
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Solving the Shallow Water Equations on
Heterogeneous Architectures with Kokkos

Dominik Mehringer

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Solving the Shallow Water Equations on
Heterogeneous Architectures with Kokkos

Lösen der Flachwassergleichungen auf
heterogenen Architekturen mit Kokkos

Author: Dominik Mehringer
Supervisor: Prof. Dr. Michael Bader
Advisor: M.Sc. Alexander Pöppl, M.Sc. Philipp Samfass
Submission Date: 18.05.2020

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 18.05.2020 Dominik Mehringer

Abstract

Parallel computing makes use of various system architectures and hardware configu-
rations, as the application context typically determines suitable machines. It is really
challenging for an application programmer to optimize memory management and
leverage hardware traits, especially in those cases in which the platform may change.
In this bachelor’s thesis, the speed-up of computation as well as the performance
portability using the framework "Kokkos" in the context of shallow water equations is
investigated. The framework generates performance portable code for heterogeneous
architectures, which optimizes computation time independently of the underlying hard-
ware. It is achieved by providing an abstraction of the interfaces of the computational
devices and using hardware specific characteristics like data layout or memory perfor-
mance. Furthermore the LRZ-Cluster is used to compare the legacy implementation
with the Kokkos implementation using several Intel KNL processors. In order to check
performance portability the implementation is also evaluated using different GPU
generations. As the results show, Kokkos is indeed generating performance portable
code, which is mostly even faster than the legacy approaches.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure and Related Work . 1

2 Background 3
2.1 Theory . 3

2.1.1 Heterogeneous Architectures . 3
2.1.2 Shallow Water Equations . 5

2.2 SWE Project . 7
2.3 Kokkos . 8

3 Implementation 13
3.1 Basic classes . 13
3.2 Compile-Time Choices . 15
3.3 Implementation Approaches . 16

3.3.1 Flat Parallelism . 17
3.3.2 Hierarchical Parallelism . 17
3.3.3 MPI and Kokkos . 18

4 Evaluation 20
4.1 Flat Parallelism . 21

4.1.1 OpenMP and Kokkos . 25
4.1.2 CUDA and Kokkos . 28

4.2 Hierarchical Parallelism . 31

5 Conclusion 33

List of Figures 35

List of Tables 37

Bibliography 38

iv

1 Introduction

1.1 Motivation

The ever increasing amount of data produced, processed and evaluated by scientific
applications on high performance computing clusters requires advancements with
respect to architectures and hardware technology. Even though the power of computer
systems increased exponentially over the past decades, CPU clock frequencies nowa-
days stagnate in growth so that the solutions need to be parallelized effectively. As there
are several computing devices that can be used for parallelization on hardware-level,
such as multicore CPUs (Intel i7), manycore CPUs (Intel Xeon Phi) and GPUs (NVIDIA
Titan Xp), different configurations for the platform may occur. It is especially chal-
lenging for an application programmer to fully utilize the computational power if the
target platform is heterogeneous (in terms of computational devices having differing
properties such as the number of cores or energy consumption), because load balancing
and synchronization are difficult to implement [1, pp. 1–6].

High Performance Computing (HPC) across different platforms and configurations
can lead to portability problems regarding the performance [1, p. 6]. There are many
parallelization libraries, like OpenMP, CUDA and MPI, that target specific devices or the
communication between the parallel processes. In order to focus on the problem instead
of the optimization for the underlying architecture, the Kokkos framework is introduced
to tackle this issue and provide an abstraction for different computing devices to ensure
an optimized performance on parallel systems without changing the source code. The
way of managing and accessing data has a high impact on performance and the data
access pattern is dependent on the device. Kokkos provides multidimensional arrays
that choose a suitable layout for the specific memory access pattern. This yields several
advantages, as it optimizes the code for the system architecture and specific hardware
features [2].

1.2 Structure and Related Work

This thesis introduces the theory behind shallow water equations and technical aspects
of heterogeneous architectures. Afterwards, the project setup, in which the Kokkos

1

1 Introduction

framework is embedded, will be explained and the capabilities of Kokkos are briefly
introduced. The following chapters elaborate the integration of Kokkos into the SWE
project and the challenges that were faced when addressing performance portability of
the legacy code. Evaluating and comparing the results to the legacy code is important
in order to measure the impact of the Kokkos enhancements. The last chapter gives a
conclusion and an outlook for future work.

There are several applications that make use of Kokkos. The application miniMD, for
example, is a molecular dynamics project developed at Sandia National Laboratories. It
is written in C++ and can be run on any parallel computer due to the scalable imple-
mentation [3]. A more detailed list of applications written with the use of Kokkos can
be found here [4]. As H. C. Ewards et al. [2] show, the Kokkos implementation is mostly
performing better than the legacy implementation when evaluting the performance on
mini-applications.

The SWE project is developed for teaching purposes and changes are constantly
added. It provides several solvers and approaches for the parallelization of the shallow
water equations. Bader et al. [5], for example, use the project for the evaluation
of the vectorized augmented Riemann solver. They evaluated their examples using
AVX and SSE4, and achieved a massive speed-up, even though the implementation
of complex numerical algorithms using SIMD is not as easy as it may seem. Several
implementations of different libraries are already evaluated in the thesis’ of J. Olden [6]
and M. Bogusz [7].

2

2 Background

2.1 Theory

This section compares different devices and how they can interact in heterogeneous
architectures. Afterwards, a brief introduction into shallow water equations is given.

2.1.1 Heterogeneous Architectures

Comparison of Computing Devices

Name # of Cores # of Threads Frequency (Base)

Intel Xeon Platinum 16 32 2200 MHz
NVIDIA Tesla P100 3584 3584 1480 MHz

Table 2.1: Comparison of computing devices for HPC [8], [9].

Central processing units are the most common type of computing devices. They are
designed to be versatile and flexible in contrast to the graphics processing unit that has
a more specialized instruction set. Low latency guarantees interactivity, but the low
number of cores limits the parallel handling of tasks. Therefore the general architecture
is mostly designed for serial processing [10].

On the contrary, GPUs are specialized in parallel data processing rather than control
and storage. As seen in 2.1, blocks of cores share the same cache. This is important when
mapping the work to the cores in order to utilize cache benefits due to the fact that many
cores work on the same data. Intelligent work-mapping could increase performance,
because data access will be accelerated. A NVIDIA GPU, for example, consists of
streaming multiprocessors with private caches (L1) of high bandwidth and many
CUDA (Compute Unified Device Architecture) cores per streaming multiprocessor
which can perform integer and floating point arithmetic. Each streaming processor can
access one cache (L2) that is connected to the DRAM and has an interface (normally
PCI-Express) to the host system to communicate with the CPU. With the CUDA
programming interface stream processing can be realized for applications in high level

3

2 Background

Figure 2.1: Schematic comparison of machine models [13, p. 2].

programming languages like C++. It is done using the API which handles memory
management, creates device functions that may get executed by threads and groups
threads to blocks which execute the same code in parallel. These global functions can
be invoked by the host [11, pp. 600–602], [12].

Connection and Communication

As seen in the previous sections, the architectures and models differ in various ways.
One major obstacle is that the memories of the separate devices need to be handled
individually, because their (virtual) address space is eventually not shared. Data has to
be transferred manually to the respective device which may cause a massive overhead
in communication. This issue can also lead to bottlenecks if the interfaces are either too
small, the bandwidth is too low or many devices share the same bus. The last aspect is
especially problematic if many computational units are involved. The classification of
memory can be divided into three types [11]:

• UMA (Uniform Memory Access): The memory access time is equal for each
processor.

• NUMA (NonUniform Memory Access): The memory is distinguished in local
and peripheral memory. The CPU has a memory module (local), but can access
memory of other processors (peripheral).

• COMA (Cache Only Memory Access)

The interconnection network of the multiprocessors is of importance for the commu-
nication. The transmission capacity measures the amount of data that the network can
transport per second and the bisection bandwidth is calculated by dividing the network
in two halves and removing a connecting edge. Afterwards, the new bandwidth needs
to be calculated. The bisection bandwidth is the minimum of all combinations. The goal

4

2 Background

is to maximize bisection bandwidth which is the most important metric, because in the
worst case it is the minimum bandwidth. There are several topologies for connecting
the processors like star, ring and full interconnection [11, pp. 634–636].

A parallel program which is deployed on many processes and uses distributed
memory needs to communicate at some point in execution. Therefore the Message
Passing Interface (MPI) is introduced as an abstraction for inter-process communication.
Data can be exchanged by sending messages to other processes. The interface provides
broadcast and end-to-end communication as well as asynchronous and synchronous
operations. Each process knows its rank and the total amount of launched ranks. That
enables the programmer to write one program and change the flow of the program
depending on this information. There are several other operations provided by the
interface, but the ones mentioned are sufficient for the purpose of the project [14].

2.1.2 Shallow Water Equations

Riemann problem and basic equations

The Shallow Water Equations1 rely on partial differential equations, especially hyper-
bolic systems. To solve these equations spatial variables as well as a time-dependent
one need to be taken into account. The general linear form (with one spatial dimension)
is

qt(x, t) + Aqx(x, t) = 0 (2.1)

in which q ∈ Rm is a vector of unknown functions and the index represents the partial
derivative. The matrix A ∈ Rm×m has to meet the following criteria to be hyperbolic:

• Real eigenvalues

• Linear independent eigenvectors

The class of the equations is named conservation laws and has the following simple
quasilinear form

qt + f ′(q)qx = 0 (2.2)

in which f (q) is called flux function and the conserved quantities are the components
of the vector q [15].

In order to approximate the solution the finite volume method is introduced. Finite
differences are often used to compute derivatives. The interval is split into cells where
q is averaged in the cell. The Riemann problem is a fundamental aspect in solving the

1The name will further be abbreviated as SWE

5

2 Background

SWE with the finite volume method. q is defined as

q(x, 0) =
{

ql , if x < 0,
qr, if x > 0.

(2.3)

with ql and qr as the averages of the respective cells at the discontinuity at x = 0. This
information is used to update the cells by computing the numerical flux. In order to
have a stable solution, the CFL condition needs to be satisfied. It has been discovered
by showing that the solution of PDEs with the finite differences schema, converges by
refining the grid. That stability constraint is given by ∆t

∆x max |λ| ≤ 1 in which λ is an
element of a previously computed set of wave speeds. There are various approaches,
like the Roe method, to solve the Riemann problem and these kinds of PDEs, but
this section only intends to briefly introduce this topic to understand the application’s
context [15], [16].

The SWE are defined by following equations:

• ht + (hu)x = 0 in which h denotes the depth of the fluid and hu the momentum.
The momentum is the flow rate and called discharge.

• (hu)t +
(
hu2 + 1

2 gh2)
x = 0 is deduced by putting the hydrostatic law 1

2 ρgh2 into
the conservation of momentum equation (ρhu)t + (ρhu2 + p)x. Density ρ is
canceled out [15, p. 254].

The combination of these equations yields, according to [15, p. 254], the SWE in one
dimension [

h
hu

]
t
+

[
hu
hu2 + 1

2 gh2

]
x
= 0 (2.4)

Dimensional splitting

In order to compute the numerical solutions for multidimensional systems, dimensional
splitting is used to reduce the problem on the one-dimensional case. This is done by
splitting the spatial dimensions and aligning the results to the coordinate axis. The
two-dimensional case (which is the relevant case in the simulation) qt + Aqx + Bqy is
split into x-sweeps qt + Aqx and y-sweeps qt + Bqy. The shallow water equations are
generalized from the one-dimensional case and defined in equation 2.5 [15, pp. 429 –
444]. h

hu
hv

t

+

 hu
hu2 + 1

2 gh2

huv

x

+

 hv
huv
hv2 + 1

2 gh2

y

= 0 (2.5)

6

2 Background

In the first step, the one-dimensional case is solved with the respective cell information
in x-direction for each y. The equation 2.6 is the update of the cell on a grid. F denotes
the numerical flux of a cell and Q the cell average [15, pp. 429 – 444].

Q∗ij = Qn
ij −

∆t
∆x

(Fn
i+1/2,j − Fn

i−1/2,j) (2.6)

The y-sweep makes use of the intermediate values Q∗ to compute the final cell update
Qn+1 with G∗ as numerical flux in y-direction [15, pp. 429 – 444].

Qn+1
ij = Q∗ij −

∆t
∆x

(G∗i,j+1/2 − G∗i,j−1/2) (2.7)

2.2 SWE Project

The application used to explore and test the capabilities of Kokkos is based on a
project of the chair. It is called SWE and already implements basic features for solving
shallow water equations. Firstly, SConstruct is the build system that needs to be
modified in order to set flags or include libraries (in our case Kokkos). SWE simulates
two-dimensional domains and therefore uses a submodule which implements one-
dimensional solvers. The FWave and AugRie solver are both implementing the Riemann
method of solving PDEs. The Kokkos approach uses the HLLE solver. The mathematics
are described in 2.1.2.

Secondly, various methods for the two-dimensional simulations are located in the
directory "/src/blocks". The method of dimensional splitting will be enhanced with the
Kokkos framework and stored in a separate source file. Basically, this methods applies
the solver on two spatial dimensions by splitting the problem in x and y direction.
The solver is applied for each cell in one direction and after that in the other direction
(so-called sweeps) on the discretized grid (2.1.2).

The rest of the files are different scenarios on which the simulation is applied to.
The writer source files are used to write checkpoints, which can be used to restore the
simulation.

7

2 Background

2.3 Kokkos

The Kokkos framework is a library for C++ or Fortran applications developed at
Sandia National Laboratories. Its main goal is to provide an ecosystem to generate
performance portable code for various scientific applications. As seen in 2.1.1, it can
be arbitrarily complex to fully utilize the whole system performance on architectures
with different kinds of GPU(s) and CPU(s). To achieve high performance, Kokkos
leverages architecture-specific characteristics, e.g. data layout. Kokkos’ purpose is to
tackle this issue and provide an abstraction layer to the underlying (heterogeneous)
architecture. Therefore Kokkos provides different patterns for (parallel) code execution,
data management and performance portable data access. Furthermore hierarchical
threading and atomicity is addressed [2].

Figure 2.2: Kokkos as a uniform adapter for computational devices.

The code samples, 2.3 and 2.4 shown below, illustrate the difference in the implemen-
tation of a matrix multiplication performed in CUDA and OpenMP. This part will not
give a deep insight into CUDA programming, but in addition to the kernel, memory
allocation, clean up and kernel calls are needed [12]. OpenMP also allows to use the
GPU for multithreading and has several more features which are not covered in this
thesis. For demonstration purposes only a simplified, small subset of the specification
is shown [17].

8

2 Background

1 struct {
2 int width;
3 int height;
4 float *elements;
5 } Matrix;
6 __global__ void matMul(Matrix A, Matrix B, Matrix C) {
7 float Cvalue = 0;
8 int row = blockIdx.y * blockDim.y + threadIdx.y;
9 int col = blockIdx.x * blockDim.x + threadIdx.x;

10 for (int i = 0; i < A.width; ++i) {
11 Cvalue += A.elements[row * A.width + i]
12 * B.elements[i * B.width + col];
13 }
14 C.elements[row * C.width + col] = Cvalue;
15 }

Figure 2.3: CUDA kernel of a matrix multiplication. Kernel is executed on GPU cores.
Code adapted from [13, p. 24].

1 void matMul(Matrix A, Matrix B, Matrix C) {
2 #pragma omp parallel for
3 for (int row = 0; row < A.height; row++) {
4 for (int col = 0; col < A.width; col++) {
5 float Cvalue = 0;
6 for (int i = 0; i < A.width; i++) {
7 Cvalue += A.elements[row * A.width + i]
8 * B.elements[i * B.width + col];
9 }

10 C.elements[row * C.width + col] = Cvalue;
11 }
12 }

Figure 2.4: OpenMP implementation of a matrix multiplication. Actions are performed
on the host [17].

9

2 Background

1 // Declaration of a matrices
2 Kokkos::View<float**> a("matA", hA, wA);
3 Kokkos::View<float**> b("matB", hB, wB);
4 Kokkos::View<float**> c("matC", hC, wC);
5
6 // Multidimensional iteration
7 auto range_policy = Kokkos::MDRangePolicy<Kokkos::Rank<2>>({0, 0},
8 {hC, wC});
9

10 // Perform matrix multiplication
11 Kokkos::parallel_for(range_policy, [=] (const int row, const int col) {
12 float Cvalue = 0;
13 for (int i = 0; i < wA; i++) {
14 Cvalue += a(row, i) * b(i, col)
15 }
16 c(row, col) = Cvalue;
17 });

Figure 2.5: Implementation of a matrix multiplication performed by Kokkos [2].

One can clearly see that there are significant differences in the approaches. OpenMP
uses preprocessor directives that automatically parallelize given code for the current
architecture depending on the setup. The code is then run on the host if the target is
not specified to offload on the GPU [17]. On the contrary, in the CUDA programming
model, the host needs to initialize the data, transfer it to the device with dedicated
instructions, execute the kernels and then fetch the results from the device memory [13].
Kokkos provides a much more convenient interface to unify this disparity, visualized
in figure 2.2, while still having the freedom to write host and device functions. This
is especially interesting in terms of software engineering, because the application
programmer is shielded from hardware details and even the APIs of different parallel
programming models. The target offloading happens at compile time by either choosing
the kernel execution space or using the default execution space which is much more
fault-tolerant, because the source code does not need to get changed.

The computation gets mapped on cores by providing a range which represents
the amount of work, the index on which the core operates and the function that gets
computed by the unit. The function gets passed as a functor object. Kokkos provides the
function parallel_for which gets passed the total amount of iterations or a range policy
as its first argument and a functor as its last argument. The functor can be expressed

10

2 Background

as a lambda-function to be more concise. It is important to capture by value, but one
needs to be careful to not copy large data containers. The lambda gets the current index
/ indices as parameter. If not only work needs to be performed on data, but also the
data is reduced to a single value, Kokkos provides parallel_reduce. Now the lambda
has an additional parameter as accumulator (thread-private) and the parallel_reduce-
function has a reference to the total reduced value as its last parameter. The assigned
values for the thread-private references can be reduced afterwards according to a
Kokkos or user defined reduction function. Figure 2.5 demonstrates the structure of
the parallel_for-function [2].

Another important concept are views for handling multidimensional arrays, because
the layout for arrays may differ for different devices. Accessing the view follows
a common design pattern, which is used in numerical libraries. Kokkos provides
many classes for different implementations of the memory space, in order to manage
and boost performance for devices with differing memory performance attributes,
like texture caches in GPUs. Deep copies of views into other memory spaces can
be performed, which is constraint by the SpaceAccessability-struct. The abstraction of
execution and memory space leads to varying configurations for the computation
and storage in heterogeneous architectures. Table 2.2 shows the relevant execution
and memory spaces that were used in the project. Kokkos provides several more
containers, like the DualView which provides a host mirror if the view is not located in
host memory space [2].

Execution Space Memory Space

Cuda CudaSpace
OpenMP HostSpace
PThread CudaHostPinnedSpace

Serial CudaUVMSpace

Table 2.2: Kokkos distinguishes between several execution and memory spaces. The
table shows the relevant spaces for the project [2].

With Kokkos it is also possible to explicitly build hierarchical parallel execution
patterns. Hierarchical parallelism can be useful for machines with many computing
devices, where computing cores can be grouped and have access to a fast shared
memory. These characteristics can be leveraged by Kokkos. A node based cluster with
multicore CPUs, for example, supporting hyperthreads and vector instructions has 4
levels of parallelism. There are different types of abstraction levels that can be mapped
by Kokkos on specific hardware features. Therefore the concept of thread teams is used
which logically (or even physically) groups threads that are synchronized and share

11

2 Background

memory. The threads are indexed by the league rank, an arbitrary integer, and the
team rank which is constraint by the hardware. New teams are launched once a team
is finished. Policies are used to instantiate teams by providing the league size and team
size, which can automatically be determined with AUTO. The respective lambda gets
the team member handle. In the kernel function, team members can access the same
scratch memory, allocate space in the memory and generally perform the same actions
as on the global memory. After the team is finished, the scratch memory gets cleaned
up. Loops can be nested and each level can access the ranks. The execution policy
TeamThreadRange and ThreadVectorRange can be used for team based nested parallelism
over specific ranges. PerTeam and PerThread allow atomic operations in single nested
regions [2].

This chapter is only supposed to give a brief introduction to the capabilities of
Kokkos as there are many more functionalities. The parallelization back-end can be
selected when building the project and there are many additional options. For further
information the wiki of the project [18] can be consulted.

12

3 Implementation

This chapter will explain the integration of Kokkos in the SWE environment, the design
decisions and the approaches used.

3.1 Basic classes

At first the SWE_DimensionalSplittingKokkos class is added which implements the di-
mensional splitting method described in 2.1.2 with Kokkos. Therefore it inherits from
SWE_Block and provides the respective interface. As datatype, for the float matrix that
is given SWE_Block as a template argument, Float2DKokkos is chosen which will be
described below.

The main function is located in swe_kokkos.cpp, respectively swe_kokkos_mpi.cpp for
the MPI implementation with Kokkos, and reads the command line arguments used
for the scenario:

• t: Simulation time in seconds

• n: Snapshots that need to be written

• x: Cells in horizontal direction

• y: Cells in vertical direction

• o: File name of the output

• Optional arguments if a specific scenario should be taken

b: Bathymetry file

d: Displacement file

This information is then processed to construct the initial state of the simulation
scenario. Before the simulation is set-up, Kokkos needs to be initialized. Then the
simulation is computed, files are written and Kokkos gets finalized. The code is put in
a different scope to make sure that every object used by Kokkos is destructed before it
is finalized. The following code snippet demonstrates these steps:

13

3 Implementation

1 // ...
2 Kokkos::initialize();
3 {
4 SWE_DimensionalSplittingKokkos simulation(args);
5 simulation.init(scenario);
6 while (simulationIsNotFinished) {
7 // ...
8 simulation.computeNumericalFluxes();
9 simulation.updateUnknowns();

10 // ...
11 }
12 }
13 Kokkos::finalize();
14 // ...

Figure 3.1: Main sequence of the simulation.

In order to smoothly integrate the view data-structures worked on by Kokkos into the
legacy code, the class Float2DKokkos is created and used as an adapter. It is required that
on the one hand the object can be natively indexed like a simple two-dimensional array
and on the other hand accessed like a View. These requirements allow the legacy code
to be unchanged, because both accessing variants are pointing on the same memory
location, which speeds-up computation time by administrating the memory effectively
(no deep copy or synchronization is needed). Figure 3.2 shows the structure of the
adapter. The adapter only lives in the host space to ensure that the memory alignment
is appropriate to the raw pointer layout.

Figure 3.2: Structure of the adapter for the access of legacy code.

If CUDA execution space and CUDA unified virtual memory is available, the unified

14

3 Implementation

memory is used instead of the host memory. It is advantageous for development and
performance, but every aspect needs to be considered. The pivotal advantage is that
memory management is getting handled by the graphics device and no additional
copy instructions between the different memory spaces are needed in the application.
But also caching and data locality benefit from automatic page migration due to the
low-latency local memory. This is especially beneficial for the GPUs high bandwidth
memory which surpasses 720 GB/s on modern devices. Nevertheless, with virtual
memory also comes problematic scenarios that will penalize poor memory management.
Page faults may occur when the GPU memory is working at full capacity and therefore
this needs to be kept in mind for large scale simulations [19].

Figure 3.3: Performance comparison of unified memory [19].

One problem that occurs when using CUDA parallelization is that the kernel function
is dependent on the solver, which is the vectorized HLLE approach and located in
the solver-submodule. This does not affect the host back-ends, because the solver is
host-accessible and can therefore be invoked inside the kernel. When running the
kernel on CUDA back-end, it is problematic to call the host-based solver to compute
the net updates, because the kernel gets compiled as a device function and therefore
must not invoke the host-based sover-function. This can be avoided by providing the
HLLE solver as a device function.

3.2 Compile-Time Choices

In order to reuse existing functionality, several options need to be set at compile-time.
Firstly, if the code gets compiled for CUDA devices, the selected solver gets exchanged
to a CUDA based HLLE solver. This is only applicable for the flat parallelization
approach. This is necessary, because, as mentioned before, the default solver is only

15

3 Implementation

usable on the host execution space. HLLEFunCuda instead provides the annotations
that allow the code to be run on the graphics device and the code can be called from
inside the functor. The solver is stateless which is necessary to avoid race conditions or
gratuitous synchronization. Only the host-shared data (views of the unknowns) is set
to CudaUVMSpace or CudaHostPinnedSpace so that the relevant data is host-accessible.
This is caused by the execution space, because encapsulation leads to host based code
which must not be used in a CUDA kernel. For the unknowns that reside in the base
class SWE_Block, a mirror-like view is provided that is used for the computation. These
views need to be synchronized back to the base class when the time-step is written.
The CUDA call of other device functions must be protected by the __CUDA_ARCH__
preprocessor directive definition.

Secondly, if CUDA is not enabled, the execution space is set to the default host
execution space if not otherwise specified. The internal views of the unknowns are
a shallow copy of the respective base class members. The HLLEFun is used as host
based solver. It is necessary to use this solver independently of the execution space to
evaluate the results appropriately.

3.3 Implementation Approaches

1 template<typename shared_mem_space,
2 typename working_mem_space,
3 typename kernel_exec_space>
4 class SWE_DimensionalSplittingKokkos :
5 public SWE_Block<Float2DKokkos<shared_mem_space>> {};

Figure 3.4: Schematic declaration of the Kokkos flat parallelization class extending the
base class SWE_Block.

The main implementation of SWE_DimensionalSplittingKokkos adapts the dimensional
splitting legacy implementation and uses a flat parallelization (no explicit exploit of
hierarchical structures) approach. Kokkos provides different approaches for paralleliza-
tion like hierarchical parallelization and multidimensional iterations. The hierarchical
parallelism approach is only available for non-CUDA computation, because the lambda
needs to capture the this pointer, which is not yet supported by the NVCC wrapper
provided by the development team. The reductions automatically forces a stream
synchronization of the device executed kernels when using the CUDA execution space.
The class is fully templated as it can be seen in 3.4, so that the user can either set the

16

3 Implementation

• shared memory space: host-accessible memory space that can eventually be
accessed by the CUDA execution space (if enabled) or has a deep copy mechanism
to fetch the computed unknowns residing in the working memory space,

• working memory space: memory location where the views for temporary results
reside and

• kernel execution space: the space where the kernel is run

or use the default values. The template parameters are checked for compatibility
at compile-time and a suitable synchronization mechanism between the views is
selected. Instead of controlling the used parallelism by the template parameter, the two
approaches are put in two different classes, because it makes the code much more clear
and lean, which supports maintainability and extendability [2].

3.3.1 Flat Parallelism

The flat parallelism, as mentioned before, only uses streams of depth one. This is useful
for simple, non-hierarchical algorithms and less hierarchical architectures. The class
definition is depict in figure 3.4.

At first, parallel_reduce is used to compute the horizontal net updates (x-sweep). The
data is streamed over a multidimensional range and the maximal horizontal wave
speed is reduced to compute the maximum time-step, according to the CFL condition,
in the next step. The native reduction function Max<float>(...), provided by Kokkos, is
used in this case.

Afterwards, the intermediate Q∗ states are computed (see 2.6) with Kokkos’ paral-
lel_for. The y-sweep is then performed analogously to the x-sweep and reduced, with
the same Max<float>(...) reduction function, on the maximum vertical wave speed. The
reduction is not necessarily needed, but the reduced value can be used for debugging
purposes. Lastly, the unknowns (height and momenta) are updated according to the
Euler method.

These steps are all put in different functions to reuse them when building other
communication structures like MPI around it. MPI and Kokkos are discussed later in
this chapter.

3.3.2 Hierarchical Parallelism

Hierarchical parallelism can be used for dimensional splitting, because the loops are
not tightly nested and each team member accesses data-structures that are contiguous
in memory which positively affects the computation time owing to the shared scratch
memory. The basic structure is analog to the one used in the flat parallelism approach

17

3 Implementation

1 template<typename shared_mem_space,
2 typename working_mem_space,
3 typename kernel_exec_space>
4 class SWE_DimensionalSplittingKokkosHierarchy :
5 public SWE_Block<Float2DKokkos<shared_mem_space>> {};

Figure 3.5: Schematic declaration of the hierarchy approach class extending the base
class SWE_Block.

and as it can be seen in figure 3.5. Generally, for every sweep the league size is equal
to the number of cells in x-direction and Kokkos sets the appropriate team-size. That
enforces a mapping of the team member rank onto the x-coordinate of the current
cell. Edge cases like a low amount of cells in x-direction are not handled, because
they do not occur in real simulations as grid-sizes mostly have a rectangular shape.
league_rank() returns the current x-index (team member rank) of the thread team. The
nested reduction gets the team member handle and the iteration range. Afterwards,
the net updates get automatically distributed over the threads of the team. Computing
the intermediary Q∗ states and the y-sweep is similar to the x-sweep except the ranges
get adjusted accordingly. Lastly, the unknowns get updated using parallel_for with the
same policy.

3.3.3 MPI and Kokkos

1 template<typename shared_mem_space,
2 typename working_mem_space,
3 typename kernel_exec_space>
4 class SWE_DimensionalSplittingMpiKokkos :
5 public SWE_DimensionalSplittingKokkos<shared_mem_space,
6 working_mem_space,
7 kernel_exec_space> {};

Figure 3.6: Schematic declaration of the MPI implementation extending the base class
SWE_DimensionalSplittingKokkos.

When using MPI and Kokkos, MPI has to be set-up before Kokkos is initialized. In or-
der to use both in the context of the project, a class SWE_DimensionalSplittingMpiKokkos
is implemented. It extends the basic implementation of SWE_DimensionalSplittingKokkos
as illustrated in 3.6 and reuses the methods (x-sweep, y-sweep, computeMaxTimeStep

18

3 Implementation

and updateUnknowns) used for the computation of the simulation. That allows the
simulation to use MPI communication with the already implemented Kokkos based
computation. Kokkos can not scale one kernel over multiple GPUs and therefore MPI
needs to be used to fully utilize the system hardware. That allows the simulation to use
multiple GPUs that can even be of different generations. Due to the fact that after each
iteration all MPI processes have to be synchronized to exchange data, the computing
power needs to be similar, otherwise the more powerful GPUs get blocked by the MPI
barrier. When using CUDA, the ghost cells of the block need to be synchronized with
the host to exchange data between neighboring ranks, because the data is located in
the CUDA memory space, which is not host-accessible. It is implemented by using
the deep_copy function to copy the data to the host-accessible data layer before the data
gets send to the neighbor ranks. After receiving the updates of the other ranks, the
affected cells get copied back to the CUDA memory space. In order to save time, when
transferring the data from device memory to host memory, one sub-view gets created
for each edge, which is a subset of the original view and only the connected edges
perform a deep copy. The flow of the main loop for every iteration is schematically
illustrated in the activity diagram 3.7. The manual memory synchronization is not
optimal yet and the DualView can help achieving a more performant implementation.
Therefore the Float2DKokkos structure has to be changed and the usage of this view has
to be investigated. The shared memory space must not be the CudaUVMSpace, because
several problems occur and the simulation gets corrupted [2].

Figure 3.7: Actions are performed in every iteration of the simulation. Communication
and computation can clearly be separated. If the relevant data is already
host-accessible, the synchronization is skipped.

19

4 Evaluation

In this chapter the previous implementations of Kokkos in the SWE environment will
be evaluated. Therefore different setups of machines, Kokkos settings and scenerios
are used for testing. Host-based implementation gets compiled with the Intel compiler
version 19.0 and the CUDA implementation with the NVCC wrapper provided by
Kokkos.

For evaluating the results, different types of configurations ought to be used to
demonstrate performance portability and the leverage of hardware features. The used
machines have the following specifications:

ATSCCS CoolMUC-3

OS Ubuntu 18.04 SUSE Linux Enterprise Server 12
Processor Intel Core i7 3th Gen Intel Xeon Phi (Knights Landing)
GPU NVIDIA Quadro P400

NVIDIA Titan Xp
Memory 15 GiB 96 GB DDR4 80.8 GB/s per node

16 GB HBM 460 GB/s per node

Table 4.1: Machine specifications [20].

Quadro P400 Titan Xp Core i7 3th Gen Xeon Phi (KNL)

Cores 1792 3840 4 64
Threads 1792 3840 8 256
Nom. freq. 1.202 GHz 1.405 GHz 3.4 GHz 1.3 GHz
L1 Cache 48 KB per SM 48 KB per SM 32 KB 32 KB per core
L2 Cache 2 MB 3 MB 256 KB 512 KB per core
FLOPS FP32 5.304 TFLOPS 12.15 TFLOPS

Table 4.2: Detailed information of the computational devices used in the evaluation
[20], [21], [22], [23].

20

4 Evaluation

4.1 Flat Parallelism

This section compares the legacy execution with OpenMP and CUDA to the respective
execution with the Kokkos based implementation. Figure 4.1 shows different computing
devices executing the same code. This demonstrates that the kernel can be deployed,
without changing the code, on several devices. As seen in the plot, the simulation
executes on different platforms with differing architectures and scales linearly with
varying time-steps. It is as expected, because with a fixed grid size, the workload in
every iteration is kept constant and only the number of iterations is increased.

0 250 500 750 1000
0

10

20

30

Time-steps

W
al

l-
ti

m
e

in
se

co
nd

s

Intel KNL (Hierarchy)
Intel KNL

NVIDIA Quadro P4000
NVIDIA Titan Xp

Figure 4.1: Wall-time for different architectures using Kokkos on a 500 x 500 grid

At first the GPU execution model should be investigated to check if the execution
model perceived matches the actual execution of the code on the device. The tool
NVIDIA Visual Profiler shows different profiling data, such as memory management,
UVM metrics, GPU meta data, and for each executed kernel the respective execution
time, etc. It can be seen that the simulation is executed as expected.

As seen in figure 4.2 it is not applicable to use UVM as shared and working memory
space. This leads to massive performance penalities as computation time increases more
than four times compared to 4.3 due to page faults and the resulting data transfers. The
profilers metric Thrashing-Throttling indicates that the same pages are frequently read
or written to by CPU and GPU. This could originate in the software design, because
the legacy code is also accessing the data from host-side, such as when computing the
maximum time-step or even the Kokkos library performs the reduction in host-space.
This information can be gathered by investigating the template classes. The thrashing
therefore results in a lot of data migration. The gap left and right of the kernel in figure

21

4 Evaluation

4.3 is due to the data transfer and the written checkpoint. Both simulations are executed
on a 500× 500 grid with 100 time-steps. The results implicate that the memory space
should be chosen explicitly depending on where the data actually resides and is mainly
processed.

Figure 4.2: UVM as shared and working memory used in the kernels. Wall-time
increases due to page faults and data migration.

Figure 4.3: Working memory space is set to CUDA space and the host-accessible mem-
ory space to CudaHostPinnedSpace. Wall-time is less than in figure 4.2,
because the data is only deep-copied before and after the simulation, and
no thrashing occurs due to explicitly setting the memory space.

Figure 4.4 demonstrates that the number of cell updates per second increases until the
grid size reaches 450× 450 for both computing devices. After reaching the maximum
at approximately 450 cells, the amount of cell updates per second decreases again. This
could be due to the loss of cache benefits, because the parameters (six floats) worked
on by the solver do not fit into the cache. The Titan Xp, for example, has 48 KB of L1
Cache for each (30 in total) streaming multiprocessor and 3 MB of L2 Cache which

22

4 Evaluation

results in 4.44 MB of total cache capacity [21]. The amount of data used by the solver
can be calculated by multiplying the grid size with the number of parameters times
four byte (single-precision floating point): 450× 450× 6× 4Byte = 4.86MB. It can be
seen that the size of the needed memory surpasses the cache capacity and therefore the
cache benefits are fully exploited. Increasing the grid size, and therefore the amount of
processed data, would lead to more memory traffic and a decrease in performance. The
calculation for the KNL processor is analog to the Titan Xp and yields the same result.

50 150 250 350 450 500

0

0,2

0,4

0,6

0,8

1

1,2
·109

C
el

l-
up

da
te

s
/

s

Titan Xp KNL

Figure 4.4: Number of cell updates per second using a NVIDIA Titan Xp and a KNL
processor. The simulation consists of 15 time-steps on a quadratic grid.

Figure 4.5 shows the speed-up of the simulations compared to the respective legacy
implementation. It can be seen that for small grid sizes the Kokkos implementation
is faster which could be due to the hardware-awareness of Kokkos and therefore the
exploitation of fast memory like (texture) caches. In the interval of approximately 450 to
550 the legacy code is performing better than the Kokkos implementation. This situation
might be caused by the already full exploitation of fast caches and a slightly negative
influence of the Kokkos framework overhead. Afterwards, the speed-up increases
again and peaks at around 1000× 1000. For large grid sizes the host implementation
converges to a speed-up of around 7 %. The Kokkos overhead does not significantly
influence the overall performance anymore due to the increased workload on the
computational device and the memory. Therefore the benefits of Kokkos surpass the

23

4 Evaluation

legacy implementation by a constant factor The GPU speed-up is not displayed for
large grid sizes due to the jump of the wall-time for grid sizes beyond 1456× 1456.

250 500 550 750 1000 1500

−100

0

100

200

300

Sp
ee

d-
up

in
%

Titan Xp GPU on MPI KNL

Figure 4.5: Speed-up of Kokkos compared to the respective legacy code as baseline.

24

4 Evaluation

4.1.1 OpenMP and Kokkos

Figure 4.6 shows the roofline model of the application executed on 256 threads on
one KNL processor. It is an insightful model to measure performance. The arithmetic
intensity (AI) is the number of FLOPS divided by the bytes transferred by the program.
The model relates the maximum number of FLOPS, the peak memory bandwidth and
the arithmetic intensity in order to identify bottlenecks [24, pp. 542 – 547]. As seen in the
figure, the program (the red dot) is bounded by the maximum bandwidth. It implicates
that the program is not using the full computational power of the system, because it
requests data faster than the memory can provide. Nevertheless, the program optimizes
data access, because there is only a small space between the DRAM bandwidth bound
and the program. Improving data locality and cache usage could possibly lead to a
slightly better performance. The AI is less than in the GPU model, because the tool has
taken the whole program as reference and not only the solver used for the computation
of the net updates.

Figure 4.6: Roofline model using one KNL. It is captured by the Intel Advisor XE [25].

25

4 Evaluation

Plot 4.7 compares the measured speed-ups, alluding to Amdahls law, of the Kokkos
implementation to the legacy results. It is executed on one KNL processor [26]. The
difference between the legacy and Kokkos implementation could occur due to a better
load balancing on the cores and threads. When building Kokkos, it can be optimized
for a specific processor and aggressive vectorization can be enabled, so that it knows
the underlying hardware and can therefore leverage performance characteristics. In
this case, Kokkos is optimized for vector instructions and the KNL processor which
would also explain the difference in the speed-up.

4 16 32 64 128 256

20

40

60

Number of threads

Sp
ee

d-
up

Empirical Kokkos
Empirical Legacy

Figure 4.7: Speed-ups of empirical results alluding to Amdahls law [26].

Plots 4.8 and 4.9 show the execution wall-time of the OpenMP legacy code compared
to Kokkos with OpenMP back-end enabled. It can clearly be seen that Kokkos is
performing better than the legacy implementation. The quadratic behavior of the plot
is as expected, because the grid size grows quadratically too. The plots illustrates that
the Kokkos implementation is not performing worse than the legacy implementation
and, as it can be seen later, is performance portable to other devices / platforms.

26

4 Evaluation

1000 2000 3000 4000500

100

200

300

400

500

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

Kokkos
Legacy

Figure 4.8: Wall-time comparison of legacy and Kokkos implementation on one KNL
processor. The simulation consists of 15 time-steps.

1000 2000 3000 4000500

50

100

150

200

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

Kokkos
Legacy

Figure 4.9: Wall-time comparison of legacy and Kokkos implementation on 128 MPI
processes on two KNL processors using a quadratic grid. The simulation
consists of 15 time-steps.

27

4 Evaluation

4.1.2 CUDA and Kokkos

Figure 4.10 depicts the roofline model executed on the Titan Xp. The maximum
bandwidth is 416266.1 MB/s, the arithmetic intensity of the kernel is approximately
3.06 and the maximum number of FLOPS performed by the Titan Xp are 12.5 TFLOPS.
It can be seen that the kernel is also bound by the bandwidth.

100 101 102

10−1

100

101

Kernel

Arithmetic intensity

TF
LO

PS

Figure 4.10: Roofline model for the execution of the simulation on the Titan Xp with
grid dimension 500× 500 for 5 time-steps. Arithmetic intensity is 3.06.

The plot 4.11 depicts two different GPU models and their performance for different
grid sizes. As seen in the plot, the Titan Xp is around two to three times more powerful
than the Quadro P4000. This is due to the amount of FLOPS that can be processed
by each GPU. The execution with the MPI version is faster for each rank compared
to the single execution. But the wall-time for the simulation is negatively influenced
by the less powerful GPU and therefore performs worse than simulating solely on the
Titan Xp. The plot shows only the wall-time of the worst rank without including the
communication of the MPI ranks. The MPI ranks are balanced in a 2:1 split so that the
grid of the Titan Xp is double the size of the Quadro GPU. The legacy code is taken
from another repository, which is provided by the chair of scientific computing [27].

28

4 Evaluation

1000 2000 3000 4000 5000
0

50

100

150

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

NVIDIA Titan Xp
NVIDIA Quadro P4000

GPU on MPI

Figure 4.11: Wall-time comparison of different GPU models for different quadratic
grids with 15 time-steps. Titan Xp can process twice the amount of FLOPS
compared to the Quadro P400 and that reflects in the simulation wall-time.
The MPI measurement therefore splits the grid domain in a 2:1 ratio.

29

4 Evaluation

Plot 4.12 shows the wall-time of the CUDA implementation for Kokkos compared
to the legacy implementation using the CUDA-API. The spatial domains of the legacy
code differ from the other evaluations, because the implementation only allows the grid
sizes to be multiples of the tiling size which is 16 in this case. On the contrary, Kokkos
is much more flexible as it allows arbitrary grid sizes. As seen in 4.12, Kokkos scales
according to the expectation whereas the legacy implementation has a jump between
the quadratic grid sizes of 1440 and 1456 cells. This is not caused by the kernels which
only take approximately 1.4 seconds, but by a blocking CPU.

1000 2000 3000 4000 5000
0

200

400

600

800

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

Kokkos
Legacy

Figure 4.12: CUDA wall-time comparison of Kokkos and the legacy implementation on
a quadratic grid with 15 time-steps. Legacy implementation jumps at 1456
due to a blocking CPU not of a extended kernel execution time.

Due to fact that each core has to be mapped onto several cells and the number of cells
increases quadratic in each step, the wall-time is suggested to increase by θ(cell_count2).
This assumption seems to be confirmed by the measurements taken and visualized in
the respective plots.

30

4 Evaluation

4.2 Hierarchical Parallelism

The hierarchical parallelism approach is only available for host execution spaces.
Therefore the evaluation only compares the wall-time of the hierarchical approach
to the non-hierarchical Kokkos implementation and the legacy code. As seen in
4.13 and 4.14, the hierarchical approach performs slightly better than the flat version.
This might be due to the fact that the KNL processor is build upon the hierarchical
paradigm described in the Kokkos section. The implementation explicitly exploits
vector instructions, because the computation of the Q∗ states and the update of the
unknowns are vectorized with ThreadVectorRange. The results would suggest to prefer
the hierarchical implementation, but on the contrary it is less portable to other devices
in the context of the project due to legacy code support and the missing class member
capturing.

0 250 500 750 1000 1250 1500
0

2

4

6

8

10

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

Hierarchical
Flat

Legacy

Figure 4.13: Wall-time comparison of legacy, Kokkos and hierarchical implementation
on 64 threads on a KNL processor using a quadratic grid. The simulation
consists of 15 time-steps.

31

4 Evaluation

0 250 500 750 1000
0

2

Number of cells

W
al

l-
ti

m
e

in
se

co
nd

s

Hierarchical
Flat

Legacy

Figure 4.14: Wall-time comparison of legacy, Kokkos and hierarchical implementa-
tion on 128 threads on two KNL processors using a quadratic grid. The
simulation consists of 15 time-steps.

32

5 Conclusion

In this thesis the Kokkos framework was explored in the context of shallow water
equations. The implementation demonstrated that the usage of Kokkos makes it easy to
deploy the code on several devices, while not having any performance losses. Even the
support, due to the seamless integration into the given project structure, of the legacy
project was guaranteed and only small additions, such as the Float2DKokkos-adapter,
had to be supplemented.

The evaluation showed the performance portability for different devices and plat-
forms. It advocates the use of Kokkos in scientific applications, as code can be written
once, but run on several devices. Not only is it advantageous in terms of software
engineering aspects, but it also lets the application programmer focus on the problem
instead of hardware details.

The development with Kokkos has several advantages, such as a clear and concise
documentation of the core features of the framework, an easy-to-use API and continuous
updates of the project repository. But there are also some disadvantages, especially
when using CUDA or more recent developed features. The CUDA development was
difficult, because a lot of information had to be collected by checking the issue list on
the project repository. Particularly, the missing support for class member capturing
when using the NVCC wrapper, which is necessary when compiling for CUDA, blocked
the development of the hierarchical approach for CUDA execution space. Additionally
to that, the debugging of the project was often complicated due to the heavy usage of
templates by Kokkos.

Complementary to the CUDA implementation the use of the ROCm platform can
be investigated and compared to the different back-ends provided by Kokkos. This
is particularly interesting, because it allows a comparison of different vendors and
this can point out which GPU performs better depending on the overall configuration,
use-case and price-performance ratio. Furthermore, it should be evaluated how the use
of performance homogeneous GPUs impacts the speed-up.

Another important step for the project is to split the computation and communication
part. That allows integrating new frameworks in the projects and reusing already
implemented communication / computation classes. Therefore it has to be investigated
what the differences are and one general concept has to be consolidated. The possible
structure of the reengineered software model could possibly look like shown in figure

33

5 Conclusion

5.1. After reengineering it is easy to add new methods by just extending the respective
abstract class.

Figure 5.1: SWE reengineered class model

After all, Kokkos’ convenient interface advocates it as a framework for parallel
computing. The evaluation confirms this statement as already illustrated in the mea-
surements.

34

List of Figures

2.1 Comparison of machine models . 4
2.2 Kokkos adapter . 8
2.3 CUDA matrix multiplication . 9
2.4 OpenMP matrix multiplication . 9
2.5 Kokkos matrix multiplication . 10

3.1 Main sequence . 14
3.2 Structure of the adapter for the access of legacy code. 14
3.3 Performance comparison of unified memory [19]. 15
3.4 Class declaration SWE_DimensionalSplittingKokkos 16
3.5 Class declaration SWE_DimensionalSplittingKokkosHierarchy 18
3.6 Class declaration SWE_DimensionalSplittingMpiKokkos 18
3.7 MPI main loop . 19

4.1 Wall-time for different architectures using Kokkos on a 500 x 500 grid . 21
4.2 UVM space only profiling . 22
4.3 CUDA working space profiling . 22
4.4 Number of cell updates per second using a NVIDIA Titan Xp and a KNL

processor. The simulation consists of 15 time-steps on a quadratic grid. 23
4.5 Speed-up of Kokkos compared to the respective legacy code as baseline. 24
4.6 Roofline KNL . 25
4.7 Speed-ups of empirical results alluding to Amdahls law [26]. 26
4.8 Wall-time comparison of legacy and Kokkos implementation on one KNL

processor. The simulation consists of 15 time-steps. 27
4.9 Wall-time comparison of legacy and Kokkos implementation on 128 MPI

processes on two KNL processors using a quadratic grid. The simulation
consists of 15 time-steps. 27

4.10 Roofline model for the execution of the simulation on the Titan Xp with
grid dimension 500× 500 for 5 time-steps. Arithmetic intensity is 3.06. . 28

35

List of Figures

4.11 Wall-time comparison of different GPU models for different quadratic
grids with 15 time-steps. Titan Xp can process twice the amount of
FLOPS compared to the Quadro P400 and that reflects in the simulation
wall-time. The MPI measurement therefore splits the grid domain in a
2:1 ratio. 29

4.12 CUDA wall-time comparison of Kokkos and the legacy implementation
on a quadratic grid with 15 time-steps. Legacy implementation jumps at
1456 due to a blocking CPU not of a extended kernel execution time. . . 30

4.13 Wall-time comparison of legacy, Kokkos and hierarchical implementation
on 64 threads on a KNL processor using a quadratic grid. The simulation
consists of 15 time-steps. 31

4.14 Wall-time comparison of legacy, Kokkos and hierarchical implementation
on 128 threads on two KNL processors using a quadratic grid. The
simulation consists of 15 time-steps. 32

5.1 SWE reengineered model . 34

36

List of Tables

2.1 Comparison of computing devices . 3
2.2 Kokkos execution and memory space . 11

4.1 Machine specifications . 20
4.2 Computational devices specifications . 20

37

Bibliography

[1] P. Czarnul, Parallel Programming for Modern High Performance Computing Systems.
Boca Raton, Fla: CRC Press, 2018, isbn: 978-1-138-30595-3.

[2] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal
of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014, Domain-
Specific Languages and High-Level Frameworks for High-Performance Comput-
ing, issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2014.07.003.

[3] P. C. Steve Plimpton and C. Trott. (2020). miniMD, [Online]. Available: https:
//github.com/mantevo/minimd (visited on 05/13/2020).

[4] Kokkos. (2020). Applications, [Online]. Available: https://kokkos.org/applications/
(visited on 05/14/2020).

[5] M. Bader, A. Breuer, W. Hölzl, and S. Rettenberger, “Vectorization of an aug-
mented riemann solver for the shallow water equations,” in Proceedings of the
2014 International Conference on High Performance Computing and Simulation (HPCS
2014), W. W. Smari and V. Zeljkovic, Eds., IEEE, 2014, pp. 193–201.

[6] J. Olden, “Performance Analysis of SWE Implementations based on modern
parallel Runtime Systems,” Bachelor’s Thesis, Technical University of Munich,
2018.

[7] M. Bogusz, “Exploring Modern Runtime Systems for the SWE Framework,”
Bachelor’s Thesis, Technical University of Munich, 2019.

[8] “Whitepaper: NVIDIA Tesla P100,” NVIDIA, Tech. Rep. WP-08019-001_v01.1.

[9] Intel. (2019). Intel R© Xeon R© Platinum 8253 Processor, [Online]. Available: https:
//www.intel.com/content/www/us/en/products/processors/xeon/scalable/
platinum-processors/platinum-8253.html/ (visited on 05/12/2020).

[10] B. Caulfield. (2009). What’s the Difference Between a CPU and a GPU? [On-
line]. Available: https://blogs.nvidia.com/blog/2009/12/16/whats-the-
difference-between-a-cpu-and-a-gpu/ (visited on 05/12/2020).

[11] A. S. Tanenbaum and T. Austin, Rechnerarchitektur : Von der Digitalen Logik Zum
Parallelrechner. Cambridge: Pearson Education, 2014.

38

https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://github.com/mantevo/minimd
https://github.com/mantevo/minimd
https://kokkos.org/applications/
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8253.html/
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8253.html/
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8253.html/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

Bibliography

[12] M. Harris. (2012). An Easy Introduction to CUDA C and C++, [Online]. Available:
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/ (visited
on 05/12/2020).

[13] N. Corporation. (2019). CUDA C++ Programming Guide, [Online]. Available:
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf (visited on
05/13/2020).

[14] T. Rauber and G. Rünger, “Message-passing-programmierung,” in Parallele Pro-
grammierung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 207–273,
isbn: 978-3-540-46548-5. doi: 10.1007/978-3-540-46548-5_5.

[15] R. J. LeVeque and L. R. J., Finite Volume Methods for Hyperbolic Problems. Cam-
bridge: Cambridge University Press, 2002, isbn: 978-0-521-00924-9.

[16] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical
Introduction. Berlin Heidelberg: Springer Science & Business Media, 2009, isbn:
978-3-540-49834-6.

[17] OpenMP Application Programming Interface, version 5.0, Nov. 2018.

[18] H. C. Edwards, C. R. Trott, and D. Sunderland. (2020). Kokkos Wiki, [Online].
Available: https://github.com/kokkos/kokkos/wiki (visited on 05/15/2020).

[19] N. Sakharnykh. (2016). Beyond GPU Memory Limits with Unified Memory on
Pascal, [Online]. Available: https://devblogs.nvidia.com/beyond-gpu-memory-
limits-unified-memory-pascal/ (visited on 05/12/2020).

[20] LRZ. (2020). CoolMUC-3, [Online]. Available: https://doku.lrz.de/display/
PUBLIC/CoolMUC-3 (visited on 05/15/2020).

[21] TECHPOWERUP. (2020). NVIDIA TITAN Xp, [Online]. Available: https://www.
techpowerup.com/gpu-specs/titan-xp.c2948 (visited on 05/15/2020).

[22] ——, (2020). NVIDIA Quadro P4000, [Online]. Available: https://www.techpowerup.
com/gpu-specs/quadro-p4000.c2930 (visited on 05/15/2020).

[23] ——, (2020). Intel Xeon Phi 7210F, [Online]. Available: https://www.techpowerup.
com/cpu-specs/xeon-phi-7210f.c2042 (visited on 05/15/2020).

[24] D. A. Patterson and J. L. Hennessy, Computer Organization and Design - The Hard-
ware/software Interface. San Francisco, Calif: Morgan Kaufmann, 2013, isbn: 978-0-
124-07726-3.

[25] Intel. (2019). Intel R© Advisor Tutorial for Using the Automated Roofline Chart
to Make Optimization Decisions, [Online]. Available: https://software.intel.
com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/
top.html (visited on 05/13/2020).

39

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.1007/978-3-540-46548-5_5
https://github.com/kokkos/kokkos/wiki
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://www.techpowerup.com/gpu-specs/titan-xp.c2948
https://www.techpowerup.com/gpu-specs/titan-xp.c2948
https://www.techpowerup.com/gpu-specs/quadro-p4000.c2930
https://www.techpowerup.com/gpu-specs/quadro-p4000.c2930
https://www.techpowerup.com/cpu-specs/xeon-phi-7210f.c2042
https://www.techpowerup.com/cpu-specs/xeon-phi-7210f.c2042
https://software.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html
https://software.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html

Bibliography

[26] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, ser. AFIPS ’67 (Spring), Atlantic City, New Jersey: Associ-
ation for Computing Machinery, 1967, pp. 483–485, isbn: 9781450378956. doi:
10.1145/1465482.1465560.

[27] T. C. of Scientific Computing. (2020). The Shallow Water Equations teaching code,
[Online]. Available: https://github.com/TUM-I5/SWE (visited on 05/12/2020).

40

https://doi.org/10.1145/1465482.1465560
https://github.com/TUM-I5/SWE

	Abstract
	Contents
	Introduction
	Motivation
	Structure and Related Work

	Background
	Theory
	Heterogeneous Architectures
	Shallow Water Equations

	SWE Project
	Kokkos

	Implementation
	Basic classes
	Compile-Time Choices
	Implementation Approaches
	Flat Parallelism
	Hierarchical Parallelism
	MPI and Kokkos

	Evaluation
	Flat Parallelism
	OpenMP and Kokkos
	CUDA and Kokkos

	Hierarchical Parallelism

	Conclusion
	List of Figures
	List of Tables
	Bibliography

