ 03
02 02 ot
(A\ A——
011 01 #3287 ¥
R e e e 4 00{m
o © < PN T T T T T T T T T T
& & AR PSRN N I AR N
S 0 O & & L QT F SN
NI S SRS S AN C AN SR AR ARSI
R O S S S S S
Scan dates Scan dates

(e) GNB with Hand-Labeled (f) GNB with Hand-Labeled 2019

Figure 6.11.: The MCC scores achieved by the KNN, RF, and GNB classifiers labeled using
different threshold-/ML-based labeling strategies against the Hand-Labeled and
Hand-Labeled 2019 dataset between July 5th 2019 and November 8", 2019.

134



6. Evaluating Maat

address (RQ4.4) as follows. The results of our experiments show that Maat’s ML-based
labeling strategies that use (selected) naive features, which proved in Section 6.1 to provide
the highest MCC scores in labeling accuracy, contributes to training different ML-based
detection methods that are more effective at classifying apps in the Hand-Labeled and Hand-
Labeled 2019 dataset as malicious and benign based on vectors of static features extracted
from their APK archives than detection methods labeled by conventional threshold-based
labeling strategies currently adopted within the research community.

6.5. Summary

We implemented Maat as an attempt to contribute to standardizing the utilization of
VirusTotal to label apps used to train and evaluate ML-based labeling strategies as
malicious and benign. In Chapter 5, we hypothesized that the ML-based labeling strategies
trained by Maat are built to be more resilient to VirusTotal’s dynamicity than threshold-
based labeling strategies and can, hence, act as a reliable alternative to the conventional
threshold-based labeling strategies used within the literature. In this chapter, we attempted
to verify this hypothesis by extending (RQ4) and (RQ5) postulated in Section 1.3.1. Firstly,
we found that Maat’s ML-based labeling strategies—especially those using selected naive
features—can maintain a steady labeling accuracy that matches the upper bound of accuracy
achieved by the currently optimal threshold of VirusTotal scanners for a period between
seven and 12 months. This means that such labeling strategies need not be re-trained as
frequently as the currently optimal threshold needs to be re-calculated due to VirusTotal’s
dynamicity. Having mentioned VirusTotal’s dynamicity, we found, secondly, that the
platform’s dynamicity may impact the structure of Maat’s ML-based labeling strategies
and their labeling accuracy. In particular, the frequent manipulation of scanner verdicts
and versions might lead to training shallow, random forests, which constitute the ML-
based labeling strategies that are unable to yield accurate labels, especially for newly-
developed Android apps. Thirdly, we found that different ML-based detection methods
whose feature vectors were labeled using Maat’s ML-based labeling strategies had better
classification scores than those detection methods labeled using conventional threshold-
based labeling strategies adopting within the research community. These results imply that
Maat’s ML-based labeling strategies can be used to label apps based on their VirusTotal
scan reports instead of subjective threshold-based labeling strategies that rely on fixed
thresholds of VirusTotal scanners, which makes them susceptible to VirusTotal’s
dynamicity. However, as we discuss in Section 9.3, our results are confined to the datasets
we used, the period within which the VirusTotal scan reports of apps in those datasets
were downloaded, the feature vectors we extracted from those apps, and the ML algorithms
we utilized.

135






7. An Alternative to VirusTotal

This chapter recaps the limitations of VirusTotal that were unveiled
throughout the thesis and details the design of an alternative platform that tackles
the issues of VirusTotal, effectively providing the research community with
a more reliable, consistent, and stable source of labels for Android apps. Parts
of this chapter have previously appeared in peer-reviewed publication [116],
co-authored by the author of this thesis.

The research community heavily relies on the online platform, VirusTotal, to acquire
and label apps. However, throughout this thesis, we demonstrated the limitations of
such a platform, which sometimes undermines its usefulness. Among other issues, the
main limitation of VirusTotal is its dynamicity and the frequent change it introduces
to its scan reports. In this context, the research community is in need of a more stable
and reliable alternative to VirusTotal. In this chapter, we discuss the limitations of
VirusTotal (Section 7.1) and use them to propose an alternative platform, designated
Eleda, that mitigates those limitations. After detailing the design of such an alternative
platform (Section 7.2), we go over its own limitations and the issues that it cannot tackle
(Section 7.3).

7.1. A Summary of VirusTotal’s Limitations

In this thesis, we identified four major limitations of VirusTotal. Firstly, in Section 4.3,
we found that VirusTotal changes the set of scanners it uses to scan apps and includes in
their scan reports regularly. In particular, the set of scanners included in the scan reports of
some apps seem to randomly change within periods as brief as two weeks. We demonstrated
how that might impact the performance of threshold-based labeling strategies by changing
the threshold of VirusTotal scanners needed to label apps as malicious, especially if
those apps were newly-developed and have immature scan reports. Old Android apps are
also affected by this limitation. In Section 5.4, we demonstrated how this regular change
impacts the scan report of a malicious Ransom app, which makes it difficult to estimate
whether a scan report has stabilized based on attributes such as positives and positives_delta.
Unfortunately, there is no information available that might explain this sudden change in
the scanners that VirusTotal uses.

Secondly, although VirusTotal seems to be continuously updating the versions of
some of its scanners and claims to be using the latest signature databases, the platform

137



7. An Alternative to VirusTotal

does not enforce re-scanning of apps. As demonstrated in Section 1.2.1, reanalysis and
re-scanning of Android apps have to be triggered manually by the users either via the
platform’s web-interface or by issuing the proper API requests. In Section 4.4, we show
that this design decision significantly delays the process of finding the optimal threshold
of VirusTotal scanners to use at any given point in time and may, in fact, render it
infeasible. Given that the platform might be hosting millions of benign and malicious
apps, re-scanning all apps each time an updated version of a scanner is acquired might be
infeasible. However, the platform can regularly re-scan apps every two to four weeks to
keep the information in its scan results fresh. Furthermore, although it displays the latest
scan_date to the users (see Section 3.4.1), VirusTotal does not clearly warn its users of the
implications of relying on out-dated scan results.

Thirdly, we found that VirusTotal might change the versions of antiviral scanners to
ones that are not designed to cater to Android malware, as detailed in our BitDefender
example in Section 5.2. Moreover, we found that VirusTotal uses some antiviral scanners
that are not designed for the Android platform, such as McAfee-GW-EditionandMicros-
oft, which are designed to detected web-based and Windows-based malware, respectively.
As mentioned in Section 5.2, the platform claims that antiviral software firms dictate the
versions to be used by VirusTotal. Nevertheless, this does not justify using inadequate
versions of antiviral scanners to scan apps and including them in their scan reports. We
speculate that VirusTotal uses all the antiviral scanners it possesses to scan all apps
submitted to the platform regardless of the apps” intended platforms or architectures.

Lastly, having mentioned old scan results, VirusTotal does not offer free access to
older scan reports or the scan history of apps. In fact, we are not sure whether such
information is available under commercial licenses. Combined with regular re-scan of apps
using the same (or similar) set of antiviral scanners, access to older scan report provides
researchers with the opportunity to study the evolution of scan reports to estimate, among
other things, the time it takes antiviral scanners to detect malicious apps, the amount of
time it takes a scan report to stabilize, and whether antiviral scanners change their initial
labels.

7.2. Platform Overview

In this section, we discuss how the limitations we discussed above can be addressed. Given
that we do not know the internal structure of VirusTotal and how it can be amended
to address those limitations, we propose an architecture of a new platform, Eledal, that
is designed to mitigate VirusTotal’s limitations. An overview of Eleda’s modules and
operations can be seen in Figure 7.1.

1Eleda is one of the mirror twins in Sharon Shinn’s novel The Truth-Teller’s Tale, who is a truth-teller incapable
of telling lies, earning her the society’s trustworthiness. With Eleda’s proposed design, we aspire to provide
the research community with an alternative to VirusTotal that is more stable and reliable.

138



7. An Alternative to VirusTotal

Figure 7.1.: An overview of the modules and operations of the proposed VirusTotal
replacement, Eleda.

Remote User

AndroZoo Iil (6) Google

query /upload
N e a1l T download |~ | query |
| download query sen query |

(1) \
Web/API (3)
Inierface y § Scanner f)

|
o
ata
Acquisition

Acquisition t 1 update
o / *Update
scan ..

Scanning —— retrieve/add,
retrieve/add C/‘
store

|

|

|

|

|

|

|

|

2)

(4) Pre-set Android A ( ) |
Virtual) Devices |

|

query |
|

|

|

|

|

|

User Scanner’s List
Profile

Data Acquisition. The first operation of Eleda is to acquire APK archives of unlabeled
Android malicious and benign apps to scan and analyze (step (1)). As discussed earlier,
AndroZoo [10] automates the process of crawling different app marketplaces and continuously
downloads their APK archives. Access to such a platform is granted to researchers via an
API key that can be used to download apps using cURL. So, using its Data Acquisition
module, Eleda can frequently query AndroZoo for newly-crawled and downloaded apps,
which is indicated using the looped arrow.

Scanner Acquisition and Update. The stored APK archives are meant to be analyzed and,
more importantly, scanned. The Scanner Acquisition and Update module is responsible
for setting up this scanning infrastructure. In step (2), the module retrieves the names
of antiviral scanners and queries app marketplaces, such as Google Play, for their latest
versions. This list can be manually populated at first to include the list of VirusTotal
scanners that are designed to detect Android malware and are available on Google Play.
As of November 2019, 38 (61%) out of around 60 scanners on VirusTotal are available
on Google Play. Eleda can also be implemented to add new scanners to the list. After
downloading the latest version of each scanner in the list, Eleda updates either an AVD or a
physical Android device that is used to scan APK archives (step (3)). In general, malware
researchers prefer physical Android devices, especially upon analyzing malicious apps that
employ anti-virtualization techniques. In this case, Eleda does not attempt to analyze the
runtime behavior of Android apps but rather to scan them using a scanning app installed
on the (virtual) device. Consequently, there is no advantage of using physical over virtual
Android devices. If the downloaded scanner is new and does not have a corresponding

139



7. An Alternative to VirusTotal

Andproid (virtual) device, Eleda can create a new (virtual) device either from an Android
OS image or from a template of pre-set AVDs and installs the new scanner’s APK to this
new device. The process of acquiring and updating new versions of antiviral scanners from
Google Play—and possibly third-party Android app marketplaces—is meant to mitigate the
third limitation of VirusTotal, namely using inadequate scanners and scanner versions
not designed to scan Android apps. Moreover, using a pre-populated list of scanners
is meant to keep the set of antiviral scanners used to scan APK archives constant (i.e.,
mitigating the first limitation).

App Scanning To address the second limitation of VirusTotal that it only re-scans
Android apps upon request, in step (4), Eleda’s App Scanning module retrieves the set
of APK archives available in the platform’s app repository, scans them using the devices
set up by the Scanner Acquisition and Update module, builds the latest scan reports of
those apps, and stores them in another repository. In order to make the transition from
VirusTotal to Eleda seamless, the scan reports can also be stored in JSON format and can
contain the same information contained in VirusTotal’s scan reports. For example, static
information about the app components can also be extracted using analysis tools, such as
Androguard [13], and the API calls issued by the app during runtime can also be monitored
and recorded [8]. The frequency of the re-scan operation can be set by the users of Eleda.
Given that the platform is expected to store a large number of APK archives, it need not
re-scan all apps at the same time. Instead, each app can be scanned every constant interval
(e.g., two weeks), starting from its initial acquisition date. This setting would reduce the
size of the batch of apps that need to be analyzed at once.

User Interaction The last operation of Eleda is user interaction. In step (6), the platform
receives a query from a remote user in the format of a hash of an Android app’s APK or the
archive itself. If the app is not already in the platform’s app repository, the App Scanning
module can add the app’s APK archive to the repository. The APK archive is then scanned
using the platform’s (virtual) devices, and its scan report can be displayed to the user. Eleda
can mimic the design of VirusTotal by offering users to interact with the platform using
a web-based interface or using API-requests. However, to address VirusTotal’s fourth
limitation, Eleda can provide the users with all scan reports of the queried app.

7.3. Challenges and Limitations of Eleda

In addressing the limitations of VirusTotal that we mentioned earlier in this chapter,
Eleda either introduces new challenges or fails to address the same limitations that virusTotal
suffers from. Similar to VirusTotal, Eleda relies on the verdicts of commercial antiviral
scanners. Thus, the correctness of the labels Eleda provides is constrained by the correctness
of their labels. With the help of our students, we developed eight malicious Android apps
as proofs-of-concept. We did not publish these malicious apps to apps marketplaces, which

140



7. An Alternative to VirusTotal

might explain why almost all VirusTotal scanners failed to recognize their malignancy,
as seen in Appendix F. In other words, since these apps were not encountered in the wild
(e.g., app marketplaces), antiviral software did not develop signatures or techniques to
detect them. There is no design of Eleda or any other label aggregation platform meant
to replace VirusTotal that can mitigate this limitation. The only way to mitigate this
limitation is to devise a method that always labels apps correctly, effectively devising a
perfect detection method.

The second and third limitations of Eleda are technical and are related to using the
commercial versions of antiviral scanners found on the Google Play marketplace. Those
versions found on Google Play are designed to be interacted with by humans. This
human-centered design means that Eleda might face challenges setting the scanners up
and retrieving the verdicts they assign to other apps. As seen in Figure 7.2, commercial
antiviral scanners need to be set up before they can be used. On the one hand, the set
up process can be as simple as tapping on buttons (Figure 7.2a) or granting permissions
(Figure 7.2¢c). On the other hand, as seen in Figure 7.2b and Figure 7.2d, setting up antiviral
apps may include registering to or logging into a service, or more complicated processes to
renew a free license or acquire a commercial one. Unfortunately, the setup process differs
from one antiviral app to another. So, after downloading and installing the antiviral app
(i.e., step (3) in Figure 7.1), a human operator needs to set up the app to be ready to scan
and label apps. The process of setting up a scanner can be automated using GUI testing
tools, such as Droidbot [77], which can be configured to perform the sequence of GUI-based
events necessary to set up the scanner’s app (e.g., enter certain credentials in text fields then
tapping a login button). To identify this sequence of events, a human operator still needs to
first interact with an app and manually configure a GUI testing tool for future installations
of the scanner app.

A similar, yet less complicated, process is that of retrieving the verdicts and labels given
by the antiviral scanners install on Eleda’s Android devices to apps installed during the
App Scanning phase. Given that those verdicts are meant to be displayed to users, the
commercial antiviral apps downloaded directly from app marketplaces do not expose any
APIs that can be used by Eleda to automatically retrieve the labels they assign to APK
archives. So, Eleda needs to parse the notifications displayed on the Android device’s
screen to retrieve the scanner’s verdicts, if any. In Figure 7.3, we give two examples of
how Panda’s and ESET-NOD32’s antiviral apps notify users of the malignancy of apps.
Although they can take screenshots of Android devices” displays, GUI-based testing tools
are not designed to parse the content of such screenshots.

To the best of our knowledge, most antiviral Android apps scan newly-installed apps
and notify users if they found them to be malicious. As seen in the figure, the notification
comprises an icon in the top left corner of the device’s screen and a notification box laid
over all other activities containing details about the detected app and the label the antivirus
assigns to it. Eleda can leverage this pattern to scan apps by installing an app’s APK
archive on an Android (virtual) device and wait for a notification box to be displayed. If
a notification box is indeed displayed, the platform can consider that the app has been

141



7. An Alternative to VirusTotal

Bitdefender
Sign In
Email or phone
[ \ Trial has expired
— Your product has expired. Get the full version now
8 Allow Panda Mobile
= Security to access your

No account? Create one DENY  ALLOW

A BuyPanda

By pressing any button you accept the
Terms and Conditions

Dashboard

(a) Simple Activation (b) Login/Sign up (c) Grant Permissions (d) License Expiration

Figure 7.2.: Examples of manual operations needed to set up and activate antivirus Android
apps downloaded from Google Play.

deemed by the antiviral scanner installed on such a device as malicious.

Technically, this process can be implemented as follows. Eleda can keep a reference of how
a neutral display of a template Android device looks like (e.g., Figure 7.3a). After installing
an app on an Android (virtual) device, the platform can wait for a pre-defined amount
of seconds, take a screenshot of the device’s display, and compare the saved screenshot
with the reference one. Comparing two screenshots can be carried out by algorithms,
such as Structural Similarity Index (SSIM) [152], that compare the structural similarity
of two images. If the SSIM measure between the two screenshots is 0.7748 or more, the
two screenshots are considered to the same [119], and the app is considered to be benign
because the antivirus installed on the device did not display a notification of its malignancy.
Otherwise, the screenshot acquired from the device needs to be further processed to ensure
that the difference between the two screenshots is due to such a notification. We reckon that
an implementation of Eleda can use algorithms to extract text from images [155] and search
for strings that indicate the detection of a malicious app (e.g., detected, threat, and infected).

The more challenging task is to extract the malware type and family name from such
images. In [55], Hurier et al. discuss the problem of VirusTotal antiviral scanners
not following standard procedures to label Android malicious apps. So, malware types
and families are not expected to follow a pattern that can be represented using a regular
expression, for instance. One possible solution to this problem is to exclude all words
found in the screenshot that belong to a natural language. For example, excluding all words
that can be found in an English dictionary from Panda’s notification (i.e., Figure 7.3b),
will leave the strings Android/NS.A and Androot, which can be cross-referenced with
pre-extracted malware types and families (e.g., using the AMD dataset), to identify the
string most likely to correspond to a malware family and/or type. Another solution is to

142



7. An Alternative to VirusTotal

.4 01004

A Threat found!
|~

Android/NS.A detected in @ System Update
Universal Androot ! EocteLEs
This file can provide remote access to
the infected device, leak sensitive data
UNINSTALL and enable access for other malicious
S code into the device. We strongly
EXCLUDE suggest to remove it.

MORE INFO REMOVE

(a) Neutral Display (b) Panda (c) ESET-NOD32

Figure 7.3.: Two examples of how commercial antiviral apps inform users of the malignancy
of installed apps.

customize an extraction method per scanner, given that their notification boxes differ from
one another. For example, in Figure 7.3b, the app’s family name can be extracted as the
string before detected in Universal Androot, whereas the family name in Figure 7.3c can be
extracted as the string between System Update and This file. However, the second solution
cannot cater to GUI updates in the antiviral scanners.

7.4. Summary

In this doctoral thesis, we identified four limitations in VirusTotal that can undermine
the reliability and usefulness of its scan reports. Those limitations can be categorized
into (a) VirusTotal’s frequent change in the scanners and their versions that it uses
to scan Android apps and includes in their scan reports, and (b) the lack of regular
scanning of Android apps to build a history of their scans. We propose the implementation
of an alternative platform, designated Eleda, that is designed to tackle the limitations
of VirusTotal. Needless to say, the proposed features can also be integrated into
VirusTotal. The design of Eleda is meant to close the gap between the labels given by
the scanners used by VirusTotal and those given by their commercial versions available
to users on app marketplaces. Furthermore, the proposed platform is designed to provide
the research communities with stable scan reports by adopting the same set of antiviral
scanners and only slightly changing them (e.g., in case of a discontinuity). However, unless
an agreement is found with antiviral software firms to expose APIs to facilitate Eleda’s

143



7. An Alternative to VirusTotal

tasks, the reliance on commercial versions of antiviral apps introduces limitations to Eleda.
While some of those limitations can be mitigated during implementation, some of those
cannot be easily tackled, such as setting up antiviral scanners or relaying the inaccurate
verdicts of antiviral scanners.

144



Part II1.

Related Work and Conclusion

145






8. Related Work

This chapter enumerates and discusses related work particularly in the fields
of designing and evaluating Android malware analysis and detection methods
and identifies research gaps relevant for this thesis. Parts of this chapter have
previously appeared in peer-reviewed publications [9], [116], [8], [118], and
[119] co-authored by the author of this thesis.

8.1. Defining Malware

There are a plethora of definitions for malware that can be found in dictionaries, in non-
scientific articles, and online. As discussed in Chapter 2, such definitions revolve around
malware being a subset of apps that jeopardize or undermine the confidentiality, integrity,
and availability of a system and the data it contains. In the scientific literature, there are
two approaches to defining malware, viz. formal and structural or behavioral.

8.1.1. Formal Definitions

In [68], Kramer et al. devised a general definition for malware as a software system (M)
that damages a correct software (S) by directly or indirectly causing it to become incorrect.
They defined the correctness of (S) in terms of its intended behavior, which differs from
one software system to another. However, they argue that the correctness of a system can
be verified using the techniques of model-checking or equivalence-checking, which they
abstract as the function correct(s) that checks whether a system is correct. Given a correct
system (S), Kramer et al. argue that malware causes the incorrectness of such a correct
system by modifying the system itself (e.g., its codebase), the operating system on which
it runs, or the data it interacts with [68]. In more abstract terms, Kramer et al. consider
a system as malicious if it modifies a pre-defined, verifiable state within which a benign
system (S) exists. Effectively, Kramer et al. focus on the integrity aspect of malware.
Stewin et al. focused on a specific type of malware that targets Direct Memory Access
(DMA) mechanisms [138]. First, they define 16 classes of DM A-based code that span the
combinations of four criteria: (C1) implements malware functionality, (C2) needs physical
access to increase the probability of stealthy infiltration, (C3) applies rootkit or stealth
capabilities during runtime, and (C4) can survive reboot, standby, or power off modes
[138]. Each of these criteria is represented using one bit; a value of zero indicates that the

147



8. Related Work

DMA-based code does not fit the criteria, whereas a value of one indicates that the code
does fit it. In total, the 16 classes are represented using four bits. Using this representation,
the authors defined DMA malware as DMA-based code that fulfills at least the criteria (C1),
(C2), and (C3) (i.e., having the binary representations of either 1110 or 1111).

For Android malware, we could not find literature that formally defines it. Instead,
the majority of work that we found defines malware in terms of its structure and the
functionalities it delivers.

8.1.2. Structural and Behavioral Definitions

Definitions of malware that focus on its structure and the tasks it accomplishes date back
to Von Neumann’s abstract definition of automata (i.e., programs in more recent terms),
that replicate themselves [149]. Similarly, Cohen defined malware, particularly computer
viruses, as programs that infect other benign programs by copying their malicious code
into the codebase of their targets, effectively attaching themselves to benign programs [29].

In terms of Android malware, the first study that investigated the structures and functiona-
lities of Android malicious apps on a large scale came four years after its initial release
in 2008. In such a study, Zhou and Jiang characterized 1,260 Android malicious apps in
terms of their installation methods, activation mechanisms, and the functionalities their
payloads deliver [161]. The authors found that around 86% of the apps they analyzed were
repackaged versions of benign apps, 36.7% of the apps employ privilege escalation exploits,
and 45.3% of the apps generate a monetary profit using premium SMS services [161].

Lindorfer et al. introduced a system, ANDRUBIS, that automatically analyzes Android
apps [80]. In the process of evaluating ANDRUBIS, the authors gathered over one million
Android apps. Some of the insights the authors gained about Android malware during
this study is that malicious apps (a) request more permissions even if they are not needed,
(b) register to more system events via BroadcastReceivers, (c) use more third-party
advertisement libraries, (d) leak more information about the device (e.g., IMEI), over the
network, and (e) use the techniques of DCL, reflection, and utilization of native libraries
more than their benign counterparts [80].

In [108], Rasthofer et al. focus on a malware family, Android/BadAccents, that
targeted Korean Banking apps in 2015, and describe the techniques malicious apps in this
family used to carry out their functionalities. The authors found that Android/BadAccents
exploits a tapjacking vulnerability in the Android OS to overlay the GUI of particular banking
apps and hijack users’ credentials [108]. Furthermore, similar to the findings of Lindorfer
et al.’s study, the authors found that this family registers to BroadcastReceivers to
steal incoming SMS messages and abort phone calls. Lastly, by exploiting a zero-day
vulnerability to gain administrative privileges, apps in this family remove a particular
antiviral scanner (i.e., AhnLab-V3), and install a fake one. Rasthofer et al. also reported
on the structure of apps in this family and their utilization of a modular architecture that
separates the classes carrying out the different aforementioned functionalities.

Li et al. focused in their 2017 study [75] on repackaged, or piggybacked, malware.

148



8. Related Work

They gathered 1,497 benign apps and their repackaged, malicious versions and performed
measurements similar to the ones performed in [161] and [80]. Among the multitude of
insights Li et al. gained from their measurements, they found that Android repackaged
malware requires more permissions than benign apps, reuses the malicious code injected
into the benign apps” codebases, and makes use of DCL and reflection.

In [142], Tam et al. surveyed the literature to study the evolution of Android malware
analysis and detection techniques. They dedicated part of their work to studying the traits,
structures, and behaviors of Android malware as reported by previous studies. That is, they
did not reveal new behaviors in Android malware themselves. However, they highlighted
malware types and families, such as Android. hehe, that uses techniques to recognize its
execution within (virtual) analysis environments in order to masquerade its behavior [142].

Wei et al. released a dataset of 24K malicious Android apps, known as AMD [153]. During
the process of gathering and analyzing those apps, Wei et al. gained the following insights.
Firstly, they found that repackaging as a method of distributing malware is declining. That
is to say, malware authors increasingly prefer to implement their malicious apps from
scratch rather than grafting benign apps with malicious payloads. Secondly, they found
that malicious apps increasingly rely on techniques to delay and schedule the execution
of their malicious payloads. Thirdly, the authors found that malware authors invest in
techniques that prolong the existence of malicious apps on users’ devices (i.e., persistence).
Similar to previous studies, Wei et al. reported that Android malware continuous to use
anti-analysis and detection evasion techniques, such as DCL, reflection, obfuscation, and
environment fingerprinting. Lastly, they found that malware authors rely less on premium
SMS services as a source of monetary profit in favor of banking malware. Nevertheless, the
majority of apps they gathered from the wild comprise Adware apps.

A more recent study that provides an overview of the common behaviors exhibited by
Android malware families was conducted by Suarez-Tangil et al. in 2018 [140]. In this
study, the authors analyzed 1.2 million Android malware samples gathered over a period
of eight years, making the study the largest to date. Similar to Li et al. [75], the authors
of this study focused on the malicious behaviors injected into benign apps as part of the
repackaging process. Unlike Wei et al. the authors found a concept drift in the threats of
malicious behaviors. For example, they found that 40% of the malicious families that date
back to 2013 utilized premium SMS services to generate profit, which dropped to 10% in
families developed in 2016 [140]. Similarly, the use of native support has increased from
15% in 2011 to 80% in 2017. As for detection evasion techniques, Suarez-Tangil et al. found
that about 90% of malicious behaviors found in 2017 instead of about 25% in previous
studies. Lastly, the authors estimate that the development of standalone malware in favor
of repackaging has increased, albeit they estimate the percentage of standalone malware to
be 13% rather than the 35% reported by Wei et al. in [153].

The latest study we found in the literature about the structures and behaviors of Android
malware is by Salem and Pretschner [119]. In this study, the authors analyze apps drawn
from three datasets released as part of the studies by Zhou and Jians [161], Lietal. [75], and
Wei et al. [153]. Comparing the malware families and types found in those three datasets,

149



8. Related Work

they found that (a) malicious behaviors injected into benign apps usually generate monetary
profit via advertisements, and (b) in general Adware is the most Android malware type.
Moreover, using the technique of compiler of fingerprinting, they found that Android
malware is increasingly shifting towards being standalone, which supports the findings
in [140, 153]. However, using this same technique, they reveal that the definition of
repackaging is ambiguous. In particular, they found that 52% of the apps gathered by Zhou
and Jiang in [161] are compiled using compilers that imply the usage of source code and
IDE’s rather than the reverse engineering tools known to be commonly used during the
repackaging process, which contradicts the findings in [161] that 86% of the gathered apps
were repackaged.

8.1.3. Summary

Formal definitions of malware are usually rare and Android malware is no exception. In
the literature, we found that researchers define malware in terms of the structures of the
malicious apps, the functionalities they implement, and the behaviors they exhibit during
runtime, all of which we found to evolve over time. The lack of clear definitions of (Android)
malware is perhaps the reason behind the subjectivity of deeming apps as malicious, which
is reflected in the different verdicts given by antiviral scanners to the same app. In this
thesis, we do not attempt to define Android malware; instead, we attempt to understand
the reasons behind the disagreements among different antiviral scanners. Without access to
information about how antiviral scanners analyze and label apps, we hypothesized that the
subjectivity of malware labeling is due to malignancy being a matter of perspective that
varies from one stakeholder to another in the Android ecosystem.

8.2. Malware Datasets

During the decade of researching Android malware, a multitude of datasets comprising
Android (malicious) apps has been released by members of the research community. After
surveying the literature, we found that such datasets are released under two conditions
viz., either as part of a study of Android (malicious) apps and the trends they exhibit or
as part of introducing a new method to detect Android malware. Given the existence of
hundreds of analysis studies and detection methods, there are a plethora of datasets that
we cannot discuss in this thesis. So, we focus on large and renowned datasets that were
systematically gathered rather than randomly downloaded from an online repository.

In their 2012 study [161], Zhou and Jiang gathered a total of 1,260 Android malicious
apps that were developed between August 2010 and October 2011 and released those
apps to the research community, effectively providing researchers with the first and largest
collection of Android malware called Malgenome. Zhou and Jiang focused on malicious apps
that were discovered and analyzed by researchers in industry and academia and acquired
them by either downloading the apps from app marketplaces, including Google Play, or by

150



8. Related Work

requesting them from the aforementioned researchers [161]. To ensure that the acquired
apps are malicious, the authors relied on the verdicts given by four antiviral scanners,
name]y AVG Antivirus Free,Lookout Security & Antivirus,Norton Mobile
Security Lite,and Trend Micro Mobile Security. Inparticular, they downloaded
the latest versions of those scanners from the Google Play marketplace, installed each
scanner on a separate AVD, and sequentially installed the acquired apps on each of the
AVDs, observing the verdicts given by the four scanners to each app. Although not all
scanners managed to recognize the malignancy of all apps, collectively, the scanners deemed
all apps as malicious. So, effectively, Zhou and Jiang used a labeling strategy that requires
only one scanner—out of the four they used—to deem an app as malicious in order to label it
as malicious, which we consider a special case of vt >1.

Arp et al. developed a ML-based method to detect Android malware based on features
statically extracted from their APK archives and called it Drebin [15]. To evaluate the
effectiveness and applicability of Drebin, they gathered a total of 129,013 Android apps
comprising 123,453 benign apps and 5,560 malicious apps. This dataset, widely known
as the Drebin, contains apps developed between August 2010 and October 2012 that were
gathered as follows. Firstly, the authors of the Drebin dataset acquired a total of 131,611 apps
from different marketplaces, websites, security blogs. Furthermore, the 5,560 malicious apps
in this dataset include the 1,260 apps of the Malgenome dataset. To label apps in this initial
dataset, Arp et al. devised a label strategy, which we referred to as the drebin strategy
throughout this thesis, that deems apps as malicious according to their VirusTotal scan
reports if at least two out of ten scanners they focus on deem apps as such. Using those labels,
they excluded apps that had labels indicating that they belong to the Adware malware
type. Similar to Zhou and Jiang, Arp et al. released the Drebin dataset to the research
community, which replaced the Malgenome dataset as the de facto evaluation dataset for
Android malware detection methods. In fact, after its discontinuation in December 2015,
the Drebin dataset served as the source of Malgenome dataset, given that it already contains
those apps.

As discussed in this thesis, Android apps, including malicious ones, continuously evolve,
which renders datasets obsolete within a few years. To provide the research community
with an up-to-date source of Android (malicious) apps, Allix et al. implemented an online
platform, called AndroZoo, that frequently crawls official and third-party app marketplaces
to acquire new apps [10]. As of the time of writing this thesis, AndroZoo platform hosted
more than ten million Android apps. Apps that are newly-discovered as automatically
indexed and added to a Comma-Separated Values (CSV) file, called latest.csv, that contains
metadata about the app and its APK archive. Some of this metadata includes the data
on which the APK archive was last modified (dex_date), the package name (pkg_name), the
number of VirusTotal scanners that deemed the app as malicious (vt_detection), the date
on which the app was scanned on VirusTotal (vt_scan_date), and the marketplaces on
which the app can be found (markets).

Despite not being a dataset per se, AndroZoo’s continuous discovery of new apps made
it the main source of acquiring Android apps, and some datasets were built on top of

151



8. Related Work

Table 8.1.: A summary of the datasets we utilize in this thesis, their composition, their
sources, and the experiments within which they are used.

Dataset Name Total Apps Source Usage
. o Training ML-based labeling strategies (Chapter 5)
24,553 AMD’s Website
(malicious) o Demonstrating degrees of malignancy (Section 2.5)
AMD+GPlay
o Calculating scanner correctness (Section 5.2)
24,162 AndroZoo’s servers
( ) o Estimating scan report stability (Section 5.3)
6,172 AndroZoo’s servers o Training ML-based detection methods (Chapter 6)
AndroZoo
(u beled)
o Testing accuracy of labeling strategies (Chapter 4 and Section 6.1)
Hand-Labeled 100 AndroZoo’s servers
( +24% malicious) o Testing accuracy of ML-based detection methods (Section 6.4)
o Testing accuracy of labeling strategies (Chapter 4 and Section 6.1)
Hand-Labeled 2019 100 AndroZoo’s servers
( +10% malicious) o Testing accuracy of ML-based detection methods (Chapter 4 and Section 6.4)
(malicious)

it. For example, apps in the Piggybacking dataset built by Li et al. were acquired from
AndroZoo [75]. Apps in this dataset comprise 1,497 presumably benign Android apps and
their malicious, repackaged versions. To label apps as malicious and benign, the authors
downloaded the VirusTotal scan reports of those apps and deemed apps as malicious if
at least one scanner labels them as such and as being, otherwise.

As part of their study [153], Wei et al. released a dataset of 24,650 malicious apps that
span different malware families and types and called it the AMD dataset, short for android
malware dataset. Initially, the authors acquired 1,464,590 unlabeled apps from Google Play,
VirusShare, the Malgenome dataset, and third-party security companies. Using VirusTotal
scan reports of those apps, they considered only apps that have 50% of the scanners deeming
them as malicious, which brought the number of apps to 52,520 apps. To cluster those apps
into families, the authors applied an algorithm to extract the dominant keyword for each
app out of the labels given to it by the VirusTotal scanners. This process led to grouping
apps by malware types, such as Adware, Backdoor, Ransom, et cetera. To further group
apps by family name, the authors used an in-house developed clustering algorithm [78] to
cluster apps into 71 families and 135 varieties. Lastly, to have a measure of confidence that
apps in this dataset are malicious, Wei et al. manually analyzed a random sample of ten
apps from each of the 135 varieties. To summarize the result of such a manual analysis, the
authors represented the structure and behavior of apps in each malware family variety as a
block diagram showing the interactions between different segments of the malicious app
and (external) resources (e.g., remote servers). The AMD dataset is not the largest Android
malware dataset to be released to the research community. However, it is the first Android
malware dataset that offered a large amount of metadata about the malicious apps, their
types, families, varieties, structures, and behaviors.

As discussed in Section 1.3.4, our primary source of Android malware is the AMD dataset.
We consider all apps in the dataset as malicious given the relatively thorough process
of acquiring and labeling apps employed by its authors in [153]. The largest source of

152


http://amd.arguslab.org/
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access
https://androzoo.uni.lu/access

8. Related Work

Android benign and malicious apps we rely on is the AndroZoo platform. We acquired a
total of 30,535 apps that we use in the GPlay, AndroZoo, Hand-Labeled, and Hand-Labeled 2019
datasets.

8.3. Studying VirusTotal

Given the significant role it plays in the malware analysis and detection process, the
research community has studied different aspects of VirusTotal and its scanners. In
[93], Mohaisen et al. inspected the relative performance of VirusTotal scanners on
a small sample of manually-inspected and labeled Windows executables. The authors
introduced four criteria, called correctness, completeness, coverage, and consistency, to
assess the labeling capabilities of VirusTotal scanners and demonstrated the danger of
relying on VirusTotal scanners that do not meet such criteria. The main objective of
this study is, therefore, to shed light on the inconsistencies among VirusTotal scanners
on a small dataset. In [92], Mohaisen and Alrawi built on their previous study and
attempted to assess the detection rate, the correctness of reported labels, and the consistency
of detection of VirusTotal scanners according to the four criteria of completeness,
correctness, consistency, and coverage that they previously introduced. They showed
that in order to obtain complete and correct (i.e., in comparison to ground truth) labels from
VirusTotal, one needs to utilize multiple independent scanners instead of hinging on
one or a few of them.

Similarly, within the domain of Android malware, Hurier et al. studied the scan reports of
VirusTotal scanners to identify the lack of consistency in labels assigned to the same app
by different scanners [55]. Furthermore, they propose metrics that quantitatively describe
such inconsistencies.

In a similar work, Charlton et al. studied the labeling accuracies of different VirusTotal
scanners and devised an algorithm to measure the relative accuracy between those scanners
[24]. Using this algorithm, they rank the VirusTotal scanners in terms of trust (i.e.,
whether their verdicts should be trusted), and concluded that at least four scanners should
not be utilized in labeling apps. Effectively, they identified a set of scanners that ought
to be used in labeling apps based on their VirusTotal scan reports (see discussion in
Section 5.2). Dua et al. built on this work in [40] and evaluated five metrics used to assess
the quality of VirusTotal scanners and their verdicts. In both works, the authors did
not tackle VirusTotal’s dynamicity and how it impacts the set of VirusTotal scanners
identified to be correct at one point in time, which we demonstrated in Section 5.2.

More recently, Peng et al. [101] showed that VirusTotal scanners exhibit similar
inconsistencies upon deeming URL as malicious and benign (e.g., because they are Phishing
websites). The authors also showed that some VirusTotal scanners are more correct
than others, which requires a strategy to label such URLs that does not treat all scanners
equally. Furthermore, they show the lack of collaboration between VirusTotal and the
antiviral firms developing the platform’s scanners, which delays labeling URLs submitted

153



8. Related Work

to VirusTotal as malicious.

The closest work to ours is that by Zhu et al. in [162]. Using the VirusTotal scan
reports of Windows-based and Android malware gathered daily for a period of almost
two years, Zhu et al. attempted to answer the following research questions: (a) when can
VirusTotal labels be considered trustworthy? (b) how are VirusTotal scan reports
utilized by researchers—according to 115 papers they reviewed-to label apps? And (c) are
different VirusTotal scanners equally trustworthy? Their findings are similar to ours
discussed in Chapter 4, Chapter 5, and Chapter 6. First, they confirm that VirusTotal
scanners do flip their verdicts on a regular basis, which undermines the pursuit of a time
period within which the VirusTotal scan report of any given app is expected to stabilize
(see Section 4.3, Section 5.3, and Section 5.4). Second, they found that the majority of
researchers utilize threshold-based labeling strategies that are heavily impacted by the
aforementioned regular flips of VirusTotal scanners. Third, they found that only a group
of VirusTotal scanners provide consistently correct verdicts that reflect the ground truth
of apps despite the inconsistencies between the desktop and VirusTotal versions of
scanners (see Section 5.2).

The aforementioned works of [101, 24, 40, 55, 92, 93] shed some light on the shortcomings
of VirusTotal and provide the research community with useful metrics to assess, for
example, the accuracy of VirusTotal scanners. In Chapter 5, we build on the insights
in [55, 92, 93] by extending the correctness criterion introduced in [93] to assess the
correctness of VirusTotal scanners over time. However, these works did neither detail
the shortcomings of VirusTotal nor demonstrate how they might impact the accuracy
of labeling strategies that rely on the information found in the VirusTotal scan reports
of apps to label them as malicious and benign. In Section 1.2, we refer to this as the third
gap in the literature associated with using VirusTotal as a basis of labeling (Android)
apps. To address this gap, throughout this thesis, we recorded the labeling performance of
threshold-based labeling strategies (Chapter 4) and the verdicts of VirusTotal scanners
over time (Chapter 5) in order to identify the aspects of VirusTotal’s dynamicity, how
it manifests in the scan reports of apps, and the impact those manifestations have on
the performance of threshold-based and ML-based labeling strategies. To the best of our
knowledge, the work of Zhu et al. in [162] is the only work that provides the research
community with insights similar to the ones we discuss in this thesis. Their results seem to
be obtained independently and concurrently with ours. The work of Zu et al. is related to
ours only in the aspect of studying VirusTotal and its scanners. In addition to studying
VirusTotal, its dynamicity, and the impact of this dynamicity on its scanners, our work
in this thesis builds on the insights we gain to develop an algorithm (see Chapter 4) to
devise threshold-based labeling strategies that can cope with VirusTotal’s dynamicity
and a framework, Maat (see Chapter 5), that uses VirusTotal scan reports to train ML-
based labeling strategies that are more resilient to such a dynamicity for longer periods of
time. In the next section, we discuss the works related to such an aspect of our work its
contributions.

154



8. Related Work

8.4. Labeling Strategies

Multiple efforts attempt to automate the process of labeling apps according to their VirusTotal
scan reports. Surveying the literature, we found that there are two objectives in labeling
apps based on their scan reports, viz. unifying their labels and discerning their malignancy.

8.4.1. Label Unification

The lack of universal standards to label and name malicious apps allows different antiviral
firms to give different labels to the same malicious app [84, 66]. For example, the same
malware can have the labels Worm: W32 /Downadup.gen!A, Net-Worm.Win32.Kido.cp,
W32/Conficker.worm.gen.a, Worm:Win32/Conficker.gen!B, Worm-Win32/Con
ficker.gen!A, which all share the case insensitive substring worm [66]. So, considering
the problem to be that of string manipulation, one of the main objectives of academic
research has been to devise methods to unify those strings into one that still represents the
malware type and family of a malicious app.

In [102], Perdisci et al. did not implement a method to unify different antiviral labels.
However, they implemented an automated approach, VAMO, that assesses methods that
cluster similar labels together prior to unifying them. This method can help eliminate noisy
labels, which is a prerequisite for the accurate unification of labels. Wang et al. also studied
the malware naming discrepancies via analyzing the scan results in [151], and identified
two types of such discrepancies, viz. syntactic and semantic. The authors implemented
an approach, Latin, that considers these two types of discrepancies towards devising a
consensus classification of antiviral labels that can be used to look up information about
malicious apps in repositories such as Anubis. To build such consensus classes, Latin, builds
correlation graphs of the labels given by antiviral scanners to malicious apps, where the
nodes depict the labels and the edges depict the correlation between two labels according to
the Jaccard distance between their labels; the graph is then broken into multiple sub-graphs
of strongly-connected labels [151]. As a use case, a user can search for reports about a
particular malicious app using their own words, which are matched to consensus classes
that are bound to different malicious apps.

The work in [102] and [151] did not present tools that output unified labels. In [130],
Sebastian et al. presented a fully-automatic, cross-platform tool, AVCLASS, that examines
different labels given to the same app by different scanners, and returns the most likely
family name that such app should assume. For example, if three scanners label an app as
Android.Youmi.A (AdWare), ADWARE/ANDR.Youmi.P.Gen,and Adware/Youmi.B,
AVClass is expected to return a label similar to Adware.Youmi. Given a set of different
labels given to a malicious app, AVCLASS starts by removing duplicate labels (e.g., Gen: Ad
ware.Solimba.1l and Gen:Adware.Solimba.1l.(B) are considered by AVCLASS to be
equivalent). The tool then removes suffixes and characters such as dots, commas, colons,
semi-colons, et cetera and tokenizes the labels. To remove tokens that do not depict family
names, AVCLASS converts tokens into lowercase, removes digits at the end of tokens, and

155



8. Related Work

excludes tokens that are smaller than four digits, can be found in an input list of generic
tokens or are prefixes of the malware app’s hash. Next, using a list of aliases, AVCLASS
replaces tokens with their aliases and ranks tokens per their occurrences. The token with
the highest number of occurrences is considered to be the unified label.

Similarly, Hurier et al. developed a tool, Euphony, that mines labels, analyzes the associations
between them, and attempts to unify them into common family groups [56]. First, Euphony
pre-processes labels to derive the family names assigned by antiviral scanners to a malicious
app. Second, similar to the work of Wang et al. in [151], Euphony builds a correlation graph
with nodes depicting the family names (i.e., derived in the first step), given by each antiviral
scanner to an app and edges indicating that two antiviral scanners have labeled the same
sample with name, and name,. If two antiviral scanners gave the same family name to an
app, the edge would have the value 0.0. According to those weights, the graph is broken
into sub-graphs. For each cluster, the family names are ranked per occurrence, and names
that have majority votes are chosen as an app’s unified label.

In this thesis, we attempt to devise one label for malicious apps based on their VirusTotal
scan reports, which include multiple labels given by different antiviral scanners. However,
we do not attempt to give a label that indicates the malware family or type of the app.
Instead, we attempt to devise labels that indicate whether an app is malicious or benign
(i.e., a label that discerns the malignancy of the app). The relation between Maat and the
previously discussed research efforts lies in the aspect of automating the processing of
VirusTotal scan reports and their scanners to reach a common label. By mentioning these
efforts in this thesis, we wish to shed light on the efforts pre-dating Maat at automatically
analyzing VirusTotal scan reports.

8.4.2. Discerning Malignancy

A more abstract form of labeling apps is to label them as malicious or benign. Similar to
label unification, antiviral scanners do not agree on the nature of apps, which manifests
in the verdicts that are given by different VirusTotal scanners, as discussed throughout
this thesis. Apart from threshold-based labeling strategies, researchers have devised more
sophisticated labeling strategies, primarily based on ML.

In [63], Kantchelian et al. used the VirusTotal scan reports of around 280K binaries to
build two ML-based techniques to aggregate the results of multiple scanners into a single
ground truth label for every binary. In the first technique, Kantchelian et al. assume that
the ground truth of an app (i.e., malicious or benign), is unknown or hidden, making the
problem of estimating this ground truth is that of unsupervised learning. Furthermore,
they assumed that the verdicts of more consistent, less erratic scanners are more likely to be
correlated with the correct, hidden ground truth than more erratic scanners. Thus, more
consistent scanners should have larger weights associated with their verdicts. To estimate
those weights and, hence, devise an unsupervised ML-based labeling strategy, the authors
used an Expectation Maximization (EM) algorithm based on a Bayesian model to estimate
those models. The second technique devised by Kantchelian et al. is a supervised one based

156



8. Related Work

on regularized logistic regression. However, the authors did not describe the nature of
the features they use to train such an algorithm. So, we assume that they relied on the
verdicts of antiviral scanners in a manner similar to the naive features we extracted from
VirusTotal scan reports, as discussed in Section 5.5.

To devise an automated method to label apps based on different verdicts given by
antiviral scanners, Sachdeva et al. [113] performed measurements to determine the most
correct VirusTotal scanners using scan reports of a total of 5K malicious and benign
apps. Using this information, they assign a weight to each scanner that they use to calculate
a malignancy score for apps based on their VirusTotal scan reports. Depending on
manually-defined thresholds, the authors use this score to assign a confidence level of Safe,
Suspicious, or Highly Suspicious to test apps.

In the aspect of devising labeling strategies to deem apps as malicious and benign based
on their VirusTotal scan reports, the closest work to ours is that of Sakib et al. in [114],
in which they propose three ML-based models to combine the verdicts of different scanners
(e.g., those used by VirusTotal), to yield accurate labels that reflect the ground truth of
apps. Moreover, based on historical scan results, they devise a method to identify the subset
of scanners that are more correct than others over time. Using this method, they estimate
the combinations of antiviral scanners that yield accurate labels. Our work is different
from this work and the work in [113, 63] providing detailed methods that standardize
the interpretation of VirusTotal scan reports to label apps and can, hence, be utilized
by other researchers to label apps in their own dataset (i.e., the second literature gap).
Unlike Maat, those efforts neither provide the technical details necessary to implement
their approaches nor provided those approaches as tools or frameworks to be used by
other researchers. More importantly, despite reporting decent labeling accuracies, those
efforts did not evaluate whether the newly-devised labeling method can indeed help build
detection methods and left that for future work: “Improved training labels, as obtained by
the techniques presented in this thesis, should result in an improved malware detector.” [63].
In this thesis, however, we attempted to evaluate the applicability of Maat by examining
the classification accuracies detection methods can achieve using labels predicted by the
most accurate threshold-/ML-based labeling strategies. Furthermore, to the best of our
knowledge, we are the first to test our labeling strategies against zero-day malware.

157






9. Conclusions

This chapter summarizes the findings of this thesis and draws conclusions from
them to address the research questions posed in Chapter 1. It discusses the
limitations of this work and suggests different aspects on how to further enhance
it.

Due to the infeasibility of manually analyzing large numbers of apps, the malware
analysis and detection research community relies on online platforms, such as VirusTotal,
to label apps in the datasets they use to train and evaluate their newly-devised ML-
based detection methods. The primary objective of this doctoral thesis is to provide
the malware analysis and research community with methods and techniques to optimally
utilize VirusTotal to assign labels to Android apps that reflect their ground truth of
malicious versus benign. To that end, in this doctoral thesis, we attempted to address three
main gaps in the literature that are associated with using VirusTotal and its scan reports
to label Android apps.

Firstly, the verdicts of scanners in VirusTotal scan reports are known not always to be
correct. Given that researchers use such scan reports as their source of ground truth, which
imposes an upper bound on the performance of their ML-based detection methods, it is
imperative to attempt to mitigate the negative impact of some VirusTotal scan reports
providing inaccurate verdicts by focusing on VirusTotal scan reports and scanners that
provide reliable verdicts that reflect the malignancy of Android apps. To address this gap,
we attempted to identify properties of apps that may contribute to their VirusTotal scan
reports being less reliable. By analyzing the VirusTotal scan reports of 53K Android
apps in the AMD+GPlay dataset gathered between November 2018 and November 8,
2019, we found that some malware types have higher detection rates than others (e.g., 0.36
for Adware versus 0.61 for HackerTool). In pursuit of the set of VirusTotal scanners
that consistently yield correct labels, we found that VirusTotal’s dynamicity hinders
identifying a constant and universal set of scanners that constantly assign labels to apps
that correctly reflect their ground truth. Furthermore, we found that VirusTotal scan
reports continue to change years after the development and scanning of an app, which
undermines defining stability of a VirusTotal scan report in terms of age or a particular
attribute. Lastly, we found evidence that VirusTotal scanners are oblivious to malicious
apps they do not encounter frequently (e.g., in an app marketplace). Thus, home-made
malicious apps are likely to be mislabeled as benign for years until they are noticed and
analyzed by the antiviral scanners used by VirusTotal.

Secondly, in the literature, there are no methods that suggest to the research community

159



9. Conclusions

how to standardize the interpretation of VirusTotal scanreports to label apps as malicious
and benign, instead of using subjective threshold-based labeling strategies. We tackled
this issue in two manners. We studied the labeling accuracy of threshold-based labeling
strategies that are widely-adopted within the research community and identified how
VirusTotal’s dynamicity impacts their performance over time. Based on our findings, we
propose avoiding using threshold-based labeling strategies that rely on a fixed threshold to
label apps, and devised an algorithm to find the currently optimal thresholds of VirusTotal
scanners that would yield labels that reflect the ground truth of apps. However, in order for
this algorithm to be effective, some conditions need to be satisfied that cannot be met by
all researchers. To complement the aforementioned algorithm and mitigate its limitations,
we implemented Maat, a framework that is meant to standardize the process of devising
labeling strategies by automating the process of analyzing VirusTotal scan reports to
devise ML-based labeling strategies. Using a selected subset of the verdicts of VirusTotal
scanners, we found that these ML-based labeling strategies can maintain a labeling accuracy
that matches the currently best possible threshold (i.e., upper bound of labeling accuracy),
for a period of at least seven months without having to be retrained. Furthermore, using
these ML-based labeling strategies to label feature vectors used to train ML-based labeling
strategies yield better classification results than other conventional threshold-based labeling
strategies.

Lastly, the research community did not sufficiently detail the aspects of VirusTotal’s
dynamicity, how they manifest in VirusTotal scan reports, and how they can impact
the performance of different labeling strategies. The absence of research efforts that detail
such aspects and limitations hinders the replacement of VirusTotal with more stable
and reliable platforms. Throughout this thesis and with the help of Maat, we managed to
identify two aspects of VirusTotal’s dynamicity that negatively impact the performance
of threshold-based and ML-based labeling strategies, namely the frequent and unexpected
manipulation of the set and versions of scanners included in the VirusTotal scan reports
of apps. In addition to these two limitations of VirusTotal, we found that the platform
does not provide access to the history of scan reports of apps to academic licenses, limits the
amount of API requests given to holders of such licenses, which prolongs the processes of re-
scanning and downloading current VirusTotal scan reports, and does not automatically
re-scan apps to relieve researchers of that burden. Using the identified limitations, we
propose a blueprint of an alternative platform, named Eleda, that is designed to mitigate
the limitations of VirusTotal.

In this chapter, we will relate our findings in this thesis to the research questions we
postulated earlier and answer them. We also discuss the limitations of the implemented
method and any threats to the validity of our results and findings. Lastly, we enumerate
the future work that can address those limitations and further enhance the method we
introduced in this thesis.

160



9. Conclusions

9.1.

Addressing Research Questions

We postulated research questions that address some issues faced by the Android malware
analysis and detection community, particularly the problem of effectively utilizing and
interpreting the data provided by the online platform VirusTotal. In addressing such
questions, we gained the following insights.

RQ1:

RQ2:

How can we deem a VirusTotal scan report of an Android app as stable before
using it to label the app?

It is widely assumed within the research community that VirusTotal scan reports
tend to stabilize. Given that VirusTotal scan reports and the verdicts of scanners
they include are our source of ground truth and, hence, the upper bound of the
accuracy of labeling strategies base their verdicts upon those scan reports, we attempted
in Section 5.4 to find methods to tell whether a VirusTotal scan report has already
stabilized. By identifying whether a VirusTotal scan report is stable, one can avoid
unstable VirusTotal scan reports that might contain inaccurate verdicts. With no
clear definition in the literature of stability, we defined stability in terms of attributes
found in a typical VirusTotal scan report (e.g., positives). That is, once the values of
the chosen attributes cease to change, the VirusTotal scan report can be deemed
as stable. However, we found that regardless of the age of the (malicious) apps,
its VirusTotal scan reports continue to change, which changes the values of its
attributes. So, we may answer this research question as follows:

Even after years of first scanning the app on VirusTotal, the platform’s
dynamicity prevents the attributes in scan reports from maintaining the same
values for prolonged periods. Consequently, the stability of a VirusTotal
report should be defined as a range of values for some chosen attributes
rather than particular values. Unfortunately, choosing the attributes to focus
on, the range of values within which they are considered stable, and the
period they need to maintain those values is subjective. So, to the best of
our knowledge, the respective parameters to tell whether a VirusTotal scan
report has stabilized remain to be defined.

What are the properties of an Android (malicious) app (e.g., malware type, age,
source), that makes it difficult for VirusTotal scanners to correctly label it?

With no clear way of telling whether a VirusTotal scan report is stable, we attempted
to find properties that prevent VirusTotal scanners from correctly labeling apps.
Researchers can avoid scan reports of apps that fit these properties and focus on ones
whose VirusTotal scan reports are likely to contain more accurate information
about the apps’ malignancy. In Chapter 2, using the VirusTotal scan reports of
apps in the AMD dataset, we found that some malware types are less likely to be

161



9. Conclusions

recognized as malicious by VirusTotal scanners (e.g., Adware). However, without
access to the internal processes adopted by antiviral software companies to label apps
as malicious, we cannot pinpoint the reasons behind such differences in detection
rates. In Section 5.3, we found that VirusTotal scanners tend to focus on Android
apps they often encounter in the wild (e.g., app marketplaces). Regardless of the
damage they may inflict on Android devices and users, malicious apps that are
rarely encountered by users and scanners are unlikely to be recognized as malicious,
as per their verdicts on VirusTotal. Lastly, in Chapter 4, we found that newly-
developed malicious apps are recognized as malicious by a noticeably smaller subset
of VirusTotal scanners. Hence, VirusTotal’s dynamicity has more impact on
their scan reports than on the scan reports of older apps. So, we may answer this
research question as follows:

We speculate that there are many properties of an Android app that may prevent
VirusTotal from correctly labeling it. We identified some of those properties
to be (1) the malware type to which a malicious app belongs, (2) the source of
the (malicious) apps (i.e., found on a marketplace versus in-house developed),
(3) the frequency of encountering the app on user devices (i.e., its popularity),
and (4) the age of the app. Malicious apps that belong to malware types
whose malignancy is debatable (e.g., Adware), are in-house developed and not
uploaded to app marketplaces, and are newly developed are unlikely to be
detected by the scanners used by VirusTotal.

RQ3: Is there a universal ensemble of VirusTotal scanners that are more correct over
time than others?

As an alternative to threshold-based labeling strategies that rely on the verdicts of
random VirusTotal scanners, the research community attempted to find a set
of VirusTotal scanners whose verdicts are more reliable. Arp et al., for instance,
devised a threshold-based labeling strategy that focuses on the verdicts of ten VirusTotal
scanners they believed to be reliable [15]. In Section 5.2, we used an extended version
of Mohaisen et al.’s definition of correct VirusTotal scanners in [92] to find out
whether there is a recurring or universal set of VirusTotal scanners that correctly
label apps as malicious and benign regardless of the time period. We used the scan
reports of apps in the AMD+GPlay, Hand-Labeled, and Hand-Labeled 2019 datasets
gathered between July 5t" 2019 and November 8", 2019 to calculate the set of correct
VirusTotal scanners based on the ground truth that we possessed for those dataset
(see Section 1.3.4 for details on how we obtained such a ground truth). We found
that the set of correct VirusTotal scanners differs from one dataset to another,
both in terms of members and cardinality. Furthermore, we compared the set correct
VirusTotal scanners calculated based on the scan reports of apps in the AMD+GPlay
dataset gathered between November 2018 and November 8" 2019, and found that

162



9. Conclusions

the two sets of scanners differ as well. So, we may answer this research question as
follows:

Our measurements show that the set of correct VirusTotal scanners changes
depending on the composition of the dataset whose VirusTotal scan reports
are used to find those scanners and on the time period within which those scan
reports were gathered. Consequently, there is no point in pursuing a universal
set of VirusTotal scanners that would always return correct labels across
datasets and periods of time.

RQ4: How can we standardize the interpretation of VirusTotal scan reports to produce
accurate labels for Android apps?

The research community devises ad hoc, subjective labeling strategies to label Android
apps based on their VirusTotal scan reports because there are no standard methods
to interpret the information in these reports. As discussed throughout this thesis,
the dynamicity of VirusTotal undermines the accuracy of labels given by these
strategies. In this context, we attempted to provide the research community with
labeling strategies that bypass or withstand VirusTotal’s dynamicity to provide
labels that better reflect the malignancy of apps, effectively standardizing the process
of utilizing VirusTotal scan reports to label apps. In Chapter 4, we identified
one aspect of VirusTotal’s dynamicity that undermines the labeling accuracy of
threshold-based labeling strategies using a fixed threshold for prolonged periods. We
used this finding to devise an algorithm that finds the currently optimal threshold of
VirusTotal scanners to use in labeling apps as malicious and benign at any point
in time. The usefulness of the algorithm was constrained by a number of conditions
that are not always feasible. In Chapter 5, we implemented a framework, Maat, that
automates the process of analyzing VirusTotal scan reports and devising labeling
strategies. With little to no user intervention, Maat trains ML-based labeling strategies
that, once trained, can maintain stable labeling accuracies for periods of time between
seven and 12 months without needing to be retrained (see Chapter 6). This is made
possible by the fact that Maat’s ML-based labeling strategies rely on random forests
of 100 decision trees that use the verdicts of three to four VirusTotal scanners. So,
we may answer this research question as follows:

Standardizing the interpretation of VirusTotal’s scan reports can be achieved
by relieving researchers of the burden of having to devise subjective thresholds
of VirusTotal scanners to discern the malignancy of an app based on its
scan report. In this thesis, we devised two methods that can standardize the
utilization of VirusTotal. We propose an algorithm that finds the currently
optimal thresholds of VirusTotal scanners to use to label apps. We also
developed a framework that automates the process of analyzing VirusTotal

163



9. Conclusions

scan reports to build ML-based labeling strategies that are more resilient to
VirusTotal’s dynamicity than conventional threshold-based labeling strategies.

RQb5: What are the aspects of VirusTotal’s dynamicity that impact the performance of

labeling strategies, particularly threshold-based ones?

In Chapter 4, we found that VirusTotal frequently changes the set of scanners
included in the scan reports of apps, regardless of whether those scanners correctly
labeled such apps. This change usually alters the number of VirusTotal scanners
deeming an app as malicious in an app’s scan report, which is the value that threshold-
based labeling strategies rely on to label apps as malicious and benign. We noticed, in
Section 4.2, the impact of this change could be noticed upon examining the labeling
accuracy of threshold-based labeling strategies that rely on fixed thresholds against
newly-developed malicious apps in the Hand-Labeled 2019 dataset, especially since
the number of VirusTotal scanners deeming them as malicious is already low
courtesy of the apps’ novelty. Furthermore, in Chapter 5, we found that the platform
unexpectedly switches the versions of VirusTotal scanners it uses to label apps
to ones that may not be adequate to analyze and detect malicious Android apps.
This causes the performance of scanners that are known to be competent within
the market, such as BitDefender, to deteriorate significantly. However, unlike
changing the set of scanners across scan dates, changing the versions of scanners
appears to be less frequent. These manipulations of scanners in the VirusTotal
scan reports of apps had an impact on both the structure and labeling accuracy of
Maat’s ML-based labeling strategies. As seen in Chapter 6, removing some scanners
from the VirusTotal scan report of an app causes the mislabeling of a few apps
during the training phase of ML-based labeling strategies, which causes the validation
scores of each iteration during grid search to slightly differ. These insignificant
differences might encourage Maat to choose hyperparameters for the ML-based
labeling strategies that yield shallow random forests that are incapable of correctly
classifying apps, especially newer ones in the Hand-Labeled 2019 dataset. As for the
labeling accuracy of Maat’s ML-based labeling strategies, they seemed to suffer from
the same problem of removing a set of VirusTotal scanners from the scan reports
of malicious apps in the Hand-Labeled 2019 dataset. So, we may answer this research
question as follows:

Among the considered aspects for VirusTotal’s dynamicity, we identified
four aspects that impact the performance of threshold-based and ML-based
labeling strategies are (a) the frequent and unexpected manipulation of the sets
and verdicts of scanners included by VirusTotal in the scan reports of apps,
and (b) the change of the versions of VirusTotal scanners with ones that
may not be adequate to scan and detect Android malicious apps. While such
frequent manipulation has a small impact on the VirusTotal scan reports

164



9. Conclusions

of older Android apps (i.e., due to their relative maturity and stability), it
noticeably impacts the performance of such labeling strategies upon labeling
newly-developed Android apps with less mature VirusTotal scan reports.

RQ6: What are the limitations of VirusTotal and how can they be mitigated?

Despite calls within the research community to replace VirusTotal with a more
reliable alternative, the online platform continues to be utilized by researchers to
label apps in the datasets they use to evaluate their malware detection methods.
These calls for replacement stem from the common knowledge that platforms, such
as VirusTotal, suffer from some drawbacks. However, these drawbacks and
their impact on the process of labeling apps were neither thoroughly discussed nor
demonstrated. Throughout this doctoral thesis, we discussed some of those limitations
and their impacts on identifying the set of correct scanners, estimating the time it
takes scan reports to stabilize, and the performance of different labeling strategies.
Using the insights we gained from our measurements and experiments, in Chapter 7,
we succinctly enumerate four limitations that we categorized into (a) the dynamicity
of VirusTotal’s scan reports, and (b) the lack of access to re-scanned scan reports.
To mitigate those limitations, we proposed the architecture of an alternative online
platform, Eleda, that can be used to label (Android) apps. The proposed platform
is designed to maintain the same set of scanners to scan and label apps, to use the
versions of scanners that are implemented to detect Android apps, to frequently
re-scan apps using the same set of scanners to enable studying the performance of
scanners over time, and to grant free access to those re-scan results. So, we may
answer this research question as follows:

We identified four main limitations to VirusTotal that jeopardize its usefulness
Firstly, the platform uses scanners or versions of scanners that are not suitable
to detect Android malware. Secondly, for reasons unknown to us, the platform
changes the set of scanners it uses to scan the same apps over time, which
undermines the sustainability of labeling strategies, such as threshold-based
ones. Thirdly, the platform does not automatically re-scan apps and relies
on manually re-scanning apps either via its web-interface or via remote API
requests. Lastly, the platform does not grant access to the history of scans,
effectively preventing researchers from studying the performance of scanners
over extended periods of time.

9.2. Literature Gaps and Contributions

In Section 1.2, we discussed a number of literature gaps associated with utilizing VirusTotal
scan reports to label Android apps as malicious and benign. Those gaps can be summarized
as follows:

165



9. Conclusions

1. The scan results in a VirusTotal scan report are treated as ground truth and, hence,
pose an upper bound on the performance of labeling strategies based on those scan
results (i.e., no labeling strategy can perform better than the ground truth). However,
such scan results do not always provide correct verdicts vis-a-vis the type of an
app being malicious or benign. To the best of our knowledge, there are no efforts
in the literature that attempt to find the characteristics of an app or under which
circumstances a VirusTotal scan report would fail to provide the platform’s users
with accurate verdicts that reflect an app’s ground truth.

2. VirusTotal acts as a meta-scanner that provides the scan results of different antiviral
scanners; it delegates the task of deeming an app as malicious or benign based on its
scan report to the users. Unfortunately, there are no standards in the literature on how
to use the aforementioned scan results to label Android apps. This forces researchers
to devise their own ad-hoc strategies to label Android apps, which usually rely on a
fixed threshold of positives (i.e., malicious label), to deem an app as malicious.

3. It is common knowledge within the research community that VirusTotal is a
dynamic platform that frequently changes. However, researchers continue to rely
on the platform’s scan reports to label the apps they use to evaluate, for example,
their newly-devised malware detection methods. With no clear enumeration of the
aspects of VirusTotal’s dynamicity and how they impact the labeling accuracies of
different types of labeling strategies, researchers risk adopting labeling strategies that
yield incorrect labels and, in turn, provide researchers with false assessments of their
malware detection methods.

In addressing those literature gaps, we developed algorithms and platforms and conducted
measurements and experiments that make the following contributions:

1. Given that the quality of labels given by any labeling strategy is based on VirusTotal’s
scan reports, we expected to find methods in the literature that instruct researchers
on how to avoid unstable VirusTotal scan reports. However, to the best of our
knowledge, there are no efforts that address what we defined as the first literature gap.
In Chapter 2 and Chapter 5, we reveal some of the properties that can make it difficult
for VirusTotal scanners to detect the malignancy of a malicious Android app,
which undermines the stability and reliability of this app’s VirusTotal scan reports.
In particular, we found that some malware types, such as Adware, the age of an app
and its VirusTotal scan report, and whether the app can be found in a marketplace
are indications of whether VirusTotal scanners can detect the malignancy of an app.
Furthermore, to contribute to addressing this gap, we enumerate the four limitations
we found VirusTotal to be suffering from and, in Chapter 7, propose a design of a
more stable and reliable alternative to the platform.

2. The main contribution of this thesis dwells in its effort to standardize the process
of using VirusTotal scan reports of Android apps to label them as malicious

166



9. Conclusions

and benign, which addresses the second literature gap of lacking such standards
to interpret VirusTotal scan reports to label apps as such. In Chapter 4, we propose
a generic method to devise threshold-based labeling strategies that use the currently
optimal number of VirusTotal scanners needed to label an app as malicious, instead
of using a fixed threshold as common within the research community. Furthermore,
we introduced in Chapter 5 a framework we implemented to automate the process
of analyzing VirusTotal scan reports to devise ML-based labeling strategies that
need not be frequently retrained yet is more resilient to VirusTotal’s dynamicity.
Our experiments in Chapter 6 indicate that Maat’s ML-based labeling strategies can
match the labeling accuracy of the best possible thresholds at any point in time and
can contribute to training more effective ML-based detection methods.

3. The research community claims that VirusTotal’s dynamicity is common knowledge.
Yet, researchers continue to make the same mistake of utilizing threshold-based
labeling strategies that rely on fixed thresholds for prolonged periods to label apps
they use to evaluate newly-devised ML-based labeling strategies. To the best of
our knowledge, there is little to know work that explicitly points out the aspects of
VirusTotal’s dynamicity, how it manifests, and how it impacts threshold-based
labeling strategies, which defines the third literature gap. To address this gap, in
Chapter 4 and Chapter 5, we reveal the aspects of VirusTotal’s dynamicity and
how they impacted some of the renowned threshold-based labeling strategies and
Maat’s ML-based labeling strategies.

9.3. Limitations

VirusTotal-Based Ground Truth as an Upper Bound. In this thesis, we focus on
VirusTotal as the source of scanner verdicts upon which labeling strategies are based.
As discussed in Section 1.2, this puts an upper bound on the labeling accuracies that can
be achieved by any labeling strategy upon labeling apps based on their VirusTotal
scan reports. One can notice, for example, that the MCC scores achieved by the best
performing labeling strategies in Section 6.1 never reached 1.0 (i.e., perfectly accurate
labeling) on either the Hand-Labeled or Hand-Labeled 2019 datasets. This behavior is a
result of the VirusTotal scanners not deeming apps that we manually deemed malicious
(e.g., because they track the GPS location of users without the users” knowledge), as such.
Consequently, all labeling strategies, including Maat’s ML-based labeling strategies and
the Best Thresholds, mislabeled those apps as benign because they base their labels on
the verdicts of VirusTotal scanners. However, this limitation does not undermine the
contributions of this thesis for the following reasons. The infeasibility of manually labeling
Android apps as malicious and benign forces researchers to use online platforms, such as
VirusTotal, as the source of ground truth for the apps they use to train and evaluate
their detection methods. We assume that the continuity of using VirusTotal implies that
researchers accept this limitation of relying on machine-generated ground truth. Based on

167



9. Conclusions

this assumption, in this thesis, we attempt to provide the research community with insights,
algorithms, and frameworks that optimally utilize VirusTotal to label Android apps.
Firstly, we identify a number of properties that might contribute to an app, malicious or
benign, being mislabeled; these cues are meant to help researchers avoid VirusTotal scan
reports that are unreliable. Secondly, we devised an algorithm to devise threshold-based
labeling strategies and implemented a framework, Maat, to automatically train ML-based
labeling strategies that are meant to be less susceptible to VirusTotal’s dynamicity and
limitations and, thus, provide the research community with the best possible outcome
from using VirusTotal. To that end, thirdly, we enumerate the aspects of VirusTotal’s
dynamicity and the resulting limitations and provide the community with a blueprint of an
alternative to VirusTotal that mitigates those limitations.

Partial Reliance on VirusTotal’s Ground Truth. To label apps in the AMD+GPlay
dataset, we relied on the labels generated by Wei et al. to label apps in the AMD dataset,
which combined filtration of malicious apps using the vt >50% labeling strategy and
manual analysis to accurately label apps in the dataset as malicious. We also used the
VirusTotal scan reports of apps in the GPlay dataset, which were downloaded from the
well-vetted Google Play store, to deem them as benign according to the criterion positives==0
between November 2018 and November 8, 2019. The threat to validity, in this case, is
whether those measures we took to ensure the accuracy of the labels in this dataset were
not enough. Since we rely on the AMD+GPlay dataset to train Maat’s ML-based labeling
strategies, inaccuracies in the labels of those apps threaten to undermine the credibility of
our findings. To ensure the credibility of our results, we plan on manually-labeling as many
Android apps as possible, use them for training Maat’s ML-based labeling strategies, and
comparing the results we achieve with the results in this thesis. The main obstacle, in this
case, is that manually analyzing thousands of apps is a lengthy process.

Confinement to Used Datasets and Scan Reports. The results we recorded and discussed
in this thesis are confined to the datasets that we used and the period within which the
VirusTotal scan reports were gathered. So, the threat to validity, in this case, is whether
the same conclusions we drew can be reached upon using other datasets. For example,
would Maat’s ML-based labeling strategies always manage to mimic the performance of
their threshold-based counterparts in terms of accurately labeling apps? In Chapter 6,
in addition to discussing that the structure of Maat’s ML-based labeling strategies are
less susceptible to changes in VirusTotal’s scan reports, we attempted to simulate this
process examining the performance of ML-based and threshold-based labeling strategies
over a period of time. However, the experiments were conducted on the same datasets,
and the test time period spanned a period of four months (i.e., between July 5, 2019,
and November 8", 2019). As discussed earlier, access to old VirusTotal scan reports is
only available under commercial licenses, which we consider a limitation of VirusTotal
from an academic perspective. Furthermore, beyond November 8" 2019, we found the

168



9. Conclusions

academic license we possess, which enabled us to re-scan apps in our datasets and to
download their up-to-date scan reports, was not granted the re-scan permission anymore.
Effectively, comparing the performance of Maat’s ML-based labeling strategies against
threshold-based ones in the future seems to be hindered. To address the first limitation,
we plan to use other datasets to run our experiments. This can also be simulated by using
random subsets of the AMD+GPlay dataset to train Maat’s ML-based labeling strategies. As
for the second limitation, we argue that the adequate method to address this limitation is to
find an alternative to VirusTotal, which includes implementing a platform that mitigates
VirusTotal’s limitations that we identified in this thesis.

Small Size of Test Datasets. We base a number of our insights on results achieved against
two small datasets, namely Hand-Labeled and Hand-Labeled 2019. In particular, these two
datasets are used to demonstrate the dynamicity of VirusTotal in Section 4.2, compare the
labeling accuracy of different labeling strategies in Section 6.1, and evaluate the detection
capabilities of ML-based detection methods labeled using different labeling strategies in
Section 6.4. Needless to say, the larger the sizes of these datasets, the more reliable the
results based on them will be. In other words, the threat to validity, in this case, is that our
results may not be reliable. The reason behind the relatively small size of the datasets is that
we had to manually analyze their apps to ensure accurate ground truth (i.e., malicious and
benign), especially since we those apps to evaluate the accuracy of labeling strategies based
on VirusTotal scan reports. Manually labeling thousands of apps is an infeasible process,
as discussed in Chapter 1. To compensate for the size of the datasets, we acquired a random
sample of apps from AndroZoo that span different ages, sources (i.e., marketplaces), app
categories (e.g., games versus utilities), sizes, etc. However, aware of the possible limitation,
we confine the results of our experiments and measurements to the utilized datasets and
aspire to further reinforce them with future work.

Generalization to other detection methods. To further motivate the significance of our
work, we showed that accurate labeling generally enhances the performance of ML-based
detection methods trained using static features. This begs the question of whether we can
replicate the same results if we utilize different features and/or different classifiers. The
most appropriate method to verify this hypothesis is to conduct the same experiments using
different types of features and classifiers in pursuit of counter-examples. However, there is
a plethora of work in this area that spans a multitude of approaches to malware analysis
and detection [142], which indeed cannot be comprehensively covered in this work. So, we
plan to conduct more experiments using different types of features (e.g., dynamic features),
and/or classifiers to further solidify our findings in Chapter 4 and Chapter 6.

169



9. Conclusions

9.4. Future Work

In this section, we enumerate the future work that can either address the limitations we
discussed in the previous section or build on the work presented in this doctoral thesis
towards developing more effective malware detection methods.

Application to Other Domains. We focused on Android apps and their VirusTotal
scan reports. However, having found that ML-based labeling strategies perform better
using naive features, we are positive that the Maat method can seamlessly generalize to
other domains (e.g., Windows-based malware), especially since VirusTotal scan reports
always contain the verdicts of different antiviral scanners in addition to domain-specific
information. In the future, we can imagine performing the measurements and experiments
we conducted in this thesis on scan reports of apps belonging to other domains. Another
aspect of generalization for Maat that we plan to explore is the utilization of more granular
labels. That is, instead of using binary labels of malicious versus benign, we plan to use
labels that, for example, depict an app’s malware type or family (e.g., Adware, Ransom,
Dowgin, etc.).

Application to Other Detection Methods. In this thesis, we focused on static ML-based
detection methods and showed that accurate labeling, especially using Maat’s ML-based
strategies, enhances the effectiveness of such detection methods. To test whether this
positive impact on detection generalizes to other detection methods, we plan to use different
types of detection methods and measure whether their detection capabilities of (Android)
malware increases after being trained using apps labeled with Maat’s ML-based strategies.

Alternative to VirusTotal. We demonstrated four limitations to VirusTotal in this
thesis, the most important of which the platform’s utilization of older, inadequate versions
of scanners and its frequent change of the set of scanners it uses to scan apps. To mitigate
these limitations, we proposed the development of an academic, non-profit alternative
platform, Eleda. In the future, we aspire to contribute to the development and evaluation
of such a platform that uses the same versions of scanners that can be found in the market
(e.g., in app marketplaces), and offers the information it gathers about different apps to
malware analysis and detection the research community.

History of Scan Reports. Given the infeasibility of access earlier scan reports for the
datasets we used in this thesis, we plan on building a history of scan reports for apps
recently-crawled by platforms, such as AndroZoo, by re-scanning these apps every two
weeks and downloading their scan reports for an extended period, either using VirusTotal
or Eleda. Using such reports, we can study the evolution of scan reports, including
the performance of different scanners. Furthermore, we can conduct experiments that

170



9. Conclusions

investigate whether the number of scanners deeming an app as malicious converges to a
specific range after some time, effectively testing other definitions of stability.

171






Bibliography

[1] Packadroid — a framework for repackaging android applications, 2018.

[2] Get paid to show relevant ads from over a million advertisers with google admob,
2019.

[3] K-9 mail - advanced email for android, 2019.

[4] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-level features
for robust malware detection in android. In International Conference on Security and
Privacy in Communication Systems, pages 86-103. Springer, 2013.

[5] Leonard M Adleman. An abstract theory of computer viruses. In Conference on the
Theory and Application of Cryptography, pages 354-374. Springer, 1988.

[6] admin Comodo Antivirus. What is reddrop malware? — its impact on android
devices, 2019.

[7] Mansour Ahmadi, Angelo Sotgiu, and Giorgio Giacinto. Intelliav: Toward the
feasibility of building intelligent anti-malware on android devices. In International
Cross-Domain Conference for Machine Learning and Knowledge Extraction, pages 137-154.
Springer, 2017.

[8] Jona Neumeier Aleieldin Salem, Michael Hesse and Alexander Pretschner. Towards
empirically assessing behavior stimulation approaches for android malware. In The
13th International Conference on Emerging Security Information, Systems and Technologies.
International Academy, Research and Industry Association (IARIA), 2019.

[9] Sebastian Banescu Aleieldin Salem and Alexander Pretschner. Maat: Automatically
analyzing virustotal for accurate labeling and effective malware detection. 2020.

[10] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:
Collecting millions of android apps for the research community. In Mining Software
Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages 468—471. IEEE,
2016.

[11] Kevin Allix, Quentin Jerome, Tegawende F Bissyandé, Jacques Klein, Radu State, and
Yves Le Traon. A forensic analysis of android malware-how is malware written and
how it could be detected? In 2014 IEEE 38th Annual Computer Software and Applications
Conference, pages 384-393. IEEE, 2014.

173



Bibliography

[12] Hybrid Analysis. Free automated malware analysis service, 2019.

[13] androguard. androguard: Reverse engineering, malware and goodware analysis of
android applications ... and more (ninja !), 2018.

[14] Apktool. Apktool, 2018.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.
Drebin: Effective and explainable detection of android malware in your pocket. In
NDSS, 2014.

[16] Saba Arshad, Munam Ali Shah, Abid Khan, and Mansoor Ahmed. Android malware
detection & protection: a survey. International Journal of Advanced Computer Science
and Applications, 7:463-475, 2016.

[17] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Acm Sigplan Notices, volume 49, pages 259-269. ACM, 2014.

[18] Sebastian Banescu, Tobias Wiichner, Aleieldin Salem, Marius Guggenmos, Martin
Ochoa, and Alexander Pretschner. A Framework for Empirical Evaluation of Malware
Detection Resilience Against Behavior Obfuscation. In 10th International Conference on
Malicious and Unwanted Software, Fajardo, Puerto Rico, 2015.

[19] Luciano Bello and Marco Pistoia. Ares: triggering payload of evasive android
malware. In Proceedings of the 5th International Conference on Mobile Software Engineering
and Systems, pages 2-12. ACM, 2018.

[20] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical
deobfuscation of android applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 343-355, 2016.

[21] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
[22] Bitdefender. Bitdefender cements spot as world av industry leader in 2011, 2011.
[23] Aaron Brown. This is how much money google really makes from android, 2016.

[24] John Charlton, Pang Du, Jin-Hee Cho, and Shouhuai Xu. Measuring relative accuracy
of malware detectors in the absence of ground truth. In MILCOM 2018-2018 IEEE
Military Communications Conference (MILCOM), pages 450-455. IEEE, 2018.

[25] Thomas M Chen and Jean-Marc Robert. The evolution of viruses and worms.
Statistical methods in computer security, 1, 2004.

174



Bibliography

[26] Catalin Cimpanu. Almost 150 million users impacted by new simbad android adware,
2019.

[27] OPSWAT Metadefender Cloud. Opswat metadefender cloud — multiscanning, deep
cdr, and sandbox api, 2019.

[28] Fred Cohen. Computer viruses. PhD thesis, University of Southern California Doctoral
dissertation, 1986.

[29] Fred Cohen. Computer viruses: theory and experiments. Computers & security,
6(1):22-35, 1987.

[30] Jedidiah R Crandall, Gary Wassermann, Daniela AS de Oliveira, Zhendong Su, S Felix
Wu, and Frederic T Chong. Temporal search: Detecting hidden malware timebombs
with virtual machines. In ACM SIGARCH Computer Architecture News, volume 34,
pages 25-36. ACM, 2006.

[31] CrowdStrike. Crowdstrike falcon antivirus replacement, 2020.

[32] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad
Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can
be more secure! a case study on android malware detection. IEEE Transactions on
Dependable and Secure Computing, 2017.

[33] Android Developers. Activity, 2019.

[34] Android Developers. Build your aoo from the command line, 2019.
[35] Android Developers. Save data using sqlite, 2019.

[36] Android Developers. Shrink, obfuscate, and optimize your app, 2019.
[37] Android Developers. Timer, 2019.

[38] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao Xu,
Kai Chen, XiaoFeng Wang, and Kehuan Zhang. Understanding android obfuscation
techniques: A large-scale investigation in the wild. In International Conference on
Security and Privacy in Communication Systems, pages 172-192. Springer, 2018.

[39] Joshua J Drake, Zach Lanier, Collin Mulliner, Pau Oliva Fora, Stephen A Ridley, and
Georg Wicherski. Android hacker’s handbook. John Wiley & Sons, 2014.

[40] Pang Du, Zheyuan Sun, Huashan Chen, Jin-Hee Cho, and Shouhuai Xu. Statistical
estimation of malware detection metrics in the absence of ground truth. IEEE
Transactions on Information Forensics and Security, 13(12):2965-2980, 2018.

[41] Sumeet Dua and Xian Du. Data mining and machine learning in cybersecurity. CRC
press, 2011.

175



Bibliography

[42] Ken Dunham, Shane Hartman, Manu Quintans, Jose Andre Morales, and Tim
Strazzere. Android malware and analysis. Auerbach Publications, 2014.

[43] Karim O Elish, Xiaokui Shu, Danfeng Daphne Yao, Barbara G Ryder, and Xuxian
Jiang. Profiling user-trigger dependence for android malware detection. Computers &
Security, 49:255-273, 2015.

[44] Roberto Jordaney Johannes Kinder Feargus Pendlebury, Fabio Pierazzi and Lorenzo
Cavallaro. Tesseract: Eliminating experimental bias in malware classification across
space and time. In 28th USENIX Security Symposium, Santa Clara, CA, 2019. USENIX
Association.

[45] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Ainuddin Wahid Abdul Wahab.
A review on feature selection in mobile malware detection. Digital investigation,
13:22-37, 2015.

[46] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Triggerscope: Towards detecting logic bombs in
android applications. In Security and Privacy (SP), 2016 IEEE Symposium on, pages
377-396. IEEE, 2016.

[47] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection
of android malware using embedded call graphs. In Proceedings of the 2013 ACM
workshop on Artificial intelligence and security, pages 45-54. ACM, 2013.

[48] GReaT. Viceleaker operation: mobile espionage targeting middle east, 2019.

[49] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial examples for malware detection. In European Symposium on
Research in Computer Security, pages 62-79. Springer, 2017.

[50] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
The Journal of Machine Learning Research, 3:1157-1182, 2003.

[61] Isabelle Guyon and André Elisseeff. An introduction to feature extraction. In Feature
extraction, pages 1-25. Springer, 2006.

[62] Hara Hiroaki, Lilang Wu, and Lorin Wu. New version of xloader that disguises as
android apps and an ios profile holds new links to fakespy, 2019.

[63] Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy, Giorgio
Giacinto, and Thorsten Holz. Evaluating analysis tools for android apps: Status quo
and robustness against obfuscation. In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, pages 139-141. ACM, 2016.

176



Bibliography

[54] Médéric Hurier. Creating better ground truth to further understand Android malware: A
large scale mining approach based on antivirus labels and malicious artifacts. PhD thesis,
University of Luxembourg, 2019.

[65] Médéric Hurier, Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. On the lack of consensus in anti-virus decisions: Metrics and insights
on building ground truths of android malware. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 142-162. Springer, 2016.

[56] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F
Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. Euphony:
Harmonious unification of cacophonous anti-virus vendor labels for android malware.
In Proceedings of the 14th International Conference on Mining Software Repositories, pages
425-435. IEEE Press, 2017.

[57] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques.
Purdue University, 48:2007-2, 2007.

[58] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mohamed Ali
Kaafar, and Vern Paxson. An analysis of the privacy and security risks of android vpn
permission-enabled apps. In Proceedings of the 2016 Internet Measurement Conference,
pages 349-364, 2016.

[59] AV-Test: The Independent IT-Security Institute. The best antivirus software for
android, 2019.

[60] MIT App Inventor. About us - explore mit app inventor, 2019.

[61] Richard Jensen and Qiang Shen. Computational intelligence and feature selection: rough
and fuzzy approaches, volume 8. John Wiley & Sons, 2008.

[62] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller,
Michael Carl Tschantz, Rachel Greenstadt, Anthony D Joseph, and JD Tygar.
Approaches to adversarial drift. In Proceedings of the 2013 ACM workshop on Artificial
intelligence and security, pages 99-110. ACM, 2013.

[63] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar,
Rekha Bachwani, Anthony D Joseph, and ] Doug Tygar. Better malware ground truth:
Techniques for weighting anti-virus vendor labels. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, pages 45-56. ACM, 2015.

[64] Kaspersky. Machine learning methods for malware detection, 2020.

[65] Stefan Katzenbeisser, Johannes Kinder, and Helmut Veith. Malware Detection, pages
752-755. Springer US, 2011.

177



Bibliography

[66] Tom Kelchner. The (in) consistent naming of malcode. Computer Fraud & Security,
2010(2):5-7, 2010.

[67] Joxean Koret and Elias Bachaalany. The Antivirus Hacker’s Handbook. Wiley Online
Library, 2015.

[68] Simon Kramer and Julian C Bradfield. A general definition of malware. Journal in
computer virology, 6(2):105-114, 2010.

[69] Satheesh kumar Sasidharan and Ciza Thomas. A survey on metamorphic malware
detection based on hidden markov model. In 2018 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 357-362. IEEE, 2018.

[70] Rita Lao. China says apps should get user consent before tracking, 2019.

[71] Riccardo Leardi, R Boggia, and M Terrile. Genetic algorithms as a strategy for feature
selection. Journal of chemometrics, 6(5):267-281, 1992.

[72] Charles LeDoux and Arun Lakhotia. Malware and machine learning. In Intelligent
Methods for Cyber Warfare, pages 1-42. Springer, 2015.

[73] Lexico. malware — definition of malware in english by lexico dictionaries, 2019.

[74] Li Li, Tegawendé Bissyandé, and Jacques Klein. Rebooting research on detecting
repackaged android apps: Literature review and benchmark. arXiv preprint
arXiv:1811.08520, 2018.

[75] LiLi, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo,
and Lorenzo Cavallaro. Understanding android app piggybacking: A systematic
study of malicious code grafting. IEEE Transactions on Information Forensics and
Security, 12(6):1269-1284, 2017.

[76] LiLi, Daoyuan Li, Tegawendé Francois D Assise Bissyande, Jacques Klein, Haipeng
Cai, David Lo, and Yves Le Traon. Automatically locating malicious packages
in piggybacked android apps. In 4th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, 2017.

[77] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight ui-
guided test input generator for android. In Software Engineering Companion (ICSE-C),
2017 IEEE/ACM 39th International Conference on, pages 23-26. IEEE, 2017.

[78] Yuping Li, Jiyong Jang, Xin Hu, and Xinming Ou. Android malware clustering
through malicious payload mining. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 192-214. Springer, 2017.

178



Bibliography

[79] Ying-Dar Lin, Yuan-Cheng Lai, Chien-Hung Chen, and Hao-Chuan Tsai. Identifying
android malicious repackaged applications by thread-grained system call sequences.
computers & security, 39:340-350, 2013.

[80] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. Andrubis-1,000,000 apps
later: A view on current android malware behaviors. In Proceedings of the the 3rd
International Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS), 2014.

[81] Bing Liu, Wynne Hsu, Yiming Ma, et al. Integrating classification and association
rule mining. In KDD, volume 98, pages 80-86, 1998.

[82] Symphony Luo and Peter Yan. Fake apps: Feigning legitimacy, 2014.
[83] PC Magazin. Bitdefender free edition, 2008.

[84] Federico Maggi, Andrea Bellini, Guido Salvaneschi, and Stefano Zanero. Finding
non-trivial malware naming inconsistencies. In International Conference on Information
Systems Security, pages 144-159. Springer, 2011.

[85] Malwarebytes. Malware, 2019.
[86] Malwr. Coming back soon!, 2019.

[87] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro,
Gordon Ross, and Gianluca Stringhini. MAMADROID: Detecting Android Malware
by Building Markov Chains of Behavioral Models. In Proceedings of the Annual
Symposium on Network and Distributed System Security (NDSS), 2017.

[88] Joseph Menn. Exclusive: Russian antivirus firm faked malware to harm rivals -
ex-employees, 2015.

[89] Abraham H Mhaidli, Yixin Zou, and Florian Schaub. ” we can’t live without them!”
app developers” adoption of ad networks and their considerations of consumer risks.
In Fifteenth Symposium on Usable Privacy and Security ({SOUPS} 2019), 2019.

[90] Microsoft. Defining malware: Faq, 2019.

[91] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani,
Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu, et al.
Reviewer integration and performance measurement for malware detection. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 122-141. Springer, 2016.

179



Bibliography

[92] Aziz Mohaisen and Omar Alrawi. Av-meter: An evaluation of antivirus scans
and labels. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 112-131. Springer, 2014.

[93] Aziz Mohaisen, Omar Alrawi, Matt Larson, and Danny McPherson. Towards a
methodical evaluation of antivirus scans and labels. In International Workshop on
Information Security Applications, pages 231-241. Springer, 2013.

[94] Luis Carlos Molina, Lluis Belanche, and Angela Nebot. Feature selection algorithms:
A survey and experimental evaluation. In Data Mining, 2002. ICDM 2003. Proceedings.
2002 IEEE International Conference on, pages 306-313. IEEE, 2002.

[95] Marcin Moskala and Igor Wojda. Android Development with Kotlin. Packt Publishing
Ltd, 2017.

[96] Kevin Murnane. How to protect yourself from the global wanacry ransomware attack,
2017.

[97] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah Gani.
Evaluation of machine learning classifiers for mobile malware detection. Soft
Computing, 20(1):343-357, 2016.

[98] Jon Oberheide and Charlie Miller. Dissecting the android bouncer. SummerCon2012,
New York, 2012.

[99] Tavis Ormandy. Sophail: A critical analysis of sophos antivirus. Proc. of Black Hat
USA, 2011.

[100] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro. Enabling fair ml evaluations for security. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 2264-2266. ACM,
2018.

[101] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Opening the blackbox of
virustotal: Analyzing online phishing scan engines. In Proceedings of the Internet
Measurement Conference, pages 478-485. ACM, 2019.

[102] Roberto Perdisci et al. Vamo: towards a fully automated malware clustering validity
analysis. In Proceedings of the 28th Annual Computer Security Applications Conference,
pages 329-338. ACM, 2012.

[103] Gavin Phillips. These 4 antivirus tools are using ai to protect your system, 2018.

[104] Paul Prasse, Lukas Machlica, Tomas Pevny, Jifi Havelka, and Tobias Scheffer. Malware
detection by analysing encrypted network traffic with neural networks. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
73-88. Springer, 2017.

180



Bibliography

[105] Radware. The history of malware, 2015.

[106] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting
runtime values in android applications that feature anti-analysis techniques. In NDSS,
2016.

[107] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. Making malory
behave maliciously: Targeted fuzzing of android execution environments. In
Proceedings of the 39th International Conference on Software Engineering, pages 300-311.
IEEE Press, 2017.

[108] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. How current
android malware seeks to evade automated code analysis. In IFIP International
Conference on Information Security Theory and Practice, pages 187-202. Springer, 2015.

[109] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358-366, 1953.

[110] Markus Ringnér. What is principal component analysis?  Nature biotechnology,
26(3):303-304, 2008.

[111] Simon Rogers and Mark Girolami. A first course in machine learning. CRC Press, 2011.
[112] Neil J. Rubenking. False positives sink antivirus ratings, 2015.

[113] Shefali Sachdeva, Romuald Jolivot, and Worawat Choensawat. Android malware
classification based on mobile security framework. IAENG International Journal of
Computer Science, 45(4), 2018.

[114] Muhammad N Sakib, Chin-Tser Huang, and Ying-Dar Lin. Maximizing accuracy in
multi-scanner malware detection systems. Computer Networks, 169:107027, 2020.

[115] Aleieldin Salem. Stimulation and detection of android repackaged malware with
active learning. arXiv preprint arXiv:1808.01186, 2018.

[116] Aleieldin Salem. Towards accurate labeling of android apps for reliable malware
detection. In The 31st International Symposium on Software Reliability Engineering (ISSRE)
[Under Review]. arXiv, 2020.

[117] Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated programs
using machine learning. In Proceedings of the 6th Workshop on Software Security,
Protection, and Reverse Engineering, page 1. ACM, 2016.

[118] Aleieldin Salem, F. Franziska Paulus, and Alexander Pretschner. Repackman: A
tool for automatic repackaging of android apps. In Proceedings of the 1st International
Workshop on Advances in Mobile App Analysis, pages 25-28. ACM, 2018.

181



Bibliography

[119] Aleieldin Salem and Alexander Pretschner. Poking the bear: Lessons learned from
probing three android malware datasets. In Proceedings of the 1st International Workshop
on Advances in Mobile App Analysis, pages 19-24. ACM, 2018.

[120] Aleieldin Salem, Tabea Schmidt, and Alexander Pretschner. Idea: Automatic
localization of malicious behaviors in android malware with hidden markov models.
In International Symposium on Engineering Secure Software and Systems, pages 108-115.
Springer, 2018.

[121] Hillary Sanders and Joshua Saxe. Garbage in, garbage out: how purportedly great ml
models can be screwed up by bad data. Technical report, 2017.

[122] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, and Pablo Garcia
Bringas. On the automatic categorisation of android applications. In 2012 IEEE
Consumer communications and networking conference (CCNC), pages 149-153. IEEE,
2012.

[123] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas,
and Gonzalo Alvarez. Puma: Permission usage to detect malware in android. In
International Joint Conference CISIS’12-ICEUTE” 12-SOCQO" 12 Special Sessions, pages
289-298. Springer, 2013.

[124] Ryo Sato, Daiki Chiba, and Shigeki Goto. Detecting android malware by analyzing
manifest files. Proceedings of the Asia-Pacific Advanced Network, 36:23-31, 2013.

[125] scikit learn. Classifier comparison, 2019.

[126] scikit learn. Feature selection, 2019.

[127] scikit learn. Gridsearchcv, 2019.

[128] scikit learn. Randomsearchcv, 2019.

[129] scikit learn. sklearn.metrics.matthews_corrcoef, 2019.

[130] Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A
tool for massive malware labeling. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 230-253. Springer, 2016.

[131] Hossain Shahriar and Victor Clincy. Kullback-leibler divergence based detection of
repackaged android malware. 2015.

[132] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. Towards a
scalable resource-driven approach for detecting repackaged android applications. In
Proceedings of the 30th Annual Computer Security Applications Conference, pages 56—65.
ACM, 2014.

182



Bibliography

[133] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and Wenke Lee. Impeding malware
analysis using conditional code obfuscation. In NDSS, 2008.

[134] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The Hands-On Guide
to Dissecting Malicious Software. No Starch Press, 2012.

[135] skylot. skylot/jadx: Dex to java decompiler, 2019.
[136] Tim Stazzere. Detecting pirated and malicious android apps with apkid, 2016.

[137] Arthur W. Stephens. Alas for adware - we know it too well. Technical report, The
SANS Organization, 2005.

[138] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages
21-41. Springer, 2012.

[139] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder,
Giorgio Giacinto, and Lorenzo Cavallaro. Droidsieve: Fast and accurate classification
of obfuscated android malware. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pages 309-320. ACM, 2017.

[140] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight years of rider measurement
in the android malware ecosystem: evolution and lessons learned. arXiv preprint
arXiv:1801.08115, 2018.

[141] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[142] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro.
The evolution of android malware and android analysis techniques. ACM Computing
Surveys (CSUR), 49(4):76, 2017.

[143] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Data mining cluster analysis:
basic concepts and algorithms. Introduction to data mining, pages 487-533, 2013.

[144] SophosLabs Research Team et al. Emotet exposed: looking inside highly destructive
malware. Network Security, 2019(6):6-11, 2019.

[145] Ke Tian, Danfeng Yao, Barbara G Ryder, and Gang Tan. Analysis of code heterogeneity
for high-precision classification of repackaged malware. In Security and Privacy
Workshops (SPW), 2016 IEEE, pages 262-271. IEEE, 2016.

[146] Alan Mathison Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London mathematical society, 2(1):230-265,
1937.

183



Bibliography

[147]

[148]
[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Michel van Eeten, Johannes M Bauer, John Groenewegen, and Wolter Lemstra. The
economics of malware. 2007.

VirusTotal. Virustotal, 2019.

John Von Neumann and A Burks. Theory of self-replicating automata. Urbana:
University of Illinois Press, 1966.

Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li Li, Juan
Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A large-scale comparative
study of chinese android app markets. In Proceedings of the Internet Measurement
Conference 2018, pages 293-307. ACM, 2018.

Ting Wang, Shicong Meng, Wei Gao, and Xin Hu. Rebuilding the tower of babel:
towards cross-system malware information sharing. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, pages
1239-1248. ACM, 2014.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600-612, 2004.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep ground
truth analysis of current android malware. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 252-276. Springer, 2017.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
Droidmat: Android malware detection through manifest and api calls tracing. In
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on, pages 62—69.
IEEE, 2012.

Victor Wu, Raghavan Manmatha, and Edward M. Riseman. Textfinder: An automatic
system to detect and recognize text in images. IEEE Transactions on pattern analysis
and machine intelligence, 21(11):1224-1229, 1999.

Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in android apps. In
Proceedings of the 33rd Annual Computer Security Applications Conference, pages 288-302.
ACM, 2017.

Kim Zetter. Countdown to Zero Day: Stuxnet and the launch of the world’s first digital
weapon. Broadway books, 2014.

Yury Zhauniarovich, Magsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and Fabio
Massacci. StaDynA: Addressing the Problem of Dynamic Code Updates in the
Security Analysis of Android Applications. In Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy, CODASPY 15, pages 37-48. ACM, 2015.

184



Bibliography

[159] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast, scalable
detection of piggybacked mobile applications. In Proceedings of the third ACM
conference on Data and application security and privacy, pages 185-196. ACM, 2013.

[160] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of the
second ACM conference on Data and Application Security and Privacy, pages 317-326.
ACM, 2012.

[161] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95-109. IEEE,
2012.

[162] Shuofei Zhu, Jianjun Shi, Limin Yang, Bogin Qin, Ziyi Zhang, Linhai Song, and Gang
Wang. Measuring and modeling the label dynamics of online anti-malware engines.
In 29th USENIX Security Symposium (USENIX Security 20), 2020.

185






Glossary

Al Artificial Intelligence. 54

API Application Programming Interface. 5, 21, 24, 25, 30, 35, 36, 38, 53, 55-58, 60, 70, 83, 86,
87,95,104, 106, 108, 130, 138-140, 142, 143, 160, 165, 191, 195

APK Android Package. 4, 5, 11, 26, 41, 43, 53-58, 60-62, 65, 66, 69, 70, 106, 130, 133, 139,
140, 142,151, 199

ART Android Runtime. 26
AVD Android Virtual Device. 97, 139, 140, 151, 195

CFG Control Flow Graph. 3, 23
CRUD Create, Read, Update, and Delete. 24
CSV Comma-Separated Values. 151

DCL Dynamic Code Loading. 31, 32, 148, 149
DLL Dynamic-link Library. 26
DMA Direct Memory Access. 147, 148

EM Expectation Maximization. 156

GNB Gaussian Naive Bayes. 65, 130, 133, 134, 189
GPS Global Positioning System. 29, 36, 56, 120, 167
GUI Graphical User Interface. 22, 24, 25, 83, 141-143, 148

HMM Hidden Markov Model. 5, 54

IDE Integrated Development Environment. 25, 32, 54
IMEI International Mobile Equipment Identity. 29, 38, 148

10 input-output. 52

187



Glossary

IP Internet Protocol. 36, 57

JAR Java ARchive. 26
JDK Java Development Kit. 25
JSON JavaScript Object Notation. 58, 140

KNN K-Nearest Neighbors. 62, 130, 133, 134, 189

MAC Media Access Control. 38

MCC Matthews Correlation Coefficient. 77-82, 84, 86, 87, 92-94, 106, 113, 115, 117, 122, 123,
126, 128-134, 167, 188, 189, 193

MD5 Message Digest. 106

ML Machine Learning. ix, xi-xv, 3-16, 18-20, 51-55, 61-66, 68-71, 89, 90, 92, 95, 98, 104-109,
111-117, 119-135, 151, 152, 154, 156, 157, 159, 160, 163, 164, 167-170, 187-189, 193, 198,
201

NDK Native Development Kit. 25
OS Operating System. 38, 140, 148

PCA Principal Component Analysis. 61
PUA Potentially Unwanted Application. 30

RF Random Forest. 65, 130, 133, 134, 189

SDK Software Development Kit. 24-26, 54

SHA Secure Hash Algorithms. 106

SIM Subscriber Identification Module. 36

SMS Short Message Service. 23, 29, 37, 40, 47, 69, 148, 149
SQL Structured Query Language. 23

SSIM Structural Similarity Index. 143

SVC Linear Support Vector Machine. 131

SVM Support Vector Machine. 5, 6, 54, 65, 67, 130, 187

188



Glossary

TTP Tactics, Techniques, and Procedures. 53
URL Uniform Resource Locator. 32, 56, 57, 153
VM Virtual Machine. 26

XML Extensible Markup Language. 24-26

189






List of Figures

1.1.
1.2.

2.1
2.2.
2.3.
24.

2.5.

2.6.

2.7.
2.8.

3.1.

3.2
3.3.

34.

4.1.

4.2.

A universal architecture of ML-based Android malware detection methods 5
An illustration of the processes of labeling Android apps and using the
labeled apps to train detection methods . . . . .. ... ... .. ... .. .. 6
The typical life cycle of an activity in an Android app [33]. . . . ... .. .. 24
Different methods a malicious payload can be added to an Android app . . 28
The distribution of most common malware types of malicious apps found in
Weietal.'s AMD dataset [153]. . . . .. .. .. .. .. .. ... ... ... .. 29
A demonstration of the Smali format and the ease of adding new functionality
toexistingcode . .. ... ... .. L 42
The mean detection rates of VirusTotal scanners against different malware

types found in the AMD dataset between November 2018 and November
8", 2019. We found that the spike in performance on August 30, 2019 is
due to an increase in the number of scanners used by VirusTotal to scan
the apps in the AMD dataset, which correctly labeled the apps as malicious.
In Chapter 4, we demonstrate and discuss VirusTotal’s manipulation of
the number and versions of scanners it includes in the scan reports of apps. 44
The definition of malware at the intersection of three other notions of user
consents, developer intents, and platform restrictions according to Hurier in

2 [ 46
A screenshot of a malicious app from the Lotoor family . . . ... ... .. 47
The perspectives that can be adopted upon labeling (Android) apps as

maliciousand benign. . . .. ... ... 0o oo Lo 48

An illustration of the VirusTotal scan reports retrievable via the platform’s

webinterface. . . . ... ... L 56
K-Fold Cross-Validation . . .. .. ... ... ... ... ......... 63
An illustration of how different ML classification algorithms separate feature
vectors . ... .. 64
An illustration of how the decision boundary learned by a SVM will differ in
an attempt to cope with differentlabels. . . . . ... ... ... ... .. ... 67

The labeling accuracy of different threshold-based labeling strategies against
apps in Hand-Labeled and Hand-Labeled 2019 datasets . . . . . . ... ... .. 77
The mean, standard deviation, and median of the positives attributes found
in scan reports of apps in the Hand-Labeled and Hand-Labeled 2019 datasets . 79

191



List of Figures

4.3.

44.

5.1.
5.2.

5.3.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

The labeling accuracy of labeling strategies using thresholds between three
and six scanners against apps in Hand-Labeled and Hand-Labeled 2019 datasets 81
A comparison of the MCC scores achieved by threshold-based labeling
strategies with thresholds between two and nine scanners on the Hand-Labeled
and Hand-Labeled 2019 as per VirusTotal scan reports downloaded on

September 27/, 2019 and on November 8,2019.. . . . ... ... ... ... 82
The process adopted by Maat to construct ML-based labeling strategies . . 91
The overall correctness rates of the Drebin scanners on apps in the AMD+GPlay

dataset between November 2018 and November 8",2019. . . ... ... .. 97

Maat’s process of training ML-based labeling strategies to label Android apps105

The labeling accuracies achieved by Maat’s ML-based labeling strategies
Eng GSand Naive GS trained with scan reports downloaded in between
November 2018 and June 21%, 2019 against apps in the Hand-Labeled and
Hand-Labeled 2019 datasets over time. . . . . . .. ... ... .......... 114
The labeling accuracies achieved by Maat’s ML-based labeling strategies
Eng Sel GSandNaive Sel GS trained with scan reports downloaded in
between November 2018 and June 21, 2019 against apps in the Hand-Labeled
and Hand-Labeled 2019 datasets over time. . . . . ... ... ... ....... 116
An example of a decision tree trained using grid search and all engineered
features Eng GS extracted from apps in the AMD+GPlay dataset in November
2018, . 118
Four randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and all engineered features Eng GS
extracted from VirusTotal scan reports of apps in the AMD+GPlay dataset
downloaded on April 12,2019, . . . ... ... ... ... .. ... .. ... 120
Four randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and selected engineered features
Eng Sel GSextracted from VirusTotal scanreports of appsin the AMD+GPlay
dataset downloaded on April 12t 2019. . . . .. 121
Two decision trees trained using grid search and naive features Naive
GS and Naive Sel GS extracted from apps in the AMD+GPlay dataset
inNovember2018. . . .. ... ... .. ... . 122
Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and all naive features Naive GS
extracted from VirusTotal scan reports of apps in the AMD+GPlay dataset
downloaded on April 12,2019, May 10, 2019, and June 7*",2019. . . . . . 123
Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and selected naive features Naive
Sel GsS extracted from VirusTotal scanreports of appsin the AMD+GPlay
dataset downloaded on April 12/, 2019, May 10, 2019, and June 7%, 2019. 124

192



List of Figures

6.9.

6.10.

6.11.

7.1.

7.2.

7.3.

Three randomly selected decision trees in the ML-based labeling strategies’
random forests trained using grid search and naive features extracted from
VirusTotal scan reports of apps in the AMD+GPlay dataset downloaded
on April 26,2019 . . .. ... 125
The MCC scores achieved by the Drebin classifiers labeled using different
threshold-/ML-based labeling strategies against the Hand-Labeled and Hand-
Labeled 2019 dataset between July 5", 2019 and November 8, 2019. . . . . . 131
The MCC scores achieved by the KNN, RF, and GNB classifiers labeled using
different threshold-/ML-based labeling strategies against the Hand-Labeled
and Hand-Labeled 2019 dataset between July 5!, 2019 and November 8", 2019.134

An overview of the modules and operations of the proposed VirusTotal

replacement, Eleda. . . . . ... ... ... . o L o 139
Examples of manual operations needed to set up and activate antivirus
Android apps downloaded from Google Play.. . . . . ... ... ... .... 142
Two examples of how commercial antiviral apps inform users of the malignancy
ofinstalledapps. . . . ... ... .. ... 143

193






Listings

2.1.
2.2.
2.3.
24.

2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.

3.1.
3.2

Building an implicit Intent objecttosend anemail. . ... ... ... ... 22
An explicit Intent to start TargetActivity . ... ... ... .. ... .. 23
Example of the obfuscation technique of identifier renaming. . . . . . . . .. 31
Code snippet extracted from a malicious app belonging to the Obad malware

family and shows the utilization of identifier renaming, string encryption,

and reflection [153]. . . . . . . . . . e 32
Example of a jump instruction to a location with a constant value. . . . . . . 34
Examples of time-based triggers. . . . . . .. ... ... L L. 35
Examples of location-based triggers. . . . . . .. ... ... L. 36
Examples of secret-based triggers. . . . ... ... ... L. 37
Examples of system-based triggers. . . . . . .. ... ... ... L. 38
Examples of logic-based triggers. . . . . . ... ... ... ... L. 39
Combining different types of triggers to hide the apps’s malicious intentions

[107]. . . . e 40
Fred Cohen’s Contradiction of the Decidability of a Virus (CV) [28]. . . . . . 52
Examples of VirusTotal’s APIrequests to gather information about Android
APPS. -+ e e e 57

195






List of Tables

1.1.

2.1

3.1.
3.2

3.3.

4.1.

5.1.

5.2.

5.3.

6.1.

8.1.

A summary of datasets used in thisthesis . . . . ... ... ... ... .... 19

The mean, median, and standard deviation of detection rates recorded by
all VirusTotal scanners on apps in the AMD dataset as of November 8",
2019, grouped by malware type and sorted by the percentage of apps in the

dataset. . . . . .. ... 45
Categories of Android malware detection methods . . . . . . ... ... ... 54
A summary of the VirusTotal scan report attributes that we use in this

thesis. . . . . . . .. 59

The impact of varying the threshold of VirusTotal scanners (i.e., positives),
used to deem Android apps as malicious on the composition of different
datasets we use in this thesis. Apps were labeled using VirusTotal scan
reports downloaded on November 8,2019. . . ... ............. 69

A detailed view of the performance of vt >3, vt >4, and vt >5 on Hand-
Labeled 2019 malicious apps between September 27, 2019 and November
8M,2019. . ... 83

The set of VirusTotal scanners that had accuracy-based correctness scores
of at least 0.90 between July 5, 2019 and November 8, 2019. Emboldened
scanners depict the intersection of the sets of correct scanners of the four
datasets. . . . . . .. e e e 94
The change in the correctness rates of the Drebin VirusTotal scanners on
apps in the AMD dataset between November 2018 and November 8th 2019,

grouped by malwaretype. . . . ... ... ... L 96
The evolution of 5cfda85debe5e9a7341b4eeed01d92807ed29552 s scan
FEPOTES . . . . e 100

Detailed view of the MCC scores achieved by the Drebin classifiers labeled
using different threshold-/ML-based labeling strategies against the Hand-
Labeled and Hand-Labeled 2019 dataset between July 5", 2019 and November
8,2019. . .. 132

A summary of datasets used in thisthesis . . . . . ... ... ... ... .. 152

197






Appendix

A. Manual Analysis Process

The following steps depict the process we adopted to manually analyze and label apps in
the Hand-Labeled and Hand-Labeled 2019 datasets. Given an app («), we:

1.

Install () on a rooted AVD containing the Xposed framework and the API call
monitoring tool droidmon.

Run and interact with («) on the AVD and monitor the API calls it issues during run
time.

If app crashes or no malicious behavior is noticed: decompile («) with Jadx and
inspect its source code.

If no traces of malicious code are found, disassemble («) with Apktool and reverse
engineer its smali code.

If no traces of malicious code are found, disassemble the shared object libraries used
by («) using Gidhra and inspect C/C++ code.

If no traces of malicious code are found, provisionally deem an app as benign and
check VirusTotal regarding the app’s status.

If (x)’s VirusTotal scan report gives a total of zero positives, deem app as benign.
Otherwise, inspect the scanners deeming app as malicious, the labels they give to the
app (e.g., Riskware), and the details inside the scan report.

If the aforementioned details reveal malicious behavior, deem as such. Otherwise,
deem app as benign.

B. BitDefender and Panda Vs. AMD Apps

The SHAL hashes of ten apps randomly sampled from the AMD dataset, the number of
scanners deeming them as malicious as of September 27!, 2019, their malware types, and
whether BitDefender’s version 3.3.063 and Panda’s version 3.4.5 managed to detect
them.

199



Appendix

SHA1 Hash VirusTotal positives | Malware Type | BitDefender | Panda
£df0835597adc16d667b4cbaef0fc3ee76205503 22 Adware
3425e68789614cbda4284169589f7aeab8e28b28 29 Trojan-SMS v v
11c8678985aaa5ce4bcd5970a0008b0310c88a7e 35 Trojan-SMS v v
7693726e8286d6dd8c115c273637d44c554f19¢ 28 Trojan-Banker v
a0e7e36eec83339980f056a7af5f36d5dc99809e 33 Ransom v v
74581e2e0c7b93391574ec8582d274432a4a2838 27 Adware
a9a46d346a2ae5a397517c70d249695c6c89632b 19 Adware
db9603ffa852f1b0aad3f44418db44893db3726 29 Adware v
7£9e6bc600b4a02b5d15a6511a43419d1aa500£f 29 Adware v
d4eb21ae5c2b4b05c0f3cede5117c56d9c3746ef 23 Adware Vv

C. Maat’s Engineered Features

The following list enumerates the engineered features extracted from the VirusTotal
scan reports of apps in the AMD+GPlay dataset. The order of features in the list mimics the
order of every feature in the feature vector.

1. The vedicts (i.e., 1 for malicious, 0 for benign, and -1 for unknown), given by the
intersection of the most correct and stable VirusTotal based on the scan reports of
apps in the AMD+GPlay dataset between November 2018 and September 27!, 2019:

® AhnLab-V3

® Avira

®* Babable

® CAT-QuickHeal
® Comodo

® Cyren

® DriWWeb

® ESET-NOD32

® Fortinet

¢ Ikarus

* K/7GW

* MAX

® McAfee

® NANO-Antivirus
® Sophos

® SymantecMobileInsight

2. The age of a scan report in years calculated as the difference between today’s date
and that of first_seen’s.

200



Appendix

The number of times the app was submitted to VirusTotal according to the times_-
submitted attribute.

The number of scanners deeming the app as malicious according to the positives
attribute.

The total number of scanners that scanned the app according to the total attribute.

The list of permissions requested by the app out of 324 permissions. If a permissions
is requested by an app, its corresponding index in the feature vector has a value of 1,
and a value of 0 otherwise.

The list of tags given by VirusTotal to the app out of 32 tags. If a tag is given to an
app, its corresponding index in the feature vector has a value of 1, and a value of 0
otherwise.

D. Maat’s Selected Naive Features

The following list enumerates the selected naive features, viz. the verdicts of VirusTotal
scanners that train the best performing ML-based labeling strategies. The order of features
in the list mimics the order of every feature in the feature vector.

AhnLab-V3
Avira
CAT-QuickHeal
Cyren
DrWeb
ESET-NOD32
F-Secure
Fortinet
Ikarus
K7GW

MAX
McAfee

McAfee-GW-Edition

201



Appendix

NANO-Antivirus
® Sophos
® SymantecMobileInsight

® Trustlook

E. Maat’s Hyperparameter Estimation
To train the best random forests that constitute the ML-based labeling strategies, Maat uses
the techniques of grid search and random search to estimate the hyperparameters of the trees

in those forests. We used 10-Fold Cross Validation to train random forests of 100 decision
trees and varied the following parameters as follows:

¢ The criterion used to choose the feature to check to further split the training dataset
into malicious and benign apps criterion: {gini,entropy}

e The maximum depth a decision tree is allowed to grow max_depth: {1,4,10, None}

¢ The maximum number of features a decision tree is allowed to check upon every split
max_features: {3,5,10, None}

¢ The minimum number of samples required to split a node in a tree min_samples_-
split: {2,3,10}

e If False, the entire dataset is used to train the decision tree instead of bootstrap samples
bootstrap: {True, False}
F. Homegrown Dataset

The SHA1 hashes, a short description, and the VirusTotal positives:total fields of apps in
the Homegrown dataset, as of November 8th 2019.

SHA1 Hash Description VirusTotal positives | VirusTotal total
17866baec8c1179264c585934d742a7befa20975 Encryption-based Ransomware demo app 0 56
1b8235f2ad665d{5{8632b75a1b466f849654934 Tapjacking-based tracking app and WiFi password stealer 0 56
1c7¢935ba48c5db86ff4fd957fedc3e691484c77 Tapjacking and overlay-based Ransomware demo app 0 56
31cfla7a7{8a3bb6f9fdb45267dcbf9ff449b994 Repackaged app with encryption-based Ransomware payload 0 56

66c16d79db25dc9d602617dae0485fa5ae6e54b2 Repackaged app with logic-based payload to delete user contacts 1 56
691973efb45176862085e4d4e081dfa8750590f7 Repackaged antiviral software with backdoor 0 55
2a0d0f82c0a84b8dfcdecda89a83f171cf675a9a | Repackaged mail client with obfuscated encryption-based Ransomware 0 52
bee87f0ae97b438488cbe351311d5d40ccf8c3e0 Launcher-based Ransomware demo app 0 56

202



Appendix

G. Static Features

The following list enumerates the numerical features statically extracted from the APK
archives of apps in the AndroZoo, Hand-Labeled, and Hand-Labeled 2019 datasets. The order
of features in the list mimics the order of every feature in the feature vector.

e Basic features:

(1) Minimum SDK version (supported by the app).
(2) Maximum SDK version (supported by the app).
(3) Total number of activities.

(4) Total number of services.

(5) Total number of broadcast receivers.

(6) Total number of content providers.
* Permission-based features:

(7) Total request permissions.
(8) Ratio of Android permissions to total permissions.
(9) Ratio of Custom permissions to total permissions.

(10) Ratio of dangerous permissions to total permissions.
* API call features:

(11) Total number of classes.
(12) Total number of methods.
(13)-(39) Count of calls to methods in the following packages:

— android.accounts.AccountManager

— android.app.Activity

— android.app.DownloadManager

— android.app.IntentService

— android.content.ContentResolver

— android.content.ContextWrapper

— android.content.pm.PackageInstaller

— android.database.sglite.SQLiteDatabase
— android.hardware.Camera

— android.hardware.display.DisplayManager

203



Appendix

— android.location.Location

— android.media.AudioRecord

— android.media.MediaRecorder
— android.net.Network

— android.net.NetworkInfo

— android.net.wifi.WifiInfo

— android.net.wifi.WifiManager
— android.os.PowerManager

— android.os.Process

— android.telephony.SmsManager
— android.widget.Toast

— dalvik.system.DexClassLoader
— dalvik.system.PathClassLoader
— java.lang.class

— java.lang.reflect.Method

— java.net.HttpCookie

— java.net.URL.openConnection

e Miscellaneous features:

(40) Zero-based index of the compiler used to compile the app from (dx, dexmerge,
dexlib 1.x,dexlib 2.x,Jack 4.x,or unknown).

H. Papers Usage and Author Contribution

In this section, we enumerate the peer-reviewed papers that has been used in this doctoral
thesis, how and where in the thesis they have been used, and the role of the author of this
thesis in writing those papers.

e Salem, A.; Paulus, F,; Pretschner, A. Repackman: A Tool for Automatic Repackaging
of Android Apps. In Proceedings of the 1st International Workshop on Advances in
Mobile App Analysis (A-Mobile), 2018.

— Purpose and Location of Use: Content from this tool paper has been copied and
used in Section 2.4.6 to demonstrate one method of repackaging Android apps
with malicious payloads.

204



Appendix

— Thesis Author’s Role: The author of this thesis wrote the tool paper with the
assistance of the paper’s second author, building on her bachelor’s thesis, which
she completed at the chair of software and systems engineering led by the third
author. Based on the second author’s thesis, the first author wrote the paper,
and the second author helped with reviewing the paper’s structure, content, and
with creating a video that demonstrates the tool’s functionalities.

— Other Author(s): At the time of writing this paper, F. Paulus was a bachelor of
informatics student and A. Pretschner was the first author’s doctoral supervisor.

e Salem, A.; Pretschner, A. Poking the Bear: Lessons Learned from Probing Three Android
Malware Datasets. In Proceedings of the 1st International Workshop on Advances in
Mobile App Analysis (A-Mobile), 2018.

— Purpose and Location of Use: The content in Section 2.2 and Section 2.3, which
describe the structure of Android malware and the types of malicious payloads
they use, is based on the findings of the paper in question.

— Thesis Author’s Role: The author of this thesis conducted the experiments found
in the paper and wrote the paper under the guidance and with the help of the
second author.

— Other Author(s): At the time of writing this paper, A. Pretschner was the first
author’s doctoral supervisor.

e Salem, A.; Schmidt, T.; Pretschner, A. Idea: Automatic Localization of Malicious Behaviors
in Android Malware with Hidden Markov Models. In Proceedings of the International
Symposium on Engineering Secure Software and Systems (ESSoS), 2018.

— Purpose and Location of Use: The content and idea of this paper serves, in
Section 3.3, as an example of Android malware detection methods that combine
dynamic representations of Android apps with ML-based detection. No material
from this paper has been copied or used in this doctoral thesis.

— Thesis Author’s Role: The author of this thesis wrote the paper with the assistance
of the paper’s second author, building on her master’s thesis, which she completed
at the chair of software and systems engineering led by the third author.

— Other Author(s): At the time of writing this paper, T. Schmidt was a bachelor of
informatics student and A. Pretschner was the first author’s doctoral supervisor.

e Salem, A.; Hesse, M., Neumeier, J., Pretschner, A. Towards Empirically Assessing
Behavior Stimulation Approaches for Android Malware . In Proceedings of the 13th
International Conference on Emerging Security Information, Systems and Technologies
(SECURWARE), 2019.

— Purpose and Location of Use: The content in Section 2.4 builds on the types of
triggers used by malware authors to delay/control the execution of malicious
payloads in Android malware, whereas the content in

205



Appendix

— Thesis Author’s Role: The author of this thesis used the tools set up by the
second author during his employment at the chair of software and systems
engineering and built on the third author’s bachelor’s thesis to conduct the
experiments found in the paper and write it under the guidance of the fourth
author.

— Other Author(s): At the time of writing this paper, M. Hesse was a research
assistant studying towards his bachelor’s of informatics and J. Neumeier was a
bachelor of informatics student, and A. Pretschner was the first author’s doctoral
supervisor.

¢ Salem, A.; Banescu, S., Pretschner A. Maat: Automatically Analyzing VirusTotal for
Accurate Labeling and Effective Malware Detection. In ACM Transactions on Privacy and
Security (TOPS) [Under Review], 2021.

— Purpose and Location of Use: This paper summarizes the main contribution of
this doctoral thesis (i.e., the platform Maat), and discusses the insights gained
from the measurements and experiments we conducted. Content of this paper is
copied from different chapters in this thesis, namely Chapter 4, Chapter 5 and
Chapter 6.

— Thesis Author’s Role: The author of this thesis conducted the aforementioned
measurements and experiments under the guidance of the second and third
authors, who helped in writing the paper as well.

— Other Author(s): At the time of writing this paper, S. Banescu was a post-doctoral
researcher at the chair of software and systems engineering and A. Pretschner
was the first author’s doctoral supervisor.

e Salem, A. Towards Accurate Labeling of Android Apps for Reliable Malware Detection.
In Proceedings of the 11th ACM Conference on Data and Application Security and
Privacy (CODASPY), 2021.

— Purpose and Location of Use: This paper focuses on the impact of VirusTotal’s
dynamicity on the threshold-based labeling strategies that are commonly used
within the research community. The content of this paper is based on the content
in Chapter 4 and Chapter 7.

— Thesis Author’s Role: The author of this thesis conducted the experiments found
in the paper and wrote the paper under the guidance and with the help of the
second author.

— Other Author(s): At the time of writing this paper, A. Pretschner was the first
author’s doctoral supervisor.

206



	Acknowledgements
	Zusammenfassung
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Background
	1 Introduction
	1.1 ml-Based Malware Detection
	1.2 Problems and Literature Gaps
	1.2.1 Motivating Example

	1.3 Thesis Overview
	1.3.1 Research Questions
	1.3.2 Solutions
	1.3.3 Contributions
	1.3.4 Datasets

	1.4 Structure

	2 Android Malware
	2.1 Android Apps
	2.1.1 Components
	2.1.2 Compilation
	2.1.3 Distribution

	2.2 Structure of Android Malware
	2.3 Android Malware Payloads and Functionalities
	2.4 Evasion Techniques
	2.4.1 Identifier Renaming
	2.4.2 String Encryption
	2.4.3 Reflection and Dynamic Code Loading
	2.4.4 Anti-Analysis and Disassembly
	2.4.5 Triggers and Schedulers
	2.4.6 App Repackaging

	2.5 Detection Rates of Android Malware Types
	2.6 Summary

	3 Android Malware Detection
	3.1 Malware Detection in Theory
	3.2 Malware Detection in Practice
	3.3 Malware Detection Methods
	3.4 Machine-Learning-Based Detection
	3.4.1 Data Collection and Labeling with AndroZoo and VirusTotal
	3.4.2 Feature Engineering, Selection, and Extraction
	3.4.3 Training and Validation
	3.4.4 Decision Boundaries of Learning Algorithms

	3.5 Challenges Facing ML-Based Detection
	3.5.1 The Choice of Features and Classifiers
	3.5.2 The Subjectivity of Malware Labeling
	3.5.3 Performance Decay over Time
	3.5.4 Adversarial Machine Learning

	3.6 Summary


	II Accurate Labeling for Better Detection
	4 Threshold-Based Labeling Strategies
	4.1 Choosing a Threshold
	4.2 Labeling Accuracy of Threshold-based Labeling Strategies
	4.3 Sensitivity to VirusTotal's Dynamicity
	4.4 Finding the Optimal Threshold
	4.5 Summary

	5 Maat: A Framework to Optimally Utilize VirusTotal
	5.1 Overview
	5.2 Correctness of VirusTotal Scanners
	5.3 Stability of VirusTotal Scanners
	5.4 Stability of VirusTotal Scan Reports
	5.5 Features Extracted from Scan Reports
	5.5.1 Engineered Features
	5.5.2 Naive Features

	5.6 Using Maat
	5.6.1 Preparing the Training Dataset
	5.6.2 Training ml-based Labeling Strategies
	5.6.3 Labeling Apps Using Maat's ml-based Labeling Strategies

	5.7 Summary

	6 Evaluating Maat
	6.1 Accurately Labeling Apps
	6.2 Features Learned by ML-based Labeling Strategies
	6.2.1 Engineered Features
	6.2.2 Naive Features

	6.3 Sensitivity to VirusTotal's Dynamicity
	6.3.1 Impact of VirusTotal's Dynamicity During Training
	6.3.2 Impact of VirusTotal's Dynamicity During Test

	6.4 Enhancing Detection Methods
	6.5 Summary

	7 An Alternative to VirusTotal
	7.1 A Summary of VirusTotal's Limitations
	7.2 Platform Overview
	7.3 Challenges and Limitations of Eleda
	7.4 Summary


	III Related Work and Conclusion
	8 Related Work
	8.1 Defining Malware
	8.1.1 Formal Definitions
	8.1.2 Structural and Behavioral Definitions
	8.1.3 Summary

	8.2 Malware Datasets
	8.3 Studying VirusTotal
	8.4 Labeling Strategies
	8.4.1 Label Unification
	8.4.2 Discerning Malignancy


	9 Conclusions
	9.1 Addressing Research Questions
	9.2 Literature Gaps and Contributions
	9.3 Limitations
	9.4 Future Work

	Bibliography
	Glossary
	List of Figures
	List of Listings
	List of Tables
	Appendix
	A Manual Analysis Process
	B BitDefender and Panda Vs. AMD Apps
	C Maat's Engineered Features
	D Maat's Selected Naive Features
	E Maat's Hyperparameter Estimation
	F Homegrown Dataset
	G Static Features
	H Papers Usage and Author Contribution



