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Abstract

Uncertainty quantification of engineering systems modeled by computationally intensive numerical models
remains a challenging task, despite the increase in computer power. Efficient uncertainty propagation of such
models can be performed by use of surrogate models, such as polynomial chaos expansions (PCE). A major
drawback of standard PCE is that its predictive ability decreases with increase of the problem dimension for
a fixed computational budget. This is related to the fact that the number of terms in the expansion increases
fast with the input variable dimension. To address this issue, Tipireddy and Ghanem (2014) introduced a
sparse PCE representation based on a transformation of the coordinate system in Gaussian input variable
spaces. In this contribution, we propose to identify the projection operator underlying this transformation
and approximate the coefficients of the resulting PCE through partial least squares (PLS) analysis. The
proposed PCE-driven PLS algorithm identifies the directions with the largest predictive significance in the
PCE representation based on a set of samples from the input random variables and corresponding response
variable. This approach does not require gradient evaluations, which makes it efficient for high dimensional
problems with black-box numerical models. We assess the proposed approach with three numerical examples
in high-dimensional input spaces, comparing its performance with low-rank tensor approximations. These
examples demonstrate that the PLS-based PCE method provides accurate representations even for strongly
non-linear problems.

Keywords: Uncertainty quantification, High dimensions, Polynomial chaos, Basis adaptation, Partial least
squares, Surrogate models

1. Introduction

In many domains of science and engineering, one employs models of physical systems that aim at rep-
resenting accurately the behavior of the underlying system under future conditions. Input parameters of
models and future conditions are subject to uncertainties. Uncertainties can be due to limited availability of
data, limited understanding of the underlying physical process or the intrinsic randomness of a phenomenon,
such as wind or earthquake. Proper quantification of uncertainties and their impact on the performance of
the model is paramount for obtaining accurate predictions.

Efficient uncertainty propagation of complex numerical models remains a challenge despite the increase
in computer power. The challenge is two-fold: On the one hand, the analysis of complex systems often
requires the use of computationally intensive deterministic solvers that are only available as black boxes, i.e.
one does not have access to core routines of the computer code and hence cannot modify them. On the other
hand, output quantities of interest are integrals over the space of uncertain inputs and numerical evaluation
of these integrals suffers from the curse of dimensionality, i.e. the number of model evaluations increases
geometrically with increase of the number of inputs for a fixed target accuracy.

Monte Carlo sampling can be easily coupled with black-box models and resolves the curse of dimension-
ality, but suffers from slow convergence rates. A possible remedy is to construct a surrogate model of the
computationally intensive model using a simple mathematical form and then employ the surrogate model
to perform uncertainty propagation. In particular, surrogate models based on polynomial chaos expansions
(PCE) [1, 2] have enjoyed extensive application in uncertainty quantification due to their simplicity and
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guaranteed convergence property, among other reasons. The basic idea of PCE is to project the model
output onto a space spanned by multivariate polynomials that are orthogonal with respect to the input
probability measure. The projection can be performed by stochastic Galerkin schemes [1, 3, 4], which are
intrusive in the sense that they require modification of existing deterministic solvers, or collocation-type
methods [5, 6, 7, 8], which are non-intrusive and can be coupled with black-box deterministic solvers.

Non-intrusive PCE approaches estimate the coefficients of the expansion by numerical quadrature, in-
terpolation or regression methods. Both numerical quadrature and interpolation techniques with tensor
product grids suffer from the curse of dimensionality, i.e. their rate of convergence deteriorates drasti-
cally with increase of the dimension, e.g. [7, 8]. Approaches that employ sparse grids to delay the curse
of dimensionality associated with integration/interpolation based on tensor product grids can be found in
[9, 8, 10].

Accurate estimation of the PCE coefficients with regression requires an experimental design with size
equal to a multiple of the total number of PCE terms. The number of PCE terms in common truncation
schemes increases fast with increase of the number of inputs. This implies that in problems with high-
dimensional inputs, a large number of model evaluations is required for estimating accurately the PCE
coefficients with regression. A possible solution is to construct a sparse polynomial basis through selecting
the most significant terms in the PCE. This can be done though regularization techniques, such as the least-
angle regression [11] or l1-minimization, also known as compressive sensing [12, 13]. Adaptive algorithms
for determining sparse PCEs based on such techniques can be found in [11, 14, 15].

The quality of the PCE approximation obtained with regression can be potentially increased by choosing
an appropriate experimental design set. A common choice is to use samples from the distribution of the
input random variables obtained with standard Monte Carlo, stratified or quasi-random sampling schemes
[16, 11]. Schemes based on the roots of the orthogonal polynomials are discussed in [6, 17] and randomized
versions thereof in [18]. Alternative random sampling schemes that present optimal performance, especially
in high-order PCEs, are discussed in [19, 20, 21]. Similar approaches have been proposed for use within
compressive sensing-based sparse PCEs methods [13, 22, 23].

Another non-intrusive approach for surrogate modeling with polynomial bases is provided by canonical
decompositions [24, 25, 26], a special case of low-rank tensor approximations (LRA). This approach is based
on approximating the model response by a linear combination of rank-one approximations, obtained as
products of univariate polynomial expansions. The coefficients can be determined adaptively, e.g. with a
technique termed alternating least-squares regression [24, 27]. It is demonstrated in [28] that LRA performs
better than sparse PCE in moderate dimensional problems and small experimental designs.

Recently, it has been proposed to reduce the number of terms in the classical PCE representation through
performing a coordinate transformation in Gaussian space [29]. The transformed basis can be adapted
to the output quantity of interest, e.g. through performing a small initial number of model evaluations.
For example, the basis adaptation can be informed by evaluating the low-order coefficients with a sparse-
grid numerical quadrature. This approach has been combined with compressive sensing for simultaneously
determining the basis adaptation as well as the PCE coefficients in [30].

An alternative approach for identifying important directions in the space of uncertain inputs is the active
subspace (AS) method [31, 32]. This approach is based on identifying the projection subspace of highest
variability through decomposing the covariance matrix of the gradient of the model. Usually this matrix
is estimated by a set of samples and corresponding gradient evaluations. Although AS can lead to vast
dimensionality reduction, in high-dimensional problems with black box numerical models, the additional
computational cost from the numerical evaluation of the gradients might be prohibitive. The AS method
has been combined with PCEs in [33], wherein the covariance of the gradient vector is computed based on
a low-order PCE.

In this contribution, we propose an approach that computes the basis transformation based on a given
experimental design with a technique termed partial least squares (PLS) regression [34]. The proposed
approach takes advantage of the structures in the covariance of the input parameters and model response
to determine the directions with largest predictive significance in the PCE representation. Unlike the AS
method, PLS does not require gradient evaluations at the samples, and hence is ideally suited for application
to high-dimensional problems with black box numerical models. The PLS method is widely used in the field
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of chemometrics, where regression with many variables but only a few observations is common [35, 36].
Here, we employ a nonlinear version of the PLS algorithm [37, 38] and modify it for use with PCE models.
The proposed PCE-driven PLS algorithm identifies simultaneously a set of dominant directions and the
corresponding PCE coefficients along each direction. The performance of the method is demonstrated with
three high-dimensional examples, a linear elastic bar with stochastic axial rigidity, a hysteretic oscillator
under random loading and a low-carbon steel plate with stochastic stiffness. The results are compared with
the ones obtained by LRA and it is shown that the proposed PLS-based PCE approach performs consistently
better than LRA for experimental design sizes in the order of the dimension of the random variable space.

2. PCE representations

Let X be a random vector with outcome space Rn and joint PDF fX(x). Consider the Hilbert space
H of all functions from Rn to R with finite mean-square under the probability measure of X. The inner
product of two functions g, h ∈ H is defined as

〈g, h〉H =

∫
Rn

g(x)h(x)fX(x)dx . (1)

Consider the random variable Y = M(X) representing the response of an engineering model and assume
that M∈ H. Let {hi(x), i ∈ N} be a complete orthonormal basis of H, thus satisfying

〈hi, hj〉H = δij , (2)

where δij is the Kronecker symbol. Since {hi(x), i ∈ N} is a complete basis of H, we can represent every
element of H as a linear combination of the functions {hi(x), i ∈ N}. Therefore Y can be expressed as

Y =M(X) =

∞∑
i=0

aihi(X) . (3)

Truncating the representation of Eq. (3) after the first L terms, we get the following approximation of Y

Ŷ =

L∑
i=0

aihi(X) , (4)

which converges to Y in the mean-square sense as L→∞. We now make the following assumption on the
distribution of the vector X.

Assumption 1. The random vector X follows the independent standard Gaussian distribution.

In such case, we can construct an orthonormal polynomial basis of H using products of one-dimensional
normalized Hermite polynomials [1]

Ψk(X) =

n∏
i=1

ψki
(Xi) , (5)

where {ψi(X), i ∈ N} are the normalized (probabilist) Hermite polynomials and k = (k1, . . . , kn) ∈ Nn.

Remark. In cases where the Gaussian restriction of Assumption 1 does not apply, it is possible to express
the random variable Y as a function of an underlying independent Gaussian input through performing an
isoprobabilistic transformation [39].

The p-th order total degree Hermite polynomial chaos expansion (PCE) of Y is the representation of Y
on the space spanned by products of Hermite polynomials with total degree up to p

Ŷp =
∑
|k|≤p

akΨk(X) , (6)
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where |k| =
∑n

i=1 ki. The total number of terms in Eq. (6) is

P =

(
n+ p
p

)
. (7)

The coefficients ak are found by projecting M(X) on the space spanned by {Ψk, |k| ≤ p}. According
to the projection theorem, this is equivalent to minimizing the norm of the truncation error of the PCE
representation ‖Y − Ŷp‖H = E[(Y − Ŷp)2]1/2. Using a set of samples X = {x(i), i = 1, . . . , N} from the
distribution of X and corresponding model evaluations Y = {y(i) =M(x(i)), i = 1, . . . , N}, one can estimate
the coefficients ak through minimizing a sample estimate of E[(Y − Ŷp)2], i.e. through solving

â = arg min
a:a∈RP

1

N

N∑
i=1

y(i) −
∑
|k|≤p

akΨk(x(i))

2

. (8)

Eq. (8) corresponds to an ordinary least squares (OLS) regression problem [6].
Alternative choices of the experimental design set X can lead to a weighted least squares problem, e.g.

[21]. As seen in Eq. (7), the total number of terms P in the PCE representation increases factorially with
increase of either the dimension n or the polynomial degree p. A typical requirement for obtaining reasonable
estimates of the regression coefficients in OLS is that N > 2P , e.g. [40, 17]. It is noted that the minimum
number of experimental points N depends on the sampling scheme used and on the probability measure
of X, and could potentially be significantly larger than 2P . In fact, for standard Monte Carlo sampling
it has been shown that stable solutions are obtained at best for N ∼ O(P log(P )) and in some cases for
N ∼ O(P 2) [21, 20].

Therefore, for a fixed number of experimental points N , the number of terms in the expansion that can
be computed with accuracy through solution of Eq. (8) is limited.

To avoid over-fitting and obtain reliable predictions even for relatively large P , several adaptive ap-
proaches have been proposed for selecting the most significant terms in the PCE based on solving regu-
larized regression problems [11, 14, 15]. These approaches result in sparse PCE representations. Although
regression-based sparse PCEs perform well in moderate dimensional problems, their applicability in high
dimensions (n > 100) is limited. This is due to the fact that they require the evaluation of the full set
of multi-indices k of the orthogonal polynomials as well as the assembly and storage of the correspond-
ing Vandermonde matrix. In particular, adaptive methods evaluate the multi-indices for a typically high
maximum polynomial degree. For the total degree construction of Eq. (6), this requires a huge computing
and storage capability in dimensions > 100, when considering that common algorithms for ordering the
multi-indices scale exponentially with the dimension, e.g. [41]. Here, we focus on a different approach for
reducing the number of coefficients in the PCE that performs a linear coordinate transformation of the
Gaussian parameter space.

2.1. Transformed PCE basis

Consider the following coordinate transformation:

Z = QTX , (9)

where Q is an n×n orthogonal matrix, i.e. satisfying QTQ = I. The columns of matrix Q are orthonormal
vectors and define a complete basis in Rn. Therefore, Eq. (9) defines a projection of X on the coordinate
system defined by the columns of Q. Due to the rotational symmetry of the independent standard Gaussian
distribution of X, any orthogonal transformation of X will also be independent standard Gaussian. There-
fore, the polynomials defined in Eq. (5) with argument Z form a complete basis in the transformed space
defined by the matrix Q. The p-th order PCE representation of Y on the transformed space reads

Ŷ Q
p =

∑
|k|≤p

bkΨk(Z) =
∑
|k|≤p

bkΨk

(
QTX

)
. (10)
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The representations of Eq. (10) and Eq. (6) are equivalent, i.e. it is possible to express the coefficients bk
in terms of ak [29]. The representation of Eq. (10), introduced by Tipireddy and Ghanem [29], provides an
additional flexibility in constructing sparse PCE representations through identifying dominant effects in the
form of linear combinations of input variables. For example, if a dominant direction in X-space is known,
then one possible construction of matrix Q is to set its first column equal to the dominant direction and
determine the remaining columns by the Gram-Schmidt process. In such case, it might be possible to obtain
an accurate representation of Y by only including the terms in Eq. (10) for which {ki = 0, i = 2, . . . , n}. In
[29], it is suggested to determine the dominant direction by estimating the low-order PCE coefficients. As
an example, the direction defined by the linear PCE coefficients is q1 ∝ [a(1,...,0); . . . ; a(0,...,1)].

Consider now the case where one has identified a set of m dominant directions. We formalize the process
of retaining only the terms in Eq. (10) with non-zero indices in k for i ≤ m by defining a reduced orthogonal
matrix Qm of dimensions n×m, whose columns correspond to the dominant directions. The corresponding
PCE representation reads

Ŷ Qm
p =

∑
|km|≤p

bkm
Ψkm

(
QT

mX
)
, (11)

where km ∈ Nm. In the following section we discuss an approach that determines directions in the input
space with high predictive ability based on a set of experimental points. In the subsequent section, we employ
this approach to construct the matrix Qm and compute the corresponding coefficients {bkm

,km ∈ Nm}.

3. Partial least squares

Partial Least Squares (PLS) is a modelling technique that attempts to find relations between observable
variables using latent variables [34, 35, 36]. This approach was originally developed in the field of chemo-
metrics, where it is often the case that the number of independent variables in an experimental setting is
significantly larger than the number of data points, whereas the underlying process is driven by a small
number of latent (not directly observable) variables. The basic idea of PLS is to find uncorrelated linear
transformations of the original predictor variables that have high covariance with the response variables.

Let X be an N × n matrix of samples from the input random vector X and let Y be the corresponding
N × 1 vector of model responses. It is convenient to assume that both X and Y are centered around their
means; centering implies the operation X ← X − X̄ , where X̄ denotes the arithmetic mean of X . Standard
PLS projects the matrix X to latent components ti of dimensions N × 1 by sequentially maximizing the
covariance between the response Y and the latent components. After determining each ti, it assumes a
linear relationship between ti and Y and evaluates the coefficient of ti by OLS.

The procedure starts by evaluating the projection to the first latent component t1 = Xw1, where w1

has dimensions n× 1, by maximizing the covariance between t1 and Y under the constraint that ‖w1‖ = 1.
The corresponding optimization problem is stated as

w1 = arg max
w:w∈Rn,‖w‖=1

cov
(
YTXw,YTXw

)
. (12)

The exact solution of Eq. (12) is given by

w1 =
XTY
‖XTY‖

. (13)

The regression coefficient of t1 is then evaluated by OLS as

b1 =
tT
1 Y

tT
1 t1

. (14)

To obtain the next latent component, the residual matrices E and F for the regressor and response matrices,
X and Y, respectively, are evaluated by subtracting from X and Y their rank-one approximations based on
t1

E = X − t1p
T
1 , (15)
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F = Y − b1t1 , (16)

where p1 is the load vector corresponding to t1 and defines the projection of the rows of X on the first
latent component. It is

p1 =
XTt1

tT
1 t1

. (17)

The procedure is continued by extracting the next component from the deflated matrices E and F , until
a certain error criterion is satisfied. The latter is usually based on estimates of the mean-square error of
the PLS prediction. One possible approximation of this error is obtained through the norm of the residual
‖F‖. Alternatively, a more robust estimate can be derived based on cross-validation, e.g. [34]. The PLS
process leads to a total of m ≤ n latent components or scores ti and corresponding weight vectors wi and
load vectors pi. The PLS algorithm is summarized in Algorithm 1.

Algorithm 1 PLS algorithm

1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: wi = ETF/‖ETF‖
6: Compute score: ti = Ewi

7: Compute load: pi = ETti/(t
T
i ti)

8: Compute regressor: bi = tT
i F/tT

i ti
9: Deflate: E ← E − tip

T
i , F ← F − biti

10: i← i+ 1
11: until change in ‖F‖ is smaller than εy

Remark. The deflation of the response vector Y in step 9 of Algorithm 1 is not required for computing the
PLS weights, i.e. it will not influence the resulting components and regression coefficients [35].

Remark. Algorithm 1 is often termed PLS1 in the literature to distinguish it from the PLS algorithm for
multivariate outputs, termed PLS2.

The scores, weights and loads computed by the PLS algorithm, can be gathered in matrices T =
[t1, . . . , tm] ∈ RN×m, W = [w1, . . . ,wm] ∈ Rn×m and P = [p1, . . . ,pm] ∈ Rn×m. The PLS algorithm
determines each latent component as a linear combination of columns of the corresponding residual matrix
E . However, it is also possible to express ti as linear combinations of the data matrix X [42, 43]. Define the
matrix R ∈ Rn×m as follows

R = W
(
PTW

)−1
. (18)

The PLS scores can be expressed by projecting X on the space defined by the columns of matrix R, i.e.

T = XR . (19)

The columns of matrix R = [r1, . . . , rm] can also be obtained through the following recursive relation [35]

r1 = w1 ,

ri = wi − ri−1

(
pT
i−1wi

)
.

(20)

The approximation X̂ of the data matrix X using m PLS components can be expressed using the load matrix
P as follows

X̂ = TPT . (21)
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3.1. Properties of the PLS matrices

PLS identifies dominant directions in the input space that can be potentially used within the context of
PCE in transformed basis. In order to proceed, it is useful to review the properties of the matrices derived
by the PLS process.

The PLS algorithm identifies orthogonal directions in the data space, i.e. it holds [35]

tT
i tj = 0 for i 6= j . (22)

This implies that the PLS scores form an orthogonal basis in the space generated by the columns of matrix
X . Eq. (22) is a crucial ingredient of the PLS approach; it enables evaluation of the regression coefficients
bi one by one, as in step 8 of Algorithm 1.

The columns of matrices W, P and R define directions in the space generated by the rows of matrix X ;
each direction corresponds to a linear combination of the underlying random variables X. The matrix R
contains the reduced basis in X-space that defines the PLS components, cf. Eq. (19).

The matrix W is orthogonal, i.e. it holds WTW = I [35], and hence its columns form an orthonormal
basis in the X-space. However, the same cannot be said for matrices P and R. Therefore, if the PLS
algorithm is applied not for prediction purposes but to determine orthogonal dominant directions then the
orthogonal projection matrix W is often the desired output, e.g. [44]. The matrices P and R are not
necessarily orthogonal, but their columns are mutually orthogonal, i.e. it holds PTR = I [43].

In the context of PCE representations in transformed basis, it is possible to define the reduced basis
using the orthogonal directions of matrix W, i.e. setting Qm = W in Eq. (11). Projecting the data on the

columns of matrix W would lead to scores T̃ = XW, that differ from the PLS scores given by Eq. (19).
This is somewhat suboptimal as the PLS components are determined based on maximizing the covariance
with the prediction error obtained from regressing the PLS scores T (and not T̃) with Y. Moreover, unlike

the PLS scores T, the scores T̃ are not necessarily orthogonal.
As will become clear in the next section, employing directly the directions of the PLS components, i.e.

the columns of matrix R, to define the PCE reduced basis is of particular benefit; it allows estimating simul-
taneously the reduced basis and PCE coefficients. However, as the matrix R is in general not orthogonal,
the projection of the random variables X on the columns of R will not be independent standard Gaussian.
This poses a problem to the PCE representation of Eq. (11): the Hermite polynomial basis of Eq (5) will
not be orthogonal in the resulting transformed space. That is, if the matrix R is not orthogonal then the
orthogonal polynomial basis need to be determined for the problem at hand, e.g. by application of the
Gram-Schmidt process.

Next we look more closely at the properties of matrix R and determine a condition under which this
matrix becomes orthogonal.

Lemma 3.1. The matrix RTW is a lower triangular matrix with unit diagonal elements.

Proof. The proof follows from the recursive relation of Eq. (20). Eq. (20) can be rewritten as follows

ri = wi +

i−1∑
j=1

cjwj ,

where cj ∈ R are coefficients, which are not used here. This gives

rT
i wk = 0 for i < k

and
rT
i wi = 1 ,

where we have used that wT
i wj = δij .
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We now consider the special case where the columns of the centered data matrix X have equal norm and
are mutually orthogonal, i.e.

XTX = ωI , (23)

where ω ∈ R>0 and I is the n× n identity matrix.

Proposition 3.1. If the data matrix X satisfies Eq. (23), then the matrix R is orthogonal, i.e. RTR = I.

Proof. From Eq. (22) and expressing each PLS score as ti = X ri, we get

rT
i

(
XTX

)
rj = 0 for i 6= k .

Using Eq (23), we obtain
rT
i rj = 0 for i 6= k .

From Eq. (20) and using Lemma 3.1, we have

rT
i ri = rT

i wi − rT
i ri−1

(
pT
i−1wi

)
= rT

i wi = 1 .

Proposition 3.1 implies that if the pair-wise sample correlation of the underlying random variables van-
ishes and the sample variances of all variables are equal, then the directions identified by PLS, the columns
of R, will be orthogonal and will have unit length. One interpretation of this result is that if the under-
lying variable space is uncorrelated and has equal variances, then the directions identified by PLS should
contribute equally to the explained variance of X .

Although Eq. (23) is not necessarily true, under Assumption 1 it is asymptotically true as N → ∞.
Moreover, one can generate X through sampling techniques that aim at approximately satisfying Eq. (23)
for finite N . This is achieved by stratification techniques such as Latin hypercube sampling (LHS) [45], or
a modified version that aims at minimizing the correlation between samples, e.g. [46].

4. PLS-based PCE

We now discuss how the PLS approach can be used in the context of the PCE representation in trans-
formed basis. We discuss two versions of PLS-based PCE representations; the first is based on the linear
PLS algorithm presented in Section 3 and the second is based on a nonlinear version of the PLS algorithm
tailored for use with PCE models.

4.1. Linear PLS-based transformation

As mentioned in the previous section, it is possible to build a PCE representation of Y by selecting
Qm = W or R in Eq. (11). The matrix of PLS weights W is orthogonal, while the matrix R defining
the PLS components in X-space is asymptotically orthogonal as N → ∞. Having determined the PLS
directions with samples X = {x(i), i = 1, . . . , N} from the distribution of X and corresponding model
evaluations Y = {y(i) = M(x(i)), i = 1, . . . , N}, the same samples can be used to determine the PCE
coefficients {bkm

,km ∈ Nm} in Eq. (11) by OLS regression.
We note that for the first PLS component it holds r1 = w1, cf. Eq. (20). We make the following

observation.

Proposition 4.1. If the reduced basis is determined by a single direction (m = 1) as computed by Al-
gorithm 1, then this direction is asymptotically equivalent to the direction defined by the first-order PCE
coefficients.
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Proof. The first linear PLS direction r1 is obtained as follows

r1 ∝
N∑
i=1

(x(i) − X̄ )(y(i) − Ȳ) ,

where X̄ and Ȳ are the arithmetic means of {x(i), i = 1, . . . , N} and {y(i), i = 1, . . . , N}, respectively. Under
Assumption 1, X̄ → 0 as N →∞. Therefore as N →∞, it is

r1 ∝
N∑
i=1

x(i)y(i) .

The vector of first-order PCE coefficients a1 is obtained by projecting Y = M(X) on the linear Hermite
polynomials {Ψk, |k| = 1} = {X1, . . . , Xn}. It is

a1 = E[M(X)X] = E[YX] .

As the samples x(i) and y(i) follow respectively the distribution of X and Y , the PLS direction r1 converges
to the one defined by a1 as N →∞.

Proposition 4.1 implies that the linear PLS algorithm with m = 1 is asymptotically equivalent to the
linear PCE-driven Gaussian adaptation proposed in Section 3.1 of [29].

The linear PLS algorithm does not not always result in an optimal coordinate transformation because
the matrices W and R are evaluated assuming a linear relationship between the response and each latent
variable. Next we discuss an approach that adapts PLS for obtaining directions that are optimal for use in
the representation of Eq. (11).

4.2. PCE-driven PLS-based transformation

Several variants of the classical PLS method have been proposed for addressing problems where the
underlying process is nonlinear [47]. Here, we employ the approach proposed by Wold et al. [37] and later
modified by Baffi et al. [38]. This approach was originally proposed for quadratic models and later extended
for use with neural networks [48]. Here, we adapt this approach for use in PCE representations.

The nonlinear PLS algorithm proceeds by obtaining a first approximation of each projection vector wi

with standard PLS. Thereafter, it assumes a nonlinear relationship between the response and the latent
variable ti, which is fitted by OLS. Within the context of PCE representations, the nonlinear relationship
in each latent variable is a one-dimensional Hermite polynomial expansion of order p

M̂p
i (t) =

p∑
j=1

b̂pijψj(t) . (24)

For the first latent variable, the PCE regression problem is stated as

Y =

p∑
j=1

bp1jψj(t1) + e , (25)

wherein the operations are performed element-wise, t1 = Xw1 and e is the vector of regression errors.
Eq. (25) is solved for the coefficients {bp1j}. The vector w1 is then modified iteratively by means of a Newton-
Raphson linearisation of Eq. (25), i.e. by performing a first-order Taylor series expansion of Eq. (25) with
respect to w1 and then solving it for the increment ∆w1. This gives

∆w1 = (ATA)−ATe , (26)

where (·)− denotes the generalized inverse of a matrix and A is the gradient of the PCE model with respect
to the weights A = ∇wM̂p

1(Xw). Thereafter, w1 is updated, w1 = w1 + ∆w1, and normalized. The latent
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component t1 is then updated, Eq. (25) is fitted anew and the next increment ∆w1 is evaluated. This
iterative procedure is continued until ∆w1 is sufficiently small.

To obtain the next latent component, the residual matrices E and F are evaluated by subtracting from
X its rank-one approximations based on t1 and from Y its PCE approximation using the first direction
M̂p

1(t1) and the same process is repeated using E and F as the new X and Y.
In order to obtain PLS directions that reflect the nonlinear nature of the underlying process while

avoiding over-fitting, we choose the polynomial degree in Eq. (25) for each latent variable by evaluating
each latent component for different polynomial degrees q = {1, . . . , p} and retaining the one that results
in the smallest modified leave-one-out error εqLOO; εqLOO can be evaluated based on a single PCE built
using the Vandermonde matrix of the OLS problem [49, 11]. The PCE-driven PLS algorithm is detailed in
Algorithm 2.

Algorithm 2 PCE-driven PLS algorithm

1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: w0

i = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

i = w0
i

8: repeat
9: Compute score: tqi = Ewq

i

10: Fit a 1D PCE of order q: b̂q
i ← fit

[
F =

∑q
j=1 b

q
ijψj(t

q
i ) + ε

]
11: Set M̂q

i (t) =
∑q

j=1 b̂
q
ijψj(t)

12: Compute the error: F̂ = M̂q
i (tqi ); e = F − F̂

13: Compute: ∆wq
i = (ATA)−ATe with A = ∇wM̂q

i (Ew)
14: Set: wq

i ← wq
i + ∆wq

i

15: Normalize: wq
i ← wq

i /‖w
q
i ‖

16: until ‖∆wq
i ‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [11]
18: end for
19: Set {qi,M̂qi

i ,w
qi
i } as the triple {q,M̂q

i ,w
q
i } with the smallest εqLOO

20: Compute score: tqii = Ewqi
i

21: Compute load: pqi
i = ETtqii /((t

qi
i )Ttqii )

22: Deflate: E ← E − tqii (pqi
i )T, F ← F − M̂qi

i (tqii )
23: i← i+ 1
24: until change in ‖F‖ is smaller than εy
25: return {qi,M̂qi

i , t
qi
i ,w

qi
i ,p

qi
i }, i = 1 . . . ,m.

Remark. The matrix A required in step 13 of Algorithm 2 can be computed analytically using the properties
of the derivatives of the Hermite polynomials [50] and hence does not require additional model evaluations.

The algorithm returns m quintuples {qi,M̂qi
i , t

qi
i ,w

qi
i ,p

qi
i }, with qi denoting the polynomial degree,

M̂qi
i the one-dimensional PCE representation, tqii the scores, wqi

i the weights and pqi
i the loads of the i-th

PLS component. The PLS directions rqii can then be evaluated through Eq. (18) or Eq. (20). Using the

one-dimensional fitted PCEs M̂qi
i and the PLS directions rqii , we obtain the following representation

Ŷ PLS
m = M̂m(X) = b0 +

m∑
i=1

M̂qi
i

[
(rqii )TX̃)

]
, (27)
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where b0 = Ȳ and X̃ = X− X̄ . Due to the asymptotic behavior of the matrix R = [rq11 , . . . , r
qm
m ], described

in Proposition 3.1, and because X̃ → X as N → ∞, the representation of Eq. (27) is asymptotically
equivalent to the PCE representation of Eq. (11) with Qm = R, for the case where only the main-effects in
the transformed coordinate system are considered.

The PCE-driven PLS algorithm identifies simultaneously the PLS directions and the coefficients of the
one-dimensional PCEs in each PLS component. A disadvantage of this approach is that the matrix R defining
the PLS components is only asymptotically orthogonal. This implies that for finite N the multivariate
Hermite polynomials are not orthogonal with respect to the distribution of the latent variables and hence
the polynomial basis loses its optimality. However, as mentioned in Section 3.1, tailored sampling techniques
can be used to obtain approximately orthogonal PLS directions for finite N .

An alternative approach would be to employ the orthogonal matrix W = [wq1
1 , . . . ,w

qm
m ] obtained from

Algorithm 2 to define the orthogonal projection. In such case, the PCE coefficients need to be evaluated
anew through setting Qm = W and regressing Eq. (11) with the responses Y.

5. Examples

In this section, we evaluate the proposed method with three numerical examples in high dimensions.
We investigate the performance of both the linear PLS-based approach of Section 4.1 and the PCE-driven
PLS algorithm of Section 4.2. We compare the linear PLS approach with a single latent component to the
linear PCE-driven Gaussian adaptation of Tipireddy and Ghanem (TG) [29], computed with a quadrature-
based pseudo-spectral projection, to numerically verify Proposition 4.1. We employ a sufficient number of
quadrature points in the TG approach to ensure accuracy of the result. We note that the proposed PLS
methods are based on model evaluations at a set of samples from the distribution of the input variables,
whereas the TG approach applies numerical quadrature to evaluate the PCE coefficients. Hence, a direct
comparison of the computational cost of PLS methods with the TG approach would be difficult to set up1.
Instead, we compare the performance of the PCE-driven PLS method against polynomial-basis low-rank
approximations (LRA), which can be constructed based on the same set of model evaluations. We use the
LRA implementation of UQlab [51], which employs alternating least-squares to fit the LRA with an adaptive
scheme for the rank selection while considering every polynomial order up to p within the selected ranks.
We choose to compare our method to the particular implementation of LRA, as it has been shown that it
performs better than sparse PCEs in moderate dimensional problems and small experimental designs [28].
In addition, the computational cost of building an LRA in high dimensions is feasible as its construction is
based on products of univariate polynomial expansions. In contrast, sparse PCEs, e.g. based on compressive
sensing, require evaluation and storage of the full Vandermonde matrix for high polynomial orders, which
is prohibitive in very high dimensions (see the relevant discussion in Section 2). For all methods, we choose
a maximum polynomial degree of p = 10 and for the LRA a maximum rank of R = 10.

The reduced basis identified by the columns of the R-matrix, {rqii , i = 1, . . . ,m}, need not be orthogonal
for finite sample size N ; this compromises the optimality of the Hermite PCE basis as the basis will not be
orthogonal in the transformed space. In order to quantify this error, we consider the Gramian of R

G(R) = RTR . (28)

If R is orthogonal, then it is G(R) = I. We therefore use ‖I −G(R)‖2 as the error measure, where ‖ · ‖2
denotes the 2-norm of a matrix.

We compare the proposed method against LRA in terms of the errors in the mean and variance of the
output quantity of interest as well as the generalization error errG. The latter is defined as the mean-square
of the residual

errG = E[(Y − Ŷ )2] , (29)

1The first direction obtained by the linear PLS-based PCE can be viewed as a Monte Carlo approximation of the linear
PCE-based transformation of TG. Therefore, the linear PLS-based approach is itself a way of approximating TG.
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where Ŷ denotes the output response of the surrogate model. An estimate êrrG of errG can be obtained
using a large set of samples Xval, termed validation set.

The experimental designs for both PLS-PCE and LRA are generated via LHS with sample decorrelation,
using the built-in Matlab function lhsdesign with correlation criteria; this function iteratively generates
samples with LHS to find the ones with the smaller sample correlation. For each example, the analysis is
performed 100 times to obtain confidence intervals (CI) on the predictive quantities. Reference solutions
are obtained with Monte Carlo simulation with 2× 105 samples.

5.1. Linear elastic bar

The first example consists of a linear elastic bar of length L = 1m, as shown in Figure 1. The displacement
of the bar u(x) satisfies the following differential equation

− d

dx

(
D(x)

d

dx
u

)
= q(x) in [0, L] . (30)

The axial resistance of the bar D(x) = EA(x) is described by a homogeneous random field with lognormal

q

x D(x)

u(L)

L

Figure 1: Linear elastic bar with random axial rigidity.

marginal distribution with mean µD = 100kN and standard deviation σD = 10kN. The autocorrelation
function of the underlying Gaussian random field lnD is ρlnD(∆x) = exp(−|∆x|/l) with correlation length
l = 0.04m. The random field lnD is represented by a Karhunen-Loève (KL) expansion [1] with 100 terms,
which captures 95% of the variability of lnD. This leads to an input random vector consisting of 100
independent standard Gaussian random variables. The bar is subjected to a deterministic load q = 1kN/m.
Eq. (30) is solved by the finite element method with 100 piecewise linear finite elements. The output quantity
is the displacement at the tip of the bar Y = u(L).

Figure 2: Linear elastic bar: Log-densities of response. Comparison of linear PLS-PCE (with m = 1) with various design
sizes with the linear PCE-based adaptation of Tipireddy and Ghanem (TG) [29] and direct Monte Carlo (DMC) using 2× 105

samples.
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Figure 2 compares the log-densities obtained with the linear PLS-based PCE with m = 1 for increasing
experimental design sizes to the one obtained with the linear PCE-based adaptation of TG. The latter com-
pares well with the reference solution computed with direct Monte Carlo, which implies that a single latent
component suffices to describe the behavior of the model response. It is also shown that the linear PLS-based
PCE approaches the solution of TG as the number of samples N increases, which verifies Proposition 4.1.

Figure 3: Linear elastic bar: Comparison of the linear PLS-based (solid line) and nonlinear (PCE-driven) PLS-based (dashed
line) adaptation at various design sizes and number of latent components.

Figure 3 compares the generalization error obtained with the linear and PCE-driven PLS methods for
increasing number of latent components m. It is seen that the PCE-driven PLS method using a single latent
component yields consistently lower errors than the linear PLS , whereas using additional components does
not improve the results. This is to be expected as the nonlinear PLS algorithm employed within the PCE-
driven PLS approach identifies the directions that minimize the residual in the PCE approximation. As the
linear PLS assumes a linear relationship between input and output and, hence, is not optimized for use with
higher order PCEs, it requires more latent components to capture the behavior of the model.

We now compare the performance of the nonlinear PLS-PCE method with the LRA surrogate based on
the same experimental design scheme. Both surrogates capture the response PDF increasingly well as the
number of points in the experimental design rises (Figure 4). The PLS-based PCE model exhibits a bias
at low experimental designs, which vanishes as the size of experimental design increases. The variability of
the PDF estimates obtained by the LRA model is in general larger than the one of the PLS-based PCE
model. Figure 5 shows the one-dimensional PCE model along the first latent direction. The nonlinearity
(polynomial degree) of the PLS-based PCE model in general increases with the increase of the experimental
design size. At N/n = 2, the PLS-based PCE model exhibits good convergence while the LRA model still
produces occasional outliers (Figure 6). In terms of generalization error, the LRA error is slightly smaller
for small experimental designs (N/n ≤ 0.5). The PLS-based PCE error continuously decreases as we add
points to the experimental design while the LRA error seems to stagnate from N/n = 1 on (Figure 7, top
left). Both methods yield virtually identical mean errors, while the variance error exhibits similar behaviour
as the generalization error (Figure 7, bottom right & left). Across all N , the PLS-based PCE reduced space
is constructed with m = 2 directions, which exhibit relatively low orthogonality error (Figure 7, top right).
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Figure 4: Linear elastic bar: Log-densities of response at various design sizes with 95 % CI. Results of (nonlinear) PLS-PCE
and LRA are compared with direct Monte Carlo (DMC) results using 2 × 105 samples.

Figure 5: Linear elastic bar: 1-D Surrogate model along first PLS direction t1 vs. the design of experiments at N/n = 0.5
(left) and N/n = 2 (right).
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Figure 6: Linear elastic bar: Scatter plots of (nonlinear) PLS-based PCE (left) and LRA (right) response vs original response
at N/n = 2 using a validation set of 2 × 105 samples.
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Figure 7: Linear elastic bar: Error measures with 95 % confidence intervals obtained from 100 repeated analyses with different
experimental designs; reference solution obtained with 2 × 105 samples. The top right panel includes the average number of
latent components (PLS directions) mavg .
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5.2. Nonlinear oscillator

The second example, adapted from [52], is a hysteretic oscillator under random loading, defined by the
following differential equation:

mü(t) + cu̇(t) + k[αu(t) + (1− α)uyz(t)] = f(t) , (31)

where u(t), u̇(t) and ü(t) denote the displacement, velocity and acceleration of the oscillator. The mass,
stiffness and damping of the oscillator are m = 6 × 104kg, k = 5 × 106N/m, c = 2mζ

√
k/m with ζ = 5%,

and the yielding displacement is uy = 0.04m. The parameter α, which controls the degree of hysteresis is
set to α = 0.1. The parameter z(t) follows the Bouc-Wen hysteresis law

ż(t) =
1

uy

[
Au̇(t)− β|u̇(t)||z(t)|n̄−1z(t)− γu̇(t)|z(t)|n̄

]
, (32)

with β = γ = 0.5, A = 1 and n̄ = 3. The loading f(t) is a seismic load process modelled by a white noise
ground acceleration and discretized in the frequency domain as follows [53]

f(t) = −mσ
n/2∑
i=1

[Xi cos(ωit) +X(n/2+i) sin(ωit)] , (33)

where Xi, i = 1, . . . , n, are independent standard Gaussian random variables, ωi = i∆ω, ∆ω = 30π/n (the
cut-off frequency is ωcut = 15π) and σ =

√
2S∆ω, where S = 0.03m2/s3 is the intensity of the white noise.

We use n = 300 terms in Eq. (33), which leads to an input random vector X of dimension 300. We are
interested in approximating the displacement of the oscillator at t = 8s, u(8s).

Figure 8: Nonlinear oscillator: Log-densities of response. Comparison of linear PLS-PCE (with m = 1) with various design
sizes with the linear PCE-based adaptation of Tipireddy and Ghanem (TG) [29] and direct Monte Carlo (DMC) using 2× 105

samples.

As in example 1, convergence of the linear PLS-based PCE with m = 1 to the TG solution is again
observed. However, here the TG approach with a single linear PCE-based component cannot capture the
behavior of the nonlinear oscillator (Figure 8).

Evidently, the strong nonlinearity present in the hysteretic oscillator model is more challenging to both
PLS-based PCE and LRA compared to the bar example. In particular, we were unable to obtain non-
diverging surrogate models with the LRA as can be seen from Figure 9. In contrast, PLS-based PCE
yields a series of converging surrogate models as N increases. That is, the response PDF is approximated
increasingly well and the generalization error decreases monotonously (Figure 11, top left). The polynomial
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Figure 9: Nonlinear oscillator: Log-densities of response at various design sizes with 95 % CI. Results of (nonlinear) PLS-PCE
and LRA are compared with direct Monte Carlo (DMC) results using 2 × 105 samples.

Figure 10: Nonlinear oscillator: 1-D Surrogate model along first PLS direction t1 vs. the design of experiments at N/n = 0.5
(left) and N/n = 2 (right).
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Figure 11: Nonlinear oscillator: Error measures with 95 % confidence intervals obtained from 100 repeated analyses with
different experimental designs; reference solution obtained with 2 × 105 samples. The top right panel includes the average
number of latent components (PLS directions) mavg .

degree of the one-dimensional PCE identified for the first latent directions increases on average with the
size of the experimental design, while the percentage of explained variance by the first latent component
decreases (Figure 10). Therefore, the number of PLS components increases with increase of the experimental
design size (Figure 11, top right). The response mean is captured well by the PLS-based PCE model even
with the smallest investigated N (Figure 11, bottom left). Note, that for this example, Figure 11 depicts
the unscaled absolute mean error since µu = 0. In this example, depending on the experimental design,
between 2–4 reduced space directions are included by the PLS algorithm as N ≥ n. The orthogonality
error increases slightly when N ≥ n, yet it remains reasonably low for all N . Figure 12 depicts the three
Gramian matrices corresponding to m = {2, 3, 4}. The first two directions which explain most of the output
variance enclose angles close to π/2 in all three cases, whereas combinations of less important directions
are responsible for most of the orthogonality error. Thus, using R to define the transformation does not
compromise significantly the optimality of the Hermite polynomial basis.
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Figure 12: Depiction of Gramian matrices of the nonlinear PLS algorithm resulting from m = 2 (left), 3 (center) and 4 (right).

5.3. Steel plate

For a third example, we consider a modified version of the example given in [54], which consists of
a low-carbon steel plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole of radius
0.02 m located at the center. The Poisson ratio is set to ν = 0.29 and the density of the plate is ρ =
7850 kg/m3. The horizontal and vertical displacements are constrained at the left edge. The plate is
subjected to a fixed surface load of q = 96 MPa, which acts on the right narrow plate side. The Young’s

Figure 13: FE-mesh of 2D-plate model. Green marker: Location of maximum first principal stress σ1.

modulus E(x, y) is considered uncertain and spatially variable. It is described by a homogeneous random
field with lognormal marginal distribution, mean value µE = 2 × 105 MPa and standard deviation σE =
3×104 MPa. The autocorrelation function of the underlying Gaussian field lnE is modeled by the isotropic
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exponential model, ρlnE(∆x,∆y) = exp(−
√

∆x2 + ∆y2/l) with correlation length l = 0.04m. The random
field lnD is discretized by a KL expansion with M = 1000 terms, which yields a global relative variance error
of 7%. The stress (σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ), strain (ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T )
and displacement (u(x, y) = [ux(x, y), uy(x, y)]T ) fields of the plate are given through elisticity theory,
namely the Cauchy-Navier equations [55]. Given the configuration of the plate, the model can be simplified
under the plane stress hypothesis, which yields

G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0 . (34)

Therein, G(x, y) := E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]T is the vector of body forces
acting on the plate. Eq. (34) is discretized with a finite-element method. That is, the spatial domain of the
plate is discretized into 282 eight-noded quadrilateral elements, as shown in Figure 13. The scalar model
output is the first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2
xy

at node 11 (see green marker Figure 13), which is where maximum plane stresses occur typically in this
example.

Figure 14: Steel plate: Log-densities of response. Comparison of linear PLS-PCE (with m = 1) with various design sizes with
the linear PCE-based adaptation of Tipireddy and Ghanem (TG) [29] and direct Monte Carlo (DMC) using 2 × 105 samples.

Figure 14 shows that the TG method with linear PCE-based adaptation performs well for this example.
Again, the linear PLS-based PCE with m = 1 approaches the TG solution with increase of N .

Comparing the linear and nonlinear PLS-PCE methods, we see again that the nonlinear PCE-driven
PLS algorithm gives consistently lower generalization errors with fewer number of latent components than
the linear PLS (Figure 15).

Comparing the performance of the nonlinear PLS-PCE and LRA surrogates, we see that both methods
are capable of producing a converging approximation of the numerical model as the number of points in
the experimental design increases (Figures 16 & 17). Figure 17 indicates that the PLS-based PCE model
represents the model response more accurately in the tails. Moreover, the variability associated with the
random choice of the experimental design is very small across all N . Similar to the bar example, all PLS-
based PCE surrogates are constructed with m = 2 with two quasi-orthogonal directions in the reduced
space (Figure 18, top right). The PLS-based PCE mean and generalization errors become smaller than the
corresponding LRA errors for N/n = 2 (Figure 18, bottom & top left).
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Figure 15: Steel plate: Comparison of the linear PLS-based (solid line) and nonlinear (PCE-driven) PLS-based (dashed line)
adaptation at various design sizes and number of latent components.

Figure 16: Steel plate: Log-densities of response at various design sizes with 95 % CI. Results of (nonlinear) PLS-PCE and
LRA are compared with direct Monte Carlo (DMC) results using 2 × 105 samples.
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Figure 17: Steel plate: Scatter plots of PLS-based PCE (left) and LRA (right) response vs original response at N/n = 2 using
a validation set of 2 × 105 samples.
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Figure 18: Steel plate: Error measures with 95 % confidence intervals obtained from 100 repeated analyses with different
experimental designs; reference solution obtained with 2 × 105 samples. The top right panel includes the average number of
latent components (PLS directions) mavg .
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6. Concluding remarks

This paper presented a novel sparse polynomial chaos expansion (PCE) representation based on a trans-
formation of the coordinate system in Gaussian space using a number of dominant directions. These di-
rections are identified based on partial least squares (PLS) analysis using a set of experimental points..
Two PLS algorithms were investigated; the standard linear PLS algorithm and a novel PCE-driven nonliear
PLS algorithm. It was shown that the linear PLS with a single latent component is asymptotically (as
N → ∞) equivalent to the linear PCE-based adaptation of [29]. The proposed PCE-driven PLS algorithm
is able to simultaneously determine the dominant directions in input space and the PCE coefficients in the
transformed space. Three numerical examples demonstrated the ability of the method to provide accurate
estimates of the moments and PDF of quantities of interest in problems with high-dimensional input spaces,
provided that the behavior of the model is governed by a small number of latent variables. The method
presented comparable performance to the low-rank tensor approximation (LRA) surrogate in moderately
nonlinear problems for experimental design sizes in the order of the input dimension. In addition, the pro-
posed method was able to provide an accurate representation of the response of a highly nonlinear oscillator,
whereas the LRA model was unable to obtain converging results for the same example.

6.1. Discussion on computational complexity

The linear PLS algorithm (Algorithm 1) has complexity approximately O(m n N), with m being the
number of latent components. Solution of the OLS problem in the reduced space has complexity O(P 2

m N),
with Pm denoting the number of terms in the total degree expansion in reduced space. The complexity
of the nonlinear PCE-driven PLS algorithm is dominated by the Newton-Raphson iteration (step 13 in
Algorithm 2), which has approximate cost O(n2 N) (for N > n). This step is repeated at most l times,
with l denoting the maximum number of Newton-Raphson iterations. Since the nonlinear PLS process is
repeated for each candidate polynomial degree and each latent component, the computational complexity of
the algorithm is approximately O(m p l n2 N), with p being the maximum polynomial degree considered.
Although the cost of Algorithm 2 is often much higher than the one of Algorithm 1, it remains polynomial in
the dimension n. It is noted that the computational complexity of ordinary or regularized regression-based
PCE in high dimensions is governed by the complexity of the algorithm used to order the multi-indices
of the orthogonal polynomials, which is asymptotically 2O(n). This does not pose a problem to PLS-PCE
methods as typically m << n. Hence, the proposed algorithms are orders of magnitude more efficient than
sparse PCEs based on compressive sensing as n → ∞. It is also worth mentioning that the two PLS-PCE
methods have low memory requirements, as opposed to regularized regression algorithms that require storage
of the full Vandermonde matrix of dimensions N ×P , with P increasing factorially with n for a total degree
construction.

6.2. Outlook

The size of the experimental design for obtaining accurate predictions depends on the nonlinearity of
the problem and on its effective dimension, i.e. the number of latent variables that have significant effect
on the behavior of the output quantity. One possible future improvement of the method is to estimate
the size of the experimental design adaptively, for example based on a cross validation error criterion.
In the present implementation, the experimental design is generated with Latin hypercube sampling with
sample decorrelation, to minimize the error in the orthogonality of the polynomials in transformed space.
The performance of alternative sampling schemes will be investigated in future studies. Additionally, the
method can potentially be extended to the case of multivariate output quantities. This could be enabled by
application of the multivariate version of the PLS method, the PLS2 algorithm.
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