
Technische Universität München

Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

Evaluation of the Actor Model for the Parallelization

of Block-Structured Adaptive HPC Applications

Alexander Ludwig Pöppl

Vollständiger Abdruck der von der Fakultät für Informatik der Technische Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Prof. Dr. Michael Georg Bader

2. Prof. Dr.-Ing. Michael Glaß

Die Dissertation wurde am 28.09.2020 bei der Technische Universität München eingereicht und

durch die Fakultät für Informatik am 18.01.2021 angenommen.

Technical University of Munich

Department of Informatics

Chair of Scientific Computing in Computer Science

Evaluation of the Actor Model for the Parallelization

of Block-Structured Adaptive HPC Applications

Alexander Ludwig Pöppl

Full imprint of the dissertation approved by the Department of Informatics

of Technical University of Munich to obtain the academic degree of

Doctor of Natural Sciences (Dr. rer. nat.)

Chairman: Prof. Dr. Helmut Seidl

Examiners of the Dissertation:

1. Prof. Dr. Michael Georg Bader

2. Prof. Dr.-Ing. Michael Glaß

The dissertation was submitted to Technical University of Munich on 28.09.2020 and was

accepted by the Department of Informatics on 18.01.2021.

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Michael Bader for his support and advice

during these last years. I’d also like to thank my collaborators, both from within my chair and

the invasive computing project. Furthermore, I would like to thank Prof. Scott Baden, Ph.D. for

enabling me to spend time at Berkeley Lab, and the UPC++ team for their advice and counsel

during my stay there. The time there enabled me to explore a new direction for my research.

Moreover, I’d like to thank my students Ludwig Gärtner, Andreas Molzer, Jurek Olden, Martin

Bogusz, Bruno Macedo Miguel and Yakup Budanaz for their work in conjunction with my project.

I’d also like to thank the various funding agencies that funded my research and enabled me to

use their resources.

I’m very grateful to my family for enabling me to study without financial issues. Finally, I’d like

to thank my wife, May, for her support and patience, and for always being there to help when I

needed her.

v

Abstract

Future HPC systems are expected to feature an increasingly complex and heterogeneous execution

environment with parallelism on multiple levels. At that point, HPC developers need to worry

about distributed and shared memory parallelism, and potentially deal with accelerators on top of

that. Future hardware architectures feature tiled chip architectures or heterogeneous CPU cores.

In contrast, the prevalent model of computation in HPC today is Bulk Synchronous Parallelism

(BSP), embodied typically through a mixture of MPI for distributed memory parallelism, OpenMP

for shared memory parallelism, and optionally a vendor-specific framework for the accelerator.

While this provides for a straightforward computational model, it may prove too inflexible for

future adaptive applications.

The actor model has been a popular technique in the domain of embedded computing to enable

predictable execution in parallel systems. In my thesis, I explore the advantages of using the

FunState actor model, with its clear separation of computation and control flow, within tsunami

simulation as an example application domain. The actor model adds a level of abstraction

over the conventionally used approach and therefore allows for the implementation of more

complex coordination schemes. In an actor-based application, the application developers specify

the behavior of the actor, the inputs it consumes, and the outputs it provides. Actors are then

connected to form a graph that propels the computation through the production and consumption

of tokens. The target architectures for the application are classical HPC systems, as well as the

novel Invasive Computing compute stack with its heterogeneous tiled MPSoC architecture.

I implemented actor libraries for the use in the aforementioned hardware landscapes. The benefits

of using the model is demonstrated using actor-based tsunami proxy applications. For use in the

invasive stack, the application is extended to exploit a reconfigurable processor developed as part

of the project. The applications use actors for patch coordination, allowing for an implicit overlap

of communication and computation. Furthermore, the actor model was used to implement a

“lazy activation scheme”, where computations of sections of the ocean not yet reached by the

tsunami wave may be avoided. In a comparison with a BSP-based tsunami application on a

cluster employed with Intel Many-Core processors, the actor-based approach exhibited a higher

performance and better scalability as well as lower complexity of implementation.

vii

Contents

I. Introduction and Theory 1

1. Motivation . 3

1.1. Thesis Structure . 4

2. Parallel Programming Concepts . 7

2.1. Classification of Parallel Program Execution . 7

2.2. Classification Based on Memory Access Types . 9

2.2.1. Bulk Synchronous Parallelism . 10

2.3. Classification of Parallelism Based on Type and Granularity of Work 11

3. MPI & OpenMP: The Prevalent Contemporary HPC Technology Stack 13

3.1. MPI: Message-Based Distributed Memory Parallelism 13

3.1.1. Basic Operations . 14

3.1.2. Collective Operations . 17

3.2. OpenMP: Fork-Join-Parallelism . 18

4. UPC++: PGAS-Based Distributed Memory SPMD 21

4.1. The UPC++ Machine Model . 21

4.2. The UPC++ Execution Model . 22

4.3. PGAS Characteristics of UPC++ . 23

4.4. Asynchronous Completions . 25

5. X10: Asynchronous Partitioned Global Address Space 31

5.1. X10 Core Language and Type System . 32

5.2. Concurrency in X10 . 36

5.3. Partitioned Global Address Space in X10 . 37

6. Task-Based Parallelism . 41

6.1. Legion and Regent . 41

6.2. HPX . 44

7. Actor-Based Parallel Programming . 45

7.1. The Actor Formalism . 45

7.2. The Erlang Programming Language . 46

7.3. The Charm++ Distributed Runtime System . 47

7.4. Actor Libraries in General Purpose Programming Languages 48

ix

Contents

8. Invasive Computing . 51

8.1. The Invasive Programming Model . 53

8.1.1. Invasive Computing in X10 . 55

8.1.2. System Programming using the OctoPOS API . 56

8.1.3. The Invasive MPI Runtime . 57

8.2. Overview of the Invasive Hardware . 60

8.3. Invasive Design Flow . 66

Setting the Stage . 71

II. The Actor Model 73

9. The FunState Actor Model . 75

10. ActorX10, an X10 Actor Library . 81

10.1. System Design . 81

10.2. Actors . 83

10.3. Ports . 83

10.4. Channels . 84

10.5. ActorGraph . 84

10.6. ActorX10 Application Example: Cannon’s Algorithm 85

11. An Actor Library for UPC++ . 89

11.1. Actor Graph . 89

11.2. Actors and Execution Strategies . 91

11.3. Ports and Channels . 95

11.4. Actor-UPC++ Application Example: Cannon’s Algorithm 96

12. An Actor Library for MPI . 103

13. Discussion and Outlook . 105

III. Tsunami Simulation 109

14. Tsunami Modelling Using the Shallow Water Equations 111

14.1. The Two-dimensional Shallow Water Equations . 112

14.1.1. Hyperbolicity . 113

14.2. Finite Volume Discretization . 114

14.2.1. The CFL Condition . 115

14.3. Approximate Riemann solvers . 116

14.3.1. The f-Wave Solver . 117

14.3.2. The HLLE solver . 118

14.3.3. Augmented Riemann Solver . 120

15. SWE—Experiments with Novel Runtime Systems 121

15.1. Patch-Based Tsunami Simulation . 122

x

Contents

15.2. Adapting SWE for Different Frameworks . 127

15.2.1. MPI . 127

15.2.2. MPI and OpenMP . 127

15.2.3. UPC++ . 128

15.2.4. Charm++ . 128

15.2.5. HPX . 129

15.3. Evaluation . 129

15.3.1. Global Time Stepping . 130

15.3.2. Local Time Stepping . 132

15.3.3. Detailed Comparison of Over-Decomposition Variations in Charm++ and HPX . . . 135

16. SWE-X10, an Actor-Based Tsunami Simulation . 137

16.1. System Design . 138

16.2. Actor-Based Coordination . 138

16.3. Lazy Activation of Actors . 142

16.4. Patch-Level Calculations . 143

16.5. Performance of SWE-X10 on CPUs . 145

16.6. Performance of SWE-X10 on GPUs . 148

16.7. Evaluation: Lazy Activation of Actors . 150

17. Shallow Water on a Deep Technology Stack . 153

17.1. Acceleration of Approximate Riemann Solvers using i-Core 154

17.2. Changes in the Middleware . 155

17.3. Changes in SWE-X10 . 158

17.4. Results . 160

17.5. Discussion . 161

18. Pond, An Actor-UPC++ Proxy Application . 163

18.1. Implementation . 164

18.2. Evaluation of Pond and Actor-UPC++ . 166

18.3. Evaluation of Pond and Actor-MPI . 172

19. Discussion and Outlook . 175

IV. Conclusion 177

20. Conclusion . 179

Appendix 181

A. Code Samples . 185

A.1. Cannon’s Algorithm in ActorX10 . 185

A.2. Cannon’s Algorithm in Actor-UPC++ . 189

B. Scaling Tests of SWE on CoolMUC2 . 197

B.1. Summary of the Experimental Setup . 197

xi

Contents

B.2. List of Artifacts . 197

B.3. Environment of the Experiment . 197

C. Scaling Tests of Pond and SWE on Cori . 201

C.1. Summary of the Experimental Setup . 201

C.2. List of Artifacts . 202

C.3. Environment of the Experiment . 202

References . 205

Bibliography . 205

List of Figures . 219

List of Tables . 221

Acronyms . 223

xii

Part I.

Introduction and Theory

1

1. Motivation

The field of High Performance Computing (HPC) stands at the intersection of computer science,

mathematics, engineering and the natural sciences. Natural scientists and engineers use simulation

alongside physical experimentation to gain insights about natural phenomena or the properties

of a system under test, e.g. an engine or an airplane. Simulation of the behavior of many of these

problems require a large amount of calculations to be performed. Performing these calculations

in a time frame that makes the simulations useful often requires orders of magnitude more

computing power than a single computing device may provide. Problems that will require the full

available compute performance of upcoming exascale supercomputers include simulations using

multiple physical models to solve a problem (Vázquez et al., 2016), simulation of computational

fluid dynamics (e.g. to simulate entire airplanes (Borrell et al., 2020)) or plasma physics (used for

example to simulate nuclear fusion reactors (Heene et al., 2018)). At the same time, mathematicians

provide novel numerical methods to solve problems posed by the application domain, such as

the Arbitrary High-Order Discontinuous Galerkin (ADER-DG) method (Dumbser et al., 2008).

Use of these new methods enables more accurate results, potentially along with a reduction of the

number of computations that need to be performed, but may come with an increase in program

complexity. For computer scientists, the goal is to provide an efficient implementation that makes

full use of the capabilities of the hardware the problem is executed on. At the same time, software

ought to be extensible so that future requirements can be met. It should also be resilient in the

face of hardware failures and easily understood by the domain scientist.

Twenty years ago, this was a comparatively simple task. The then-new cluster architectures

featured a number of single-core processing units that used scalar instruction sets and an inter-

connection network (Christon et al., 1997). In the time that followed, the hardware landscape

became increasinglymore complex. What used to be single-core processing units became compute

nodes featuring several multi-core (or even many-core) processors, potentially with hundreds

of execution units available to them. Instead of scalar instructions, modern instruction sets use

Single Instruction Multiple Data (SIMD) instructions that compute the same operation on more

than one data element at the same time. Furthermore, many current supercomputers utilize

accelerator cards that provide additional performance for floating-point operations. At the same

time, the fundamental building block used to program these machines remains the same: message

passing using the Message Passing Interface (MPI) standard. This alone is no longer sufficient,

however. Therefore, application developers typically use further frameworks on top of MPI. For

shared-memory parallelization, OpenMP has emerged as the prevalent standard. Accelerators

are typically programmed using vendor-specific languages such as CUDA1.

1 At the time of writing, no open standard has gained a significant share of the market, although SyCL (Khronos Group,

2020) and Kokkos (Edwards, Trott, and Sunderland, 2014) are interesting candidates.

3

CHAPTER 1. MOTIVATION

Alongside the technology stack, the bulk synchronous parallel (BSP) approach, a canonical style

to write HPC applications has emerged. When it is used, the processing units participating in

a computation follow a (potentially repeating) sequence of so-called super steps consisting of

computation, communication and synchronization. However, more complex applications as well

as a more heterogeneous hardware landscape make this approach increasingly unsuitable. As

a reaction to this, a wide range of new methods to write HPC applications has emerged. In the

Transregional Collaborative Research Center Invasive Computing (InvasIC) project (c.f. chapter 8),

we investigate how to program these new systems from both the views of HPC and of embedded

systems.

In the latter domain, the actor model is a known technique for modeling parallel applications

while retaining predictable execution. It enforces the separation of computation, coordination

and computation, and makes each separately analyzable. In the FunState (Strehl et al., 2001;

Roloff et al., 2016) actor model, active objects called actors send each other tokens over defined

communication channels. The actors within a system execute concurrently, based on the data that is

available to them on their communication endpoints (ports). The behavior of an actor is governed

by its finite state machine. Whenever the data in an actor’s ports changes, its finite state machine

may perform a state transition and perform the functionality associated with that transition,

assuming that the data within the ports matches the activation pattern. Actors and the channels

that connect them form the actor graph of an application. This graph may then be distributed onto

the resources available to the computation. Actor-based applications are contributing towards

the goal of predictable application execution within the invasive technology stack. By making

the structure of the computation explicitly available to the outside, a deeper analysis of the

performance characteristics is enabled. The tiled hardware architecture of the invasive computing

technology stack has strong similarities with the clustered hardware architectures of modern

supercomputers. My goal was therefore to implement and to evaluate the actor model on both

the invasive hardware as well as HPC architectures and to evaluate:

1. Does the actor model ease the development of HPC applications compared to traditional models?

2. Does using the actor model in HPC applications yield performance competitive with the traditional

approach?

To evaluate these questions, I collaborated on the implementation of ActorX10, an X10 actor library,

and used it to implement SWE-X10, a tsunami proxy application. Furthermore, I developed Actor-

UPC++ for larger scale HPC applications. It is based on the lessons learned of ActorX10, and able

to accommodate a larger number of actors compared to its predecessor. It is based on modern

C++, which makes it more comparable to the traditional HPC software environment. The library

is evaluated using Pond, another tsunami proxy application.

1.1. Thesis Structure

This thesis is centered around the two actor libraries ActorX10 and Actor-UPC++ and their use

in tsunami proxy applications. The actor model has been used successfully in other domains of

computer science, such as embedded computing.

4

1.1. THESIS STRUCTURE

The remainder of this thesis is organized along the aforementioned research questions. In part I, I

introduce the context this work is grounded in, starting with an overview of parallel programming

terminology in chapter 2. This is followed by a review of the available HPC parallelization

frameworks. First and foremost, there is the prevalent HPC technology stack (in chapter 3),

consisting of MPI for distributed-memory parallelization and of OpenMP for shared-memory

parallelization. These libraries are used in most production applications today. As such, it is,

on the one hand, a competing approach to the one proposed in this thesis. On the other hand,

MPI and OpenMP are sufficiently low-level to be used in higher-level libraries such as mine.

Both OpenMP and MPI are used: OpenMP is used for parallelization on the node-level in Actor-

UPC++, and MPI is used for communication within Actor-MPI. Next, UPC++ is discussed in

chapter 4. The library’s focus is on communication in a PGAS environment. It exploits one-sided

remote direct memory access operations offered by modern interconnection networks and aims to

enable the programmer to maximize overlap between communication and computation through

systematic use of asynchronous communication operations. Again, UPC++ may be viewed as

both a competing approach and as a platform for an actor library (Actor-UPC++). Like MPI,

UPC++ does not prescribe a model of control, and therefore allows the application developer to

implement her own. I used it as the communication backend for Actor-UPC++. Using this, the

overhead of the actor library was sufficiently small to run an actor-based tsunami application

efficiently on a Xeon Phi cluster. The X10 programming language (discussed in chapter 5) forms

the basis for the other actor library introduced in this thesis, ActorX10. X10 provides a global view

of the computational domain, and allows for a direct transfer of entire object graphs between

the different processes within the application. For the actor library, this enables the transparent

use of arbitrary token types transferred between actors without custom serialization provided by

the application developer as well as the migration of actors and their associated object graphs

between processes. Chapter 6 discusses task-based parallelism, a competing approach to the

actor-based parallelism discussed in this thesis. Both HPX and Regent use asynchronous task

execution as a parallelization scheme. There, code is distributed into small work packages (tasks).

Each task’s dependencies are specified, and then the resulting task graph is brought to execution

on a distributed system. As with my approach, this prescribes a specific application structure:

in Regent, the tasks are created implicitly from sequential source core, while in HPX, tasks are

specified either manually or using a set of predefined parallel operations. Chapter 7 focuses

on frameworks and languages based on the actor model. These follow, for the most part, a

different variant of the actor model that is based around a central mailbox per actor rather than

ports and channels. Nevertheless, the implementations have aspects that may also be useful to

add to the libraries discussed in this thesis. Specifically, this pertains to the resilience feature of

Erlang, and the dynamic load balancing that is part of Charm++. Finally, I introduce the Invasive

Computing project landscape in chapter 8. The project proposes a novel technology stack that

uses a dynamic and exclusive resource allocation to obtain a predictable execution environment

that is nevertheless able to flexibly adapt to changing application and system demands. Within

the project, the actor model is used to formalize the structure of applications for use in the invasive

design flow. When the actor graph of an application is known, one may then explore different

mappings of the graph to the available resources, and therefore obtain an efficient execution

environment. The resulting mappings may then be embedded into the application to be selected

at runtime.

Part II introduces the actor libraries implemented in this thesis. The libraries are based on the

FunState Actor model (chapter 9), proposed originally for use in the embedded domain. The

5

CHAPTER 1. MOTIVATION

model adds structured communication paths and an explicit control model to the traditional actor

model. It serves as the theoretical foundation for the implementations discussed here. ActorX10,

discussed in chapter 10, was created as a collaboration within the Invasive Computing project.

It is implemented in X10, and uses the language’s PGAS features to realize a distributed actor

library. Actors may communicate between ranks, and be moved freely between them. The target

environment for ActorX10 is both the invasive stack and HPC systems. X10 is able to generate

code that uses MPI for communication between ranks, and may therefore be used on distributed

systems. On the invasive stack, however, the library profits from a direct compilation to native

code, and from communication operations that utilize hardware acceleration. After that, I discuss

Actor-UPC++ (chapter 11). It is proposed as a more light-weight alternative to ActorX10 using

C++ and the UPC++ communication library. Compared to ActorX10, the individual actors carry

less overhead, and do not have a dedicated thread. This becomes especially important for larger

degrees of available parallelism, such as the one available on many-core processors. Finally,

Actor-MPI, developed in the context of a master’s thesis, replaces UPC++ as the communication

backend for MPI.

Part III discusses the application of the actor-based approach for the parallelization of tsunami

simulations. The theoreticalmodel of the application domain is discussed in chapter 14. Thereafter,

I introduce the shallow water teaching code SWE (chapter 15). In a collaboration with bachelor

students and another colleague from my chair, we added support for different parallelization

frameworks within SWE. This serves as contrast to the two actor-based solutions introduced

thereafter. SWE-X10 (chapter 16) serves to demonstrate the viability of the actor-based approach.

It targets both the invasive technology stack as well as small HPC systems. After an evaluation of

SWE-X10 both on CPUs and GPUs (based on the results of a bachelor’s thesis), the benefits of

lazy activation of actors is shown. SWE-X10 serves as one of the demonstration applications for

the invasive technology stack, and is is able to utilize the custom silicon developed within the

project. In chapter 17, I discuss the results of optimizing SWE-X10 into the invasive technology

stack. The performance of Pond, a tsunami simulation based on Actor-UPC++, is evaluated on a

many-core cluster in chapter 18. This serves as demonstration that it is possible to use the actor

model in larger-scale computations, and that the resulting performance is at least competitive, or

even better than the traditional approach.

6

2. Parallel Programming Concepts

Modern Computer architectures exhibit a wide range of parallelism across all levels. Within a

CPU core, it is possible to work on multiple instructions concurrently, interleaving the instruction

fetch, execution and retirement as well as computing multiple instructions at the same time. These

instructions may now not only perform an operation on a single value, but, depending on the

architecture, on up to 8 Double Precision (or 16 Single Precision) floating-point numbers1. Within

a CPU, there are usually multiple independent cores. Each of them will typically have its own

Level 1 and Level 2 cache, and a Level 3 cache that is shared across all cores. Possibly, there will

also be multiple CPUs in a computer. On this level, all cores typically have shared access to the

main memory of the system. In more sophisticated workstations or servers (nodes), this gets

more complicated as different cores will have varying access bandwidth and latency for different

regions of memory. Finally, for more complex computational tasks, a single machine may no

longer be sufficient. To solve these, multiple nodes are connected to form a compute cluster. Each

node in the cluster has its own working memory and compute resources, and they use a fast

interconnect to exchange data necessary to complete the computation. In many of these cases,

direct access to all parallel features leads to an exponential increase in complexity of the software,

and is, therefore, not feasible for application developers. Additionally, software written in this

way would not be portable to other computer architectures. Instead, frameworks and libraries

are used to make the parallelism accessible to developers in a simplified and structured way.

In this chapter, I will introduce terms andmodels frequently encountered in parallel programming.

There are multiple different classification approaches and models, with some focusing more on

the computer architecture perspective, and some more on the data perspective. This loosely

follows the work of Eijkhout, van de Geijn, and Chow (2011) and Hager and Wellein (2011).

2.1. Classification of Parallel Program Execution

An early classification of parallel program execution is Flynn’s taxonomy (Flynn, 1972). Flynn

classifies parallelism along two dimensions, instructions and data.

Single Instruction Single Data (SISD) comprises classic uni-processor systems following the von

Neumann architecture. In each computing step, one instruction is applied to one element of

data. In general, this model is still the underlying assumption for most imperative programming

languages. For example, the C programming language was originally targeted towards the PDP-

11 computer architecture, and its execution model still resembles the constraints imposed by

1 Using Intel Advanced Vector Extensions 512 (AVX-512) instructions (Intel Corporation, 2011).

7

CHAPTER 2. PARALLEL PROGRAMMING CONCEPTS

that architecture(Chisnall et al., 2015). In modern CPUs, there are typically multiple SISD units

working in concert.

Single InstructionMultiple Data (SIMD) originally referred to vector architectures. In these, the same

instruction is applied to multiple data elements at the same time. A lot of applications from the

scientific computing domain greatly benefit from this, as the same calculation is typically applied

to numerous data points. For this reason, vector computers such as the early Cray machines

dominated the supercomputer market of the 1970s and the 1980s, until they were superseded by

architectures using clusters of commodity processors (Espasa, Valero, and Smith, 1998). The Cray-

1 supercomputer was able to compute 64 double precision floating-point operations at the same

time (Cray Research Inc., 1976). Modern microprocessor architectures still use vector instructions

to accelerate workloads with regular patterns. For modern architectures, the typical vector length

is two (SSE) to eight (AVX-512) double precision floating-point values. SIMD parallelization

therefore still is an important component in fully utilizing modern HPC systems.

Multiple Instruction Single Data (MISD) is more difficult to summarize. Few computer architectures

actually implemented this model (Barney, 2010). The idea here is that multiple, potentially

different instructions, are applied in parallel to the same data element. One conceivable use case

would be a redundant computation using different methods, combined with an arbitration step

in the end, to obtain a system that is, as a whole, more fault-tolerant. Such a system is useful in

safety-critical use cases, and was used for example for the computer system of the Space Shuttle

(Spector and Gifford, 1984). In the realm of HPC, however, it is not commonly encountered.

Multiple Instruction Multiple Data (MIMD) architectures comprise basically any modern hardware

architectures, tightly coupled in the form of multi-core CPUs, and more loosely coupled in the

form of interconnected compute clusters (Barney, 2010). The former may be found in all current

form factors today, frommobile phone to server CPUs, and the latter is the prevalent organization

form for modern supercomputers. As such, MIMD is of great importance in general, and in HPC

specifically, where it is encountered on multiple layers of the parallelization hierarchy.

In the following years, this classification was extended to match different execution models

of emerging architectures. In the context of general purpose GPU computing, the term Single

InstructionMultiple Thread (SIMT) is frequently used. Onemay view it as a sub-category of SIMD. It

refers to the GPU’s execution model, where multiple threads of a kernel are executed concurrently

by multiple small compute cores in lockstep. For the application programmer, these instructions

behave independently, but internally, they share the same instruction control units (NVIDIA

Corporation, 2017). Finally, Single Program Multiple Data (SPMD), a subcategory of MIMD refers

to executing the same program on multiple processing units (Darema, 2001). In contrast to SIMD

or SIMT, program execution may diverge between different processes based on the data elements

computed. SPMD maps ideally to the prevalent cluster architectures, and is, therefore, the most

common execution model for HPC applications today.

8

2.2. CLASSIFICATION BASED ONMEMORY ACCESS TYPES

NODE

MEM

MEM

MEM

MEM

NODE

MEM

MEM

MEM

MEM

INTERCONNECTION NETWORK

…

Figure 2.1.: Sample system architecture for a compute cluster. Each compute node has two sockets,

and fourNUMAdomains. The nodes are connected using an interconnection network.

2.2. Classification Based on Memory Access Types

Another possibility to classify parallelism is motivated through the shape of modern HPC cluster

architectures. Figure 2.1 schematically depicts such an architecture. Each node comprises one or

more sockets, each with multiple processing units. Nodes are connected using an interconnection

network. To obtain the best possible performance, application programmers need to exploit

available parallelism within nodes as well as across node boundaries, and adhere to the structure

imposed by the hardware.

Memory within a node is freely accessible by all its compute units. In many cases, it is enough to

run a single process per compute node. Parallelism is then achieved by using multiple threads.

These threads share the same address space, therefore this type of parallelism is referred to as

shared-memory parallelism. This type usually exhibits a shared view on the data, i.e. all modifications

of data are immediately visible by other processing units. This mandates an implementation of the

caches thatmakeswrite accesses apparent across the cache hierarchies of the other processing units

in the shared memory domain. Typically, this is referred to as cache-coherence. However, shared

memory does not necessarily imply uniform access speed. With the increase of the number of cores

per node in recent years, providing a Uniform Memory Access (UMA), i.e. uniform bandwidth and

latencies from all processing units, became more difficult. For larger systems, e.g. multi-socket

systems or MIC architectures, memory is typically attached to subcomponents, e.g. to a socket in

a multi-socket system (Sodani, 2015). That component usually has a fast and direct connection to

that memory, while other components access the memory using some bridging component such

as a Network-on-Chip. Providing uniform memory access speeds would be possible, but to the

detriment of the access speed of the directly connected component. Instead, the speed difference

is explicitly exposed to the programmer, as a cache-coherent Non-Uniform Memory Access (ccNUMA)

architecture. To reach the best possible performance on these architectures, it is important that

9

CHAPTER 2. PARALLEL PROGRAMMING CONCEPTS

memory accesses take place within the NUMA domain of the executing processing unit as often

as possible.

Typically, the nodes in a cluster are connected using an interconnection network. Each node

executes one or more application instances, each with its own address space, and communicates

with instances on other nodes using the network. This is called distributed memory parallelism.

Communication in this context may be implemented by involving both the sending and the

receiving nodes’ processing units (two-sided communication). Alternatively, if the network interface

supports it, remote memory accesses (RMA)may be used. Then, only the processing unit initiating

the communication, either as sender or as receiver, needs to be actively involved. This is called

one-sided communication.

There also exist hybrids between shared and distributed memory: it has been proposed to view

the entire memory of a large-scale cluster as a single global address space. This makes it possible

to directly hold pointers to data on other nodes, and, depending on the implementation, to access

remote data directly. Naturally, the latency and bandwidth for remote accesses vastly differs

between local and remote accesses. To make the cost obvious to the application developer, the

address space is typically partitioned into segments corresponding to the individual hardware

units. The result is a Partitioned Global Address Space (PGAS) model. Two instances of the model

are discussed in this thesis: UPC++ in chapter 4 and X10 in chapter 5.

2.2.1. Bulk Synchronous Parallelism

The BSP model is an important formalism for parallel computations in distributed memory.

Valiant (1990) proposed it as a bridging model that formalizes a way to program distributed

systems and to estimate the execution time. The model makes assumptions about both the

hardware and the software, but is not restricted to modelling either, hence the term bridging

model. On the hardware side, it assumes n homogeneous processors that are fully interconnected

using a network with the facilities to perform a synchronization. Software is organized into a

finite sequence ofN super steps. Each supersteps, in turn, consists of three components: In the first

step, in the computation step the processors involved in the computation perform work on their

locally available data. In the second step, communication the processors exchange point-to-point

messages with other processors in order to communicate all necessary information to perform the

next computation step. Finally, in the third step, a synchronization step is performed to make sure

that all processors are ready to continue with the next super step. Based on this, the model allows

for the approximation of the overall runtime of a program as

T = Tcompute + Tcommunicate + Tsynchronize

=
∑
N

γnOps +
∑
N

βnMsg +
∑
N

λ

or N
(
γnOps + βnMsg + λ

)
if all super steps are identical. The individual times for the super

step components are summed up into combined computation time Tcompute, communication time

Tcommunicate and synchronization time Tsynchronize. For each computation component in each super

step, one needs to determine the number of operations nOps that are performed by each processor

10

2.3. CLASSIFICATION OF PARALLELISM BASED ON TYPE AND GRANULARITY OF WORK

1 void perform_stencil(float *restrict u, float *restrict u_next, size_t xs, size_t

ys) {↪→

2 for (size_t y = 1; y < ys - 1; y++) {

3 for (size_t x = 1; x < xs - 1; x++) {

4 u_next[y * xs + x] = u[y * xs + x]

5 - 0.25f * (u[y * xs + (x - 1)] + u[y * xs + (x + 1)]

6 + u[(y - 1) * xs + x] + u[(y + 1) * xs + x]);

7 }

8 }

9 }

Figure 2.2.: An example of a computation that is data parallel. The computation of an element of

the array u_next is only dependent on values from u, therefore the computation of

the values of u_nextmay be performed concurrently

and the total size of all transferredmessages nMsg. The units used depend on the desired hardware

parameters, but typically, one uses floating-point operations and bytes transferred. Furthermore,

one needs to determine the parameters for the compute performance γ, the network bandwidth

β, and the synchronization latency λ. In practice, it often occurs that all super steps are identical.

It then suffices to calculate each component once, and then multiply by the number of performed

super steps. The BSP model clearly separates the different computational phases, and therefore

provides for a clear mental model of parallel applications. The clear separation of the different

steps through the synchronization step further eases the conceptual burden on the application

developer. As long as the model is followed, no deadlocks or lifelocks may occur, and therefore

there is no need for more complex synchronization methods (Tiskin, 2011). The model has formed

the basis for modern HPC in the last decades, and numerous HPC applications are based on its

principles. An example for an application based on BSP is the non-actorized version of the SWE

code discussed in chapter 15.

2.3. Classification of Parallelism Based on Type and Granularity of Work

Performed

Another possibility for the characterization of parallelism is through the type and the granularity

of the work items that are to be concurrently performed. To this end, parallelism is classified on a

spectrum between data parallelism and task parallelism (Eijkhout, van de Geijn, and Chow, 2011).

In High Performance Computing, it is very common to operate on large arrays of data objects

(e.g. grid cells, grid points, molecules, ...) and to perform an identical operation on each of them.

One example would be a stencil code (see Figure 2.2). In the code, the values of an array, u_next,

are set based on the values of another array, u. As there are no direct dependencies between

different values of u_next, and u is only read, in theory, all values of u_next could be computed

in parallel. This type of problem may be efficiently parallelized using computers following the

SIMD paradigm, such as vector architectures, and also GPUs.

11

CHAPTER 2. PARALLEL PROGRAMMING CONCEPTS

i0 ← x2

i1 ← 3i0
i2 ←

√
x

i3 ← 5i2
i4 ← x

2
i5 ← i1 + i3
i6 ← i5 − i4
y ← i6

(a) Task Decomposition

y ← i6i6 ← i5 − i4

i5 ← i1 + i3

i4 ← x
2

i3 ← 5i2i2 ←
√
x

i1 ← 3i0i0 ← x2

(b) Task Dependency Graph

Figure 2.3.: An example of an ILP-level task graph. The vertices of the graph denote elementary

operations, and incoming edges signify that a vertex depends on the vertex the edge

originates from.

However, most programs contain more potential for concurrent execution. It is possible to

subdivide a program into tasks, self-contained sections of a program that perform a specific

functionality (Barney, 2010). In a further step, the tasks are analyzed to deduce the dependencies.

If two tasks are not dependent on each other, they may be executed concurrently. For example,

the term

y = 3x2 + 5
√
x− 2

x
(2.1)

may be decomposed into the following tasks as depicted in Figure 2.3a. Each task depends on the

completion of the tasks that compute its intermediate variables. The dependencies are depicted

in Figure 2.3b. Tasks that do not have a (transitive) connection may be computed concurrently.

Here, this would be, e.g. i1 ← 3i0, i3 ← 5i2 and i4 ← 2
x , or i5 ← i1 + i3 and i4 ← 2

x .

The tasks in the example above are very fine-granular. If the individual tasks are—like in the

example—on the granularity of individual operations, they are also referred to as instruction-

level parallelism (ILP). But the approach shown in the example works not only for fine-grained

parallelism, but also larger scale problems. In both cases, one first needs to identify tasks and their

dependencies, and then decide on a parallel execution scheme. For instruction-level parallelism,

the parallel execution is typically implemented by the CPU. Modern microprocessor architectures

are able to execute multiple operations at the same time, and are able to reorder the instruction

stream as needed to achieve maximum throughput (Hager and Wellein, 2011). More coarse-

grained tasks may be used for parallelization in HPC applications. Scheduling and distribution of

tasks is an NP-complete problem, even when significantly constrained (Ullmann, 1975). There are

specialized runtime systems for HPC applications which can schedule tasks onto shared-memory

as well as distributed-memory systems. In section 6.1, I will discuss the Regent programming

language2 for task-based HPC runtime systems.

2 Website: https://regent-lang.org

12

https://regent-lang.org

3. MPI and OpenMP: The Prevalent Contemporary

HPC Technology Stack

Up until the early 1990s, vector computers were the most popular computer architectures for

scientific workloadswith systems such as the Cray-1 dominating the computing centers at the time.

At the same time, highly integrated microprocessors comparatively gained in performance and

efficiency. At this point, the first HPC systems based on the technology began to appear. Broadly

speaking, it is possible to distinguish between two different categories: symmetric multiprocessor

systems (SMP), which have multiple CPUs operating on a shared memory, and massively parallel

systems (MPP), where many CPUs with their own memory segments are connected to form a

cluster. (Espasa, Valero, and Smith, 1998) In modern HPC systems, both categories can be found

within a single system. On the coarser level, multiple nodes are connected to form a cluster.

This cluster is then typically programmed using MPI. On the node level, there are typically

multiple CPUs, each with multiple cores. These are typically programmed using OpenMP. The

combination of these two programming frameworks forms the basis for a large majority of current

HPC applications. I will discuss MPI in section 3.1 and OpenMP in section 3.2.

3.1. MPI: Message-Based Distributed Memory Parallelism

For the early distributed systems, there existed a number of different, proprietary, and competing

standards, amongst others Intel NX (Pierce, 1988; MPI Forum, 2015). Most were specific to certain

computer architectures or vendors. This complicated the creation of portable software. MPI

emerged from an effort to provide a universally compatible standard. Starting out with a focus

on synchronous point-to-point communication, it was extended in a subsequent version, 2.0,

with features such as collective operations (first blocking, non-blocking with MPI-3.0), one-sided

communication operations or I/O operations (MPI Forum, 2015). It is important to note that MPI

is an interface standard, it describes the interface of a library and its semantics, but does not prescribe

a specific implementation. These are typically provided by the vendors of HPC systems. There exist

commercially distributed implementations (e.g. Intel MPI1), as well as widely used open source

implementations (e.g. MPICH 2 or OpenMPI3).

In this section, I will discuss the SPMD execution model using the example of MPI, and describe

the most important communication operations. As MPI is the currently most widely used parallel

1
https://software.intel.com/en-us/mpi-library

2
https://www.mpich.org

3
https://www.open-mpi.org

13

https://software.intel.com/en-us/mpi-library
https://www.mpich.org
https://www.open-mpi.org

CHAPTER3. MPI&OPENMP: THEPREVALENTCONTEMPORARYHPCTECHNOLOGYSTACK

Activity

Activity
Activity

Activity

Activity
Activity

Activity

Send

Send

Receive
(Store in local

Memory)

Receive
(Store in local

Memory)

Figure 3.1.: Schematic of synchronous and blocking MPI Send and Receive operations. Each Send

has to be matched by a receive on the target rank. The rank that initiates its part of

the exchange first has to wait for the partner to initiate its counterpart to perform the

actual data exchange.

model for HPC applications, this will serve to establish a baseline for comparison with other

models, discussed in the sections below. The description of the communication operations and

the interface are based on the standard published by the MPI Forum (2015).

3.1.1. Basic Operations

Most applications written usingMPI follow the SPMD style of execution, where multiple instances

of the same program are executed in different processes. In the MPI terminology, each process

is referred to as a rank. Ranks may consist of multiple threads, and have their own private

address space. For communication, a communicator object is used. Ranks registered with the same

communicator are able to communicate. The most default one is MPI_COMM_WORLD. It is created

upon initialization of the MPI library through a call to MPI_init(). At program termination, the

Communicator is deleted using MPI_Finalize().

To exchange data, point-to-point messages are sent. The most basic functions to achieve this are

MPI_Send and MPI_Recv. They allow for the exchange of structured data (Integers, Floating Point

Numbers, structured MPI data types) between exactly two ranks. A send operation is always

matched to exactly one receive operation (and the other way around). A receive operation will

only terminate once the corresponding send operation completes. The send operation has different

communication types available. In the synchronous case, the operation will only complete once

the data has been received. This behavior is illustrated in Figure 3.1. Here, the rank on the left

starts a send operation. It has to wait until the corresponding repeat is called by the middle rank.

As the sending rank is already waiting, the request will be executed immediately, and the middle

14

3.1. MPI: MESSAGE-BASED DISTRIBUTED MEMORY PARALLELISM

rank may resume computation. Similarly, when it sends data to the rank on the right, that rank is

already blocked in the corresponding receive operation.

The communication operations depicted in the example use the default blocking communication

mode. This causes the thread invoking the communication operation to block until the rank

on the other side of the communication operation has invoked its operation. Alternatively, it

is also possible to use non-blocking communication. Here, the rank receives a handle for the

communication request that may be queried to determine the operation’s state, i.e., to see whether

the communication partner has invoked the operation on its side. Non-blocking communication

operations have an “I” prefix to their operation name, e.g., MPI_Sendwould become MPI_Isend.

For send operations, there are three different modes available. Synchronous send operations only

return once the corresponding receive operation has invoked by the receiving rank. Buffered send

operations return once the data being sent is no longer needed for the send operation. This may

either be when the data has sent successfully, or when it has been copied to an MPI-internal

buffer. Finally, the Ready send operation assumes that a corresponding receive operation has

already been posted. The operation returns immediately. If that assumption does not hold, the

behavior is undefined. The application developer may select the type of the send operation to

be used using one of the prefixes for the operation (“B” for buffered, “R” for ready and “S” for

synchronous), and combine them with the non-blocking version. When no prefix is used, the MPI

implementation may decide the mode to use based on the input.

Figure 3.2 depicts a simple MPI program. Each process executes the main() function. The

first operation is the MPI_init(argc,argv) call, which initializes the MPI library. The calls

MPI_Comm_rank(MPI_COMM_WORLD, &rank) and MPI_Comm_size(MPI_COMM_WORLD, &numRanks)

serve to determine the number of the own rank and the overall number of ranks, respectively. The

first parameter in this case is a constant that holds the handle for the communicator encompassing

all ranks that is created during initialization, and the second one serves as the location to store the

respective result. At the beginning of the communication, Rank 0 sends a message to the next

rank. Afterwards it will wait for incoming messages. Ranks 1 to totalRanks - 1 will initially

receive messages. Once a rank receives a message, it will decrement the received number by

one and send it on to the next rank, wrapping around at numRanks. A rank will terminate once it

receives a number that is≤ 0. The example uses the default point-to-point operation primitives,

MPI_Send and MPI_Recv, to send and receive values. When using these blocking operations, care

needs to be taken not to create deadlocks. In this simple example, it is enough to have rank 0

kick off the sending with a single MPI_Send. In cases, where there is an exchange between all

ranks, e.g. a ghost layer exchange, the deadlock needs to be resolved explicitly. For example,

a deadlock would happen, if all ranks tried to send initially, followed by a receive. Then, all

processes would wait for the corresponding receive operation, and no progress could be made.

To mitigate this, one could, for example, have all evenly numbered ranks receive first, then and all

oddly numbered ranks receive first, and then the other way around. However, this is a common

problem, and, therefore, the standard also includes a combined MPI_Sendrecv operation that

takes care of the deadlocking issue transparently.

15

CHAPTER3. MPI&OPENMP: THEPREVALENTCONTEMPORARYHPCTECHNOLOGYSTACK

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #include <mpi.h>

5

6 int main(int argc, char **argv) {

7 int rank;

8 int totalRanks;

9

10 MPI_Init(&argc, &argv);

11 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

12 MPI_Comm_size(MPI_COMM_WORLD, &totalRanks);

13

14 int data = 100000;

15

16 if (rank == 0) {

17 data = 10;

18 MPI_Send(&data, 1, MPI_INT, (rank+1)%totalRanks, 0, MPI_COMM_WORLD);

19 }

20

21 while(data > 0) {

22 MPI_Recv(&data, 1, MPI_INT, (rank + totalRanks - 1) % totalRanks,

23 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

24 printf("MPI Rank %d of %d received token %d.\n",

25 rank, totalRanks, data);

26 data--;

27 MPI_Send(&data, 1, MPI_INT, (rank + totalRanks + 1) % totalRanks,

28 0, MPI_COMM_WORLD);

29 }

30 MPI_Finalize();

31 return EXIT_SUCCESS;

32 }

Figure 3.2.: Simple MPI Example using synchronous send and receive operations to bounce a

message between ranks.

16

3.1. MPI: MESSAGE-BASED DISTRIBUTED MEMORY PARALLELISM

Activity

Activity

Activity
Activity

Activity

Activity

Barrier

(a) MPI Barrier

Activity

Activity

Activity

Activity

Activity

Activity

Activity

A
B
C
D

Activity

A
B
C
D

A
B
C
D

Allgather

A B C D

A
B
C
D

(b) MPI Global Gather Opera-
tion

Activity

Activity

Activity

Activity

Activity

Activity

Activity

op(A,B,C
,D)

Activity
Allreduce

A B C D

op(A,B,C
,D)

op(A,B,C
,D)

op(A,B,C
,D)

(c) MPI Global Reduction

Figure 3.3.: MPI Collective operations. The first figure depicts the parallel flow of a MPI barrier.

The middle figure depicts an MPI_Allgather() operation. The figure on the right

depicts an MPI_Allreduce. The ranks of the given communicator are blocked once

they call the collective operation until all other ranks of the communicator have called

it as well.

3.1.2. Collective Operations

Using just point-to-point messages, it is possible to implement any communication pattern already.

However, there are communication patterns that are used frequently in HPC applications, and

re-implementing these for each new application would not make sense. Furthermore, the MPI

runtime may possess knowledge about the lower network layers that allow for optimizations in

the way the operations are implemented, that would not be available to the application developer4.

To this end, the MPI standard specifies collective operations. These describe specific and frequently

used patterns such as broadcasts, gathers, scatters, parallel reductions or all-to-all communications.

The semantics of these operations are described in the MPI Standard, but library developers are

free to implement optimized versions as long as they adhere to the requirements of the standard.

There are three types of operations that are supported: synchronization (barriers), communication

(gather, scatter) and computation (reductions). Common to all collective operations is that all

ranks of a communicator are involved (Barker, 2015; MPI Forum, 2015). In the following, I will

describe examples of each type.

Barriers are used to make sure all ranks in a communicator have reached a certain point in the code

before computations may resume. This is done by calling MPI_Barrier(comm), where comm is the

communicator that is to be synchronized. The function call will only return once all other ranks

of comm have called the barrier as well. The behavior is shown in Figure 3.3a. Gather operations are

used tomake pieces of operations available to all ranks. MPI_Allgather specifically collects a value

from all ranks of a collective, and makes them available to all ranks, as depicted in Figure 3.3b.

Global Reductions are used if values frommultiple ranks need to be processed into a single value, e.g.

the determination of a global maximum. MPI offers the operation MPI_Allreduce that performs

a global reduction on a value passed by each rank, and then makes the result of the reduction

operation available to all participating ranks (depicted in Figure 3.3c. There are a number of

4 It may be possible to optimize the pattern for a specific system, but that would result in a non-portable implementation.

17

CHAPTER3. MPI&OPENMP: THEPREVALENTCONTEMPORARYHPCTECHNOLOGYSTACK

Master
Thread

Worker
Thread 1

Worker
Thread 2

…

Worker
Thread n

Sequential
Section

Sequential
Section

Sequential
Section

Parallel
Section

Parallel
Section

Figure 3.4.: Fork-Join Parallelism using OpenMP. The Master thread controlling the flow of

execution is depicted in black, worker threads are depicted in blue. In parallel sections,

work is distributed onto the worker threads. Once all workers are done, sequential

execution is resumed.

available operations (e.g. MPI_MAX for the largest value, MPI_SUM for the sum of all values, and

MPI_LAND for a logical And operation over all values).

3.2. OpenMP: Fork-Join-Parallelism

While MPI is the de-facto standard for distributed applications, the most common technology for

parallelism within a shared memory domain is OpenMP (Dagum and Menon, 1998; OpenMP,

2018). Here, threads have access to the same memory segment, and thus explicit message passing

is not necessary. In many modern HPC applications, OpenMP is used to parallelize code on the

node-level, while MPI is used to parallelize across node boundaries. OpenMP is typically shipped

as an extension of a C, C++ or Fortran compiler. Clang, GCC or the Intel Compiler, for example,

ship with support for OpenMP. OpenMP consists of two components: a runtime library and a set

of compiler pragmas. The pragmas allow for a high-level and declarative programming style that is

then transformed by the compiler into multi-threaded code.

The main type of parallelism implemented in OpenMP is called fork-join parallelism. Here, the

application’s main thread is in control of the execution flow. Sections of code that are computation-

ally intensive and have little dependencies may be parallelized. In OpenMP, the overall workload

is distributed onto worker threads. Each worker thread performs part of the work, and afterwards

sequential execution is resumed. This behavior is illustrated in Figure 3.4. The advantage of

OpenMP is that the application developer does not need to specify how to parallelize a code

18

3.2. OPENMP: FORK-JOIN-PARALLELISM

1 float compute_element_average(

2 float *a, float *b,

3 float *c, size_t n

4) {

5 float avgSum = 0.0f;

6 for (size_t i = 0; i < n; i++) {

7 c[i] = (a[i] + b[i]) / 2.0f;

8 avgSum += c[i];

9 }

10 return avgSum;

11 }

(a) Sequential Version

1 float compute_element_average(

2 float *a, float *b,

3 float *c, size_t n

4) {

5 float avgSum = 0.0f;

6 #pragma omp parallel for

reduction(sum:avgSum)↪→

7 for (size_t i = 0; i < n; i++) {

8 c[i] = (a[i] + b[i]) / 2.0f;

9 avgSum += c[i];

10 }

11 return avgSum;

12 }

(b) OpenMP-parallel Version

Figure 3.5.: Reduction performed using OpenMP. The for loop itself is identical in both versions.

In Figure 3.5b, the OpenMP pragma parallel for is used to parallelize the loop. The

clause reduction(sum:avgSum) leads to the partial sums computed by the respective

worker threads to be combined into the final result through summation.

segment. Instead, it is sufficient to specify what should be executed in parallel. The specified

work is then split up based on the amount of resources available for the computation (which

may be set for example by the batch scheduler according to the user’s preference, or based on

the OMP_NUM_THREADS environment variable). There are multiple different annotations for this,

the simplest being one for parallel for-loops. The annotations are implemented in the form of

compiler pragmas. Pragmas are custom directives that may be interpreted by the compiler, but

are not formally part of the language. These pragmas may then be further annotated using clauses

that specify or constrain the behavior of the pragma. The compiler then generates code based on

the pragma and the code that follows it.

Consider a simple function compute_element_average(float *a, float *b), depicted in two

versions in Figure 3.5. In both the sequential and the parallel case, the function computes the

element-wise average of two vectors *a and *b, and stores the result in *c. Furthermore, the sum

of the averages is returned as the result of the function. In the parallel case, the loop is parallelized

using #pragma omp parallel for. This leads to the loop being divided into chunks that are then

executed by the worker threads. However, the summation of avgSum introduces dependencies

between the loop iterations. Some of these dependencies may be resolved using reductions. In the

given case, for example, the clause reduction(sum:avgSum)may be used. It directs the compiler

to generate code to collect the partial sums from the chunks at the end of the parallel computation,

and to fold the partial results into a singular result using the specified reduction operation.

Aside from the reduction clause, there are a number of other clauses that developers may annotate

parallel for loops with. For example, one may influence the scheduling of threads by the OpenMP

runtime through the schedule(<strategy>,<chunksize>) clause. Amongst others, the developer

may choose from static scheduling, which assigns chunksize number of iterations cyclically onto

19

CHAPTER3. MPI&OPENMP: THEPREVALENTCONTEMPORARYHPCTECHNOLOGYSTACK

worker threads. When no chunk size is specified, the total work is split up into one chunk

per thread. Dynamic scheduling assigns each chunk onto the first idle worker thread when it

is encountered. The correct choice of scheduler depends on the work performed in the loop.

For loops with a constant work per iteration, the static scheduling will typically yield better

performance, while for unpredictable work loads per iteration, the dynamic scheduling may be

better (Thoman et al., 2012). The default assumption of OpenMP is that all variables are shared

between threads. This may lead to unforeseen side effects, such as data races if variables are

modified concurrently by multiple threads. To control the data sharing behavior, OpenMP has

data sharing clauses. For example, the private() clause specifies that all variables passed to the

clause are private to each iteration. Now, in every iteration, these variables hold unique values.

However, the private annotation does not initialize them to their previous value. If that behavior

is desired, the lastprivate() clause may be used instead. Variables that are constrained in that way

are still private to each iteration, but they are initialized to the value they held before the loop.

OpenMPalso offers support for less regular parallelization patterns and other constructs frequently

encountered in parallel programming. Using sections, the application developer may specify a

number of segments that ought to be executed concurrently. Based on a code fragment annotated

thus, the compiler will generate code that distributes each segment onto a worker thread, and

then executes them in parallel using the aforementioned fork-join pattern. When the nature of

the parallel work is irregular, and the number of parallel chunks is not necessarily known in

advance, tasksmay be used. While the tasking functionality implemented using OpenMP is not

as advanced as in some of the more recent task-based runtime systems, OpenMP still allows

for the dynamic creation of tasks, the specification of inter-task dependencies (using the depends

claus) and the awaiting of their termination (using the taskwait pragma). Finally, OpenMP offers

compiler pragmas for barrier synchronization and for atomic operations as well as pragmas to

guide the compiler to emit vectorized code.

20

4. UPC++: PGAS-Based Distributed Memory SPMD

While MPI has been the prevalent API for distributed memory parallelism for the last two decades,

there have always been efforts to provide alternative runtime systems and libraries for inter-node

communication. Many of those are based on the PGAS model of parallelism. In contrast to the

message-passing paradigm described in section 3.1, in PGAS systems there exists a global view

of the memory, and there are facilities in place to access data on remote ranks. The way these

are implemented differs between the different runtime systems. Some, like OpenSHMEM (Baker

et al., 2017), UPC (UPC Consortium, 2013) or Co-Array Fortran (part of the Fortran language

starting with the Fortran 2008 standard) allow access of data on remote ranks directly, while

others, such as UPC++ (Bachan et al., 2019) or X10 (Tardieu et al., 2014), restrict access, and instead

require explicit transfer operations. The operations are always one-sided, i.e. only the initiating

node needs to become active, while on the communication partner’s side, the runtime or the

network adapter (if Remote Direct Memory Access (RDMA) is available) handles the request.

In the following, I will describe UPC++, an example of a PGAS library that follows the SPMD

model (similar to MPI), but uses modern language features to implement the PGAS characteristics.

Moreover, UPC++ is also the basis for Actor-UPC++, one of the actor libraries discussed in this

thesis. UPC++ is developed at the Lawrence Berkeley National Laboratory as part of the US

Department of Energy’s Exascale Computing Project. Its implementation is based on a formal

specification (Bachan, 2019). Using the language as an example, I will explain the basic features

common to many PGAS languages.

4.1. The UPC++ Machine Model

UPC++ is a library for modern C++, and is typically executed with multiple instances on a

distributed memory system. The abstract machine model of UPC++ comprises a fixed number of

processing elements (or ranks), as depicted in Figure 4.1, each with its own local memory. Per

physical node, there may be one or more ranks based on the needs of the application. Depending

on the parallelization strategy used by the application, different configurations may be used. For

applications with one thread per process, it may be reasonable to use one rank per (logical) core.

Applications using shared-memory parallelism may use configurations with, e.g., one rank per

Non-Uniform Memory Access (NUMA) domain. Ranks local to a node are grouped together in a

local team. The memory of a rank is segmented into two segments, private and shared. The private

segments contain all local objects. These are allocated and accessed using the facilities of C++, e.g.

through raw or shared pointers, or through references. The shared segment contains data allocated

using library allocator functions upcxx::new_<T> and upcxx::new_array<T>. These operations

return a global pointer, an object that serves as a global handle to locate the object within the global

21

CHAPTER 4. UPC++: PGAS-BASED DISTRIBUTED MEMORY SPMD

Node m

Rank k Rank k+1

Shared
Segment

Shared
Segment

Private
Segment

Private
Segment

Node n

Rank j Rank j+1

Shared
Segment

Shared
Segment

Private
Segment

Private
Segment

…

Figure 4.1.: UPC++MachineModel. Each physical nodemay have one ormoreUPC++ ranks. The

memory available to each rank is divided into a private and a shared segment. Data

resident in the shared segment is accessed via global pointers that may be dereferenced

if it is stored on the same node. Otherwise, explicit and asynchronous operations are

needed.

address space of the application instance. That object contains the rank that the allocated object

was located on, and a raw pointer to the object on that rank. Global pointers may be dereferenced

only by the rank owning the data, if the rank storing the data item is part of the dereferencing

rank’s local team. All other ranks need to use explicit remote read (upcxx::rget<T>()) or write

(upcxx::rput<T>()) operations to access the data.

4.2. The UPC++ Execution Model

One of the design goals specific to UPC++wasmaking the cost of operations explicit to application

developers, and to enable them to interweave longer-running communication operations with

computations (Bachan et al., 2019). This is achieved using the following two measures. The

first measure is to make all communication operations asynchronous. For each communication

operation, a handle is created and pushed onto a queue of deferred operations. While a com-

munication operation is being processed, it is moved to a second queue. Finally, there is a third

queue for handles with completed operations. UPC++ does not handle communication itself,

but uses GASNet-EX internally. GASNet-EX is a low-level library for one-sided communication

that provides backends for widely-used interconnection fabrics such as InfiniBand or Cray Aries.

Furthermore, MPI is supported as a fallback mode of operation (Bonachea and Hargrove, 2018;

Bachan et al., 2019).

The second measure is to require the explicit assignment of computation time to the library by

the application developer. Neither UPC++ nor GASNet-EX start their own threads. Instead,

the UPC++ API specifies for each function if and what kind of operations may be performed

22

4.3. PGAS CHARACTERISTICS OF UPC++

by the library. Two cases are distinguished: internal and user-level progress. Internal progress

comprises the communication operations that do not change the user-observable application

state, e.g. posting operations on other ranks or network operations. User-level progress consists,

e.g., of notifications to the application about completed operations, Remote Procedure Calls

(RPCs) or the execution of callbacks. Generally, internal-level progress is performed whenever

communication operations are issued, while user-level progress has to be provided manually

using the upcxx::progress() function. For an optimal performance, it is important to enable the

library to perform internal and user-level progress regularly.

UPC++ makes the state associated with handling a thread explicit in the upcxx::persona class.

The data structure contains internal data structures associated with a thread, and serves as a

destination point for notifications. Each operating system thread is assigned a persona. Further

personas may be created at will by the application developer. The master thread of an application

is assigned the rank’s master persona at library initialization. In addition to being the destination

for notifications, they also serve as the destination for incoming RPCs.

4.3. PGAS Characteristics of UPC++

Aside from global pointers and one sided memory transfer operations, UPC++ offers two im-

portant features for communication with other address space partitions, RPCs and distributed

objects.

RPCs allow a rank to execute an arbitrary code segment on another rank, along with the possibility

to transmit parameters as well as a to return a value. As with other operations that affect multiple

ranks, they are executed asynchronously. They are one-sided operations, which means that the

only effort that needs to be made from the remote rank is sufficient user-level progress. There

are two variants of the function: upcxx::rpc and rcp_ff. Both take a receiving rank, a function

object (e.g. an object with a publicly overloaded operator(), a function pointer or a lambda),

and the parameters the function object is to be called with. The first variant, upcxx::rpc, allows

for notifications when the local part of the RPC is completed and when it has been executed on

the remote side. The latter may also contain a return value. The second variant does not allow

the sender to track the operation completion, and hence provides slightly better performance,

there need not be any messages sent back to the initial rank once the operation completes. As an

example for the first variant, consider a function that adds a given number to all the elements

of memory segment on different rank (see Figure 4.2a). The RPC executes the lambda-function

passed to the rpc_ff call on the rank that owns the data in the global pointer. The lambda-function

first unwraps the global pointer, and then performs the operation on each element in the target

memory segment. The second variant for the RPC is shown in Figure 4.2b. Here, the contents of a

remote memory segment are summed up, and the result is returned to the rank that initiated the

operation. In both examples, the RPC is executed asynchronously. In the first case, the remote

rank needs to ascertain from the modified data that the call has been executed, and in the second

case, a future is returned, which allows the initiator of the operation to wait for its completion.

23

CHAPTER 4. UPC++: PGAS-BASED DISTRIBUTED MEMORY SPMD

1 void multiplyRemoteWithConstant(float constant, global_ptr<float> remoteArray,

size_t length) {↪→

2 rpc_ff(remoteArray.where(), [constant, remoteArray, length]() {

3 float *memory = remoteArray.local();

4 std::transform(memory, memory + length, memory, [constant](float element)

{↪→

5 return constant * element;

6 });

7 });

8 }

(a) RPC (Fire and Forget)

1 future<float> getSum(global_ptr<float> remoteArray, size_t length) {

2 return rpc(remoteArray.where(), [remoteArray, length] {

3 float *mem = remoteArray.local();

4 float res = std::accumulate(mem, mem + length, 0, std::plus<float>());

5 return res;

6 });

7 }

(b) RPC Returning a value

Figure 4.2.: UPC++ RPCs. The call in Figure 4.2a multiplies a given constant number to the

contents of a remotely stored array. The function in Figure 4.2b accumulates the

contents of an array into a single floating-point value.

24

4.4. ASYNCHRONOUS COMPLETIONS

Distributed Objects are global object identifiers that hold a value on all ranks. In UPC++, they are

templated as upcxx::dist_object<T>, they are created collectively by all ranks, and they consist

of a global identifier and an object instance of the specified type T. One of the problems solved

by distributed objects is the initial distribution of information between ranks. If, for example, an

RPC wants to modify data on another rank, this is not possible to do without having a handle to

it. Global Pointers are one possible option here, but without a known destination on the other

rank, it is impossible to send them. Distributed objects may be used as a solution to that problem.

For example, if one wants to accumulate pointers to arrays on other ranks onto a single rank (e.g.

rank 0), it is possible to implement it as shown in Figure 4.3. The example resembles a one-sided

collective gather operation. It is a frequently utilized pattern that may be used during initialization

in order to be able to send more information at a later time. As demonstrated in this example,

distributed objects are especially useful combined with RPCs. Along with global pointers, they

are the only way to access data of the receiving rank within the RPC. In the example, the call to

the depicted function accumulateGPtr() has to be performed on all ranks. First, all ranks create

a vector of pointers, and a distributed object that contains a pointer to the object. On rank 0, the

pointer may simply be added to the vector directly, and then the UPC++ runtime may be queried

for progress until all the pointers from the other rank have been added. The other ranks simply

post an RPC to rank 0 with the global pointer and the distributed object as parameters and waits

for its completion. For the operation to work, the object lifetime needs to be watched. As all

inter-rank communication is performed asynchronously, the application developer needs to make

sure that a distributed object exists on the other ranks when the access is made. For the RPC, the

runtime makes sure of the distributed object’s creation on the destination rank if a such an object

is passed as parameter. However, it is up to the application developer to make sure that the object

still exists on all ranks where it still may be accessed. In this example, it is ensured that a rank

only leaves the scope of the function once its data will no longer be accessed.

4.4. Asynchronous Completions

When dealingwith asynchronous communication functions of UPC++, it is often necessary to track

the status of the operation (e.g. to manage the lifetime of local buffers). There are three operation

states that are tracked: source completion, remote completion and operation completion. Source comple-

tionmay be signalled when resources on the side of the source of the communication operation are

no longer needed. Remote completion occurs when the data has reached the remote process and

may be used there. It is signalled to the context of the master persona of the remote rank. Opera-

tion completion is signalled when the operation is completed in the eyes of the initiating process,

and any transferred data is now available to the initiating process. The specification (Bachan, 2019)

defines for each operation which kind of completion events may be signalled (and which values

may be attached to them). For example, the library function upcxx::rget(upcxx::global_ptr<T>

src, T *dst, size_t count, Completions cxs) only provides an operation completion signal,

as soon as the requested data has been transferred successfully. On the other hand, upcxx::rput(T

*src, upcxx::global_ptr<T> dst, size_t count, Completions cxs) provides a source com-

pletion event once the data to be copied has been injected into the network (or an intermediary

buffer). The event signals the sender that the source data may now be modified or deleted. Fur-

thermore, there is a remote completion event sent to the master persona of the receiving rank

25

CHAPTER 4. UPC++: PGAS-BASED DISTRIBUTED MEMORY SPMD

1 std::vector<global_ptr<float>> accumulateGPtr(global_ptr<float> localPtr) {

2 std::vector<global_ptr<float>> res;

3 dist_object<std::vector<global_ptr<float>> *> resHandle(&res);

4 if (!rank_me()) {

5 res.push_back(localPtr);

6 while (res.size() < rank_n()) {

7 progress();

8 }

9 return res;

10 } else {

11 rpc(0, [](dist_object<std::vector<global_ptr<float>> *> &rv,

global_ptr<float> ptr) {↪→

12 std::vector<global_ptr<float>> &remoteVec = **rv;

13 remoteVec.push_back(ptr);

14 }, resHandle, localPtr).wait();

15 return res;

16 }

17 }

Figure 4.3.: UPC++ Distributed Objects. In this example, distributed objects are used together

with RPCs to accumulate pointers to global arrays on a single rank. Every rank greater

than rank 0 sends an RPC to rank 0 with its global pointer and a reference to the

distributed object containing an array of pointers. Rank 0 queries the UPC++ runtime

for progress until its vector contains the global pointers from all other ranks.

26

4.4. ASYNCHRONOUS COMPLETIONS

1 void sendLpcs(std::vector<global_ptr<float>> &ptrs) {

2 float result = perform_complex_operation();

3 int completedSends = 0;

4 for (auto &ptr : ptrs) {

5 auto completions =

6 source_cx::as_buffered()

7 | operation_cx::as_lpc(current_persona(), [&]() {completedSends++;});

8 rput(result, ptr, completions);

9 }

10 while (completedSends < rank_n()) {

11 progress();

12 }

13 }

Figure 4.4.: UPC++ LPC completions. In this example, I send the result of a complex operation to

a number of remote memory locations and use LPCs to track the progress.

once data is available at the destination, and an operation completion on the side of the initiating

rank once transfer has completed and the data is available on the remote rank.

UPC++ provides several ways to be notified of completion events (but some types of notifications

only work for specific completion events). The most basic way to be notified of a completion event

is to use Blocking. Here, the operation simply blocks, until the requested operation may access the

network to inject the data directly. Similarly, Buffered completion blocks until source completion is

reached. In contrast to the blocking behavior, the application may choose to buffer data internally,

or to wait for the network. Both these operations are available for source completion events only.

For operations that offer the remote completion event, it is possible to attach a RPC to notify the

remote rank of the completion of the operation (and to perform work on the remote data or to

provide meta information). RPCs are discussed in greater detail in section 4.3. Similarly to posting

an RPC for remote completion, it is possible to to attach a so-called Local Procedure Call (LPC) to an

operation. LPCs are function invocations, i.e. function objects along with calling arguments, that

are delivered to a specific persona on the same rank. If the operation returns a value, the function

object’s type signature has to provide an argument of the type of the returned object, otherwise

it has to have an empty argument list. The LPC will be enqueued for execution as soon as the

completion event they are attached to occurs. They may be used for completions on the issuing

rank, i.e. source completion and operation completion. As an example, I used LPCs to broadcast

the result of some complex operation to a number of remote memory locations (see Figure 4.4).

It is necessary to track the completion of all operations, and block to make sure that the result

is not overwritten. Therefore, I use source_cx::as_buffered() as the source completion, and

operation_cx::as_lpc(...) as the operation completion. In the LPC, I simply increment the

number of completed operations. After all the communication operations are posted, I query the

runtime for progress until all operations are completed. The downside to this approach is that it

only tracks one completion at a time. On the other hand, it enables the application to perform

more complex tasks rather than just tracking the completion through a counter.

27

CHAPTER 4. UPC++: PGAS-BASED DISTRIBUTED MEMORY SPMD

In some cases, it may be interesting to keep track of multiple asynchronous operations at the

same time. UPC++ offers two different structures for this, namely futures and promises. Futures

were originally proposed by Baker and Hewitt (1977) as an encapsulation of a value that may

not be available yet. They may be returned by longer-running functions that perform work

concurrently to the caller of the function instead of blocking until the operation is completed.

When the value is eventually needed, it is either returned directly if the operation producing it

has terminated, or the execution of the caller is blocked until the value is available. Alternatively,

it is possible to compose multiple futures. Given a number of futures, it is possible to create

a future that becomes ready when all the futures used for its creation become ready (when :
α future → β future → ... → ω future → (α × β × ... × ω) future). One may also pass a

function that will be executed once the future is ready. The result of that operation is then

another future whose return type depends on the value returned by the function to be performed

(then : α future → (α → β) → β future). UPC++’s use of futures follows that same pattern.

Futures are returned by asynchronous operations, or may be created explicitly. They hold a value,

either a singular one or a tuple, they may be composed using upcxx::when_all and it is possible

to react to their completion using upcxx::then. This principle is also best illustrated using an

example. Here, I accumulate a result from a number of remote memory locations. The naïve

way to implement this (see Figure 4.5a) copies the data from each rank, waits for completion

of the transfer, and then adds it to the partial result. This approach does not make use of the

asynchronous nature of UPC++, and leads to an unnecessary sequentialization of the remote

accesses. A better way (shown in Figure 4.5b) is to use future chaining, where instead of starting

with a value directly, I start with a trivially fulfilled future called globalSum holding the value 0.0f.

For each remote access, a new, combined future (combined) is created that becomes available as

soon as the future holding for the accumulated value and the value of the operation are ready. To

this future, I then attach a callback to obtain a third future that will hold the result of accumulating

both prior values. That third future is then assigned to globalSum. This is repeated for all remote

operations. Finally, the rank waits for the final value to be ready. The advantage compared to the

version shown in Figure 4.5a is that all communication operations are started without delay, and

the values are accumulated as they arrive1, while communication is still in progress.

Not all communication operations produce values. In some cases, it is enough to make sure

that a number of operations are completed, without the need for the production of a return

value. For this, UPC++ offers the concept of promises. Promises are initially created with a single

dependency. The application programmer may then attach–or register–further dependencies,

either explicitly, or by passing the promise object to a completion event. Once all desired additional

dependencies are registered, the initial promise is fulfilled, and a future object that may be tracked

by the application developer is created. Aside from tracking completion of UPC++ functions,

promises may also be helpful in tracking the completion of concurrently executing user code.

One may use promises, for example, to wait until communication and local computations are

completed, and only then initiate the subsequent step. As an example, I implemented the send

operation discussed above using promises Figure 4.6. Here, I just register each remote operation

with the promise object, finalize it to obtain an empty future, and wait for it to become ready.

Finally, both promises and futures may be attached to events that are signalled to the issuing

rank, i.e. source completion and operation completion.

1 The performance benefit will be more apparent for more complex operations.

28

4.4. ASYNCHRONOUS COMPLETIONS

1 float receiveSequential(std::vector<global_ptr<float>> &ptrs) {

2 float globalSum = 0.0f;

3 for (auto &ptr : ptrs) {

4 globalSum += rget(ptr).wait();

5 }

6 return globalSum;

7 }

(a) Sequential Gathering

1 float receiveFutures(std::vector<global_ptr<float>> &ptrs) {

2 future<float> globalSum = make_future(0.0f);

3 for (auto &ptr : ptrs) {

4 auto remoteResult = rget(ptr);

5 future<float, float> combined = when_all(globalSum, remoteResult);

6 globalSum = combined.then([](float a, float b) {return a+b;});

7 }

8 return globalSum.wait();

9 }

(b) Gathering Using Future Chaining.

Figure 4.5.: UPC++ Futures. The function on the left gathers values from other ranks sequentially,

while the version to the right uses asynchronous future chaining to overlap communi-

cation and computation.

1 void sendPromises(std::vector<global_ptr<float>> &ptrs) {

2 float result = perform_complex_operation();

3 int completedSends = 0;

4 promise<> allCompleted;

5 for (auto &ptr : ptrs) {

6 auto completions = operation_cx::as_promise(allCompleted);

7 rput(result, ptr, completions);

8 }

9 future<> done = allCompleted.finalize();

10 done.wait();

11 }

Figure 4.6.: UPC++ Promises. In this example, I send the result of a complex operation to a number

of remote memory locations and use promises to track the progress.

29

5. X10: Asynchronous Partitioned Global Address

Space

With the goal of improving programmer productivity while keeping a high performance, the

United States Department of Defense funded a number of projects in the early 2000s to de-

velop new methods to program modern HPC systems (Dongarra et al., 2008). Two of these

languages, Chapel1 and X10 2, follow the Asynchronous Partitioned Global Address Space (AP-

GAS) paradigm. In contrast to “traditional” PGAS, the aim is not just to provide a global and

coherent view on the memory, but also onto the entire parallel computation. In the following, I

will explore the APGAS paradigm on the example of the X10 Programming Language. I chose X10

as an example over Chapel mainly for its role in InvasIC. The project chose X10 as the primary

application language, as the APGAS paradigm it implements was seen as a good fit for the pro-

posed model of a cache-incoherent Multiprocessor System-on-Chip (MPSoC). Thus, it is also the

basis for ActorX10 and SWE-X10. However, at this time, only Chapel is still actively developed.

The technical details of the language are taken from the X10 language specification (version 2.3.13)

by Saraswat et al. (2013), unless indicated otherwise.

X10 is a strongly object-oriented (everything is an object), statically typed and compiled program-

ming language. It was originally developed as a language targeting novel hardware architecture

developed in the same project (Dongarra et al., 2008). The scope was extended later to include

classic cluster architectures (Dongarra et al., 2008) as well as cloud architectures (ElasticX10 2015).

There are two compiler targets for X10. With the NativeX10 target, the X10 compiler transpiles the

source code to C++-98, which may then be compiled to machine code using a suitable compiler

such as GCC or the Intel Compiler. Alternatively, with theManagedX10 target, it is translated to

Java, which is then compiled to Java Byte Code and executed by a suitable Java Virtual Machine

instance. Depending on the selected target, it is possible to interact with source code written in

either target language. The compiler, IDE, runtime and utilities are available as free software

under the Eclipse Public License.

X10 represents the computational resources available to the application explicitly through places.

Places represent shared memory domains, akin to ranks in UPC++ or MPI. Like ranks, they may

encompass one or more threads and a bounded amount of memory that is uniformly accessible

by all hardware threads (Saraswat et al., 2013). Threads are not exposed directly in X10, instead

concurrency is expressed through activities that aremapped to a finite number of operating system

threads. Program execution is initiated by executing the mainmethod on place 0. From there, the

1
https://chapel-lang.org

2
http://www.x10-lang.org

3 We use this version to maintain compatibility to the implementation used within the Invasive Computing project.

The current version of X10 at the time of writing is 2.6.2

31

https://chapel-lang.org
http://www.x10-lang.org

CHAPTER 5. X10: ASYNCHRONOUS PARTITIONED GLOBAL ADDRESS SPACE

Place 0 Place 1 Place 2 Place 3

Figure 5.1.: APGAS style parallel Execution in X10. The figure depicts a parallel execution on

multiple places. Yellow bars denote activities performing computations, the dashed

green arrows demote new activities being spawned (possibly on other places), and

the blue arrow denotes controlled termination of activities.

application developer may start other activities locally as well as on remote places. Activities may

hold references to local data as well as data on remote places, but only locally available data may

be dereferenced, i.e. read or modified. Data from remote ranks may be obtained as a copy for

read accesses, or modified directly by starting a remote activity at the place containing the data.

5.1. X10 Core Language and Type System

X10 is a statically typed, object-oriented language. Its early versions were an extension of Java,

and to this day, it shares some of its characteristics. Most notably, all code is implemented in the

scope of class (or struct) definitions. The basic class definitions closely follow Java semantics: one

defines a class by specifying its super-classes, implemented interfaces, attributes and methods.

As in Java, each class is situated in a package, and one is able to specify visibility of attributes,

methods and the class itself using the accesses specifiers public for global visibility, private for

visibility only to other class instances, or no access specifier for package-level visibility. Instance

objects of classes are assigned and passed to functions as references. Similarly to Java, generic

types are supported. It is possible to parametrize a class with one or more parameters, and thus

implement generic containers.

In contrast to Java, there are no primitive values. However, it is possible to define custom value

types using the struct keyword. In contrast to classes, structs are allocated on the stack, do

not support inheritance, and are generally immutable. They are passed and assigned by value.

32

5.1. X10 CORE LANGUAGE AND TYPE SYSTEM

Together with support for operator overloading, it is possible to define custom arithmetic types.

For example, the struct Complex provided by the X10 standard library for the representation

of complex numbers is simply a struct definition with overloaded operators. In addition to

“traditional” objects, one can also define function objects. They may be assigned to variables, and

used as class attributes, or as parameters for methods. For example, a simple function may be

defined as val squared = (f:Float) => x*x. It would be of type (Float)→ Float, and is called

the same way as one would call other methods: squared(4.5f).

A notable difference from Java is the inclusion of dependent types. Dependent types are types

that depend on a value (Barthe and Coquand, 2002; Pöppl, 2011). For languages with a classic,

strong type system, such as Standard ML, or Haskell, it is not possible to specify the types of some

functions with varying number of parameters statically. A simple example relevant for scientific

computing are multi-dimensional arrays. Many scientific applications use them to represent

their unknown quantities. Often, several different arrays of the same size and dimensionality are

needed, but that requirement is not visible in the code, but only at the allocation site. Instead,

memory is often accessed directly by reconstructing the memory layout based on knowledge

that is not explicitly stated in the code. Alternatively, one may try to formalize and represent

that knowledge in the code directly. To implement that, one option is to specify the number of

dimensions as an instance property. It is possible to implement generic functions then. However,

then one has to perform runtime-checks for the number of dimensions for every call, and it

would be impossible to enforce certain limitations statically (e.g. only two-dimensional arrays).

Furthermore, the generated code for iterations over the array may not be as efficient, as the

compiler may not be able to determine the structure of the iteration, and therefore may not

be able to perform any loop transformations. Another option is the introduction of subtypes

for the desired categories, e.g. one-dimensional, two-dimensional or three-dimensional arrays.

This allows for the implementation of shared functionality by using a common super-class, but

sacrifices flexibility. Here, it is possible for the compiler to generate efficient loops, as the structure

is known at compile-time. However, extensions, such as support for four-dimensional arrays,

necessitate the implementation of a new subclass.

Using dependent types, the number of dimensions may be specified as part of the type definition.

When the type is used, it may be constrained, e.g. by only allowing arrays of specific dimensions.

This allows the use of arbitrarily dimensioned arrays without forcing checks of the number of

dimensions at runtime. Instead, constraints are enforced during type checking. Depending on the

type, type definitions may result in complex, recursive declarations4. This makes type-checking

dependently typed programs undecidable (Augustsson, 1998; Barthe and Coquand, 2002). To

ensure that compilation terminates eventually, one can either insert an explicit termination

condition (such as in Cayenne), or limit the type system to exclude any properties that may result

in divergent behavior. In X10, the latter approach is chosen for dependent typing. The language

enables for the constraining of classes using so-called properties, immutable values with public

visibility. The values specified in class properties may then be used to constrain parameters and

return types of functions. Constraints are of the form
∧

c∈C c, where C is the set of the constraint

expressions of a given Type. These expressions may be, amongst others, value (in)equalities,

type (in)equalities, expressions specifying type hierarchies and nullability checks. Within these

expressions it is possible to use literals, immutable class attributes, this (referring to the instance

4 cf. printf() definition in Augustsson (1998)

33

CHAPTER 5. X10: ASYNCHRONOUS PARTITIONED GLOBAL ADDRESS SPACE

the method is called on in instance methods), self (for the object instance of the type being

constrained), here (as the stand-in for the place the code is executed on), property methods (pure

methods with a single return statement following this set of constraints) and attribute accesses

such as t.f. Adhering to these restrictions allows the X10 type system to remain decidable,

while still enabling interesting use cases, such as the aforementioned multi-dimensional arrays.

X10 offers support for multi-dimensional arrays with arbitrary coordinate sets. One may use

dependant types to constrain the structure of the coordinate sets. For appropriately constrained

sets of coordinates, essentially amounting to zero-based, continuous and rectangular arrays, the

X10 compiler is able to generate efficient nested loops. This optimization is an important building

block for obtaining good application performance in X10.

Type constraints allow for the generation of safe code without the need for checks performed

at runtime. I demonstrate this using the example of matrix-matrix multiplication. The class is

consistently annotated using type constraints to ensure that only matrices of fitting dimensions

are multiplied with each other. In classical programming languages, these constraints would

have to be checked as part of the implementation of the class’s functionality, but here, they are

checked and enforced by the compiler. Using constraints consistently enables the compiler to

avoid inserting runtime checks of the type constraints. This is another important building block to

obtain good application performance in X10. It is possible to prevent the compiler from inserting

runtime checks by treating them as type errors instead. The product Cm,n of two matrices Am,k

and Bk,n may be defined element-wise as cm,n =
∑j

i=1 am,ibi,n. This leads to two constraints

on the size of the matrix: (1) The size of matrix C depends on the number of rows in A and the

number of columns inB. (2) The number of columns inA needs to be equal to the number of rows

in B. This may be expressed directly using X10 type constraints, as shown in Figure 5.2. In the

code listing, dependent types are used in multiple places. The declaration of the backing storage

constrains the array holding the data to be two-dimensional and rectangular. For the element-

wise matrix sum, all three matrices need to have the same size. This is guaranteed with the type

constraint Matrix{(self.rows == this.rows) && (self.columns == this.columns)}, where

this references the left-hand-side of the operation, and self the right-hand-side. For the matrix-

matrix multiplication, constraint (1) with Matrix{(self.rows = this.rows) && (self.columns

== other.columns)} for the parameter and (2) with Matrix{this.columns = sef.rows} are sat-

isfied. Using these constraints, no more size checks need to be performed at program execution

time.

The implementation of constraints in X10 has severe drawbacks, however, especially when dealing

with type casts. For instance, using the matrix class from the previous example (Figure 5.2), it is

possible to construct the following sequence of statements that compile without errors with all

static checks enabled.

1 val a = new Matrix(4,4, (p:Point(2)) => 1.0f);

2 var mutableMtrix : Matrix = a;

3 val evil : Matrix{rows == 7 && columns == 7} = f as Matrix{rows == 7 && columns

== 7};↪→

In practice, this implies that one cannot really trust the guarantees given by the type constraints,

especially when objects are taken from contexts outside the developer’s control.

34

5.1. X10 CORE LANGUAGE AND TYPE SYSTEM

1 public class Matrix(rows:Int, columns:Int) {

2 val storage : Array[Float]{rect, rank==2};

3

4 public def this(rows:Int, columns:Int, initialization:(Point(2))=>Float) {

5 property(rows, columns);

6 val matRegion = Region.makeRectangular([0,0],[rows - 1, columns - 1]);

7 this.storage = new Array[Float](matRegion, initialization);

8 }

9

10 public operator this + (other:Matrix{(self.rows == this.rows) &&

(self.columns == this.columns)})↪→

11 : Matrix{self.rows == this.rows && self.columns == this.columns} {

12 return new Matrix (rows, columns, ((p:Point(2)) => this.storage(p) +

other.storage(p)));↪→

13 }

14

15 public operator this * (other:Matrix{this.columns == self.rows})

16 : Matrix {(self.rows == this.rows) && (self.columns == other.columns)} {

17 return new Matrix (this.rows, other.columns, ((p:Point) => {

18 val row = p(0);

19 val column = p(1);

20 val target = this.columns;

21 var res : Float = 0.0f;

22 for ([i] in 0 .. (target - 1)) {

23 res += this.storage(row, i) * other.storage(i, column);

24 }

25 return res;

26 }));

27 }

28

29 public def setMatrix(other:Matrix{(self.rows == this.rows) && (self.columns

== this.columns)}) {↪→

30 for ([y,x] in storage) {

31 this.storage(y,x) = other.storage(y,x);

32 };

33 }

34 }

Figure 5.2.: Dependently typed Matrix class in X10. The implementation of the Matrix-Matrix

multiplication uses the X10 type constraints to statically ensure that the matrices used

in the computation have the correct type.

35

CHAPTER 5. X10: ASYNCHRONOUS PARTITIONED GLOBAL ADDRESS SPACE

1 def doWork() {

2 async f();

3 async {

4 async g1();

5 async g2();

6 g3();

7 }

8 h();

9 }

h()

g3()

g2()

g1()

f()

doWork()

Figure 5.3.: Left: sample function that spawns asynchronous activities. On the right, the activities

are visualized using an activity tree. Green arrows denote the spawning of a new

activity.

5.2. Concurrency in X10

The main concept to express intra-node parallelism in X10 are activities. Their execution behavior

is similar to user space threads, in that they may have their own local state, and that they are

managed and scheduled onto a pool of operating system level worker threads by the X10 runtime.

A new activity may be started by using async S. Anything within statement Swill be executed

concurrently to the activity that spawns it. One may combine this with other statements, e.g. for

([i] in 0 .. 7) async f(i) executes f(i) on eight activities in parallel. It is also possible to

spawn activities recursively. This essentially leads to a tree-shaped structure of the activity spawn

graph, a concept that is used to monitor the lifetime of activities. An example tree of activities

may be seen in Figure 5.3. The function doWork() spawns two activities, one that executes f(),

and a second one that itself recursively spawns other activities. Depending on the complexity of

the executed work, child activities may outlive their parent. In the X10 terminology, an activity is

terminated locally once its own execution has concluded. For example, the activity started in line

3 is locally terminated once the function call to g3() returns. On the other hand, an activity is

globally terminated once itself and all descendant activities are terminated. In the example, global

termination of the activity started in line 3 is reached once itself, the two activities executing

g1() and g2() and all their descendants have reached local termination. In cases where global

termination of all child-activities is needed before proceeding with the computation, the finish

S statement may be used. It only terminates locally once all activities spawned in S are terminated

globally, i.e. all activities spawned in S finished their work. This is best illustrated with another

example: the work performed here (see Figure 5.4) is identical to the one performed in the prior

example (Figure 5.3). The difference is that I ensure that the invoking activity only returns from

the function call to doWork() once all child activities are terminated, and that g3() is only called

once the two activities calling g1() and g2() are terminated. If necessary, the activity that contains

the finish statement is sent to sleep until its descendants are done with their work.

The last important ingredient for local concurrency in X10 is atomic execution. There are two state-

ments for this: atomic S executes statement S atomically, and when (c) S executes S atomically

once condition c is met. The atomically executed statement must not spawn any activities, block,

or place-shift. Doing so results in a runtime exception being thrown. An important restriction

36

5.3. PARTITIONED GLOBAL ADDRESS SPACE IN X10

1 def doWork() {

2 finish {

3 async f();

4 async {

5 finish {

6 async g1();

7 async g2();

8 }

9 g3();

10 }

11 h();

12 }

13 }

h()

g3()

g2()

g1()

f()

doWork()

Figure 5.4.: Left: sample function that spawns asynchronous activities, and use of the finish

statement to enforce execution order. On the right, the activities and their dependen-

cies are visualized using an activity graph. Green arrows denote the spawning of a

new activity. Blue arrows denote dependencies onto an enclosing finish, and dotted

lines denote time activities have to spend waiting.

of the feature is that atomic execution is only guaranteed relative to other atomic blocks. In

essence, this is done by only allowing a single atomic block per place to be executed at the same

time. Furthermore, the when-statement only gets notified of state-changes within atomic sections,

otherwise the change may be ignored. These restrictions make the use of atomic blocks in X10

somewhat problematic in performance-sensitive code, which results in the X10 performance

guide’s recommendation to use atomic blocks only sparingly, and to completely avoid when (X10

Performance Tuning 2015).

5.3. Partitioned Global Address Space in X10

Parallelism across node boundaries in X10 is supported via places. The number of places is fixed

at application start-up. Each place corresponds to a shared-memory domain (akin to ranks in MPI

or UPC++). All objects in X10 reside on the place they were declared on. Data is exchanged using

active messages. An active message is sent using the at (p) S expression, where p is a valid place

and S a statement that may also include a return value. The execution of the at, also referred to

as place-shifting, is synchronous. When an activity enters a place shift, it is suspended, the S is

executed on place p and then resumed as soon as S is finished. Before S can be executed, all objects

accessed in it are collected by the X10 runtime. Each object is then serialized recursively, i.e. all

fields of the object, as well as all objects it references, are converted into a linear representation

and sent to the other place. There, they are deserialized and recursively reconstructed. In essence,

a complete, deep copy of the object graph accessed in S is made. The code for the serialization and

deserialization of a class is generated automatically by the compiler without interference by the

application developer. Like UPC++, X10 supports global pointers (implemented as GlobalRef[T])

and distributed objects (as PlaceLocalHandle[T]).

37

CHAPTER 5. X10: ASYNCHRONOUS PARTITIONED GLOBAL ADDRESS SPACE

It is possible to combine at with other X10 language constructs. By combining it with async, one

can asynchronously start an activity on another rank whose termination may be awaited using

the finish construct. This may be used to create large amounts of parallelism very concisely, as

demonstrated in the code segment below:

1 finish for (p in Place.places()) async at (p) for ([i] in 0..7) async {

2 f(data,p,i);

3 }

This statement essentially executes a function f using shared as well as distributed memory

parallelism. The outer for loop iterates over all places, and asynchronously starts activities on all

places in the computation. The inner loop then creates eight asynchronous activities that each

execute fwith the specified parameters. All activities register with the enclosing finish on the

initiating place. The original computation only resumes once all other activities are terminated.

Place shifting is a very powerful concept, but there are some subtle pitfalls. Most notable is the

implicit capture of objects. As an object-oriented language, most data is part of larger object

structures. But in some cases, only a certain attribute within a larger structure is needed remotely.

However, the X10 runtime is not able to statically determine this, and will always copy the entire

object, as shown on the left side in the example below:

1 // m will be transferred

2 val m : Matrix = getMatrix();

3 at (here.next()) {

4 performSomeWork(m.rows * m.columns);

5 }

1 val m : Matrix = getMatrix();

2 val rows = m.rows;

3 val columns = m.columns;

4 at (here.next()) performSomeWork(rows *

columns);↪→

This results in the entire matrix m including all matrix elements being transferred over to the other

place, even though only information about the matrix’s size are needed. While the behavior is

still fairly obvious in this example, it is more difficult to see when attributes or methods of the

current object are accessed. This leads to access of the corresponding this object, and therefore

to its serialization and transfer. However, it is possible to avoid the overhead by creating local

variables that hold the values that are supposed to be transferred, as demonstrated in the listing

above, on the right.

Another potential pitfall may arise when it comes to the copy-semantics of place-shifting. When-

ever a place shift takes place, a deep copy of accessed objects is created, even when the object

resided at the destination place originally. This may lead to bugs, as demonstrated in the following

case. The goal is always to perform a complex task asynchronously on another rank, and then to

modify the local object with the result of the remote operation. The straightforward approach

taken by the code in the following listing on the left side seems intuitively correct.

38

5.3. PARTITIONED GLOBAL ADDRESS SPACE IN X10

1 // Original Place is Place(0).

2 val m : Matrix = getMatrix();

3 at (Place(1)) async {

4 val tmp = m + m;

5 at (Place(0)) async {

6 // Incorrect. Working on a

7 // copy of a copy of m!

8 m.setMatrix(tmp);

9 }

10 }

1 // Original Place is Place(0).

2 val m : Matrix = getMatrix();

3 val mRef = GlobalRef[Matrix](m);

4 at (Place(1)) async {

5 val tmp = m + m;

6 at(mRef.home) async {

7 mRef().setMatrix(tmp);

8 }

9 }

However, as stated above, each place shift leads to a copy. When the program shifts to place 1, it

copiesmP0 to obtain (mP0)P1
copy, and uses it to compute the temporary result tmp. The intention of

the next place shift is to modify the originalmP0 on place 0. Instead, a copy (mP0)P1
copy is created.

The copy ((mP0)P1
copy)

P0
copy is then modified to hold the data of the copy of tmp. As soon as the

place shift ends, both objects will be removed, as there are no more references to it. Therefore, the

update is lost. The listing on the right solves this problem using global references. As in the other

listing, the function copiesmP0 to obtain (mP0)P1
copy and to use it in the computation. However,

when the result is propagated back, a global referencemP0
Ref is used. This reference is also copied,

first to place 1, then back to place 0, yet, unlike before, this time only a reference is copied this

time, and that copy of the other reference still points the original object. We encountered this type

of bug frequently during the implementation of actor migration in ActorX10, as the migration

requires an extremely precise tracking of different, potentially circular references to actor graph

components on different Places.

39

6. Task-Based Parallelism

Aside from MPI and OpenMP, the prevalent style of parallelism in HPC today, as well as various

incarnations of PGAS, there are a number of other notable approaches that follow a compara-

tively high-level approach to parallelism. Two of the more widely used frameworks are High

Performance ParalleX (HPX) and Legion (with Regent). Both are representatives of task-based

runtime systems. Like actors, tasks may be used to formally describe concurrent program exe-

cution. Formally specified program segments (tasks) and their inter-dependencies form a task

graph. Tasks that do not depend on each other may be executed concurrently. However, unlike

actors, each task only exists intermittently for a single execution, whereas actors typically1 have

an extended lifetime. For coarse-granular parallel parallelism, there are several runtime systems

such as Legion (Bauer et al., 2012), Uintah (Meng, Humphrey, and Berzins, 2012), HPX (Kaiser,

Brodowicz, and Sterling, 2009) or StarPU (Augonnet et al., 2011). Recently, this model has also

been implemented in shared memory by OpenMP (see section 3.2). First, I will describe Legion

and Regent, as they enable the implementation of parallel programs without reqiring the explicit

formulation of parallelism. With Regent, only the dependencies of a task need to be described.

The formulation of the task graph is performed as the programm is generated. My second ex-

ample, HPX, implements task-based parallelism solely using modern C++, using futures and

asynchronous program execution. This approach is similar to the one taken to asynchronous

communication in UPC++. Furthermore, HPX is one of the frameworks we evaluated in our

performance study of the SWE-PPM code (see chapter 15).

6.1. Legion and Regent

In the following, I will discuss Regent (Slaughter et al., 2015), a high-level task-based programming

language as an example implementation of task parallelism for distributed HPC systems. The

Regent language is implemented as a Domain-Specific Language (DSL) on top of Lua as an

extension of Terra (Bauer, 2014; Slaughter et al., 2015). Terra is a low-level programming language

that realizes a multi-stage programming model (DeVito et al., 2013). In essence, Lua is used as a

meta-programming language to generate a Terra program. The Terra constructs are then compiled

into machine code using LLVM. Regent extends Terra with additional constructs to express task

parallelism. Compared to using C++, this approach allows the Regent/Terra compiler a greater

insight into the structure of the computation and the data structures involved, which in turn

enables more opportunities for optimizations and especially for vectorization. For the application

developer, the usability is increased, as the entire program is expressed in Lua and its DSLs,

1 Depending on the precise formulation of the model. For the FunState model discussed in this thesis, they typically

exist for the entire duration of the computation.

41

CHAPTER 6. TASK-BASED PARALLELISM

compared to using the C Preprocessor, C++ template meta-programming, and the C++ language

itself. The parallel constructs in Regent are mapped to equivalent constructs in the Legion runtime.

Legion itself is a C++ framework that implements a task-based parallel programming model, but

leaves more implementation details, such as the data layout used for a specific task’s data, to the

application developer. The code generated by Regent uses knowledge about the task graph in

order to provide reasonably optimized generated Legion code (Slaughter et al., 2015).

Tasks are the fundamental building block in Regent. Each task specifies the data segments (or

Regions) they operate on, as well as the type of operation (reading, writing, or reducing) that is

being performed. Tasks are submitted sequentially, and Regent ensures that the parallel execution

produces the same results as the sequential one. If it is provable, either statically by the compiler,

or at execution time through the runtime system, that two tasks do not interfere with each other’s

execution, they may be scheduled concurrently. To determine the existence of dependencies, each

task is annotated with the data that is accessed, and what kind of operations are performed by the

data. For example, if two tasks access disjoint data segments, or they access the same segment, but

only by reading it, they may be scheduled concurrently (Slaughter et al., 2015; Slaughter, 2017). A

simple task to generate the nth Fibunacci number in parallel may be written as

1 task fibunacci(n) do

2 if n < 1 then

3 return 1

4 else

5 var left = fibunacci(n-1)

6 var right = fibunacci(n-2)

7 return left + right

8 end

9 end

Each invocation of fibunacci is scheduled as a task. Two tasks may be executed concurrently, if

they do not access shared data structures in a way that might produce race conditions. Regent

requires tasks that access shared data to be annotated to specify what data will be accessed, and

how. For the fibunacci example, there are no accesses to shared data, so no annotation is needed.

The fibunacci task itself is executed sequentially, but tasks may spawn other tasks recursively. To

avoid waiting for results from other tasks, the Regent compiler automatically encapsulates results

from tasks started asynchronously into futures. Additionally, some of the basic operations of

Regent, such as the “+” in the example, are overloaded to support futures directly, and therefore

do not block themselves. Thus, the fibunacci task only blocks once the return statement is

reached. This simple example already demonstrates the advantage of the approach taken with

the Regent language: the implicit generations of future objects allows for the creation of arbitrary

tasks graphs while still reading like sequential code.

For large-scale parallel applications, it is necessary to spawn large number of tasks very efficiently.

Regent supports this using the index launch construct. It allows for the large-scale launch of tasks

in parallel. If tasks are launched in a loop, and there are no dependencies between the iterations,

the compiler will automatically launch all tasks in the loop at once. In order to make large-scale

parallel computations on a singular dataset feasible, it has to be possible for multiple tasks that

work on the set concurrently without introducing data dependencies. Regent and Legion support

42

6.1. LEGION AND REGENT

1 task f(r : region(...))

2 where reads writes(r)

3 do

4 -- Implementation

5 -- omitted

6 end

7

8 -- Main Simulation:

9 var N = 8

10 var B = 2

11 var I = 0..N x 0..N

12 var R = 0..1 x 0..B

13 var C = 0..B x 0..1

14 var grid = region(I, ...)

15 var rows = partition(equal, grid, R)

16 var cols = partition(equal, grid, C)

17 for i = 0, B do f(rows[{0, i}]) end

18 for j = 0, B do f(cols[{i, 0}]) end

(a) Region Task with Partitions (Slaughter, 2017)

main

f(rows[{0,0}]) f(cols[{0,0}])

f(rows[{0,1}]) f(cols[{1,0}])

grid

rows[{0, 0}]

rows[{0, 1}]

cols[{0, 0}]

cols[{1, 0}]

(b) Resulting Task Graph and Partitioning Scheme
(Slaughter, 2017)

Figure 6.1.: Regent Data Partitioning example. In Figure 6.1a, a N × N region is subdivided

into partitions of B rows and B columns. In Figure 6.1b, the dashed orange arrows

denote sibling relationships, and black arrows denote parent-child relationships. Blue

rectangles depict the relationship of region and its partitions. (Slaughter, 2017)

this though the concept of regions and partitions. Regions are array abstractions of arbitrary shape

(e.g. regular with multiple dimensions, or unstructured). They are allocated lazily, may be moved

around and replicated if necessary. Using partitions, it is possible to subdivide regions into

arbitrary sub-regions to distribute a larger region onto multiple tasks. An example for such a

partitioning is shown in Figure 6.1.

In the code a task is given that performs some work involving writes to a region passed as

parameter. Then a region of sizeN ×N is created, as well as two partitions. The first, rows, slices

the region in a row-wise fashion in two sub-regions, while the other one slices in a column-wise

fashion. Finally, tasks are started that operate on parts of the partitions. Figure 6.1b depicts

the resulting task graph and the resulting partitioning scheme. The sub-regions are partially

overlapping, and therefore, dependencies between the four child-tasks are introduced. In the

figure, these are denoted through sibling-relationships. A task graph annotated thus may be

executed on a distributed system. Based on the data-dependencies, the Regent compiler will

move the data to the compute resources executing tasks as necessary (Slaughter, 2017).

Regent has been used successfully to parallelize applications on CPUs (Slaughter et al., 2015) as

well as GPUs (Lee et al., 2019). In Lee et al. (2019), the authors use automatically derived partitions

to place tasks on up to 512 GPU nodes of the Piz Daint cluster. The automatically generated

partitions were performing comparably to hand-tuned partitions in simple applications, and also

43

CHAPTER 6. TASK-BASED PARALLELISM

in more complex ones, once some hints were provided. In addition to Regent, the task-based

model of Legion has also been ported to Python (Slaughter and Aiken, 2019) and used to scale

sequential NumPy code to a GPU cluster (Bauer and Garland, 2019).

6.2. HPX

The goal of the HPX runtime system (Kaiser, Brodowicz, and Sterling, 2009; Heller et al., 2017)

is to provide a modern HPC runtime system based on the Parallex model. Its scope includes

functionality for shared-memory and distributed parallelism, and is, essentially, to be “an open

source C++ standard library for parallelism and concurrency” (Heller et al., 2017). Similarly to

the PGAS environments described previously, the resources available to the computation are

subdivided into separate shared-memory domains, the so-called localities. Localities are connected

through the Active Global Address Space (AGAS), an abstraction layer over the underlying

message-based communication layer (such as MPI or libfabric2). AGAS-aware objects (Components)

are assigned a global ID. This enables objects to be migrated away from the locality they were

initially created on, and hence makes it possible to access objects, independently of their physical

location.

Within each locality, there is a thread manager, that maps the concurrent work onto the available

compute resources. The runtime supports multiple scheduling policies, and allows the application

developer to define custom ones. Currently, the default option is to have separate task queues

for each CPU core, and to enable task stealing (Heller et al., 2017). HPX provides higher-level

abstractions to specify work that may be performed in parallel. Like in Legion, it is possible to

specify tasks and their dependencies. Using asynchronous execution (hpx::async), futures and

the ability to specify dependencies in between, as in UPC++, one may create a task graph that is

then scheduled onto the available resources of the locality. Furthermore, the library implements

parallel versions of frequently used algorithms. Once more, parallelism is created by dividing

the work into smaller tasks. Finally, it is also possible to create active messages, i.e. functions

that are invoked on a different rank, in a similar manner as remote activities in X10. These active

messages are scheduled on the receiving locality like any other task. As in X10, this is a one-sided

operation that does not require user intervention.

Another notable feature of HPX is support for heterogeneous environments (Daiß et al., 2019).

Daiß et al. use HPX in conjunction with a novel CUDA backend to simulate the merger of two

stars in a binary solar system. The CUDA backend utilizes asynchronous streams to tie the GPUs

into the task scheduler of HPX. Using this method, the fast-multiple-method-based application,

Octo-Tiger, is able to scale up to 5400 nodes of the Piz Daint cluster. On the GPU nodes, they

manage to reach 21% of the node’s peak performance. In a scaling test spanning the entire cluster,

they managed to reach a parallel efficiency of 68%.

2
https://ofiwg.github.io/libfabric/

44

https://ofiwg.github.io/libfabric/

7. Actor-Based Parallel Programming

The actor model was originally proposed in the 1970s as a conceptual model for computation in

the field of artificial intelligence, and later formalized as a model of computation. It is used as the

base for Erlang, the main programming language for the implementation of industrial telecom-

munication operations, as well as in general-purpose programming languages and libraries. In

this chapter, I will introduce some of them, and explain similarities and differences between them

and the FunState actor model used in this thesis.

7.1. The Actor Formalism

The actor model has originally been proposed as a tool to express parallelism in the field of

artificial intelligence (Hewitt, Bishop, and Steiger, 1973). The authors describe how actors might

be used as a conceptual framework to express the interplay of different components within a

larger system. In this framework, actors are used as an abstraction: the concrete implementation

and internal structure of the actor is irrelevant, only the interactions with other actors matters.

Hewitt, Bishop, and Steiger (1973) provide the definition: “ Intuitively, an ACTOR is an active

agent which plays a role on cue according to a script. We use the ACTOR metaphor to emphasize the

inseparability of control and data flow in our model. ” This refers to the basic definition of actors as

active objects. An actor has an internal state and a behavior that is governed by the internal state

and received messages. The arrival of messages also serves as the invocation of an actor. The

actor model introduced by Hewitt, Bishop, and Steiger was formalized into a full computational

model comparable to the λ-Calculus by Agha (1985). He defines actors as:

Actors are computational agents which map each incoming communication to a 3-tuple con-

sisting of:

1. a finite set of communications sent to other actors;

2. a new behavior (which will govern the response to the next communication processed);

and,

3. a finite set of new actors created.

(Agha (1985))

These tuple components outline key components of the actormodel. First, actorsmake information

flow explicit. There is no indirect communication, such as thorough shared data structures,

between actors. Instead, actors send explicit messages to other actors. They may only send

45

CHAPTER 7. ACTOR-BASED PARALLEL PROGRAMMING

messages to actors that are actually known to them, that is, actors that they know from previous

communication steps, actors whose addresses were contained in the messages, or actors they

themselves created in the course of the activation. Second, the behavior of actors is driven by

messages. When a message is received, the actor may perform actions that result in the generation

of messages sent to other actors, and a modification of its internal state, which may change how

future messages are handled. To that end, each actor contains a mail address with an attached

mail queue that stores incoming messages linearly by time of arrival, and an actor machine that

describes the behavior of the actor for a given message. When an actor machineXn processes the

nth element of the mail queue, it creates actor machineXn+1, which will then process element

n+ 1, and so on. The different actor machines are independent, which means thatXn+1 may

already by processed beforeXn has concluded without influencing each other. Third, according

to the model of Agha, actors may create other actors when needed. This makes the conceptual

model self-contained, i.e. it is possible to express arbitrary computations using the formalism.

(Agha, 1985; Agha and Hewitt, 1988).

The actor model used for the actor libraries in this thesis retains the key concepts of explicit

information flow as well as the message-based activation. As with the classic model, the state

of the actors is only mutated in response to messages from the outside. However, a somewhat

more static approach to actors is utilized here. In the FunState model, actors are created at

the beginning of the computation. Communication is performed not through mailboxes, but

through communication channels that are made explicit in the code. The channels are unilateral

connections for messages of specific types. This allows for the static analysis of the actor graph at

design time.

7.2. The Erlang Programming Language

The actor model is widely used today in communication systems by the Erlang1 language. The

language was originally developed at Ericsson Telecom AB for telephony systems. These systems

were massively concurrent (tens of thousands of calls happening at the same time) and had soft

real-time constraints for the individual actions. Typically, a single instance of the software would

be distributed onto several servers. In order to provide uninterrupted service, the program’s

execution should never be halted, not even to perform software updates, to install security fixes,

or to recover from software failures (Armstrong, 2007).

These requirements and continued development of the Erlang language resulted in a concurrency-

oriented functional programming language. The main ideas of concurrency-oriented languages

are: “ 1. Systems are built from proesses. 2. Processes share nothing. 3. Processes interact by asynchronous

message passing. 4. Processes are isolated ” (Armstrong, 2007). These principles describe an actor-based

model similar to the one formalized in Agha (1985), with processes taking the role of the actors.

The actor-based style of programming reduces the amount of communication between different

software components, as there are no shared data structures, locks or semaphores. In Erlang, this

is extended with resilience characteristics. Following the environment above, it is possible for

actors to fail without compromising the overall system (Hebert, 2013). For this, the language

1 Homepage: https://www.erlang.org

46

https://www.erlang.org

7.3. THE CHARM++ DISTRIBUTED RUNTIME SYSTEM

includes functionality for processes to react to failure of other processes they depend on. For

process groups with strong dependencies, failure mitigation may be performed on the entire

group by creating links between the individual processes. When a process that is linked to another

dies, it will send a special message (signal) that cannot be processed through the normal message-

handling to its counterpart, causing the other process to die as well. Links are bidirectional,

and may be used to designate substructures of the actor graph that always exist together. This

makes it easier to keep the actor graph in a consistent state, as failures will be propagated quickly

instead of causing actors to wait for their counterparts that either do not exist anymore, or are

themselves waiting for data. Once the failure has been contained, it is usually necessary to rebuild

the graph. This may be done using traps. If a process within a linked sub-graph fails, and the

failure signal is propagated to a process with traps enabled, that process is able to receive and

handle the message, and to restart the computation when appropriate. For processes with weak

dependencies, monitors may be used. These allow processes to track another processes’ status

without creation of a strong dependency. Whenever a monitored process fails, the monitoring

process will be sent a message (Hebert, 2013).

The actor model used in Erlang is more closely related to the one proposed by Agha than to the

one used in this work. Furthermore, the focus of Erlang is different. The environment Erlang was

designed for never placed emphasis on large-scale numerical computations, and therefore the

effort expended on supporting and optimizing them was smaller than in other languages, such as

X10 and C++ (Hebert, 2013). However, Erlang’s language features pertaining to resilience may

also be very interesting in the field of high performance computing. Fault tolerance and resilience

will be of increasing importance in the face of growing number of compute nodes involved in a

computation, as the mean time between failures is inversely proportional to the number of nodes

involved in the computation (Naksinehaboon et al., 2008). A failure-aware actor model may be an

interesting way to contain failures and enable mitigation without forcing a complete restart of the

computation. The actor libraries introduced in this thesis currently do not support this. However,

the investigation of such a fault-tolerant actor model for HPC may be an interesting venue for

future work.

7.3. The Charm++ Distributed Runtime System

A well-established parallel runtime system with actor-like characteristics in HPC is Charm++

(Kalé and Krishnan, 1993; Kalé and Zheng, 2016). In Charm++, computations are subdivided into

separate objects (chares). Each chare may uniquely own an arbitrary amount of “normal” C++

objects. For the programmer, each chare forms a separate processing entity, and its actual location

on the distributed computer is hidden from the application developer. Chares may interact with

each other using asynchronous procedure calls to specially designated chare member functions,

the entry methods (Kalé and Zheng, 2016).

This model allows the Charm++ runtime system to move chares around as necessary in order to

improve load balancing. The runtime system is also responsible for the scheduling of chares based

on the incoming method invocations. This adds a layer of abstraction between the application

developer and the underlying hardware. For the application developer this means that they do

47

CHAPTER 7. ACTOR-BASED PARALLEL PROGRAMMING

Entry
Method

Entry
Method

Private Method

Private Method

Data Members
Owned Objects

(a) Single Chare. (Adapted fromKalé and Zheng
(2016))

(b) Multiple chares on a distributed cluster.
(Adapted from Kalé and Zheng (2016))

Figure 7.1.: Charm++ Object Model. (Figures adapted from Kalé and Zheng (2016))

not need to take care of load balancing and overlapping of computation and communication,

as long as there is enough work available. To this end, Charm++ relies on the application

developer to over-decompose the problem, which in turn allows the runtime system to balance

the computational load and to overlap communication and computation. These basic features of

Charm++ are similar to the actor model as proposed by Agha and Hewitt, but there are some

notable differences: First, there is no mail list, instead, asynchronous method invocations are used.

Second, Charm++ also supports collective operations on chares, and there is the possibility to

create chare arrays, with multiple chares in an index space (e.g. one-dimensional array, or sparsely

populated many-dimensional array). One may not communicate with chare arrays directly, but

has to use proxy-stand-in (Kalé and Zheng, 2016). The computational model employed by

Charm++ is more closely related to the one of Agha than to FunState. While in Charm++, every

chare can talk to any other, in the FunState actor model, the communication between actors uses

explicit communication channels. Furthermore, all interactions in the FunState model are on an

actor-to-actor level; there are no collective operations. We implemented support for Charm++ in

SWE in an effort to evaluate different modern runtime systems. The implementation is described

further in chapter 15.

7.4. Actor Libraries in General Purpose Programming Languages

The actor libraries introduced in this thesis are not the only full actor libraries for general-purpose

programming languages. A notable example is the Akka library2 for the Scala programming

language (Nordwall et al., 2011). The library features an actor model similar to Agha’s formal-

2
https://www.akka.io

48

https://www.akka.io

7.4. ACTOR LIBRARIES IN GENERAL PURPOSE PROGRAMMING LANGUAGES

ism, and has been added to the Scala standard library in more recent versions. However, high

performance computing was never a focus of the library.

The computational model employed by C++ Actor Framework (CAF), an actor framework written

in C++, also remains close to Agha’s formalism with the use of a central mailbox per actor instead

of clearly structured communication paths using typed ports and channels (Charousset et al.,

2013; Charousset, Hiesgen, and Schmidt, 2016). However, similar to Actor-UPC++, it is built

on top of the widely used C++ programming language. Furthermore, it is possible to execute it

in a distributed environment using socket-based communication over TCP, or using OpenMPI,

making this library a candidate for distributed computing applications.

Finally, the X10 task library proposed in (Roloff, Hannig, and Teich, 2014) is a precursor to the

ActorX10 library. The contribution outlines a prototypic, work-in-progress implementation of the

actor model in X10. ActorX10 (see chapter 10) improved on this by formalizing the model, by

structuring the communication using typed ports and channels, and by supporting migration of

actors between places.

49

8. Invasive Computing

As discussed in chapter 2, the increasing amount of concurrency in modern CPU architectures ne-

cessitates novel concepts for their effective and efficient use. Transregional Collaborative Research

Center Invasive Computing (InvasIC), a project funded by the German Research Foundation

(DFG), explores the interplay of hardware and software in this emerging space. The project is

motivated by the increase in processor complexity. Its original prediction was that there would

be a thousand processing units per chip by the early 2020 (Teich et al., 2011). As of today, this

prediction has been surpassed for some types of accelerators: GPUs1 have thousands of small

compute units working in parallel, and many-core CPUs with more than fifty cores within a node

have become a2 common3 sight4 in modern HPC architectures. In conventional systems these

cores are managed and allocated by the operating system, which allocates the available computing

time to the currently active applications. The user is able to change the resource mapping through

directives to the operating system, but the applications have little awareness of the resources they

are running on, and less choice on when and on which resource they get to perform computations.

In HPC systems, this is somewhat mitigated through static resource allocations, but the influence

of the operating system (which may execute other background applications on the allocated node

nevertheless) may cause some performance fluctuations (Petrini, Kerbyson, and Pakin, 2003).

Without user intervention5, the threads of an application may be shuffled freely between cores,

which leads to a less predictable and often lower performance (Treibig, Hager, and Wellein,

2010).

The assumption of the InvasIC project is that to program these systems most effectively, resource-

awareness is paramount. Applications for future many-core systems need to be conscious of the

type and amount of resources they are running on, and of theeir respective capabilities. Further-

more, the project stipulates that for predictable performance to occur, the system’s resources must

not be shared. However, unlike in HPC, resource allocations are not static, but initiated dynami-

cally by the application in concert with the runtime system. Resource allocations are distributed

based on the requirements of the application and the overall system characteristics as observed

by the runtime system. This requires the interplay of all layers in the system stack, from the

application, over the middleware, i.e. the operating system and the programming environment,

down to the hardware. (Teich et al., 2011)

1 The NVidia Tesla A100 has 6912 so-called CUDA cores (NVIDIA Corporation, 2020)
2 Compute nodes on NERSC’s Cori use Intel Xeon Phi processors with 68 cores, and 272 hardware threads (NERSC,

2020)
3 Lrz’s SuperMUC-NG uses Intel Xeon Processors with 2 × 24 cores with a total of 96 hardware threads per node

(LRZ, 2020b)
4 HLRS’s Hawk uses a dual socket AMD Epyc 2 configuration with a total of 128 cores, or 256 hardware threads (HLRS,

2020)
5 By pinning threads to CPU cores

51

CHAPTER 8. INVASIVE COMPUTING

B5
A1

Project Area A
Fundamentals,

Language and

Algorithm Design

ALU tightly coupled loosely coupled HPC

D1

D3

C3

B4

B1
B2

B3

C1

Project Area B

Architectural

Research

Project Area C

Compiler,

Simulation, and

Run-Time Support

Project Area D
Applications

C5

A4 A5

Z2

C2

C1

Figure 8.1.: Invasive Computing project overview. The project is distributed between four project

areas. (Adapted from InvasIC (2010))

The scope of the project is mirrored in its organizational structure. Work is distributed amongst

13 sub-projects split up between three universities, the Friedrich-Alexander-Universität Erlangen-

Nürnberg (FAU), the Karlsruhe Insitute for Technology (KIT) and Technical University of Munich

(TUM). Figure 8.1 depicts the organizational structure with a subdivision into four project areas,

(A) Fundamentals, (B) Hardware, (C)Middleware, and (D) Applications. The sub-projects, each with

its own focus points, deal with parallelism on all hardware levels (represented in the figure on

the X axis), from parallelism within the Core up to distributed compute clusters. Furthermore,

the projects provide the custom components of the invasive technology stack: from the invasive

hardware platform, over the operating system OctoPOS, the invasive Runtime Support System

(iRTSS), the Invasive X10 Language (InvadeX10) and its compiler x10i, and ActorX10 up to

the applications. The project was funded in three phases between 2010 and 2022. In the first

phase, the main focus was to establish the basics of invasive computing: the invasive hardware

architecture, the runtime support, and the invasive programming model. In the second phase,

the main focus was on predictable execution: how can program execution be guaranteed to be

within certain quality numbers such as throughput, latency or power usage? To achieve this,

techniques such as design space explorations, specific hardware accelerators and the actor model

are used. Finally, in the third phase, the main focus is on requirement enforcement. Given

established theoretical bounds on the quality numbers of an application execution, how can

these requirements be enforced to be able to provide more tight upper and lower bounds on the

predicted quality numbers? The main instrument here will be runtime requirement enforcement,

using a combination of design-time and of run-timemeasures to ensure adherence to strict bounds

in the quality numbers.

The remainder of this chapter contains an overview of the invasive programming model and its

various incarnations in section 8.1, a summary of the invasive hardware components in section 8.2,

and finally the invasive design flow in section 8.3. A large part of this thesis discusses work

52

8.1. THE INVASIVE PROGRAMMING MODEL

Initialstart
Possess

Claim

Execute

Code
End

invade
infect

retreat

reinvade reinvade

invade recursively

Figure 8.2.: State diagram for an invasive application. Applications initially invade a claim. They

infect the claim to perform a computation. Claims may be changed using the reinvade

operation. Once the claim is not needed anymore, it may be relinquished by retreating

from it.

related to InvasIC, specifically, the actor model introduced in Part II, the actor-based tsunami

simulation SWE-X10 (in chapter 16) and its optimization for the invasive compute stack discussed

in chapter 9.

8.1. The Invasive Programming Model

The primary goal of invasive computing, resource-awareness, is realized through explicit alloca-

tion of resources, as depicted in Figure 8.2. An application starts on a single core of the system.

When more resources are needed, the application needs to request them explicitly. The allocation

of resources is realized by an explicit allocation, or invasion of the resources by the application

at runtime. At the start of a new phase of the computation, a set of resources is invaded. This set

is constrained by the arguments passed to the invade invocation. Based on these constraints, the

iRTSS will select the claim (set of resources) most appropriate for the specified constraints and

the overall system state (e.g. available resources, quality numbers of the system) and return it to

the application. The application may now infect the claim with the piece of code to be executed,

referred to as invade-let (i-let) in the invasive terminology. Upon completion, it may either execute

further i-lets on the claim, or reinvade the claim to obtain a different one that better matches future

requirements. Once the claim is no longer needed, the application may relinquish it by retreating

from it.

Figure 8.3 depicts the claim constraint hierarchy (claim constraints are depicted in blue). There

are two different types of constraints available, one for conventional applications, and the other

for actor-based applications. Actor constraints (depicted in green) are used in conjunction with

actor-based applications. They allow for the allocation of one of several pre-characterized actor-

resource mappings delivered as part of the application. Actor constraints will be discussed in

more detail in section 8.3. For conventional invasive applications that use the invade operation, it

is possible to specify different claim constraints, simple ones such as the number of processing units

or the availability of certain hardware characteristics, or more complex ones such as performance

characteristics of the algorithm or tile sharing. It is also possible to compose different constraints

53

CHAPTER 8. INVASIVE COMPUTING

Constraint

ClaimConstraint ActorConstraint

Hint

ScalabilityCurve

AppClass

PotentiallyFewerPEs

PotentiallyMorePEs

Predicate

FPUAvailable

LocalMemory

PEType

ThisPlace

SetConstraint

PEQuantity PartitionConstraint

PlaceCoherent

LatencyWithinTeam

TileSharing

MultipleConstraint

AND

OR

Figure 8.3.: Overview of the available constraints for the invasion of resources. There are two

types of constraints: claim constraints may be made to a concrete claim that allows

for arbitrary code execution within it. Actor constraints are limited to claims used for

actor graph executions. Claim constraints are adapted from Bungartz et al. (2013)

54

8.1. THE INVASIVE PROGRAMMING MODEL

1 public static def complexWork(d:Data);

2

3 public static def main(Rail[String]) {

4 val data = loadData();

5 try {

6 val constr = new PEQuantity(8,16) && TileSharing.ONLY_WITHIN_APPLICATION;

7 val claim = Claim.invade(constr);

8 claim.infect((IncarnationId) => {

9 finish for (p in Place.currentWorld()) async {

10 val dataPiece = data.forPlace(p);

11 at (p) {

12 for (i in 0 .. (claim.getNumPEs(here) - 1)) async {

13 complexWork(dataPiece.chunk(i));

14 }

15 }

16 }

17 });

18 claim.retreat();

19 } catch (ex:NotEnoughResources) {

20 // Insufficient Resources

21 // Perform Work sequentially.

22 complexWork(data);

23 }

24 }

Figure 8.4.: InvadeX10 code example. Depending on the success of the invasion, a function is

either executed on the allocated claim, or sequentially.

logically, using the AND or the OR constraint. The claim constraints chosen by the application are

then used by the iRTSS to select a suitable claim. If the runtime is successful, the claim is returned,

otherwise the runtime signals failure.

8.1.1. Invasive Computing in X10

The main programming language in InvasIC is InvadeX10, an extension of X10 (see chapter 5)

with the invasive language constructs and support for a dynamically changing amount of places.

The language is compiled using the invasive X10 compiler x10i, developed as part of the invasive

technology stack. It provides the aforementioned vocabulary to implement invasive applications.

In contrast to the conventional X10 provided by IBM, Places are not static, but assigned as part of

the invasion. To this end, the InvadeX10 runtime provides the ties to iRTSS and OctoPOS, which

provide the resources to the application. Figure 8.4 depicts a simple invasive program written

using InvadeX10. First, the application allocates a claim using Claim.invade(constr) with a set

of constraints, namely four to eight processing units and tile-exclusivity. If the invasion does not

succeed, an exception is thrown, and the work is performed sequentially on the initial claim. If

55

CHAPTER 8. INVASIVE COMPUTING

invasion succeeds, the claim is infectedwith the i-let performing the application. The i-let performs

its work asynchronously on all cores and Places it is assigned using the conventional X10 language

constructs. Finally, once work is finished, the claim is relinquished using c.retreat().

In Bungartz et al. (2013), this approach was used to implement an invasive multigrid application.

The geometric multigrid method they use has to apply a stencil operation on different resolution

levels (from fine to coarse, and then fine again) in each time step. This leads to a greatly varying

resource demand within a single time step. For the coarser grid levels, the amount of work

required is only a very small fraction of the amount required for the finer resolution levels (for

each level of coarsening, the number of cells is divided by four). The authors used invasive

techniques to change the resource set for the different levels in the cycle. Before each coarsening

and after each refinement, the claim is reinvaded with a fitting constraint set, and the data re-

distributed, if necessary. Compared to the non-invasive variant, this approach allows for a

more efficient use of the available resources, as currently idle resources may be used by other

applications. This is illustrated using a demo scenario involving the invasivemultigrid application

and two instances of an invasive numerical integration application. When static resource allocation

is used, the applications are restricted to the initial resource allocation even when one of the

applications is already terminated and does not require the resources anymore. Conversely, with

invasive computing, these resources are dynamically redistributed throughout the execution of

the application, and once an application is terminated, its resources are available for utilization

by the remaining applications. Thus, the invasive approach has the potential to drastically reduce

system idle time, as in Zwinkau (2018) and Teich, Kleinöder, and Mattauch (2016).

The basic X10 API described above was later expanded by Buchwald, Mohr, and Zwinkau (2015)

with the creation of externally malleable applications using an additional Malleable constraint

during invasion. By providing a resize handler that specifies how to rebalance work based lists

of newly added and removed Processing Elements (PEs) as a parameter for the constraint, the

runtime is able to mold the resource set of invasive applications based on the overall system

situation. The main advantage for the runtime is that a change in the resource set may happen

without relying on the application to call reinvade. As a potential user for the method, the invasive

task queue was implemented. Applications using the job queue for parallelization benefit from

the asynchronous malleability without any additional implementation effort (Teich, Kleinöder,

and Mattauch, 2015).

8.1.2. System Programming using the OctoPOS API

The high-level constructs for invasive computing are mirrored on the lower levels of the invasive

compute stack. Aswith the X10API, the OctoPOSAPI exposes operations to allocate resources and

to execute code on them. Resources may be allocated using different invade functions, for example

int invade_simple(claim_t, uint32_t quantity) for allocations of claims on the same tile as

the allocating code. For more complex allocations, calls are asynchronous, and return a future, so

that the initiating i-let does not need to idle until the operation is completed. On the level of the

OctoPOS API, i-lets are the primary way to express parallelism. An OctoPOS i-let consists of a

function (with a void * as its parameter) to be executed, and the pointer that is to be passed as a

parameter. It is brought to execution using one of the different infect operations. For example,

56

8.1. THE INVASIVE PROGRAMMING MODEL

infect_simple(simple_ilet *) executes a single i-let on the current claim context. Alternatively,

an array of i-lets may be executed on a given claim using infect(claim_t, simple_ilet *,

uint32_t). Finally, the API offers local and remote retreat operations. Similarly, there are also

specialized invade and infect calls available for inter-tile communication using Direct Memory

Access (DMA) operations. (OctoPOS API Description 2020)

An example code for use of the API, adapted from the OctoPOS Application Development GIT

Repository (2020) is given in Figure 8.5. The code performs a simple i-let execution on a remote

tile. In the beginning, a single core on a remote tile is allocated using proxy_invade(1, &future,

3). The operation returns a future object that represents the status of the operation. By invoking

invade_future_force(&future), the main i-let is suspended until the claim is ready. Now, the

remote i-let may be created with the function to be executed (remoteILetFunc) and the signal that

will be used to await the remote i-let’s completion. Invocation of proxy_infect(pc, &iLet, 1)

executes the i-let on the remote claim. At the end of the remote i-let’s execution, it signals the

main i-let by running another i-let on the claim that was used to invoke the remote i-let. Once the

main i-let receives that signal, it retreats from the remote claim, and terminates.

The InvadeX10 runtime uses the lower-level API for the X10 parallel language features (Mohr et al.,

2015). While the high-level invade operations described in subsection 8.1.1 are implemented using

an agent system that negotiates the resource use on behalf of the X10 application, the original X10

language functionality for parallelism (e.g. at, async and finish) is implemented by mapping to

the appropriate calls of the OctoPOS API. Parallelism within a node is mapped to simple_ilets,

and finish statements are implemented using the signals introduced in Figure 8.5. Operations

involving a place shift are the most difficult to implement. As i-lets only have a data payload

of two pointers, and the X10 specification requires the entire object graph pertaining to every

accessed object to be copied, data transfer is split into separate parts. First, as with the regular X10

runtime, the object graph is serialized into a buffer. Then, a remote i-let is started on the place

that the computation is to be executed at to allocate the memory, and to manage the transfer. The

OctoPOS API offers support for DMA and appropriate completion notifications (using i-lets on

the source and destination place). the i-let on the source side deallocates the buffer, and the i-let

on the destination side reconstructs the object graph. Once the transfer is finished, the remote i-let

may execute the code within the at statement. Depending on the nature of the place shift, another

data transfer may be necessary, which is performed similarly. Finally, after the execution of the

place shift is complete, a final i-let is started on the remote place to wait for all the dependent

activities created during the place shift to terminate (global termination). In later work, data

transfer has been simplified using Pegasus (Mohr and Tradowsky, 2017) for direct copying of the

object graphs without serialization, and the use of hardware accelerated queues (Rheindt, Maier,

et al., 2019) for data transfer (Rheindt, Fried, et al., 2019).

8.1.3. The Invasive MPI Runtime

The two aforementioned ways to write invasive software are a useful approach for the implemen-

tation of new applications. However, this is not always feasible for large legacy HPC applications

that are actively used and extended (both by HPC developers and domain experts). Most of the

current HPC applications are written using a combination of MPI and OpenMP. Porting such

57

CHAPTER 8. INVASIVE COMPUTING

1 #include <octopos.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 static void remoteILetFunc(void *arg);

6 static void doSignal(void *arg);

7

8 extern "C" void main_ilet(claim_t claim) {

9 invade_future future;

10 if (proxy_invade(1, &future, 3) != 0) {

11 fputs("proxy_invade failed. Tile 1 unavailable.\n", stderr);

12 abort();

13 }

14

15 proxy_claim_t pc = invade_future_force(&future);

16 if (pc == 0) {

17 fputs("invade_future_force failed, insufficient resources.\n", stderr);

18 abort();

19 }

20

21 simple_signal signal;

22 simple_signal_init(&signal, 1);

23

24 simple_ilet iLet;

25 simple_ilet_init(&iLet, remoteILetFunc, &signal);

26

27 proxy_infect(pc, &iLet, 1);

28 simple_signal_wait(&signal);

29

30 proxy_retreat_sync(pc);

31 shutdown(0);

32 }

33

34 static void remoteILetFunc(void *arg) {

35 printf("Hello from tile %u!\n", get_tile_id());

36 simple_ilet reply;

37 simple_ilet_init(&reply, doSignal, arg);

38 dispatch_claim_send_reply(&reply);

39 }

40

41 static void doSignal(void *arg) {

42 simple_signal_signal(static_cast<simple_signal *>(arg));

43 }

Figure 8.5.: OctoPOS API code example. First, a claim with one core on another tile (Tile 3) is

allocated asynchronously. A signal and an i-let are allocated, and there remote claim

is infected with the i-let. The original claim waits for the remote i-let’s completion, and

then terminates. Code example adapted from the OctoPOS Application Development

GIT Repository (2020).

58

8.1. THE INVASIVE PROGRAMMING MODEL

applications to InvadeX10 may prove to be an unreasonably expensive endeavor, as this would

essentially amount to a complete rewrite. The use of the OctoPOS API does not require a complete

re-implementation, but parts pertaining to parallelization and inter-rank communication still

need to be rewritten. Nevertheless, HPC applications may still profit from invasive techniques.

Most notably, the static nature of job allocations used on current HPC systems might be changed

through invasive computing. The currently available resource managers for distributed systems

allocate resources statically for each application. Once the application starts its execution, its

resources remain as they were when the computation started. However, many applications do

not absolutely require the specified number of nodes, but would also work efficiently with less

(or more) resources. A more efficient use of the available resources may be attained if another

application with fixed demands is able to claim some currently running elastic application’s

resources along with the remaining idle resources. Furthermore, elastic applications could claim

further resources if there are no other potential users currently available. Other applications have

varying resource demands. For example, a tsunami application may require a different set of

resources initially when the wave propagates across the ocean where a more coarse resolution

suffices, compared to when it reaches the coast and a very fine resolution is needed. To enable

more flexible and more efficient use of computing resources, InvasIC proposed iMPI.

iMPI (Comprés et al., 2016; Mo-Hellenbrand, 2019) extends the standard feature set of MPI

with a set of functions to accommodate dynamic resource managers. Applications using iMPI

may periodically give the resource manager of the system they are running on the opportu-

nity to change the number of MPI ranks involved in the computations. Applications that sup-

port iMPI invoke MPI_Init_adapt(int *, char***, int*) (instead of MPI_init(int *, char

***) for conventional MPI applications) at the beginning. In addition to the two parameters

for the program arguments, the operation also writes the status of the application into an in-

teger variable. This allows the new application to see whether it has been started as part of

the initial set of rank (status: MPI_ADAPT_STATUS_NEW) or during an adaptation of the resource

set (status: MPI_ADAPT_STATUS_JOINING). Depending on the state, the application may then per-

form the usual initialization routine, or skip ahead to participate in the adaptation. During the

computation, the ranks of the application periodically collectively query the resource manager

through MPI_Probe_adapt(int*, int*, MPI_Info*). The first parameter is written with the

information on whether an adaptation should be performed or not, the second one contains

the status for the invoking rank, either that it is joining (MPI_ADAPT_STATUS_JOINING), staying

(MPI_ADAPT_STATUS_STAYING) or leaving (MPI_ADAPT_STATUS_LEAVING) the computation. If the

probe indicates the need for a resource adaptation, it may be initiated by all participating ranks

by invoking MPI_Comm_adapt_begin(MPI_Comm*, MPI_Comm*, int*, int*, int*). The first pa-

rameter contains the inter-communicator that allows for communication between all involved

ranks (joining, staying and leaving). The second parameter contains the communicator that

will be used by the ranks once the adaptation is completed. Finally, the last three parameters

contain the number of staying, leaving and joining ranks. Now, depending on the nature of the

adaptation, the application has to move all essential simulation data away from any rank leaving

the computation, provide the necessary information 6 to the newly joining ranks, and finally

redistribute the data amongst the remaining ranks. Once the adaptation is completed, it may be

finalized using MPI_Comm_adapt_commit().

6 e.g. computational phase, iteration number, current time step, ...

59

CHAPTER 8. INVASIVE COMPUTING

The framework was successfully integrated into the framework sam(oa)2 (Meister, 2016) by Mo-

Hellenbrand et al. (2017) and Mo-Hellenbrand (2019), and used to simulate the Tohoku tsunami.

The framework uses a dynamic and adaptive mesh refinement to accurately simulate tsunami

propagation. Typically, segments of the domain that do not contain any activity are subdivided

into coarser cells, and coastal areas and the wave front are divided into fine cells. The distribution

of cells changes as the tsunami propagates across the domain, and typically the overall amount of

cells in the simulation increases. When this behavior is made known to the resource manager,

this may lead to significant savings in compute resources. In tests performed on the SuperMUC

cluster of Leibniz Supercomputing Centre (LRZ), it was possible to save about half of the CPU

time using an allocation of resources following the resource demands of the application instead of

a static resource allocation. The overhead for the adaptivity was determined to be around∼ 5%
in a separate experiment.

8.2. Overview of the Invasive Hardware

An important claimmade since the project’s inception is that for the invasive idea towork, software

support alone is not sufficient, but new hardware is needed (Teich, 2008; Teich et al., 2011). To

satisfy this requirement, and to provide a platform for invasive applications, the invasive hardware

architecture was introduced. On the highest level, it is implemented as a MPSoC architecture

with multi-core tiles of different configurations, connected using a Network-on-Chip (NoC). A

similarly tiled architecture is employed today by current Intel many-core processors such as the

Intel Xeon Phi Knights Landing (Sodani, 2015).

A tiled architecture allows for easy reconfiguration and customization for different scenarios. The

project’s current hardware prototype employs 4× 4 tiles, but the architecture may be scaled up

to thousands of cores if desired, and given the availability of the hardware resources. A sample

configuration, serving to illustrate the most important characteristics of the invasive hardware

architecture, and the custom components developed for the project, is depicted in Figure 8.6. The

architecture consists of sixteen tiles of different configurations.

Some tiles are conventional compute tiles featuring four general-purpose LEON 37 CPU cores.

Other tiles contain so-called Invasive Cores (i-Cores) in addition to conventional CPU cores.

These are general-purpose CPU cores with an attached reconfigurable fabric to enable application-

delivered hardware acceleration. For processing of loop-based programs, there are tightly coupled

processor array (TCPA) tiles. These provide a large number of simple, but tightly connected

processing elements that may be used to compute multiple iterations of a loop-based program in

parallel (Hannig et al., 2014). Finally, there is a tile specialized for communication with off-chip

components, the memory and I/O tile. It provides access to the main memory of the system

(containing heap-allocatedmemory objects), and to different I/Odevices such as Ethernet or image

acquisition. The tiles are connected through an invasive Network-on-Chip (iNoC) consisting of

one NoC router per tile, and horizontal and vertical links in between them.

7 Open Source CPU core provided by Cobham Gaisler (Cobham Gaisler AB, 2016)

60

8.2. OVERVIEW OF THE INVASIVE HARDWARE

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

CPU i-Core

i-Core CPU

CPU i-Core

i-Core CPU

Memory
Memory

& IO

TCPA

CPU CPU

CPU CPU

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NA NA Memory
NA

NA Memory

NA Memory
NA Memory

NA

NA

CPU CPU

CPU CPU

Memory

CPU i-Core

i-Core CPU

NoC
Router

NoC
Router

NoC
Router

NA NA Memory
NA

CPU i-Core

i-Core CPU

NA Memory

CPU i-Core

i-Core CPU

CPU CPU

CPU CPU

NoC
Router

NoC
Router

NoC
Router

NA Memory

NA Memory

NoC
Router

NA

CPU i-Core

i-Core CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

Memory
NA

Figure 8.6.: Invasive ComputingHardware Architecture Overview. The current default hardware

architecture contains 4 × 4 tiles with four different configurations. There are tiles

with four conventional CPU cores, tiles containing i-Cores, tiles containing TCPAs,

and tiles containing memory and I/O interfaces. (Adapted from InvasIC (2010))

The compute tiles (see Figure 8.7 for a tile with four conventional LEON 3 cores) are a multi-core

design customized from a design by Cobham Gaisler AB (2016). The tiles contain a number of

CPU cores that are connected to the tile’s central bus through Level 1 instruction and data caches.

Attached on the bus are also a tile-local memory (TLM), that typically contains the application

binaries and the local variables for the i-lets executed on the compute tiles. Access to non-local

memory, such as the TLM of other tiles, or the off-chip DDR-RAM is provided through the iNoC,

and cached through a Level 2 Cache for faster repeated accesses. Finally, the CiC is a hardware

scheduler that is responsible for scheduling the i-lets, both locally created and incoming remote

ones, based on a round-robin scheduler, and optionally the operating conditions (e.g. temperature)

of the tile (Henkel et al., 2012).

The iNoC (Heißwolf, König, and Becker, 2012; Heisswolf et al., 2014) connects the different

compute tiles. Each tile has a network adapter (NA) that connects it to a NoC router within

the network. In accordance with the general principles of invasive computing, it also allows

for resource-aware applications. Message transmission between two routers is split up into a

number of round-robin-scheduled, periodically repeating time slots. Using that, it is possible

to define a virtual channel that occupies one or more of these slots. Applications may choose

either a state-less best-effort routing of packages, or a guaranteed-service connection with predictable

61

CHAPTER 8. INVASIVE COMPUTING

NoC
Router

CPU CPU

CPU CPU

Memory
NA

LEON3 Tile Local
Memory

NA

LEON3 LEON3 LEON3

L2 Cache

Tile BUS

CiC

I D I D I D I D

L1 Cache L1 Cache L1 Cache L1 Cache

Figure 8.7.: Overview of a compute tile within the invasive architecture. The tile has four LEON

3 cores, each with a L1 Data and Instruction Cache. The various components are

connected using a bus. The connection to the system’s main memory is provided

through the NoC, and cached through the L2 Cache. The core i-let controller (CiC)

is a hardware scheduler that is responsible for scheduling local and remote i-lets.

(Adapted from InvasIC (2010))

execution quality. For applications with best-effort routing, the message is sent directly and

without establishing a formal connection first. For guaranteed-service connections, a fixed route

using virtual channels between routers has to be established8. An example for this is depicted in

Figure 8.8. The connection is established router-by-router by sending a header package through

the network. When such a package is encountered by a router, it will try to allocate a virtual

channel that satisfies the requirements specified in the package. If the allocation succeeds for all

connections between the source and the destination NA, the thus established virtual channels is

reserved exclusively for that application until it is relinquished. The use of virtual channels allows

for predictable transmission of information between tiles. Applications with a guaranteed-service

connection have a predictable latency and throughput (which may be computed based on the

number of hops, the link bandwidth, and the fraction of the connection being used), and are not

subject to network congestion.

In addition to the conventional LEON 3 cores, there are also two types of specialized invasive

computing units, the i-Core and the TCPA. The former uses application-specific micro-instructions

for the acceleration of compute-intensive parts of the application, while the latter uses numerous

customizable and freely connectable PEs.

The TCPA tile (Hannig et al., 2014; Teich, Tanase, andHannig, 2014), depicted in Figure 8.9, may be

used to accelerate specific loop-intensive workloads. Unlike conventional multi-core tiles, it only

contains one LEON 3 core—responsible for the coordination with the rest of the system—and the

TCPA itself. The TCPA utilizes relatively simple PEs. Early versions were based on a Very Long

Instruction Word (VLIW) Instruction Set Architecture (ISA) which allowed for instruction-level

parallelism without requiring sophisticated pipelining. More recently, the addition of floating

point arithmetic required the replacement of VLIW by orthogonal instruction processing (Brand

et al., 2017). Only PEs at the borders of the array may access data from the I/O buffers. The inner

PEs access data, such as results previously computed by neighbors, or intermittently buffered

8 Or, one might say, invaded.

62

8.2. OVERVIEW OF THE INVASIVE HARDWARE

Processing

Tile

Processing

Tile

Processing

Tile

Processing

Tile

NoC

Router

NoC

Router

NoC

Router

Processing

Tile

Processing

Tile

NoC

Router

VC 1
VC 2
VC 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

V
C

 1
V

C
 2

V
C

 3

VC 1
VC 2
VC 3

NoC

Router

NoC

Router

H
T

C1: GS-Connection (SL 3)

C2: GS-Connection-Setup (SL 1)

C3: BE-Packet

: Head Flit

: Tail Flit

H

T

N
A N

A
N
A

N
A

N
A

N
A

Processing

Tile

Processing

Tile

H

TS 1 VC 1

C2

TS 2

TS 3

TS 4

TS 5

TS 6

VC 2

C1

VC 1

VC 1

C1

C1

E E

TS 1

VC 3TS 2

TS 3

TS 4

TS 5

TS 6

C1

VC 3

VC 3

C1

C1

VC 2 C3

S

TS 1 VC 3

TS 2

TS 3

TS 4

TS 5

TS 6

C1

VC 3

VC 3

C1

C1

TS 1

TS 2

TS 3

TS 4

TS 5

TS 6

E

VC 1 C2

C2VC 1

1 2

3

4

Figure 8.8.: iNoC Example. There are three connections currently being processed. C3 (depicted

in blue) is a best-effort connection that is currently being routed through router port

2 . C1 (red) is an already established guaranteed-service connection that occupies

virtual channels with three time slots each in router ports 1 , 2 and 4 . C2 (green) is

a guaranteed-service connection in the process of being allocated. Its header package

just established a connection through router port 4 . (Heißwolf, König, and Becker,

2012).

63

CHAPTER 8. INVASIVE COMPUTING

data provided their neighbors. This enables a very low latency data exchange: newly available

data is accessible by neighboring PEs in the next clock cycle. The PEs themselves possess a very

basic set of functional units: addition, multiplication, bit-shifting or logical operations. This

allows for a combination of design-time and execution-time configurability; PEs may mix and

match functional units according to the requirements of the intended applications. In contrast

to prior approaches, the TCPAs used in the InvasIC hardware architecture are not limited to

a static configuration, but allow for a dynamic reconfiguration and reconnection of the PEs in

the system based on application requirements. Applications may invade PEs of the TCPA in

different ways, based on strategies described by (Lari et al., 2011). For image applications and

other two-dimensional loops, a two-dimensional area of the TCPA may be invaded starting from

a core at the boundary of the array. For other applications, a one-dimensional pipeline may be

invaded following either a straight line or a “meandering9” approach. The configuration of the

TCPA is performed using the TCPA Utility that allows for the configuration of a TCPA and the

generation of the corresponding hardware description data using a graphical user interface. The

TCPA may be programmed either using a low-level assembly approach, with the PAULA DSL

which allows for the formulation of the parallel computation without explicitly specifying the

loops (Hannig et al., 2014), or using symbolic loop transformation (Teich, Tanase, and Hannig,

2014; Witterauf, Hannig, and Teich, 2019).

The i-Core (Bauer, 2009; Damschen, 2019; Damschen et al., 2020) tile (see Figure 8.10) has a similar

structure to the conventional compute tile, but one or more of the LEON 3 cores is replaced by an

i-Core. i-Core combines the execution capabilities of a conventional LEON 3 core with the ability

to execute application-specific acceleration. Acceleration is achieved through i-Core Custom

Instructions (CIs), i.e. Micro-Programs (µPrograms) that may utilize accelerators imprinted onto

small embedded field programmable gate arrays (FPGAs) within the chip. Applications are able

to provide both µPrograms and accelerators. The basic principle of CIs is similar to a µProgram
called by a CPU instruction. These are typically used to implement a more complex multi-step

operation such as a square-root or division that cannot be implemented in hardware in a single

step (Intel Corporation, 2016). Similarly, the CI consists of a number of operations and their

dependencies, resulting in a data flow graph. Operations are either loads or stores from the TLM

or cache, or compute operations implemented in one of the application-provided accelerators. The

latter forwards the specified data to the accelerator loaded in one of the i-Core’s reconfigurable

containers, and brings it to execution. Depending on the application, it is possible to have multiple

different accelerators, or a number of instances of the same accelerator loaded at the same time. A

notable feature of the i-Core is the 128Bit-wide connection to the TLM, which enables the i-Core

to forgo accessing the tile bus for loading data.

The concept of combining reconfigurable fabric with a general-purpose CPU is in itself not a new

idea. Intel combined a Xeon SP processor with an Arria 10 FPGA on a single board (Huffstetler,

2018), and Xilinx offers the Zync 7000 series that combines an FPGAwith an ARM CPU. However,

the i-Core couples the reconfigurable fabric very tightly to the general-purpose components of the

CPU. Unlike in the solutions above, the i-Core may access registers directly, and using previously

loaded CIs is as simple as calling the corresponding processor instruction.

9 i.e. going in a zig-zag fashion away from the initially invaded PE

64

8.2. OVERVIEW OF THE INVASIVE HARDWARE

NoC
Router

TCPA
NA

LEON3

NA

Tile BUS

IRQ Control
ID

L1 Cache

C
on

fig
ur

at
io

n
M

an
ag

er

IMAGGC

GC

GC

GC

IM

IM IM

AG

AG

AG

I/O Buffers

I/O Buffers

I/O
 B

uf
fe

rs

I/O
 B

u
ffe

rs

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

iCtrl

PE

Figure 8.9.: Invasive TCPA accelerator tile. Aside for the LEON 3 core for coordination tasks

and an interrupt controller, the tile contains the TCPA itself. The TCPA consists of

a number of interconnected PEs, each with its own invasion controller (iCtrl), the

configurationmanager, invasionmanagers (IM), address generation units (AG), global

controller (GC), and I/O buffers. (Adapted from Hannig et al. (2014))

CPU i-Core

CPU

NA Memory

CPU

NoC
Router

NA L2 Cache

Tile BUS

CiC

I D I D I D

L1 Cache L1 Cache L1 Cache

I DL1 Cache

CI Execution Ctrl

i-Core
(CPU 0)

Tile-
Local

Memory
(TLM)

LEON
(CPU 2)

LEON
(CPU 3)

LEON
(CPU 1)

1

Figure 8.10.: i-Core accelerator tile containing three LEON 3 cores and one i-Core. In addition to

the functionality of a general-purpose core, it also contains reconfigurable containers

(marked with 1) and the controller to program them, and to bring them to execution.

The orange arrows denote the low-latency and high-bandwidth connection to the

TLM. (Adapted from Pöppl et al. (2018))

65

CHAPTER 8. INVASIVE COMPUTING

ActorX10, Actor-UPC++ Invasive Applications

Quality Evaluation
e.g. on InvadeSIM

Hybrid
Design Space Exploration

Generate
Implementation

Candidate

Evaluate
Implementation

Candidate

Architecture Model

Operating Point
Selectionla

te
nc
y

energy consumption

SWE-X10,
Pond, ...

X10
constraints

iRTSSOperating Point
<pe type="LEON3" amount="2"/>
<map src=“actorA" target="LEON3#1"/>
<map src=“actorB" target="LEON3#2"/>
<ch src=“actorA“ target=“actorB" level="2"/>

A 0,0

A 0,1

A 0,2

A 1,0

A 1,1

A 1,2

A 2,0

A 2,1

A 2,2

AR 2,2

AR 2,1

Design-Time
Run-Time

Figure 8.11.: Design flow for an Invasive application. (Adapted from InvasIC (2010))

8.3. Invasive Design Flow

For multi-core environments such as the one described in this chapter, maintaining predictable

execution is difficult without sacrificing flexibility. While it is especially important in conjunction

with hard real time problems10, it is also an interesting technique for other fields where predictable

execution quality is desirable. For example, in the field of HPC, one might be interested in

obtaining application configurations that adhere to specific energy bounds. On shared resources

such as classical computing systems, this is difficult to achieve, as there is always the possibility

of interference from other applications. However, both with invasive computing and in classical

HPC applications, resource allocations are exclusive. When an application has an allocation,

no other application is permitted to compute (or use the communication resources, if allocated

exclusively). At the same time, the system may not be available to the application in its entirety.

Other applications may be using the system at the same time, and they typically also have their

own sets of requirements. The application should therefore be flexible enough in its setup to allow

for different resource configurations that still allow it to reach the desired quality numbers.

In the invasive computing project, we (Wildermann et al., 2016) propose a design flow for actor-

based invasive applications. The technique is based on Hybrid Application Mapping (HAM). An

overview is depicted in Figure 8.11. It is based on a separation of activities to be performed at

design-time during the creation of the application, and those performed at run-time, i.e. when

the application is brought to execution on the target system in production. At design time, the

application is analyzed and annotated, and at run-time, the iRTSS selects a specific configuration

for execution. The invasive flow assumes an actor-based application, as it requires a clear sep-

aration of the individual components of the computation, and clearly defined communication

10This class of problems require the application to adhere to strict deadlines for specific events. If a deadline is not met,

a catastrophic failure of the system may occur. (Kopetz, 2011)

66

8.3. INVASIVE DESIGN FLOW

1 public def build() {

2 // Declare actors

3 val v1 = new SourceActor("v1");

4 val v2 = new Filter1_1Actor("v2");

5 val v3 = new Filter2Actor("v3");

6 // ...

7

8 // Declare actor graph with requirements

9 @REQUIRE("ag", new Latency(0, 110, "ms", "hard")) // Performance Req.

10 @REQUIRE("ag", new Throughput(20, 40, "fps", "soft")) // Performance Req.

11 @REQUIRE("ag", new Power(1, 2, "W", "soft")) // Power Req.

12 @REQUIRE("ag", new Confidentiality(50)) // Security Req.

13 val ag = new ActorGraph("ag");

14

15 // Add actors and connect them

16 ag.addActor(v1);

17 ag.addActor(v2);

18 // ...

19 ag.connectPorts(v1.outPort1, v2.inPort);

20 ag.connectPorts(v1.outPort2, v3.inPort);

21 ag.connectPorts(v2.out, v4.inPort);

22 // ...

23

24 // This statement is replaced by the design flow

25 ag.start();

26 }

Figure 8.12.: ActorX10 actor graph with requirement annotations. The statement in the last

line is later replaced by the set of operating points, the result of the Design Space

Exploration (DSE). (Wildermann et al., 2016)

paths. Such applications exhibit a clearly outlined communication path, and are able to make their

structure known to other applications, in the form of the actor graph. For example, Figure 16.4 in

section 16.2 depicts an actor graph for my invasive proxy application. Furthermore, it is possible

to annotate the application or individual actors with requirements such as throughput, latency

or power consumption. An example for an annotated actor graph is depicted in Figure 8.12.

This actor graph, together with a specification of the target architecture, is taken as an input for

a DSE. The DSE then performs an iterative optimization scheme where it generates different

mappings of the actors and channels to the resources specified in the architecture description

(Lukasiewycz et al., 2011). Evaluation is done in batches of different configurations. Typically,

the DSE does not generate concrete configurations, but only abstract constraint graphs that specify

the types of resources an actor is mapped to, and the maximum number of hops that may be

taken to get to its communication partners. In this way, the search space is reduced significantly,

as evaluating configurations that only differ in their location on the system, but are otherwise

identical is avoided (Schwarzer et al., 2018). Each configuration is evaluated separately. Depend-

67

CHAPTER 8. INVASIVE COMPUTING

1 val cg = new ConstraintGraph();

2 val t0 = cg.addTaskCluster(2, Type.iCore);

3 val t1 = cg.addTaskCluster(3, Type.RISC);

4 val t2 = cg.addTaskCluster(1, Type.TCPA);

5 val m0 = cg.addMessageCluster(t1, t0, 3, 7);

6 val m1 = cg.addMessageCluster(t0, t1, 3, 4);

7 val m2 = cg.addMessageCluster(t1, t2, 2, 7);

8 val m3 = cg.addMessageCluster(t2, t1, 2, 2);

9

10 OperatingPoint op1 = new OperatingPoint(cg);

11

12 val q1 = new PowerConsumption(1.2, 2.0, "W");

13 val q2 = new PFH(0.0001, 0.000001);

14

15 op1.setQualityNumber(q1);

16 op1.setQualityNumber(q2);

17

18 operatingPoints.add(op1);

19 // Create and add other operating points...

20

21 val claim = Claim.invade(operatingPoints);

(a) Operating Point Creation (Wildermann et al., 2016)

1 // Bind actors onto claim

2 // according to selected

3 // operating point

4 if (claim.getSelection() == op1)

{↪→

5 val r0 =

claim.getResource(t0);↪→

6 val r1 =

claim.getResource(t1);↪→

7 val r2 =

claim.getResource(t2);↪→

8 ag.moveActor(v1, r1);

9 ag.moveActor(v2, r0);

10 ag.moveActor(v3, r0);

11 ag.moveActor(v4, r2);

12 ag.moveActor(v5, r1);

13 ag.moveActor(v6, r1);

14 } else if (claim.getSelection()

== op2) {↪→

15 // ...

16 }

17

18 ag.start();

(b) Claim Binding (Wildermann et al.,
2016)

Figure 8.13.: Operating Point back-annotation into the invasive actor-based application. Usually

performed through source-to-source compilation using the program and the set of

operating points as input. (Wildermann et al., 2016)

ing on the configuration, this may be done using formal models (e.g. for worst-case execution

time (WCET) analysis), using a simulator, or on the actual hardware. In all cases, quality numbers

that describe the nonfunctional properties of the execution are collected and stored with the

respective application configuration. In the course of the optimization, the optimizer maintains

a set of pareto-optimal configurations. A pareto-optimal configuration is not equal to or worse

regarding every quality number compared to the other pareto-optimal configurations. As the

optimization progresses, the set of pareto-optimal configurations usually converges. The final set

of pareto-optimal configurations, annotated with their quality number is the result of the DSE.

Such an annotated configuration is also referred to as operating point. This set may contain a very

large number of very similar operating points, and is therefore condensed into a smaller, more

manageable set through operating point distillation (Pourmohseni, Glaß, and Teich, 2017).

The set is then embedded into the application for use in production through source-to-source

compilation. For each operating point, the mapping onto the resources is embedded in the form of

constraint graphs. A sample operating point for the code sample above is depicted in Figure 8.13a.

68

8.3. INVASIVE DESIGN FLOW

This constraint set is then handed over to iRTSS to invade an appropriate resource set. The run-time

system then selects an appropriate operating point that fits the current conditions of the system,

such as currently available resource or energy use. Once the operating point is selected, a suitable

mapping onto the concrete resources is selected using a back-tracking algorithm (Weichslgartner

et al., 2014). Finally, the claim is created, the actors may be moved to the indicated X10 places,

and the computation started.

69

Setting the Stage

In the previous chapters, I gave an overview of both the environment of parallel computing

in general, and the specific environment of my thesis project. In the next part of this thesis, I

will formally introduce the FunState variant of the actor model. This incarnation follows the

principles of the actor model as outlined in chapter 7, specifically the encapsulation of data and the

message-driven behavior. However, unlike with the traditional actor models, the FunState model

also formalizes the actor’s behavior using a finite state machine and communication between

actors through communication channels.

In the following, I will discuss two different actor libraries: ActorX10 and Actor-UPC++. ActorX10

was developed in the context of the invasive computing project, using X10. It serves an important

role in the invasive design flow by making the application’s structure explicit. This enables the

generation of mappings for a given target architecture that are optimal regarding quality numbers

such as throughput and latency. Actor-UPC++ was developed for use in large-scale distributed

applications. The library is built on top of UPC++, and makes use of that framework’s high

performance asynchronous communication mechanisms.

In the third part of the thesis, I apply the actor model to the field of tsunami simulation. This

part specifically will demonstrate both the feasibility and the benefits of using the actor model for

block-structured HPC applications. I will demonstrate that the application developer can benefit

from improved programmability through decoupling of the individual software components

while retaining performance that is competitive, or even better than the conventional approach

using MPI and OpenMP.

71

Part II.

The Actor Model

73

9. The FunState Actor Model

The actor model used in this thesis is based on the FunStatemodel as defined in Roloff et al. (2016).

It is based on the original version of Strehl et al. (2001), and was used in the collaboration to

create ActorX10, and in Actor-UPC++. I will start by formally introducing actors and the structure

connecting them, the actor graph. This general model forms the basis of the two actor libraries,

and may be adapted for different models of computation as needed.

Definition 1 (Actor graph) An actor graph is a directed graphGa = (A,C) containing a set of actors
A and a set of channels C ⊆ A.O ×A.I connecting actor output ports A.O with actor input ports A.I .
Each channel has a buffer size determined by n : C → N+, and a possibly empty sequence of initial tokens

denoted by d : C → D∗ whereD∗ denotes the set of all possible finite sequences of tokens.

Actors may only communicate externally using its ports. A port may only process tokens of a

specific type. The model distinguishes two types of ports, InPorts as endpoint for receiving data,

and OutPorts for sending data to other actors. Ports are connected through channels. Channels

are buffers of finite size that may contain up to n(c), c ∈ C tokens of typeD. Communication

between actors connected in this way occurs in First In First Out (FIFO) order, i.e. the ordering

between messages in the same channel is always preserved. This is the natural mode of operation

for many applications, and facilitates the use of widely used patterns in scientific computing,

such as a halo layer exchange, as the application may rely on the fact that the data is always

read in sequence. As indicated in Definition 1, the sole means of communication between actors

is through channels. Implicit communication of any kind, for example through shared data

structures or shared memory locations, is prohibited. An actor is therefore constrained to only

consume data items (tokens) from channels connected to its input ports and to produce tokens on

channels connected to its output ports. It is also possible to place initial tokens in FIFO channels,

e.g., d(c) = 〈1, 2〉 to denote that two initial tokens with the values 1 and 2 are on the channel c.

I will use Cannon’s algorithm for distributed and parallel matrix multiplication throughout this

chapter as an example to illustrate the FunState actor formalism (Cannon, 1969). The algorithm

performs amatrix-matrixmultiplication in parallel on p×p processors, and is given in Algorithm 1

(cf. Bader (2019)). In the beginning, each processor is assigned three matrix blocks: ci,j , which

will eventually contain the result, and ai,k and bk,j (with k ← i + jmod p), which are blocks

from the input matrices A and B. All matrix blocks contain m
p ×

m
p elements. Once the matrix

data is distributed, a partial result is computed and added onto the result matrix. Then, each

processor sends its data on to another processor. Blocks from matrix A are sent from rank Pi,j

to Pi,(j−1)mod p, i.e. to the processor “above”, and blocks from matrix B are sent from Pi,j to

P(i−1)mod p,j , or one rank “to the left”. At the same time, the actor receives blocks from the ranks

75

CHAPTER 9. THE FUNSTATE ACTOR MODEL

Algorithm 1 Cannon’s Algorithm

procedureMatMul(a,b,c) . Perform C = A ·B in parallel

Pi,j ← ai,j , bi,j , ci,j with 1 ≥ i, j ≥ p . on p× p processors
k ← i+ jmod p
a← ai,k, b← bk,j
for l in 1..p do

ci,j ← ci,j + a · b . Perform matrix multiplication on local blocks.

Concurrently . Send and receive new matrix blocks

a ≫ Pi,(j−1)mod p : a
′

b ≫ P(i−1)mod p,j : b
′

a′ ≪ Pi,(j+1)mod p : a
b′ ≪ P(i+1)mod p,j : b

EndConcurrently

Synchronize

b← b′, a← a′

end for

end procedure

“below” and “to the right”. Once communication has terminated on all ranks, computation of the

next partial result may start. This is repeated until all partial matrices have been computed and

the final result has been obtained.

The parallel execution of the matrix multiplication from matrices of sizem×m using the Actor

model may therefore be modelled as follows:

GCannon = (ACannon, CCannon) (9.1)

ACannon =
{
Pi,j |i, j ∈ [1, p]

}
CCannon =

{(
Pa,b.Oh, Pc,d.Ih

)
|a, b, c, d ∈ [1, p], c = a− 1mod p, d = b

}
∪
{(

Pa,b.Ov, Pc,d.Iv
)
|a, b, c, d ∈ [1, p], c = a, d = b− 1mod p

}

Each processor in the original algorithm is replaced by an actor namedPi,j . For a computationwith

p×p actors, this leads to p2 actors. In the algorithm above, each processor sends its matrix block a
to the processor above, and each matrix block b to the processor to its left. The channel structure of
CCannon reflects this communication flow. Each actor has two output portsOPi,j = {Oh, Ov} and
two input ports IPi,j = {Ih, Iv}, and channels connecting the vertical output port of an actor with

its top neighbor, and its horizontal output port with its left neighbor. For actors at the boundary

of the grid, the channels are wrapped around to the other side. This creates connection structure

in the shape of a two-dimensional torus. The properties of the channels may be modelled as

shown in Equation 9.2. The capacity n of each channel is set to two, and initially the matrix blocks

pertaining to each actor’s coordinates are placed in the channel connected to its input ports. A

sample actor graph for p = 4 is displayed in Figure 9.1.

76

P0,4

P0,3

P0,2

P0,1

P1,4

P1,3

P1,2

P1,1

P2,4

P2,3

P2,2

P2,1

P3,4

P3,3

P3,2

P3,1

Figure 9.1.: Actor graph example. The actor graph displays an actor graph instance for the parallel

execution of Cannon’s algorithm.

77

CHAPTER 9. THE FUNSTATE ACTOR MODEL

nCannon : C → N+ (9.2)

nCannon(c) = 2

dCannon : C →
(
R

m
p
×m

p

)∗
dCannon((Pi,j .Ov, Pi′,j′ .Iv) = ai′,j′

dCannon((Pi,j .Oh, Pi′,j′ .Ih) = bi′,j′

The behavior of the actors is formally specified as well. The specification defines rules governing

the actions of the actor, if and when it is activated to perform them, and on which data. In our

model of the actor, we specify the behavior through an Finite State Machine (FSM). Execution of a

state transition may depend on a specific configuration of tokens on the actor’s ports, as well as

the actor’s internal state. The execution of a state transition is also referred to as firing. For each

transition, we define the number of tokens consumed for each input port, the tokens produced

for each output port, and the functions executed during the transition. In our incarnation of

the model, we also require the separation of the functions performed in the transition from the

communication and the state machine. Formally, we describe actors and their FSMs following

Roloff et al. (2016).

Definition 2 (Actor) An actor is a tuple a = (I,O, F,R) containing actor ports partitioned into a

set of actor input ports I and a set of actor output ports O, a set of functions F , and an FSM R called

firing finite state machine. The functions encapsulated in an actor are partitioned into so-called actions

FAction ⊆ F and guards FGuard ⊆ F . Functions are activated during a so-called firing transition of the

FSMR, which unambiguously formalizes the communication behavior of the actor (i.e., the number of tokens

consumed and produced in each actor firing). Actions may produce results in the form of output tokens

residing in the FIFO channels connected to the actor output ports. Using guards, more complex models of

computation may be modeled. In particular, the activation of actors is based not only on the availability of a

minimal number of tokens on the input ports, but also on their values. Guards return a Boolean value and

may be assigned to each transition of the FSM of an actor.

Definition 3 (Actor (Firing) Finite State Machine) The firing FSM of an actor a ∈ A is a tuple

R = (Q, q0, T) containing a finite set of statesQ, an initial state q0 ∈ Q, and a finite set of transitions T .

Moreover, a transition of an FSM is a tuple t = (q, k, f, q′) ∈ T containing the current state q ∈ Q, an

activation pattern k, the respective action f ∈ a.FAction, and the next firing state q
′ ∈ Q. The activation

pattern k is a Boolean function which decides if transition t can be taken (true) or not (false) based on: (1) a

minimum number of available tokens on the input ports a.I , (2) a set of guard functions F ′ ⊂ FGuard, and

(3) a minimum number of free places in the channels connected to respective output ports.

Using these definitions, I model the Cannon actors Pi,j ∈ ACannon as Pi,j =
(I,O, FCannon, RCannon). The port structure follows the definitions above: I = {IV, IH}
and O = {OV, OH}. The set of Functions is modelled as the union of the set of guards FGuard

78

Pi,j

OV

IV

OH IHCalc End

(a) Cannon Actor Pi,j

Calcstart End

i < p ∧ (#IH > 0 ∧ #IV > 0)
∧(#OH < 2 ∧ #OV < 2)

(ci,j ← ci,j + IV · IH; i← i+ 1;
OH ← IH;OV ← IV)

i > p
stop()

(b) Cannon Actor FSM.

Figure 9.2.: Actor and FSM for actor-based modelling of Cannon’s Algorithm. The figure on the

left depicts the Cannon actor Pi,j . The yellow triangles denote its ports. The picture

on the right depicts the actor’s FSM. In each of the transitions, the upper half denotes

the activation pattern, and the lower half the actions.

and the set of actions FAction:

FCannon = FGuard ∪ FAction (9.3)

FGuard =
{
[i < p ∧ #IH > 0 ∧ #IV > 0 ∧ #OH < 2 ∧ #OV < 2] , [i > p]

}
FAction =

{[
ci,j ← ci,j + IV · IH; i← i+ 1;OH ← IH;OV ← IV

]
,
[
stop()

]}
.

The actor’s FSM RCannon is given graphically in Figure 9.2b. In the initial state, “Calc”, the actor

waits until each of its two input ports have at least one token available (#IH > 0 ∧ #IV > 0),
and until there is at least one free spot in each of its output ports (#OH < 2 ∧ #OV < 2).
Once that happens, the state transition from “Calc” to “Calc” may be taken, and its action(
ci,j ← ci,j + IV · IH; i← i+ 1;OH ← IH;OV ← IV

)
performed. The action takes the tokens

from the input ports, multiplies and adds them onto the local partial result ci,j , and enqueues

them on their corresponding output ports. Finally, the internal counter is incremented to keep

track of the overall completion of the computation. The other transition, from “Calc” to “End”,

is taken once the actor’s internal counter is equal to the number of processors in one dimension,

i.e. once every matrix block needed for ci,j has been processed. Its action serves to signal the

termination of the actor.

An important aspect of the FunState model is the clear separation of concerns that occurs between

the different parts of the computation. Actors do not need to possess knowledge about their

neighbors (or global state). Instead, they only depend on their own internal state, and the

information provided in the tokens received through the ports. There is also a clear separation

between the execution behavior, the communication, and the performed functionality through

the separation into the FSM R and the set of functions that may be performed. Finally, the

79

CHAPTER 9. THE FUNSTATE ACTOR MODEL

formal model does not prescribe any particular model of computation, but only requires the basic

conditions to be met, e.g. that values are not consumed before a state transition actually takes

place. This allows for great flexibility when implementing the model in practice, and leads to a

better separation of concerns, where the application developer may focus on the actors and their

interactions, and the library developer takes care of the execution of the actors efficiently, e.g. on a

distributed machine. In the following chapters, I present two incarnations of the actor model, one

written in X10 within the context of the Invasive Computing project, and one written using more

widely available standard tools, such as modern C++ and the UPC++ communication library.

80

10. ActorX10, an X10 Actor Library

In chapter 5, I introduced X10 as an example for a programming language built on the APGAS

computational model. X10 is the prevalent programming language used in InvasIC, and was

therefore the first choice for our actor library to facilitate the best possible integration into the

project. Our implementation of the actor model is an improvement on the more simple actor

implementation1 described by Roloff, Hannig, and Teich (2014).

The APGAS paradigm and X10 introduce the notion of places, i.e. shared memory domains that

code may be executed on. When X10 is used on a distributed memory system, one would typically

choose the place granularity to be one place per NUMA domain, with the whole computation

potentially spanning the entire cluster. Mapping the actor model onto the APGAS paradigm

also enables us to perform large-scale computations using the model. In this chapter, I will

describe the ActorX10 library that maps the FunState actor model as described in chapter 9 onto

the APGAS programming model as realized in X10. The work described in this chapter is based

on a collaborative effort that has been presented previously in Roloff et al. (2016).

10.1. System Design

The ActorX10 system design closely follows the structure mandated by the FunState model, and

results in an object graph that is distributed amongst the X10 computing domain. There is a

single ActorGraph instance that typically resides on the root place, and multiple actors spread

across the domain. The choice for a single graph instance was based on the architecture of the

invasive platform prototype. Having an actor graph instance on all ranks would have meant a

large amount of replicated information without much benefit, as the ActorGraph graph instance is

not needed for the computation once the actors are started. On HPC systems, this choice becomes

a bottleneck during the initialization of the computation.

The application developer implements their functionality through subclassing. The application

will provide an ActorGraph subclass to implement the creation and setup of the actor-based

computation. An overview of the class structure of ActorX10 is depicted in Figure 10.1. The

actor’s functionality is provided by subclassing the Actor class. In the following, we will provide

a closer look at the individual components: actors, ports and channels, and the actor graph.

1 Referred to as task model in the publication

81

CHAPTER 10. ACTORX10, AN X10 ACTOR LIBRARY

«
a

b
stra

ct»
C

h
a

n
n

e
l

-to
ke

n
s:Q

u
e

u
e

<
T

>

~
size

():In
te

g
e

r
~

p
e

e
k():T

~
p

e
e

k(n
:In

te
g

e
r):T

[]
~

p
o

p
():T

~
p

o
p

(n
:In

te
g

e
r):T

[]
~

p
u

sh
(to

ke
n

:T
)

~
p

u
sh

(to
ke

n
s:T

[])

«
a

b
stra

ct»
A

b
stra

ctC
h

a
n

n
e

l

+
ca

p
a

city:In
te

g
e

r

~
size

():In
te

g
e

r

«
a

b
stra

ct»
A

b
stra

ctP
o

rt

~
se

lfL
o

o
p

:B
o

o
le

a
n

+
o

p
e

ra
to

r th
is():B

o
o

le
a

n
+

o
p

e
ra

to
r th

is(n
:In

te
g

e
r):B

o
o

le
a

n

O
u

tP
o

rt<
T

>

+
n

a
m

e
:S

trin
g

+
w

rite
(to

ke
n

:T
)

+
w

rite
(to

ke
n

s:T
[])

In
P

o
rt<

T
>

+
n

a
m

e
:S

trin
g

+
re

a
d

():T
+

re
a

d
(n

:In
te

g
e

r):t[]
+

p
e

e
k():T

+
p

e
e

k(n
:In

te
g

e
r):t[]

A
cto

rG
ra

p
h

-n
u

m
A

ctive
A

cto
rs:In

te
g

e
r

+
a

d
d

A
cto

r(a
:A

cto
r)

+
g

e
tA

cto
r(n

a
m

e
:S

trin
g

)
+

co
n

n
e

ctP
o

rts<
T

>
(o

p
:O

u
tP

o
rt<

T
>

, ip
:In

P
o

rt<
T

>
)

+
sta

rt()
+

sto
p

()
+

m
o

ve
A

cto
r(n

a
m

e
:S

trin
g

, d
e

stin
a

tio
n

:P
la

ce
)

«
a

b
stra

ct»
A

b
stra

ctIn
P

o
rt

~
n

u
m

R
e

a
d

a
b

le
T

o
ke

n
s:In

te
g

e
r

+
o

p
e

ra
to

r th
is():B

o
o

le
a

n
+

o
p

e
ra

to
r th

is(n
:In

te
g

e
r):B

o
o

le
a

n

«
a

b
stra

ct»
A

b
stra

ctO
u

tP
o

rt

~
n

u
m

W
rita

b
le

T
o

ke
n

s:In
te

g
e

r

+
o

p
e

ra
to

r th
is():B

o
o

le
a

n
+

o
p

e
ra

to
r th

is(n
:In

te
g

e
r):B

o
o

le
a

n
~

w
rite

T
o

ke
n

(t:A
n

y)

«
a

b
stra

ct»
A

cto
r

+
N

a
m

e
: S

trin
g

-a
ctiva

te
d

:B
o

o
le

a
n

-trig
g

e
re

d
:B

o
o

le
a

n

+
a

d
d

In
P

o
rt(p

:In
P

o
rt<

T
>

)
+

a
d

d
O

u
tP

o
rt(p

:O
u

tP
o

rt<
T

>
)

#
sto

p
()

#
a

ct()
~

sta
rt()

~
sta

rtA
cto

r()
~

trig
g

e
r()

 0
..1

 0
..n

n

 n

co
n

n
e

cte
d

 to
2

1

«
g

lo
b

a
l»

1 1

F
ig
u
re

10.1.:A
cto

rX
10

Sy
stem

D
esig

n
U
M
L
C
lass

D
iag

ram

82

10.2. ACTORS

10.2. Actors

In accordance with the formal definition of the actor in the FunState model, the abstract class

Actor contains two lists representing the set of incoming ports I and the set of outgoing ports

O. Ports are added to the actor using the corresponding factory methods addInPort(port) and

addOutPort(port). The actor class provides the abstract method act()which is called whenever

the state of the connected channels of the actor changes. Ports and actor need to have a unique

name. The actor class is subclassed by the application developer. It is possible to provide an

arbitrary constructor, the only requirement is the implementation of the act() method. The

subclass will typically keep instances of its ports as attributes.

On a functional level, actor execution is driven through X10 activities. Upon the start of the actor

graph execution, the actor is set to active, and its X10 activity is spawned on the place that contains

it. The activity enters an event loop. In the loop, first the act()method is invoked. Subsequently,

all ports are checked for updates. If there are new tokens available, or spots in the queue have

newly been consumed by connected actors, the actor is activated again, the actor keeps track of

the event by invoking the trigger()method. If the actor has been triggered, the FSM is invoked

once more, and may perform another state transition. Otherwise, the activity is suspended, and

remains so until there is a change in the connected channels. This loop is executed until the actor’s

FSM signals the arrival in an accepting state, through invocation of the actor’s stop()method.

10.3. Ports

An actor’s only means of communication with its environment is through ports. This enabled the

application developer to precisely describe the type of data that is consumed by the actor, as well

as what data is created. We implemented this in ActorX10 with the generic classes InPort[T] and

OutPort[T]. This ensures at compile-time that actors only receive tokens they are able to consume:

First, the generated code only allows for tokens of a specific type T, and second, it is only allowed

connect ports of the same token type through a channel. Actors may read() from InPorts, and

write() to OutPorts. For some state machine transitions, it is necessary to evaluate one or more

tokens before a transition is taken. The tokens are read from the channel only when a feasible

state transition has been identified2. New tokens are written once all actions associated with the

transition have been performed. Obtaining tokens from channels is possible non-destructively

through invocation of the peek()method. When no tokens are available to read for InPorts, or

no free space to write tokens for the OutPorts, all the methods to access channels will fail with an

exception. To avoid this, the application developer has to insert checks into the code to make sure

that channels are only read from or written to if it is actually possible to do so. These checks are

provided by both types of ports using the overloaded operator() (e.g. for InPort p, p() would

check whether a token is available, p(5) would return true if there are at least five). For InPorts,

the method returns whether one (for no parameter provided) or a specific number (when that

2 Note that whereas the formal actor model introduced in chapter 9 assumes a non-deterministic choice of transition in

case multiple transitions should become simultaneously activated, our X10 implementation implements a priority

given by the order in which the code checks the activation conditions.

83

CHAPTER 10. ACTORX10, AN X10 ACTOR LIBRARY

number is provided as parameter) of tokens are available. OutPorts function the same way, but

instead of available tokens, the number of unused spaces are checked.

To provide this functionality, ports hold references to the channel that connects them to their

counterpart, and to the port on the connected actors. The former is used to insert, access and

remove tokens, and the latter is used to signal the tokens’ insertion or deletion. Global references

are used since actors and channels are potentially distributed between multiple places. When

a transfer of tokens is necessary, we start a new asynchronous activity on the place containing

the channel to insert the token. After doing so, that activity asynchronously spawns another that

notifies the connected OutPort. For the transfer of tokens, we benefit from the sophisticated object

serialization in X10. When tokens are transferred across place boundaries, they are serialized on

the source place, sent over the interconnection network, and then reassembled on the destination

place. This enables the use of nearly any X10 type as tokens3.

10.4. Channels

Channels are implemented by the generic class Channel[T]. Like the two port classes, it has a

type parameter T to ensure that only tokens of compatible types may be enqueued. Tokens are

stored in a thread-safe queue that allows for read and write operations without race conditions.

In addition to methods for adding and removing elements, there is a method to access the first

element in the queue without removing it (peek()).

10.5. ActorGraph

The ActorGraph bundles functionality for managing the components of the actor-based com-

putation. It offers methods to add new actors to the graph (addActor(a)), to connect ports

(connectPort(i, o, n)), and to distribute it (distributeActors() and moveActor()). Users of

the library are expected to perform the set-up of the actor graph by creating their own subclass

of ActorGraph, with an implementation of the build() method. To start the computation, the

start()method is invoked. The method call returns only once the computation has finished, and

all actors are stopped.

Internally, the actor graph class tracks existence and location of all its actors through a list of

global references. Channels are tracked only implicitly. When two actors’ ports are connected, the

ActorGraph instance takes care of setting the references correctly by allocating global references,

and a channel object. The default behavior of the actor graph allocates the channel object on the

same place as the actor containing the InPort. Distribution of actors may happen before the actors

have been activated, or during the actor graph execution. When the graph is inactive, actors, ports

and channels may simply be moved to another place, and the X10 runtime takes care of the data

serialization. If an actor is to be moved after the computation has started, the actor and all its

3 Excluding, amongst others, types containing operating system level resources, unmanaged C++ data, or file handles.

84

10.6. ACTORX10 APPLICATION EXAMPLE: CANNON’S ALGORITHM

neighbors4 first have to be stopped. This is done by signalling a temporary termination signal.

Once all involved actors finish their currently running computation, actors, ports and channels

may be moved safely. Thereafter, the computation is restarted. Currently, the actor library only

allows for the migration of a single actor at the same time.

10.6. ActorX10 Application Example: Cannon’s Algorithm

In chapter 9, I formally described Cannon’s algorithm in terms of the FunState model. In this

section I will demonstrate its parallel and distributed implementation using ActorX10. For the

operation on matrices, I use the Matrix class introduced in section 5.1 (Figure 5.2). In the example,

I implemented the classes CannonActorGraph and CannonActor, which inherit from ActorGraph

and Actor, respectively. In the following, I will take a closer look at the implementation5 of these

classes.

Following the formal definition, the class CannonActor, depicted in Figure 10.2 has two incoming

and two outgoing ports that accept tokens of type Matrix, one for each spacial direction in the

actor grid. Furthermore, there is an attribute to track the state the computation is currently in. The

FSM is implemented in the act()method (line 11-25). There are two states, STATE_COMPUTE and

STATE_FINISHED. In the compute state, as long as the actor has not yet received all the matrices

from its row (and column), the actor may perform a state transition if there is sufficient space

to place a token in above and left, and there is one token available in each of the ports right

and below. If that transition is taken, the actor takes the partial matrices from the incoming

ports, and multiplies them onto the result matrix c. Finally, the input matrices are placed on the

outgoing ports conforming to the direction they originated from. The state remains the same

in this transition, however, I increment a counter to keep track of the number of matrices that

still need to be processed to obtain the final result. The other transition, from STATE_COMPUTE to

STATE_FINISHED, is taken once the final result is obtained. Here, I set the actor’s state accordingly,

and end the actor’s execution through invocation of the stop()method.

In CannonActorGraph, shown in Figure 10.3, the build() method is implemented to build the

actor graph incrementally. In the beginning, p× p CannonActor instances are created and stored

in a two-dimensional array (lines 12-17). The actors are created each with their position within

the overall computation, the size of their working set and the number of intermediate steps they

need to compute. The newly created actor is added to the actor graph, and its ports are registered

internally. Once all actors are created, they are connected (lines 20-26). For each actor, I connect its

left outgoing port to its left neighbor’s right incoming port, and its above outgoing port to its

top neighbor’s below incoming port. For actors at the boundary of the computation, connections

are created by wrapping around and connecting to the actor on the other side of the domain. This

may be done using the modulo operator. Then, I distribute the actors (line 29-35). First, I create a

two-dimensional block-block-distribution6 over the point cloud of the computation, and then I

4 i.e. all actors that share a channel with it.
5 The code shown in this section is shortened and lightly edited for readability. For the full sample code, see section A.1

in the appendix.
6 X10 uses the Dist class to map array iteration spaces to Places for distributed arrays.

85

CHAPTER 10. ACTORX10, AN X10 ACTOR LIBRARY

1 class CannonActor extends Actor {

2 val above : OutPort[Matrix];

3 val left : OutPort[Matrix];

4 val right : InPort[Matrix];

5 val below : InPort[Matrix];

6 private var state:Int = STATE_COMPUTE;

7

8 // Other attribute definitions, constructor,

9 // and initialization methods are omitted.

10

11 protected def act() {

12 if (state == STATE_COMPUTE && operationsPerformed < numOperations

13 && left() && above() && below() && right()) {

14 val a = below.read();

15 val b = right.read();

16 this.c = this.c + a * b;

17 operationsPerformed++;

18 left.write(b);

19 above.write(a);

20 } else if (state == STATE_COMPUTE && operationsPerformed ==

numOperations) {↪→

21 state = STATE_FINISHED;

22 stop();

23 } else if (state == STATE_FINISHED) {}

24 }

25 }

Figure 10.2.: ActorX10 sample actor implementing Cannon’s Algorithm

86

10.6. ACTORX10 APPLICATION EXAMPLE: CANNON’S ALGORITHM

1 class CannonActorGraph extends ActorGraph {

2 val n : Int;

3 val p : Int;

4 val actorRegion : Region{rect, zeroBased, rank==2};

5

6 // Constructor omitted.

7 // - Sets instance variables.

8 // - Ensures that n mod p = 0

9

10 def build() {

11 // Create the actors and register their ports

12 val actors = new Array[CannonActor](actorRegion, (pt:Point(2)) => {

13 val a = new CannonActor(pt(0), pt(1), n/p, p);

14 addActor(a);

15 a.initPorts();

16 return a;

17 });

18

19 // Connect ports to neighbors

20 for ([i,j] in actorRegion) {

21 val a = actors(i,j);

22 val left = actors((i + p - 1) % p, j);

23 val upper = actors(i, (j + p - 1) % p);

24 connectPorts(a.left, left.right, 2);

25 connectPorts(a.above, upper.below, 2);

26 }

27

28 // Distribute the Actors using a 2D-Block-Distribution

29 val distPlan = Dist.makeBlockBlock(actorRegion, 0,1);

30 val distribution = new HashMap[String, Place]();

31 for (p in actorRegion) {

32 val plc = distPlan(p);

33 distribution.put(actors(p).name, plc);

34 }

35 distributeActors(distribution);

36

37 // Place initial matrix tokens in the incoming ports

38 finish for ([i,j] in actorRegion) async {

39 val aRef = getActor(actors(i,j).name);

40 aRef.evalAtHome((a:Actor) => {

41 (a as CannonActor).placeInitialTokens();

42 return 0;

43 });

44 }

45 }

46 }

Figure 10.3.: ActorX10 sample actor graph for Cannon’s Algorithm

87

CHAPTER 10. ACTORX10, AN X10 ACTOR LIBRARY

use it to create a Map that maps each actor name to the place it was assigned by the distribution

object. Finally, I pass the map to the superclass, which takes care of the actor distribution. The

last step is to place the initial matrix tokens in the incoming ports of the actors (lines 38-44). This

task may be performed asynchronously for all actors on all places involved in a computation.

88

11. An Actor Library for UPC++

In addition to the actor library written in X10, I also implemented a second version of the library

using tools more generally available on current systems, namely modern C++ and the UPC++

communication library. UPC++ implements the PGASparadigmon top ofmodern interconnection

networks (for details, see chapter 4). UPC++ is available on some clusters (such a Cori1 at

National Energy Research Scientific Computing Center (NERSC)), and may be installed without

administrative privileges on others (such as LRZ’s CoolMUC 2 2). The combination of more

simple interoperability with standard HPC environments made it an appealing target for another

implementation of the actor model. I previously presented this library in Pöppl, Bader, and Baden

(2019), the description in this chapter is based on this publication.

The system design of Actor-UPC++ follows a design similar to ActorX10, with a few notable

differences. Whereas in ActorX10, there is only one central actor graph instance for all places, in

Actor-UPC++, the actor graph is implemented as a distributed object. Application developers

may interact with the actor graph instance instead of subclassing it. Furthermore, the inheritance

hierarchy has been flattened by removing the AbstractPort class. In the following, I will look at

the implementation of Actor-UPC++ in more detail, with a focus on the implementation choices

taken as a consequence of the change in the implementation environment.

11.1. Actor Graph

As in ActorX10, the coordination of the graph setup is performed in the ActorGraph class.

Similarly, the class holds a dictionary of all actors involved in the computation, and as

in the other implementation, operations to add actors (addActor(a)), to connect ports

(connectPorts<type,capacity>(a1, p1, a2, p2)) and to start the computation (run()) are of-

fered. The implementation, however, is different. Following the SPMD process model of UPC++,

the actor graph is collectively created on all ranks instead of only one instance on one place in

X10. This allows every rank to add its own actors. When a new actor is added, it is added to a list

of local actors, and to the global dictionary. Finally, the new entry is broadcast to all other ranks

involved in the computation. This means that each instance will eventually possess a full copy of

the dictionary. The main use of this dictionary is the discovery of remote actors for the purpose

of connecting their ports. The method connectPorts()may be called from any rank. Depending

on the location of the source and the destination actor, different connection strategies are used.

When the source is local, I first schedule an RPC on the destination actor’s rank, and attach a

1
https://docs.nersc.gov/systems/cori/

2
https://doku.lrz.de/display/PUBLIC/Linux+Cluster

89

https://docs.nersc.gov/systems/cori/
https://doku.lrz.de/display/PUBLIC/Linux+Cluster

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

«template»
Channel<type, capacity>

-queue:array<type,capacity>

+size():size_t
+peek():type
+enqueue(token:type)
+dequeue():type «template»

OutPort<type, capacity>

-unusedCapacity:int

+freeCapacity():size_t
+updateCapacity(size_t newVal)
+write(token:type)

«template»
InPort<type, capacity>

+available():size_t
+read():type
+peek():type

ActorGraph

-activeActors:Integer
-rpcsInFlight:atomic<int>
-rpcsInFlight:atomic<int>
-remoteGraphComponents:dist_object<ActorGraph>

+addActor(a:Actor)
+getActor(name:String)
+connectPorts<T>(a1:Actor, p1:string, a2:Actor, p2:string)
+run():double

«abstract»
AbstractInPort

+name:string

+notify()

«abstract»
AbstractOutPort

+name:string

+notify()

«abstract»
Actor

+name: string
-isRunning:bool
-actorPersona:persona

+makeInPort<type, capacity>(name:string)
+makeOutPort<type, capacity>(name:string)
+trigger()
#stop()
#act()
-start()

 «global_ref»
 1

1

 «global_ref»
 0..1

 0..n

 n

n

 «global_ref»
 1

1

Figure 11.1.: Actor-UPC++ System Design UML Class Diagram

closure that connects the source side as an asynchronous completion. If the destination actor is

local, I create the channel locally, and then asynchronously perform the source side using an RPC.

Finally, if neither source nor destination actor are local, I simply invoke the operation to connect

from the destination actor using an RPC to the rank containing it. In all three cases, I wait for

completion of the operation before returning from the method call to connectPorts(). Finally, to

start the computation, the ranks involved in the computation must collectively invoke the run()

method. As in ActorX10, this method call will only return once all actors have been terminated.

Scalability Issues In my evaluation of the actor library, the performance of the current imple-

mentation of the actor graph dictionary was sufficient. However, I anticipate the dictionary to

become a problem for computations with thousands of nodes. The amount of memory used per

rank may be computed as

mtotal = mentrynActors
nRanks

nNode
(11.1)

and the network traffic is computed as

tActor = mentrynRanks (11.2)

tTotal = tActornActor.

The largest job I performed in the course of the evaluation of my sample application was executed

on 128 Xeon Phi nodes on NERSC Cori. The job encompassed 65535 actors on 16384 ranks. Each

dictionary entry contains the name of the actor as a std::string object (with a length of about

50 characters) and the upcxx::global_ptr object referencing the actor (with a total size of 16B)

leading to a total message size of≈ 100B. Following Equation 11.1, the dictionaries on a single

90

11.2. ACTORS AND EXECUTION STRATEGIES

node would take a total of 100B · 65536 · 16384128 = 800MB. With a ten-fold increase of nodes in

the computation, the memory requirements would become prohibitively large. Another problem

is the increase in network traffic due to the broadcast of new entries. Following Equation 11.2

and assuming a constant number of actors per node with an increasing number of nodes in

the computation, the number of messages and, therefore, the total network traffic increases

quadratically with the number of nodes involved in the computation.

However, a global broadcast of all actors to all ranks will typically not be necessary. In most

cases, each actor will only have a limited number of direct neighbors. Furthermore, once the

actors’ ports are connected, the dictionary is not used anymore, as actors communicate directly,

using their ports. A solution to the Scalability problem may also be a distributed hash table such

as the ones proposed in Bachan et al. (2019), or the one by Monnerat and Amorim (2015). Here,

the values in the table are distributed amongst the participating ranks. When a new value is to

be inserted, the hash value is computed on the initiating rank, along with the target rank. The

value is then inserted using some kind of remote operation (Bachan et al., 2019). In the case of the

actor library, I would store the references as the values in the global hash map, and use the actors’

names as the key. When two actors’ ports are to be connected, I may then perform a lookup to

obtain the references and then go on as described above.

11.2. Actors and Execution Strategies

The interface and functionality of the Actor class from the application developer’s view are

very similar to the one in ActorX10. It contains dictionaries of its incoming and outgoing

ports, and offers methods to create them (here using the template methods makeInPort<type,

capacity>(name) and makeOutPort<type,capacity>(name), respectively), and it provides an

abstract method act() that is implemented by the application developer in order to provide the

actor’s FSM. The necessity of giving the FSM a chance to perform a state transition is tracked

using the actor’s trigger count. Whenever the state of the actor’s ports change, the trigger count is

increased by one, leading to an invocation of act(), which in turn decreases it by one. Within the

library, I implemented and experimentally evaluated three different strategies of executing actors.

They are presented below.

The scope of UPC++ is mostly based around inter-rank communication. In contrast to X10, which

is a full parallel programming language, it does not prescribe a canonical style to parallelize

an application. And while C++-14 offers basic parallelism in the shape of threads, application

developers are free to use different parallelization solutions, such as OpenMP. Therefore, I use the

UPC++ functionality mainly for communication, and parallelized the actor execution using three

different parallelization strategies: The first strategy relies on UPC++ ranks, the second one on

C++ threads and the third one on OpenMP tasks. Henceforth, I shall refer to them as rank-based

execution strategy, thread-based execution strategy and task-based execution strategy, respectively. In all

three cases, they implement the semantics of the FunState actor model as presented in chapter 9.

To do so, ports need to be observed for changes in their respective connected channels. Once

such an event takes place, the port’s corresponding actor needs to be activated and its state

machine given the chance to perform a state transition. For all three strategies, this leads to the

91

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

implementation of one or more event loops per rank. Within these loops, typically tokens are made

available to the application, and the act()method is invoked on the affected actors. Figure 11.2

schematically depicts all three execution models.

Thread-Based Execution Strategy This strategy relies on the threading functionalities provided

by the C++ standard library. When it is used, each actor instance is mapped to its own operating

system thread, while the actor graph instance is executed on the rank’s main thread. This mapping

is made apparent to UPC++ through the use of personas (as introduced in section 4.2). Each actor

takes on its thread’s persona, while the actor graph assumes the master persona of the process.

All actors as well as the actor graph have their own event loop. The actor graph’s event loop

is responsible for inter-process communication. It continuously queries UPC++ for progress

so that incoming RPCs that insert new tokens or update queue capacities from actors on other

ranks may be processed in a timely manner. After each RPC, an LPC is sent to the persona of

the actor affected by the change. The actors’ event loops initially call for progress as well, to give

the runtime the chance to execute the LPCs sent by the actor graph. If an actor was triggered, its

act()method is invoked. The use of multiple threads per UPC++ rank mandates the use of the

parallel UPC++ backend.

Rank-Based Execution Strategy When this strategy is used, the execution of each rank is per-

formed sequentially, i.e. there is only a single thread per UPC++ rank. Parallelism is achieved

instead through the use of many ranks per physical node, e.g. one rank for every logical core on

the node. For this strategy, one would typically have a rather small number of actors per rank, as

the actors are all processed sequentially. Now, only a single event loop within the ActorGraph

instance of the rank is needed. In it, I first query the UPC++ runtime for progress, giving it the

opportunity to process incoming RPCs. Afterwards, all actors that have been triggered by RPCs

or by other local actors, get a chance to perform a state transition by having their act()method

invoked. A notable advantage of having only a single thread per UPC++ rank is that one may

use the sequential UPC++ backend, which forgoes synchronization and thus performs better

compared to the thread-safe parallel UPC++ backend.

Task-Based Execution Strategy The third strategy parallelizes the actor execution using OpenMP

tasks. It has the same basic approach as the rank-based execution strategy, with a single event

loop for all actors. However, instead of executing the act()method directly, the invocations are

scheduled onto an OpenMP task. The basic approach is the following: First, I allow the UPC++

runtime to execute incoming RPCs by calling upcxx::progress(). Then, I iterate over all actors on

the rank, and schedule an OpenMP task that queries for progress and then executes act() for all

actors that have a positive trigger count. These tasks are then scheduled by the OpenMP runtime

onto worker threads, and executed concurrently to the application’s main loop. Additionally, I

need to communicate to the OpenMP runtime that tasks executing the act()method of the same

actor need to be executed after each other. This may be done by adding the depends(...) clause

to the OpenMP pragma that creates the task. In my case, the depends clause is a bi-directional

dependency on the memory address of the actor that has its act() invoked. This allows the

runtime to schedule tasks from different actors in parallel while keeping the execution within

92

11.2. ACTORS AND EXECUTION STRATEGIES

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
RPCs

Comm

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
RPCs

Comm

(a) Thread-Based Execution Strategy

Query Runtime

Perform RPCs

act()

Query Runtime

Perform RPCs

act()

Query Runtime

Perform RPCs

act()

Query Runtime

Perform RPCs

act()

(b) Rank-Based Execution Strategy

Query
Runtime

Perform
RPCs

Master

Schedule
act()

Worker Worker

act()

act()

act()

act()

act()

act()

Query
Runtime

Perform
RPCs

Master

Schedule
act()

Worker Worker

act()

act()

act()

act()

act()

act()

(c) Task-Based Execution Strategy

Figure 11.2.: Parallel execution strategies for Actor-UPC++. (Pöppl, 2019)

93

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

CPU1 a1 a2 a1 a2 a1

CPU2 a0 a0 a1 a0

...

CPUn ak ak−1 ak ak

(a) Sample Execution Trace. From (Pöppl, Bader, and Baden, 2019)

a1 a1 a1 a1... ...

a2 a2 a2... ...

a0 a0 a0... ...

...

akak ak... ...

(b) Task Dependency graph

Figure 11.3.: Sample execution trace and corresponding task dependency graph for the task-

based execution strategy. Tasks belonging to the same actors need to be executed

sequentially.

an actor sequential. A possible execution trace is depicted in Figure 11.3. The number of worker

threads for the OpenMP runtime may be set by the user invoking the application. Typically, the

number of workers per node is similar to its number of cores.

Discussion The three different execution strategies are based on different approaches to paral-

lelization, each with its distinct set of advantages and drawbacks. The thread-based execution

strategy follows the approach taken also by ActorX10, and stays close to the original idea of actors

being independently acting objects. As each actor has its own resource (an operating system

thread), it is easier to analyze the resource use on a per-actor basis, and, as long as there are

enough resources available, actors will be quick to respond to incoming information. However,

this approach has significant drawbacks: First and foremost, using this strategy, actors consume

resources whenever they are scheduled. Even when they do not have any work to perform,

whenever their thread is scheduled to compute by the operating system, they will keep polling

for updates, and therefore consume energy and take compute resources that other actors with

incoming messages actually need. Furthermore, operating system level threads are expensive,

and a context switch between threads involves storing all its data in memory, and therefore incurs

a significant overhead. This makes this strategy the best if there are only few actors (or better just

a single one) per compute resource. This, however, means that there is little to no overlapping

of computation and computation possible, as there are not enough actors that may still have a

positive trigger count. Finally, this strategy uses a fixed communication thread, which queries

the runtime constantly for updates. This takes another compute core that might also at least be

partially used for computations otherwise.

The rank-based execution strategy follows the structure of a classical SPMD application. Each

rank’s computations are performed sequentially using the master thread of the process. For

intra-node parallelism, I then use multiple ranks, typically one per logical CPU core. Each rank

will typically be responsible for a few actors. This has several benefits: The structure of the

event loop means that all compute resources share some of the communication load, each for a

small amount of actors, and while the loop also actively polls for updates, after each call to the

94

11.3. PORTS AND CHANNELS

runtime, actors with a positive trigger count are given the chance to compute. This also means that

actors without a positive trigger count do not utilize any resources. Furthermore, the fact that the

execution within a rank is sequential has the added benefit that the implementation may be rather

simple, as there are no shared resources, and no thread synchronization is necessary. Intra-rank

communication can therefore be performed directly without the need for UPC++ communication

operations such as LPCs. However, low number of actors per rank makes the library a bit less

flexible when it comes to load-balancing. If the load of an application is not balanced well across

the actors involved in the application, there may be ranks that do not have any work to perform,

while other actors on ranks under greater loadmay hold up the computation. While this drawback

is also present in the other strategies due to a lack of actor migration, using this strategy the

problem is exacerbated, as the number of actors per rank is lower. Finally, the low number of

actors per rank means that more RPCs need to be performed, as there is more communication

across rank boundaries.

The task-based execution strategy follows the basic structure of the rank-based execution strategy,

but instead of executing the actors itself, work is offloaded from the main thread onto worker

threads. This allows one to use a more coarse-grained rank structure compared to the rank-based

execution strategy, for example one rank for each NUMA-domain. Compared to the thread-based

execution strategy, I use the available resources more efficiently, as the actor graph only schedules

tasks for actors with a positive trigger count; therefore, idle actors consume no resources. While

this strategy also has a main thread mostly responsible for communication (and scheduling tasks),

this thread is able to execute the tasks it creates directly if there is a high load on the worker

threads (using the “mergeable” clause of the OpenMP task pragma). Compared to the rank-based

execution strategy, the higher number of actors helps to reduce the overall number of RPCs that

the UPC++ runtime needs to handle. However, for the inter-rank communication that does occur,

LPC completions are needed for book-keeping. A drawback of this strategy is the balancing of the

rank-granularity. In some of my tests (see Figure 18.7 in section 18.2), the communication thread

became a bottleneck of the computation. This can be alleviated by increasing the number of ranks

per node to an appropriate value. This value is dependent on the hardware configuration, the

compute-intensity of the actors’ actions and the communication intensity of the problem to be

solved.

11.3. Ports and Channels

Following the FunState model as introduced in chapter 9, communication between actors hap-

pens through ports and channels. In Actor-UPC++, ports and channels are each implemented

using class templates (InPort<type, capacity>, OutPort<type, capacity> and Channel<type,

capacity>) with a distinct type and fixed and finite capacity. They offer operations to handle the

insertion of tokens into channels using write() and their extraction using read(). The channels

use a ring buffer to store the tokens internally. As a limitation, I currently only support tokens

that may be transferred using UPC++ RPCs. Simple types such as numbers (both integral and

floating-point), character strings or std::vector<T> objects may be transferred directly; for others,

the application developer has to specify serialization code. Furthermore, I restricted the placement

of the channel objects insofar that they are always placed on the rank of the receiving actor, so

95

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

that messages need not be transferred or buffered when a read takes place. The communication

scheme is shown in Figure 11.4.

When an actor A1 writes a token to one of its ports (“Out”), the port is responsible for adding the

token to the channel. If the channel is on the same rank as the sending actor, the channel may be

accessed directly and the token is simply inserted. Otherwise, the insertion is performed within

an RPC to the receiving actor’s rank. Once the insertion has been performed, the receiving actor

A2 is notified of the change. For the thread-based execution strategy, this is done using an LPC,

otherwise, the actor may be notified directly. Read operations work similarly. The receiving actor

A2 initiates the operation by calling read() on an incoming port. First, the port removes the data

from the channel. Once that is done, the corresponding outgoing port at the sending actor needs

to be notified of the capacity change in the channel and the sending actor needs to be triggered.

Again, this will be done using RPCs and LPCs, where necessary.

A Note on Quiescence The UPC++ runtime does not keep track of its communication operations.

Instead, it is left to the application developer to make sure that all communication is received

correctly. The UPC++ developers refer to a state where there are nomoremessages on the network

as quiescent. If that state is not reached before the termination of the application, the behavior

of the application is undefined (Bachan, 2019). In the case of Actor-UPC++, this pertains to the

use of RPCs and LPCs, and application termination. In some cases, all actors may already be

terminated while there are still unfinished communication operations, either on the network, or

in the UPC++-internal queues. This causes problems during application termination. When the

UPC++ runtime is deinitialized, the queues are drained and any pending operations executed.

These operations then try to reference memory segments that have previously deallocated, which

leads to segmentation faults and, consequently, to application crashes.

To avoid this, the actor library needs to track the initiation and completion of all RPCs and LPCs

manually. I solved this using atomically accessible counters within the actor graph instances.

Whenever a port has to perform a remote operation, it increases the RPC counter within the local

actor graph instance, and attaches a completion, either a lambda closure or an LPC. LPCs may be

tracked directly. Once all actors within the rank are terminated, the actor graph (and the actors

for the thread-based execution strategy) call upcxx::progress() until the RPC and LPC counters

reach zero. This is done on all ranks, and only once all ranks have no more communication

operations in progress can the actor graph be torn down.

11.4. Actor-UPC++ Application Example: Cannon’s Algorithm

As with the ActorX10 library, its use is best demonstrated using a code example. Therein, as

before, I implemented an actor-based version of Cannon’s Algorithm. In this section, I will

demonstrate it with a focus on the differences in the implementation compared to the X10 version.

The code samples in this section are lightly edited and shortened for readability, a full version of

the code is shown in section A.2 in the appendix. In the ActorX10 example, I closely followed

the theoretical definition, and used a Matrix class as the token type for the channels. I did the

96

11.4. ACTOR-UPC++ APPLICATION EXAMPLE: CANNON’S ALGORITHM

3:LPC
(trigger Actor)

A1 A2A1::Out A2::In

2:RPC
(update capacity)

1:read
(dequeue Data)

Channel

4:LPC
(track RPC
completion)

Rank N Rank M

(a) Read Operation. (Pöppl, Bader, and Baden, 2019)

1:RPC
(insert Data)

A1 A2A1::Out A2::In

Rank N Rank M

2:LPC
(trigger Actor)

Channel

3:LPC
(track RPC
completion)

(b) Write Operation. (Pöppl, Bader, and Baden, 2019)

Figure 11.4.: Inter-Actor Communication in Actor-UPC++.

97

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

1 struct Matrix {

2 size_t rows;

3 size_t cols;

4 std::vector<float> data;

5

6 UPCXX_SERIALIZED_FIELDS(rows, cols, data)

7

8 Matrix();

9 Matrix(size_t rows, size_t cols, std::function<float(size_t, size_t)> init);

10 Matrix operator* (Matrix &other);

11 Matrix operator+ (Matrix &other);

12

13 std::string to_string();

14 };

Figure 11.5.: Actor-UPC++ Matrix token with UPC++ serialization enabled through the use of a

macro.

same in the Actor-UPC++ version, through the implementation of a simple Matrix class in C++.

However, unlike in X10, the UPC++ runtime is not able to handle the serialization and transfer of

arbitrary object graphs over the network directly. Without additional annotations, only simple

classes3 may be serialized without user intervention. For most4 other classes, serialization is still

possible if the application developer provides the runtime with hints on how to serialize an object

(Bachan, 2019). In the case of my matrix class (depicted in Figure 11.5), it is enough to provide the

runtime with a list of fields to be serialized, using the UPCXX_SERIALIZED_FIELDS(rows, cols,

data) macro. For more complicated classes, use of the macro may not be sufficient. In those

cases, the serialization code may be provided manually. UPC++ provides the class template

upcxx::serialization<T> for the serialization of type T. For classes that cannot be serialized

using the macro, one can provide an explicit specialization of the template for the type to be

serialized. Within that specialization, static methods for the serialization and deserialization of

instances of the class need to be implemented. For the Matrix class, I implemented a custom

serialization upcxx::serialization<Matrix>, shown in Figure 11.6. Serialization is performed

by first writing the dimensions of thematrix, and then its contents. This allows for the deserializion

of the object. First I read the dimensions, then I allocate a buffer of sufficient size and deserialize

the matrix data into it. Finally, I can re-create the matrix object in the storage space provided by

the UPC++ runtime.

With Matrix objects available as tokens, I can implement the CannonActor class. Its signature

is given in Figure 11.7. The main difference to the ActorX10 version (see Figure 10.2) is that

the number of possible tokens for each port is explicit directly in the port’s type. Furthermore,

the guards and actions are added explicitly as private methods. These methods are called in

the actor’s act() method, given in Figure 11.8. Each state is reflected by one of the cases in

the switch-statement, and each state transition by one of the nested if-statements. The guard

3 Fulfilling either one of the type traits std::is_trivially_copyable or std::is_trivially_serializable
4 Except classes that depend on objects that are not serializable, such as operating system handles, or database instances

98

11.4. ACTOR-UPC++ APPLICATION EXAMPLE: CANNON’S ALGORITHM

1 namespace upcxx {

2 template <>

3 struct serialization<Matrix> {

4 template<typename Reader>

5 static Matrix* deserialize(Reader &r, void *storage) {

6 size_t cols = r.template read<size_t>();

7 size_t rows = r.template read<size_t>();

8 std::vector<float> data(rows*cols);

9 r.template read_sequence_into<float>((void *)data.data(), rows*cols);

10 Matrix *m = new (storage) Matrix();

11 m->data = data;

12 m->rows = rows;

13 m->cols = cols;

14 return m;

15 }

16

17 template<typename Writer>

18 static void serialize(Writer &w, Matrix const &m) {

19 w.write(m.rows);

20 w.write(m.cols);

21 w.write_sequence(m.data.begin(), m.data.end());

22 }

23 };

24 }

Figure 11.6.: Actor-UPC++ custom Matrix class serialization.

99

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

1 class CannonActor : public Actor {

2 private:

3 InPort<Matrix, 4> *right;

4 InPort<Matrix, 4> *down;

5 OutPort<Matrix, 4> *left;

6 OutPort<Matrix, 4> *up;

7 Matrix result;

8 CannonActorState currentState;

9 // Omitted: attributes i, j, size, numOperations, operationsPerformed

10

11 public:

12 CannonActor(size_t i, size_t j, size_t size, size_t numOperations);

13 void act();

14 void placeInitialTokens();

15 private:

16 void performPartialComputation();

17 void performShutdown();

18 bool mayRead();

19 bool mayWrite();

20 };

Figure 11.7.: Actor-UPC++ Class signature of the CannonActor class.

function mayRead() checks if there is at least one free token available in each of the channels

connected to ports right and down, and mayRead() checks if there is sufficient space to write at

least one token in the channels connected to ports left and up.

The setup of the actor-based computation is performed by the CannonActorGraph class. In contrast

to the ActorX10 version, there is no need to inherit from the ActorGraph class. Initialization is

performed in three steps: first, all actors are created, then they are connected, and finally, the

initial tokens are written into the channels. Unlike in the X10 version, the actors are created

directly on the destination rank using the local instance of the actor graph. The precise mapping

of the actor to a rank is left to the application developer. In my case, I chose an approximate

Block-Block-Distribution. In between the three steps of the computation’s setup, a synchronization

step is necessary to ensure that the previous step has been completed on all ranks. The code

for the setup is depicted in Figure 11.9. To determine the actors that need to be created on the

local instance, I added a method forallLocalActors(std::function<void(size_t,size_t)>)

that executes a given function on all the local actor coordinates. Once the creation of the graph is

finished, the computation simply needs to be started on all ranks.

100

11.4. ACTOR-UPC++ APPLICATION EXAMPLE: CANNON’S ALGORITHM

1 void CannonActor::act() {

2 switch (currentState) {

3 case CannonActorState::COMPUTE:

4 if (operationsPerformed < numOperations && mayRead() && mayWrite()) {

5 performPartialComputation();

6 } else if (operationsPerformed == numOperations) {

7 performShutdown();

8 }

9 break;

10 case CannonActorState::FINISHED:

11 break;

12 default:

13 abort();

14 break;

15 }

16 }

Figure 11.8.: Actor-UPC++-FSM for the CannonActor class.

101

CHAPTER 11. AN ACTOR LIBRARY FOR UPC++

1 CannonActorGraph::CannonActorGraph(size_t n, size_t p) : n(n), p(p) {

2 upcxx::init();

3

4 // Create all local actors

5 forallLocalActors([&](size_t x, size_t y) {

6 CannonActor *ca = new CannonActor(x,y,n/p, p);

7 localActors.push_back(ca);

8 graph.addActor(ca);

9 });

10

11 upcxx::barrier();

12

13 // Connect the ports

14 forallLocalActors([&](size_t x, size_t y) {

15 auto yTop = (y + p - 1) % p;

16 auto xLeft = (x + p - 1) % p;

17 GlobalActorRef a = graph.getActor("Cannon_"s + std::to_string(xLeft) +

"_"s + std::to_string(y));↪→

18 GlobalActorRef leftActor = graph.getActor("Cannon_"s

+std::to_string(xLeft) + "_"s + std::to_string(y));↪→

19 GlobalActorRef topActor = graph.getActor("Cannon_"s + std::to_string(x) +

"_"s + std::to_string(yTop));↪→

20 graph.connectPorts(a, "L", leftActor, "R");

21 graph.connectPorts(a, "U", topActor, "D");

22 });

23

24 upcxx::barrier();

25

26 // Place initial tokens

27 for (auto ca : localActors) {

28 ca->placeInitialTokens();

29 }

30 }

Figure 11.9.: Actor-UPC++ actor graph construction form in the constructor of the

CannonActorGraph class.

102

12. An Actor Library for MPI

Actor-UPC++ provides application developers with the opportunity to use existing tools and

libraries while still being able to make use of the actor-based computational model. However,

in some cases, the use of UPC++ may not be possible1. In his master’s thesis, Macedo Miguel

implemented an actor library using MPI (Macedo Miguel, 2019). Actor-MPI closely follows the

approach taken by Actor-UPC++, but uses MPI for inter-rank communication. For the execution

model, the library uses the task-based execution model introduced in section 11.2. For the MPI

communication, two different approaches were implemented. The first one uses two-sided MPI

operations, and the second one one-sided ones. In both cases, all communication operations are

performed by the master thread of the rank.

For the point-to-point transfer, the master thread on the incoming port’s side posts non-blocking

receive requests, stores the handles in an array, and periodically checks if they have been fulfilled.

When a token has been received, the actor is notified, and may use the token. Once the token

is read, a new request is posted. On the side of the sender, a non-blocking, synchronous send

operation is used. First, the token is copied to an output buffer by the outgoing port. The master

thread periodically checks for changes in the buffers, and posts communication operations for the

tokens that have been places in its buffer. The send operation is only finished once the receive

operation on the incoming port has completed. Thus, the outgoing port knows when to update

the capacity.

The one-sided transfer uses a similar mechanism. Initially, each channel is initiated by allocating

and exposing a memory segment sufficiently sized to hold the maximum number of its tokens.

On the sending side, a buffer is allocated that is used by the master thread of the rank as a source

for the RMA operation. When a token is to be written, the sender looks up the appropriate spot

and performs the remote access. Once the data is written, it sends a zero-byte message to the

receiving rank to inform it of the newly arrived token. When a token is read by the receiving port,

the sender is notified the same way. This allows both sides to maintain a coherent view of the

channel.

In experimental tests using a shallowwater proxy application, the version using the point-to-point

operations performed better than the one using the one-sided communication primitives. Reasons

for that may be the additional point-to-point messages that are still required to notify the remote

ranks in the one-sided version. There may also have been less optimization effort expended by

the MPI library implementation.

1 At the time of writing, the low-level GASNet-EX runtime does not yet support the Intel OmniPath Interconnection

Fabric, for example.

103

13. Discussion and Outlook

In this part of the thesis, I presented the actor model as a computational model for parallel

and distributed computational tasks. After presenting the FunState actor model in chapter 9, I

introduced three implementations of the actor model, two (ActorX10 and Actor-UPC++) in detail,

and one (Actor-MPI by Macedo Miguel (2019)) briefly.

The actor model is a computational model that may be used to describe parallel applications. In

itself, it prescribes neither a specific interface, a communication technology, or a process model.

It does, however, describe the rules for the interaction of different, concurrently running parts

of an application. The model describes the rules for communication (ports and channels), and

behavior of the individual components of the application (actors and FSMs). This presents a

sharp contrast to MPI, the prevalent standard for distributed applications. The standard describes

a specific interface for inter-process communication. However, it does not prescribe a specific

communicationmode, nor a process model. AnMPI rankmay be sequential or concurrent, and the

specification of a rank’s behavior is entirely left to the application developer. However, there is a

one-to-one mapping to an operating system process. In essence, the MPI model seeks to provide a

computational model of the hardware, to be used by the application developer, whereas the actor

model provides a way to formalize parallel applications. This formal model may then be mapped

to hardware through a concrete library implementation that uses, e.g., MPI. On a practical note,

this means that the application developer of an actor-based application does not need to know

whether communication is performed locally or globally. Compared to MPI ranks, actors are less

tightly coupled, as the channels act as a buffer for communication, and there is no need to perform

handshakes or synchronization. They are not necessarily mapped directly to operating system

resources, as shown with the different actor execution strategies of Actor-UPC++. Furthermore,

they are represented explicitly as an object, and with a suitable library implementation, it is

possible to move actors across node boundaries.

ActorX10, the first library described in this part of the thesis, was implemented in a collaboration

for use in the InvasIC project. The main requirement for the actor library was to be able to

implement programs that may be executed with little porting effort on the invasive prototype

platform as well as on HPC architectures. Using the X10 language as a platform, we achieved

that goal. The main benefit of X10 is the global object model. Using X10, one may simply move

arbitrary object graphs around without manually specifying their serialization or the mode of

transportation over the interconnection network. This allowed us to implement the migration of

actors in ActorX10 in a way that is transparent to the application developer. The X10 serialization

is powerful enough to capture and serialize any X10 object that is connected to the actor someway,

and to reconstruct it on the receiving place. For actor migration to work in Actor-UPC++, one has

to specify the serialization for the actor subclass and all the types of its instance attributes. This

105

CHAPTER 13. DISCUSSION AND OUTLOOK

cannot be done directly in the library, as these types are not yet known, therefore the application

developer needs to provide this information.

However, there are downsides to X10 as a language. Unfortunately, it never managed to gather

a large community of active users, and therefore remained mainly a research language. One

of the consequences is the lack of third-party X10 libraries for HPC. This can be somewhat

mitigated using the possibilities for interfacing with C++ code, but when it is done, the advantage

of universal object serialization is lost. Instead, the X10 object interfacing with the C++ code

needs to provide manual serialization. In our project, we use an older version of the language,

which is incompatible with the current X10 version. Newer versions of the language changed the

integer data type to a length of 64 bit (Saraswat et al., 2019) to increase the maximum number of

places within a computation, and to utilize the default register length on modern HPC processors.

However, the LEON 3 core used in the invasive platform has a register size of only 32 Bit. Using 64

Bit integers is possible, but operations on them are not natively supported by the processor and are

therefore much slower. To avoid this performance bottleneck, the X10 compiler for the prototype

platform remained on the version 2.3.1 of the X10 language, the last language standard to use 32

Bit integers as a default. Aside from incompatibilities with current software environments, there

is no support for current HPC interconnection technologies, the only interconnection technology

supported is IBM’s PAMI interconnect that was used on the, now obsolete, BlueGene systems.

For all other systems, the MPI connection backend has to be used. This adds another layer of

indirection, and therefore generates additional overhead. Finally, X10’s model for parallelism

sacrifices expressiveness for simplicity and deadlock-freedom. For instance, without the help of

synchronization objects such as mutexes and semaphores, one cannot express the dependencies

between different invocations of the act()method within the same actor.

The environment used in Actor-UPC++ is quite different: Unlike X10, C++ is widely used in the

field of HPC, and therefore tools and third-party libraries are readily available. C++ was not

initially designed as a parallel language, and therefore there is no prescribed mode for parallel

computations, and, furthermore, the programming language is not aware of the existence of

distributed memory environments at all. Instead, this functionality is added using third-party

libraries. This allowed me to pick and match the technologies suitable for implementing the actor

model. UPC++ was a good fit thanks to its one-sided communication operations, and OpenMP

was chosen due to its straightforward approach to tasks and its wide support in modern compilers.

The flexibility gained this way enabled me to experiment with different ways to parallelize actor

execution through different execution models.

The actor graph of the current version of Actor-UPC++ is static, which hampers load balancing,

as actors are bound to the rank they were created on. Unlike in ActorX10, migration of actors may

not be done transparently to the application developer, as C++ code is not aware of the structure

of object graphs. Therefore, it is necessary to implement a custom migration for each class that is

to be serialized, and to provide code that reassembles the object on the target rank. In the thesis

of Budanaz (2020), a version of Actor-UPC++ with support for actor migration was implemented.

The implementation periodically interrupts the actor execution in order to move actors between

ranks to equalize the computational load. Currently, migration of actors involves a significant

overhead. In tests with the shallow water proxy application (Budanaz, 2020), actor migration

proved to be impractical. Experiments with the Charm++ runtime system and SWE suggest that

patch migration is not useful with only minor load imbalances, such as the ones caused through

106

local time stepping. Further research should be done here to investigate and mitigate potential

performance bottlenecks.

Actor-UPC++ may be viewed as the first step towards a larger framework for actor-based parallel

computing. The vision would be to express the individual building blocks of an application in

terms of actors. The actor frameworkwould then take care of distributing the computation onto the

available compute resources. Such a framework should offer a range of different communication

backends. Depending on the desired characteristics of the actor execution and the underlying

hardware, different modes of actor parallelization, and different communication runtimes might

be used. With Actor-MPI (Macedo Miguel, 2019), we demonstrated that using a lower-level

communication library is possible. It may thus be considered another step in that direction.

The current implementation still exposes some characteristics of the communication backend,

especially during object initialization. Furthermore, a generic way for the application developer

to specify serialization of actors and tokens is still missing.

Once the base framework is in place, there are several ideas that may be worth further exploring:

Dynamic actor graphs are useful to support more unpredictable application scenarios. With the

current, static graphs, all different configurations need to be known at the time of the actor graph

initialization. Dynamic behavior is possible by sending data conditionally to different actors.

However, in some cases, it may be better to completely replace an actor by another, or to only

create and connect actors when they are actually needed. In this case, the actor could be created

only once it is needed, and in the place that enables the best possible performance, based on the

overall system state and the communication requirements of the actor.

Fault tolerant actor execution Fault tolerant execution is expected to become an important concern

as we approach the exascale era (Yang et al., 2012). The actor model offers some opportunities to

address this through the more explicit communication structure of an actor-based application.

First, it may be interesting to implement a form of journaling to the communication channels.

Non-volatile memory may be an interesting ingredient here, as its performance exceeds the one of

other persistent storage types (Patil et al., 2019). The communication channels could be extended

to log all incoming tokens since the last checkpoint of an application. If an actor crashes, one

would then only have to recreate the last checkpoint, and insert all tokens logged since then again

into the channel. This would allow the actor to reconstruct its last state before crashing without

affecting the global state of the computation. Another option would be the replication of actors

on different ranks. An actor and its clone would be connected to its neighbors through a single

channel that would deliver the same message to both actors. Their behavior would be identical,

and therefore, they would produce the same results. Potentially, the clone could use a version

of the code that is less computationally complex, and only provides an approximation of the

result. Once both the original and the clone insert their result into a communication channel,

the channel could act as an arbitrator, and decide whether the input is similar enough to accept

it. Optionally it could involve a general check for plausibility (e.g. negative water height in a

tsunami simulation).

Formalized State Machine with heterogeneous Actions Currently, the actor FSM is implemented by

the application developer using a switch statement. The library is only aware of which actor is

triggered, but not of the actions invoked, or even if a state machine transition is possible. It would,

therefore, be interesting to encode the state machine of the actor in a form that is understandable

107

CHAPTER 13. DISCUSSION AND OUTLOOK

to the actor library. The library could then use that knowledge, e.g. to only create tasks for

actors that are actually able to perform a state transition. Alternatively, it may also be possible

to enable the application developer to provide actions targeting heterogeneous devices such as

GPUs. Modern GPU frameworks offer support for asynchronous kernel execution. The actor

graph runtime could enqueue actions targeting GPUs asynchronously, and use the GPU and the

CPU concurrently.

108

Part III.

Tsunami Simulation

109

14. Tsunami Modelling Using the Shallow Water

Equations

I chose the problem of modelling tsunami wave propagation to demonstrate the use of the

actor model in the domain of scientific computing. Tsunamis (Japanese for Harbor Wave) are

gravitational waves usually caused by large-scale water displacement, e.g. through shifts in the

ocean floor that occur in earthquake events. These shifts may release large amounts of energy. For

example, the upwards movement of the water column caused by an upwards shift of a tectonic

plate yields:

Epot =
1

2
ρg

¨
η2(x, y)dxdy.

This energy is converted into kinetic energy as the displaced column collapses. For instance,

take a tectonic event similar to the Aceh-Adaman earthquake. Assuming the gravity g = 9.81m
s2
,

and the density of water ρ = 997 kg
m3 , a displacement area of ≈ 225000km2 and an upwards

displacement of 5m, the potential energy would be 1
2 · 225 · 10

9m2 · 997 kg
m3 · 9.81m

s2
= 1.1 · 1018J.

This would be equivalent to the energy released by exploding 263000 kilotons of TNT1(LeVeque,

George, and Berger, 2011; Tang et al., 2012).

Tsunamis may also be caused by landslides (both underwater and into the water), and occur both

at sea and in lakes. In all cases, they are caused by large displacements of the entire water column.

During wave propagation on the open water, tsunami wave lengths are significantly larger than

the height of the water column, and one may therefore view the water as shallow, and ignore

any effects on the vertical axis (LeVeque, George, and Berger, 2011). This allows the use of the

two-dimensional shallow water equations to model the propagation of tsunami waves.

In this chapter, I will discuss the model (see section 14.1) and the computation of approximate

solutions (see section 14.2). The model is implemented in the actor-based tsunami applications

presented in this thesis. It follows the model of LeVeque, George, and Berger (2011). It is based

on the SWE implementation by Breuer and Bader (2012).

1 Or about five times the yield of the largest man-made explosion, the Tsar Bomba

111

CHAPTER 14. TSUNAMI MODELLING USING THE SHALLOWWATER EQUATIONS

14.1. The Two-dimensional Shallow Water Equations

The one-dimensional case of the shallow water equations with a bathymetry source term is given

as a system of partial differential equtions (PDEs)

(h)t + (hu)x = 0 (14.1)

(hu)t +

(
hu2 +

1

2
gh2
)

x

= −gh (b)x ,

where g is the gravitational constant, h is the height of the water column, u the vertically averaged

velocity, and b the elevation of the floor, also referred to as bathymetry. Bathymetry values greater

than zero signify parts of the domain initially above water, while values smaller than zero are

initially submerged. The term
(
1
2gh

2
)
x
denotes the force induced by gravity as a result of

hydrostatic pressure. Furthermore, hu denotes the momentum, as h is directly proportional to

the mass of the water column. A graphical description of the unknowns is given in Figure 14.1.

B

B h

u

Figure 14.1.: Schematic overview of the shallow water equations’ unknowns. The dashed line de-

notes water surface at lake-at-rest and is used as a reference point for the bathymetry,

denoted in red. The water is modelled as the height of the water column on top of

the bathymetry (shown in white). Finally, the vertically averaged velocity in the

horizontal direction is depicted in green.

One can extend the system towards the two-dimensional case to model tsunamis. One obtains:

(h)t + (hu)x + (hv)y = 0 (14.2)

(hu)t +

(
hu2 +

1

2
gh2
)

x

+ (huv)y = −gh (b)x

(hv)t + (huv)x +

(
hv2 +

1

2
gh2
)

y

= −gh (b)y .

Again, h(x, y, t) denotes the water height at a given point and time within the domain. Con-

sequently, u(x, y, t) and v(x, y, t) denote the velocities in the x and y directions, respectively.

112

14.1. THE TWO-DIMENSIONAL SHALLOWWATER EQUATIONS

The gravity forces are now present for the two spatial dimensions, as
(
1
2gh

2
)
x
and

(
1
2gh

2
)
y
,

furthermore, hu and hv denote the momenta in the two spatial directions. Equation 14.2 may be

represented in the canonical form of a conservation law, as:

qt +
(
f(q)

)
x
+
(
g(q)

)
y
= Ψ(q), (14.3)

with:

q :=

 h
hu
hv

 , f(q) :=

 hu
hu2 + 1

2gh
2

huv

 , g(q) :=

 hv
huv

hv2 + 1
2gh

2

 , andΨ(q) :=

 0
−gh (b)x
−gh (b)y

 .

(14.4)

PDEs of this shape are a commonly occurring pattern, and there are well-established methods to

approximately solve them (Einfeldt, 1988; Thomas, 1999; Bale et al., 2003; LeVeque, George, and

Berger, 2011). However, in the general case, a direct solution is not possible, therefore, a numeric

solution scheme is commonly used.

14.1.1. Hyperbolicity

The shallow water equations belong to the class of hyperbolic PDEs (LeVeque, George, and Berger,

2011). The Jacobian matrices of hyperbolic PDEs have only real eigenvalues (λ ∈ R), and their

eigenvectors are linearly independent. Following Meister (2016), we obtain the following Jacobian

matrices for the two-dimensional shallow water equations:

qt + f ′(q)qx + g′(q)qy = Ψ (14.5)

f ′(q) =

 0 1 0
−u2 + gh 2u 0
−uv v u

 , g′(q) =

 0 0 1
−uv v u

−v2 + gh 0 2v

The Eigenvalues of the two matrices:

λ1
f = u−

√
gh, λ2

f = u, λ3
f = u+

√
gh, λ1

g = v −
√
gh, λ2

g = v and λ3
g = v +

√
gh

(14.6)

are real as long as h > 0. The corresponding eigenvectors:

v1f =

 1
v

u−
√
gh

v
1

 , v3f =

0
0
1

 , v2f =

 1
v

u+
√
gh

v
1

 , (14.7)

v1g =

1

v−
√
gh

u
v−

√
gh

1

 , v2g =

0
1
0

 , v3g =

1

v+
√
gh

u
v+

√
gh

1

are linearly independent as long as h > 0. This condition holds for all physical phenomena

according to the definition of the equations above, therefore, the PDEs are hyperbolic for the

113

CHAPTER 14. TSUNAMI MODELLING USING THE SHALLOWWATER EQUATIONS

value ranges that are to be simulated. Hyperbolicity brings a finite wave propagation speed

that is determined by the Eigenvalues of the system. Together with the chosen discretization,

discussed in section 14.2, it forms the basis for several implemented optimizations for my tsunami

application.

14.2. Finite Volume Discretization

I use a finite volume scheme for the discretization in space, and an explicit Euler scheme for

the discretization in time. The approach has been described before in Bader et al. (2020) and is

identical to the one used in Breuer and Bader (2012). In contrast to the finite-difference method –

which approximates the derivative on certain mesh points – the finite volume scheme averages

the values of the unknowns over the entire grid cell. New time steps are computed by evaluating

the transport of unknown quantities across cell boundaries (fluxes). A significant influence on

the quality of the obtained solution scheme is the quality of the flux functions that are used to

determine the solutions to these problems. For my application, I rely on different approximate

Riemann solvers, e.g. the HLLE solver implemented by Schaffroth (2015) for his master’s thesis.

In the following, I will give a brief description of the discretization scheme used in my tsunami

application.

The unknown vector q is discretized onto a Cartesian grid. Vector Q
(n)
i,j describes the approx-

imate solution of the integral of the unknown functions in cell (i, j): (Ci,j =
[
xi− 1

2
, xi+ 1

2

]
×[

xi− 1
2
, xi+ 1

2

]
) at time step n as

Q
(n)
i,j ≈

1

∆x∆y

¨
Ci,j

q(x, y, tn)dxdy. (14.8)

Here,∆x and∆y refer to the cell sizes in the two spacial directions of cell Ci,j . Each cell contains

the aforementioned unknown quantitiesQi,j :=
(
hi,j , hui,j , hvi,j , bi,j

)T
. Thus, the system for

Ci,j is

Qt

∣∣∣
i,j

+
(
f(Q)

)
x

∣∣∣
i,j

+
(
g(Q)

)
y

∣∣∣
i,j

= Ψ(Q)
∣∣∣
i,j

. (14.9)

This equation remains continuous in both space and time. To solve the system approximately, it

is possible to compute only certain time steps2 tn:

Qt

∣∣∣
i,j

(tn) ≈
Q

(n+1)
i,j −Q

(n)
i,j

tn+1 − tn
=

Q
(n+1)
i,j −Q

(n)
i,j

∆t
(14.10)

Insertion into Equation 14.9 yields an iterative solution scheme (explicit Euler time stepping) that is

solved by evaluating the fluxes between cell Ci,j and all its neighbors. Thus, one may compute the

solution iteratively for each time step, starting with an initial stateQ
(0)
i,j . The vector of unknowns

2 the use of the subscript tn does not denote a derivative here, but the nth time step

114

14.2. FINITE VOLUME DISCRETIZATION

for step (n+ 1) is computed as

Q
(n+1)
i,j = Q

(n)
i,j −

∆t

∆x

(
A+∆Q

(n)

i− 1
2
,j
+A−∆Q

(n)

i+ 1
2
,j

)
− ∆t

∆y

(
B+∆Q

(n)

i,j− 1
2

− B−∆Q
(n)

i,j+ 1
2

)
.

(14.11)

Here,A+∆Q
(n)

i−1
2 ,j

represents the transfer of unknown quantities into Ci,j from its left cell bound-

ary, A−∆Q
(n)

i+
1
2 ,j

the one from the right, B+∆Q
(n)

i,j−1
2

the one from the bottom and, finally,

B−∆Q
(n)

i,j+
1
2

represents the transfer from the top. The notation A± + ∆Q is derived from Go-

dunov’s method that may be used in the linear case of the shallow water equations (obtained

through omission of the bathymetry). In the one-dimensional case, the flux F between two cells

is computed as the matrix vector product

A±∆Qi− 1
2
= A±

(
Q

(n)
i −Q

(n)
i−1

)
(14.12)

withA± = RΛR−1 and Λ± =

((
λ1
)±

1

1
(
λ2
)±
)
.

R is the matrix of Eigenvectors of the Jacobian matrix f ′(q) of the flux function in the conservative
form, and λn is its nth eigenvalue. Furthermore, λ+ = max(0, λ) and λ− = min(0, λ) denote
maximum and minimum-limited eigenvalues.

Cells are typically updated in three passes. In the first pass over the domain, the fluxes between

all horizontal neighbors are computed. In the second pass, the fluxes between vertical neighbors

are computed. During the first two steps, the greatest wave speed is collected, and used to

determine an appropriate∆t. Finally, the unknown cells of the domain are updated in a third

pass, and the simulation time is advanced according to the determined∆t. Thus, it is possible to
view the computation of fluxes as a one-dimensional problem, and therefore one may use the

one-dimensional flux solvers described in section 14.3.

14.2.1. The CFL Condition

The method introduced above only considers the direct neighbors of a cell to compute its state

in the next time step, e.g. the value Q
(n+1)
i,j at time step n + 1 only depends on the values

Q
(n)
i,j , Q

(n)
i−1,j , Q

(n)
i+1,j , Q

(n)
i,j−1, and, Q

(n)
i,j+1 in time step n. For this computation to accurately

capture the physical phenomena it aims to simulate, the phenomena must not travel faster than

the numerical approximation permits. Figure 14.2 depicts a finite volume grid. Only phenomena

in the green cells will be considered for the blue cell’s update to the next time step. Therefore, there

may not be any information in the physical domain that would propagate from the space occupied

by the orange cells into the blue cell. Any such information would be lost, as only the values from

the green cells are used to compute the update. This condition, named Cauchy-Friedrichs-Lewy

Condition (CFL condition), was recognized by Courant, Friedrichs, and Lewy (1928), who described

it as:

115

CHAPTER 14. TSUNAMI MODELLING USING THE SHALLOWWATER EQUATIONS

Figure 14.2.: Illustration of the numerical constraints on the size of the time step. The CFL con-

dition requires the time step to be sufficiently small so that for a time step update

of the blue cell only information from the green cells is required. Any information

transmitted from the orange cells is lost.

Während aber beim elliptischen Falle einfache und weitgehend von der Wahl des Gitters

unabhängige Konvergenzverhältnisse herrschen, werden wir bei dem Anfangswertproblem

hyperbolischer Gleichungen erkennen, daß die Konvergenz allgemein nur dann vorhanden ist,

wenn die Verhältnisse der Gittermaschen in verschiedenen Richtungen gewissen Ungleichun-

gen genügen, die durch die Lage der Charakteristiken zum Gitter bestimmt werden. (Courant,

Friedrichs, and Lewy (1928))

The statement is succinctly summarized by LeVeque (2002): “A numerical method can be convergent

only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least in

the limit as∆t and∆x go to zero.” (LeVeque (2002))

In the common case, the CFL condition is satisfied by choosing a sufficiently small time step. In

the case of hyperbolic PDEs, the time step size is determined by the finite propagation speed of

the waves. For solving the shallow water equations, it should be chosen such that the influences

from both side of the grid cell do not interact directly (LeVeque, George, and Berger, 2011):

∆t ≤ ν
∆x

maxp λp
(14.13)

This holds if the maximum wave speed, maxp λ
p, only suffices to traverse half a cell within a time

step, i.e. for a CFL number ν < 1
2 .

14.3. Approximate Riemann solvers

In the presence of uneven bathymetry, A±∆Q
(n)

i±1
2 ,j

and B±∆Q
(n)

i,j±1
2

may be interpreted as

Riemann Problems, due to the fact that the unknowns on both sides of the cell boundaries are

constant, with a discontinuity in between. The problem consists of the PDE that is to be solved

and specific initial data at a given time t := t̄ and data that is piece-wise constant, with a single

116

14.3. APPROXIMATE RIEMANN SOLVERS

jump at a given position x̄:

q(x, t̄) =

{
Ql (x < x̄)

Qr (x ≥ x̄)
(14.14)

This is precisely the case for the cell boundaries of the grid cells in the finite volume model. When

bathymetry is considered, an exact solution of the Riemann Problem is often not possible, hence,

approximate Riemann solvers are used. In the tsunami applications I developed, I use three

different approximate Riemann solvers: the f-Wave solver implemented by (Breuer and Bader,

2012), the augmented Riemann solver implemented by Bader et al. (2014) and the HLLE solver

implemented by (Schaffroth, 2015). The solvers are developed in the SWE solver3 package at my

chair. When possible, I used them directly, where necessary, I ported them to X10.

14.3.1. The f-Wave Solver

The f-Wave Solver is a basic solver for the linearized Riemann problem that nevertheless yields

reasonably accurate results for cells away from dry sections of the domain. Its ansatz relies on

a matrix A that approximates the derivative f ′(Q), and, therefore, satisfies f (Qr)− f (Ql) =
A (Qr −Ql). Matrix A is referred to as the Roe matrix (Roe, 1981). It is defined as

A :=

(
0 1

−û2 + gh̄ 2û

)
(14.15)

and uses the arithmetic average h̄ and the Roe average û

h̄ =
1

2
(hl + hr) , û =

√
hlul +

√
hrur√

hl +
√
hr

. (14.16)

Using the corresponding Eigenvalues λ1
r and λ2

r , and Eigenvectors v1 and v2:

λ1
r = û−

√
gh̄, v1 =

(
1

û−
√

gh̄

)
(14.17)

λ2
r = û+

√
gh̄, v2 =

(
1

û+
√
gh̄

)
the solution is decomposed into flux waves (LeVeque, 2002; LeVeque, George, and Berger, 2011;

Meister, 2016). The eigenvalues λ1
r and λ2

r represent the wave speeds of the corresponding waves.

Next,Qr −Ql is decomposed into two waves:

f(Qr)− f(Ql)−∆xΨl,r = α1

i−1
2

· v1 − α2

i−1
2

· v2 ≡ W1

i−1
2

−W2

i−1
2

. (14.18)

Direct solution of the system for α1

i−1
2

and α2

i−1
2

with δ the as right-hand side:

δ = f(Qr)− f(Ql)−∆xΨl,r =

 (hu)r − (hu)l(
hru

2
r +

1
2gh

2
r

)
−
(
hlu

2
l +

1
2gh

2
l

)
+ 1

2g (hr − hl) (br − bl)

 .

(14.19)

3 Available on GitHub: https://github.com/TUM-I5/swe_solvers

117

https://github.com/TUM-I5/swe_solvers

CHAPTER 14. TSUNAMI MODELLING USING THE SHALLOWWATER EQUATIONS

yields:

α1

i−1
2

=

(
û+

√
gh̄
)
δ1 − δ2

2
√

gh̄
and α2

i−1
2

=
−
(
û−

√
gh̄
)
δ1 + δ2

2
√
gh̄

(14.20)

Finally, one may compute the fluxes

A−∆Q
i−1

2
=

2∑
w=1

(λw
r)

−Ww
i− 1

2

andA+∆Q
i−1

2
=

2∑
w=1

(λw
r)

+Ww
i− 1

2

(14.21)

where (λw
r)

− =

0 (λw

r > 0)
1
2λ

w
r (λw

r = 0)

λw
r (λw

r < 0)

and (λw
r)

+ =

λw
r (λw

r > 0)
1
2λ

w
r (λw

r = 0)

0 (λw
r < 0)

. (14.22)

The big disadvantage of the solver is that it may return physically unsound results for some input

configurations, especially when considering interactions of wet and dry cells. To prevent this

from happening, the interaction of wet and dry cells is instead short-circuited to have the dry cell

react like a wall, and to reflect the incoming wave. Nevertheless, it performs sufficiently well to

make it useful when utilized in conjunctions with more sophisticated solvers to save time when

its result is predicted to be sufficiently accurate, or when inundation is irrelevant (Breuer and

Bader, 2012).

14.3.2. The HLLE solver

The HLLE solver offers a compromise between the precision of the more computationally complex

Augmented Riemann Solver, and the more easily computable, but less precise f-Wave solver. It

is based on the work of Harten, Lax, and Leer (1983), with further improvements suggested by

Einfeldt (1988). The solver was adapted for use with the SWE software package by Schaffroth

(2015) for his thesis. As with the f-Wave solver, the wave composition is computed, but unlike it,

the HLLE solver resolves thee waves, and the momentum flux φ = hu2+ 1
2gh

2 is also considered.

The system is formulated as: Hr −Hl

HUr −HUl

φ (Qr −Ql)

 =

3∑
w=1

αw

i−1
2

vw ≡
3∑

w=1

Wp. (14.23)

For the Eigenvectors, the so-called Einfeldt speeds s̆± are used. Using the Eigenvalues of the

Jacobian of the quasi-linear shallow water equations:

f ′(q) =

(
0 1

gh− u2 2u

)
, λ1

q = u−
√
gh and λ2

q = u+
√
gh (14.24)

and the Eigenvalues of the Roe matrix (Equation 14.15), λ1
r and λ2

r are defined as the minimum

(for s̆−) and the maximum (for s̆+):

s̆− := min
(
λ1
r , λ

1
q

)
and s̆+ := max

(
λ2
r , λ

2
q

)
. (14.25)

118

14.3. APPROXIMATE RIEMANN SOLVERS

This is used to define the vectors vw as:

v1 =

 0
s̆−(
s̆−
)2
 , v2 =

 0
s̆+(
s̆+
)2
 and v3 =

0
0
1

 , (14.26)

along with the wave speeds s1 = s̆−, s2 = s̆+ and s3 = 1
2

(
s̆− + s̆+

)
. Using these, and the

approximate HLLE middle height4 set as:

h∗ε =
(hu)l − (hu)r + s̆+hr − s̆−Hl

s̆+ − s̆−
, (14.27)

a steady wave v0 may be computed using∆b = br − bl such that:

v10 = min

(
max

(
−∆b,

⌊
v10

⌋)
,
⌈
v10

⌉)
(14.28)

v20 = min

(
max

(
−1

2
(hr + hl)∆b,

⌊
v20

⌋)
,
⌈
v20

⌉)

given the lower and upper bounds:

⌊
v10

⌋
=

{
h∗ε

s2−s1
s1

(s1 > 0)

−hl (s1 < 0)
, (14.29)

⌈
v10

⌉
=

{
h∗ε

s2−s1
s2

(s2 > 0)

−hr (s2 < 0)
,⌊

v20

⌋
= min (−ghl∆b,−ghr∆b) and⌈

v20

⌉
= max (−ghl∆b,−ghr∆b) .

Now, the linear system:

 1 1 0
s1 s2 0
s21 s22 1

α1
i− 1

2

α2
i− 1

2

α3
i− 1

2

 =

hr − hl

(hu)r − (hu)l(
hru

2
r +

1
2gh

2
r

)
−
(
hlu

2
l +

1
2gh

2
l

)
−

v10
0
v20

︸ ︷︷ ︸

δ

(14.30)

is solved, yielding:

α1 =
s2 ∗ δ1 − δ2
s2 − s1

, α3 =
−s1δ1 + δ2
s2 − s1

and α2 = δ2 − (s1)
2 α1 − (s2)

2 α3. (14.31)

4 Always positive, see Theorem 3.1 of George (2006)

119

CHAPTER 14. TSUNAMI MODELLING USING THE SHALLOWWATER EQUATIONS

This may be used—as in the f-Wave solver—to compute the fluxes, as a linear combination of the

three f-Waves:

A−∆Q
i−1

2
=

3∑
w=1

(sw)−Zw, A+∆Q
i−1

2
=

3∑
w=1

(sw)+Zw (14.32)

where Z1 = α1

(
v21
v31

)
, Z2 = α2

(
v22
v32

)
, Z3 = α3

(
v23
v33

)
,

(sw)− =

0 (sw > 0)
1
2s

w (sw = 0)

λw
r (sw < 0)

and (sw)+ =

sw (sw > 0)
1
2s

w (sw = 0)

0 (sw < 0)

.

In contrast to the more simple f-Wave solver, the HLLE solver is able to correctly approximate

the interaction of wet and dry cells. However, the HLLE solver needs the top of the water

column to be above the top of the dry bathymetry for inundation to occur, in contrast to the

more computationally complex Augmented Riemann solver, which is able to correctly resolve

inundation based on the wave speed alone (LeVeque, George, and Berger, 2011; Schaffroth,

2015).

14.3.3. Augmented Riemann Solver

The Augmented Riemann solver has been proposed by George (2006, 2008) as a more accurate

alternative to the aforementioned solvers. Its basic ansatz is similar to the one of the HLLE solver,

but with a more complex formulation of the governing system. The computation of a solution

may, depending on the input data, necessitate an iterative step, which increases the difficulty for

an efficient solution. The Augmented Riemann solver is supported in both SWE-X10 and Pond,

but I did not use it for any of the experiments in the subsequent chapters. It is described in more

detail by LeVeque, George, and Berger (2011).

120

15. SWE—Experiments with Novel Runtime Systems

The model described in chapter 14 may be used to simulate wave propagation. However, the

sequential compute performance of modern computer architectures is insufficient to simulate

full tsunami scenarios. Instead, computations are typically performed in parallel, using all layers

of abstraction available to the target computer architecture. The SWE1 package is an example

for a proxy application that implements the aforementioned model using distributed-memory,

shared-memory, and instruction-level parallelism (Breuer and Bader, 2012; Bader et al., 2014). It

was originally written as a teaching code. The original version of the code strictly follows the

BSP approach. It uses a patch-based decomposition of the simulation grid, and implements an

iteration scheme with global time stepping, as described in section 15.1. Each processing element

is assigned one patch. MPI is used for the communication between the patches. The code was

later extended to support hybrid parallelism with MPI and OpenMP, and to support NVIDIA

GPUs with CUDA.

Figure 15.1.: Sample scenario simulated using SWE-PPM and local time stepping

The relatively compact size of the code base made SWE an ideal basis for my actor-based tsunami

applications Pond and SWE-X10. Both applications take the patch concept of SWE. In Pond, I

was able to reuse significant parts of the application directly, while in SWE-X10, I ported them

to X10 and used them as a basis for further extensions. In both cases, it was possible to use the

sequential parts of the application, such as the classes pertaining to the patches, or disk I/O. I

then implemented the parallel aspects of the applications using the respective actor libraries.

This lead to the idea to evaluate other emerging runtime systems and communication libraries

using the SWE package. Thus, we collaboratively created SWE-PPM (Bogusz et al., 2020). The

application suite implements a distributed tsunami simulation using different programming

models, parallel runtime systems and libraries. It currently consists of a pure BSP-based MPI

1 GitHub: https://github.com/TUM-I5/SWE

121

https://github.com/TUM-I5/SWE

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

version based on the original SWE, a fork-join-based version using MPI and OpenMP, a UPC++

version, a Charm++ version and task-based variants based on Chameleon2 and HPX. The initial

versions were implemented in my preliminary work3 and the bachelor theses of Olden (2018) and

Bogusz (2019). Compared to these initial versions, we added support for local time stepping, a

hybrid MPI and OpenMP version based on over-decomposition, and improved performance. For

some frameworks, namely MPI and UPC++, only communication operations are supported, while

for the others, namely HPX, Charm++ and Chameleon, it is possible to perform load balancing as

well. The latter is useful in the presence of local time stepping, as the time step size depends on

the wave speed, and may be different for different parts of the simulation domain, which may

lead to load imbalances. In section 15.1, I will give an overview of the common techniques used

in both SWE, SWE-PPM and the different actor-based versions used in the following chapters.

Thereafter, I briefly discuss the implementation of SWE-PPM with the different frameworks.

Finally, in section 15.3, I will compare the performance of the different implementations both

with the original global time stepping scheme and with the local time stepping scheme.

15.1. Patch-Based Tsunami Simulation

The numerical scheme described in chapter 14 only exhibits interactions between neighboring

grid cells. To support distributed memory parallelism efficiently, it is therefore important to keep

as many interactions between cells within the local memory of a process as possible. This may be

achieved by decomposing the grid representing the simulation domain into patches of adjacent

grid cells. A patch forms a coherent unit of computation that is always computed within the

context of a single process, and the interactions between cells of a patch may be computed without

external communication. However, for the cells at the boundaries of a patch, not all interaction

partners are available: data from a cell of a neighboring patch is necessary. A common pattern for

patch-based domain decomposition is the use of ghost layers. Here, an additional row or column of

cells is added to the patch for each of its four boundaries. The cells act as a proxy for the adjacent

patches. Before computing the updates on the extended patch, the unknown values of the cells

have to be filled with data from the adjacent patch. For the scheme discussed here, this pertains

to the outermost layers of the original patch, also called copy layer. Its contents are copied to the

ghost layer of their respective adjacent neighbors, as depicted in Figure 15.2.

The simulation is performed iteratively, following the scheme outlined in section 14.2. In each

iteration, one time step is computed. Here, for each patch, a sequence of steps needs to be

performed. First, the patch sets the ghost layer. For the ghost layers at the boundaries of the

simulation domain, the values are set according to the chosen boundary conditions based on

the values of the second outermost layer of cells. For the outflow boundary condition, the inner

values are simply copied. A wall boundary condition can be obtained by inverting the momentum

perpendicular to the boundary. If the boundary is adjacent to another patch, the ghost layer needs

to obtain values from the second innermost layer of the adjacent patch, as depicted in Figure 15.2.

Once completed, the patch computes the fluxes between cell boundaries. As a side product of the

flux computation between two cells, the solver also determines the maximum wave speed. Based

2 Not discussed in this thesis.
3
https://bitbucket.org/apoeppl/upcxx-swe/src/master/

122

https://bitbucket.org/apoeppl/upcxx-swe/src/master/

15.1. PATCH-BASED TSUNAMI SIMULATION

(a) Ghost layer exchange between two adjacent patches

(b) Ghost layer exchanges between multiple patches

Figure 15.2.: Ghost layer exchange. Values are copied from the copy layer of a patch to the ghost

layer of its neighbor. In Figure 15.2a, the copy layer is depicted in orange, and the

copy layer is depicted in darker blue. Figure 15.2b depicts ghost layer exchanges

for a simulation with nine patches. The exchange is only performed for the patch

boundaries with adjacent neighbors, the other ghost layers are set according to

artificial boundary conditions.

123

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

on this, the maximum time step for a patch may be computed (see subsection 14.2.1). The patch

then has to determine the time step size∆t the simulation time is to be progressed in cooperation

with the other patches. Discussed below, there are two strategies to do this. Finally, this time step

is used to compute the unknown values of the grid cells for the next time step.

Global Time Stepping When global time stepping is used, the application follows the BSP ap-

proach. The patches follow the iteration scheme outlined above. As the strategy’s name implies,

the time step is negotiated globally across all patches. After the flux computation, each patch (i, j)
determines its largest locally safe time step∆ti,j according to its maximum wave speed and the

CFL condition (as defined in subsection 14.2.1). These may then be used to determine the global

time step size such that the CFL condition is satisfied for all patches: ∆t = mini,j∈Domain∆ti,jTyp-
ically, this operation is performed as a global reduction, and its result distributed onto all patches.

Finally, it is used by all patches to compute the unknowns for the next time step.

Local Time Stepping In many cases, it is not necessary to compute with the same small time step

on the entire grid. Some patches may be able to use a larger time step and still satisfy the CFL

condition. This would enable a significant savings potential compared to global time stepping,

where the time step size is always set to the globally safe (and therefore smallest) increment. If a

small time step is dictated by only a small part of the simulation domain, the other patches could

use a larger time step, and therefore avoid performing unnecessary computations. A possible

solution is multi-rate local time stepping. The basic iteration within a patch remains the same.

However, the time step is determined locally, based on a base time step∆tmax that is negotiated in

the beginning of the simulation across all patches. Time steps may be set from fixed multiples of

the base time step, (e.g. ∆tmax,
1
2∆tmax,

1
4∆tmax, …). Each patch may then set its time step size

for each time interval
[
k∆tmax, (k + 1)∆tmax

]
. When a patch is done computing all the fluxes

between the cells at an even multiple of∆tmax, it uses the maximum wave speed calculated in

the process to determine its largest safe time step multiple, and updates its cells using that value.

That time step size is then used until the next even multiple of∆tmax is reached. However, using

that scheme, the different patches no longer always have the same time step, as illustrated in

Figure 15.3. Yet, they still depend on receiving fitting data from their neighbors. As depicted in

Figure 15.3, a patch may only compute a new step if all its neighbors are at least at the same time

step already. As with global time stepping, the values of the ghost layers need to be set at the

beginning of the iteration. If the time step of the received values matches the one of the patch,

the values may be set directly. Otherwise, they are interpolated linearly based on the values of

the previously sent and the current time step. This scheme is based on the approximate space-time

interpolation proposed by Gudu (2012). The old values are kept until the slower patch catches up

to the faster one, and then discarded. If the values received by a patch are from an earlier time

step rather than the one the patch is currently one, they are discarded immediately.

124

15.2. ADAPTING SWE FOR DIFFERENT FRAMEWORKS

t
B

+1
2∆tI

I

t +∆t

+1
4∆t

t

B

+1
4∆t

I

I

t

B

+1
4∆tI

I

t

B

+1
4∆tI

I
t

+1
2∆t

∆t

t

+1
2∆t

B

I

I

t

Figure 15.3.: Local Time Stepping Scheme for SWE, schematically depicted for a single patch

boundary between two patches at multiple times t. The figure shows the progression

of the patch iteration, from top left to bottom right. The horizontal gray dotted lines

denote increments of∆t. Whenever a patch computed an update, it sends data to

its neighbors. If the neighboring patch is already further on in the simulation, it is

not able to use the information, and will discard it. Otherwise, if the time step of the

received data matches the time of the patch, it may use it to receive an update. If

the time step is greater than the patch’s time step, the newly received data will be

used together with the previously received data to create an interpolated time step.

When either of these conditions is fulfilled for all the boundaries of the patch, it may

compute the next time step. Within an increment of∆t, a patch may not change its

time step size. Otherwise, it has to wait (and is marked with B).

125

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

Application Driver

«Duplicated on Ranks involved in Computation»
Rank 0..n

UtilitiesPatch Coordination

SWE_WaveAccumulationBlockMpiForkJoin

SWE_MPI_FJ

*

1

HpxNoComponent

SWE_WaveAccumulationBlockHPX

SWE_WaveAccumulationBlockCuda

SWE_BlockCuda

NativeBufferUpcxxBuffer

Float2DBufferFloat1D

Float2D Collector

SWE_WaveAccumulationBlockCharm

SWE_WaveAccumulationBlockMpi

SWE_WaveAccumulationBlockUpcxx

SWE_CharmSWE_HPX SWE_Upcxx

SWE_MPI

NetCdfWriterVtkWriterHLLESolver

FWaveSolver

SWE_Simple

Scenario

SWE_WaveAccumulationBlockChameleon

SWE_Block Solver
Writer

Figure 15.4.: UML Component Diagram for the SWE-PPM Software Package

126

15.2. ADAPTING SWE FOR DIFFERENT FRAMEWORKS

15.2. Adapting SWE for Different Frameworks

SWE-PPM consists of three major components: Utilities, Patch Coordination and Application Drivers,

as depicted in Figure 15.4. The Utilities component provides helper classes for argument parsing,

file I/O, scenario handling, and data structures for two-dimensional arrays and array slices. The

Patch Coordination component handles the patch, its data structures, the patch iteration, and the

communication. At the core of the system is the SWE_Block class. It provides facilities common

to all implementations, such as methods for setting the boundary conditions, the arrays for the

unknown quantities or interfaces for the patch iterations. For each of the supported runtime

systems—currently UPC++, Charm++, HPX, Chameleon and MPI—there is a corresponding

subclass that implements the patch iteration and inter-patch communication according to the

guidelines imposed by the parallelization framework. Depending on the framework, the patch

iteration is performed sequentially (e.g. UPC++, MPI, MPI +OpenMP, Charm++), or using shared-

memory parallelization (e.g. HPX). Finally, there are different application drivers, one for each

framework. The drivers start the simulation, collect the parameters, and coordinate the execution

of the simulation based on recommended control flow of the parallelization framework. In the

following, “our publication” refers to the publication that forms the base for this chapter, Bogusz

et al. (2020).

15.2.1. MPI

The MPI version of SWE-PPM uses a two-sided communication approach for the ghost layer

exchange. It is based on the original SWE version as described in Breuer and Bader (2012) with

extensions for local time stepping (unused) and metadata collection. The ghost layer exchange is

performed using non-blocking MPI_Isend and MPI_Irecv operations. At the beginning of each

iteration the application performs send and receive operations for its copy layer and its ghost

layer, respectively. For the sending and receiving of the top and bottom boundaries (which are

not non-contiguous in memory), an MPI datatype is used to enable a direct copy of the strided

data from the buffer. When global time stepping is used, the time step is negotiated using the

MPI_Allreduce operation. The MPI version of the code is implemented solely using MPI. Each

core is assigned a single MPI rank, and each rank computes the updates of a single patch.

15.2.2. MPI and OpenMP

The hybrid MPI and OpenMP variant of SWE-PPM is based on over-decomposition into a number

of patches that exceeds the number of processing elements on the rank. We developed this

version collaboratively for our publication. In this version, there is a single MPI rank per compute

node. Each rank manages a fixed number of patches. Computation of the individual steps in

the iteration is parallelized using OpenMP parallel for-loops. Communication between different

ranks is performed in a fashion similar to the one described in the pure MPI version, but on a

per-patch level. If the received values for a local patch allow for the computation of a new time

127

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

step according to the criteria described above, the computation will be performed, otherwise the

patch will be omitted, and considered again once new values are received.

15.2.3. UPC++

The UPC++ version of the code follows the same basic approach as the MPI version, but uses

one-sided communication operations instead of two-sided ones. It is based on preliminary work

performed during my research stay, was modified in the bachelor theses of Olden (2018) and

Bogusz (2019) and extended with local time stepping (unused) and metadata collection for our

publication. As with the MPI version, there is a one-to-one mapping of patches to processor cores

and to UPC++ ranks. The patch data is allocated in the shared segment of each rank to enable a

direct access using one-sided communication operations. The ghost layers are exchanged using

Remote Memory Access (RMA) operations upcxx::rget and upcxx::rput for the left and the

right ghost layers, and upcxx::rput_strided and upcxx::rget_strided for the top and bottom

ghost layers, respectively. For the one-sided operations to be safely executed, it is important to

ensure that the data to be read from or written to is in a state that permits it. This is accomplished

using RPCs. Before a ghost layer exchange is started, each patch determines the state of all

neighboring patches, and whether they have an update to be sent, or can use the update to be

sent by the patch itself. Then, the ghost layer exchange is performed according to the exchanged

information. Finally, another RPC is sent to each neighbor to let them know if data was submitted.

This scheme avoids the use of a global barrier synchronization. If global time stepping is enabled,

the time step computation is performed using upcxx::reduce_all.

15.2.4. Charm++

The first version of the Charm++ version of the code has been developed originally by Olden

(2018). It has since been improved on by Bogusz (2019). For our publication, we added support

for local time stepping and metadata collection. The control model of Charm++ differs from MPI

and UPC++ in that there is no more one-to-one mapping of compute resource to patch. Instead,

patches are mapped to the basic unit of computation in Charm++, the chare. The model resembles

the one introduced in chapter 9, and is similar to the one that will be introduced in the forthcoming

chapters, chapter 16 and chapter 18. Chares have event-queue-like execution semantics, and

may communicate with other chares using specified entry methods. In our solution, we follow

this model. There are entry methods in each chare that enable other chares to send ghost layer

data, and, as with the other solutions, the chare is only allowed to compute once it has received

all necessary data. For global time stepping, each chare sends its own patch-local time step

maximum to the main chare. The main chare performs the reduction, and calls the appropriate

entry method to register the global time step on all chares. It stores all simulating chares in a chare

array. This enables the possibility of load balancing when the chares are sufficiently fine-granular

to have multiple chares per processing element. The prospect is especially interesting when

local time stepping is enabled, as the different time step sizes lead to different work loads across

chares. There are two methods for load balancing available in Charm++, asynchronous and

periodically scheduled balancing, and explicit balancing. Both require chares to be serializable,

128

15.3. EVALUATION

but for the former version it is necessary that chares can always be transferred without creating

inconsistencies. In our case, this is not possible, thus only the second choice for load balancing

remains. For load balancing to happen, all chares need to enter a special load balancing state.

Once that happens, they and their data may be migrated to different nodes. For this method to

be useful, it is important to weigh the gains from balancing against the costs of doing so. In our

case this means only performing the load balancing after a number of iterations have passed.

There are two different load balancing strategies, GreedyRefine, which transfers chares from the

most utilized rank to the least utilized one, and Refine, which transfers chares away from the most

congested rank to average out the load more evenly. In both cases, migration is only performed if

the expected benefits outweigh the potential costs of the migration.

15.2.5. HPX

TheHPX implementation of SWE-PPM has originally been developed in the context of the thesis of

Bogusz (2019), and as with the other implementations, we added support for metadata collection

and local time stepping for our publication. There variants with a single patch or multiple patches

per locality. Both variants use one locality per node. Ghost layer exchange and the different stages

of the computation are coordinated using asynchronous operations by the master thread of the

locality following a fork-join-like pattern of parallelism. If there are multiple patches within the

same locality, the individual steps of the iteration are executed concurrently among the patches.

The computation of fluxes and computation of the new time step within a patch may optionally be

parallelized using hpx::forall loop constructs. Communication between patches is implemented

using two-sided, explicit communication channels. The time step reduction of in the global time

stepping variant is similarly implemented.

15.3. Evaluation

We evaluated the performance of SWE-PPM and its different implementations on the CoolMUC 2

cluster of the LRZ. CoolMUC 2 features 812 dual-socket nodes and a peak compute performance

of 1.4 PFlop/s. Each node is equipped with two Intel Xeon E5-2690v3 “Haswell” CPUs with 14

cores each, and 64GB of main memory. The nodes are connected using the Mellanox InfiniBand

FDR14 interconnection fabric. We used the Intel Development environment featuring the Intel

Compiler 2019 and Intel MPI 2019. The code was compiled with optimizations and Advanced

Vector Extensions 2 (AVX-2) instructions enabled.

We chose a modified radial dam break scenario for the evaluation with an initial water displace-

ment in the lower left corner of the simulation domain, and an elevation of the ocean floor in the

middle of the domain. The scenario and the resulting wave propagation is depicted in Figure 15.5.

The flooding of the central islands in the test scenario necessitates a smaller time step size on

the affected patches compared to the one used for patches that are on the open water, or at rest.

When local time stepping is used, this causes significant load imbalances, as shown in Figure 15.6.

Smaller time steps cause comparatively more work than large ones, as a patch with a smaller time

step will require multiple small steps to reach the same simulation time as the larger one.

129

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

(a) t = 0 s (b) t = 4 s (c) t = 8 s

(d) t = 12 s (e) t = 16 s (f) t = 20 s

Figure 15.5.: Scenario used for the Evaluation of SWE. In the center of the simulation domain there

is a water-covered elevation of the ocean floor. Furthermore, there is an elevation

of the water column in the lower left corner of the simulation domain. The water

column as well as the water on top of the ocean floor elevation radiate outwards

from their initial position as the simulation progresses.

The execution performance is obtained by recording the time from the beginning to the end of the

simulation and the number of cell updates that have been performed. This allows us to compute

the performance in Flop/s assuming a constant cost of 135 floating-point operations per call to

the HLLE solver. Furthermore, we recorded time spent on computation, ghost layer exchange,

and time step reduction (for global time stepping only). In the tests, we use the MPI versions as a

baseline, and compare it to the aforementioned implementations. For each implementation, we

empirically determined the best configuration (see Table 15.1).

15.3.1. Global Time Stepping

First, we evaluated the performance using global time stepping. To this end, we performed a

strong scaling test with 8192 × 8192 grid cells with one to 32 nodes. For the UPC++ and the

MPI solution, this led to patches containing about 2.4 million cells per core for the single-node

configuration. For the configuration with 32 nodes, each core had a working set of 75 thousand

cells. The patches are generated according to a block-block distribution of nP
x × nP

y patches

with

nP
x = max

argmin
0<x<

√
r

(rmodx)

 (15.1)

nP
y =

r

nP
x

.

130

15.3. EVALUATION

0 10 20 30 40 50 60 70 80
Simulation time [s]

0

50

100

150

200

R
an

k

t = 1
512 tmax

t = 1
256 tmax

t = 1
128 tmax

t = 1
64 tmax

t = 1
32 tmax

Figure 15.6.: Time step size per rank over the course of the simulation. Each row represents a

rank. (Bogusz et al., 2020)

Table 15.1.: SWE-PPM evaluation configurations used in the scaling tests

Execution Type Symbol Description

MPI 4 MPI implementation. One rank per physical core, 28 ranks per

node.

MPI-fj-64 4 MPI and OpenMP implementation with 64 Patches per rank.

Patches are executed using parallel for-loops.

MPI-fj-128 4 MPI and OpenMP implementation with 128 patches per rank.

Patches are executed using parallel for-loops.

UPC++ ⊗ UPC++ implementation. One Rank per physical core, 28 ranks

per node.

Charm-64 � Charm++ implementation1. Each node initially contains 64 Chares.

Load Balancing is disabled unless specified otherwise.

Charm-128 � Charm++ implementation1. Each node contains 128 Chares. Load

Balancing is disabled.

HPX-1 ∗ HPX implementation. One HPX locality per node, using

hpx::parallel::for_loop on each locality

HPX-64 ∗ HPX implementation. One HPX locality per node, using 64

patches on each locality and task-based Parallelization

HPX-128 ∗ HPX implementation. One HPX locality per node, using 64

patches on each locality and task-based Parallelization

1 Configuration with 32 nodes did not run successfully. An error occurred prior to the start of

the application during the execution of the Charm++ startup script.

131

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

This results in a patch size of px × py with

px,y =

nx,y

nP
x,y

(
qPx,y < nP

x,y − 1
)

nx,y −
((

nP
x,y − 1

)
nx,y

nP
x,y

) (
qPx,y = nP

x,y − 1
) . (15.2)

Here, qPx,y refers to the index of the patch in x or y direction, respectively, and nx,y refers to the

number of cells in each dimension. The Charm++ and the HPX variant are configured to take a

fixed number of patches per node. Patch size is determined in the same way, but instead of the

number of ranks per node, a fixed number of patches is used to split up the domain. Patches are

then distributed to the nodes in sequence, i.e. the first 64 patches are distributed onto node 0, the

next 64 onto node 1, and so on.

The results of these tests are depicted in Figure 15.7. The UPC++ performs best, alongwith theMPI

and the Charm++ implementation with 128 patches per node. All three implementations perform

identically in the runs with up to eight nodes. In the larger configurations UPC++ performs

slightly better than MPI, and Charm++ performs slightly worse. HPX performed significantly

worse than the other solutions. Depending on the number of nodes, the implementation was

25% to 40% slower. For the UPC++ solution, the better performance may be explained by the

slightly better communication and reduction times visible in Figure 15.7c and Figure 15.7d. For

the implementations that do not contain an overlapping of communication and computation

(MPI, HPX-1 and UPC++), the results depicted there paint an accurate picture of the actual

communication time. On the other hand, in the case of Charm++, the result is to be read differently

due to the way it was measured. To measure communication, we recorded the time passed

between the start of the communication and its termination once all four ghost layers have been

received. The over-decomposition used in the Charm++ implementation makes a direct measure

of the communication time infeasible, however, as it relies on overlapping communication steps

with computation steps to obtain the best possible performance. It is therefore possible for a

chare to be preempted if its communication requirements have not been met yet, and for another

chare to utilize the computing resource. The timer may only be stopped once the original chare is

scheduled again and its communication has concluded.

15.3.2. Local Time Stepping

We also evaluated the performance of our local time stepping solution in another strong scaling 4

test. In contrast to the solution with global time stepping, we only considered implementations

that used over-decomposition to generate a solution, i.e. the Charm++ solution and the HPX

solution with over-decomposition enabled. The BSP-like structure of the MPI implementation

as well as the UPC++ and HPX-1 implementation limits their execution speed to the slowest

encountered time step size, as they only use one patch per rank, and therefore do not have the

opportunity to balance load locally. Instead of the pure MPI version, we use the hybrid MPI and

4 This is to be taken with a grain of salt here. As with the classical strong scaling test, we keep the size of the domain

constant as we scale up the number of nodes used for the application. However, the actual workload changes, as the

patch sizes get smaller as the number of nodes increases. Time steps are set per patch, and therefore the number of

cell updates performed is not identical between the different node sizes.

132

15.3. EVALUATION

1 2 4 8 16 32

1011

1012

Number of Nodes

F
lo
p
/
s

MPI

UPC++

Charm-64

Charm-128

HPX-1

(a) Performance

1 2 4 8 16 32

102

103

Number of Nodes

T
im

e
to

So
lu
ti
o
n
(s
)

MPI

UPC++

Charm-64

Charm-128

HPX-1

(b) Time to Solution

1 2 4 8 16 32

10−1

100

101

102

103

104

105

Number of Nodes

A
g
g
r.
C
o
m
m
u
n
ic
at
io
n
T
im

e
(s
)

MPI

UPC++

Charm-64

Charm-128

HPX-1

(c) Aggregated Communication Time

1 2 4 8 16 32
10−3

10−1

101

103

105

Number of Nodes

A
g
g
r.
R
ed
u
ct
io
n
T
im

e
(s
)

MPI

UPC++

Charm-64

Charm-128

HPX-1

(d) Aggregated Reduction Time

1 2 4 8 16 32

0.6

0.8

1

1.2

Number of Nodes

F
lo
p
/
s
cf
.
M
P
I UPC++ Charm-64 Charm-128 HPX-1

(e) Performance: Detailed Comparison

Figure 15.7.: SWE-PPM Strong Scaling Test with Global Time Stepping. The grid size for the

test was fixed at 8192 × 8192 grid cells. Figure 15.7c and Figure 15.7d depict the

aggregated time spent in communication routines by all patches involved in the

computation. Result from Bogusz et al. (2020)

133

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

1 2 4 8 16 32

1010.5

1011

1011.5

Number of Nodes

F
lo
p
/
s

MPI-fj-64

MPI-fj-128

Charm-64

Charm-128

HPX-64

HPX-128

(a) Performance

1 2 4 8 16 32

102

103

Number of Nodes

T
im

e
to

So
lu
ti
o
n
(s
)

MPI-fj-64

MPI-fj-128

Charm-64

Charm-128

HPX-64

HPX-128

(b) Time to Solution

1 2 4 8 16 32

1

2

3

4
·1010

Number of Nodes

F
lo
p
/
s
an
d
n
o
d
e

MPI-fj-64 MPI-fj-128 Charm-64

Charm-128 HPX-64 HPX-128

(c) Performance: Detailed Comparison

Figure 15.8.: SWE-PPM Strong Scaling Test with local time stepping. The grid size for the test

was fixed at 8192× 8192 grid cells. Result from Bogusz et al. (2020)

134

15.3. EVALUATION

1 2 4 8

1010.6

1010.8

1011

1011.2

1011.4

Number of Nodes

F
lo
p
/
s

None-64

None-128

GreedyRefine-64

GreedyRefine-128

Refine-64

Refine-128

(a) Performance using different inter-node load bal-
ancing strategies.

2 841

0

100

200

300

Number of Nodes

M
ig
ra
ti
o
n
s
p
er

It
er
at
io
n

GreedyRefine-64 GreedyRefine-128

Refine-64 Refine-128

(b) Number of migrations comparison

Figure 15.9.: Performance comparison and comparison of number of charemigrations for different

inter-node load balancing strategies for the Charm++ implementation of SWE. The

test was performed as a strong scaling test with a fixed grid size of 4096× 4096 grid
cells and local time stepping. Result from Bogusz et al. (2020)

OpenMP implementation which uses the same over-decomposition as the other implementations.

For all implementations, we compared variants with 64 and 128 patches per node. The results

are depicted in Figure 15.8. Across the different runtime systems we evaluated, configurations

with a higher degree of over-decompositions managed to yield a better performance, except at

the scaling limits of the application. Charm++ generally outperformed the HPX solution, as in

the previous test, except in the single-node configuration, where HPX performs the same. The

hybrid MPI and OpenMP version performs the slowest. For the largest configuration, the HPX

and the MPI implementation with 128 nodes are outperformed by the ones using 64 nodes, which

suggests that the runtime overheads were too large compared to the computational load.

15.3.3. Detailed Comparison of Over-Decomposition Variations in Charm++ and HPX

In order to select the best configurations to use in the two previous scaling tests, we evaluated

different implementation variants of Charm++ and HPX. For the Charm++ implementation we

focused on load balancing. Charm++ offers two pre-supplied algorithms for inter-node load

balancing: GreedyRefine and Refine. We compared variations with inter-node load balancing to

the baseline solution without inter-node load balancing using over-decompositions with 64 and

128 patches per node and local time stepping (see Figure 15.9a). As before, configurations with a

higher degree of over-decomposition perform better, and, notably, the baseline solutions perform

better than either load balancing variant. This may be due to the nature of the load imbalance

caused by local time stepping. Smaller time steps occur unpredictably, and may change quickly

between different iterations. This seems to lead to many chare migrations that may be outdated

already at the next iteration. Erratic chare migrations therefore become an obstacle to performance.

135

CHAPTER 15. SWE—EXPERIMENTS WITH NOVEL RUNTIME SYSTEMS

1 2 4 8

1010.5

1011

Number of Nodes

F
lo
p
/
s

Parallel For-Each

Hybrid Blocks

32 sequential Blocks

64 sequential Blocks

128 sequential Blocks

Figure 15.10.: Strong scaling test comparing different implementation strategies for the HPX

implementation of SWE. The test was performed as a strong scaling test with a fixed

grid size of 4096× 4096 grid cells and global time stepping. Result from (Bogusz

et al., 2020)

Indeed, the number of chare migrations increases with the number of nodes in the computation,

as depicted in Figure 15.9b.

Finally, we compared different variants of the HPX implementation in Figure 15.10. There are two

different paths available for parallelization of patches using HPX: one may use parallel algorithms

to perform the computation of a single patch in parallel, or one can use tasks to compute multiple

sequential patches concurrently. Alternatively, it is also possible to combine the two solutions. In

our test the solution with a single patch per node and parallel for-each performed best. For the

variant with sequential patches and tasks, the highest degree of over-decomposition performed

best. The hybrid solution with 32 patches per node worked well for a low number of nodes,

but fell behind successively as the number of nodes in the computation increased. Moreover,

increasing the number of patches for the hybrid solution decreased the performance. This may

be due to the increase in coordination overhead from the larger number of tasks in combination

with the diminishing amount of computational load per patch.

136

16. SWE-X10, an Actor-Based Tsunami Simulation

SWE, the application introduced in the previous chapter, forms the basis for SWE-X10, my actor-

based tsunami application. The BSP-based version works well for the global time stepping variant,

as the regular communication structure allows for an easy implementation of the communication,

with a direct exchange of the ghost layers. Here, patches are able to copy their data directly into

the ghost layers of their neighbors, and it is therefore possible to avoid extra copies. However,

this tight coupling of the application domain and the parallelization scheme is not without its

disadvantages. The individual blocks need to have knowledge about the internal state of their

neighbors, e.g., to determine when the neighbor’s buffers are ready to receive updates.

Figure 16.1.: Tohoku tsunami, simulated using SWE-X10. Each square represents a patch being

simulated by an actor. The tsunami wave is depicted in red and dark blue. Darker

patches are patches that have not been reached by the tsunami wave yet, and are

therefore not enabled.

In SWE-X10, I use ActorX10 to decouple the application logic from the parallelization scheme.

This facilitates more high-level optimizations, such as lazy activation, where actors are only enabled

and start computing when they are actually reached by the tsunami wave. Furthermore, the event-

queue semantics of ActorX10 enables an overlap of communication and computation without

intervention from the application developer, as long as there is a sufficient amount of actors per

node. In the remainder of this chapter, I will first discuss the system design of the application in

section 16.1, and then move on to the actor-based coordination scheme in section 16.2. Thereafter,

I will introduce lazy activation in section 16.3. Finally, I will discuss issues encountered during the

implementation of SWE-X10 in section 16.4, and the performance results obtained using ActorX10

137

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

on a cluster in section 16.5. The content of this chapter has been presented previously in Pöppl

and Bader (2016) and in Pöppl et al. (2016).

16.1. System Design

SWE-X10 shares the numerical properties of SWE. Its sequential core is similar to the one of

SWE, but is written entirely1 in X10. However, SWE-X10 is built around the actor model, and

does therefore not utilize MPI or OpenMP for parallelization. Figure 16.2 depicts the basic

system design of the application. The top layer, Actors, is responsible for the coordination of the

computation using the actor model. I will discuss it in more detail in section 16.2. The middle

layer, Patch Coordination is responsible for implementing the actors’ actions on per-actor basis.

This involves all computations on a single patch, such as computation of fluxes, application of

the patch boundary conditions, or creation of a refined or coarsened patch, if requested. Some

functionality, such as the patch iterations on the different available hardware targets, or file I/O,

is delegated down to the bottom-layer components Patch Iteration or Utility, respectively. Finally,

the Setup & Tear-down component is responsible to set up the actor graph, and to coordinate global

I/O tasks such as the loading of complex scenarios, the parsing of command-line arguments or

communication with the visualization client from the invasive platform prototype.

For the simulation of complex scenarios, SWE-X10 is able to load bathymetry files provided by

General Bathymetric Chart of the Oceans (GEBCO)2. The NetCDFImporter class may be used to

import these bathymetry files, provided that they conform with the NetCDF Climate and Forecast

Conventions. Additional options for the simulation run, such as the number of grid cells, the

patch size, or the type of time stepping may be selected using the application’s command-line

interface. When SWE-X10 is executed on the prototype, it is also possible to enable an in-situ

visualization that uses a TCP/IP connection to connect to an external system with a running

visualization client. If this option is enabled, the application serializes and sends the unknown

data of the patch as well as metadata for the iteration to the visualization client.

16.2. Actor-Based Coordination

Similarly to SWE, SWE-X10 relies on a decomposition of the simulation domain into rectangular

patches. Following the update scheme outlined in section 14.2, in order to update of cells to a new

state q
(n+1)
i,j it is required to know the values of the neighboring cells quantities at the current time

step n. This, in turn, necessitates the transfer of the values of the outermost layer of the adjacent

patches. These are typically stored in an extra row or column outside the actual patch, in the ghost

1 Except for the NativePatchCalculator, which is a hybrid of X10 and hand-written C++. The class is available only

on conventional systems, when the default IBM X10 compiler is used. The invasive X10 compiler does not support

such inter-mixing of X10 and C++, as the compilation is performed in one step, unlike with the original compiler,

which first generates C++, and then uses another compiler to generate machine code.
2 Link: https://www.gebco.net. Datasets are available at: https://www.gebco.net/data_and_products/gridded_

bathymetry_data/gebco_2019/gebco_2019_info.html

138

https://www.gebco.net
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html

16.2. ACTOR-BASED COORDINATION

«Duplicated on Places involved in Computation»
Place 0..n

«Root Place»
X10 Place 0

Setup & Teardown

Patch IterationUtilities

Patch Coordination Level

Actor Level

InSituVisualization

Scenario

NetCdfWriter

ActorX10 .

InterpolatingBCActorBCMoveablePatchSWEBlock

SWEBlock BlockCommunicator

SimulationActor
NetCdfImporter

ICorePatchCalculator

CUDAPatchCalculator

VtkWriter

Writer

NativePatchCalculator

PatchCalculator

SimulationActorGraph

Configuration

SimulationActorGraph

Figure 16.2.: SWE-X10 UML component diagram. The application features a layered approach.

The top layer implements the actor-based coordination, and the lower layers contain

the data structures to implement the actions. The instances of the classes contained

in the components are distributed over all available X10 places. Setup and tear-down

of the simulation are managed by another component that is located on place 0 of

the X10 PGAS domain.

139

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

layer, and they have to be available before a new time step can be computed. In SWE-X10, the task

of transferring the ghost layers, and the coordination of the computation falls to the actors. To this

end, each patch is allocated a simulation actor. Each actor is connected to the actors controlling

the patches adjacent to its own. An example for the resulting domain decomposition is depicted

in Figure 16.3. It shows a grid subdivided into 3 × 3 patches, and 3 × 3 actors coordinating

them. Here, the connection between each two neighboring actors is denoted by a single edge that

stands for their bilateral connection. This connection is implemented through four channels, two

in each direction (as depicted in Figure 16.4). In each direction there is one channel for control

information, such as termination message, and one for the cell quantities of the ghost layer. The

token capacity for each channel is set to two for all channel types in order to avoid deadlocks.

Even though in the basic version, there may only ever be one token in the channel, the second

slot is needed to meet the invariant of the actor state transition: a transition may only be taken if

there is both a token available in the incoming channel, and one free slot available in the outgoing

channel. As all channels start by sending their initial ghost layer, it is likely that two neighboring

actor send each other messages concurrently, and therefore deadlock. Increasing the capacity

to two sidesteps this issue. This capacity is sufficient unless different time step sizes are to be

accommodated. The graph may be modelled in terms of the FunState model as:

GSWE-X10 = (ASWE-X10, CSWE-X10) (16.1)

ASWE-X10 =
{
ai,j | 0 6 i < nx ∧ 0 6 j < ny

}
CSWE-X10 =

{
cDai,j ,ai′,j′ |

(
i = i′ ∧ |j − j′| = 1

)
∨
(
|i− i′| = 1 ∧ j = j′

)}
,

∪
{
cCai,j ,ai′,j′ |

(
i = i′ ∧ |j − j′| = 1

)
∨
(
|i− i′| = 1 ∧ j = j′

)}
.

The actor graph is distributed onto the available X10 places using a block-block distribution.

For the actors, there are different levels of functionality that may be added successively. The

basic level assumes a fixed time step size, and full activity across the entire simulation domain.

In a second step, I add lazy activation of actors, so that only actors that have been reached by

the wave perform computations In the basic model, actors trigger their neighbors through the

ghost layer exchange. Whenever an actor is done with an iteration, it sends its ghost layer data

to its neighbors. At the same time, each actor may compute an iteration once it has received

ghost layer data from all its neighbors. In terms of the FunState model, actors are modelled as

shown in Figure 16.5. For the connection to its neighbor, each actor has incoming and outgoing

ports for data and control messages in each of the four directions (top, bottom, left and right).

Actors start in the initial state. Once are able to write to their channels, they write the initial ghost

layer data to their data channels, and set their state to compute updates. In that state, they will

compute iterations whenever there is ghost layer data available from all connected neighbors

(mayRead()), and there is sufficient space remaining in the channels connected to the outgoing ports

(mayWrite()), as long as the current simulation time tcur is smaller than the specified end time tend.
The ghost layer data tokens take the shape of one-dimensional arrays (Rail[Float]{self.size

== this.patchSize}). In X10, arrays are conventional objects, and thus allocated on the heap

(during inter-place transfer), and passed by reference. The references remain in the channel

until the state transition is taken. Then, they are passed into the SWEBlock, which handles the

local iteration. At the end of the state transition, the copy layers of the patch are exported into

another token that is then inserted into the outgoing channel. The big advantage over the SWE

implementation is that with that scheme, coordination is completely local, and there is no longer

a global synchronization step. The individual patches do not need any knowledge about the

140

16.2. ACTOR-BASED COORDINATION

A 0,0

A 0,1

A 0,2

A 1,0

A 1,1

A 1,2

A 2,0

A 2,1

A 2,2

Figure 16.3.: Decomposition of the simulation domain into 3× 3 patches. Each patch is assigned

an actor Ai,j that is connected with its direct neighbors.

A0,0

A0,1

A0,2

A1,0

A1,1

A1,2

A2,0

A2,1

A2,2

D
D

C

C D

D
D

C

C

C D

D

C

C

D

D
D

C

C

C D
D

D
D

C

C

C

C D
D

D

C

C

C

D

D

C

C D
D

D

C

C

C D
D

C

C

Figure 16.4.: Actor Graph with 3 × 3 actors. Each actor (orange) is connected to its neighbors

through four channels, one channel for ghost layer data exchange (depicted in blue)

and one for control messages (depicted in green). Token capacity is set to two for all

channels.

141

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

initialstart

compute

updates

terminated

mayWrite()

sendData()

tcur < tend ∧ mayRead() ∧ mayWrite()

receiveData(); computeFluxes();

applyUpdates(); sendData()

tcur ≥ tend
stop()

(a) Simulation Actor FSM

ai,j =
(
Iai,j , Oai,j , Fa, Ra

)
Iai,j =

{
ipC,Di′,j′ |c

C,D
ai′,j′ ,ai,j

∈ CSWE-X10

}
Oai,j =

{
opC,Di′,j′ |c

C,D
ai,j ,ai′,j′

∈ CSWE-X10

}
FSWE-X10 = FGuard ∩ FAction

FGuard =
{
mayRead(),mayWrite(),

[tcur < tend] , [tcur ≥ tend]
}

FAction =
{
receiveData(), computeFluxes(),

applyUpdates(), sendData()
}

(b) Simulation Actor

Figure 16.5.: Finite state machine for the simulation actor. Italicized functions are guard functions,

the rest are actions. (Adapted from Roloff et al. (2016))

internal state of their neighbors, and may send their tokens whenever they are done with their

local computations.

16.3. Lazy Activation of Actors

The basic model already introduces local coordination to the computation. Actors now only

depend on their direct neighbors, and coordinate amongst themselves. The activation scheme

introduced above may now be exploited in order to reduce the number of calculations performed

by the application. In the basic implementation, an iteration is performed regardless of whether it

is actually needed. As described in subsection 14.1.1, the shallow water equations are hyperbolic

PDEs. This type of PDE exhibits “wave-like” behavior, i.e. there is a finite propagation speed

of the tsunami wave across the simulation domain. Cells that have not yet been reached by the

wave will be at rest, i.e. there is no change in the water height or momenta. An actor may find out

whether it is initially needed from the scenario: if its patch contains part of the initial perturbation,

it should start as active, otherwise start as dormant. The set of active actors propels the simulation

forward, and as soon as the wave reaches the boundary of a dormant actor’s patch, it is activated

and joins the computation. In many cases, the initial perturbation will be limited to just a few

patches. The remaining patches will only become active as the simulation progresses.

To enable this behavior, the structure of the actor graph does not need to be changed from the

one described in section 16.2. It suffices to adapt the set of actions and to change the actors’ FSM,

shown in Figure 16.6 to model the new behavior. Initially, each actor determines its activity state,

and sends it to its neighbors. Actors that contain part of the initial wave set their state to propagating

wave, while those that do not set their state to lake at rest. Active actors perform simulation steps as

142

16.4. PATCH-LEVEL CALCULATIONS

Initial

State
start

Lake at

Rest

Propa-

gating

Wave

Send

Activa-

tion

Termi-

nated

¬isActive(),
sendStatus()

isActive(),
sendStatus()

recvActive(),
computeStep()

t > tmax∨
recvTerm(),
sendTerm()sendActi-

vation()
recvTerm(),
sendTerm()

recvActivation(),
sendStatus()

Figure 16.6.: Finite State machine for the simulation actor with lazy activation enabled. As before,

italicized methods are guard functions, and functions written in normal letters are

actions. The set of functions is omitted for brevity. (Pöppl et al., 2016)

described above. Unlike previously, ghost layer data is only needed from active neighbors now.

The actor tests the activation conditions using the aggregate guard recvActive(). If an actor does not

have any active neighbors, it may just keep computing updates until the wave reaches one of the

boundaries of its patch by triggering itself at the end of its actions. During the computation of the

update, the actor determines for each of its copy layers whether the update actually changes any

values. If there are changes, or the neighbor is already active, the updated data will be sent at the

end of the iteration. If the neighbor is still inactive and there is a non-zero update, the actorwill also

send a control message stating that it shall henceforth provide updates (sendActivation()). Once

this message is received (recvActivation()), the neighbor in lake at rest state will change its state to

propagating wave, and propagate its new status to all its neighbors, so that its other active neighbors

know to expect updates from it, and may in turn send their updates. Once an actor reaches its

termination condition, it will send a termination signal to all its neighbors, and terminate. The

same happens if a termination signal is received (recvTerm()).

16.4. Patch-Level Calculations

The actions used within the FSM of the actors’ are implemented in the lower layers of SWE-X10,

specifically the MoveablePatchSWEBlock class. In order for the application to provide a good base

for the evaluation of the actor model, its performance characteristics need to be comparable to the

prior application, SWE. Just using X10 code for the computational hotspots proved insufficient to

get a performance comparable to the SWE version. Nevertheless, obtaining a high performance

143

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

using X10 is possible if common pitfalls are avoided (Tardieu et al., 2016). In the following, I will

highlight some measures taken to improve the performance in SWE-X10.

One potential problem for X10 may be the two-step compilation process of X10. For the IBM

X10 compiler, the compilation of X10 to machine code is a two-step process using C++-98 as an

intermediate language. This technique is a common approach for new programming languages,

as it allows the compiler writer to benefit off the previous work done by the developers of the

target language compiler. Some deficits, such as the lack of an effective available expression

analysis may be traced back to this approach (Horie et al., 2015). The optimizations implemented

in the IBM X10 compiler target mostly high-level optimization opportunities such as the lowering

of range-based for-loops to low-level C-style loops that avoid heap allocations. The commonly

implemented optimization steps are left to the C++ compiler. However, the generated C++ code

may be too complicated for the C++ compiler to recognize as an optimization target. For example,

X10 array access expression val i = a(3); is translated by the X10 compiler to:

1 x10_double b = (__extension__ ({

2 ;

3 x10_double ret6171;

4 ret6171 = (a->FMGL(raw))->__apply(((x10_int)3));

5 ret6171;

6 }))

To get to the raw memory value, two levels of indirection need to be resolved and a function

called. Depending on the X10 compiler settings, the function call will also perform a bounds

check to detect out-of-bounds accesses. As the C++ compiler may not have the body of the

__apply() function available3, it will not be able to rule out side effects, and will therefore reject

the expression as a target for optimization. In an HPC context this is especially problematic, as

the use of SIMD instructions is necessary to reach a CPU’s peak performance. Auto-vectorization,

however relies on the compiler to find code sections that may be safely executed in parallel. If the

compiler encounters an eligible loop, it may generate code to compute several iterations in parallel

using SIMD instructions. To do that, the compiler needs to prove that there are no adverse side

effects to vectorization. If the compiler is unable to do so, or it does not have all necessary code

available, only scalar code will be generated. The computational hotspot of SWE, the solution of

the edge-local Riemann problems on the unknown arrays has been vectorized before by Bader et al.

(2014) using the Intel C++ compiler. However, using plain X10, vectorization of that computation

was not possible. Vectorization failed due to the loops’ complexity.

A second pitfall is the prevalence of heap allocations. In C and C++, it is a common technique

to declare small local arrays directly, such as float arr[4]; arr[2] = 4.2f. These arrays may

be used as local variables with automatic storage duration, i.e. they will be allocated on the stack

along with all other local variables. In X10, there is no such completely stack-allocated array

type, and it is not possible to program one of arbitrary size. The most primitive type of array,

the Rail[T], a one-dimensional, zero-based, fixed-size storage container for instances of a single

type is implemented as a class, and as such, it is implemented on the heap. As previously shown,

there are two levels of indirection between the Rail[T] object and the raw memory. All types

3 It is part of the X10 standard library, and therefore defined in a different compilation unit.

144

16.5. PERFORMANCE OF SWE-X10 ON CPUS

of X10 arrays use an instance of the IndexedMemoryChunk[T] as a backing storage. For Rail[T]

instances, its functionality may be directly accessed, but for more complex array types, there

needs to be some sort of address translation. The IndexedMemoryChunk[T] holds a pointer to the

raw memory that is not exposed as an X10 object. All memory accesses need to pass through

the IndexedMemoryChunk[T]’s instance methods. While it is possible to annotate objects with

@StackAllocate to direct the compiler to generate the object on the stack, this is not helpful for

arrays, as the annotation only works for constructors, and the IndexedMemoryChunk[T]may only

be instantiated using a factory method. A first implementation of the Riemann solvers in X10

used @StackAllocate-annotated arrays. Replacing these with local scalar variables4 sped up that

early version of SWE-X10 by a factor of ten.

As introduced in chapter 5 and subsection 8.1.1, there are two different X10 compilers that are

used to compile SWE-X10, namely the IBM compiler and the invasive X10 compiler developed

within InvasIC. For the IBM compiler targeting HPC systems, it is possible to integrate native

C++ for the computational hotspots of the simulation. The aforementioned two-step compilation

process allows for the developer to insert their own code into previously generated C++ code.

The @NativeRep annotation may be used to tell the compiler to skip the code generation for the

annotated class. The X10 compiler will perform all other steps using the X10 class, therefore the

class is indistinguishable from other X10 classes from the X10 perspective. During the second step

of the compilation, the user has to compile and link the compilation unit containing the custom

code manually. As long as the interface matches, there no issues will occur during compilation.

However, the application developer is now responsible to extend the automatically generated

serialization code to include any attributes that have been added to the class on the C++ level.

I used this technique to implement the patch iterations needed to compute net updates, and to

apply them using C++ (in the NativePatchCalculator class). Instead of using the functionality

provided by the X10 array (x10.regionarray.Array) class, I directly accessed the underlying

memory segment. The loops are annotated with the Intel Compiler directive #pragma simd to

instruct the compiler to emit vectorized code. This is sufficient to increase the performance by

a factor of four over the non-vectorized, pure X10 version. When this optimization is enabled,

the more general, purely X10-based MoveablePatchSWEBlock delegates the patch iteration to the

patch iterator class.

16.5. Performance of SWE-X10 on CPUs

The application performance of SWE-X10 was evaluated with respect to different layers of paral-

lelism. First, I evaluated the performance on the single-core-level, comparing the pure X10 version

against the vectorized C++ code. I then compared the performance of SWE-X10 on a single node

and in a multi-node setting to SWE, the prior BSP approach. Finally, I compared the difference in

time-to-solution and the CPU time used with and without the lazy activation technique.

4 e.g., @StackAllocate val a = @StackAllocate new Rail[Float](2); would become var a0:Float = 0.0f,

a1:Float = 0.0f;

145

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

All tests were performed on the, now-deconstructed, MAC Cluster5, a small development cluster

that was equipped with, amongst others, 28 nodes with two Intel Xeon E5-2670 CPUs (Sandy

Bridge micro-architecture (µArch)) each. The peak single-precision floating-point performance for

the CPU nodes is 332.8GFlop/s, and the STREAM triad performance was measured as 108.9GB/s

per node. The nodes were connected using Mellanox InfiniBand QDR. For all the following

measurements, I used the IBM X10 compiler as a front-end compiler, and the Intel Compiler 16.0

as the backend compiler.

The NativePatchCalculator described in section 16.4 features loops that are annotated with

the Intel-specific #pragma simd6 annotation. The directive forces the Intel Compiler to generate

vectorized versions of the annotated loops. I compared the purely X10-based version of both

the HLLE solver and the f-Wave solver to their respective counterparts that use the vectorized

C++ loops. Performance was measured based on the execution time of the entire actor graph

execution with four actors on a single core. Therefore, measurements do not show the Riemann

solver performance alone, but the performance of the entire application, including overhead from

ActorX10, and the updating of the unknown arrays using the fluxes computed by the Riemann

solvers. Performance results (see Figure 16.7, previously shown in Teich, Kleinöder, andMattauch

(2015)) show a speed-up of 5× over the non-vectorized X10 version. These results mirror the ones

reported earlier by Bader et al. (2014) for SWE, which allows for an easy and fair comparison of

the actor-based SWE-X10 to the BSP-based SWE.

Next, the shared-memory performance of SWE-X10 was compared to the performance of SWE.

These results were previously shown in Pöppl and Bader (2016) and Pöppl et al. (2016). The test

was performed on a single node of the MAC cluster, using configurations ranging from one to

sixteen cores. Both applications solved a radial dam break scenario using the HLLE solver. Each

CPU core was assigned a region of 1024× 1024 grid cells. In SWE-X10 these were distributed

onto 2× 2 actors with patch sizes of 512× 512 grid cells each. The results of this test are shown

in Figure 16.8. SWE-X10 starts with a single-core performance of about 25GFlop/s. The highest

performance is reached at about 75GFlop/s using 10 cores. Addingmore cores to the computation

did not yield a higher performance. It is likely that the memory bandwidth is saturated at this

point. SWE reaches a similar performance, however only at a higher core count of 14 cores. Both

applications manage to reach about 23% of the node’s peak performance.

The multi-node performance of SWE-X10 was evaluated through another weak-scaling test. As

with the single-node test, the result was previously reported in Pöppl and Bader (2016) and Pöppl

et al. (2016). In SWE-X10, the place granularity was set to eight cores (or one CPU) per place. As

with the single-node test, each core wa assigned 1024× 1024 grid cells subdivided onto 2× 2
actors, resulting in 32 actors per CPU. The test was performed with configurations ranging from

one CPU to 16 nodes, the larges available configuration on the MAC Cluster. The performance

results (see Figure 16.9) show a linear scaling from one to eight nodes both in SWE-X10 as in

SWE. At sixteen nodes a performance degradation is observed. The degradation occurs with

both applications, implying an issue with the hardware of the cluster. In all the configurations

displayed here, SWE is outperformed by SWE-X10. This may be explained by the different

5
http://www.mac.tum.de/wiki/index.php/MAC_Cluster

6 This annotation has since been deprecated and superseeded by a number of OpenMP SIMD pragmas. The version of

SWE-X10 used to measure the benefits of vectorization used the old annotations at the time of measurement.

146

http://www.mac.tum.de/wiki/index.php/MAC_Cluster

16.5. PERFORMANCE OF SWE-X10 ON CPUS

400 800 1600 3200 6400

2

4

6

·107

Grid Cells (squared)

C
el
l
U
p
d
at
es
/
s

(a) f-Wave Solver

400 800 1600 3200 6400

1

2

·107

Grid Cells (squared)

C
el
l
U
p
d
at
es
/
s

(b) HLLE Solver

Figure 16.7.: Single-Core Performance of SWE-X10. The blue bars show the scalar version (using

pure X10) of the solvers, the orange bars show the native, vectorized C++ version.

(Result previously shown in Teich, Kleinöder, and Mattauch (2015))

0 2 4 6 8 10 12 14 16
0

20

40

60

80

CPU Cores

G
F
lo
p
/
s

SWE-X10
SWE

Figure 16.8.: Single-node performance of SWE-X10 vs. SWE. I assigned four actors with 512×512
cells to each core (weak scaling). The performance of SWE-X10 saturates earlier (10

cores) compared to SWE (14 cores), but both codes reach the same peak performance

(75 GFlop/s). (Result from Pöppl and Bader (2016) and Pöppl et al. (2016))

8 16 32 64 128 256

1011

1012

CPU Cores

F
lo
p
/
s

SWE-X10
SWE
Linear

Figure 16.9.: Weak scaling of SWE-X10 vs. SWE from one CPU (8 cores) up to sixteen nodes

(256 cores). 32 actors with 512× 512 cells were placed on each CPU. The gray line

illustrates perfect scaling from one node. (Result from Pöppl and Bader (2016) and

Pöppl et al. (2016))

147

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

communication patterns used in the two applications. The actor model used in SWE-X10 enables

an overlapping of communication and computations by virtue of having multiple patches per

core. An actor that already received ghost layer data from its neighbor may start computing its

next time step, while other actors still wait, or are sending updates from the previous time step. In

SWE, such an overlap is not supported, as the application follows the BSP model, and has clearly

separated, non-overlapping phases for computation, communication and synchronization.

These tests show that, given the right circumstances, the performance of SWE-X10 is comparable

to, or even better than the one of SWE. However, these results are specific to the cluster used for

the evaluation. The hardware features relatively low number of relatively strong cores (and a

low floating-point performance, compared to more modern CPUs). This favors SWE-X10, as the

coordination overhead imposed by ActorX10 is relatively high. For configurations with smaller

patch sizes, or for hardware architectures with weaker CPU cores, such as the Intel Xeon Phi, this

becomes a larger problem. The cores of the Xeon Phi feature, relative to the Sandy Bridge cores

used here, a much more capable floating-point unit that uses 512Bit wide vector registers, but

the rest of the core has a much more simple and less capable architecture. This favors a more

simple control flow with a greater focus on floating-point arithmetic, and therefore SWE-X10’s

performance degrades significantly. This was one of the motivations for the development of

Actor-UPC++, and will be discussed in more detail in section 18.2.

16.6. Performance of SWE-X10 on GPUs

In two bachelor’s theses, support for patch iterations on CUDA-capable GPUswas added (Gärtner,

2016; Molzer, 2017). Molzer and Gärtner added another patch iterator, the CUDAPatchCalculator,

to enable the execution of the local path iteration on GPUs. The patch calculator uses CUDA

streams to schedule different kernels that do not have data dependencies concurrently. For

example, the calculation of the vertical and the horizontal fluxes may be performed in parallel.

The same applies to cells at the boundaries of the patch that are treated separately in SWE-X10. The

resulting dependency graph may be encoded using streams to enable the GPU to schedule kernels

as efficiently as possible. Furthermore, the kernels themselves were optimized to use the memory

hierarchy, including the sharedmemory, efficiently. For the parallel computation of themaximum

wave speed, an efficient technique proposed byHarris (2010) was used. These techniques, together

with ActorX10, enable the efficient use of multiple GPUs in the same calculation.

The performance of SWE-X10 was evaluated in the bachelor’s thesis of Molzer (2017). He per-

formed the evaluation on the MAC Cluster’s NVIDIA partition, which contained four nodes

with two NVIDIA Tesla M2090 GPUs (Fermi µArch) each. The Tesla M2090 is clocked at 1.3GHz

and reaches a peak single-precision floating-point performance of 1332GFlop/s It has 6GB of

on-device memory and a peak bandwidth of 178GB/s (NVIDIA Corporation, 2012). Molzer

evaluated the performance of his improvements of the CUDA patch iterations on the MAC cluster,

performing strong and weak scaling test, as well as a comparison with the prior CPU solution. In

the first test, depicted in Figure 16.10a, performance of configurations using four CPU cores, a

single GPU and two GPUs was compared at different patch sizes. Compared to the CPU solution,

the GPU requires larger patch sizes to perform efficiently. Performance on the GPU only levels off

148

16.6. PERFORMANCE OF SWE-X10 ON GPUS

128 256 512 1,024 2,048 4,096 8,192

1010

1011

Grid Size

F
lo
p
/
s

4 CPU Cores
1 GPU
2 GPUs

(a) Single-Node Performance

2 3 4 5 6

2

3

4

5

6

7

·1011

Number of GPUs

F
lo
p
/
s

8192× 8192
4096× 4096
Ideal (8k)

Ideal (4k)

(b) Strong Scaling

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

·1011

Number of GPUs

F
lo
p
/
s

SWE-X10 GPU
Ideal

(c) Weak Scaling

2 3 4 5 6

0.6

0.8

1

Number of GPUs

P
ar
al
le
l
E
ff
ic
ie
n
cy

8192× 8192
4096× 4096

(d) Parallel Efficiency – Strong Scaling

1 2 3 4 5 6 7 8

0.97

0.98

0.99

1

Number of GPUs

P
ar
al
le
l
E
ff
ic
ie
n
cy

8192× 8192

(e) Parallel Efficiency – Weak Scaling

Figure 16.10.: Performance of SWE-X10 on the GPU. The test in Figure 16.10a has been performed

on a single node with different patch sizes and four actors. Strong scaling was

performed using two different patch sizes, and up to 6 GPUs. For the weak scaling

test, actors with 1024 × 1024 grid cells were used. (Experiment performed by

Molzer (2017))

149

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

for configurations above a patch size of 1024×1024 grid cells. For smaller patch sizes, the amount

of parallelism is not sufficient to saturate the entire GPU. The same holds for the configurations

using two GPUs.

The strong scaling performance, depicted in Figure 16.10b and Figure 16.10d, reveals a similar

picture. The comparatively lower performance observed at three and five GPUs used may be

explained with imperfect load balancing given the odd number of GPUs. A weak scaling test

performed using GPUs (results shown in Figure 16.10c and Figure 16.10e) revealed a result similar

to the one observed in Figure 16.9. The actor model with its local coordination scheme enables

good scalability. This is demonstrated here once more, with a parallel efficiency of over 97% for

an execution with eight GPUs.

With 10% of the potential peak performance on the NVIDIA Tesla M2090, the obtained perfor-

mance is relatively low. However, the structure of the computation limits the maximum perfor-

mance attainable for the GPU. For each Riemann problem, three unknown values (h, hu, b)T on

two sides of the cell boundary are read, and two updates and the maximum wave speed are writ-

ten. Assuming single precision floating-point numbers, the arithmetic intensity is at≈ 3 Flop/B.
Thereafter, the fluxes are used to compute the next time step. This operation performs three

loads and three stores per cell, and performs six operations, yielding an arithmetic intensity

of 0.25 Flop/B. This makes both operations memory bound. Furthermore, the solver exhibit

a number of branches that may lead to thread divergence, further reducing the performance.

Nevertheless, the performance of SWE-X10 is comparable to the one determined for SWE by Hölzl

(2013). In future work, it may be interesting to evaluate the performance of SWE-X10 with patches

executed both on the CPU and the GPU at the same time.

16.7. Evaluation: Lazy Activation of Actors

In the following, I will demonstrate the benefits of lazy activation implemented using the actor

model. SWE-X10 currently does not support load-balancing of actors. Instead, actors are dis-

tributed to their place at the start of the application. Therefore, the full benefit of lazy activation

in terms of time-to-solution cannot currently be demonstrated. Instead, I measured the CPU time

used by the application by summing up over the time used by each CPU to compute the scenario.

This metric assumes that CPUs of inactive actors otherwise remain idle, and thus provides a rough

approximation of the required energy to compute the solution. In the context of the invasive

computing environment, it may be possible to invade tiles gradually as actors activate, hence

allowing for a more efficient use of the system. Alternatively, multiple operating points may be

used for the different simulation states, e.g. one with a low amount of cores for the beginning of

the simulation, and another for a later stage when all actors are active.

As the test scenario, I chose a modified radial dam break scenario. In this scenario, the initial water

elevation is placed in the lower left part of the simulation domain, and the boundary condition are

set to wall type. Simulation time was set to 90 simulated seconds, a sufficient time for the wave

to reach the entire domain. The grid resolution was set to 8192 × 8192 grid cells, distributed

onto actors containing patches of 512× 512 grid cells each. Actors were distributed onto eight

150

16.7. EVALUATION: LAZY ACTIVATION OF ACTORS

CPU 3

CPU 2

CPU 1

CPU 0

CPU 5

CPU 4

CPU 6

CPU 7

(a) Initial Setup (b) Wave Propagation with Lazy Activation

Figure 16.11.: Setup to test lazy activation of actors. The red circle marks the initial water dis-

placement. Throughout the simulation, it will collapse and radiate outwards as

a propagating wave. Each little square denotes an actor; the initial assignment of

actors to places (i.e., CPUs), is marked in magenta.

CP
U
0

CP
U
1

CP
U
2

CP
U
3

CP
U
4

CP
U
5

CP
U
6

CP
U
7

0

200

400

600

800

1,000

1,200

C
P
U
ti
m
e
in

s

Inactive Active

Figure 16.12.: CPU activity for the test run with lazy actor activation. Each bar represents the

activity of one CPU; gray marks inactive time and blue marks time spent computing

updates. (Result from Pöppl et al. (2016))

151

CHAPTER 16. SWE-X10, AN ACTOR-BASED TSUNAMI SIMULATION

CPUs on four nodes of the MAC Cluster according to the scheme displayed in Figure 16.11a. The

application recorded the activation time of the first actor for each X10 place. The time from first

activation to the end of the simulation was then used for each actor to compute the overall CPU

time. For the configuration without lazy activation, the overall execution time times the number

of CPUs in the computation yields the CPU time, as all CPUs are active and computing updates

from the start.

For the run without lazy activation, I measured an overall execution time of 1433 seconds. All

actors are active from the start of the simulation, therefore, the overall CPU time utilized may

be summed up to 12264 CPU seconds, or 3.41 CPU hours. In comparison, the version with

lazy activation takes 1203 seconds to complete. Summing over the measured CPU activity (see

Figure 16.12) yields a total number of 6741 CPU seconds, or 1.87 CPU hours. Hence, in terms of

CPU time spent, lazy activation enables significant savings in terms of used system resources.

Naturally, the actual resource utilization benefits of lazy activation heavily depend on the initial

scenario. In cases where the initial disturbance is large and located in the center of the simulation

domain, the gains will be significantly smaller. However, typical tsunami simulation setups

usually contain a relatively localized initial disturbance. Large parts of the simulation domain

will be at rest initially, especially if propagation across the entire ocean is considered.

152

17. Shallow Water on a Deep Technology Stack

In chapter 8, Invasive Computing was introduced. The project’s novel programming model and

hardware architecture form the environment for which SWE-X10 was developed. One of SWE-

X10’s design goals was support for heterogeneous architectures. In the invasive computing project,

there are two types of accelerators available, the TCPA and the i-Core. Within a collaboration with

several subprojects of InvasIC1, we implemented support for the i-Core accelerator in SWE-X10.

Its results were previously shown in Pöppl et al. (2018), and later used successfully to demonstrate

the vertical integration of the invasive computing project as part of a large demonstration at the

project’s review for the third funding phase.

Use of the i-Core within SWE-X10 is particularly interesting, as it is a representative for the class

of reconfigurable resources on one side, and has a very interesting and fine-granular approach

to parallelism on the other side. In the wider field of HPC, the use of specialized hardware has

become more common due to the slowing increase of performance in general-purpose hardware.

The use of specialized hardware can greatly accelerate the specific applications, as previously

demonstrated, e.g. with the Anton-2 system (Shaw et al., 2014), through the use of NVIDIA’s

tensor cores for performing LU decompositions (Abdelfattah, Tomov, and Dongarra, 2019), or

Google’s Tensor Processing Unit (Jouppi et al., 2017). Ours is not the only project to explore the use

of reconfigurable fabric within the field of HPC, but others typically investigated loosely-coupled

solutions (Altera, 2007; Flich et al., 2017), while we focus on tightly-coupled reconfigurable fabric.

In the field of embedded computing, the other research domain involved with the invasive

computing project, reconfigurable processors such as i-Core (see also section 8.2) are commonly

utilized to accelerate specific parts of the application.

As a result of its tight integration into the general-purpose Processing Element (PE), the recon-

figurable fabric has direct access to the PE’s internal state, i.e. its internal registers, caches, and

TLM. This allows for the implementation of fine-granular acceleration of specific hot-spots within

the application. Within SWE-X10, the main task is the computation of the Riemann problems

between cell boundaries, which is solved using appropriate Riemann solvers such as the f-Wave

or the HLLE solver. In the following, I will present the results of accelerating SWE-X10 with

an i-Core Custom Instruction (CI) for the f-Wave solver. The efficient implementation of the

acceleration serves to demonstrate the benefits of controlling the entire compute stack. Aside

from the acceleration of the computation, modifications to the operating system, the compiler

and the application were required.

1 Namely the following subprojects: A4, B1, C1 and C3. My project (A4 - Characterisation and Analysis of Invasive

Algorithmic Patterns) was responsible for SWE-X10. Project B1 (Adaptive Application-Specific Invasive Micro-

Architectures) was responsible for the i-Core CI. Project C1 (Invasive Run-Time Support System (iRTSS)) was

responsible for the operating system support. Project C3 (Compilation and Code Generation for Invasive Programs)

was responsible for the X10 compiler support. Work was performed for the most part in a close on-site collaboration.

153

CHAPTER 17. SHALLOWWATER ON A DEEP TECHNOLOGY STACK

Memory
Arbiter

32

…

…

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

Load /
Store
Units

Inter-
connect

R
ec

on
fig

.
C

on
ta

in
er

Inter-
con-
nect

ME
XC
WB

EX
RA

DE

FE

D
E/

R
A

Adaptive Cache

i-Core Tile Local Memory

12
8

12
8

32

128

128

Sy
st

em
 B

us
32

LEON3

i-Core Extensions

A
da

pt
iv

e
B

ra
nc

h
Pr

ed
ic

to
r

32

32

SI
 E

xe
cu

tio
n

C
on

tr
ol

le
r

iNoC Adapter,
CIC, L2 Cache, …

Core1, Core2, …

Bitstream Loader

i-Core
Management

Interface

Tile

Reconf. Fabric

Figure 17.1.: i-Core Overview (Damschen et al., 2020)

17.1. Acceleration of Approximate Riemann Solvers using i-Core

i-Core, introduced in section 8.2, combines sequential execution following the von-Neumann

model with reconfigurable fabric. We used it to provide acceleration to the computational hot-spot

of SWE-X10, the computation of the appropriate solution of the Riemann problemusing the f-Wave

solver. The entire process, as described in subsection 14.3.1, has been implemented in a single

CI. The CI is implemented as a µProgram that is invoked when the fwave instruction is brought

to execution by the i-Core on the CI Execution Controller. µPrograms are represented by a data-

flow graph that represents the computations performed by the CI, and their data dependencies.

The computations are performed by the application-specific accelerators. Depending on the

structure of the graph, multiple operations may be scheduled for execution concurrently on

several accelerators loaded onto the available reconfigurable containers. Furthermore, data may

be loaded and stored from the core’s registers as well as the i-Core TLM. Access to the i-Core

TLM is performed using a 128-bit-wide bus with a single-cycle latency. For the best possible

performance, this memory segment should be used, however, it is also possible to access other

memory types, such as the global memory, or the normal TLM. Access to the latter is provided

using the tile-bus. The application isolation provided through invasive computing allows us to

rely on the i-Core to have the CI ready as long as we need it, i.e. for as long as the tile containing

the i-Core remains invaded. We therefore only need to load the CI and configure the fabric once at

application startup, which takes about 5.5ms given a reconfiguration bandwidth of 100 MB/s.

The f-Wave solver consists of mostly floating-point instructions such as additions, multiplications

and some divisions. Therefore, we configured the fabric with accelerators for these common

operations. The accelerators provide these common operations in the form of micro-operations

(µOps) to be used in the CI. The configuration of the accelerators is described in Table 17.1. We

configured the fabric with accelerators for simple arithmetic operations (FP_MAC), i.e. additions,

subtractions, multiplications and fused-multiply-add operations, for divisions (FP_DIV), for square

root calculations (FP_SQRT), and for miscellaneous comparison operations (FP_UTIL). The FP_MAC

accelerator is based on the one by Bauer et al. (2015). CIs may utilize multiple accelerators in

parallel. Container space permitting, configuring highly-utilized accelerators multiple times

154

17.2. CHANGES IN THE MIDDLEWARE

Table 17.1.: Pipelined floating-point accelerator types available for i-Core to be used in SWE-X10.

(Pöppl et al., 2018)

Accelerator Operations Min. / Max. Latency1 Initiation Interval

FP_MAC Add/subtract, multiply, multiply-accu-

mulate

3 / 5 2

FP_DIV Divide, reciprocal 6 / 6 2

FP_SQRT Square root 5 / 5 2

FP_UTIL Min/max, absolute and compare (<
,>)

3 / 3 2

1 Clock cycles on the reconfigurable fabric

can benefit a CI’s latency. The current configuration of the i-Core contains five reconfigurable

containers. We chose to configure them with two FP_MAC accelerators, and one each of the FP_DIV,

the FP_SQRT and the FP_UTIL accelerator. The data-flow graph of the f-Wave solver contains

54 floating-point operations, and 43 other (address generation, memory access, communication

between accelerators and execution of accelerators) operations, leading to 97 nodes in total.

With the configuration described above, the micro-program may be executed in 41 steps. The

accelerators perform their work in a pipelined fashion. Without this, the number of steps needed

would almost double to 71 steps. Each program step takes two clock cycles, which leads to a total

of 82 cycles to execute the µProgram.

17.2. Changes in the Middleware

Integration of the i-Core CI into SWE-X10 required the bridging of several layers of abstraction.

X10 neither provides support for inline assembly instructions (to invoke the CI directly), nor is it

aware of the underlying heterogeneous architecture. Therefore, the effective use of the CI requires

support from the InvadeX10 compiler and runtime as well as the operating system OctoPOS.

OctoPOS features a light-weight and fine-grained parallelism model using i-lets. It relies on

cooperative scheduling (see Figure 17.2). When an i-let is scheduled onto the core, it will typically

stay there until it finishes its execution. There is no preemption, and all available compute

resources are to be used by the scheduled i-let. This allows for a reuse of the execution contexts

between the execution of different i-lets, as the call stack of an i-let will be empty once it terminates,

resulting in a very low overhead for the scheduling and dispatch of i-lets. It is only necessary to

bind an i-let to its context if it encounters a blocking operation. In that case, the i-let and its context

are moved to the block list, another context is added to the core, and another i-let is executed on

that context. Once the reason for a blocking operation has been resolved, the i-let is re-added to

the ready list, and may be scheduled once again to a core.

This scheme works well for conventional processor architectures. However, an i-Core tile consists

of an i-Core alongside with three conventional LEON 3 cores. The fwave instruction is imple-

mented as a processor instruction, one that is only available on the i-Core. Essentially, the i-Core

155

CHAPTER 17. SHALLOWWATER ON A DEEP TECHNOLOGY STACK

Blocked

Context 1 Context 3

i-Core LEON

Ready-List

i-Let 1

f()
*data

i-Let 42

h()
*data

i-Let 8

g()
*data

i-Let 3

foo()
*data3

i-Let 4

blocks()
*data9

Context 2

Free Contexts

Context 4

Figure 17.2.: OctoPOS i-let execution scheme. In OctoPOS, i-lets typically run to completion once

they have been scheduled for execution on a core. This allows for a very light-weight

multi-threading, as all the data structures (called the context) associated with the

thread of execution may be reused once an i-let terminates. A Context is only bound

to its i-let if the latter encounters a construct that requires it to interrupt its execution,

for example a lock. Then, another context is scheduled for execution. At a later point,

the i-let and its context may be brought to execution again, possibly on a different

core. (Adapted from Pöppl (2017))

156

17.2. CHANGES IN THE MIDDLEWARE

1 // Bring input data into a format understood by i-Core

2 callBufferRaw(0) = topHuRaw(col);

3 callBufferRaw(1) = topHRaw(col);

4 callBufferRaw(2) = botHuRaw(col);

5 callBufferRaw(3) = botHRaw(col);

6 callBufferRaw(4) = botBRaw(col);

7 callBufferRaw(5) = topBRaw(col);

8

9 // Execute i-Core special instruction

10 ICore.fwave(callBuffer, resultBuffer);

11

12 // Retrieve and apply result

13 topHUpRaw(col) += dyInv * resultBufferRaw(0);

14 botHUpRaw(col) += dyInv * resultBufferRaw(1);

15 topHuUpRaw(col) += dyInv * resultBufferRaw(2);

16 botHuUpRaw(col) += dyInv * resultBufferRaw(3);

17 maxWaveSpeed = Math.max(maxWaveSpeed, resultBufferRaw(4));

Figure 17.3.: Call site of the f-Wave CI. The special instruction requires its parameters to be in

two contiguous buffers.

tile may be viewed as a shared memory multi-cores system with a heterogeneous ISA between the

different cores. The set of available instructions for the LEON 3 core does not contain the CIs that

may be configured on the i-Core. If an i-let expecting to be able to use a previously configured CI

is brought to execution on the LEON 3 core instead of the i-Core after encountering a blocking

operation, and it encounters a CI, it would generate an illegal instruction trap that essentially leads

to a fatal system failure. On the other hand, i-lets that only contain the “conventional” SPARC

instructions may be scheduled on any core (including the i-Core).

This obstacle was overcome through the use of scheduling domains. Scheduling domains mark

parts of the hardware (cores) as eligible as scheduling targets for i-lets. To effectively use the

i-Core tile in our application we chose to create a scheduling domain that contains all the invaded

i-Cores on a tile. i-lets requiring the i-Core may now be added to a team that requires the i-Core’s

scheduling domain. The team concept is based on work presented by Cheriton et al. (1979), with

the additional ability to reassign i-lets dynamically to another team if needed. Thus, when it is

clear that an i-let will require the instructions provided by the i-Core, it may be assigned to the

i-Core-only team. This ensures that the i-let will not encounter any non-standard instructions,

and therefore avoid any illegal instruction traps.

The X10 Runtime did not need major modifications. The main challenge was bridging the gap be-

tween high-level X10 constructs, and the low-level constructs expected by the i-Core. The CIs used

on the i-Core are treated like any other assembly instruction. X10 does not provide any possibility

to provide inline assembly instructions, which prevents the application developer from accessing

the instruction directly. Furthermore, the CI expects its data arguments as plain C-style arrays.

157

CHAPTER 17. SHALLOWWATER ON A DEEP TECHNOLOGY STACK

However, the lowest-level layer of abstraction available in X10, the IndexedMemoryChunk[T], still

contains additional book-keeping information such as the array length, and another (opaque)

pointer to the actual memory segment used to store its values. To bridge the divide, the runtime

introduces wrapper functions for the CI that are implemented as C functions. Inside the function,

the X10 arrays are unwrapped, and the f-Wave CI is called using inline assembly. This enables

the application to call the CI as it would any other function, in a fashion similar to the one used by

vector intrinsics (as depicted in Figure 17.3). However, each function call introduces additional

overhead, and for a computational hotspot such as the f-Wave solver call, this may slow down

application execution considerably. Furthermore, all the intermediate calls to copy the values

for the calculation into the buffers mandated to be used by the i-Core, essentially, amounts to

additional function calls. The X10 compiler mitigates this through aggressive inlining of small

functions. This is made possible by viewing the entire program, including the runtime, as a single

compilation unit (whole-world-compilation). Inlining is straightforward as the function declaration

is always accessible in the call site. In turn, function inlining enables other optimizations that

work within the scope of a single function. For our case, this eliminated the overhead of the

wrappers introduced both by X10 and the CI wrapper to a point where the CI may directly access

the respective raw arrays of the buffer objects.

17.3. Changes in SWE-X10

SWE-X10 only required very minor code changes to make it compatible with the APIs exposed by

the invasive X10 compiler. Therefore, most of our effort was spent optimizing the performance

on the i-Core. The application’s computational hotspot is the calculation of fluxes between cell

boundaries: A±∆Q
(n)

i± 1
2
,j
and B±∆Q

(n)

i,j± 1
2

, in section 14.2. The f-Wave solver, as described in

subsection 14.3.1, is one of the approximated Riemann solvers available to compute these net

updates. The CI implemented for the i-Core may be directly used as a drop-in replacement for

the X10 implementation of the f-Wave solver. One simply needs to copy all the necessary values

for the solver into a contiguous buffer, call the fwave instruction, and finally retrieve the result.

However, this way, the high-bandwidth connection to the i-Core TLM is not utilized, as data is

retrieved from the global memory.

In order to fully utilize the i-Core, we created a specialized ICorePatchIterator class that uses

the i-Core TLM to buffer the unknown values. However, the size of the TLM is insufficient to

hold the entire patch at the same time. Instead, we preload the data on a per-row basis into the

i-Core TLM using a triple buffering scheme with a previous, a current and a next row. The resulting

i-let graph of the X10 implementation is given in Figure 17.4. i-lets, depicted in the graph as nodes,

depend on the completion of the all i-lets that they are connected with through an incoming edge

in the graph. In the beginning of the operation, the first two rows of the patch (L(0) and L(1))

are synchronously loaded into the i-Core TLM, and assigned the previous and the current pointer.

Next, we perform the calculation of the horizontal fluxes for the row stored in previous (H(0)).

Now, we may perform the inner part of the iteration in a loop for rows 1 to N , with N being

the number of rows in the patch. In each iteration n, we begin by initiating an asynchronous

load of the next row (L(n+1)) into the TLM and perform the computation of the vertical fluxes

(V(n−1,n) between the previous and the current row. Once the flux calculation is completed, the

158

17.3. CHANGES IN SWE-X10

L(0)

L(1)
H(0)

loop

begin

L(n+1)

V(n−1,n)

S(n−1)

H(n) S(n)

C(n−1)

Operation Description

L(n) Load row n from global memory

S(n) Store row n to global memory

C(n) Clear buffer previously holding row n

V(n) Compute vertical fluxes between

neighboring cells in rows n− 1 and n
H(n) Compute horizontal fluxes between

neighboring cells in row n

n < N − 1

n = N − 1

n < N
n := n+ 1

Figure 17.4.: i-let graph for the i-Core patch calculator. The graph depicts i-lets as nodes, and

their dependencies as edges. Nodes that are not (transitively) connected may be

executed in parallel. Nodes performing I/O operations are depicted in blue, while

nodes performing a computation are depicted in orange. Edges annotated with a

condition are only taken if the condition is met. (Pöppl et al., 2018)

159

CHAPTER 17. SHALLOWWATER ON A DEEP TECHNOLOGY STACK

Table 17.2.: Execution time and resource utilization results for the f-Wave solver kernel executed in

software (without floating-point unit (FPU), with “lite” FPU and “high-performance”

FPU from Gaisler) compared to fwave CI on the i-Core. Results were obtained using

GRLIB on a Xilinx VC707 board (Virtex-7 FPGA) at 75 MHz. (Pöppl et al., 2018)

LEON3 – no FPU LEON3+ FPU-lite LEON3+ FPU-HP i-Core

Execution [µs] Speedup [µs] Speedup [µs] Speedup [µs] Speedup

Time1 183.6 1 14.9 12.3 9.8 18.7 1.3 141

Resource LUTs DSPs LUTs DSPs LUTs DSPs LUTs DSPs

Utilization 9,103 4 12,756 4 23,949 20 37,658 24

Resource FLOPS
LUTs

FLOPS
DSPs

FLOPS
LUTs

FLOPS
DSPs

FLOPS
LUTs

FLOPS
DSPs

FLOPS
LUTs

FLOPS
DSPs

Efficiency 27.8 73,529 248 906,040 203.8 275,510 780.3 1,730,769

1 Average over 1024 measurements

previous row is no longer needed, and its result may be asynchronously stored (S(n−1)) back in

the global memory. At the same time, we may compute the horizontal fluxes on the current row

(H(n)). If the current iteration is the last one, the contents of the last row need to be written back

to the global memory as well (S(n)). Finally, once both horizontal and vertical flux computations

are performed, the contents of the row (C(n−1)) are cleared from the buffer and the pointers are

changed, so that the current row becomes the previous one, and the next becomes the current one.

17.4. Results

We evaluated the performance benefits in two parts. First, we classified the performance of the

i-Core CI alone, and then compared it to computing the solution using the different floating-point

implementations available for the LEON 3 core. Therein, we compared performance benefits and

FPGA resource utilization. Afterwards we evaluated the performance of computing an entire

simulation step of a whole patch on the i-Core against the solution that performs the computation

on the LEON 3 core using its high-performance floating-point unit (HP-FPU).

Table 17.2 shows execution time and resource utilization results for the f-Wave solver kernel

executed on a standard LEON3 (with different variants of floating-point support) in comparison

with an execution on the i-Core. Compared to a standard LEON 3 core with HP-FPU (fastest

floating-point support variant that also utilizes most resources), the i-Core is 7.5 times faster and

3.8 times more efficient in the use of lookup tables (LUTs) and digital signal processors (DSPs)

on the Xilinx Virtex-7 (floating-point operations per second / LUTs). For the evaluation of the

performance of the entire iteration, we chose a patch size of 60 × 60 grid cells. This results in

≈ 7200 flux update computations (and calls to the fwave CI) using the f-Wave solver (or f-Wave

CI) Table 17.3 shows the execution time of one iteration of the patch calculator. The performance

baseline is program execution on the LEON 3with HP-FPU utilizing global memory. We show the

average time taken to process one patch, and the speedup compared to processing the patch on a

standard LEON 3 core without memory optimizations. Buffering data in the i-Core TLM while

using the ICorePatchIterator’s triple buffering scheme and the HP-FPU results in a speedup

of 1.75×. Execution on the i-Core CI with use of only global memory (without triple buffering)

160

17.5. DISCUSSION

Table 17.3.: Patch calculator execution time on the LEON3 (with FPU-HP) compared to execution

time on the i-Core, with data in global DDR RAM or buffering in the tile-local memory

(TLM). Results were obtained using the InvasIC Hardware Prototype on a Synopsis

CHIPit system consisting of four Xilinx XC5VLX330 (Virtex-5 FPGA) at 25 MHz.

(Pöppl et al., 2018)

LEON3 – global LEON3 – TLM i-Core – global i-Core – TLM

Execution [ms] Speedup [ms] Speedup [ms] Speedup [ms] Speedup

Time1 2049 1 1169 1.75 1017 2.01 425 4.82

1 Average over 200 measurements

speeds up the computation by a factor of 2. Both optimizations combined alleviate the memory

bottleneck for the i-Core. Thus, we achieved a speedup of 4.82× in total.

17.5. Discussion

The use of reconfigurable fabric for the acceleration of the approximate solution of Riemann

problems serves to demonstrate the value of the interdisciplinary work performed in the context of

InvasIC. Techniques known in the embedded computing domain, such as the use of reconfigurable

processors, or being able to control the entire compute stack from the hardware level up to the

software, may also serve to accelerate HPC applications. Using the i-Core, we accelerated the

computational hotspot of SWE-X10 by a factor of 4.82 over the baseline solution using only

the LEON 3’s high-performance floating-point unit. At the same time, the resources of the

reconfigurable fabric were used more efficiently (in terms of LUTs and DSPs). The software stack

described in this chapter was used to demonstrate the overall system integration of the invasive

technology stack at the review for the third funding phase of invasive computing.

161

18. Pond, An Actor-UPC++ Proxy Application

In chapter 11, I introduced an actor library for more classical HPC environments. The library

uses UPC++ as a communication backend. Analogously to ActorX10 and SWE-X10, I devel-

oped a sample application to demonstrate the practical use of the model for “classical” HPC

environments.

Figure 18.1.: Hypothetical tsunami scenario on the Pacific Coast of the United States. The tsunami

was simulated using Pond with 36 actors on a single node.

Pond (see Figure 18.1 for an example scenario simulated using the application) uses an approach

similar to the basic actor-based version of SWE-X10 discussed in section 16.2. In this chapter,

I will briefly discuss the implementation of Pond, and then compare it to its two predecessors,

ActorX10-based SWE-X10 and SWE, the original tsunami teaching code that usesMPI andOpenMP

to implement a BSP approach for parallelization. I will show that use of this library yields a

significantly higher performance in both a weak and a strong scaling test, as well as a significantly

better performance with a lower per-core computational load compared to SWE-X10. Pond

also exhibits a clear performance benefit over SWE. This chapter is based on my experiences

implementing Pond andActor-UPC++ during and after my research stay at the Lawrence Berkeley

National Laboratory, and contains results I have previously presented there and in Pöppl, Bader,

and Baden (2019).

163

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

«Duplicated on Ranks involved in Computation»
Rank 0..n

Setup & Teardown

Utilities

Patch Coordination Level

Actor Level

NetCdfWriterVtkWriter

BlockCommunicator

HLLESolverFWaveSolver

NetCdfImporter

Configuration

MetisActorDistributor

SimpleActorDistributor

ActorDistributorActorOrchestrator

Scenario

Actor-UPC++ .

SWE_WaveAccumulationBlock

SWE_Block Solver

SimulationActor

Writer

«hand over to»
ActorGraph

Actor

Figure 18.2.: Component Diagram for Pond. Classes drawn in orange are taken from SWE. Classes

drawn in white are modified, or code specifically written for Pond.

18.1. Implementation

The basic system architecture of Pond is the same as SWE-X10’s. However, as it was implemented

in C++, it was possible to reuse components from SWE directly. Specifically, I used the SWE_Block

class and the SWE_WaveAccumulationBlock class without modification. The code exhibits the

same layered architecture as SWE-X10, however, there are some structural differences stemming

from the different control model imposed by Actor-UPC++. Here, there is an actor graph instance

on each rank. Following this, the creation of the actor graph is performed in a decentralized

fashion. Unlike in SWE-X10, where the actors are created and wired on the root place, in Pond

each rank determines the set of actors it will contain, and then creates them directly. For the

simulation to be executed efficiently, a good load balancing of the actor graph with minimal

communication is key. Unstructured grid codes often use a dual-view approach to view the grid

as a graph and then use graph partitioning techniques such as theMetis library, proposed and

developed by Karypis and Kumar (1998). I use Metis directly on the actor graph, and thus obtain

a partitioning of the graph with balanced load and minimal edge-cut (to reduce communication

between different ranks). The library was configured to produce contiguous partitions with a

maximum load imbalance of ±10%. The channels are created using the facilities provided by

Actor-UPC++. They are always created from the rank of the actor with the outgoing port. For the

communication with the SWE_Block, I implemented the BlockCommunicator class. It extracts the

data from the token (std::vector<float> of size 3nghost containing the ghost layer data for the

water height, and the momenta in the two spacial directions), and copies it into the data structure

provided by the SWE_Block.

164

18.1. IMPLEMENTATION

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Figure 18.3.: Sample Actor Graph for Pond with a simulation being performed by nine actors

distributed onto two different ranks. (Pöppl, Bader, and Baden, 2019)

The actor graph of Pond is similar to the one of SWE-X10, but, as there is currently no sup-

port for the advanced features of SWE-X10 and there is only need for a single channel in

each direction for data exchange, the control channels are omitted. Figure 18.3 depicts the ac-

tor graph for a simple simulation run with nine actors distributed onto two different ranks.

The structure of the actors is defined, similarly to the actors described in section 16.2, as:

GPond
a = (APond, CPond) (18.1)

APond =
{
ai,j | 0 6 i < nx ∧ 0 6 j < ny

}
CPond =

{
cai,j ,ai′,j′ |

(
i = i′ ∧ |j − j′| = 1

)
∨
(
|i− i′| = 1 ∧ j = j′

)}
,

ai,j =
(
ID, r, Iai,j , Oai,j , Fa, Ra

)
(18.2)

Iai,j =
{
ipi′,j′ |cai′,j′ ,ai,j ∈ CPond

}
Oai,j =

{
opi′,j′ |cai,j ,ai′,j′ ∈ CPond

}
. initialstart

compute

updates

terminated

mayWrite()

sendData()

tcur < tend ∧ mayRead() ∧ mayWrite()

receiveData(); computeFluxes();

applyUpdates(); sendData()

tcur ≥ tend
stop()

As in SWE-X10, the basic state is the compute state which is reached after the initial data is sent.

Actors perform self-transitions to compute new steps whenever sufficient data from the neighbors

165

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

is available. This is done until their simulation time has reached the specified end time of the

simulation. Then the actors terminate.

Pond and Actor-MPI In addition to the implementation using Actor-UPC++, there is also a

version of Pond that uses Actor-MPI. It has been developed byMacedoMiguel during his master’s

thesis (Macedo Miguel, 2019). The solution is very similar to the one described above, except

for some very minor differences mandated by differences in the interface of Actor-MPI. The

interface of the simulation actor is identical to the one using Actor-UPC++, and the execution

works in the same way. Only during the setup and tear-down, the application has to use some

MPI functionality directly, in order to distribute actors and to collect the performance results.

18.2. Evaluation of Pond and Actor-UPC++

I performed comparisons between the different implementations discussed in the previous sections

on the Cori Cluster of NERSC (NERSC, 2020). Cori consists of two partitions, one with Intel

Knights Landing many-core processors, and one with Intel Haswell multi-core processors. The

Knights Landing partition employs 9688 nodes with a single-socket Intel Xeon Phi 7250 and a

combined theoretical peak performance of 29.5 PFlop/s. Each Xeon Phi is equipped with 68 cores

clocked at 1.4GHz, yielding a theoretical peak performance of 6 TFlop/s (SP) per node. The peak

memory bandwidth is 102GB/s for the off-chip DDR memory, and around 460GB/s for the

on-chip MCDRAM. For my tests on this partition, I used the default configuration of the KNL

node, and the Intel Programming Environment. The Haswell partition contains 2388 nodes with a

dual-socket Intel Xeon E5-2698v3, and a combined peak performance of 2.81 PFlop/s. Each Xeon

is equipped with 16 cores clocked at 2.3GHz with a combined theoretical peak performance of

2.4 TFlop/s (SP) per node. The Haswell nodes have a peak memory bandwith of about 100GB/s.

In my tests, I used the default configuration of the KNL nodes, and the Intel Programming

Environment. Optimizations were enabled (O3) for both partitions, and the iteration over the

patch was therefore automatically vectorized. On the Haswell partition, vectorization was done

using AVX-2, while on the Knights Landing partition AVX-512 was used.

In the tests on the Knights Landing partition, I compared Pond using Actor-UPC++ with its

three execution strategies (as described in section 11.2) to SWE-X10 and ActorX10, and finally to

BSP-based SWE. For the tests on the Haswell partition, I compared Pond using the rank-based

execution strategy of Actor-UPC++ to SWE-X10. As described before, all these applications use the

same numerical scheme, and for this evaluation, I configured all of them to use the HLLE solver.

As with the evaluation in the previous chapter, I used a radial dam break scenario as the test

scenario, as it is easily scaled to any size. Timewasmeasured from the start of the actor graph until

all actors are terminated for Pond and SWE-X10. For SWE, the execution time was measured from

the beginning of the first to the end of the last iteration. File I/Owas disabled for all configurations.

Performance was measured in Flop/s, and determined based on the observed execution time,

and the number of patch updates in Pond and SWE-X10, or the number of iterations in SWE. An

overview of the configurations used for the evaluation is shown in Table 18.1 and Table 18.2.

166

18.2. EVALUATION OF POND AND ACTOR-UPC++

Table 18.1.: Configurations used for the scaling tests on Cori (Haswell Partition)

Execution Type Symbol Description

Pond Rank × Pond using the rank-based execution strategy. One Rank

per logical core, and two actors per rank

SWE-X10 � SWE-X10 using ActorX10. Two Places per node (one per

socket), and two actors per logical core

1 2 4 8 16 32 64

1011

1012

1013

Number of Nodes

F
lo
p
/
s

Pond Rank
SWE-X10

(a) Weak Scaling Test

8 16 32 64 128 256 512

109

1010

1011

Patch Size

F
lo
p
/
s

Pond Rank
SWE-X10

(b) Overhead Analysis

Figure 18.4.: Performance comparison between SWE-X10 and Pond on Cori (Haswell Partition).

The weak scaling test was performed using a working set of 4096× 4096 cells per
node. The overhead analysis was performed on a single node, using 256 actors in

each configuration. Result from Pöppl (2018)

The first test I performed is a weak scaling test of SWE-X10 and Pond using the rank-based and

the thread-based execution strategies. The test was performed to evaluate the scaling behavior

of the UPC++-based implementation of both the library and the proxy application. Each node

computes a working set of 4096× 4096 grid cells, distributed onto actors with 256× 256 cells
each. Its results, depicted in Figure 18.4a, show a picture similar to the one reported previously in

section 16.5. SWE-X10 scales linearly with the number of nodes in the computation. Pond Rank

outperforms SWE-X10 by a factor of two for all node sizes. As the computations performed by

both applications are identical, and they were both compiled using the same C++ compiler to

ensure that the same optimizations are applied to the local computations, the data suggests that

SWE-X10 exhibits a higher library overhead compared to Pond’s ActorX10.

To evaluate this, I performed a second test on a single Haswell node. In this test, the simulation

was performed using a fixed actor graph of 16× 16 actors. In SWE-X10, they were distributed

onto two places (one per socket), and in Pond Rank, there was one rank per logical CPU core.

Simulations were performed for total grid sizes ranging from 128× 128 (8× 8 cells per actor) up
to 8192× 8192 (256× 256 cells per actor). The results are depicted in Figure 18.4b. SWE-X10

needs relatively large patches to reach an optimal performance. The performance plateau of circa

100GFlop/s is only reached using a patch size of 256 × 256 grid cells or larger. For smaller

patch sizes such as 64 × 64, the performance is significantly diminished, and for the smallest

167

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

Table 18.2.: Configurations used for the scaling tests on Cori (Knights Landing Partition)

Execution Type Symbol Description

Pond Rank × Pond using the rank-based execution strategy. One Rank

per logical core, and four to eight actors per rank

Pond Thread ⊗ Pond using the thread-based execution strategy. Two ranks

per node, and one to two actors per logical core

Pond Task � Pond using the task-based execution strategy. Sixteen ranks

per node, and roughly four to eight actors per logical core

SWE-X10 � SWE-X10 using actorX10. Two Places per node, and one to

two actors per logical core

SWE • SWE using MPI and OpenMP. One rank per node, and 272

OpenMP threads per rank

Linear - - - Ideal scaling based on fastest single node configuration of

Pond Task, one rank, no RPCs

patches, the coordination overheads dominates the computation. The smallest patch size achieved

a performance that is only at ≈ 1% of the original performance. Pond Rank on the other hand

reaches a higher plateau of about 140GFlop/s already at a smaller patch size of 64 × 64. For
smaller patch sizes, the library overhead becomes more significant. At a patch size of 32× 32,
the performance is still acceptable, at 78GFlop/s. Below, the library overhead dominates the

calculation, and the performance falls below 25% of the best observed performance.

Aside from the tests performed on the Haswell nodes, I also evaluated the software packages

using Cori’s Knights Landing partition. The Xeon Phis used there rely on a high number of

relatively simple CPU cores1 with added support for 512-Bit-wide vector instructions (AVX-512).

Compared to the Haswell cores, the cores of the Knights Landing architecture have a simpler

control logic, but stronger floating-point units. This suggests that the advantage of Pond will

be more pronounced in tests performed on that architecture, as the time spent on computing

(where the Knights Landing is comparatively faster) decreases while coordination time increases

(due to the simpler architecture of the Knights Landing core). Furthermore, the nodes of the

Knights Landing partition have twice the number of cores (on a single socket), and 2.5× the

peak performance per node. The weak scaling test was performed with a per-node workload of

4096× 4096 grid cells per node, and 256× 256 cells per logical core. In addition to Pond Rank
and SWE-X10, I also added Pond Rank, Pond Task and SWE to the evaluation. Their respective

application configuration is described in Table 18.2. Results are depicted in Figure 18.5. SWE

scales linearly with the number of nodes used in the computation. SWE-X10 exhibits the lowest

performance, and is about an order of magnitude slower than SWE. This is very likely due to

the comparatively higher library overhead which is exacerbated further by the Knights Landing

µArch. Furthermore, the largest two configurations with 64 and 128 nodes failed to complete

within the allocated time for the computation. Cancellation occurred during actor distribution,

which is performed sequentially in SWE-X10. Unfortunately, in ActorX10 actor migration has not

been not parallelized, and with the number of actors (> 16000) and channels (> 64000) needed
for these configurations, this proved infeasible. Pond’s performance depends on the execution

1 In the generation used on Cori, the individual cores are based on the Intel Atom “Silvermont” µArch (Anthony,

2013).

168

18.2. EVALUATION OF POND AND ACTOR-UPC++

1 4 16 64

1011

1012

1013

1014

Number of Nodes

F
lo
p
/
s

Pond Rank

Pond Thread

Pond Task

SWE-X10

SWE

Linear

(a) Weak Scaling

1 2 4 8 16 32 64 128

1

1.2

1.4

1.6

Number of Nodes

F
lo
p
/
s
cf
.
SW

E

Pond Rank

Pond Task

SWE-MPI

(b) Detailed comparison

Figure 18.5.: Weak Scaling test on Cori (Knights Landing Partition) with 4096× 4096 cells per
node. The largest two configurations of SWE-X10 did not run to completion. (Results

from Pöppl, Bader, and Baden (2019))

strategy used in Actor-UPC++: The performance of Pond Thread proved to be a disappointment,

with a performance similar to the one of SWE-X10. Pond Rankmanages to consistently outperform

SWE, with roughly 20% higher performance compared to SWE for the largest run with 128 nodes.

Pond Task performs best in this test. It is on average 38% faster than SWE, and exhibits a 50%
higher performance than SWE for the largest run.

In addition to the weak scaling tests, I also performed strong scaling tests to explore the scalability

limit of SWE-X10 and especially Pond on Knights Landing. In the first test, I set the size of the

simulation to 16384 × 16384 grid cells. This led to a patch sizes ranging from 512 × 512 grid
cells for the single node run down to 4096× 4096 for the run with 128 nodes. In the second test,

the simulation size was set to 8192× 8192, yielding patch sizes from 256× 256 to 32× 32. For
Pond and SWE-X10, the patch size for the individual actor was set such that it is ensured that each

logical core has at least one actor. If it was not possible to divide the patch size evenly, the patch

size was halved, and the smaller patches were distributed. In SWE the OpenMP parallel for-loop

handles the distribution of the node-local patch data to the cores. In both cases, the per-node

work load remained the same.

The results of the test, depicted in Figure 18.6, suggest similar conclusions, in line with previous

findings. Performance of SWE degenerates gradually with the shrinking working set of each core.

The actor-based solutions are currently limited to quadratic patches, leading to more abrupt drops

in performance, as smaller patch sizes, needed to evenly distribute the grid, lead to more actors

and therefore more coordination overhead. As before, the performance of SWE-X10 is acceptable

for the largest patch sizes on the single node, but then degenerates, and is dominated by the library

overhead. For patch sizes smaller than 512× 512 grid cells, there were no benefits to increasing

the number of ranks, as the additional compute resources are used up completely by the resulting

additional overhead. The same behavior was observed with Pond Thread. This may be explained

169

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

1 2 4 8 16 32 64 128

1012

1013

1014

Number of Nodes

F
lo
p
/
s

Pond Rank

Pond Thread

Pond Task

SWE-X10

SWE

Linear

(a) 16384× 16384 grid cells

1 2 4 8 16 32 64 128

1011

1012

1013

1014

Number of Nodes

F
lo
p
/
s

Pond Rank

Pond Thread

Pond Task

SWE-X10

SWE

Linear

(b) 8192× 8192 grid cells

1 2 4 8 16 32 64 128

1

1.2

1.4

1.6

Number of Nodes

F
lo
p
/
s
cf
.
SW

E

Pond Rank

Pond Task

SWE

(c) Detailed comparison: 16384× 16384

1 2 4 8 16 32 64 128

1

1.5

2

Number of Nodes

F
lo
p
/
s
cf
.
SW

E

Pond Rank

Pond Task

SWE

(d) Detailed comparison: 8192× 8192

Figure 18.6.: Strong Scaling test on Cori (Knights Landing Partition). See Table 18.2 for the con-

figurations. In Figure 18.6c and Figure 18.6d, the relative performance compared to

the run of SWE with the corresponding number of nodes is displayed. (Results from

Pöppl, Bader, and Baden (2019))

170

18.2. EVALUATION OF POND AND ACTOR-UPC++

1 4 16 64

1012

1013

1014

Number of Nodes

F
lo
p
/
s

1

2

4

8

16

Linear

(a) Absolute Performance

1 4 16 64

0

0.5

1

Number of Nodes

P
ar
al
le
l
E
ff
ic
ie
n
cy

1

2

4

8

16

(b) Parallel Efficiency

Figure 18.7.: Strong scaling test evaluating different configurations of the task-based execution

strategy of Pond on a 16384× 16384 grid. Each configuration represents a different

amount of UPC++ Ranks per physical node. The test was performed on Cori (Knights

Landing Partition). (Result from Pöppl, Bader, and Baden (2019))

by looking at the implementation of their run loop. In both ActorX10 and Actor-UPC++ using the

thread-based execution strategy, there is a one-to-one mapping of resources (operating system

threads in ActorX10, and activities in X10) to actors. In ActorX10, actors are sent to sleep if there’s

nothing for them to do, and in Actor-UPC++, they will keep polling for progress. Furthermore,

there is additional overhead for the communication between the threads. The major problem is

the potentially large number of threads compared to available system resources. The operating

system is not aware of which processes should be computing and which are only waiting for

updates, and is making its scheduling decisions oblivious of that. The end result is the same in

both cases: they perform worse for larger amounts of actors per core, requiring larger workloads

per actor, and making smaller-grained parallelism infeasible.

In the other execution strategies of Actor-UPC++, this is not a problem. When Actor-UPC++ is

configured to use the rank-based execution strategy, each logical core has its own rank, with

multiple actors. Each rank is responsible for its own progress, and only actors that actually get

triggered consume resources. Furthermore, the entire process is sequential, without the need for

mutual exclusion and thread synchronization, and therefore, the sequential UPC++ backend, that

forgoes these measures, is used. When Actor-UPC++ is configured to use the task-based execution

strategy, the act invocations for actors that have been triggered are distributed in the form of

OpenMP tasks onto worker threads, and then asynchronously executed there. Communication is

performed in a centralized fashion by the master thread (OpenMPmaster thread as well as UPC++

master persona) of the computation. The master thread continuously polls the UPC++ runtime

for incoming RPCs and executes them. If there is too much communication traffic, this may be

a bottleneck, and lead to worker threads being idle while the master thread is busy handling

the incoming communication. One can work around this problem by adding multiple ranks per

node.

171

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

I explored this effect in a separate strong scaling test, performed again with 16384× 16384 grid
cells through comparison of the different number of UPC++ ranks per node. The results are

shown in Figure 18.7. For the Xeon Phi, I found that configurations using eight or sixteen ranks

per node performed better than the configurations with fewer ranks per node (one, two or four

ranks per node) at the scaling limit of the application, with a small workload per actor. For runs

with a smaller number of nodes, the additional overhead caused by the multiple communication

threads causes a lower performance compared to the solutions with a lower number of ranks

per node (until eight nodes). The UPC++ system design fixes these parameters at application

startup, and hence it cannot be adjusted by the library at application startup time. Finding the

best configuration for a given application and target architecture hence remains a burden of the

application developer.

18.3. Evaluation of Pond and Actor-MPI

In addition to the tests performed on Actor-UPC++ in the previous section, I also tested the

performance of Actor-MPI using the corresponding Pond implementation. Similarly to the

performance tests in section 15.3, the tests were performed on the CoolMUC 2 cluster of the LRZ

(LRZ, 2020a). The LRZ also hosts the CoolMUC 32 based on Xeon Phi (Knights Landing) nodes.

That cluster would have had a very similar hardware setup to the Knights Landing partition of

Cori. However, it unfortunately uses the Intel OmniPath interconnect which is not supported by

the GASNet-EX framework underlying UPC++. The experiments were performed by Macedo

Miguel in the context of his master’s thesis using the Intel Compiler 2019, Intel MPI 2019 and

UPC++ 2019.03 (Macedo Miguel, 2019).

Two tests were performed, a strong scaling test and a weak scaling test. As with the previous

tests, a radial dam break scenario was used. Each node received a working set of 4096× 2048
grid cells, distributed onto 32 actors with a patch size of 512× 512 grid cells each. The resulting

grid sizes range from the aforementioned 4096× 2048 grid cells for the single node run up to

16384× 16384 grid cells for the run with 32 nodes. In the strong scaling test, the domain size is

fixed at 16384 × 16384 grid cells. With the same number of actors as in the weak scaling test,

this leads to patch sizes ranging from 2048 × 2048 grid cells for the single node run down to

512× 512 grid cells for the run with 32 nodes.

The results of the tests are depicted in Figure 18.8. In the weak scaling test, all application config-

urations scale linearly with the number of nodes involved in the computation. The same holds

for the strong scaling test. Both tests suggest similar results: Performance across both solutions

is relatively similar. Depending on the number of nodes, SWE or one of the configurations of

Pond is slightly faster, but there is no clear advantage to either solution in terms of performance.

However, for most configurations, Pond Task tends to slightly outperform Pond M-TS and Pond

T-OS. Furthermore, the two-sided Pond M-TS seems to perform slightly better than Pond T-OS.

However, as the differences in performance between the solutions are rather small, these conclu-

sions should be taken with a grain of salt. The most important takeaway from the tests is that

2
https://doku.lrz.de/display/PUBLIC/CoolMUC-3

172

https://doku.lrz.de/display/PUBLIC/CoolMUC-3

18.3. EVALUATION OF POND AND ACTOR-MPI

Table 18.3.: Configurations used for the scaling tests with Actor-MPI on CoolMUC 2

Execution Type Symbol Description

Pond M-TS × Pond using Actor-MPI and two-sided communication operations.

Four ranks per node, and about sixteen actors per rank.

Pond M-OS ⊗ Pond using Actor-MPI and one-sided communication operations.

Four ranks per node, and about sixteen actors per rank.

Pond Task � Pond using Actor-UPC++ and the task-based execution strategy.

Four ranks per node, and about sixteen actors per rank.

SWE • SWEusingMPI andOpenMP.One rank per node, and 28OpenMP

threads per rank.

Linear - - - Ideal scaling based on fastest single node configuration of Pond

Task

Actor-MPI provides a viable alternative solution to Actor-UPC++, especially on clusters where

GASNet-EX does not provide a native support for the interconnection network.

173

CHAPTER 18. POND, AN ACTOR-UPC++ PROXY APPLICATION

1 2 4 8 16 32
1011

1012

Number of Nodes

F
lo
p
/
s

Pond M-TS

Pond M-OS

Pond Task

SWE

Linear

(a) Weak Scaling Test

1 2 4 8 16 32
1011

1012

Number of Nodes

F
lo
p
/
s

Pond M-TS

Pond M-OS

Pond Task

SWE

Linear

(b) Strong Scaling Test

1 2 4 8 16 32

0.95

1

1.05

1.1

Number of Nodes

F
lo
p
/
s
cf
.
SW

E

Pond M-TS Pond M-OS Pond Task SWE

(c) Detailed Comparison: Weak Scaling Test

1 2 4 8 16 32

0.9

1

1.1

Number of Nodes

F
lo
p
/
s
cf
.
SW

E

Pond M-TS Pond M-OS

Pond Task SWE

(d) Detailed Comparison: Strong Scaling Test

Figure 18.8.: Scaling tests performed on CoolMUC 2 comparing Pond using Actor-MPI with

SWE and Pond using Actor-UPC++. Configurations are described in Table 18.3.

In Figure 18.8c and Figure 18.8d, the relative performance compared to SWE with

the same number of nodes is depicted. Experiments conducted by Macedo Miguel

(2019).

174

19. Discussion and Outlook

In this part of the thesis, I presented the application domain of tsunami simulation as a target for

actor-based application design. In the first chapter, I introduced the theoretical model. Afterwards,

I described the SWE application. It serves as the basis for my two actor-based tsunami proxy

applications, SWE-X10 and Pond. SWE is used to gain an overview of the currently available

alternatives to my actor-based approach. The application was extended to work with Charm++,

HPX and plain UPC++ (without the actor library). In a performance test, none of the available

runtime systems were able to gain a clear advantage over the MPI baseline. The first actor-based

proxy application introduced here is SWE-X10, based on ActorX10. It is a rewrite of the SWE

application in X10 that targets HPC architectures as well as the InvasIC technology stack. I use the

application to demonstrate advantages of actor-based applicationmodelling by implementing lazy

activation. Lazy activation uses inherent properties of hyperbolic PDEs to keep actors dormant

until they are actually needed in the computation. Depending on the scenario, this optimization

may lead to a significant reduction in CPU resource utilization. SWE-X10 is able to run on general-

purpose CPUs as well as GPUs and the i-Core. The second tsunami proxy application, Pond, was

implemented to demonstrate the benefits of using the actor model on a larger scale. It uses more

standard components: modern C++ and the UPC++ APGAS library that offers communication

backends for commonly used network technologies such as InfiniBand. In a comparison with

SWE, Pond using the task-based execution strategy of Actor-UPC++ was, consistently, at least as

fast as SWE, and for some runs up to 1.5× faster.

As discussed before in chapter 13, the higher overhead introduced with ActorX10 becomes

problematic for larger-scale parallelism. For applications with a very high number of actors per

node to work, it is important that only actors that actually need to compute utilize compute

resources. For SWE-X10 and Pond with the thread-based execution strategy, this is not the case,

as they are bound to threads. As the number of actors per UPC++ rank or X10 Place grows, they

perform successively worse. On the other hand, tasks seem to be a good analogy for the actions

performed by the actors’ FSMs. The best performance in the scaling test was reached for the

task-based execution strategy.

In future work, it may be worth exploring how to formalize the actor’s FSM directly in the library.

Having knowledge about the firing behavior of an actor may be beneficial in avoiding redundant

invocations of the act()method, and thereby reduce the performance bottleneck that is themaster

thread of the UPC++ rank. For Pond, it would be interesting to add support to GPUs, and use

them alongside the CPU version on suitable hardware. Here, it would be worth exploring how to

map the actions of the actors efficiently to CUDA kernels, and to use the same GPUs efficiently

by multiple actors. Initial work on this topic has been done already by Molzer (2017).

175

CHAPTER 19. DISCUSSION AND OUTLOOK

AL
00,1

AL
01,0

AL
01,1

AL
10,1

AL
11,0

AL
11,1

AL
20,1

AL
21,0

AL
21,1

AL
00,0

AL
10,0

AL
20,0

AL
00,0

AL
00,1

AL
00,2

AL
01,0

AL
01,1

AL
01,2

AL
02,0

AL
02,1

AL
02,2

AL
12,2

AL
12,1

Figure 19.1.: Actor Graphs with multiple refinement levels. The actor graph on the left has a full

grid of actors on three refinement levels (patches are not shown). The actor graph

on the right only has refined actors for a limited number of patches that may be of

particular interest. Here, the patch is depicted for each actor.

In SWE-X10, the next step would be integration of multi-level actor graphs. Currently, there is

support for multi-rate local time stepping and actors of different resolutions on multiple levels.

However, the support for a dynamic switching between different resolutions is not finished yet,

and the solution has not been properly tested. Once it works, it allows for a static multi-level actor

graph with uninitialized patches of multiple resolution levels. Each active actor knows, based on

an initial coordination between actors at the beginning of the simulation, which of his neighbors in

a given direction to talk to: its neighbor on the lower level, the one on the same level, or the one on

the upper level. When an actor wants to hand over to another resolution level, it creates a refined

or coarsened version of its patch, and sends it to his partner occupying the same spacial index,

but on a neighboring level. In Figure 19.1 on the left side, for example, AL1
0,0 may send a refined

version of the patch to AL2
0,0. Actors may switch only at full time step multiples. If they want to,

they send a signal that they will perform a switch alongside the ghost layer data. The neighbors

then know that any update past the time stamp of the ghost layer information that indicated the

switch have to be sent to the neighbor on the new level. Actors support communication with

three levels: the same level, the once-coarsened level, and the once-refined level.

176

Part IV.

Conclusion

177

20. Conclusion

In the beginning of the thesis, I posed the following research questions:

1. Does the actor model ease the development of HPC applications compared to traditional models?

2. Does using the actor model in HPC applications yield performance competitive with the traditional

approach?

Before answering them, I will summarize the findings of the thesis.

ActorX10 and Actor-UPC++ I implemented two actor libraries: one targeting the X10 program-

ming language and the invasive compute stack, the other targeting the classic HPC environment

in the form of modern C++. Both libraries utilize PGAS principles to realize the FunState actor

model on distributed systems. Application developers using the libraries specify their application

through actors and their relationships to each other. Actors contain a finite state machine that is

triggered whenever there are changes in one of the actor’s ports. This allows actors to perform

actions based only on their local data, received tokens, and capacity of their ports. There is no

need for synchronization primitives such as mutual exclusion, barriers or semaphores. Actors

are connected into a graph using channels holding tokens of fixed type. The graph may then be

distributed across the nodes participating in the computation.

Tsunami Simulation Using ActorX10 I evaluated the use of the actor libraries using the application

domain of tsunami simulation. The first application is the ActorX10-based SWE-X10. Thanks

to X10, it is able to run efficiently on the invasive technology stack as well as on HPC systems.

SWE-X10 demonstrates that programming applications using the actor model is not only feasible,

but also eases development. The actor model adds another level of abstraction between the

hardware and the application domain. This allows for more flexible coordination schemes taking

advantage of optimization opportunities inherent to the problem domain. In SWE-X10, this means

using the finite propagation speed of the tsunami wave to allow actors to only start working when

the wave actually gets close to them. Depending on the scenario, this technique can lead to a

significant reduction in used compute time. In a test on a distributed system with eight nodes and

256 actors and an initial perturbation in the corner of the simulation domain, I found a reduction

in CPU time by over 40% compared to a baseline solution without lazy activation. SWE-X10 also

supports the use of GPUs by its actors. Using CUDA streams, multiple actors may use the GPUs

compute resources. In a scaling test, the GPU version of SWE-X10 performed comparably to a

prior GPU version of the SWE code. Finally, SWE-X10 was extended to support the i-Core, a

general purpose CPU with a closely coupled reconfigurable fabric. To fully utilize the capabilities

of the core, a triple buffering scheme was implemented that preloads the next row in the patch

179

CHAPTER 20. CONCLUSION

iteration, while computing the current one, using an asynchronous DMA engine. Compared to

the default solution without the reconfigurable fabric, the patch iteration may be sped up by a

factor of 4.82.

Tsunami Simulation using Actor-UPC++ The second actor library is built using the experiences

gained from the X10 actor library. The most important take-away is that compute resources

need to be uncoupled from actors. In ActorX10, actors are too closely linked to activities. Each

actor is running on its own activity, and if there are multiple actors waiting for each other, the

operating system scheduler may need to schedule between them. When the rank-based or the

task-based execution strategies of Actor-UPC++ are used, actors only use compute resources if

they actually need them, as the actor graph tracks channels connected to actors to notify them only

if something changed, and the actors’ FSMs need to be invoked. The library was evaluated using

the Pond shallow water proxy application. Compared to SWE-X10, Pond is able to accommodate

smaller patches while retaining good performance, and able to utilize parallelism more effectively

without requiring huge computational domains. This is especially useful on MIC architectures

such as the Intel Xeon Phi. Compared to conventional CPUs, these novel architectures feature a

larger number of cores with improved floating-point performance and weaker general purpose

performance. This makes a low-overhead actor execution even more important than on general

purpose CPUs. In tests using the Xeon Phis on the Cori cluster, Pond managed to outperform a

classical BSP-based shallowwater application consistently, by up to a factor of 1.6×, and SWE-X10

by an order of magnitude.

Conclusions The first of my research questions may be answered with a yes. Compared to

the traditional approach, use of the actor model reduces the number of frameworks, and the

dependencies between different parallel components. Instead of looking at shared-memory and

distributed-memory parallelism separately, the actor model allows for a cohesive view of the

application, in terms of actors as units of computation. Instead of requiring a direct communication,

actors use message queues to communicate. This decouples actors from each other. There is no

need to synchronize before sending a message to make sure that the receiver is ready and data

that is still needed is never overwritten. Instead, actors simply deposit the message in a queue and

the receiving actor is notified that a new message is available. Actors also do not need to know

details about their neighbors, only their communication interface. It is not relevant how (or where)

the message is created. This makes a heterogeneous actor graph that uses accelerators alongside

conventional hardware very straightforward to implement. One simply has to implement both,

and connect them within the same graph.

The second research questionmay also be answered in the affirmative. I evaluated the performance

behavior of both the X10 and the UPC++ actor libraries both on conventional multi-core and

on many-core processors. In both cases, the Performance of the actor libraries was competitive

with the performance of the application based on MPI and OpenMP. Furthermore, the higher

abstraction level introduced with the actor formalism enables an easy implementation of high-

level optimizations such as lazy activation, which enabled further performance benefits. While it

is also possible to implement these using the classical frameworks, the burden on the application

180

developer is significantly larger, as all the low-level details, such as buffer management and

synchronization, need to be explicitly handled.

181

Appendix

183

A. Code Samples

A.1. Cannon’s Algorithm in ActorX10

In the following, the full code of the actor-based implementation of Cannon’s Algorithm using Ac-

torX10 is shown. The code contains an outer class Cannon that acts as a driver of the computation.

The actor graph is implemented in the class CannonActorGraph. In the method built, the actors

are created, their ports connected, and finally distributed onto the available X10 Places. The class

CannonActor implements the actor itself. Besides the initialization code, it also contains the act()

method that contains the actor’s FSM. Its structure follows the theoretical one outlined in chapter 9.

The test driver executes the algorithmwith a total matrix size of 16×16, and a total of 4×4 actors.

1 import x10.util.*;

2 import actorlib.*;

3

4 public class Cannon {

5 static class Matrix(rows:Int, columns:Int) {

6 val storage : Array[Float]{rect, rank==2};

7

8 public def this(rows:Int, columns:Int, initialization:(Point(2))=>Float)

{↪→

9 property(rows, columns);

10 val matRegion = Region.makeRectangular([0,0],[rows - 1, columns -

1]);↪→

11 this.storage = new Array[Float](matRegion, initialization);

12 }

13

14 public operator this + (other:Matrix{(self.rows == this.rows) &&

(self.columns == this.columns)})↪→

15 : Matrix{self.rows == this.rows && self.columns == this.columns} {

16 return new Matrix (rows, columns, ((p:Point(2)) => this.storage(p) +

other.storage(p)));↪→

17 }

18

19 public operator this * (other:Matrix{this.columns == self.rows})

20 : Matrix {(self.rows == this.rows) && (self.columns ==

other.columns)} {↪→

21 return new Matrix (this.rows, other.columns, ((p:Point) => {

185

APPENDIX A. CODE SAMPLES

22 val row = p(0);

23 val column = p(1);

24 val target = this.columns;

25 var res : Float = 0.0f;

26 for ([i] in 0 .. (target - 1)) {

27 res += this.storage(row, i) * other.storage(i, column);

28 }

29 return res;

30 }));

31 }

32

33 public def setMatrix(other:Matrix{(self.rows == this.rows) &&

(self.columns == this.columns)}) {↪→

34 for ([y,x] in storage) {

35 this.storage(y,x) = other.storage(y,x);

36 };

37 }

38

39 public def toString() {

40 var res : String = "";

41 for (var y : Int = 0; y < rows; y++) {

42 res += "| ";

43 for (var x : Int = 0; x < rows; x++) {

44 res += storage(y,x) + " ";

45 }

46 res += "|";

47 }

48 return res;

49 }

50 }

51

52

53 static class CannonActorGraph extends ActorGraph {

54 val n : Int;

55 val p : Int;

56 val actorRegion : Region{rect, zeroBased, rank==2};

57

58 def this(n:Int, p:Int) {

59 super("CannonActorGraph");

60 this.n = n;

61 this.p = p;

62 this.actorRegion = Region.makeRectangular([0,0], [p-1, p-1]);

63 if (n%p != 0) {

64 throw new IllegalArgumentException("Matrix size must be an even

multiple of the number of actors!");↪→

65 }

66 }

186

A.1. CANNON’S ALGORITHM IN ACTORX10

67

68 def build() {

69 val actors = new Array[CannonActor](actorRegion, (pt:Point(2)) => {

70 val a = new CannonActor(pt(0), pt(1), n/p, p);

71 addActor(a);

72 a.initPorts();

73 return a;

74 });

75

76 for ([i,j] in actorRegion) {

77 val a = actors(i,j);

78 val left = actors((i + p - 1) % p, j);

79 val upper = actors(i, (j + p - 1) % p);

80 connectPorts(a.left, left.right, 2);

81 connectPorts(a.above, upper.below, 2);

82 }

83

84 val distPlan = Dist.makeBlockBlock(actorRegion, 0,1);

85 val distribution = new HashMap[String, Place]();

86 for (p in actorRegion) {

87 val plc = distPlan(p);

88 distribution.put(actors(p).name, plc);

89 }

90 distributeActors(distribution);

91

92 finish for ([i,j] in actorRegion) async {

93 val aRef = getActor(actors(i,j).name);

94 aRef.evalAtHome((a:Actor) => {

95 (a as CannonActor).placeInitialTokens();

96 return 0;

97 });

98 }

99 }

100 }

101

102 static val STATE_COMPUTE = 1;

103 static val STATE_FINISHED = 2;

104

105 static class CannonActor extends Actor {

106 val above : OutPort[Matrix];

107 val left : OutPort[Matrix];

108 val right : InPort[Matrix];

109 val below : InPort[Matrix];

110

111 private var state:Int = STATE_COMPUTE;

112

113 val numOperations : Int;

187

APPENDIX A. CODE SAMPLES

114 val size : Int;

115 val i : Int;

116 val j : Int;

117 var c : Matrix;

118 var operationsPerformed : Int;

119

120

121 def this(i:Int, j:Int, size:Int, numOperations:Int) {

122 super("Cannon_"+i+"_"+j);

123 this.i = i;

124 this.j = j;

125 this.size = size;

126 this.numOperations = numOperations;

127 this.above = new OutPort[Matrix]("A");

128 this.left = new OutPort[Matrix]("L");

129 this.right = new InPort[Matrix]("R");

130 this.below = new InPort[Matrix]("B");

131 c = new Matrix(size, size, (Point(2)) => 0.0f);

132 operationsPerformed = 0;

133 }

134

135 def initPorts() {

136 addOutPort(above);

137 addOutPort(left);

138 addInPort(right);

139 addInPort(below);

140 }

141

142 def placeInitialTokens() {

143 val matrixA = new Matrix(size, size, (Point) => 1.0f);

144 val matrixB = new Matrix(size, size, (Point) => 1.0f);

145 above.write(matrixA);

146 left.write(matrixB);

147 }

148

149 protected def act() {

150 if (state == STATE_COMPUTE && operationsPerformed < numOperations &&

left() && above() && below() && right()) {↪→

151 val a = below.read();

152 val b = right.read();

153 this.c = this.c + a * b;

154 operationsPerformed++;

155 Console.OUT.println(name + "\tperformed operation " +

operationsPerformed + "/" + numOperations +")");↪→

156 left.write(b);

157 above.write(a);

188

A.2. CANNON’S ALGORITHM IN ACTOR-UPC++

158 } else if (state == STATE_COMPUTE && operationsPerformed ==

numOperations) {↪→

159 state = STATE_FINISHED;

160 atomic {

161 val res = c.toString();

162 Console.OUT.println(res);

163 }

164 stop();

165 } else if (state == STATE_FINISHED) {

166 }

167 }

168 }

169

170 public static def main(args:Array[String](1)) {

171 val graph = new CannonActorGraph(16, 4);

172 graph.build();

173 Console.OUT.println(graph.prettyPrint());

174 finish graph.start();

175 }

176 }

A.2. Cannon’s Algorithm in Actor-UPC++

In the following, the full code of the actor-based implementation of Cannon’s Algorithm using

Actor-UPC++ is shown. The code is structured as follows: There is a class CannonActor for the

actor:

1 #ifndef CANNON_ACTOR_HPP

2 #define CANNON_ACTOR_HPP

3

4 #include "actorlib/InPort.hpp"

5 #include "actorlib/OutPort.hpp"

6 #include "actorlib/Actor.hpp"

7

8 #include "Matrix.hpp"

9

10 #pragma once

11

12 enum class CannonActorState {

13 COMPUTE, FINISHED

14 };

15

16 class CannonActor : public Actor {

17 private:

189

APPENDIX A. CODE SAMPLES

18 InPort<Matrix, 4> *right;

19 InPort<Matrix, 4> *down;

20 OutPort<Matrix, 4> *left;

21 OutPort<Matrix, 4> *up;

22

23 size_t i;

24 size_t j;

25 size_t size;

26 size_t numOperations;

27 size_t operationsPerformed;

28 Matrix result;

29 CannonActorState currentState;

30 public:

31 CannonActor(size_t i, size_t j, size_t size, size_t numOperations);

32 void act();

33 void placeInitialTokens();

34 private:

35 void performPartialComputation();

36 void performShutdown();

37 bool mayRead();

38 bool mayWrite();

39 };

40

41 #endif

One difference is that in Actor-UPC++, the capacity of the ports is visible directly in the actors’

signatures, otherwise, the implementation is very similar to the one in ActorX10. In C++, one

typically separates the implementation of a class from its interface. Therefore, the implementation

of the methods of the class is given in a different compilation unit:

1 #include "CannonActor.hpp"

2

3 #include <cstddef>

4 #include <cstdlib>

5 #include <string>

6

7 using namespace std::literals;

8

9 CannonActor::CannonActor(size_t i, size_t j, size_t size, size_t numOperations)

10 : Actor("Cannon_"s + std::to_string(i) + "_"s + std::to_string(j)),

11 right(nullptr),

12 down(nullptr),

13 left(nullptr),

14 up(nullptr),

15 i(i),

16 j(j),

17 size(size),

190

A.2. CANNON’S ALGORITHM IN ACTOR-UPC++

18 numOperations(numOperations),

19 operationsPerformed(0),

20 result(size,size,[](size_t, size_t) {return 0.0f;}),

21 currentState(CannonActorState::COMPUTE) {

22 right = this->makeInPort<Matrix, 4>("R");

23 down = this->makeInPort<Matrix, 4>("D");

24 left = this->makeOutPort<Matrix, 4>("L");

25 up = this->makeOutPort<Matrix,4>("U");

26 }

27

28 void CannonActor::placeInitialTokens() {

29 auto init = [](size_t, size_t) {return 1.0f;};

30 Matrix a(size, size, init);

31 Matrix b(size, size, init);

32 up->write(a);

33 left->write(b);

34 }

35

36 void CannonActor::act() {

37 switch (currentState) {

38 case CannonActorState::COMPUTE:

39 if (operationsPerformed < numOperations && mayRead() && mayWrite()) {

40 performPartialComputation();

41 } else if (operationsPerformed == numOperations) {

42 performShutdown();

43 }

44 break;

45 case CannonActorState::FINISHED:

46 break;

47 default:

48 abort();

49 break;

50 }

51 }

52

53 void CannonActor::performPartialComputation() {

54 auto a = down->read();

55 auto b = right->read();

56 auto tmp = a * b;

57 this->result = this->result + tmp;

58 operationsPerformed++;

59 left->write(b);

60 up->write(a);

61 std::cout << name << "\tperformed operation " << operationsPerformed << "/"

<< numOperations << std::endl;↪→

62 }

63

191

APPENDIX A. CODE SAMPLES

64 void CannonActor::performShutdown() {

65 auto res = result.to_string();

66 std::cout << res << std::endl;

67 stop();

68 }

69

70 bool CannonActor::mayRead() {

71 return this->down->available() > 0 && this->right->available() > 0;

72 }

73

74 bool CannonActor::mayWrite() {

75 return this->left->freeCapacity() > 0 && this->up->freeCapacity() > 0;

76 }

The main difference to the ActorX10 version is that the complete initialization of the actor is

performed in the constructor. It is no longer necessary to call another method to initiate the

ports.

The tokens passed around are objects of the Matrix class. The functionality implemented in the

class is the same as in the X10 version, with the addition of manual serialization. This is visible in

the signature of the class:

1 #ifndef MATRIX_HPP

2 #define MATRIX_HPP

3

4 #include <upcxx/upcxx.hpp>

5

6 #include <cstddef>

7 #include <functional>

8 #include <vector>

9

10 #pragma once

11

12 struct Matrix {

13 size_t rows;

14 size_t cols;

15 std::vector<float> data;

16

17 UPCXX_SERIALIZED_FIELDS(rows, cols, data)

18

19 Matrix();

20 Matrix(size_t rows, size_t cols, std::function<float(size_t, size_t)> init);

21 Matrix operator* (Matrix &other);

22 Matrix operator+ (Matrix &other);

23

24 std::string to_string();

192

A.2. CANNON’S ALGORITHM IN ACTOR-UPC++

25 };

26 #endif

Alternatively, one may also provide a custom serialization. This may be done using an explicit

specialization of the class template upcxx::serialization<T>. Its implementation is shown

below.

1 #ifndef MATRIX_SERIALIZATION_HPP

2 #define MATRIX_SERIALIZATION_HPP

3

4 #include <upcxx/serialization.hpp>

5 #include <upcxx/upcxx.hpp>

6

7 #include <cstddef>

8 #include <vector>

9

10 #include "Matrix.hpp"

11

12 #pragma once

13

14 namespace upcxx {

15 template <>

16 struct serialization<Matrix> {

17 template<typename Reader>

18 static Matrix* deserialize(Reader &r, void *storage) {

19 size_t cols = r.template read<size_t>();

20 size_t rows = r.template read<size_t>();

21 std::vector<float> data(rows*cols);

22 r.template read_sequence_into<float>((void *)data.data(), rows*cols);

23 Matrix *m = new (storage) Matrix();

24 m->data = data;

25 m->rows = rows;

26 m->cols = cols;

27 return m;

28 }

29

30 template<typename Writer>

31 static void serialize(Writer &w, Matrix const &m) {

32 w.write(m.rows);

33 w.write(m.cols);

34 w.write_sequence(m.data.begin(), m.data.end());

35 }

36 };

37 }

38 #endif

193

APPENDIX A. CODE SAMPLES

The actor graph is created using composition rather than inheritance in Actor-UPC++. Therefore,

the Actor-UPC++ graph instance is an attribute of the CannonActorGraph class. Furthermore, the

interface is simplified: one only needs to start the computation once the graph has been created.

Initialization of the graph is concluded once the constructor returns.

1 #ifndef CANNON_ACTOR_GRAPH_HPP

2 #define CANNON_ACTOR_GRAPH_HPP

3

4 #include <cstddef>

5 #include <vector>

6

7 #include <upcxx/upcxx.hpp>

8

9 #include "actorlib/ActorGraph.hpp"

10

11 #include "CannonActor.hpp"

12

13 #pragma once

14

15 class CannonActorGraph {

16 size_t const n;

17 size_t const p;

18

19 ActorGraph graph;

20 std::vector<CannonActor *> localActors;

21

22 public:

23 CannonActorGraph(size_t n, size_t p);

24 ~CannonActorGraph();

25 void initialize();

26 void performComputation();

27

28 private:

29 void forallLocalActors(std::function<void(size_t, size_t)> action);

30 upcxx::intrank_t getActorRank(size_t xPos, size_t yPos);

31 };

32

33 #endif

The implementation of the class’s methods is similar to the one in the ActorX10 version. The

computation is set up in three passes: First, the actors are created. Second, their ports are

connected following the scheme laid out in Figure 9.1. Finally, the initial tokens are added.

The main difference to the ActorX10 version is that the instances on all ranks perform the work

concurrently in an SPMD fashion. Furthermore, the CannonActorGraph class is also responsible

for setup and tear-down of the UPC++ runtime.

194

A.2. CANNON’S ALGORITHM IN ACTOR-UPC++

1 #include <upcxx/backend_fwd.hpp>

2 #include <upcxx/barrier.hpp>

3 #include <upcxx/upcxx.hpp>

4

5 #include <cstddef>

6 #include <cmath>

7 #include <iostream>

8 #include <string>

9

10 #include "CannonActor.hpp"

11 #include "CannonActorGraph.hpp"

12 #include "actorlib/Actor.hpp"

13

14 CannonActorGraph::CannonActorGraph(size_t n, size_t p)

15 : n(n),

16 p(p) {

17 using namespace std::literals;

18 upcxx::init();

19 forallLocalActors([&](size_t x, size_t y) {

20 CannonActor *ca = new CannonActor(x,y,n/p, p);

21 localActors.push_back(ca);

22 graph.addActor(ca);

23 });

24

25 upcxx::barrier();

26

27 forallLocalActors([&](size_t x, size_t y) {

28 auto yTop = (y + p - 1) % p;

29 auto xLeft = (x + p - 1) % p;

30 GlobalActorRef a = graph.getActor("Cannon_"s + std::to_string(xLeft) +

"_"s + std::to_string(y));↪→

31 GlobalActorRef leftActor = graph.getActor("Cannon_"s

+std::to_string(xLeft) + "_"s + std::to_string(y));↪→

32 GlobalActorRef topActor = graph.getActor("Cannon_"s + std::to_string(x) +

"_"s + std::to_string(yTop));↪→

33 graph.connectPorts(a, "L", leftActor, "R");

34 graph.connectPorts(a, "U", topActor, "D");

35 });

36

37 upcxx::barrier();

38

39 for (auto ca : localActors) {

40 ca->placeInitialTokens();

41 }

42 }

43

195

APPENDIX A. CODE SAMPLES

44 void CannonActorGraph::forallLocalActors(std::function<void(size_t, size_t)>

action) {↪→

45 for (size_t y = 0; y < p; y++) {

46 for (size_t x = 0; x < p; x++) {

47 if (getActorRank(x,y) == upcxx::rank_me()) {

48 action(x,y);

49 }

50 }

51 }

52

53 }

54

55 CannonActorGraph::~CannonActorGraph() {

56 upcxx::finalize();

57 }

58

59 void CannonActorGraph::performComputation() {

60 auto duration = graph.run();

61 std::cout << "Computation took " << duration << "s to finish." << std::endl;

62 }

63

64 upcxx::intrank_t CannonActorGraph::getActorRank(size_t xPos, size_t yPos) {

65 size_t xSize = p;

66 size_t ySize = p;

67 auto tmp1 = static_cast<double>(xSize) /

std::sqrt(static_cast<double>(upcxx::rank_n()));↪→

68 double xBlockSize = std::floor(tmp1);

69 size_t xSplits = std::max(xSize / static_cast<size_t>(xBlockSize), 1ul);

70 size_t ySplits = upcxx::rank_n() / xSplits;

71 auto tmpX = xPos / (xSize / xSplits);

72 auto tmpY = yPos / (ySize / ySplits);

73 auto res = static_cast<upcxx::intrank_t>(tmpX * ySplits + tmpY);

74 return std::min(res, upcxx::rank_n() - 1);

75 }

Finally, the execution of the code is started using a test driver.

1 #include "CannonActorGraph.hpp"

2

3 #include <iostream>

4

5 int main(int argc, const char **argv) {

6 CannonActorGraph graph(16,4);

7 graph.performComputation();

8 }

196

B. Scaling Tests of SWE on CoolMUC2

This appendix is an edited version of the one that appeared previously in Bogusz et al. (2020).

B.1. Summary of the Experimental Setup

We ran strong scaling tests with the global and local time stepping scheme. Tests were executed

on the CoolMUC2 cluster with node configurations of 1, 2, 4, 8, 16 and 32 with the MPI, UPC++,

Charm++, HPX and Chameleon SWE applications. Different execution strategies were examined:

MPI and UPC++ were configured with 1 block per rank and 1 rank per core. Charm++, HPX and

Chameleon used 64 and 128 blocks per computational node.

Application Compile Command

MPI CC=mpicc CXX=mpicxx cmake -DCMAKE_BUILD_TYPE=Release .. & make

UPC++ CC=mpicc CXX=mpicxx cmake -DCMAKE_BUILD_TYPE=Release .. & make

Charm++ scons writeNetCDF=True compiler=intel openmp=false solver=hybrid

parallelization=charm asagi=false copyenv=true vectorize=true

HPX CC=mpicc CXX=mpicxx cmake -DCMAKE_BUILD_TYPE=Release .. & make

Chameleon CC=mpicc CXX=mpicxx cmake -DCMAKE_BUILD_TYPE=Release .. & make

Note that compilation requires setting the installation path of the respective libraries as environ-

ment variables, e.g., for Charm++, CHARM_PATHmust be set to a valid installation of Charm++.

B.2. List of Artifacts

• SWE-Benchmark: https://gitlab.lrz.de/poeppl/swe-benchmark

• Chameleon: https://github.com/chameleon-hpc/chameleon

B.3. Environment of the Experiment

CoolMUC2 consists of 812 compute nodes with a combined peak performance of 1.2 PFlop/s.

Each node is equipped with two Intel Xeon E5-2690v3 “Haswell” CPUs with 14 cores each as

well as 64GB of main memory. The nodes are connected using the Mellanox InfiniBand FDR14

interconnection fabric. On the compute nodes, SUSE Linux Enterprise Server 15 SP1 running

197

https://gitlab.lrz.de/poeppl/swe-benchmark
https://github.com/chameleon-hpc/chameleon

APPENDIX B. SCALING TESTS OF SWE ON COOLMUC2

Linux kernel 4.12.14-197.40-default is used. For the compilation of SWE and the frameworks we

evaluated, we used as compiler:

• Intel C++ Compiler: icpc version 19.0.5.281 (gcc version 8.2.0 compatibility)

For the parallelization frameworks, we used:

• IntelMPI 2019.7.217

• Chameleon 0.1

• UPC++ 2020.3.0

• Charm++ 6.10.1

• HPX 1.4.1

Paper Modifications For all tests we use the SWE-Benchmark repository, which is an extended

version of SWE for benchmarking and performance. The version used for this paper is tagged

with SC_PAW-ATM_Workshop_submission. For the Chameleon library we created an external hard-

coded CPU pinning patch for Cluster execution environment, as we had trouble with the correct

pinning of the communication thread to the last CPU. The patch is located in the aforementioned

branch in the folder patches.

Output from scripts that gathers execution environment information The configuration was used

for all jobs on CoolMUC2. The configuration below may only be considered a snapshot. As the

cluster is updated, the versions listed below may no longer be available.

1. admin/1.0

2. tempdir/1.0

3. lrz/1.0

4. spack/staging/20.1.1

5. intel/19.0.5

6. intel-mkl/2019.5.281

7. intel-mpi/2019.7.217

8. netcdf-hdf5-all/4.7_hdf5-1.10-intel19-impi

9. python/2.7_intel

10. gcc/8

11. hwloc/1.11

12. cmake/3.15.4

13. scons/3.1.1

14. slurm_setup/1.0

198

B.3. ENVIRONMENT OF THE EXPERIMENT

Table B.1.: CoolMUC 2 Compute Node CPU Information

CPU information

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

Address sizes: 46 bits physical, 48 bits virtual

CPU(s): 56

On-line CPU(s) list: 0-55

Thread(s) per core: 2

Core(s) per socket: 14

Socket(s): 2

NUMA node(s): 4

Vendor ID: GenuineIntel

CPU family: 6

Model: 63

Model name: Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

Stepping: 2

CPU MHz: 2599.973

CPU max MHz: 2600.0000

CPU min MHz: 1200.0000

BogoMIPS: 5199.94

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 17920K

NUMA node0 CPU(s): 0-6,28-34

NUMA node1 CPU(s): 7-13,35-41

NUMA node2 CPU(s): 14-20,42-48

NUMA node3 CPU(s): 21-27,49-55

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx

pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good

nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq

dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr

pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_-

timer aes xsave avx f16c rdrand lahf_lm abm cpuid_fault epb

invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow

vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep

bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm

ida arat pln pts md_clear flush_l1d

199

C. Scaling Tests of Pond and SWE on Cori

This appendix is an edited version of the one that appeared previously in Pöppl, Bader, and Baden

(2019).

C.1. Summary of the Experimental Setup

I ran strong scaling and weak scaling tests with node configurations of 1, 2, 4, 8, 16, 32, 64 and

128 nodes with the applications SWE, SWE-X10 and Pond on Cori. For Pond, I tested the three

different execution strategies (rank-based execution strategy, thread-based execution strategy and

task-based execution strategy). SWE was built using the classical MPI+OpenMP stack. SWE-X10

used the portable MPI backend, as the only native interface supported is the PAMI interconnect

of the BlueGene clusters. I built the applications using the following commands:

Application Compile Command

SWE scons buildVariablesFile = build/options/SWE_cray_mpi_-

vectorized.py

SWE-X10 make clean; make NATIVE=1 NERSC=1 LOG=info RT=mpi

Pond Rank CXX="env UPCXX_THREADMODE=seq upcxx -O3" cmake -DBUILD_RELEASE=ON

-DBUILD_USING_UPCXX_WRAPPER=ON -DENABLE_FILE_OUTPUT=OFF -DENABLE_-

MEMORY_SANITATION=OFF -DENABLE_LOGGING=OFF -DENABLE_O3_UPCXX_-

BACKEND=ON -DENABLE_PARALLEL_UPCXX_BACKEND=OFF -DACTORLIB_USE_-

OPENMP_TASKS=OFF -DIS_CROSS_COMPILING=ON --build pond <PATH>;

make

Pond Thread CXX="env UPCXX_THREADMODE=par upcxx -O3" cmake -DBUILD_RELEASE=ON

-DBUILD_USING_UPCXX_WRAPPER=ON -DENABLE_FILE_OUTPUT=OFF -DENABLE_-

MEMORY_SANITATION=OFF -DENABLE_LOGGING=OFF -DENABLE_O3_UPCXX_-

BACKEND=ON -DENABLE_PARALLEL_UPCXX_BACKEND=ON -DACTORLIB_USE_-

OPENMP_TASKS=OFF -DIS_CROSS_COMPILING=ON --build pond <PATH>;

make

Pond Task CXX="env UPCXX_THREADMODE=par upcxx -O3" cmake -DBUILD_RELEASE=ON

-DBUILD_USING_UPCXX_WRAPPER=ON -DENABLE_FILE_OUTPUT=OFF -DENABLE_-

MEMORY_SANITATION=OFF -DENABLE_LOGGING=OFF -DENABLE_O3_UPCXX_-

BACKEND=ON -DENABLE_PARALLEL_UPCXX_BACKEND=ON -DACTORLIB_USE_-

OPENMP_TASKS=ON -DIS_CROSS_COMPILING=ON --build pond <PATH>; make

201

APPENDIX C. SCALING TESTS OF POND AND SWE ON CORI

Depending on the cluster configuration, the path to Metis and NetCDF needs to be provided

manually. A generator for the SLURM scripts that were used for my experiments may be found

in the actor-upcxx GIT repository (folder jobscript-gen).

C.2. List of Artifacts

• SWE: https://github.com/TUM-I5/SWE

• actorX10: Not currently publicly available, contact Alexander Pöppl for access

• SWE-X10: Not currently publicly available, contact Alexander Pöppl for access

• Pond and Actor Library: https://bitbucket.org/apoeppl/actor-upcxx

• X10 2.3.1: http://x10-lang.org/releases/x10-release-231.html

• UPC++: https://upcxx.lbl.gov

C.3. Environment of the Experiment

The experiments were performed on NERSC’s Cori KNL Compute Nodes. Each node contains

a single-socket Intel® Xeon Phi™ Processor 7250 (”Knights Landing”) processor with 68 cores

per node @ 1.4 GHz. The nodes’ operating system at the time of the experiment is SUSE Linux

Enterprise Server 15. To compile the applications, I used

• Intel C++ Compiler: icpc version 18.0.1.163 (gcc version 7.3.0 compatibility)

• IBM X10 Compiler: X10 2.3.1

In Pond, the following libraries and frameworks were used.

• UPC++ 2019.3.0

• Metis 5.1.0

Input datasets and versions As the scenario for the tests, I used a synthetic radial dam break

scenario that is generated programmatically at the start of the application.

Modifications for the Experiments For the default version of SWE, the OpenMP parallelization

was not functional at the time the tests were performed, I re-enabled it in the build system and

modified the code where necessary. Tests in SWE where performed using the most recent commit

of the master branch at the time (e80170a441). I also added the HLLE solver (not part of the main

repository. It works as a drop-in replacement to the other Riemann solvers. Finally, I had to slightly

modify the build system to make it work on Cori. A GIT patch containing the modifications, and

the HLLE solver are available at: https://bitbucket.org/apoeppl/actor-upcxx/downloads/

Changes necessary to run SWE-X10 on Cori are pushed to the SWE-X10 Git repository in the

1
https://github.com/TUM-I5/SWE/commit/e80170a445e8d1896a8b59bc6d5669ac7ce7d465

202

https://github.com/TUM-I5/SWE
https://bitbucket.org/apoeppl/actor-upcxx
http://x10-lang.org/releases/x10-release-231.html
https://upcxx.lbl.gov
https://bitbucket.org/apoeppl/actor-upcxx/downloads/
https://github.com/TUM-I5/SWE/commit/e80170a445e8d1896a8b59bc6d5669ac7ce7d465

C.3. ENVIRONMENT OF THE EXPERIMENT

branch fix_cori-compilation. The C++ code the X10 compiler generates seems to trigger a bug in

the Intel C++ Compiler, version 19. Furthermore, the newest Java version capable of running

the X10 Compiler is Java 7, therefore, the JAVA_HOME variable needs to be pointed to such an

installation. The version of Pond and the actor library that has the functionality that was used

for the test is marked in the actor-upcxx repository with the tag pond-paper-submission-commit. In

some cases, the commits may not match the logs, this is due to changes in the job script generator

that was used for the generation of the SLURM scripts for the tests.

Output from scripts that gathers execution environment information Contains the default modules

on Cori plus changes to run Pond on the KNL partition. Due to a system upgrade before the

data was collected, the previous environment could not be completely replicated, as a number of

previously available packages were removed.

1. modules/3.2.11.1

2. nsg/1.2.0

3. intel/19.0.3.199

4. craype-network-aries

5. craype/2.5.18

6. cray-libsci/19.02.1

7. udreg/2.3.2-7.0.0.1_4.23__g8175d3d.ari

8. ugni/6.0.14.0-7.0.0.1_7.25__ge78e5b0.ari

9. pmi/5.0.14

10. dmapp/7.1.1-7.0.0.1_5.15__g25e5077.ari

11. gni-headers/5.0.12.0-7.0.0.1_7.30__g3b1768f.ari

12. xpmem/2.2.17-7.0.0.1_3.20__g7acee3a.ari

13. job/2.2.4-7.0.0.1_3.26__g36b56f4.ari

14. dvs/2.11_2.2.131-7.0.0.1_7.3__gd2a05f7e

15. alps/6.6.50-7.0.0.1_3.30__g962f7108.ari

16. rca/2.2.20-7.0.0.1_4.29__g8e3fb5b.ari

17. atp/2.1.3

18. PrgEnv-intel/6.0.5

19. craype-mic-knl

20. cray-mpich/7.7.6

21. craype-hugepages2M

22. altd/2.0

23. darshan/3.1.7

24. gcc/7.3.0

25. cmake/3.14.4

26. cray-netcdf-hdf5parallel/4.6.1.3

27. upcxx/2019.3.2

203

APPENDIX C. SCALING TESTS OF POND AND SWE ON CORI

Table C.1.: Cori Compute Node CPU Information

CPU information

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 272

On-line CPU(s) list: 0-271

Thread(s) per core: 4

Core(s) per socket: 68

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 87

Model name: Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz

Stepping: 1

CPU MHz: 1401.000

CPU max MHz: 1401.0000

CPU min MHz: 1000.0000

BogoMIPS: 2799.98

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

NUMA node0 CPU(s): 0-271

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx

pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good

nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq

dtes64 monitor ds_cpl est tm2 ssse3 fma cx16 xtpr pdcm sse4_1

sse4_2 x2apicmovbe popcnt tsc_deadline_timer aes xsave avx f16c

rdrand lahf_lm abm 3dnowprefetch ring3mwait cpuid_fault epb

pti intel_ppin ibrs ibpb fsgsbase tsc_adjust bmi1 avx2 smep bmi2

erms avx512f rdseed adx avx512pf avx512er avx512cd xsaveopt

dtherm ida arat pln pts

204

Bibliography

Abdelfattah, Ahmed, Stanimire Tomov, and Jack Dongarra (Nov. 2019). “Towards Half-Precision

Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs”. In:

2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems

(ScalA), pp. 17–24. doi: 10.1109/ScalA49573.2019.00008.

Agha, Gul (1985). ACTORS: A Model of Concurrent Computation in Distributed Systems. Tech. rep.

AITR-844. MIT Artificial Intelligence Laboratory.

Agha, Gul and Carl Hewitt (1988). “Concurrent Programming Using Actors: Exploiting Large-

Scale Parallelism”. In: Readings in Distributed Artificial Intelligence. Ed. by Alan H. Bond and

Les Gasser. Morgan Kaufmann, pp. 398–407. isbn: 978-0-934613-63-7. doi: https://doi.org/

10.1016/B978-0-934613-63-7.50042-5. url: http://www.sciencedirect.com/science/

article/pii/B9780934613637500425.

Altera (Oct. 2007). Accelerating High-Performance Computing With FPGAs. Tech. rep. Altera Corpo-

ration.

Anthony, Sebastian (Nov. 2013). Intel unveils 72-core x86 Knights Landing CPU for exascale supercom-

puting. url: https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-

knights-landing-cpu-for-exascale-supercomputing.

Armstrong, Joe (2007). “A History of Erlang”. In: Proceedings of the Third ACM SIGPLAN Conference

onHistory of Programming Languages. HOPL III. SanDiego, California: Association for Computing

Machinery, pp. 6–1–6–26. isbn: 9781595937667. doi: 10.1145/1238844.1238850. url: https:

//doi.org/10.1145/1238844.1238850.

Augonnet, Cédric, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier (2011).

“StarPU: a unified platform for task scheduling on heterogeneous multicore architectures”. In:

Concurrency and Computation: Practice and Experience 23.2, pp. 187–198. doi: 10.1002/cpe.1631.

eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / cpe . 1631. url: https :

//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631.

Augustsson, Lennart (Sept. 1998). “Cayenne—a Language with Dependent Types”. In: SIGPLAN

Not. 34.1, pp. 239–250. issn: 0362-1340. doi: 10.1145/291251.289451. url: https://doi.org/

10.1145/291251.289451.

Bachan, John (Mar. 2019). UPC++ Specification, v1.0 Draft 10. Tech. rep. LBNL-2001192. Lawrence

Berkeley National Laboratory. doi: 10.25344/S4JS30. url: https://escholarship.org/uc/

item/25m555p9.

Bachan, John, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea,

Paul H. Hargrove, and Hadia Ahmed (2019). “UPC++: A High-Performance Communication

Framework for Asynchronous Computation”. In: Proceedings of the 33rd IEEE International Parallel

& Distributed Processing Symposium. IPDPS. Rio de Janeiro, Brazil: IEEE. doi: 10.25344/S4V88H.

url: https://escholarship.org/uc/item/1gd059hj.

Bader, Michael (Oct. 2019). High Performance Computing - Algorithms and Applications, Dense Linear

Algebra. Lecture Slides.

205

https://doi.org/10.1109/ScalA49573.2019.00008
https://doi.org/https://doi.org/10.1016/B978-0-934613-63-7.50042-5
https://doi.org/https://doi.org/10.1016/B978-0-934613-63-7.50042-5
http://www.sciencedirect.com/science/article/pii/B9780934613637500425
http://www.sciencedirect.com/science/article/pii/B9780934613637500425
https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing
https://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1002/cpe.1631
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1631
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://doi.org/10.1145/291251.289451
https://doi.org/10.1145/291251.289451
https://doi.org/10.1145/291251.289451
https://doi.org/10.25344/S4JS30
https://escholarship.org/uc/item/25m555p9
https://escholarship.org/uc/item/25m555p9
https://doi.org/10.25344/S4V88H
https://escholarship.org/uc/item/1gd059hj

Bibliography

Bader, Michael, Alexander Breuer, Wolfgang Hölzl, and Sebastian Rettenberger (2014). “Vector-

ization of an augmented Riemann solver for the shallow water equations”. In: 2014 International

Conference on High Performance Computing Simulation (HPCS), pp. 193–201.

Bader, Michael, Alexander Pöppl, Oliver Meister, and Alexander Breuer (Jan. 2020). Tutorial:

HPC - Algorithms and Applications WS 19/20 - SWE Case Study. Exercise Sheet. Available at:

https://www.moodle.tum.de/course/view.php?id=49335, Retrieved at: April 29th 2020.

Baker, Henry and Carl Hewitt (Aug. 1977). “The Incremental Garbage Collection of Processes”. In:

SIGPLAN Not. 12.8, pp. 55–59. issn: 0362-1340. doi: 10.1145/872734.806932. url: https://doi-

org.eaccess.ub.tum.de/10.1145/872734.806932.

Baker, Matthew, Swen Boehm, Aurelien Boutellier, and Barbara Chapman et al. (Dec. 2017).

OpenSHMEM Application Programming Interface. Tech. rep. Open Source Software Solutions, Inc.

(OSSS). url: http://www.openshmem.org.

Bale, Derek, Randall LeVeque, Sorin Mitran, and James A. Rossmanith (2003). “A Wave Propaga-

tion Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions”.

In: SIAM Journal on Scientific Computing 24.3, pp. 955–978. doi: 10.1137/S106482750139738X.

eprint: http://dx.doi.org/10.1137/S106482750139738X. url: http://dx.doi.org/10.1137/

S106482750139738X.

Barker, Brandon (2015). “Message Passing Interface (MPI)”. In:Workshop: High Performance Com-

puting on Stampede. Vol. 262. url: http://www.cac.cornell.edu/education/training/

StampedeJan2015/IntroMPI.pdf.

Barney, Blaise (2010). “Introduction to Parallel Computing”. In: Lawrence Livermore National Labo-

ratory 6.13, p. 10.

Barthe, Gilles and Thierry Coquand (2002). “An Introduction to Dependent Type Theory”. In:

Applied Semantics. Ed. by Gilles Barthe, Peter Dybjer, Luı́s Pinto, and João Saraiva. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 1–41. isbn: 978-3-540-45699-5.

Bauer, Lars (2009). “RISPP: A Run-time Adaptive Reconfigurable Embedded Processor”. PhD

thesis. doi: 10.5445/IR/1000021186.

Bauer, Lars, Artjom Grudnitsky, Marvin Damschen, Srinivas Rao Kerekare, and Jörg Henkel

(Oct. 2015). “Floating Point Acceleration for Stream Processing Applications in Dynamically

Reconfigurable Processors”. In: IEEE Symposium on Embedded Systems for Real-time Multimedia

(ESTIMedia). Amsterdam, The Netherlands. doi: 10.1109/ESTIMedia.2015.7351762.

Bauer, Michael (2014). “Legion: Programming Distributed Heterogeneous Architectures with

Logical Regions”. PhD thesis. Ph. D. dissertation, Stanford University.

Bauer, Michael and Michael Garland (2019). “Legate NumPy: Accelerated and Distributed Ar-

ray Computing”. In: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. SC ’19. Denver, Colorado: Association for Computing Machin-

ery. isbn: 9781450362290. doi: 10.1145/3295500.3356175. url: https://doi.org/10.1145/

3295500.3356175.

Bauer, Michael, Sean Treichler, Elliott Slaughter, and Alex Aiken (Nov. 2012). “Legion: Expressing

locality and independence with logical regions”. In: SC ’12: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11. doi: 10.

1109/SC.2012.71.

Bogusz, Martin (Sept. 2019). “Exploring Modern Runtime Systems for the SWE Framework”.

Bachelorarbeit. Technical University of Munich.

Bogusz, Martin, Philipp Samfass, Alexander Pöppl, Jannis Klinkenberg, and Michael Bader (Nov.

2020). “Evaluation of Multiple HPC Parallelization Frameworks in a Shallow Water Proxy

Application with Multi-Rate Local Time Stepping”. In: 2020 IEEE/ACM 3rd Annual Parallel

206

https://www.moodle.tum.de/course/view.php?id=49335
https://doi.org/10.1145/872734.806932
https://doi-org.eaccess.ub.tum.de/10.1145/872734.806932
https://doi-org.eaccess.ub.tum.de/10.1145/872734.806932
http://www.openshmem.org
https://doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1137/S106482750139738X
http://www.cac.cornell.edu/education/training/StampedeJan2015/IntroMPI.pdf
http://www.cac.cornell.edu/education/training/StampedeJan2015/IntroMPI.pdf
https://doi.org/10.5445/IR/1000021186
https://doi.org/10.1109/ESTIMedia.2015.7351762
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71

Bibliography

Applications Workshop: Alternatives To MPI+X (PAW-ATM). IEEE, pp. 27–39. doi: 10.1109/

PAWATM51920.2020.00008.

Bonachea, Dan and Paul H. Hargrove (Oct. 2018). GASNet-EX: A High-Performance, Portable Commu-

nication Library for Exascale. Tech. rep. LBNL-2001174. To appear: Languages and Compilers for

Parallel Computing (LCPC’18). Lawrence Berkeley National Laboratory. doi: 10.25344/S4QP4W.

url: https://escholarship.org/uc/item/0xg7b704.

Borrell, Ricard, Damien Dosimont, Marta Garcia-Gasulla, Guillaume Houzeaux, Oriol Lehmkuhl,

Vishal Mehta, Herbert Owen, Marriano Vázquez, and Guillermo Oyarzun (2020). “Heteroge-

neous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to

airplane aerodynamics”. In: Future Generation Computer Systems 107, pp. 31–48. issn: 0167-739X.

doi: https://doi.org/10.1016/j.future.2020.01.045. url: http://www.sciencedirect.

com/science/article/pii/S0167739X1930994X.

Brand, Marcel, Frank Hannig, Alexandru Tanase, and Jürgen Teich (Sept. 2017). “Orthogonal

Instruction Processing: An Alternative to Lightweight VLIW Processors”. In: 2017 IEEE 11th

International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 5–12.

doi: 10.1109/MCSoC.2017.17.

Breuer, Alexander and Michael Bader (2012). “Teaching Parallel Programming Models on a

Shallow-Water Code”. In: 2012 11th International Symposium on Parallel and Distributed Computing,

pp. 301–308.

Buchwald, Sebastian, Manuel Mohr, and Andreas Zwinkau (Mar. 2015). “Malleable Invasive

Applications”. In: Proceedings of the 8th Working Conference on Programming Languages (ATPS’15).

Budanaz, Yakup (Aug. 2020). “Dynamic Actor Migration for a Distributed Actor Library”. Bache-

lor’s Thesis. Technical University of Munich.

Bungartz, Hans-Joachim, Christoph Riesinger, Martin Schreiber, Gregor Snelting, and Andreas

Zwinkau (2013). “Invasive Computing in HPC with X10”. In: Proceedings of the Third ACM

SIGPLAN X10 Workshop. X10 ’13. Seattle, Washington: Association for Computing Machinery,

pp. 12–19. isbn: 9781450321570. doi: 10.1145/2481268.2481274. url: https://doi.org/10.

1145/2481268.2481274.

Cannon, Lynn Elliot (1969). “A Cellular Computer to Implement the Kalman Filter Algorithm”.

AAI7010025. PhD thesis. USA: Montana State University.

Charousset, Dominik, Raphael Hiesgen, and Thomas C. Schmidt (Apr. 2016). “Revisiting Actor

Programming in C++”. In: Computer Languages, Systems & Structures 45, pp. 105–131. url: http:

//dx.doi.org/10.1016/j.cl.2016.01.002.

Charousset, Dominik, Thomas C. Schmidt, Raphael Hiesgen, and Matthias Wählisch (Oct. 2013).

“Native Actors – A Scalable Software Platform for Distributed, Heterogeneous Environments”.

In: Proc. of the 4rd ACM SIGPLAN Conference on Systems, Programming, and Applications (SPLASH

’13), Workshop AGERE! New York, NY, USA: ACM, pp. 87–96.

Cheriton, David, Michael Malcolm, Lawrence Melen, and Gary Sager (Feb. 1979). “Thoth, a

Portable Real-Time Operating System”. In: Communications of the ACM 22.2, pp. 105–115. issn:

0001-0782. doi: 10.1145/359060.359074. url: https://doi.org/10.1145/359060.359074.

Chisnall, David, Colin Rothwell, Robert N.M. Watson, JonathanWoodruff, Munraj Vadera, Simon

W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann (Mar. 2015). “Beyond the PDP-

11: Architectural Support for a Memory-Safe C Abstract Machine”. In: SIGARCH Computer

Architecture News 43.1, pp. 117–130. issn: 0163-5964. doi: 10 . 1145 / 2786763 . 2694367. url:

http://doi.acm.org/10.1145/2786763.2694367.

207

https://doi.org/10.1109/PAWATM51920.2020.00008
https://doi.org/10.1109/PAWATM51920.2020.00008
https://doi.org/10.25344/S4QP4W
https://escholarship.org/uc/item/0xg7b704
https://doi.org/https://doi.org/10.1016/j.future.2020.01.045
http://www.sciencedirect.com/science/article/pii/S0167739X1930994X
http://www.sciencedirect.com/science/article/pii/S0167739X1930994X
https://doi.org/10.1109/MCSoC.2017.17
https://doi.org/10.1145/2481268.2481274
https://doi.org/10.1145/2481268.2481274
https://doi.org/10.1145/2481268.2481274
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://dx.doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1145/359060.359074
https://doi.org/10.1145/359060.359074
https://doi.org/10.1145/2786763.2694367
http://doi.acm.org/10.1145/2786763.2694367

Bibliography

Christon, Mark, David Crawford, Eugene Hertel, James Peery, and Allen Robinson (June 1997).

“ASCI Red – Experiences and lessons learned with a massively parallel teraFLOP supercom-

puter”. In: -.

Cobham Gaisler AB (Jan. 2016). GRLIB IP Library User’s Manual. Tech. rep. Version 1.5.0, retrieved

on May 2nd, 2017. Göteborg, Sweden: Cobham Gaisler AB. url: http://www.gaisler.com/

products/grlib/grlib.pdf.

Comprés, Isaias, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-Joachim Bungartz (2016). “In-

frastructure and API Extensions for Elastic Execution of MPI Applications”. In: Proceedings of the

23rd European MPI Users’ Group Meeting. EuroMPI 2016. Edinburgh, United Kingdom: Associa-

tion for ComputingMachinery, pp. 82–97. isbn: 9781450342346. doi: 10.1145/2966884.2966917.

url: https://doi.org/10.1145/2966884.2966917.

Courant, Richard, Kurt Friedrichs, and Hans Lewy (Dec. 1928). “Über die partiellen Differen-

zengleichungen der mathematischen Physik”. In:Mathematische Annalen 100.1, pp. 32–74. doi:

10.1007/BF01448839. url: https://doi.org/10.1007/BF01448839.

Cray Research Inc. (1976). The CRAY-1 Computer System. Tech. rep. Cray Research Inc.

Dagum, Leonardo and Ramesh Menon (1998). “OpenMP: an industry standard API for shared-

memory programming”. In: Computational Science & Engineering, IEEE 5.1, pp. 46–55. doi: 10.

1109/99.660313.

Daiß, Gregor, Parsa Amini, John Biddiscombe, Patrick Diehl, Juhan Frank, Kevin Huck, Hartmut

Kaiser, Dominic Marcello, David Pfander, and Dirk Pfüger (Nov. 2019). “From Piz Daint to

the Stars: Simulation of Stellar Mergers Using High-Level Abstractions”. In: Proceedings of

the International Conference for High Performance Computing, Networking, Storage and Analysis.

SC ’19. Denver, Colorado: Association for Computing Machinery. isbn: 9781450362290. doi:

10.1145/3295500.3356221. url: https://doi.org/10.1145/3295500.3356221.

Damschen, Marvin (2019). “Worst-Case Execution Time Guarantees for Runtime-Reconfigurable

Architectures”. PhD thesis. Karlsruher Institut für Technologie (KIT). 106 pp. doi: 10.5445/IR/

1000089975. url: https://git.scc.kit.edu/CES/corq.

Damschen, Marvin, Martin Rapp, Lars Bauer, and Jörg Henkel (2020). “i-Core: A Runtime-

Reconfigurable Processor Platform for Cyber-Physical Systems”. In: Embedded, Cyber-Physical,

and IoT Systems: Essays Dedicated to Marilyn Wolf on the Occasion of Her 60th Birthday. Ed. by Shu-

vra S. Bhattacharyya, Miodrag Potkonjak, and Senem Velipasalar. Cham: Springer International

Publishing, pp. 1–36. isbn: 978-3-030-16949-7. doi: 10.1007/978-3-030-16949-7{_}1. url:

https://doi.org/10.1007/978-3-030-16949-7_1.

Darema, Frederica (2001). “The SPMDModel: Past, Present and Future”. In: Recent Advances in

Parallel Virtual Machine and Message Passing Interface. Ed. by Yiannis Cotronis and Jack Dongarra.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–1. isbn: 978-3-540-45417-5.

DeVito, Zachary, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek (2013). “Terra: A

Multi-Stage Language for High-Performance Computing”. In: Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’13. Seattle,

Washington, USA: Association for Computing Machinery, pp. 105–116. isbn: 9781450320146.

doi: 10.1145/2491956.2462166. url: https://doi.org/10.1145/2491956.2462166.

Dongarra, Jack, Robert Graybill,WilliamHarrod, Robert Lucas, Ewing Lusk, Piotr Luszczek, Janice

Mcmahon, Allan Snavely, Jeffrey Vetter, Katherine Yelick, Sadaf Alam, Roy Campbell, Laura

Carrington, Tzu-Yi Chen, Omid Khalili, Jeremy Meredith, and Mustafa Tikir (2008). “DARPA’s

HPCS Program: History, Models, Tools, Languages”. In: Advances in COMPUTERS. Vol. 72.

Advances in Computers. Elsevier, pp. 1–100. doi: https://doi.org/10.1016/S0065-2458(08)

00001-6. url: http://www.sciencedirect.com/science/article/pii/S0065245808000016.

208

http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grlib.pdf
https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3295500.3356221
https://doi.org/10.1145/3295500.3356221
https://doi.org/10.5445/IR/1000089975
https://doi.org/10.5445/IR/1000089975
https://git.scc.kit.edu/CES/corq
https://doi.org/10.1007/978-3-030-16949-7{_}1
https://doi.org/10.1007/978-3-030-16949-7_1
https://doi.org/10.1145/2491956.2462166
https://doi.org/10.1145/2491956.2462166
https://doi.org/https://doi.org/10.1016/S0065-2458(08)00001-6
https://doi.org/https://doi.org/10.1016/S0065-2458(08)00001-6
http://www.sciencedirect.com/science/article/pii/S0065245808000016

Bibliography

Dumbser, Michael, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-Dieter Munz (2008). “A

unified framework for the construction of one-step finite volume and discontinuous Galerkin

schemes on unstructured meshes”. In: Journal of Computational Physics 227.18, pp. 8209–8253.

issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2008.05.025. url: http://www.

sciencedirect.com/science/article/pii/S0021999108002829.

Edwards, H. Carter, Christian R. Trott, and Daniel Sunderland (2014). “Kokkos: Enabling many-

core performance portability through polymorphic memory access patterns”. In: Journal of

Parallel and Distributed Computing 74.12. Domain-Specific Languages and High-Level Frame-

works for High-Performance Computing, pp. 3202–3216. issn: 0743-7315. doi: https://doi.

org/10.1016/j.jpdc.2014.07.003. url: http://www.sciencedirect.com/science/article/

pii/S0743731514001257.

Eijkhout, Victor, Robert van de Geijn, and Edmond Chow (2011). Introduction to High Performance

Scientific Computing. http://www.tacc.utexas.edu/~eijkhout/istc/istc.html. lulu.com.

isbn: 978-1-257-99254-6.

Einfeldt, Bernd (1988). “On Godunov-Type Methods for Gas Dynamics”. In: SIAM Journal on

Numerical Analysis 25.2, pp. 294–318. doi: 10.1137/0725021. eprint: https://doi.org/10.

1137/0725021. url: https://doi.org/10.1137/0725021.

ElasticX10 (Nov. 2015). retrieved on January 31st 2020. url: http : / / x10 - lang . org /

documentation/practical-x10-programming/elastic-x10.html.

Espasa, Roger, Mateo Valero, and James E. Smith (1998). “Vector Architectures: Past, Present and

Future”. In: Proceedings of the 12th International Conference on Supercomputing. ICS ’98. Melbourne,

Australia: ACM, pp. 425–432. isbn: 0-89791-998-X. doi: 10.1145/277830.277935. url: http:

//doi.acm.org/10.1145/277830.277935.

Flich, José, Giovanni Agosta, Philipp Ampletzer, David Alonso, Carlo Brandolese, Etienne Cappe,

Alessandro Cilardo, Leon Dragić, Alexandre Dray, Alen Duspara, William Fornaciari, Gerald

Guillaume, Ynse Hoornenborg, Arman Iranfar, Mario Kovač, Simone Libutti, Bruno Maitre,

José Maria Martı́nez, Giuseppe Massari, Hrvoje Mlinarić, Ermis Papastefanakis, Tomás Picor-

nell, Igor Piljić, Anna Pupykina, Federico Reghenzani, Isabelle Staub, Rafael Tornero, Marina

Zapater, and Davide Zoni (Aug. 2017). “MANGO: Exploring Manycore Architectures for

Next-GeneratiOn HPC Systems”. In: 2017 Euromicro Conference on Digital System Design (DSD),

pp. 478–485. doi: 10.1109/DSD.2017.51.

Flynn, Michael. J. (Sept. 1972). “Some Computer Organizations and Their Effectiveness”. In: IEEE

Transactions on Computers C-21.9, pp. 948–960. doi: 10.1109/TC.1972.5009071.

Gärtner, Ludwig (Aug. 2016). “A GPU-based Solver for the ShallowWater Equations in SWE-X10”.

Bachelor’s Thesis. Technical University of Munich.

George, David (2006). “Finite VolumeMethods andAdaptive Refinement for Tsunami Propagation

and Inundation”. Dissertation. Washington: Graduate School, University of Washington. url:

https://faculty.washington.edu/rjl/students/dgeorge/DLGeorgeDissertationSS.pdf.

George, David (2008). “Augmented Riemann solvers for the shallow water equations over vari-

able topography with steady states and inundation”. In: Journal of Computational Physics 227.6,

pp. 3089–3113. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2007.10.027. url:

http://www.sciencedirect.com/science/article/pii/S0021999107004767.

Gudu, Diana-Mihaela (Nov. 2012). “Parallel Tsunami SimulationsWith Block-StructuredAdaptive

Mesh Refinement”. Master’s thesis.

Hager, Georg and Gerhard Wellein (2011). Introduction to High Performance Computing for Scientists

and Engineers. Boca Raton: CRC Press. isbn: 978-0-429-19061-2. doi: 10.1201/EBK1439811924.

209

https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
http://www.sciencedirect.com/science/article/pii/S0021999108002829
http://www.sciencedirect.com/science/article/pii/S0021999108002829
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.tacc.utexas.edu/~eijkhout/istc/istc.html
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
https://doi.org/10.1145/277830.277935
http://doi.acm.org/10.1145/277830.277935
http://doi.acm.org/10.1145/277830.277935
https://doi.org/10.1109/DSD.2017.51
https://doi.org/10.1109/TC.1972.5009071
https://faculty.washington.edu/rjl/students/dgeorge/DLGeorgeDissertationSS.pdf
https://doi.org/https://doi.org/10.1016/j.jcp.2007.10.027
http://www.sciencedirect.com/science/article/pii/S0021999107004767
https://doi.org/10.1201/EBK1439811924

Bibliography

Hannig, Frank, Vahid Lari, Srinivas Boppu, Alexandru Tanase, and Oliver Reiche (Apr. 2014).

“Invasive Tightly-Coupled Processor Arrays: A Domain-Specific Architecture/Compiler Co-

Design Approach”. In: ACM Trans. Embed. Comput. Syst. 13.4s. issn: 1539-9087. doi: 10.1145/

2584660. url: https://doi-org.eaccess.ub.tum.de/10.1145/2584660.

Harris, Mark (2010). Optimizing Parallel Reduction in CUDA. Tech. rep. NVIDIA Corporation,

Developer Technology.

Harten, Amiram, Peter D. Lax, and Bram van Leer (1983). “On Upstream Differencing and

Godunov-Type Schemes for Hyperbolic Conservation Laws”. In: SIAM Review 25.1, pp. 35–61.

doi: 10.1137/1025002. eprint: https://doi.org/10.1137/1025002. url: https://doi.org/10.

1137/1025002.

Hebert, Fred (2013). Learn you some Erlang for great good!: a beginner’s guide. No Starch Press.

Heene, Mario, Alfredo Parra Hinojosa, Michael Obersteiner, Hans-Joachim Bungartz, and Dirk

Pflüger (Mar. 2018). “EXAHD: An Exa-Scalable Two-Level Sparse Grid Approach for Higher-

Dimensional Problems in Plasma Physics and Beyond”. In:High Performance Computing in Science

and Engineering ’17. Ed. by Wolfgang Nagel, Dietmar Kröner, and Michael Resch. Springer-

Verlag. isbn: 9783319683935.

Heißwolf, J., R. König, and J. Becker (July 2012). “A Scalable NoC Router Design Providing QoS

Support Using Weighted Round Robin Scheduling”. In: 2012 IEEE 10th International Symposium

on Parallel and Distributed Processing with Applications, pp. 625–632. doi: 10.1109/ISPA.2012.93.

Heisswolf, J., A. Zaib, A. Weichslgartner, M. Karle, M. Singh, T. Wild, J. Teich, A. Herkersdorf,

and J. Becker (Feb. 2014). “The Invasive Network on Chip - A Multi-Objective Many-Core

Communication Infrastructure”. In: ARCS 2014; 2014 Workshop Proceedings on Architecture of

Computing Systems, pp. 1–8.

Mo-Hellenbrand, Ao (2019). “Resource-Aware and Elastic Parallel Software Development for

Distributed-Memory HPC Systems”. Dissertation. München: Technische Universität München.

Mo-Hellenbrand, Ao, Isaias Comprés, Oliver Meister, Hans-Joachim Bungartz, Michael Gerndt,

and Michael Bader (2017). “A Large-Scale Malleable Tsunami Simulation Realized on an Elastic

MPI Infrastructure”. In: Proceedings of the Computing Frontiers Conference. CF’17. Siena, Italy:

Association for ComputingMachinery, pp. 271–274. isbn: 9781450344876. doi: 10.1145/3075564.

3075585. url: https://doi.org/10.1145/3075564.3075585.

Heller, Thomas, Patrick Diehl, Zachary Byerly, John Biddiscombe, and Hartmut Kaiser (2017).

“HPX – An open source C++ Standard Library for Parallelism and Concurrency”. In: Proceedings

of OpenSuCo. Denver, CO, USA: ACM, p. 5.

Henkel, J., A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari, A. Grudnitsky, J. Heisswolf,

A. Zaib, B. Vogel, V. Lari, and S. Kobbe (2012). “Invasive manycore architectures”. In: 17th Asia

and South Pacific Design Automation Conference, pp. 193–200.

Hewitt, Carl, Peter Bishop, and Richard Steiger (1973). “A Universal Modular ACTOR Formalism

for Artificial Intelligence”. In: Proceedings of the 3rd International Joint Conference on Artificial

Intelligence (IJCAI). Morgan Kaufmann Publishers Inc., pp. 235–245.

HLRS (May 2020). Hawk Cluster Configuration. Webpage: https://www.hlrs.de/systems/hpe-

apollo-hawk/, retrieved on 15.05.2020.

Hölzl, Wolfgang (July 2013). “Vectorization and GPGPU-Acceleration of an Augmented Riemann

Solver for the Shallow Water Equations”. Bachelor’s thesis. Institut für Informatik, Technische

Universität München. url: http://www5.in.tum.de/pub/hoelzl_bsc_2013.pdf.

Horie, Michihiro, Mikio Takeuchi, Kiyokuni Kawachiya, and David Grove (2015). “Optimization

of X10 Programs with ROSE Compiler Infrastructure”. In: Proceedings of the ACM SIGPLAN

Workshop on X10. X10 2015. Portland, OR, USA: ACM, pp. 19–24. isbn: 978-1-4503-3586-7. doi:

210

https://doi.org/10.1145/2584660
https://doi.org/10.1145/2584660
https://doi-org.eaccess.ub.tum.de/10.1145/2584660
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1109/ISPA.2012.93
https://doi.org/10.1145/3075564.3075585
https://doi.org/10.1145/3075564.3075585
https://doi.org/10.1145/3075564.3075585
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://www.hlrs.de/systems/hpe-apollo-hawk/
http://www5.in.tum.de/pub/hoelzl_bsc_2013.pdf

Bibliography

10.1145/2771774.2771777. url: http://doi.acm.org.eaccess.ub.tum.de/10.1145/

2771774.2771777.

Huffstetler, Jennifer (June 2018). Intel Processors and FPGAs - Better Together. website. url: https:

//itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.7e0k3g.

Intel Corporation (June 2011). Intel Advanced Vector Extensions Programming Reference. Tech. rep.

Available at: https://software.intel.com/sites/default/files/4f/5b/36945, retrieved

on 27.08.2020. Intel Corporation.

Intel Corporation (Sept. 2016). Intel® 64 and IA-32 Architectures Developer’s Manual. Developer’s

Manual 3A. Santa Clara, USA: Intel Corporation.

InvasIC (June 2010). Invasive Computing Miscellaneous Material. Material from Presentations and

Tech Reports of the Invasive Computing SFB. url: http://invasic.informatik.uni-erlangen.

de/.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,

Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara

Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho,

Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,

James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,

Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,

Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory

Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon (June 2017). “In-Datacenter Performance Analysis of a Tensor

Processing Unit”. In: SIGARCH Comput. Archit. News 45.2, pp. 1–12. issn: 0163-5964. doi: 10.

1145/3140659.3080246. url: https://doi.org/10.1145/3140659.3080246.

Kaiser, Hartmut, Maciek Brodowicz, and Thomas Sterling (Sept. 2009). “ParalleX: An Advanced

Parallel Execution Model for Scaling-Impaired Applications”. In: 2009 International Conference

on Parallel Processing Workshops, pp. 394–401. doi: 10.1109/ICPPW.2009.14.

Kalé, Laxmikant V and Sanjeev Krishnan (1993). “CHARM++: A Portable Concurrent Object

Oriented System Based on C++”. In: Proceedings of the Eighth Annual Conference on Object-Oriented

Programming Systems, Languages, and Applications. OOPSLA ’93. Washington, D.C., USA: Associ-

ation for Computing Machinery, pp. 91–108. isbn: 0897915879. doi: 10.1145/165854.165874.

url: https://doi.org/10.1145/165854.165874.

Kalé, Laxmikant V and Gengbin Zheng (2016). “The Charm++ Programming Model”. In: Parallel

Science and Engineering Applications: The Charm++ Approach. CRC Press, pp. 1–16.

Karypis, George and Vipin Kumar (1998). “A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1, pp. 359–392. doi:

10.1137/S1064827595287997. url: https://doi.org/10.1137/S1064827595287997.

Khronos Group (Apr. 2020). SYCL Specification. Tech. rep. KHRONOS SyCl Working Group.

Kopetz, Hermann (2011). Real-Time Systems: Design Principles for Distributed Embedded Applications.

2nd ed. Real-Time Systems Series 978-1-4419-8236-0. Springer US.

Lari, Vahid, Andriy Narovlyanskyy, Frank Hannig, and Jürgen Teich (Sept. 2011). “Decentralized

dynamic resource management support for massively parallel processor arrays”. In: ASAP 2011

- 22nd IEEE International Conference on Application-specific Systems, Architectures and Processors,

pp. 87–94. doi: 10.1109/ASAP.2011.6043240.

211

https://doi.org/10.1145/2771774.2771777
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2771774.2771777
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2771774.2771777
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.7e0k3g
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/#gs.7e0k3g
https://software.intel.com/sites/default/files/4f/5b/36945
http://invasic.informatik.uni-erlangen.de/
http://invasic.informatik.uni-erlangen.de/
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/ASAP.2011.6043240

Bibliography

Lee, Wonchan, Manolis Papadakis, Elliott Slaughter, and Alex Aiken (2019). “A Constraint-Based

Approach to Automatic Data Partitioning for Distributed Memory Execution”. In: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis.

SC ’19. Denver, Colorado: Association for Computing Machinery. isbn: 9781450362290. doi:

10.1145/3295500.3356199. url: https://doi.org/10.1145/3295500.3356199.

LeVeque, Randall J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in

Applied Mathematics. Cambridge University Press. doi: 10.1017/CBO9780511791253.

LeVeque, Randall J., David L. George, and Marsha J. Berger (2011). “Tsunami modelling with

adaptively refined finite volume methods”. In: Acta Numerica 20, pp. 211–289. doi: 10.1017/

S0962492911000043.

LRZ (2020a). CoolMUC 2 Cluster Configuration. Tech. rep. Website: https://doku.lrz.de/

display/PUBLIC/CoolMUC-2. Leibniz Supercomputing Centre.

LRZ (May 2020b). SuperMUC-NG Cluster Configuration. Tech. rep. Webpage: https://doku.

lrz . de / display / PUBLIC / Hardware + of + SuperMUC - NG, retrieved on 15.05.2020. Leibniz

Supercomputing Centre.

Lukasiewycz, Martin, Michael Glaß, Felix Reimann, and Jürgen Teich (July 2011). “Opt4J - A Mod-

ular Framework for Meta-heuristic Optimization”. In: Proceedings of the Genetic and Evolutionary

Computing Conference (GECCO 2011). Dublin, Ireland, pp. 1723–1730.

Macedo Miguel, Bruno (Nov. 2019). “A Distributed Actor Library for HPC Applications”. Master-

arbeit. Technical University of Munich.

Meister, Oliver (Dec. 2016). “Sierpinski Curves for Parallel Adaptive Mesh Refinement in Finite El-

ement and Finite VolumeMethods”. Dissertation. München: Institut für Informatik, Technische

Universität München. url: https://mediatum.ub.tum.de/doc/1320149/1320149.pdf.

Meng, Qingyu, Alan Humphrey, and Martin Berzins (2012). “The Uintah Framework: A Unified

Heterogeneous Task Scheduling and Runtime System”. In: Digital Proceedings of The Interna-

tional Conference for High Performance Computing, Networking, Storage and Analysis. SC’12 –2nd

International Workshop on Domain-Specific Languages and High-Level Frameworks for High

Performance Computing, WOLFHPC 2012, pp. 2441–2448. url: http://www.sci.utah.edu/

publications/Men2012b/uintah-wolfhpc12.pdf.

Mohr, Manuel, Sebastian Buchwald, Andreas Zwinkau, Christoph Erhardt, Benjamin Oechslein,

Jens Schedel, and Daniel Lohmann (2015). “Cutting out the Middleman: OS-Level Support for

X10 Activities”. In: Proceedings of the ACM SIGPLAN Workshop on X10. X10 2015. Portland, OR,

USA: Association for Computing Machinery, pp. 13–18. isbn: 9781450335867. doi: 10.1145/

2771774.2771775. url: https://doi.org/10.1145/2771774.2771775.

Mohr, Manuel and Carsten Tradowsky (2017). “Pegasus: Efficient data transfers for PGAS lan-

guages on non-cache-coherent many-cores”. In: Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017. Lausanne, CH, pp. 1781–1786. doi: 10.23919/DATE.2017.7927281.

Molzer, Andreas (Feb. 2017). “Optimierung eines Lösers der Flachwassergleichungen für hetero-

gene GPU-Architekturen”. Bachelor’s Thesis. Technical University of Munich.

Monnerat, Luiz and Claudio L. Amorim (2015). “An effective single-hop distributed hash ta-

ble with high lookup performance and low traffic overhead”. In: Concurrency and Compu-

tation: Practice and Experience 27.7, pp. 1767–1788. doi: 10 . 1002 / cpe . 3342. eprint: https :

//onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3342. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/cpe.3342.

MPI Forum (June 2015).MPI: A Message-Passing Interface Standard. Vol. Version 3.1. High Perfor-

mance Computing Center Stuttgart (HLRS).

212

https://doi.org/10.1145/3295500.3356199
https://doi.org/10.1145/3295500.3356199
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/S0962492911000043
https://doi.org/10.1017/S0962492911000043
https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://mediatum.ub.tum.de/doc/1320149/1320149.pdf
http://www.sci.utah.edu/publications/Men2012b/uintah-wolfhpc12.pdf
http://www.sci.utah.edu/publications/Men2012b/uintah-wolfhpc12.pdf
https://doi.org/10.1145/2771774.2771775
https://doi.org/10.1145/2771774.2771775
https://doi.org/10.1145/2771774.2771775
https://doi.org/10.23919/DATE.2017.7927281
https://doi.org/10.1002/cpe.3342
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3342
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3342
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3342
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3342

Bibliography

Naksinehaboon, Nichamon, Yudan Liu, Chokchai Leangsuksun, Raja Nassar, Mihaela Paun, and

Stephen L. Scott (2008). “Reliability-Aware Approach: An Incremental Checkpoint/Restart

Model in HPC Environments”. In: 2008 Eighth IEEE International Symposium on Cluster Computing

and the Grid (CCGRID), pp. 783–788. doi: 10.1109/CCGRID.2008.109.

NERSC (May 2020). Cori Cluster Configuration. Webpage: https://docs.nersc.gov/systems/

cori/, retrieved on 15.05.2020.

Nordwall, Patrik, Johan Andrén, Johannes Rudolph, Arnout Engelen, Christopher Batay, and

Helena Edelson (2011). The Akka Actor Library Documentation. url: https://doc.akka.io/docs/

akka/current/.

NVIDIA Corporation (June 2012). Tesla M2090 Dual-Slot Computing Processor Module. Board Speci-

fication BD-05766-001_v03. NVIDIA Corporation.

NVIDIA Corporation (Aug. 2017). NVIDIA Tesla V100 GPU Architecture. Tech. rep. NVIDIA

Corporation.

NVIDIA Corporation (Aug. 2020). NVIDIA A100 Tensor Core GPU Architecture. Tech. rep. NVIDIA

Corporation.

OctoPOS API Description (May 2020). API Description generated fromt the OctoPOS Source Code

through doxygen. url: gitolite@cs.fau.de:octopos-app-dev.

OctoPOS Application Development GIT Repository (May 2020). Project-internal GIT repository. url:

gitolite@cs.fau.de:octopos-app-dev.

Olden, Jurek (Oct. 2018). “Performance Analysis of SWE Implementations Based on Modern

Parallel Runtime Systems”. Bachelor’s Thesis. Technical University of Munich.

OpenMP (Nov. 2018). OpenMP Application Programming Interface. OpenMP Architecture Review

Board. isbn: 1795759887.

Patil, Onkar, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael Lang (2019). “Performance

Characterization of a DRAM-NVM Hybrid Memory Architecture for HPC Applications Using

Intel Optane DC Persistent Memory Modules”. In: Proceedings of the International Symposium

on Memory Systems. MEMSYS ’19. Washington, District of Columbia, USA: Association for

Computing Machinery, pp. 288–303. isbn: 9781450372060. doi: 10.1145/3357526.3357541. url:

https://doi.org/10.1145/3357526.3357541.

Petrini, Fabrizio, Darren J. Kerbyson, and Scott Pakin (2003). “The Case of the Missing Super-

computer Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q”.

In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. SC ’03. Phoenix, AZ, USA:

Association for Computing Machinery, p. 55. isbn: 1581136951. doi: 10.1145/1048935.1050204.

url: https://doi.org/10.1145/1048935.1050204.

Pierce, Paul (Jan. 1988). “The NX/2 operating system”. In: Proceedings of the 3rd Conference on

Hypercube Concurrent Computers and Applications 1988, pp. 384–390. doi: 10.1145/62297.62341.

Pöppl, Alexander (June 2011). “Dependent Types”. Seminar Paper. Seminar Paper (Having Fun

with Types ’11).

Pöppl, Alexander (Aug. 2017). “Shallow Water Waves on a Deep Technology Stack: Accelerating

a Finite Volume Tsunami Model using Reconfigurable Hardware in Invasive Computing”.

en. In: The 10th Workshop on UnConventional High Performance Computing 2017 (UCHPC 2017).

Universidade de Santiago de Compostela. Santiago de Compostela, Spain. url: https : / /

mediatum.ub.tum.de/1487718.

Pöppl, Alexander (Oct. 2018). Shallow Water on a Berkeley Stack – Actor-Based Tsunami Simulation

through UPC++. Final Presentation for author’s stay at LBNL.

Pöppl, Alexander (Nov. 2019). “AUPC++Actor Library and its Evaluation on a ShallowWater Ap-

plication”. en. In: PAW-ATM: Parallel Applications Workshop, Alternatives To MPI+X. contributed.

213

https://doi.org/10.1109/CCGRID.2008.109
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/
https://doc.akka.io/docs/akka/current/
https://doc.akka.io/docs/akka/current/
gitolite@cs.fau.de:octopos-app-dev
gitolite@cs.fau.de:octopos-app-dev
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/3357526.3357541
https://doi.org/10.1145/1048935.1050204
https://doi.org/10.1145/1048935.1050204
https://doi.org/10.1145/62297.62341
https://mediatum.ub.tum.de/1487718
https://mediatum.ub.tum.de/1487718

Bibliography

IEEE, ACM sigARCH. Denver, CO, USA. url: https://mediatum.ub.tum.de/doc/1531045/

1531045.pdf.

Pöppl, Alexander and Michael Bader (June 2016). “SWE-X10: An Actor-based and Locally Coor-

dinated Solver for the Shallow Water Equations”. In: Proceedings of the Sixth ACM SIGPLAN

X10 Workshop (X10). Extended Abstract. Santa Barbara, CA, USA: ACM. doi: 10.1145/2931028.

2931034.

Pöppl, Alexander, Michael Bader, and Scott Baden (Nov. 2019). “A UPC++ Actor Library and Its

Evaluation on a Shallow Water Proxy Application”. en. In: 2019 IEEE/ACM Parallel Applications

Workshop, Alternatives To MPI (PAW-ATM). IEEE. Denver, Colorado, United States of America:

IEEE/ACM/SigArch, pp. 11–24. doi: 10.1109/PAW-ATM49560.2019.00007.

Pöppl, Alexander, Michael Bader, Tobias Schwarzer, and Michael Glaß (Nov. 2016). “SWE-X10:

Simulating Shallow Water Waves with Lazy Activation of Patches Using Actorx10”. In: 2016

Second International Workshop on Extreme Scale Programming Models and Middlewar (ESPM2),

pp. 32–39. doi: 10.1109/ESPM2.2016.010.

Pöppl, Alexander, Marvin Damschen, Florian Schmaus, Andreas Fried, Manuel Mohr, Matthias

Blankertz, Lars Bauer, Jörg Henkel, Wolfgang Schröder-Preikschat, and Michael Bader (2018).

“ShallowWater Waves on a Deep Technology Stack: Accelerating a Finite Volume Tsunami

Model Using Reconfigurable Hardware in Invasive Computing”. In: Euro-Par 2017: Parallel

Processing Workshops. Ed. by Dora B. Heras, Luc Bougé, Gabriele Mencagli, Emmanuel Jeannot,

Rizos Sakellariou, Rosa M. Badia, Jorge G. Barbosa, Laura Ricci, Stephen L. Scott, Stefan Lankes,

and Josef Weidendorfer. Cham: Springer International Publishing, pp. 676–687. isbn: 978-3-319-

75178-8. doi: 10.1007/978-3-319-75178-8_54.

Pourmohseni, Behnaz, Michael Glaß, and Jürgen Teich (Mar. 2017). “Automatic operating point

distillation for hybrid mapping methodologies”. In: Design, Automation Test in Europe Conference

Exhibition (DATE), 2017, pp. 1135–1140. doi: 10.23919/DATE.2017.7927160.

Rheindt, Sven, Andreas Fried, Oliver Lenke, Lars Nolte, Thomas Wild, and Andreas Herkersdorf

(2019). “NEMESYS: Near-Memory Graph Copy Enhanced System-Software”. In: Proceedings of

the International Symposium on Memory Systems. MEMSYS ’19. Washington, District of Columbia:

Association for Computing Machinery, pp. 3–18. isbn: 9781450372060. doi: 10.1145/3357526.

3357545. url: https://doi.org/10.1145/3357526.3357545.

Rheindt, Sven, Sebastian Maier, Florian Schmaus, Thomas Wild, Wolfgang Schröder-Preikschat,

and Andreas Herkersdorf (2019). “SHARQ: Software-Defined Hardware-Managed Queues for

Tile-Based Manycore Architectures”. In: Embedded Computer Systems: Architectures, Modeling,

and Simulation. Ed. by Dionisios N. Pnevmatikatos, Maxime Pelcat, and Matthias Jung. Cham:

Springer International Publishing, pp. 212–225. isbn: 978-3-030-27562-4.

Roe, Philip L. (1981). “Approximate Riemann solvers, parameter vectors, and difference schemes”.

In: Journal of Computational Physics 43.2, pp. 357–372. issn: 0021-9991. doi: https://doi.org/10.

1016/0021-9991(81)90128-5. url: http://www.sciencedirect.com/science/article/pii/

0021999181901285.

Roloff, Sascha, Frank Hannig, and Jürgen Teich (Feb. 2014). “Towards Actor-oriented Program-

ming on PGAS-based Multicore Architectures”. In:Workshop Proceedings of the 27th International

Conference on Architecture of Computing Systems (ARCS). Lübeck, Germany: VDE Verlag, pp. 1–2.

isbn: 978-3-8007-3579-2.

Roloff, Sascha, Alexander Pöppl, Tobias Schwarzer, Stefan Wildermann, Michael Bader, Michael

Glaß, Frank Hannig, and Jürgen Teich (2016). “ActorX10: An Actor Library for X10”. In: Pro-

ceedings of the Sixth ACM SIGPLAN X10 Workshop (X10). Santa Barbara, CA, USA: ACM. doi:

10.1145/2931028.2931033.

214

https://mediatum.ub.tum.de/doc/1531045/1531045.pdf
https://mediatum.ub.tum.de/doc/1531045/1531045.pdf
https://doi.org/10.1145/2931028.2931034
https://doi.org/10.1145/2931028.2931034
https://doi.org/10.1109/PAW-ATM49560.2019.00007
https://doi.org/10.1109/ESPM2.2016.010
https://doi.org/10.1007/978-3-319-75178-8_54
https://doi.org/10.23919/DATE.2017.7927160
https://doi.org/10.1145/3357526.3357545
https://doi.org/10.1145/3357526.3357545
https://doi.org/10.1145/3357526.3357545
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
http://www.sciencedirect.com/science/article/pii/0021999181901285
http://www.sciencedirect.com/science/article/pii/0021999181901285
https://doi.org/10.1145/2931028.2931033

Bibliography

Saraswat, Vijay, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove (Feb. 2013).

X10 Language Specification, Version 2.3. Tech. rep. IBM Research. url: http://x10-lang.org/

releases/x10-release-231.html.

Saraswat, Vijay, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove (Jan. 2019). X10

Language Specification, Version 2.6.2. Tech. rep. IBM Research. url: http://x10.sourceforge.

net/documentation/languagespec/x10-latest.pdf.

Schaffroth, Nicolai (Sept. 2015). “Simulation of Rain-Induced Floods on High Performance Com-

puters”. Master’s thesis. Institut für Informatik, Technische Universität München. url: http:

//www5.in.tum.de/pub/Schaffroth2015_MasterThesis.pdf.

Schwarzer, Tobias, Andreas Weichslgartner, Michael Glaß, Stefan Wildermann, Peter Brand,

and Jürgen Teich (Feb. 2018). “Symmetry-Eliminating Design Space Exploration for Hybrid

Application Mapping on Many-Core Architectures”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 37.2, pp. 297–310. issn: 1937-4151. doi: 10.1109/TCAD.

2017.2695894.

Shaw, David, J. P. Grossman, Joseph Bank, Brandon Batson, Adam Butts, Jack Chao, Martin Den-

eroff, RonDror, Amos Even, Christopher Fenton, Anthony Forte, JosephGagliardo, Genette Gill,

Brian Greskamp, C. Richard. Ho, Douglas Ierardi, Lev Iserovich, Jeffrey Kuskin, Richard Larson,

Timothy Layman, Li-Siang Lee, Adam Lerer, Chester Li, Daniel Killebrew, Kenneth Mackenzie,

Shark Yeuk-Hai Mok, MarkMoraes, Rolf Mueller, Lawrence Nociolo, Jon Peticolas, Terry Quan,

Daniel Ramot, John Salmon, Daniele Scarpazza, Ben Schafer, Naseer Siddique, Christopher

Snyder, Jochen Spengler, Ping Tak Peter Tang, Michael Theobald, Horia Toma, Brian Towles,

Benjamin Vitale, Stanley Wang, and Cliff Young (Nov. 2014). “Anton 2: Raising the Bar for

Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer”.

In: SC ’14: Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 41–53. doi: 10.1109/SC.2014.9.

Slaughter, Elliott (2017). “Regent: A high-productivity programming language for implicit paral-

lelism with logical regions”. PhD thesis. Ph. D. dissertation, Stanford University.

Slaughter, Elliott and Alex Aiken (Nov. 2019). “Pygion: Flexible, Scalable Task-Based Parallelism

with Python”. In: 2019 IEEE/ACMParallel ApplicationsWorkshop, Alternatives ToMPI (PAW-ATM),

pp. 58–72. doi: 10.1109/PAW-ATM49560.2019.00011.

Slaughter, Elliott, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken (2015). “Regent:

A High-Productivity Programming Language for HPC with Logical Regions”. In: Proceedings of

the International Conference for High Performance Computing, Networking, Storage and Analysis. SC

’15. Austin, Texas: Association for Computing Machinery. isbn: 9781450337236. doi: 10.1145/

2807591.2807629. url: https://doi.org/10.1145/2807591.2807629.

Sodani, Avinash (Aug. 2015). “Knights landing (KNL): 2nd Generation Intel® Xeon Phi processor”.

In: 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–24. doi: 10.1109/HOTCHIPS.2015.7477467.

Spector, Alfred and David Gifford (Sept. 1984). “The Space Shuttle Primary Computer System”.

In: Commun. ACM 27.9, pp. 872–900. issn: 0001-0782. doi: 10.1145/358234.358246. url: http:

//doi.acm.org/10.1145/358234.358246.

Strehl, Karsten, Lothar Thiele, Matthias Gries, Dirk Ziegenbein, Rolf Ernst, and Jürgen Teich

(2001). “FunState – An internal design representation for codesign”. In: IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 9.4, pp. 524–544. doi: 10.1109/92.931229.

Tang, Liujuan, Vasily V. Titov, Eddie N. Bernard, Yong Wei, Christopher D. Chamberlin, Jean C.

Newman, Harold O. Mofjeld, Diego Arcas, Marie C. Eble, Christopher Moore, Burak Uslu, Clint

Pells,Michael Spillane, LindseyWright, and EdisonGica (2012). “Direct energy estimation of the

2011 Japan tsunami using deep-ocean pressuremeasurements”. In: Journal of Geophysical Research:

215

http://x10-lang.org/releases/x10-release-231.html
http://x10-lang.org/releases/x10-release-231.html
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://www5.in.tum.de/pub/Schaffroth2015_MasterThesis.pdf
http://www5.in.tum.de/pub/Schaffroth2015_MasterThesis.pdf
https://doi.org/10.1109/TCAD.2017.2695894
https://doi.org/10.1109/TCAD.2017.2695894
https://doi.org/10.1109/SC.2014.9
https://doi.org/10.1109/PAW-ATM49560.2019.00011
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1145/358234.358246
http://doi.acm.org/10.1145/358234.358246
http://doi.acm.org/10.1145/358234.358246
https://doi.org/10.1109/92.931229

Bibliography

Oceans 117.C8, p. 28. doi: 10.1029/2011JC007635. eprint: https://agupubs.onlinelibrary.

wiley.com/doi/pdf/10.1029/2011JC007635. url: https://agupubs.onlinelibrary.wiley.

com/doi/abs/10.1029/2011JC007635.

Tardieu, Olivier, Benjamin Herta, David Cunningham, David Grove, Prabhanjan Kambadur, Vijay

Saraswat, Avraham Shinnar, Mikio Takeuchi, and Mandana Vaziri (2014). “X10 and APGAS at

Petascale”. In: Proceedings of the 19th ACMSIGPLAN Symposium on Principles and Practice of Parallel

Programming. PPoPP ’14. Orlando, Florida, USA: ACM, pp. 53–66. isbn: 978-1-4503-2656-8. doi:

10.1145/2555243.2555245. url: http://doi.acm.org/10.1145/2555243.2555245.

Tardieu, Olivier, Benjamin Herta, David Cunningham, David Grove, Prabhanjan Kambadur, Vijay

Saraswat, Avraham Shinnar, Mikio Takeuchi, Mandana Vaziri, and Wei Zhang (Mar. 2016).

“X10 and APGAS at Petascale”. In: ACM Transactions on Parallel Computing 2.4. issn: 2329-4949.

doi: 10.1145/2894746. url: https://doi.org/10.1145/2894746.

Teich, Jürgen (2008). “Invasive algorithms and architectures”. In: it–Information Technology 50, p. 5.

doi: DOI10.1524/itit.2008.0499.

Teich, Jürgen, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-

Preikschat, and Gregor Snelting (2011). “Invasive Computing: An Overview”. In:Multiprocessor

System-on-Chip: Hardware Design and Tool Integration. Ed. by Michael Hübner and Jürgen Becker.

New York, NY: Springer New York, pp. 241–268. isbn: 978-1-4419-6460-1. doi: 10.1007/978-1-

4419-6460-1_11. url: https://doi.org/10.1007/978-1-4419-6460-1_11.

Teich, Jürgen, Jürgen Kleinöder, and Sandra Mattauch (Dec. 2015). Invasive Computing Annual

Report 2015. Tech. rep. Transregional Collaborative Research Centre 89. Friedrich-Alexander-

Universität Erlangen-Nürnberg, Karlsruhe Institute of Technology, Technical University Mu-

nich. url: http : / / invasic . informatik . uni - erlangen . de / publications / Annual -

Report2015.pdf.

Teich, Jürgen, Jürgen Kleinöder, and Sandra Mattauch (Dec. 2016). Invasive Computing Annual

Report 2016. Tech. rep. Transregional Collaborative Research Centre 89. Friedrich-Alexander-

Universität Erlangen-Nürnberg, Karlsruhe Institute of Technology, Technical University Mu-

nich. url: http : / / invasic . informatik . uni - erlangen . de / publications / Annual -

Report2016.pdf.

Teich, Jürgen, Alexandru Tanase, and FrankHannig (2014). “SymbolicMapping of Loop Programs

onto Processor Arrays”. In: Journal of Signal Processing Systems 77.1, pp. 31–59. doi: 10.1007/

s11265-014-0905-0. url: https://doi.org/10.1007/s11265-014-0905-0.

Thoman, Peter, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer (2012). “Automatic

OpenMP Loop Scheduling: A Combined Compiler and Runtime Approach”. In: OpenMP in a

Heterogeneous World. Ed. by Barbara M. Chapman, Federico Massaioli, Matthias S. Müller, and

Marco Rorro. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 88–101. isbn: 978-3-642-30961-

8.

Thomas, James (1999).Numerical Partial Differential Equations. Vol. 33. Texts inAppliedMathematics

978-1-4612-6821-5. Springer, New York, NY. doi: https://doi.org/10.1007/978-1-4612-

0569-2.

Tiskin, Alexander (2011). “BSP (Bulk Synchronous Parallelism)”. In: Encyclopedia of Parallel Com-

puting. Ed. by David Padua. Boston, MA: Springer US, pp. 192–199. isbn: 978-0-387-09766-4. doi:

10.1007/978-0-387-09766-4_311. url: https://doi.org/10.1007/978-0-387-09766-4_311.

Treibig, Jan, Georg Hager, and Gerhard Wellein (Sept. 2010). “LIKWID: A Lightweight

Performance-Oriented Tool Suite for x86 Multicore Environments”. In: 2012 41st International

Conference on Parallel Processing Workshops. Los Alamitos, CA, USA: IEEE Computer Society,

216

https://doi.org/10.1029/2011JC007635
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JC007635
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011JC007635
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007635
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007635
https://doi.org/10.1145/2555243.2555245
http://doi.acm.org/10.1145/2555243.2555245
https://doi.org/10.1145/2894746
https://doi.org/10.1145/2894746
https://doi.org/DOI 10.1524/itit.2008.0499
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1007/978-1-4419-6460-1_11
http://invasic.informatik.uni-erlangen.de/publications/Annual-Report2015.pdf
http://invasic.informatik.uni-erlangen.de/publications/Annual-Report2015.pdf
http://invasic.informatik.uni-erlangen.de/publications/Annual-Report2016.pdf
http://invasic.informatik.uni-erlangen.de/publications/Annual-Report2016.pdf
https://doi.org/10.1007/s11265-014-0905-0
https://doi.org/10.1007/s11265-014-0905-0
https://doi.org/10.1007/s11265-014-0905-0
https://doi.org/https://doi.org/10.1007/978-1-4612-0569-2
https://doi.org/https://doi.org/10.1007/978-1-4612-0569-2
https://doi.org/10.1007/978-0-387-09766-4_311
https://doi.org/10.1007/978-0-387-09766-4_311

Bibliography

pp. 207–216. doi: 10.1109/ICPPW.2010.38. url: https://doi.ieeecomputersociety.org/10.

1109/ICPPW.2010.38.

Ullmann, Jeffrey David (1975). “NP-complete scheduling problems”. In: Journal of Computer and Sys-

tem Sciences 10.3, pp. 384–393. issn: 0022-0000. doi: https://doi.org/10.1016/S0022-0000(75)

80008-0. url: http://www.sciencedirect.com/science/article/pii/S0022000075800080.

UPC Consortium (Nov. 2013). UPC Language Specifications, v1.2. Tech Report LBNL-59208.

Lawrence Berkeley National Lab. url: https://upc-lang.org/assets/Uploads/spec/upc-

lang-spec-1.3.pdf.

Valiant, Leslie G. (Aug. 1990). “A Bridging Model for Parallel Computation”. In: Communications

of the ACM 33.8, pp. 103–111. issn: 0001-0782. doi: 10.1145/79173.79181. url: https://doi.

org/10.1145/79173.79181.

Vázquez, Mariano, Guillaume Houzeaux, Seid Koric, Antoni Artigues, Jazmin Aguado-Sierra,

Ruth Arı́s, Daniel Mira, Hadrien Calmet, Fernando Cucchietti, Herbert Owen, Ahmed Taha,

Evan Dering Burness, José Marı́a Cela, and Mateo Valero (2016). “Alya: Multiphysics en-

gineering simulation toward exascale”. In: Journal of Computational Science 14. The Route to

Exascale: Novel Mathematical Methods, Scalable Algorithms and Computational Science Skills,

pp. 15–27. issn: 1877-7503. doi: https://doi.org/10.1016/j.jocs.2015.12.007. url:

http://www.sciencedirect.com/science/article/pii/S1877750315300521.

Weichslgartner, A., D. Gangadharan, S. Wildermann, M. Glaß, and J. Teich (2014). “DAARM:

Design-time application analysis and run-time mapping for predictable execution in many-core

systems”. In: Proceedings of the International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 34:1–34:10. doi: 10.1145/2656075.2656083.

Wildermann, Stefan, Michael Bader, Lars Bauer, Marvin Damschen, Dirk Gabriel, Michael Gerndt,

Michael Glaß, Jörg Henkel, Johny Paul, Alexander Pöppl, Sascha Roloff, Tobias Schwarzer,

Gregor Snelting, Walter Stechele, Jürgen Teich, Andreas Weichslgartner, and Andreas Zwinkau

(2016). “Invasive computing for timing-predictable stream processing on MPSoCs”. In: it -

Information Technology 58.6, pp. 267–280. doi: https://doi.org/10.1515/itit-2016-0021. url:

https://www.degruyter.com/view/journals/itit/58/6/article-p267.xml.

Witterauf, Michael, Frank Hannig, and Jürgen Teich (2019). “Polyhedral Fragments: An Efficient

Representation for Symbolically Generating Code for Processor Arrays”. In: Proceedings of the

17th ACM-IEEE International Conference on Formal Methods and Models for System Design. MEM-

OCODE ’19. La Jolla, California: Association for Computing Machinery. isbn: 9781450369978.

doi: 10.1145/3359986.3361205. url: https://doi.org/10.1145/3359986.3361205.

X10 Performance Tuning (Nov. 2015). retrieved on February 6th 2020. url: http://x10-lang.org/

documentation/practical-x10-programming/performance-tuning.html.

Yang, Xuejum, Zhiyuan Wang, Jingling Xue, and Yun Zhou (June 2012). “The Reliability Wall for

Exascale Supercomputing”. In: IEEE Transactions on Computers 61.6, pp. 767–779. issn: 1557-9956.

doi: 10.1109/TC.2011.106.

Zwinkau, Andreas (Apr. 2018). “Resource-aware Programming in a High-level Language – Im-

proved performance with manageable effort on clustered MPSoCs”. PhD thesis. Karlsruher

Institut für Technologie, Fakultät für Informatik. doi: 10.5445/IR/1000083526.

217

https://doi.org/10.1109/ICPPW.2010.38
https://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
https://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80008-0
http://www.sciencedirect.com/science/article/pii/S0022000075800080
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/https://doi.org/10.1016/j.jocs.2015.12.007
http://www.sciencedirect.com/science/article/pii/S1877750315300521
https://doi.org/10.1145/2656075.2656083
https://doi.org/https://doi.org/10.1515/itit-2016-0021
https://www.degruyter.com/view/journals/itit/58/6/article-p267.xml
https://doi.org/10.1145/3359986.3361205
https://doi.org/10.1145/3359986.3361205
http://x10-lang.org/documentation/practical-x10-programming/performance-tuning.html
http://x10-lang.org/documentation/practical-x10-programming/performance-tuning.html
https://doi.org/10.1109/TC.2011.106
https://doi.org/10.5445/IR/1000083526

List of Figures

Figure 2.1. Sample Cluster Architecture . 9

Figure 2.2. Data Parallelism Example . 11

Figure 2.3. ILP Example . 12

Figure 3.1. MPI Blocking Send & Receive . 14

Figure 3.2. MPI Ping-Pong Example . 16

Figure 3.3. MPI Collective operations . 17

Figure 3.4. Fork-Join Parallelism with OpenMP . 18

Figure 3.5. OpenMP Parallel Reduction . 19

Figure 4.1. UPC++ Machine Model . 22

Figure 4.2. UPC++ Remote Procedure Calls . 24

Figure 4.3. UPC++ Distributed Objects . 26

Figure 4.4. UPC++ LPC Completion . 27

Figure 4.5. UPC++ Futures . 29

Figure 4.6. UPC++ Promises . 29

Figure 5.1. X10 Parallel Execution . 32

Figure 5.2. Dependent Types in X10 . 35

Figure 5.3. Asynchronous Activities in X10 . 36

Figure 5.4. Activity lifetimes in X10 . 37

Figure 6.1. Regent Data Partitioning Example . 43

Figure 7.1. Charm++ System View . 48

Figure 8.1. Invasive Computing Project Overview . 52

Figure 8.2. Invasive Program State Diagram . 53

Figure 8.3. Constrained Invasion . 54

Figure 8.4. Invasive X10 Code Example . 55

Figure 8.5. OctoPOS API Example . 58

Figure 8.6. Invasive Computing Hardware Architecture 61

Figure 8.7. Invasive Compute Tile . 62

Figure 8.8. Invasive i-NoC . 63

Figure 8.9. Invasive TCPA Tile . 65

Figure 8.10. i-Core Tile . 65

Figure 8.11. Invasive Design Flow . 66

Figure 8.12. Actor Graph Specification with Requirements 67

Figure 8.13. Operating Point Embedding in Applications 68

Figure 9.1. Actor Graph Example . 77

Figure 9.2. Actors for Cannon’s Algorithm . 79

Figure 10.1. ActorX10 System Design . 82

Figure 10.2. ActorX10 Sample Actor . 86

Figure 10.3. ActorX10 Sample Actor Graph . 87

219

List of Figures

Figure 11.1. Actor-UPC++ System Design . 90

Figure 11.2. Actor-UPC++ Parallel Exectution Strategies 93

Figure 11.3. Actor-UPC++ Task-Based Execution Strategy 94

Figure 11.4. Actor-UPC++ Token Transfer . 97

Figure 11.5. Actor-UPC++ Matrix Token . 98

Figure 11.6. Actor-UPC++ Matrix Class Custom Serialization 99

Figure 11.7. Actor-UPC++ Actor Example . 100

Figure 11.8. Actor-UPC++ Actor FSM Example . 101

Figure 11.9. Actor-UPC++ Actor Graph Construction . 102

Figure 14.1. Shallow Water Equations Schematic View . 112

Figure 14.2. CFL Condition . 116

Figure 15.1. Tsunami simulated using SWE-PPM . 121

Figure 15.2. SWE Ghost Layer Exchange . 123

Figure 15.3. Local Time Stepping Scheme . 125

Figure 15.4. SWE-PPM UML Component Diagram . 126

Figure 15.5. Scenario Used for the Evaluation of SWE . 130

Figure 15.6. Time Step Sizes during Simulation of SWE Evaluation Scenario 131

Figure 15.7. SWE-PPM Strong Scaling Test with Global Time Stepping 133

Figure 15.8. SWE-PPM Strong Scaling Test with Local Time Stepping 134

Figure 15.9. Performance Comparison of Charm++ Load Balancing Strategies for SWE-PPM135

Figure 15.10. Performance Comparison of different HPX Implementation Variants in SWE-

PPM . 136

Figure 16.1. Tohoku Tsunami simulated using SWE-X10 137

Figure 16.2. SWE-X10 UML Component Diagram . 139

Figure 16.3. SWE-X10 Actor-Based Decomposition . 141

Figure 16.4. SWE-X10 Sample Actor Graph . 141

Figure 16.5. SWE-X10 Simulation Actor Basic FSM . 142

Figure 16.6. SWE-X10 Simulation Actor FSM with Lazy Activation 143

Figure 16.7. SWE-X10 Single-Core Performance . 147

Figure 16.8. SWE-X10 Single-Node Performance . 147

Figure 16.9. SWE-X10 Weak Scaling Test . 147

Figure 16.10. SWE-X10 GPU Performance . 149

Figure 16.11. SWE-X10 Lazy Activation Test Setup . 151

Figure 16.12. SWE-X10 Lazy Activation Test Results . 151

Figure 17.1. i-Core Block Diagram . 154

Figure 17.2. OctoPOS i-Let Execution Scheme . 156

Figure 17.3. f-Wave Call Site . 157

Figure 17.4. SWE-X10 i-Core Patch Calculator i-let Graph 159

Figure 18.1. Hypothetical Tsunami simulated using Pond 163

Figure 18.2. Pond Component Diagram . 164

Figure 18.3. Actor Graph for Pond . 165

Figure 18.4. Performance Comparison SWE-X10 vs. Pond on Cori (Haswell Partition) . . 167

Figure 18.5. Weak Scaling Test on Cori (Knights Landing Partition) 169

Figure 18.6. Strong Scaling Test on Cori (Knights Landing Partition) 170

Figure 18.7. Analysis of Optimal Number of Nodes per Rank 171

Figure 18.8. Scaling Tests with Pond and Actor-MPI on CoolMUC 2 174

Figure 19.1. Actor Graphs with Multiple Patch Refinement Levels 176

220

List of Tables

Table 15.1. SWE-PPM Configurations used in Scaling Test 131

Table 17.1. i-Core Custom Accelerators for SWE-X10 . 155

Table 17.2. f-Wave CI Performance . 160

Table 17.3. i-Core Patch Calculator Performance . 161

Table 18.1. Application Configurations for Cori (Haswell Partition) 167

Table 18.2. Application Configurations for Cori (Knights Landing Partition) 168

Table 18.3. Application Configurations for CoolMUC 2 . 173

Table B.1. CoolMUC2 CPU Information . 199

Table C.1. Cori CPU Information . 204

221

Acronyms

Actor-MPI The MPI Actor Library 103, 105, 107, 166, 172–174

Actor-UPC++ The UPC++ Actor Library 21, 49, 71, 75, 89, 93, 95–103, 105–107, 148, 163, 164, 166,

169, 171–175, 180, 189, 190, 194

ActorX10 X10 Actor Library 31, 39, 49, 52, 67, 71, 75, 81, 83, 85–87, 89–91, 94, 96, 98, 100, 105, 106,

137, 146, 148, 163, 166–168, 171, 175, 180, 185, 190, 192, 194

ADER-DG Arbitrary High-Order Discontinuous Galerkin 3

AGAS Active Global Address Space 44

APGAS Asynchronous Partitioned Global Address Space 31, 32, 81, 175

µArch micro-architecture 146, 148, 168

AVX-2 Advanced Vector Extensions 2 129, 166

AVX-512 Advanced Vector Extensions 512 7, 8, 166

BSP bulk synchronous parallel 4, 10, 11, 121, 124, 132, 137, 145, 146, 148, 163, 166, 180

ccNUMA cache-coherent Non-Uniform Memory Access 9

CFL condition Cauchy-Friedrichs-Lewy Condition 115, 116, 124

CI i-Core Custom Instruction 64, 153–155, 157, 158, 160

CiC core i-let controller 61, 62

DFG German Research Foundation 51

DMA Direct Memory Access 57, 180

DSE Design Space Exploration 67, 68

223

Acronyms

DSL Domain-Specific Language 41, 64

DSP digital signal processor 160, 161

FAU Friedrich-Alexander-Universität Erlangen-Nürnberg 52

FIFO First In First Out 75

FPGA field programmable gate array 64, 160

FSM Finite State Machine 78, 79, 83, 85, 91, 101, 105, 107, 142, 143, 175, 180, 185

GASNet-EX Global Address Space Networking for Exascale 22, 103, 172, 173

GEBCO General Bathymetric Chart of the Oceans 138

HAM Hybrid Application Mapping 66

HPX High Performance ParalleX 41, 44, 122, 127, 129, 131, 132, 135, 136, 220

i-Core Invasive Core 60–62, 64, 65, 153–155, 157–161, 175, 179, 223

i-let invade-let 53, 56–58, 61, 62, 155–159, 223

iMPI Elastic MPI 59

iNoC invasive Network-on-Chip 60, 61, 63

InvadeX10 Invasive X10 Language 52, 55, 57, 59, 155

InvasIC Transregional Collaborative Research Center Invasive Computing 4, 31, 51, 53, 55, 59,

64, 81, 105, 145, 153, 161, 175

iRTSS invasive Runtime Support System 52, 53, 55, 66, 69, 153

ISA Instruction Set Architecture 62, 157

KIT Karlsruhe Insitute for Technology 52

LEON 3 Sparc LEON 3 60–62, 64, 65, 106, 155, 157, 160, 161

LPC Local Procedure Call 27, 92, 95, 96

224

Acronyms

LRZ Leibniz Supercomputing Centre 60, 129, 172

LUT lookup table 160, 161

MIMD Multiple Instruction Multiple Data 8

MISD Multiple Instruction Single Data 8

MPI Message Passing Interface 3, 13–18, 21, 22, 41, 44, 105, 121, 122, 127, 128, 130–132, 135, 138,

166, 175, 180

MPSoC Multiprocessor System-on-Chip 31, 60

NA network adapter 61, 62

NERSC National Energy Research Scientific Computing Center 89, 166, 202

NoC Network-on-Chip 60–62

NUMA Non-Uniform Memory Access 21, 81, 95

OctoPOS OctoPOS Parallel Operating System 52, 55–59, 155, 156

µOp micro-operation 154

PDE partial differential equation 112, 113, 116, 142, 175

PE Processing Element 56, 62, 64, 65, 153

PGAS Partitioned Global Address Space 10, 21, 31, 41, 44, 89, 139, 179

µProgram Micro-Program 64, 154, 155

RDMA Remote Direct Memory Access 21

RMA Remote Memory Access 128

RPC Remote Procedure Call 23–27, 89, 90, 92, 95, 96, 128, 171

sam(oa)2 Space-Filling Curves and Adaptive Meshes for Oceanic and Other Applications 60

SIMD Single Instruction Multiple Data 3, 8, 11, 144, 146

225

Acronyms

SIMT Single Instruction Multiple Thread 8

SISD Single Instruction Single Data 7, 8

SPMD Single Program Multiple Data 8, 13, 14, 21, 89, 94, 194

SWE ShallowWater Equations Software Package 48, 106, 111, 121, 122, 125, 127, 130, 135–138,

140, 143–146, 148, 150, 163, 164, 166, 168–170, 172, 174, 175, 201

SWE-PPM ShallowWater Equations Parallel ProgrammingModels Evaluation Software Package

41, 121, 122, 126, 127, 129, 131, 133, 134

SWE-X10 Shallow Water Equations in X10 31, 120, 121, 137–140, 142–150, 153–155, 158, 161,

163–169, 175, 176, 179, 180, 201

TCPA tightly coupled processor array 60–62, 64, 65, 153

TLM tile-local memory 61, 64, 65, 153, 154, 158, 160

TUM Technical University of Munich 52

UMA Uniform Memory Access 9

UPC++ Unified Parallel C++ 10, 21–29, 31, 37, 41, 44, 71, 89, 91, 92, 95, 96, 98, 103, 106, 122, 127,

128, 130–132, 163, 167, 171, 172, 175, 194

VLIW Very Long Instruction Word 62

WCET worst-case execution time 68

226

	Introduction and Theory
	Motivation
	Thesis Structure

	Parallel Programming Concepts
	Classification of Parallel Program Execution
	Classification Based on Memory Access Types
	Bulk Synchronous Parallelism

	Classification of Parallelism Based on Type and Granularity of Work

	MPI & OpenMP: The Prevalent Contemporary HPC Technology Stack
	MPI: Message-Based Distributed Memory Parallelism
	Basic Operations
	Collective Operations

	OpenMP: Fork-Join-Parallelism

	UPC++: PGAS-Based Distributed Memory SPMD
	The UPC++ Machine Model
	The UPC++ Execution Model
	PGAS Characteristics of UPC++
	Asynchronous Completions

	X10: Asynchronous Partitioned Global Address Space
	X10 Core Language and Type System
	Concurrency in X10
	Partitioned Global Address Space in X10

	Task-Based Parallelism
	Legion and Regent
	HPX

	Actor-Based Parallel Programming
	The Actor Formalism
	The Erlang Programming Language
	The Charm++ Distributed Runtime System
	Actor Libraries in General Purpose Programming Languages

	Invasive Computing
	The Invasive Programming Model
	Invasive Computing in X10
	System Programming using the OctoPOS API
	The Invasive MPI Runtime

	Overview of the Invasive Hardware
	Invasive Design Flow

	Setting the Stage

	The Actor Model
	The FunState Actor Model
	ActorX10, an X10 Actor Library
	System Design
	Actors
	Ports
	Channels
	ActorGraph
	ActorX10 Application Example: Cannon's Algorithm

	An Actor Library for UPC++
	Actor Graph
	Actors and Execution Strategies
	Ports and Channels
	Actor-UPC++ Application Example: Cannon's Algorithm

	An Actor Library for MPI
	Discussion and Outlook

	Tsunami Simulation
	Tsunami Modelling Using the Shallow Water Equations
	The Two-dimensional Shallow Water Equations
	Hyperbolicity

	Finite Volume Discretization
	The CFL Condition

	Approximate Riemann solvers
	The f-Wave Solver
	The HLLE solver
	Augmented Riemann Solver

	SWE—Experiments with Novel Runtime Systems
	Patch-Based Tsunami Simulation
	Adapting SWE for Different Frameworks
	MPI
	MPI and OpenMP
	UPC++
	Charm++
	HPX

	Evaluation
	Global Time Stepping
	Local Time Stepping
	Detailed Comparison of Over-Decomposition Variations in Charm++ and HPX

	SWE-X10, an Actor-Based Tsunami Simulation
	System Design
	Actor-Based Coordination
	Lazy Activation of Actors
	Patch-Level Calculations
	Performance of SWE-X10 on CPUs
	Performance of SWE-X10 on GPUs
	Evaluation: Lazy Activation of Actors

	Shallow Water on a Deep Technology Stack
	Acceleration of Approximate Riemann Solvers using i-Core
	Changes in the Middleware
	Changes in SWE-X10
	Results
	Discussion

	Pond, An Actor-UPC++ Proxy Application
	Implementation
	Evaluation of Pond and Actor-UPC++
	Evaluation of Pond and Actor-MPI

	Discussion and Outlook

	Conclusion
	Conclusion

	Appendix
	Code Samples
	Cannon's Algorithm in ActorX10
	Cannon's Algorithm in Actor-UPC++

	Scaling Tests of SWE on CoolMUC2
	Summary of the Experimental Setup
	List of Artifacts
	Environment of the Experiment

	Scaling Tests of Pond and SWE on Cori
	Summary of the Experimental Setup
	List of Artifacts
	Environment of the Experiment

	References
	Bibliography
	List of Figures
	List of Tables
	Acronyms

