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Abstract

This research was motivated by the challenges of transport supply, failing to fulfill the travel
demand of commuters, which often leads to traffic congestion and disruption of business for
public transport and mobility operators. Travel time is an essential determinant for plan-
ning individual upcoming trips. As a result, this research identified relevant data-driven
indicators affecting the travel time of individual on-demand trips, developed and compared
suitable deep learning models to predict the travel time, and also identified the compu-
tational costs of developing suitable travel time prediction models. The research strategy
adopted was the exploratory case study of Chengdu city, China. Large data sets of com-
muters’ on-demand ride requests, collected from the digital platform of a mobility service
provider in China, Didi Chuxing, resulted in using a convenience sampling approach and a
quantitative research analysis method to achieve the research objectives. The model eval-
uation metrics are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Coefficient of determination (R-squared). The findings indicated that model inputs, such
as the departure time, travel distance, traffic analysis zones, and most importantly, travel
speed, are highly relevant data-driven indicators influencing the travel time of individual
on-demand trips. Furthermore, Artificial Neural Network (ANN), Convolutional Neural
Network (CNN), and Long Short-Term Memory (LSTM) were the deep learning networks
developed, evaluated, and compared. The LSTM model 5 has the highest travel time pre-
diction accuracy of 0.997, 0.059, and 0.364 for R-squared, MAE, and RMSE, respectively.
Each deep learning model development consumed an average of 6.3 gigabytes SSD and 7.88
gigabytes RAM. At the same time, the LSTM had the highest overall computational cost
of about 50 hours run-time, to execute all its models. The total run-time expended, for the
15 deep learning models, was approximately 5 days and 14 hours. Therefore, on-demand
modeling and forecasting individual upcoming trips recorded its highest prediction accu-
racy, using the travel speed and other identified data-driven indicators derived from the trip
origin timestamps, origin coordinates, and destination coordinates. To develop the LSTM
model, which had the highest prediction accuracy, high computational power and computer
capacity are required to reduce the run-time, and increase travel time prediction accuracy.

Keywords : Transport supply, on-demand trips, data-driven indicators, travel time, deep
learning models, computational costs.
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Chapter 1

Introduction

1.1 Introduction

In early nineteenth (19th) century, the world experienced poor connectivity in the trans-
portation of people, information and goods from their origins to various destinations and
unfortunately towards the end of the century, a drastic increment in the movement of people
was also recorded (Perlman, 2015). Consequently, to date, increased urbanization has been
experienced in cities or central business districts around the world. As a result, traffic con-
gestion and longer travel time among others have led to the advent of various transportation
and mobility alternatives offered by transport authorities and operators in order to ensure
efficiency and effectiveness in daily mobility.

These mobility solutions require taking into account the commuters’ travel behaviour to
establish a sustainable equilibrium between the demand and supply sides of transportation.
Travel demand modeling and forecast were discovered to be required techniques meant
for transportation engineers to determine the future volume of traffic and support their
decision-making (Aloc and Amar, 2013). This approach of modeling and prediction borne
the demand-responsive services offered by transport operators to cater for passengers mobil-
ity requests. The recent advancements in technology have also contributed to the approach
of model development with the introduction of machine learning and deep learning tools to
capture patterns, and give insights to trip distribution of commuters from the real-time and
historical data collected by operators.

Transport authorities and operators have also prioritized the provision of real-time and
static commuters’ trip data to increase the modal shift from private transport to public
transport, for faster and highly efficient transportation and mobility (Nuzzolo et al., 2015).
Consequently, insights on the demand-responsive or on-demand trips of individual travellers
can be captured with the aid of traveller information systems under the umbrella of the

1



Intelligent Transportation System (ITS). As researched by Nuzzolo et al. (2015), a traveller
information system known as Advanced Transit Traveller Information Systems (ATTIS)
processes and displays information for individuals to plan their trips and also know their
route choice options from their intended origin to their destination, taking into account
travel time and transit schedules of the transport services.

The data obtained from the time of travel, origin and destination are important informa-
tion relevant to on-demand trip planning for both commuters and operators. On-demand
mobility involves provision and processing of real-time trip information tailored towards
individual trip purposes and needs. The result of the processed trip information is meant to
ensure the availability of vehicles to individuals upon request, which is very much applicable
to the shared vehicle system of Mobility-On-Demand (MOD) (Wilhelm et al., 2015). In this
situation, the commuter provides origin and destination while the system decodes the time,
longitude and latitude of the trip and route choice via the Global Positioning System (GPS).

Furthermore, fundamental decisions, such as departure time and route choice for drivers and
transport operators, are dependent on predictive travel time information provided through
the Advanced Traveler Information Systems (ATISs), which helps to improve travel quality
for passengers (Yildirimoglu and Geroliminis, 2013). Travel time forecast is, therefore, an
efficient and effective tool for mobility or transport operators to enhance their profitability
and reshape their business models towards catering to passengers’ on-demand requests. This
is also applicable to shared mobility, car-pooling and public transport services.

High reliability on travel time estimation and prediction are mostly achieved through his-
torical and real-time commuters’ data visualization, analysis and the development of strong
machine learning and deep learning models. In essence, the combination of the right statisti-
cal algorithms and tools are prioritized in predictive modeling and estimation of travel travel
time (Yildirimoglu and Geroliminis, 2013). Research has shown that travel time predictions
are accomplished with two major methods classified into data-driven and model-driven
(Duan et al., 2016).

According to Duan et al. (2016), the data-driven approach uses data features like speed, time
of the day, day of the week among others as inputs or features for developing models such
as Linear regression, Autoregressive Integrated Moving Average (ARIMA), Spectral basis
Neural Network, State-space Neural Network (SSNN), Recurrent Neural Network (RNN),
Long and Short-term Memory Neural Network (LSTM) etc. In this research, three deep
learning models are developed and trained with huge historical data sets of ride requests.
Simultaneously, the model performance and accuracy are also compared to determine which
is more suitable for travel time predictions for on-demand mobility.
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1.2 Research background

On-demand mobility and the sharing economy require establishing reliable matches between
the supply and demand aspects of transportation to ensure efficient travel for commuters and
profitable business models for operators in the mobility industry. Travel time is an essential
indicator for achieving the on-demand services and its prediction can be accomplished using
the data-driven approach, either through historical or real-time data acquisition.

The challenges of traffic congestion caused, on most occasions, as a result of high motoriza-
tion on the roads and uncoordinated supply of public transport to fulfill the travel demand
of commuters, have necessitated high requests for demand-responsive mobility alternatives
to complement the conventional public transport system. These problems also influence the
decision-making on the travel of individual commuters and services rendered by transport
operators. Furthermore, route choice and departure time are found to be important travel
decisions that are influenced by travel time information, which is an important performance
measure in balancing these inadequacies in transportation supply and demand (Yildirimoglu
and Geroliminis, 2013).

The high accuracy required of the travel time information prediction, which is dependent on
developing suitable machine learning or deep learning models, alleviates commuters’ anxiety
and the uncertainty about their on-demand trip decisions that can also be influenced by
the departure time, origin-destination and route choice (Khosravi et al., 2011). Therefore,
attaining high predictive accuracy requires using relevant indicators affecting travel time to
train models and evaluate the models’ performance to ascertain the most suitable among
them. These indicators serve as model inputs which play huge roles in shaping the models
to reach highly accurate output of travel time prediction, meant to be as close to the real
individual travel time as possible.

1.3 Objectives and research questions

1.3.1 Objectives

In this research, various deep learning models are developed and compared in order to
accurately predict the travel time for individual on-demand trips. This goal is achieved
with the following objectives stated below;

1. Identify relevant data-driven indicators influencing the travel time of individual on-
demand trips.

2. Develop and compare suitable deep learning models to predict the travel time of
individual on-demand trips.
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3. Identify the computational costs of developing suitable deep learning models from
huge datasets to predict the travel time of individual on-demand trips.

1.3.2 Research questions

The following research questions were answered in the course of this study.

1. What are the relevant data-driven indicators that influence the travel time of individ-
ual on-demand trips?

2. Which deep learning model is most suitable to predict the travel time of individual
on-demand trips?

3. What are the computational costs of developing suitable deep learning models from
humongous datasets to predict the travel time of individual on-demand trips?

1.4 Research framework

The framework of this research serves as guide during the research process and it highlights
the composition of each chapter in this study. The first chapter comprises of introduction,
research background, research objectives, research questions and the research framework.
The second chapter reviews previous research works to determine the research gaps that can
be explored in this research. The third chapter reveals the methodology adopted for this
research which comprises of the research strategy, data collection approach, data analysis
framework and research limitations while the fourth chapter delves into visualization, analy-
sis and discussions of the results derived during the study. The fifth chapter summarizes this
thesis and draws a conclusion, and finally gives recommendations for subsequent research.
Figure 1 shows the main structure and flow chart of this research work as highlighted above.

4



Figure 1: Research framework flow chart
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Chapter 2

Literature review

2.1 Mobility-On-Demand (MOD)

Public transport have faced issues related to reliability, inconsistencies in operation sched-
ules, delays at stops and stations and congested carriages during peak periods among others,
thus leading to travelers’ shift into other mobility alternatives (Liyanage and Dia, 2020).
Liyanage and Dia (2020) also discovered that these alternatives, which includes ride-sharing
and car-pooling, are services tailored towards complementing public transport, and catering
for transport users’ demand-responsive requests facilitated by technological advancement.
These services are famously known as on-demand mobility and the evolution of the digital
age have rapidly increased the usage of these alternative services.

On-demand mobility, also known as Mobility-On-Demand (MOD), is highly decisive in
balancing process of the supply and demand systems of transportation to ensure an efficient
performance of its ecosystem. The sustainability of the demand and supply coordination in
the ecosystem is supported by stakeholders and enablers who includes the government at
all levels, public transit agencies, operators and logistics providers, apps and mobile service
providers, the users or commuters among others (Shaheen and Cohen, 2020).

This chapter reviews literature and previous studies on on-demand mobility modeling and
prediction of individual trips. Relevant indicators affecting the travel time and the impacts
of the travel time on individual on-demand trips are reviewed. Various deep learning models
adopted by previous researchers to predict travel time are also reviewed with the approach
used in deriving and evaluating the most suitable model for prediction.
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2.2 On-demand trips and travel time effects

In recent times, the requests for on-demand or demand-responsive mobility have rapidly in-
creased and this had been disrupting and reshaping the transportation system to be highly
efficient. As against the conventional transport systems, it is discovered that adapting
transport supply to demand-responsive requests by commuters would alter transport opera-
tions through flexibility in route choice, deviations from fixed stops and timetable flexibility
(Viergutz and Brinkmann, 2015).

The aforementioned stakeholders in the mobility-on-demand ecosystem prioritize efficiency,
influenced by various factors, to meet the requests for on-demand trips from commuters.
Travel time is one of these factors capable of influencing individual mobility. According to
Oh et al. (2015), it is a performance indicator which, when predicted, becomes tool for the
comparison of various traffic management techniques. Furthermore, the accuracy of travel
time can also improve the traffic management system’s (TMS) ability to establish proactive
responses to traffic situations (Oh et al., 2015).

2.2.1 On-demand trips and the cycle

In 1970, Torsten Hagerstand, a geographer at the Lund University in Sweden postulated
theories to reveal that a set of social and personal constraints limit individuals’ activities
which can only take place at different spatial points in form of a time-space prism (Chu
et al., 2012). These theories focus on trips based on activities which necessitate the on-
demand trip request of individuals. Furthermore, Chu et al. (2012) noted that not much
research had been conducted to create trip modeling approaches which utilize temporal and
spatial features, thus, showing previous researchers only consider activity time and duration
but not the spatial conditions.

Spatial factors such as space and distance are considered for modeling on-demand trips
as a result of the need for door-to-door flexibility and dynamic route choice to satisfy the
user’s request. Trips requested on demand are characterized by the need to complement
the conventional public transport and private transport, thereby ensuring it is a sustainable
and economically attractive option for travel (Liyanage and Dia, 2020). It was however
discovered by Liyanage and Dia (2020) that technological advancements borne by the digital
age have established the mobile app-based approach for on-demand mobility services and
personalized trip request procedures.
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Figure 2: On-demand transit request flow, adapted from (Liyanage and Dia, 2020)

Figure 2 shows how emerging technologies like Internet of Things (IoT), mobile apps, cloud
computing and Artificial Intelligence (AI) are influencing on-demand transit as against the
conventional style of phone bookings and manual trip scheduling (Liyanage and Dia, 2020).
The transit or trip requests originate from the passengers on demand through using mobility
service providers’ mobile applications, to send their orders for ride to the transport or
mobility operator. These on-demand service requests are sent and received using internet
connection by service providers which eventually get through to the cloud, where their
transit information (such as pickup and drop off time and location etc.) are processed and
sent back to passengers as notifications.

According to Hazan et al. (2019), passengers, afterwards, proceed to a nearby location re-
ferred to as virtual bus stops where they are picked up, conveyed with other passengers
for pick-up and finally dropped off at locations nearest to their destinations. On-demand
transits goals include, providing solutions for current gaps in public transportation, irreg-
ularities in current mass-transit maps as well as first and last mile to bus stops in the
proximity (Hazan et al., 2019). Therefore, on-demand transit system bridges the gap in
services and limitations of public transport and private ones as described in Figure 3 below.
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Figure 3: On-demand transit complementing public and private transport (Hazan et al.,
2019)

2.2.2 Demand-responsive ride-sharing and e-hailing transits

Flexible hire services in Germany, as researched by Liyanage and Dia (2020), to accommo-
date short distance trips through the BMW Drive Now scheme which is a similar approach of
the city driving on-demand initiative of Ford. Furthermore, these initiatives allows one-way
trips as well as the pay-by-the-minute services and similar attractive service options have
strengthened collaborative mobility which has seen 70% of Autolib (A French car sharing
operator) users look beyond ownership of a car (Liyanage and Dia, 2020).

Electronic ride hailing services such as Didi and Uber are among many others operating
on-demand services. However, their operations are not limited to sharing or car-pooling,
they also offer personalized demand-responsive services for commuters. Hu (2019) further
stressed that platforms for ride-hailing services match drivers in close proximity with their
private vehicles to pick passengers up and most importantly ensure shorter waiting time
and shorter trip distance are achieved in service deliveries to the commuters.

Ride-sharing can, however, be categorized into four different system variants according to a
research by Agatz et al. (2012) in Table 1 below, which includes drivers offering a ride to a
single rider or willing to take multiple riders and vice versa, riders willing to share trips with
single driver or multiple drivers connected with transfers on the route to their destinations.

This ride-sharing system categories as studied by Agatz et al. (2012) recognizes the impor-
tance of time feasibility in the match of drivers and riders travel. As in the case of a single
driver sharing trip with at most a single rider, vehicle miles traveled by both can be cut
by maximum of 50% as a result of no transfer which saves travel time (Agatz et al., 2012).
Furthermore, in the case of a necessity for round trip planning, a rider, on one hand, would
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Table 1: Ride-share variants (Agatz et al., 2012)

request multiple drivers and on the other hand, if the drivers also have flexible time, sharing
trips with multiple riders could be possible (Agatz et al., 2012).

2.2.3 Impacts of travel time on on-demand trips

Travel time immensely contributes to demand-responsive trips, as the goal of every com-
muter is to move from one location to another without delay caused by congestion or wait-
ing time at bus stations. Travel time has less negative impact on motorized transport than
on non-motorized transport mode while its influence on drivers and riders in motorized
transport also differ (Ennen and Heilker, 2020). Since this research focuses on motorized
on-demand trips, we can deduce that travel time is an important factor to be considered in
demand-responsive trips.

As shown in Table 2, Ennen and Heilker (2020) explained further that a large coefficient for
drivers was discovered in absolute terms during their research and this could indicate drivers
experience fatigues while in traffic congestion. A result of such large coefficient is longer
travel time and virtually all transport operators and commuters envisage lower travel time
before their trips start. A study in Germany by Ennen and Heilker (2020), disclosed that to
ensure travel time savings, the average willingness to pay (WTP) by drivers and passengers
are 5.32 Euros per hour and 3.11 Euros per hour, respectively. This denotes both drivers
and riders consider travel time reduction impact on a trip to be highly important.

According to a study by Ennen and Heilker (2020), travel time influence discovered as a
result of trip characteristics such as the coordinates of trip origin and destination, and the
travel time are extracted from the trip’s route planning service and mode options. We can
infer from this research that travel time influences on-demand trips along with other features
such as origin and destination.
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Table 2: Model Parameter Estimates (Ennen and Heilker, 2020)

2.3 Travel time and its indicators for on-demand trips

2.3.1 Travel time description

There are three methods which Duan et al. (2016) stated in their research work for detecting
or gathering data on travel time and they include the use of vehicle data collected from
Global Positioning Systems (GPS), estimating base on vehicle occupancy and speed, as well
as using Automatic Vehicle Identification (AVI) at end stations. As shown in Figure 4 (Xt)
is the travel time for a complete journey (L) that started at time (t) from passenger’s origin
(A) to destination (B) which is a simple illustration of how travel time can be measured.
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Figure 4: Travel time illustration adapted from (Duan et al., 2016)

Travel times are on most occasions considered as the timestamps at stops which differs from
services of on-demand mobility known for estimating the travel time of every segment or
leg on the path between two stops (Kayikci, 2018). These two stops can be deduced to be
origin and destination of the passengers or the pick up timestamp and drop-off timestamps.
The duration of travel between these stops have some indicators that determine or influence
how much travel time is expected during the journey.

2.3.2 Indicators or factors influencing travel time

Timestamps, longitudes and latitudes are discovered to be sequence of triple collected with
the aid of technologies like Global Positioning System (GPS) to discover zones or regions
where geo-referenced objects or moving objects with set of trajectories, frequently visit
(Masiero et al., 2011). Subsequently, the research also elaborated that trip coordinates rep-
resented with longitude and latitude are important indicators that influence travel time. It
was confirmed in another research that the process of estimating travel time can indepen-
dently undergo time-sliced subsets of trips having pick-up and drop-off with their respective
longitudes and latitudes (Vazifeh et al., 2018).

Furthermore, Masiero et al. (2011) emphasized that variables such as longitude and latitude
of vehicle’s originating point and destination, distance of travel between the origin and
destination, start timestamp hour of the day, start timestamp date, start timestamp day
of the week (e.g. Monday), start timestamp day of the month and vehicle identifier, are
indicators for travel time estimation. We can also deduce that traffic analysis zones or
regions of interest are also important indicators that influence travel time but not used in
the research for the model used in predicting travel time.

According to a study by Sathya Prabha and Mathew (2013), the research model estimation
utilizes distance traveled by vehicle, speed during a time interval and the volume during the
time interval as independent variables. These variables are also known to be indicators of
travel time as they either have high negative or positive correlation with the travel time.
Table 3 below shows the speed of the vehicle to have negative correlation with the negative
coefficient and tStat, and it is also the most important indicator which when travel time
reduces, the vehicle speed increases and viceversa (Sathya Prabha and Mathew, 2013).
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Table 3: Travel time modelling (Sathya Prabha and Mathew, 2013)

The features or indicators of travel time are most time gathered in large amount from diverse
sources, such as open data platforms, where the data had been structured and classified by
experts with General Transit Feed Specification (GTFS), both in real-time and static col-
lection (Wu et al., 2020). It was further revealed in Figure 5 below, that the data were
collected from two sources which was subsequently cleaned and structured in data fusion.
Consequently, exploiting logical reasoning from the data to apply into deep learning models,
leads to the stage of knowledge base before finally extracting the relevant features for the
model to predict the travel time.

Figure 5: Framework of travel time prediction and data sources, adapted from (Wu et al.,
2020)

Conclusively, most of the research works examined considered indicators or variables, in-
cluding distance, speed, start time hour, start time day of the week, start time day of the
month, start time date, pick-up longitude, pick-up latitude, drop-off longitude and drop-off
latitude, as having influence on travel time and also used as features to develop models for
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travel time prediction.

2.4 Deep learning models for travel time prediction

Travel time estimation or prediction is of high importance to both passengers and operators
which had made virtually all electronic maps and ride-hailing service like Didi, Google Map,
Uber among others to provide estimation of travel time in their mobile applications for
seamless user experience (Wang et al., 2018). According to Siripanpornchana et al. (2016)
and Liu et al. (2017), time-series models such as Autoregressive Integrated Moving Average
(ARIMA) is a widely utilized statistical prediction approach for travel time and relies on
an assumption that predicting future values depends on random noise and historical data
collected.

Subsequently, deep learning model approach became commonly used for travel time pre-
diction. Deep learning methods is a branch of machine learning research that has solved
various challenges of classification and regression in modeling and prediction (Liu et al.,
2017). Neural Network models such as Artificial Neural Network (ANN), Deep Neural Net-
work (DNN), Recurrent Neural Network (RNN), Long Short-term Memory (LSTM) and
Convolution Neural Networks (CNN) are widely and commonly used across many fields,
thus, previous research were reviewed.

2.4.1 Artificial Neural Network (ANN)

Complex non-linear data challenges are resolved using the Artificial Neural Network (ANN)
and ANN is implemented through two phases called the learning phase and recalling phase
(Amita et al., 2015). Amita et al. (2015) further revealed that weights are assigned to
models and they are trained during the learning phase while the application of weight
assigned during learning phase is also applied to the recalling phase. ANN is also a type
of machine learning method with the capacity to solve noise and complex data within large
sets of data considering complexity of the relationships between their predictors (Gurmu
and Fan, 2014). These are the basic applications and phases of Artificial Neural Network
(ANN) model and it can be applied to the prediction of travel time for individual trips.

An advantage of ANN model is being able to predict travel time without full consideration
of the physical traffic processes as it imitates the ability of human brains to process data
in an intelligent way (Gurmu and Fan, 2014). Another important aspect of ANN for travel
time prediction is its spatial-temporal input data or the independent variables used to train
the model, which have very high significance in the overall outcome or accuracy of the
model (Zeng and Zhang, 2013). We can deduce from this that spatial and time-dependent
variables discussed as travel time indicators in previous section are very important in the
model performance.
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Artificial Neural Network (ANN) Architecture

Artificial Neural Network model development has similarity with the development of regres-
sion models, with a division of the whole data set into training and testing sets of data
(Amita et al., 2015). The training data is what the model uses to learn patterns in the
data to be able to predict while the testing set is used to check the performance or accu-
racy of the trained model. The structure of ANN basically contains nodes and three layers
interconnected together, thus having the first layer as an input containing information like
independent variables, last layer having output information and in between is a hidden layer
which generates weight and bias parameter during training (Gurmu and Fan, 2014).

The quantity of nodes that are contained in the hidden layer are to be determined through
experiments (Gurmu and Fan, 2014). Amita et al. (2015) further disclosed that ANN
comprises of highly interconnected processing elements which are of huge size and also in
resemblance with the biological nervous system like the brain which has information pro-
cessing elements also known as neurons. As a result, these neurons are organized into layers
and interconnected patterns within and this form of arrangement is termed architecture of
net (Amita et al., 2015).

Figure 6: Structure of ANN neurons, adapted from (Gurmu and Fan, 2014)

Figure 7: Structure of ANN layers, adapted from (Gurmu and Fan, 2014)
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Figure 6 above shows the network architecture of the neurons as described in equation 2.1,
2.2 and 2.3, as well as Figure 7 displaying the basic network topology of the Artificial Neural
Network layers for Multi-layer Perceptron (MLP) with one hidden layer. Amita et al. (2015)
revealed that the number of processing elements (neurons) in the hidden layers relies on how
complex the problem is and the decision is made through trial and error. We can deduce
that both the hidden layers and the hidden neurons in each hidden layer use trial and
error approach to determine their quantity within the network. Furthermore, non-linearity
between input and output of the network and nodes is usually incorporated with the aid
of the activation function, while improving weights to reduce mean squared error employs
a training procedure called back propagation on many occasions, such as transport-related
applications (Gurmu and Fan, 2014).

According to Equation 2.1 as described by Gurmu and Fan (2014), the Artificial Neural
Network (ANN), which has a function signal at the output layer of neurons j resulted in the
computation of the first equation. Equation 2.2 shows the output equation of the neural
network architecture just before the activation function and Equation 2.3 is the formal or
the widely accepted equation for output of the architecture.

(2.1)

a =
m∑
i=1

wjiXi + bj (2.2)

(2.3)

Where:
m = the number of inputs used as neuron j
Xi = the group of input variables of neuron j
Yj = the output of the jth neuron
wji = the weight linking the input (i) to the neuron (j)
bj, ψj = the applied bias term and the adopted activation function, respectively.
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There are four stages of back-propagation network discussed by Amita et al. (2015) and
they include, Weights initialization, Feed Forward, Back-propagation of error signals and
lastly, Weights and biases update. The four stages in the respective stated order have their
first stage to initialize weights to random values with small sizes, the next stage receives
input information and thereafter transmit through the hidden unit to the output unit. The
following stage back-propagates the error signal to previous layer when a desired output
is not reached while the last stage updates the weights and biases in respect to the error
signal. In essence, these stages are the process undergone to train a model in order to get
an accurate output using Artificial Neural Network model.

2.4.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN), vastly applied to model image classification, video
processing and tracking objects, is a standard approach for modeling spatial dependencies
which is highly significant for the prediction of travel time using the Global Positioning
System (GPS) sequence (Wang et al., 2018). CNN with multi-layers is an excellent neural
network for traffic prediction with high precision and performance, and most importantly
it is a powerful technique useful for short-term travel time prediction (Wei et al., 2018).
In essence, CNN is a deep learning technique for developing models capable of reading
patterns and trends in spatial, and temporal data with very high prediction accuracy and
model performance.

Using the longitude and latitude of corresponding vertices to sort out an adjacency matrix
columns and rows respectively, Convolutional Neural Network model assumes there are
relationships between the cells closed in the input tensor of the adjacency matrix (Bogaerts
et al., 2020). Bogaerts et al. (2020) further explained that these closed cells represent a
real road network with close road links and with this approach it is easy to arrive at spatial
patterns that are valuable for the model development. Those are important steps to undergo
during the pre-processing work flow before training the model for prediction.

Convolutional Neural Network (CNN) Network Architecture

A research conducted by Ran et al. (2019b) described the architecture of a Convolutional
Neural Network (CNN) used in training models for spatio-temporal large data sets to predict
travel time comprise of input sequence representation, local receptive fields, convolutional
max-pooling layer, fully connected layer using a nonlinear activation function and finally an
output predictor. Figure 8, however, shows the architecture of CNN which was extracted
from the research of Ran et al. (2019b) and it contains the input, convolution layer having
rows of matrix identified as Ck, max-pooling layer represented with m, the flattening layer,
global-level feature at the fully connected layer and finally the output.
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Figure 8: Convolutional Neural Network (CNN) Architecture for spatio-temporal data of
travel time prediction, adapted from (Ran et al., 2019b)

Input sequence layer, as shown in Figure 8 comprise of several spatio-temporal inputs rep-
resented with (S) and they were generated from traffic data related to the values predicted
while the max-pooling convolution identified the input sequence’s relationships with the
predicted values (Ran et al., 2019b). Ran et al. (2019b) further explained that before global-
level features were provided to a predictor to generate predictions, the fully connected layer
was used together with activation function to capture the nonlinear relationship and to ex-
tract global-level features. The equation formula adopted in processing these Convolutional
Neural Network (CNN) architecture are further shown as follows for each layer.

(2.4)

(2.5)
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(2.6)

(2.7)

(2.8)

(2.9)

Where:
S = the sets of input sequence from the traffic data
Xt = the spatio-temporal input values
C(k) = kth row of matrix C, a convolution result of convolution kernel Wk for one input
sequence
Wk = one convolution kernel
X(j) = jth item of vector X
n1 = an hyper-parameter representing the number of convolution kernels
mi = the max function of max-pooling layer m
C(i;.) = the ith row of matrix C
tanh = the hyperbolic tangent function
z = the final global-level feature
Wf = the parameter matrix for the fully connected layer
ŷ = the travel time through the given link within a time interval

Equation 2.4 shows the sets of input sequence extracted from the data sets and it has a length
of t used in subtraction. Equation 2.5 represents the convolution outcome of the convolution
layer, Equation 2.6 addresses the selection of better features using max function to get results
from the max-pooling layer while Equation 2.7 is the activation function formula for the
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model to capture the non-linear relationship. Equation 2.8 is the formula for the global-
level feature after max-pooling process and this equation is sent to the predictor for the
prediction outcome using the equation 2.9. All these equation descriptions are according to
Ran et al. (2019b) research.

Another research conducted by Wei et al. (2018), adopted a different formula, but with
similar prediction output to Equation 2.9, which is used for time shifting features and 2D
spatial-temporal extraction.It has two layers of convolutional network and one layer for
pooling. It was further noted that the convolutional layers’ input and output are feature
maps whose kth feature map at a particular layer is represented as Hk, the weights W k

and bias bk determining the filters and the f as ReLU function whose role is to solve the
problem of gradient vanishing, as in Equation 2.10 below (Wei et al., 2018). This research
also combined the network of both CNN and the Long Short-term Memory (LSTM) to
arrive at an output.

(2.10)

Where:
hk = kth feature map at a particular layer
f = Rectified Linear Unit (ReLU) function
W k = Weights of kth feature map at a particular layer
bk = bias of kth feature map at a particular layer
x = inputs

Wang et al. (2018), however, had different argument on the 2-dimensional CNN that the
coordinates from Global Positioning System (GPS) mapped into grid cells does not have
the accuracy to represent the real spatial information in the data. Therefore, a different
approach called Geo-Conv layer was adopted to capture spatial dependency in the sequence
of geo-location and the information is retained in finer granularity (Wang et al., 2018).

Geo-convolutional neural network is a spatio-temporal component that does the transforma-
tion process of turning the sequence from raw GPS into feature map series for the purpose
of capturing local spatial correlation between continuous points from the GPS (Wang et al.,
2018). We can deduce so far that CNN models, on many occasions, were used in previous
research works for the prediction of space or location related transport model development.
It has also been discovered that CNN is sometimes in previous research works merged with
a Recurrent Neural Network (RNN) called Long Short-term Memory (LSTM) to develop
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models for predicting temporal or time-related information.

2.4.3 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is another method of deep neural network that flexibly
deals with sequence data and automatically captures from large amounts of data the time
series features comprising of semantic information such as complex temporal dependency
(Sun et al., 2020). Since traffic management and mobility data also have time-series re-
lated information like travel time, RNN is usually applied to build the models for accurate
predictions.

Initially, the conventional prediction models encounter challenges of extracting time mode
information of travel time which made it also problematic to train longer travel time se-
ries (Wei et al., 2018). In order to resolve these drawbacks and also reduce the exploding
and gradient vanishing problem, Gated Recurrent Unit (GRU) and Long Short-Term Mem-
ory (LSTM) network were introduced (Sun et al., 2020). These two RNN methods have
been used by researchers for travel time estimations and other time-series related prob-
lems. Therefore, previous research works on the LSTM neural network will also be reviewed
subsequently.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a powerful RNN method for time series estimation
which uses historical data as a result of its ability to capture relevant information from
historical input sequence (Wei et al., 2018). Just like LSTM is a strong tool for short-term
time series prediction, Agafonov and Yumaganov (2019) discovered that it can also handle
long-term dependencies with its ability to utilize three gates for information control in its
cell for every time steps. These gates are input, forget and output contained in the structure
of LSTM cell disclosed in the research of Agafonov and Yumaganov (2019).
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Long Short-Term Memory (LSTM) Network Architecture

Figure 9: A Structure of LSTM Cell (Wei et al., 2018)

According to a research by Wei et al. (2018), Figure 9 above shows the structure of Long
Short-Term Memory (LSTM) cell state which contains input gate, output gate and forget
gate that regulate adding or removing information from the cell state. We can also deduce
from this structure that the LSTM cell has input Xt with hidden layer output ht, the three
gates it, ft and ot, the former hidden layer output ht−1, cell input and output state (Ct
and Ct respectively) and the former output state Ct−1. These are the compositions of a
cell structure for LSTM and they are applicable to developing LSTM models for travel time
estimations.

Figure 10: An architecture of LSTM Neural Network for travel time prediction (Ran et al.,
2019a)
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Where:
it = the input gate state at time t
ft = the forget gate state at time t
ot = output gate state at time t
Ct = the cell input state at time t
bi, bf , bo, bc = bias terms
W i

1, W
f
1 , W o

1 , W c
1 = weight matrices for the 3 gates and cell input

W i
h, W

f
h , W

o
h , W c

h = weight matrices connecting ht−1 to the 3 gates and cell input
ht−1 = the former output at time t
Ct−1 = the former cell output state at time t
xt = input at time t
ht = hidden layer output at time t
ŷ = output predictor
hn = output vector
bs = bias term
Ws = Weight matrices
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Equation 2.11 represents the input gate formular, Equation 2.12 is the forget gate formular,
Equation 2.13 shows the output gate formular and the Equation 2.14 is the formular for cell
input, all as shown in Figure 9. These gates and equations are components of a LSTM cell
architecture as research by Wei et al. (2018).

As illustrated in Figure 10 and Equation 2.15, the architecture of LSTM NN for travel
time prediction and output predictor equation respectively, contain input sequence Xn as
travel time values which produces output vectors Hn using transition functions in order
to arrive at an output predictor ŷ. LSTM network structure also have an advantage of
considering, in long term prediction, the effects of transport situation on remote route links
which eventually produce an output of travel time between each remaining stops (Agafonov
and Yumaganov, 2019).

Evaluating the performance of the neural network models is however important to detect the
accuracy of our prediction and Agafonov and Yumaganov (2019) revealed in their research
that there are two standard metrics called Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). Some other researchers also adopted Mean Squared Error (MSE),
Root Mean Squared Error (RMSE) among many others and these model evaluation methods
will be discussed in following section.

2.5 Evaluation metrics for travel time prediction models

Model evaluation is an essential part of machine learning and deep learning techniques
as it informs the experts the accuracy and performance of the model for prediction. In a
research conducted by Nyaki et al. (2020), the evaluation method used to measure the models
developed and compared for travel time estimation was Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE). It was further stated by the research that
these measurements determine how much deviation the model has from the predicted travel
time (Nyaki et al., 2020).

(2.16)

Where:
yi = observed values for ith travel time
ŷi = predicted values for ith travel time
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N = number of times for observed values

The evaluation metrics adopted by (Sun et al., 2020) to measure FusionRNN-ETA, a type
of Recurrent Neural Network model for travel time prediction, were similar to the ones men-
tioned above but with one other method known as Mean Absolute Error (MAE). Previous
research reviewed have shown that these four aforementioned methods are widely used in
measuring and evaluating models developed to predict travel time. Therefore, we will be
examining each one of them as discussed in previous works.

Prediction Mean Absolute Error (PMAE) is a performance metrics utilized to measure the
outcome of travel time prediction by measuring the difference between two continuous vari-
ables (Wei et al., 2018). The research further revealed that the differences between actual
values and predicted values have its sample standard deviation to be represented by Pre-
diction Root Mean Squared Error (PRMSE) while measuring the accuracy of prediction for
algorithms written to develop models for the travel time estimation is known as Prediction
Mean Absolute Percentage Error (PMAPE) (Wei et al., 2018). These performance metrics
are used to compare different models developed for travel time prediction to know the most
suitable one, and the lower the values of PMAE and PRMSE the better.

(2.17)

Where:
yi = observed values for ith travel time
ŷi = predicted values for ith travel time
N = number of times for observed values

Prediction Mean Squared Error (PMSE) is the foundation of Prediction Root Mean Squared
Error (PRMSE), the only difference is finding the squared root of the PMSE values to get
PRMSE. According to Tang et al. (2018), PRMSE is a validation metric commonly adopted
to quantitatively measure the accuracy of predictions. PMSE measures the deviation be-
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tween the predicted values and actual values while its root results into PRMSE.

(2.18)

Where:
yi = predicted values for ith travel time
ŷi = observed values for ith travel time
N = number of times for observed values

Another evaluation metric for travel time is coefficient of determination (R2) score and its
values usually range between 0 to 1, the farther the value to 1 the higher the relative error
and the closer to 1 the lower the relative error’s degree (Hiroi et al., 2019). R-squared
(R2) is also a validation metrics and it was used in the research work of Tang et al. (2018).
The Equations, 2.16, 2.17, 2.18 and 2.19 are used for measuring the performance metrics of
prediction accuracy of models.

(2.19)

Where:
R2 = coefficent of determination or correlation
xi = the observed value or ground truth
x̂i = the predicted value
x = the average of travel time

In conclusion, this research work will be filling the gaps of previous literature by identifying
more relevant indicators different from the aforementioned and commonly used data-driven
indicators in machine learning and deep learning models for travel time prediction. Iden-
tifying more relevant indicators from the data to be collected will further improve model
performance and the accuracy for planning, and decision-making for on-demand trips from
the commuters and transport operators’ end. Another gap to be filled include comparing
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models with set of relevant indicators as model inputs under each deep learning network
(e.g. Artificial Neural Network (ANN)). And finally, comparing the models with the highest
performance on each of the adopted deep learning networks. The deep learning networks to
be used are Artificial Neural Network (ANN), Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN).

In addition, this research also identified the computational cost of developing the deep learn-
ing models and identifying relevant indicators, which are mostly not addressed in previous
literature. These costs include identifying the computer specifications used for the model
development, run-time taken for data processing and preparing each model, and the total
run-time for each neural network to train and test their models for prediction.
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Chapter 3

Research methodology

3.1 Introduction to methodology

This chapter discusses the research methods and approaches adopted in fulfilling the research
objectives, including methods used in identifying relevant data-driven indicators affecting
the travel time of individual on-demand trips, developing and comparing suitable deep
learning models for the prediction of travel time and also identifying the computational
costs of developing the models.

The identification of relevant indicators used some approaches adopted by the reviewed
literature on identifying travel time indicators. The most important is the second objective,
which involves modeling to predict travel time and compare these models, and thus requires
a huge amount of data collection and analysis. After examining previous research works,
some gaps discovered led to the need for this research.

Some of these gaps include using only basic features or indicators, not considering other
possible combinations of indicators influencing travel time. The new features utilized in
this research will be elaborated further in this chapter. Another research gap discovered in
previous works is the model evaluation metrics adopted, which are the common methods
used by most researchers. Also, in previous research, many utilize two deep learning models
for their predictions. However, in this research work, individual deep learning technique was
stand-alone evaluated and compared to know their performance.

The importance of this research work is to examine different deep learning models that
can accurately predict travel time, which is useful for transport operators and individual
commuters during their demand-responsive trips. The prediction also allows both parties to
have ample information on their trips before embarking, and it saves costs, time, and helps in
trip decision-making. Therefore, this chapter discusses this study’s research methodology,
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which includes research strategy, data collection approach, data analysis framework, and
discovered limitations of research.

3.2 Research strategy

To accomplish this work, a case study research approach was adopted using an exploratory
case study method based on the research objectives. Biggam (2015) explained in a book on
Master’s Dissertation that case study research examines an instance of a precise type of a
thing, and he proceeded with a deduction from Cohen and Manion research in 1995, which
revealed case study to involve in-depth research and analysis on an individual unit’s feature.

The first research objective for this thesis uses an exploratory case study to identify the
data-driven indicators influencing the travel time of individual on-demand trips using the
geographical location stated above. Subsequently, the second objective of developing and
comparing suitable deep learning models for travel time prediction also adopts the ex-
ploratory case study method.

3.2.1 Exploratory case study and convenience sampling

Exploratory case study strategy, as its name implies, explores a large scale study of the
future using research questions, which results in fulfilling the objectives (Biggam, 2015).
This strategy was adopted due to the research objectives, which demands identifying data-
driven indicators that influence travel time of individual on-demand trips and developing and
comparing suitable models for the travel time prediction. The approach requires studying
large historical data sets of on-demand trips peculiar to a particular geographic location
and giving insight into the future by identifying indicators, modeling, and predictions.

In the case of this research, the exploration is on the travel time of individual on-demand
trips through identifying the travel time indicators, train the data using deep learning
techniques, and compare the models used for forecasting the travel time. The literature
reviewed in the second chapter of this study disclosed some fundamental indicators that
influence travel time, and these indicators also served as modeling features for travel time
prediction.

A convenience sampling approach used for the case study area resulted from collecting
demand-responsive trip datasets owned by car-pooling, ride-sharing, or mobility companies,
through the internet from their electronic or online platforms. Edgar and Manz (2017)
defined convenience sampling as a non-probabilistic sampling technique focusing on sam-
ples on the internet, online, or around a particular location that is more convenient for the
researcher. This type of sampling method is mostly used for exploratory research to gain in-
sights and ideas capable of resulting in in-depth analysis for a future study or representative
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research (Biggam, 2015).

To achieve this sampling technique, the data of on-demand ride requests, retrieved from the
database of a mobility company is used in sampling commuters’ on-demand trips. It also
requires large open data sets with large customers or commuters, using its online platform
to place orders for on-demand trips. This also demands the use of a particular geographic
location with a dense urban area and a central business district.

3.3 Data collection

The data used for this study was collected from a secondary source and the online platform
of mobility company called DiDi Chuxing GAIA Open Dataset Initiative. Authorization was
granted by the company to use the second ring road regional trajectory data set of Chengdu
City, which contains large data sets of ride requests and ride routes in the city in China.
Didi Chuxing offers a wide range of mobility services to over 450 million users, and since
December 2017, it had over 25 million orders for their services per day (Didi-Chuxing, 2020).
The mobility services include taxi, premier, express, minibus, car rental, bike-sharing, among
others, and the majority are on-demand services (Didi-Chuxing, 2020). The company also
ensures collaboration through the GAIA initiative with academic communities by providing
large, anonymized data sets of real-world scenarios to enhance in-depth and prospective
research in transportation (Didi-Chuxing, 2020). They are the primary reasons for choosing
the platform as a suitable source of data collection for this study, meant to fulfill this
research’s objectives.

The two large data sets collected from the DiDi Chuxing database were the ride request
data (comprising origin-destination coordinates, ride start and stop time) and the Chengdu
city routes’ coordinate data having an accuracy of 2 - 4 seconds (Didi-Chuxing, 2016). The
humongous data has a 50-gigabyte memory capacity with geographical coordinates range of
latitude [30.727818], longitude [104.043333], latitude [30.726490] and longitude [104.129076],
and date range from 1st November 2016 to 30th November 2016 (Didi-Chuxing, 2016). The
first data set of origin-destination trips has slightly over 7 million (7,058,950) on-demand
trips of DiDi commuters. The second data set comprises the trip routes for requested
rides within November. It also has about 45 million (45,000,000) time-steps of 2-4 seconds
accuracy, per day and summing up to 1.35 billion time-steps in the whole 30-day November
in 2016.
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Figure 11: An Open Street Map (OSM) of Chengdu City, China (The case study area)

Figure 12: An Open Street Map (OSM) for about 1.35 billion coordinates of origin-
destination trips and trip routes in Chengdu City, China (The case study area)
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These data sets are essential for this study because they are suitable for fulfilling this
research’s objectives. The first objective focuses on identifying data-driven indicators that
influence individual on-demand trips, and on identifying them, a large set of data is required.
These indicators are data-driven due to being captured via the internet, thereby missing
some more relevant indicators with a strong influence on the travel time, which the data
could not capture. The use of the potential indicators, obtained in the raw data, to derive
or calculate additional relevant ones also makes the indicators data-driven. In essence, since
the second objective deals with developing and comparing models for predicting travel time,
then data-driven indicators will be more suitable as inputs or features for the deep learning
models.

3.4 Data analysis framework

The raw data collected comprises few features or indicators not enough to identify the
primary indicators found in previous literature. The raw data used for training data con-
tains features or indicators such as ride start time-stamps, ride stop time-stamps, pick-up
longitudes, pick-up latitudes, drop-off longitudes, drop-off latitudes, and the order Id. Si-
multaneously, the routes’ data collected every 2-4 seconds is was the test data, and it had
features such as order Id, driver Id, longitudes, latitudes, and time-stamps.

Sequel to these short descriptions of the data set features and having contained numerical
values that require an advanced statistical analysis approach, a quantitative research analysis
method is adopted to gain insight into the datasets and accomplish the research objectives.
These need an in-depth exploration, visualization, and analysis of the datasets to identify
and fulfill the first objective and the second objective of this research. The origin-destination
ride request data set was used to train the deep learning models, while the ride route data
was utilized as the test data to measure the models’ accuracy. Also, only the first seven (7)
days of the test data or the ride route data were processed and used to test the models due
to its large capacity and complexity to label, in consonance with the training data.

3.4.1 Quantitative analysis and analytic tools

The ’how’ question mostly results in a quantitative research approach, and this kind of
approach is possible when research questions jointly consider methods used in data collection
and the research strategy adopted for the study (Biggam, 2015).In respect to this elucidation,
fulfilling the research objectives and questions on how to identify data-driven indicators
influencing travel time and how we can develop and compare deep learning models for travel
time prediction led to the collection of large data sets from a secondary data source or an
online database. After collecting the data for a particular geographic location, exploratory
case study research was adopted, and it requires in-depth analysis and advanced statistical
methods because of its quantifiable values. These are justifications for selecting quantitative

32



research analysis to satisfy the objectives of this research.

Furthermore, to accomplish the second objective, the researcher derived more relevant in-
dicators such as departure hours, highly significant departure hours, departure minutes,
highly significant minutes of departure, departure day of the month, departure day of the
week, departure month, departure traffic analysis zones, arrival traffic analysis zones, travel
time in hours, travel time in minutes, distance traveled and vehicle speed. This approach
satisfied the first objective of identifying indicators using an advanced statistical method
that measures and determines highly significant features with their correlation values of 0.01
or 1% minimum and a maximum of 1 or 100%. The correlation values are further discussed
in the data analysis chapter of this research work.

The advanced statistical tools used in the data sets analysis are Python programming lan-
guage version 3.7.7 and Anaconda Jupyter notebook version 1.7.2. These tools have char-
acteristics such as non-complexity, flexibility, and an interactive user interface. Jupyter
notebook is an interactive computing environment, with two components (Web application
and Notebook documentation) as an extension of a console-based platform used to develop,
document and execute codes to fulfill a computational process (Jupyter-Team, 2015). There
are enormous libraries and clients in Python used to explore, visualize, analyze, and develop
models. These libraries, tools, and methods adopted in the analysis aided the derivation of
these highly essential indicators, and the working mechanisms for the deep learning models,
which are discussed subsequently in this section.

Identifying the computational costs of running the python scripts for data processing, model
training, and model testing also used a quantitative analysis method. The computer speci-
fication values, model parameters, and model computation time or run-time were listed to
know how much time and computational power consumed during the modeling and predic-
tion with the large data sets.

3.4.2 Derivation of relevant travel time indicators

Departure time

To derive various departure time used in modeling, the timestamp was split into various
categories, resulting in more departure time indicators. The first category was departure
hour, extracted from the departure timestamp using the ’DateTime’ library for python
hours. The ’DateTime’ library was also used to derive the week’s departure day, departure
month, and departure day of the month. Furthermore, a whole 24-hour day was divided
into 6 periods which include; 1 AM - 4 AM (Mid-night), 4 AM - 8 AM (Morning), 8 AM
- 12 PM (Mid-day), 12 PM - 4 PM (Afternoon), 4 PM - 8 PM (Evening), 8 PM - 12 AM
(Night). The highly significant of these periods with correlation values greater or equivalent
to 0.01 were identified as important indicators or modeling features. This approach was to
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identify which part of the day influences the travel time of on-demand trips. In essence, this
strategy examines which departure period of the day increases or decreases the time taken
to travel to the destination from the origin.

A similar strategy was adopted for minutes of travel, which involves dividing clock time of
sixty (60) minutes into four (4) categories. An example of this division is a commuter who
departs between 12 PM and 1 PM by identifying his or her minute of departure from 12.00
PM - 12.15 PM, 12.15 PM - 12.30 PM, 12.30 PM - 12.45 PM and 12.45 PM - 01.00 PM. For
this research, the Greenwich Meridian Time (GMT) (e.g., 1 PM = 13.00) format was used.
Afterward, the highly relevant of these 15-minute categories were used in modeling for travel
time prediction. Departure hours of the day with highly significant values also served as
features for the models. This division’s essence is to know if departing during peak hours or
non-peak hours have an impact on travel time or departing at a particular 15-minute period
of each hour affects the travel time in the geographical location. The highly significant of
these new indicators were selected base on correlation values greater than or equal to 0.01
using the correlation class from the Pandas library in Python programming language.

Distance traveled and speed

The raw data have no information on distance and speed. These indicators were derived us-
ing pick-up longitude and latitude, drop-off longitude, and latitude for distance calculation
in kilometers. At the same time, travel speed was calculated using distance in kilometers
and travel time in hours. To calculate the distance traveled, a ’Geopy’ Python client or
library was utilized, and this client uses classes from geocoders for Norminatim open-source
geocoding service with Open Street Map (OSM) as well as Google Map’s Application Pro-
gramming Interface (API) for geocoding (Python-Community, 2020). Geodesic distance
is the class that the Geopy python library uses to calculate the distance traveled by each
commuter from originating point to destination point.

Geodesic distance by default adopts Karney (2013) method and uses the earth’s model,
which is an ellipse, to calculate the shortest distance on the surface of this WGS-84 ellipsoidal
default. (Geopy-Contributors, 2018). One of the problems geodesic tends to solve is the
inverse problem that involves calculating the shortest path between two points (Karney,
2013). Figure 13 describes the ellipsoidal model of the earth where the geodesic distance
is S12 between AB, 12 is the longitude of B relative to A, 1 and 2 are latitudes A an B
respectively, there are also two meridians NAF and NBH and the equator EFH (Karney,
2013).
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Figure 13: The ellipsoidal triangle NAB (Karney, 2013)

Therefore, in calculating the commuters’ distance traveled, pick-up longitudes and latitudes
with drop-off longitudes and latitudes were features used, and the results were converted
into kilometers. Kilometer ranges were also created as additional indicators to examine
their influence on the travel time. These ranges include 0 - 2 KM, 2 - 4 KM, 4 - 6 KM, 6
- 8 KM, 8 - 10 KM, 10 - 12 KM, 12 - 14 KM, 14 - 16 KM and 16 - 20 Km. These were
established to check if commuters traveling within those 2-km intervals have high significance
on travel time or can be relevant indicators for developing travel time prediction models.
Eventually, the highly significant of these new indicators were selected base on correlation
values greater than or equal to 0.01 using the correlation class from the Pandas library in
Python programming language.

Traffic analysis zones

Categorizing the coordinates into segments gives insight about the number of commuters
departing a region or location and arriving at the same or other zones. There is a relationship
between commuters’ movement and the vehicle stops, the zones, and the driver, which results
in discovering the departure time and location and arrival time and location (Masiero et al.,
2011). That shows the importance of creating traffic analysis zones to divide the whole case
study area, Chengdu City, into smaller regions for in-depth analysis.

Taking into consideration the geographical range of coordinates given from DiDi Chuxing
Gaia initiative platform, which include; latitude [30.727818], longitude [104.043333], latitude
[30.726490] and longitude [104.129076], the city was segmented into nine (9) zones. These
zones consider departing and arriving commuters at each zones and the coordinate ranges
used to create these zones are, minimum latitude [30.5] and maximum latitude [30.9] (for

35



both pick-up and drop-off latitudes) and also minimum longitude [103.9] and maximum
longitude [104.5] (for both pick-up and drop-off longitudes). The total length of the whole
study zone between the maximum and minimum latitude coordinates is 44.3457km, while
the total distance between maximum and minimum longitude coordinates is 57.5993km,
calculated using the ’geopy’ class of python.

The nine traffic analysis zones (TAZ) have 15km by 15km length and width each and they
are similar to having North Zone, South Zone, East Zone, West Zone, North-East Zone,
South-East Zone, North-West Zone, South-West Zone and the Central Zone. Trip origin
and destination coordinates that fall within these zones are stored, and these nine zones
were identified as additional indicators influencing travel time. This denotes nine origin
zones and nine destination zones created as indicators or inputs for modeling, considering
their correlation values. Highly significant of these new indicators were selected base on
correlation values greater than or equal to 0.01 using the correlation class from the Pandas
library in Python programming language.

3.4.3 Working mechanisms and tools for modeling

Artificial Neural Network (ANN)

The method of the approach adopted to develop the Artificial Neural Network Model for
this research work was, at first, creating a simple ANN architecture with an input layer,
one hidden layer, and output layer. The first model has an input layer containing six (9)
neurons (or Units), and the inputs include Pick-up Longitude, Drop-off Longitude, Ride
Start Hour, Pick-up Latitude, Drop-off Latitude, Ride Start Minute, Ride Start Month,
Ride Start Day and Trip Distance. The hidden layer also has nine (neurons), and the
output layer contains one neuron, known as the travel time. The model training ran for
50 iterations (or Epochs), and afterward, the training loss and validation loss plotted, have
converging curves. Subsequently, for the first model, the activation function used was the
Rectified Linear Units (ReLU), the optimizer was Adaptive Moment Estimation (Adam),
and the loss function was Mean Absolute Error (MAE).

The activation function is always applied to Neural Networks to avoid the output signal to
become simple linear function or linear regression model, and linear equations were found not
to have the ability to capture intricate patterns from big data sets (Sharma et al., 2020).
Sharma et al. (2020) further noted that neural networks should have the ability to map
patterns from arbitrary complex input data to output data and non-linear process functions,
which thus necessitate the application of activation function in the architecture. ReLU was
used as an activation function due to its wide usage for the prediction of continuous data
and non-linear models. It is efficient because not all neurons are activated simultaneously,
and the gradient is zero on some occasions during the training of the network (Sharma et al.,
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2020).

Adam optimizer was applied to extract parameters to reduce cost function through iteration,
and this optimizer is widely used compared to Root Mean Square prop (RMSprop) and
Stochastic Gradient Descent (SGD), and it combines the advantages of Root Mean Square
prop (RMSprop) and Adaptive Gradient (AdaGrad) (Yang et al., 2019). Base on these
reasons, Adam optimizer was used, and MAE adopted as the loss function. Measuring the
prediction accuracy and knowing the deviation between prediction and actual values, make
loss function to be important in neural network training (Yang et al., 2019).

Figure 14: Artificial Neural Network (ANN) Model Architecture

Five ANN models were developed and compared, and these models have similar activation
functions, loss function, number of units, number of epochs, number of hidden layers, and
optimizer as the first model. The difference between these models is the number of inputs
or travel time indicators, as derived above. The five models were developed with four (4)
hidden layers based on their respective number of features used as input, and they were
further elucidated in the data analysis chapter 4 of this research. Before the inclusion of
travel speed, which has very high significance with travel time, three models were already
developed and compared. The first model without speed included the indicators shown in
Figure 14, distance traveled range was added to the second model without speed while the
third model included the Traffic Analysis Zones for origin and destination, as explained in
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the section above on the methodology adopted in deriving relevant indicators. The four
hidden layers that were eventually used in the five models arrived at after several trials and
errors with different hidden layer numbers, starting with one hidden layer up to four hidden
layers.

The Tools used for model development were the TensorFlow and Keras Python libraries
and clients. TensorFlow is a product of Google and Alphabet, developed for large scale
models trained with machine learning techniques as a second-generation system capable of
running with thousands of Graphics Processing Units (GPU) cards on hundreds of machines
for special purposes (Abadi et al., 2015). The ’Dense’, ’Activation’, ’Adam,’ and ’Sequen-
tial’ classes of TensorFlow- Keras library were used during the modeling using the Python
programming language and Jupyter Notebook. The models were optimized and compared
using values of coefficient of determination (R-squared), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) derived from the models. These techniques are equivalent to
TensorFlow-Keras classes of ’R2_score’, ’mean_absolute_error’, and ’mean_squared_er-
ror’ whose square-root was calculated.

Convolution Neural Network (CNN)

Some approaches adopted in the Artificial Neural Network modeling were also applied to the
Convolution Neural Network (CNN) models. Parameters such as Adam optimizer, Mean
Absolute Error (MAE) loss function, Rectified Linear Unit (ReLU) activation function, and
fifty (50) iterations were used across all models. Five models were also developed with a
similar number of inputs, a number of hidden layers and output layer, and the same number
of neurons, respectively, as in ANN architecture with trials and errors inclusive. It also
consists of a Convolution 1D layer with 64 units or neurons, one flatten layer and a layer
with max-pooling 1D and other fully connected 4-layer models. Convolution 1D, Flatten,
and Max-pooling 1D are commonly used classes of TensorFlow-Keras libraries to predict
outputs that are not images or classifications but those with continuous values. Similar
tools were also used for modeling with CNN.
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Figure 15: Convolution Neural Network (CNN) Model Architecture

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) model was developed with a similar approach to
ANN and CNN, using similar tools, Python and TensorFlow-Keras libraries. The ’LSTM’
class was also utilized from the TensorFlow library to develop LSTM layers for modeling. A
similar number of iterations, optimizers, loss functions, and activation functions were also
adopted. The model comparison and evaluation were made with the RMSE, as mentioned
earlier, MAE, as well as the coefficient of determination values.
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Figure 16: Long Short-Term Memory (LSTM) Model Architecture

3.5 Research limitations

In this section, a few potential challenges and limitations encountered during this research
work are discussed. One of these limitations is the case study approach adopted. Chengdu
city in China is the location of the study area of this research. The data sets were collected
from DiDi, a mobility company in China, via the Didi Chuxing Gaia initiative platform.
These ride request data sets, however, do not, in its entirety, represent the real world road
conditions or travel factors that could influence the travel time of individual on-demand
trips. Real-world factors such as trip purposes, activities, or events in the study area,
seasonal changes or weather conditions, home-based or work-based trips, and road traffic
conditions, were not captured in the data sets.

These factors are good indicators for travel time prediction, and these limitations led to
the first objective, focused on identifying only relevant data-driven indicators. Since this
research requires large data sets to develop deep learning models and forecast travel time,
the data-driven factors identified in this study fit well to achieve the second objective on
deep learning models’ development for prediction. The researcher also has no access to the
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study area, which requires funds and travel process. Having access to the study area will
be a plus to this research to identify real-world indicators, instead of only the data-driven
indicators.

Another limitation experienced during this research is the researcher’s computation device,
which has a low capacity of Random Access Memory (RAM) and solid-state drive (SSD) disk
memory, among other technicalities. Deep learning models require high-capacity computers
with high computational power to train models into having convergence and stability for
validation and training loss curves. More data are needed to overcome over-fitting, and
the larger the data, the higher the required memory capacity to compute and train the
models. These eventually resulted in using only the first (7) days of the 30-day test data
containing real-world travel time, collected every 2-4 seconds (time-steps) on the commuter’s
trip routes. The seven-day data have about 315 million time-steps equivalent to the number
of rows in the data set, out of about 1.35 billion in the time-step total for 30 days.

Therefore, in-depth and more accurate research in travel time prediction demand resolving
the aforementioned technical challenges in data computation and study area accessibility
to examine real-world indicators capable of influencing travel time of individual demand-
responsive trips. Finally, to overcome these research study limitations, more time is required
for the research study, as the researcher has limited months as a master’s student to reach
a considerable milestone.
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Chapter 4

Data analysis and discussions

4.1 Identification of relevant travel time indicators

This section discusses identifying various relevant data-driven indicators for travel time, used
as inputs for modeling. As determined in previous literature in the second chapter of this
thesis, ascertaining the primary indicators’ level of significance to travel time is highly essen-
tial. The method used in identifying them is in line with the research approached discussed
in the methodology chapter, which involves knowing their correlation values using a class in
the panda’s library for the Python programming language called ’corr().’ Furthermore, the
researcher elucidates the statistical description of these indicators, the distribution density
of highly significant indicators such as travel time, distance, speed, departure hours, and
departure minutes. Also, the spatial trip distribution plotting the longitudes and latitudes
are discussed in relation to travel time, travel distance, travel speed, and inclusive of the
newly created nine traffic analysis origins and destination zones.

Discussing the indicators’ distribution densities is vital to identify the relevance and volume
patterns of the indicators within the training data set. Consequently, these indicators are
data-driven due to their derivation from the primary indicators in the raw data and using
the origin-destination data set to identify their level of significance with travel time. The
origin- destination dataset serves as training data for the models, and it captures individual
commuter’s trip start location and end location in the study area. The second dataset
collected is the Global Positioning System (GPS) coordinates of individual commuter’s trip
routes from the origins to their destinations, thereby using it as test data. It represents the
real travel time, recorded every 2-4 seconds of the trips. Figures 17 and 18 illustrate the
first data set (train data) split into origin and destinations while Figure 19 has the second
data set (test data) of routes taken by each trip, which captures smaller region within the
city center while Figure 20 shows the combined map of coordinates for origin-destination
(departures and arrivals respectively) and the trip routes. The maps are on a scale of 45
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km by 58 km distance.

Figure 17: Open Street Map (OSM) for 7 million coordinates of on-demand trip departures
in Chengdu City, China (30 days model training data)

Figure 18: Open Street Map (OSM) for 7 million coordinates of on-demand trip arrivals in
Chengdu City, China (30 days model training data)
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Figure 19: Open Street Map (OSM) for about 315 million time-step coordinates of on-
demand trip routes in Chengdu City, China (7 days model test data)

Figure 20: Combined 1.35 billion coordinates of on-demand trip arrivals, departures and
routes in Chengdu City, China using Open Street Maps (OSM)
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The four Open Street Maps (OSM) indicate the massiveness of data, in which billions of the
coordinate points overlap with each other. The overall geographical scale is approximately
45 km by 58 km height and width as in the map, respectively. These scales are also used in
further graphical plots in subsequent sections, where the 45-km height represents latitude
(y-axis), and the 58-km width indicates the longitude x-axis. The grey points represent
the pick-up or departure coordinates, while the green points indicate the drop-off or arrival
coordinates of each commuter. The dark brown points represent the routes taken during the
trip from respective origins to destinations. They are on a smaller portion of the pick-up
and drop-off coordinates because of the volume of the data collected every 2-4 seconds of
the commuter’s movement. The route’s points also represent the real travel time used to
test the model to check the model prediction accuracy.

4.1.1 Statistical description of relevant indicators

After cleaning the origin-destination data and preparing the visualization of each indicator’s
distribution, seven million six hundred and forty-five (7,000,645) ordered trips are found fit
for the model training. The total requested trips from the raw data set collected are seven
million fifty-eight thousand nine hundred and fifty (7,058,950). In essence, an approximate
percentage of 99.2 % of the raw data represents training data after data cleaning. The
remaining 0.8 % are extreme values or outliers of longitude-latitude coordinates, speed,
distance, and travel time. The geographical ranges stated on the data collection platform
are considered before processing the data and removing all outliers. This step was explained,
in-depth, and discussed in the research methodology chapter 3. The summarized statistics
of the training data is as described in Table 4.

According to the figure on the statistical summary for the training data and trips across 30
days, the average travel time (mean) is 22 minutes, and the maximum travel time (max) is
approximately 160 minutes and including a standard deviation (std) of 13 minutes approx-
imately. The figure shows most of the trips are short and perhaps within the origin. There
is also the possibility of traffic congestion or trips to suburbs as an impact on the maximum
travel time of over 2 hours (hr). The distance traveled across all trips have a maximum
estimation of 50 kilometers (km) at an average of 5 km with a standard deviation of 5.3 km.

These values confirm the short commuter’s trips and the possibility of long trips to suburbs
as described above with travel time. These also apply to the average estimated speed is
17 km/h for all trips with 22 km/h as standard deviation, which indicates short trips with
low travel speed, usually within the city’s Central Business Districts (CBD) with lots of
activities. All these indicators are primary and commonly used by previous researchers.
The statistical summary tells how highly significant these indicators are, for the travel time
prediction modeling.
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Table 4: The statistical summary of the origin-destination on-demand trip data
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Figure 21: Box-plot of departure hours and travel time

Figure 22: Box-plot of departure days and travel time
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Departure time is an important feature in developing predictive models for travel time as it is
presumed the arrival time is unknown during model training. This resulted in examining the
statistical relationship between travel time and departure time, as indicated in Figures 21
and 22, which are departure hours and departure days respectively. The box-plots describe
the travel time median, minimum, maximum, first quartile, third quartile, interquartile
range and outliers, for every trip hour and trip day. These are similar to the statistical
summary described previously but with no median and outliers. The median describes the
mid value of the time taken to travel from every departure hour and minute. At the same
time, the outliers are the extreme travel time values from the departure time to the trip
destination.

The box-plot description for departure hour shows, overall, that daily departure hour across
the 30 days training data have a large chunk of trips with a travel time ranging from 0
minutes to 70 minutes of maximum and minimum values on the box-plot, not taking outliers
into account. In essence, most ride requests by commuters are within the city and mostly on
short distance between the origin and destination, confirming most trips are either demand-
responsive or on-demand. Similarly, most departures per day of the week are within range 0
- 60 minutes (min) travel time, according to the box-plots maximum and minimum points.
It also has similar interpretations with the departure days, which the numbers represent
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday for 0, 1, 2, 3, 4, 5,
6, respectively.

Highly significant travel time indicators

Table 5: The level of significance of the travel time indicators

The reviewed literature have similar common indicators influencing travel time, as found in
the training data and Table 5. The level of significance table reveals relevant indicators with
correlation values higher or equivalent to 0.01 or 1%. The maximum correlation is +/- 1 or
100%, and the only indicator with such correlation is travel time in hours and minutes, which
is a correlation on itself. The highest positive relationship is trip distance with a value of
0.271076, and the highest negative correlation is the travel or trip speed with an amount of
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-0.217316. The positive distance correlation denotes the higher distance traveled, the more
prolonged the travel time and equally, the shorter the distance, the smaller the travel time
to destination, all at a regular travel speed. The speed’s high negative correlation shows
the higher the travel speed, the shorter the time taken to travel to the destination, and
when the speed rate gets lower, the travel time rises. These interpretations of the positive
and negative correlation with travel time also apply to other significant levels of identified
relevant indicators.

To build highly performing models, creating and identifying more relevant indicators with
a high correlation to travel time are essential. The approach adopted in deriving each of
these new relevant indicators was discussed in the methodology chapter. A bar chart of the
correlation or level of significance is in Figures 23 and 24 showing the relationship between
the travel time and all derived features. We can deduce that the travel time in minutes
and hours have the highest correlation of 1 or 100%, with itself, which is simultaneously the
output of the model prediction.
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Figure 23: Highly Significant negative indicators with travel time
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Figure 24: Highly Significant positive indicators with travel time
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The bar chart figure of highly significant indicators for travel time reveals that aside from
the travel time, there are three other indicators with the strongest positive influence on
travel time, which are trip distance, traffic analysis origin zone (TAZ) 1, and traffic analysis
destination zone 1. These results mean that the higher the number of individuals departing
and arriving at zone 1 within a particular period of the day, the higher the travel time. As
the departures and arrivals reduce in zone 1, the travel time also reduces. It is an indication
of traffic congestion during peak hours or high population density within zone 1.

These descriptions also apply to the negative correlations. There are four top negative
correlation indicators, which are trip speed, trips within a distance of 0-2 km, trip origin,
and destination zones 2. The speed and distance have opposite interpretations, as discussed
in the level of significance table, which is the higher the travel speed, the lower the travel
time, and vice-versa. Furthermore, the two traffic analysis zone 2 negative relationships
show that as most trips’ travel time reduces, the number of departure and arrival detected
in zone 2 increases. In contrast, as the departures and arrivals in zone 2 decreases the travel
time increases. The interpretation means long distant trips are arriving and departing zone
2.

4.1.2 Distribution density of relevant indicators

Trip speed, distance and travel distributions

Figures 25, 26 and 27 show the distribution density of the trip speed, travel distance and
travel time. Most trips have short travel time and short distance, ranging from 0-60 minutes
and 0-30 kilometers, respectively. To ascertain most trips to be within the city or around
the central business district (CBD), the distribution of the travel speeds are high between 0
and 50 km/h. The distance and speed indicators have a very highly correlated with travel
time, just as discussed in the level of indicators’ significance above. These distributions
also show most trips are on-demand, and demand-responsive trips should fulfill commuters’
immediate need to travel, efficiently, and without delay. These distribution densities are for
the 30 days training data containing origin and destination.
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Figure 25: Distribution density of speed (km/h) in the training data of departures and
arrivals

Figure 26: Distribution density of distance (km) in the training data of departures and
arrivals
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Figure 27: Distribution density of travel time (min) in the training data of departures and
arrivals

Departure hours distribution

Figure 28: Departure hour distribution density across the 30 days training data
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Figure 29: Departure minute distribution density across the 30 days training data
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The departure time is also a highly significant or relevant indicator, and the distribution
densities are as shown in Figure 28 for departure hours and minutes. There is an increased
number of trips departing between 4.00 AM to 10.00 AM, confirming this period as peak
hours. The off-peak hours range from 5.00 PM and 11.00 PM during the 30 days. Therefore,
highly correlated departure peak hours also influence the travel time.

An in-depth study of the departure minutes, shows a lot of trips take off from 45th minute
to 59th minute, for instance, 12.45 PM - 12.59 PM. Sequel to this discovery, the 60-minute
clock is divided into four segments, which includes: 1st - 15th minute, 15th- 30th minute,
30th - 45th minute and 45th - 59th minute (e.g., 12.00 PM -12.15 PM, 12.15 PM -12.30 PM,
12.30 PM -12.45 PM and 12.45 PM -12.59 PM, respectively). The highly relevant of these
minute categories in relation to travel time is also used as features or labels to train the
models. These clock categories help identify the departure minutes with a strong influence
on travel time at every departure hour of the day by giving the commuters and the mobility
operators a forecast of the travel time for upcoming on-demand trips every 15 minutes of
departure requests.

4.1.3 Spatial trip distribution of relevant indicators

Spatial distribution of travel time, distance and speed

Figure 30: Distribution of departure trip coordinates per travel time (min)
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Figure 31: Distribution of arrival trip coordinates per travel time (min)

Figure 32: Distribution of departure trip coordinates per travel distance (km)

57



Figure 33: Distribution of arrival trip coordinates per travel distance (km)

Figure 34: Distribution of departure trip coordinates per travel speed (km/h)
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Figure 35: Distribution of arrival trip coordinates per travel speed (km/h)

The origin-destination trip distributions in relations with travel time, speed and distance,
as displayed in Figures 30, 31, 32, 33, 34 and 35, are plots of pick-up longitude, pick-up
latitude, drop-off longitude and drop-off latitude. The origin and destination plots per 60
minutes travel time disclose that large chunk of trip departures and arrivals are within 2
hours, concentrated at the city center or business districts. Few trips from 120 minutes, start
or end at the city center while most of these longer trips are towards the city’s outskirts for
both departures and arrivals.

A different discovery is observed in Figures 32 and 33 between the origin and destination
trip distributions. The origin or departure distribution shows many departed trips have a
short distance range from 0-40 km while few departed trips took distance longer than 40
km. The destination or arrival plot discloses that trips arriving at the outskirt of the city
drove longer from 40 to 80 km while arrival trip distance between 0 and 20 km are most at
the center of the city. The destination coordinate plot shows the farther from the center,
the longer the length, meaning, as trips approach the suburban area, the distance tends
to increase, resulting from longer routes taken. In the case of speed, Figures 34 and 35
disclose that both the travel speed of departed and arrived trips range from 0 - 200 km/h.
Furthermore, most trips accelerate between 0 and 50 km/h, which denotes trips within the
central business district or a more significant portion of the city center’s study area.
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Trip distribution and traffic analysis zones

Figure 36: Traffic Analysis Zone 1

Figure 37: Traffic Analysis Zone 2
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Figure 38: Traffic Analysis Zone 3

Figure 39: Traffic Analysis Zone 4
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Figure 40: Traffic Analysis Zone 5

Figure 41: Traffic Analysis Zone 6
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Figure 42: Traffic Analysis Zone 7

Figure 43: Traffic Analysis Zone 8
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Figure 44: Traffic Analysis Zone 9

The Traffic Analysis Zones (TAZ) study the relevance of regional segments in influencing
the travel time. The study area has 9 zones containing trip departures and arrivals. These
zones have the idea or the concept of cardinal points, including North, East, West, South,
Centre, North-East, North-West, South-East, and South-West zones. Their correlation
values identify which zone is relevant or highly significant to travel time and essential for
modeling. These zone plots also reveal that large parts of the trips fall in zone 1-6, and
these zones have a scale of 15km by 15km on the x-axis (length) and y-axis (width). There
are 18 indicators derived from the nine traffic analysis zones, containing nine origin and nine
destination zones, separately.

Conclusively, a maximum of sixty (64) indicators or features are relevant and strongly influ-
ence travel time. The indicators are inclusive of the ten (10) primary data-driven indicators
discovered in previous research works. The statistical descriptions and distribution densi-
ties ascertain their significance level, which serves as confirmation for the procedures used
in identifying them as indicators capable of influencing travel time. These discussions also
answer and justify the first research question for this thesis to fulfill the objective of iden-
tifying relevant indicators. Moreover, highly accurate prediction models are dependent on
these relevant indicators to be labeled as inputs for the deep learning models.
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4.2 Developing deep learning models for travel time pre-
diction

In this section, the deep learning models developed to predict travel time are discussed, and
each model performance is compared, both with validation and test data sets. As earlier
discussed in previous sections, the training data is the origin-destination of on-demand ride
request data collected while the test data is the trip routes data from the commuter’s origin
to their destination. The training data set is divided into two sets, the training and validation
data set with percentages of 70% and 30%, respectively. The three (3) different neural
networks are Artificial Neural Network (ANN), Convolutional Neutral Network (CNN), and
a Recurrent Neural Network (RNN) called Long Short-Term Memory (LSTM). Each neural
network technique has five models developed with different labels or indicators but with
similar network parameters.

The parameters and measuring tools for the different neural network types are standard
across, one of which are epochs denoting the number of iterations the models undergo to learn
and train itself. The optimizer, loss function, activation function, number of hidden layers,
the neurons (units), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
R-squared score or residual error are all model parameters and evaluation metrics. The
majority of these parameters and performance measurement tools were discussed in the
methodology chapter.

There are five models developed for each of the three neural networks to examine the impor-
tance of the various set of indicators or inputs already identified. The collection of inputs
for the model categories are Model 1, Model 2, Model 3, Model 4 and Model 5, under ANN,
CNN and LSTM while the output feature is travel time in minutes.

Model 1 inputs

Table 6: The labels or inputs of the deep learning model 1
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Model 2 inputs

Table 7: The labels or inputs of the deep learning model 2
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Model 3 inputs

Table 8: The labels or inputs of the deep learning model 3

Model 4 and 5 inputs

Table 9: The labels or inputs of the deep learning model 4 and 5

Tables 6, 7, 8 and 9 contain the inputs of the five models, with their respective descriptions.
These models have distinct inputs and varying quantities. All Model 1 has nine inputs each,
and model 2 has 49 inputs each. The 3rd models have 63 inputs, 4th models comprise 64
inputs, and the 5th models have 10 inputs. The essence of the diverse set of inputs in the
models is to compare and identify the essential inputs and indicators significant in training
models for high travel time prediction accuracy.

Each model has an output of travel time, and the results of these models are discussed
in detail including the training, validation, and testing outcomes of the models for ANN,
CNN, and LSTM. As a result of the high computer memory storage required to compile and
process the whole 30 days trip routes of data collected, the models’ test use only the first
seven days. The data processing complexity results from the massive raw test data set of
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about 45 million rows per day, which requires a high capacity computer with high Random
Access Memory (RAM) and other computation needs.

4.2.1 Artificial Neural Network (ANN) model results

Model training and validation

Table 10: Artificial Neural Network (ANN) models trained for travel time prediction

The outcome of model 1, as shown in Table 10, undergoes 50 iterations with four hidden
layers and nine neurons per hidden layer using Adam optimizer, ReLU activation function
and Mean Absolute Error (MAE) loss function. On average, Model 1 has MAE of 5.123
minutes, RMSE of 7.935 minutes, and R-squared(R2) score of 0.637, which are the values
for inputs or features used in previous research works but excluding trip speed. Even after
adding other features like distance range, departure minute, and departure period of the
day, the model improvement was a little up to Model 3. For the MAE and RMSE, the closer
the values to zero, the better, which also mean lower values denote increased accuracy of the
model performance and reduced error difference between predicted values and actual values.
The R-squared score needs to get closer to 1 to determine models with high performance.

Among the models without travel speed as an input, only model 2 is highly performing
with R-squared and RMSE values of 0.694 and 7.285 minutes, while the model’s MAE is
slightly higher compared to the MAE of model 3, with 4.649 minutes and 4.630 minutes,
all respectively. However, the addition of speed in model 4 and 5 change the models’
performance drastically. The model R-squared score increased to a maximum of 0.997, the
RMSE reduced to a minimum of 0.769 minutes, and MAE leveled to 0.212 minutes for
Model 4, and this makes the 4th model the highest performing model.
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Figure 45: Artificial Neural Network (ANN) model 1 training and validation loss curves

Figure 46: Artificial Neural Network (ANN) model 2 training and validation loss curves
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Figure 47: Artificial Neural Network (ANN) model 3 training and validation loss curves

Figure 48: Artificial Neural Network (ANN) model 4 training and validation loss curves
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Figure 49: Artificial Neural Network (ANN) model 5 training and validation loss curves

The high performance of model 4 during the training and validation results from the impor-
tance of the labeled features. The features are sixty-four (64) in total across all models. The
variation in the performance of models 4 and 5 associates with the identification of relevant
indicators such as traffic analysis zones, minutes of departure, hours of departure (peak
or off-peak), the period of departure during the day (Morning, Afternoon, Evening, Night,
mid-night, etc.) and distance traveled ranges of 2 km intervals. In a similar description, the
travel speed tends to be the most influential indicator of travel time for demand-responsive
trips due to increasing the performance of the models when added to Model 4 and 5 in
comparison to Model 1, 2, and 3.

The MAE loss functions are for both training data and validation data, as shown in Figures
45, 46, 47, 48 and 49. These curves aim to check the model’s accuracy during the training
and validation, confirmed with the stable reduction and convergence of the training loss
curve. In contrast, the validation loss curves are found unstable. The instability in the
validation loss curves most time means model over-fitting and applying early stop loss at
the point of convergence of each curve before spiking is a solution to correct the instability.
Also, for models 1-3, the Mean Absolute Error (MAE) losses reduce at every epoch or
iteration from 5.4 minutes to less than 4.5 minutes. They mean high accuracy in training
the models. However, models 4 and 5 start their MAE loss curves at 1.6 minutes and further
reduced up to 0.2 minutes equivalent to 12 seconds. They also show very high model training
accuracy.
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Figure 50: Artificial Neural Network (ANN) model 1 training and validation correlation

Figure 51: Artificial Neural Network (ANN) model 2 training and validation correlation
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Figure 52: Artificial Neural Network (ANN) model 3 training and validation correlation

Figure 53: Artificial Neural Network (ANN) model 4 training and validation correlation
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Figure 54: Artificial Neural Network (ANN) model 5 training and validation correlation

Figures 50, 51, 52, 53 and 54 indicate the correlation plot between the validated data set
and the trained data set, which have an output of travel time each. The correlation lines
for models 1-3 are at 45 degrees amidst the scattered plots, while models 4 and 5 have a
majority of their output in high correlation with the red line plots. In essence, this means
that the models 4 and 5 have a higher relationship between trained travel time and validated
travel time than models 1-3, which also mean higher accuracy in travel time prediction for
models 4 and 5.

Furthermore, the error differences between predictions from the validation data and the
actual training data show models 1-3 display a more massive error difference from +50
minutes to -50 minutes than models 4 and 5 showing errors between -10 minutes and +10
minutes with the majority of the errors close to zero. It again confirms the very high
accuracy of travel time prediction, and model 4 has the highest accuracy in modeling to
predict travel time using Artificial Neural Network (ANN).

Model prediction test results

The trained models undergo tests to simulate the accuracy and performance with real-
world travel time. The real travel time was collected every 2-4 seconds’ coordinate of the
commuter’s position during the trip, from the origin up to the destination. The result of
the test, as shown in Table 11, confirms model 4 as the highest performing Artificial Neural
Network model with high prediction accuracy. This outcome results from its R-squared
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score of 0.997 equivalent to the model training validation R-squared score, the MAE value
of 0.093 minutes, and the RMSE value of 0.373 minutes, which are both the lowest with the
highest performance in both model validation and model testing.

Table 11: Artificial Neural Network (ANN) model test results for travel time prediction

Figure 55: Artificial Neural Network (ANN) model 1 test correlation
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Figure 56: Artificial Neural Network (ANN) model 2 test correlation

Figure 57: Artificial Neural Network (ANN) model 3 test correlation
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Figure 58: Artificial Neural Network (ANN) model 4 test correlation

Figure 59: Artificial Neural Network (ANN) model 5 test correlation

To further ascertain the accuracy of the models, the correlations between the predicted
travel time and the actual travel time are in Figures 55, 56, 57, 58 and 59 respectively. The
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correlation figures have substantial differences among models 1-3, and models 4 and 5 tend
to have more correlation plots align with the red 45 degrees line than the former. The same
goes for the error difference between predicted and actual travel time, models 4 and 5 have
virtually all their errors on +/-0 minutes compared to model 1-3.

In essence, the correlations in the models 4 and 5 are more linear than models 1, 2, and
3, and they mean the predicted travel time has a strong relationship with real travel time
in models 4 and 5. As the predicted travel time increases, the actual travel time increases,
and once the predicted travel time decreases, the real travel time also reduces across the
test data. These indicate very low prediction errors and high accuracy in prediction form
models 4 and 5.

Figure 60: Artificial Neural Network (ANN) models 1 travel time prediction per hour
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Figure 61: Artificial Neural Network (ANN) models 2 travel time prediction per hour

Figure 62: Artificial Neural Network (ANN) models 3 travel time prediction per hour
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Figure 63: Artificial Neural Network (ANN) models 4 travel time prediction per hour

Figure 64: Artificial Neural Network (ANN) models 5 travel time prediction per hour

The results of the travel time prediction for each model in Figures 60, 61, 62, 63 and 64
show model 4 and 5 with blue prediction line is very close to the red actual travel time
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line, thereby having very high accuracy in travel time prediction. The prediction outcome
of model 1-3 shows distant red and blue lines, which denote over-prediction of the travel
time. In summary, model 4 shows the highest accuracy for travel time prediction using the
Artificial Neural Network (ANN). These prediction plots are for the first seven days of the
test data, and the projections are for every hour per day.

4.2.2 Convolutional Neural Network (CNN) model results

Model training and validation

Table 12: Convolutional Neural Network Models Trained for Travel Time Prediction

The Table 12 is the result of trained Convolutional Neural Network (CNN) models through
50 iterations with 4 Fully Connected (FC) layers and nine neurons per hidden layer using
Adam optimizer, ReLU activation function and Mean Absolute Error (MAE) loss function.
Model 1 has MAE of 4.968 minutes, RMSE of 7.956, and an R-squared score of 0.635 without
trip speed as input. The model performance improves up to model 3 after including features
like distance range, departure minute, and departure period of the day.

Only model 2, among others without trip speed, is high performing with R-squared, MAE
and RMSE values of 0.681, 4.637 minutes and 7.438 minutes, respectively. The inclusion
of speed in model 4 and 5, rapidly increased the performance of the models. The models
recorded maximum value of R-squared score of 0.997, RMSE of 0.685 minutes and MAE
of 0.288 minutes for Model 4, and this makes the 4th model, again as in ANN models, the
highest performing model. The reason for the high performance is the same as discussed
for Artificial Neural Network (ANN) Models. The discussions ascertain trip speed to be the
most important indicator for travel time prediction for on-demand trips.

Figures 65, 66, 67, 68 and 69 show the MAE loss function plots for training and validation
datasets. The curves examine the model’s accuracy during the training and validation by
checking the curves’ stability in reduction and their convergence. It can be seen that the
training loss curves converge and stable while the validation loss curves are found unstable.
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Figure 65: Convolutional Neural Network (CNN) model 1 training and validation loss curves

Figure 66: Convolutional Neural Network (CNN) model 2 training and validation loss curves
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Figure 67: Convolutional Neural Network (CNN) model 3 training and validation loss curves

Figure 68: Convolutional Neural Network (CNN) model 4 training and validation loss curves
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Figure 69: Convolutional Neural Network (CNN) model 5 training and validation loss curves

The instability of the validation loss curves can be corrected by applying early stop loss at
the point of convergence of each curve. Mean Absolute Error (MAE) losses for models 1-3
tend to reduce at every epoch or iteration from 5.4 minutes to less than 4.6 minutes, after
which they started maintaining flat curves. It shows high accuracy in training the models,
and for models 4 and 5, their MAE loss curves started at 2.0 minutes and further reduced
up to 0.2 minutes, which confirms very high model training accuracy.

The correlation plots between the validated data and the trained data are as shown in
Figures 70, 71, 72, 73 and 74. The models 1-3 correlation lines maintain angles of 45
degrees through the scattered plots, and very high correlations in models 4 and 5, between
predicted travel time and actual travel time. Models 4 and 5 have a higher correlation than
models 1-3 due to their scattered plots aligning themselves along the red lines, which means
higher accuracy in prediction for models 4 and 5. Furthermore, the error differences between
predictions from the validation data and the actual training data show large error differences
ranging between +50 minutes and -50 minutes in comparison with models 4 and 5 whose
error range is approximately between -10 minutes and +10 minutes with the majority of the
errors close to zero. This further confirms a very high accuracy of travel time prediction and
that model 4 has the highest accuracy using Convolutional Neural Network (CNN) models
to predict travel time.
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Figure 70: Convolutional Neural Network (CNN) models 1 training and validation correla-
tion

Figure 71: Convolutional Neural Network (CNN) models 2 training and validation correla-
tion
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Figure 72: Convolutional Neural Network (CNN) models 3 training and validation correla-
tion

Figure 73: Convolutional Neural Network (CNN) models 4 training and validation correla-
tion
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Figure 74: Convolutional Neural Network (CNN) models 5 training and validation correla-
tion

Model prediction test results

Table 13: Convolutional neural network model test results for travel time prediction

To use these models to test the real-world travel time, it is required to carry out tests using
the data collected every 2-4 seconds from the coordinates of the commuter’s movements
during the trip, from the origin up to the destination. The test outcome, as shown in Table
13, confirms model 4 as the highest performing Convolutional Neural Network model with
high prediction accuracy. The outcome of model 4 having the highest performance shows
an R-squared score of 0.997 equivalent to that of the model training-validation, the MAE
value of 0.093 minutes, and the RMSE value of 0.373 minutes, which are both the lowest
with the highest performance in both model validation and model testing.
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Figure 75: Convolutional Neural Network (CNN) model 1 test correlation

Figure 76: Convolutional Neural Network (CNN) model 2 test correlation
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Figure 77: Convolutional Neural Network (CNN) models 3 test correlation

Figure 78: Convolutional Neural Network (CNN) model 4 test correlation
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Figure 79: Convolutional Neural Network (CNN) model 5 test correlation

The plots of the correlation between the models used in predicting the travel time and the
real travel time are as shown in Figures 75, 76, 77, 78 and 79 respectively. The correlation
plots record huge differences among models 1-3, and models 4 and 5 tend to have more
correlation plots align with the red line than the former. Also, the plots of error difference
between predicted and actual travel time, show model 1-3 to have their errors spread out
compared to model 4 and 5, which virtually have all their errors close or on +/-0 minutes.

Furthermore, the results of the travel time prediction for each model are plotted in Figures
80, 81, 82, 83 and 84. These prediction plots are for the first seven days of the test data,
and the predictions are for every hour per day. Model 4 and 5 whose blue prediction line
is very close to the red real travel time line, have very high accuracy in prediction. The
outcomes of the models 1-3 show distant red and blue lines predicted per hour, which denote
over-prediction of the travel time. In summary, again, model 4 shows the highest accuracy
for travel time prediction using the Convolutional Neural Network (CNN).
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Figure 80: Convolutional Neural Network (CNN) model 1 travel time prediction per hour

Figure 81: Convolutional Neural Network (CNN) model 2 travel time prediction per hour

91



Figure 82: Convolutional Neural Network (CNN) model 3 travel time prediction per hour

Figure 83: Convolutional Neural Network (CNN) model 4 travel time prediction per hour
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Figure 84: Convolutional Neural Network (CNN) model 5 travel time prediction per hour

4.2.3 Long Short-Term Memory (LSTM) model results

Model training and validation

Table 14: Long Short-Term Memory (LSTM) Models Trained for Travel Time Prediction

The Table 14 shows 50 iterations of 5 Long Short Term Memory (LSTM) Models with 4
LSTM layers, and starting with nine neurons per layer, Adam optimizer, ReLU activation
function and Mean Absolute Error (MAE) as the loss function. The first model has MAE of
5.059 minutes, RMSE of 8.065 minutes, and an R-squared score of 0.625 without trip speed
as input. In subsequent models, input features like distance range, departure minute, and
departure period of the day are added, and improvements are seen up to the third model.

Among the first three models, only model 2 has high-performance accuracy with R-squared,
MAE and RMSE values of 0.664, 4.641 minutes and 7.631 minutes. Models 4 and 5 include
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travel speed as inputs, and sharp increments show in their performance. Out of all the
models, the 4th model recorded a similar value of R-squared score of 0.994 with model 5
(the highest so far), the RMSE for model 4 is 0.978 minutes, which is lower compared to
RMSE of model 5 with 1.008 minutes. The MAE of model 4 has 0.394 minutes, larger than
that of model 5, which has 0.234 minutes.

In essence, this makes the models 4 and 5 the ones with the highest accuracy in predicting
travel time for LSTM. However, the evaluation metrics’ visualization plots shed more light
into which of these two models is more suitable. Travel or trip speed remains the most
powerful indicator for travel time prediction for on-demand trips.

The plots of MAE loss functions for both training data and validation data in Figures
85, 86, 87, 88 and 89 reveal the accuracy of the model during the training and validation
through checking the curves’ stability, reduction, and their convergence. As in the plots,
the training loss curves have convergence and are stable, but the validation loss curves are
unstable. The instability of the validation loss curves can be corrected by applying early-
stop-loss. Mean Absolute Error (MAE) losses for models 1-3 tend to reduce at every epoch
until they maintained flat curves.

Figure 85: Long Short-Term Memory (LSTM) model 1 training and validation loss curves
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Figure 86: Long Short-Term Memory (LSTM) model 2 training and validation loss curves

Figure 87: Long Short-Term Memory (LSTM) model 3 training and validation loss curves
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Figure 88: Long Short-Term Memory (LSTM) model 4 training and validation loss curves

Figure 89: Long Short-Term Memory (LSTM) model 5 training and validation loss curves
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The plots of the linear correlation between the validated data set and the trained data set
are shown in Figures 90, 91, 92, 93 and 94. The models 1-3 correlation lines maintain angles
of 45 degrees through the scattered plots, and very high correlations in models 4 and 5,
between predicted travel time and actual travel time. The scattered plots for models 4-5
tend to have a high linear correlation between prediction and actual values. Also, the error
differences between predictions using the validation data and the actual training data are
huge, and they spread between +50 minutes and -50 minutes for models 1-3 compared to
models 4 and 5, which range from -10 minutes to +10 minutes with the majority of the
errors close to zero. The error plot of model 5 has almost all predictions close to zero or on
zero minutes, and it indicates very high accuracy of the prediction of travel time with the
model using Long Short-Term Memory (LSTM) technique.

Figure 90: Long Short-Term Memory (LSTM) model 1 training and validation correlation
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Figure 91: Long Short-Term Memory (LSTM) model 2 training and validation correlation

Figure 92: Long Short-Term Memory (LSTM) model 3 training and validation correlation
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Figure 93: Long Short-Term Memory (LSTM) model 4 training and validation correlation

Figure 94: Long Short-Term Memory (LSTM) model 5 training and validation correlation
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Model Test results

Table 15: Long Short-Term Memory (LSTM) models test results for travel Time prediction

The trained models require testing with real-world travel time, and the test data were
collected every 2-4 seconds from the coordinates of the commuter’s trips from the origin up
to the destination. The results are as shown in Table 15, and model 5 displays the highest
performance denoting high prediction accuracy. This model has its R-squared score to be
0.997, the MAE value of 0.059 minutes, and the RMSE value of 0.364 minutes, both the
lowest MAE and RMSE of all the models. Furthermore, the plots of the correlation between
the predicted travel time and the real travel time are shown in Figures 95, 96, 97, 98 and
99, respectively. These plots record high linear correlations for models 4 and 5. In the same
instance, the error differences between the predicted and actual for models 4 and 5 are close
or on +/-0 minutes.

Figure 95: Long Short-Term Memory (LSTM) model 1 test correlation
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Figure 96: Long Short-Term Memory (LSTM) model 2 test correlation

Figure 97: Long Short-Term Memory (LSTM) model 3 test correlation
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Figure 98: Long Short-Term Memory (LSTM) model 4 test correlation

Figure 99: Long Short-Term Memory (LSTM) model 5 test correlation
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Finally, the travel time prediction for each model are plotted in Figures 100, 101, 102, 103
and 104. These prediction plots are for the first seven days of the test data, while the
predictions are for every hour per day. Models 4 and 5 have high prediction accuracy, and
models 1-3 show distant red and blue lines predicted per hour, which means over-prediction
of the travel time. In summary, models 4 and 5 have the highest performance for travel
time prediction using the Long Short-Term Memory (LSTM). The prediction plots confirm
previous result visualization and values like correlation, training and validation curves, and
error difference descriptions. These mean that with models 4 and 5, mobility operators and
commuters can forecast their upcoming trips demand-responsively.

Figure 100: Long Short-Term Memory (LSTM) model 1 travel time prediction per hour
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Figure 101: Long Short-Term Memory (LSTM) model 2 travel time prediction per hour

Figure 102: Long Short-Term Memory (LSTM) model 3 travel time prediction per hour
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Figure 103: Long Short-Term Memory (LSTM) model 4 travel time prediction per hour

Figure 104: Long Short-Term Memory (LSTM) model 5 travel time prediction per hour
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4.3 Comparison and evaluation of deep learning neural
networks performance

In this research, three (3) deep learning modeling types are developed and compared for
predicting the travel time of individual on-demand trips. The deep learning types are
Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and a Recurrent
Neural Network (RNN) technique called Long Short-TermMemory (LSTM). The five models
developed for each type of deep learning modeling techniques were visualized, analyzed, and
discussed in the previous section. However, this section compares one model from each deep
learning technique that has the highest performance after using the three evaluation metrics
as measurements and determinants. These evaluation metrics are R-squared or coefficient
of determination, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE).
Simultaneously, some other visualization plots similar to those of the previous section are
also used for comparison and evaluation. These measurement approaches were also used in
previous research works, as reviewed in this study’s literature chapter.

Table 16: Comparison results of deep learning neural networks performance

Table 16 shows the parameters and results of the four high-performing deep learning models,
which ran through 50 iterations using adam optimizer, MAE loss function, Rectified Linear
Unit (ReLU) activation function and 10-64 neurons equivalent to the number of inputs or
indicators. The Artificial Neural Network (ANN) trained model 4 validates with outcomes of
0.212 minutes (12.7 seconds) for Mean Absolute Error (MAE), 0.769 minutes (46.1 seconds)
for Root Mean Squared Error (RMSE) and R-squared of 0.997. After testing these models
with the test data and compared with the real travel time, the MAE reduces to 0.093
minutes (5.6 seconds), the RMSE also levels down to 0.373 minutes (22.4 seconds), and
the R-squared remains 0.997. It means an improvement in the model with a prediction
accurately close to the real travel time.

Similar results also in the Convolutional Neural Network (CNN) model with 0.997 of R-
squared for train-validation and test. The MAE for testing also reduces to 0.197 minutes
(11.8 seconds) from 0.288 minutes (17.3 seconds). Similarly, the RMSE for train-validation
is higher than the test with values of 0.685 minutes (41.1 seconds) and 0.403 minutes (24.2
seconds) in a respective manner. However, the LSTM has two highly performing models,
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and the train-validation has similar R-squared values of 0.994 for both models 4 and 5. In
contrast, the model tests have 0.990 and 0.997 R-squared values for 4 and 5, respectively.
According to the validation and testing results, LSTM model 5 has high performance with
R-squared increasing from 0.994 for train-validation to 0.997 for model testing. The MAE
and RMSE also reduced to 0.059 minutes (3.5 seconds) and 0.364 minutes (21.8 seconds),
respectively, for model 5.

The reduction in values discovered in MAE and RMSE shows the models’ high performance
in a real-world application for travel time, and having the R-squared of train and test equal
or increased also means the high performance of the model. LSTM model 4 is lower in
performance compared to model 5, with increased MAE and RMSE values for both model
validations and testing. The reasons for selecting model 4 is as a result of its validation loss
curve, having the best convergence and stability, which is more than five epochs before it
starts to spike (unstable). This observation is different from other model loss curves, which
start spiking or unstable from the beginning of training. Another reason for selecting LSTM
model 4 is as a result of having the highest number of relevant model inputs or indicators of
64. For other models, their instability starts from the second epoch, and the stability and
convergence of the loss curves denote well-trained models with high accuracy for prediction.

Figures 105, 106, 107 and 108 all show the differences in the convergence and stability
of the curves. Early stopping and training with more data are recommended in previous
literature to resolve unstable curves. However, LSTM model 4 shows a high convergence
and stability level between epoch 1-10 compared to the other three models. This indicates
a well-trained LSTM model 4 with the validation loss sequential reduction, and with more
data, an improvement will be recorded.

Figure 105: Artificial Neural Network (ANN) model 4 training and validation loss curves
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Figure 106: Convolutional Neural Network (ANN) model 4 training and validation loss
curves

Figure 107: Long Short-Term Memory (LSTM) model 4 training and validation loss curves
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Figure 108: Long Short-Term Memory (LSTM) model 5 training and validation loss curves

The correlation plots of models for the predicted travel time and the real travel time are
shown in Figures 109, 110, 111 and 112 respectively. These plots have a similarly high
correlation in line with their coefficient of determination known as R-squared score of 0.997
except LSTM model 4 with 0.990. As earlier described during each model development, the
error differences between predicted and actual travel time have almost all the error values
close or on +/-0 minutes. These outcomes denote high prediction accuracy for the models
developed.

Figure 109: Artificial Neural Network (ANN) model 4 test correlation plot
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Figure 110: Convolutional Neural Network (ANN) model 4 test correlation plot

Figure 111: Long Short-Term Memory (LSTM) model 4 test correlation plot
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Figure 112: Long Short-Term Memory (LSTM) model 5 test correlation plot

The visualization results of the travel time prediction for each model are in Figures 113,
114, 115 and 116. These predictions are for the first seven days of the test data, and the
predictions are for every hour per day. The predicted and real travel time lines are very
close together, confirming very high accuracy in prediction. LSTM models further show
from these plots to have the highest accuracy for travel time prediction. Therefore, mobility
operators, transport authorities, and researchers can adopt these models to predict travel
time, however, with more large data to train the models.

Figure 113: Artificial Neural Network (ANN) model 4 real travel time prediction per hour
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Figure 114: Convolutional Neural Network (CNN) model 4 real travel time prediction/hour

Figure 115: Long Short-Term Memory (LSTM) model 4 real travel time prediction per hour
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Figure 116: Long Short-Term Memory (LSTM) model 5 real travel time prediction per hour

4.4 Computational costs of developing the deep learning
models

This section discusses the computational costs of developing deep learning models to predict
the travel time of individual on-demand trips. The computational costs identified include
the run-time for training each neural network model, the time expended in data process-
ing before modeling, and the overall time used to accomplish the data processing, feature
engineering, model training, and model testing up to prediction with the humongous data
collected. Furthermore, the computational power of the computer system used in accom-
plishing the research is also identified.

Model information and parameters

Table 17 shows the results of the identified computational costs of running each model and
the overall data task. Fifteen (15) neural network models were developed, and each neural
network has five models. These neural networks include Artificial Neural Network (ANN),
Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). The model
information and parameters include the number of epoch or iterations which the models
looped through to train and learn the data.

The inputs are the number of identified indicators trained and validated for each model
while the trips show the quantity of on-demand trip data that trained and validated, which
is slightly over 7 million trips, also equivalent to the number of rows in the training and
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validation datasets. However, the layers exclude input and output layers and include four
hidden layers for ANN, 4 LSTM layers and one convolution, max-pooling, and flattening
layers for CNN. These layers’ parameters are equal across all models. The model information
is essential to understand the structure and intensity of the networks and to relate them
with other information like computer system specification and the computation run-time
for the tasks.

Overall, 15 neural network models were developed and tested under 250 epochs or iterations
on average for each of ANN, CNN and LSTM deep learning methods. A maximum of 64
inputs, also known as travel time indicators, were used for the model training of the seven
(7) million (7,000,645) on-demand trips for each of the 15 models. The inputs vary as in
Table 17, and there is an average of 4 layers for the architecture of each neural network
model, which includes LSTM layers, hidden layers, and other layers stated previously.
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Table 17: Computational costs from data processing up to model development and predictions
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Computer system specifications and capacity

The computer used in running this task and developing the models is a Personal Computer
(PC) with a limited computational capacity to process large data set. This computer’s
identified computational power includes its Operating System (OS), the Random Access
Memory (RAM), the processor, memory storage, and the system type. The computer is an
Intel core i5 system with a Microsoft Windows 10, a RAM of 8.00 gigabytes (GB), a 1.80
Giga-Hertz processor with 4 cores, and 8 threads. The secondary storage is a Solid-state
Drive (SSD) of 250 GB, and it is a 64-bit (x64-based) OS. The computer specifications
reveal the computer’s ability to prepare the huge data and develop the model successfully,
considering the computational time or the run-time for each model.

However, a maximum of 7.88 GB RAM is used during the task, on average for each of
the 15 neural network models while an average of 8.5 GB SSD memory consumed for data
pre-processing (data cleaning, imputation, visualization up to feature engineering), model
training up to the final prediction of the Artificial Neural Network (ANN) models. This
SSD memory usage includes as part of ANN due to its models being the first set developed.
In essence, every task, from pre-processing, aside model training and prediction or testing
before developing the first ANN model. In a similar interpretation, 5.0 GB SSD memory
is consumed on average to run tasks from the model development up to model prediction
for each Convolutional Neural Network (CNN) model. Subsequently, 5.5 GB SSD memory
consumed in running tasks from model development up to model prediction for each Long
Short-Term Memory (LSTM) model. Therefore, overall, an average of 6.3 GB SSD memory
ran each neural network task from the pre-processing data stage to model prediction.

4.4.1 Computational run-time for the deep learning models

The computation run-time is the time taken for the python scripts, functions, and classes
to process and execute the development of each of the 15 neural network models, right from
data pre-processing up to model predictions. There were several breaks (in days) between
the run-time for the researcher to recuperate, read more literature, and do more in-depth
research on challenges encountered during the data analysis, modeling, and prediction tasks
before completion. The data collected is 50 GB data compressed into 10 GB zip folder, as
downloaded from Didi and Gaia initiative database web platform, and it contains 60 files
in the ".file" format. The zip folder has one origin-destination and one trip route data file,
and these two dataset categories were collected every day for 30 days, which made up the
60 files in the downloaded zip file. The approximate time used to extract, convert the file
format and process the data before model development are identified in the subsections.
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Run-time for data processing and model testing

As shown in Table 17, it took 19 hours and 55 minutes (00:19:55:00) in total from data pre-
processing to model testing or prediction, excluding model development and training, for
the first ANN model. As discussed earlier, before ANN model 1 was developed and trained,
the datasets were prepared for modeling. An estimated run-time of 19 hours 40 minutes
prepares the data up to feature engineering and before developing and training the model.
This run-time comprises converting the 60 ".file" formats into ".csv" formats, suitable and
easy for the Python scripts or codes. Immediately after conversion, these 60 CSV files were
merged and separated into two 30-day datasets (the origin-destination and the trip routes
datasets), used as training and test data.

Afterwards, it was discovered that the CSV files contain no column labels, but instead,
the labels were stated on the website where the data was retrieved. These labels include
Pick-up longitude and latitude, Drop-off longitude and latitude, order Id, driver Id, and the
timestamps. All these were used accordingly to label the columns of the dataset on the
Jupyter notebook with Python language.

Thereafter, the datasets underwent cleaning, graphical visualization, imputation, and fea-
ture engineering up to model development. The trip route dataset, which has a size of
about 1.35 billion rows or trip coordinates, was sorted into origin-destination by selecting
the departure and arrival coordinates based on trip start time, end time, and order Id of
each commuter. These consume more RAM, SSD memory and eventually extended the run-
time up to the 19 hours 41 minutes (approximately). However, the remaining 14 minutes
run-time estimation was utilized for the ANN model 1 testing process. These all explain
the reasons for ANN model 1 having the highest run-time for data processing and model
testing, of all the 15 models developed.

Subsequently, the run-time for testing each model, ranges from 14-19 minutes depending
on the architecture size, the type of neural networks, model parameters, and the computer
capacity. In total, 23 hours, 49 minutes (00:23:49:00), expended in running the 15 models
from data processing to model testing. A break down of 20 hours 59 minutes run-time for
processing the data and testing all ANN models, 1 hour 24 minutes run-time for testing all
CNN models, and close to 1 hour 26 minutes to test LSTM models. This computation time
shows that almost one day, in total, was used in processing the data and model testing.
However, that this run-time was not on a stretch or consecutive, it only represents the time
expended in running the python scripts, considering the computer capacity. This eventually
shows that more data can be trained with less time and larger computational power to
attain higher prediction accuracy.
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Run-time for model training and overall computation

The run-time for training each neural network model, as well as the overall run-time, is
discussed. Almost 20 hours are used by the python scripts to train all ANN models, while
all CNN models had a total run-time of about 42 hours for training and close to 43 hours
run-time total for training all LSTM models. This analysis shows that the LSTM took
the longest time to train its models but still proves itself the best model with the highest
performance, as discovered at the models’ comparison section. The total run-time taken
to train all the 15 models is four days 14 hours 21 minutes and 28 seconds (04:14:21:28),
and this is also dependent on the computation power of the computer used and the model
information and parameters.

The overall computation time for the LSTM is the highest among the three neural networks
developed, with almost 50 hours run-time (over two days). Subsequently, the CNN total
computation time for all the data analysis and modeling tasks is about 44 hours run-time.
Finally, the ANN overall run-time is about 40 hours, 19 hours 41 minutes of data processing
and preparation, and 20 hours model training and testing. The lowest computational time
of ANN is due to its simple network architecture compared to the LSTM with more complex
neural network architecture. Therefore, to apply the LSTM architecture or deep learning
techniques, a computer with higher computational power and capacity is needed to reduce
the massive run-time and, at the same time, predict with high accuracy.
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Chapter 5

Conclusion and recommendations

This section concludes this research, focusing on on-demand modeling and forecasting indi-
vidual upcoming trips with an in-depth study on travel time. The objectives set to achieve
this aim are identifying relevant data-driven indicators influencing the travel time of indi-
vidual on-demand trips, developing and comparing suitable deep learning models to predict
the travel time of individual on-demand trips, and identifying the computational costs of
developing the deep learning models. Therefore, this concluding chapter discusses the sum-
mary of findings and conclusions and highlights the research limitations elucidated in the
research methodology chapter above to give recommendations for future research works.

5.1 Summary of findings and conclusions

Identifying relevant travel time indicators

After running a correlation test to determine which indicators are highly significant and
influence travel time, more indicators created became influential apart from the commonly
used indicators in previous research works. These common ones include departure time,
pick-up longitude, pick-up latitude, drop-off longitude, drop-off latitude, travel distance,
and travel speed. However, the raw data of the large model training data set collected for
this research only comprises of departure timestamps, arrival timestamps, pick-up longitude,
pick-up latitude, drop-off longitude, drop-off latitude. These features became the foundation
for creating additional indicators, and in total, the data-driven indicators used as model
inputs are sixty-four (64).

Regarding this discovery, on-demand modeling and prediction of individual upcoming trips
are realizable with travel time prediction by collecting only three (3) information from the
commuter, and they include trip departure time, trip origin coordinates, and trip destination
coordinates. The travel distance derived from the trip origins and destinations’ longitudes
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and latitudes had the highest positive correlation with travel time. Simultaneously, the
travel speed created from the mathematical speed formula using travel distance and travel
time had the most top negative relationship with the travel time. The creation of the traffic
analysis origin and destination zones are from the use of longitudes and latitudes of origins
and destinations. The three (3) commuters’ information is the essential data required on
the user interface of mobile applications for transport operators. The back-end of the app
then automatically generates the sixty-four (64) indicators as model inputs for travel time
prediction.

Developing and comparing deep learning models

Three (3) neural networks used to develop the fifteen (15) deep learning models, comprised
of five (5) model set each. All the models have five (5) set of inputs whose maximum do
not exceed sixty-four (64). Thereafter, the comparison revealed that travel speed has a
very significant influence on increasing the models’ prediction accuracy. The coefficient of
determination values ranges from 0.990 and close to 1 for models 4 and 5 of each neural
network, which comprises travel speed as model inputs. Furthermore, the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) rapidly moved close to zero with
values up to 0.059 minutes for MAE and 0.364 minutes for RMSE. Therefore, speed is an
essential input or indicator for the modeling and predicting travel time to be as close to
reality as possible.

After the models’ result comparison, the next was the evaluating and comparing the neural
networks, which include Artificial Neural Network (ANN), Convolutional Neural Network
(ANN), and Long Short-term Memory (LSTM), having the best performance and highest
prediction accuracy values. LSTM models 4 and 5 have the best results. The former had
the best converging and stable validation loss curve, and the latter had the lowest MAE of
0.059 minutes and RMSE of 0.364 minutes, including its coefficient of determination of 0.997.
Therefore, LSTM is the best neural network for deep learning modeling and predicting the
travel time of individual commuter’s on-demand trips.

Identifying the computational costs of developing the deep learning models

Computational costs identified disclose the researcher’s computer capacity and specifica-
tions considering the model parameters and information, and computation time for data
processing, model training, and model testing. Small computer capacity like that of the
researcher has low computational power to prepare, model, and test large data sets with
tens and hundreds of millions or billions of on-demand trips. It took the computer a total
run-time of 483,028 seconds equivalent to approximately five days and 14 hours long to run
the python scripts used for preparing around 7 million trips for modeling, training, and
prediction testing.
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Therefore, the LSTM models, which have the best performance in travel time modeling and
prediction, have the highest memory drive consumption known as Solid-state Drive (SSD)
to model and test for prediction, excluding data processing run-time in Artificial Neural
Network (ANN) run-time value for model 1. LSTM also has the highest computation time
of over 50 hours, which can reduce when computers having high computational power are
utilized.

5.2 Limitations and recommendations

The first identified limitation is the researcher’s inability to visit the case study area for in-
depth research and identify more factors or indicators capable of influencing the travel time
of individual on-demand trips. The research methodology in chapter 3 further elucidates
the reasons behind it. Accessibility to the study area is essential to retrieve first-hand
information on more essential indicators as inputs for the trained models for the travel time
prediction. Future research should consider the need to visit the case study area, as this
approach will enable improvement in the model training and prediction accuracy.

The second limitation is the researcher’s computer’s computation power, which is limited
and takes a longer time to process huge datasets, train the deep learning models, and test
the model for real-time prediction. Future research requires a computer system with high
computation capacity of Random Access Memory (RAM), memory drive of Solid-state Drive
(SSD), and the computer processor. It will improve the training models’ efficiency with
more massive data to avoid over-fitting and ensure high learning and prediction accuracy of
travel time. It will also reduce the computation time for the python script or any compiled
programming language codes and make the modeling and prediction more effective and
efficient.
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