
Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Grid Projection for Simulations
of Tsunami-Genesis

Maximilian Schmeller

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Grid Projection for Simulations
of Tsunami-Genesis

Gitterprojektionen zu
Simulationen der Entstehung

von Tsunamis

Maximilian Schmeller

Supervisor: Univ.-Prof. Dr. Michael Bader
Advisors: M. Sc. Lukas Krenz,

M. Sc. Leonhard Rannabauer
Submission date: 2020-08-15

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, July 16, 2020

Abstract

As CPU time is a valuable and limited resource in high performance com-
puting it is desirable to use it as efficiently as possible. This often means
reducing I/O operations and outputting less data. This also holds true for
the seismic wave propagation simulator SeisSol and we investigate whether
outputs such as time-dependent seafloor displacements, water velocities or
sea surface elevation can be omitted without negatively affecting subsequent
tsunami simulations using this data.

To be able to evaluate the mentioned outputs as tsunami simulation in-
puts, the unstructured tetrahedral and triangular meshes (= simplex meshes)
produced by SeisSol have to be rasterized into a regular grid of rectangular
cells. This is done by sampling the SeisSol meshes at each of the regular
grid’s cell centers. The variables in the tetrahedral mesh are averaged across
the water height while those in the triangular meshes are rasterized directly.
To check whether a cell center is inside a simplex we develop a criterion using
the Hesse Normal Form for each of the faces/edges of the simplex.

With the rasterized data we find that both initial velocities and surface
elevations can be omitted as tsunami input data for scenarios with a flat
seafloor, resulting in a difference in sea surface height of up to a few centime-
ters compared to using complete initial conditions. The surface elevation can
be approximated using Kajiura’s Filter which results in less high-frequency
waves compared to copying the seafloor displacements to the surface. This
filter does not have a significant effect on Shallow Water Equation simulations
since those do not simulate frequency dispersion and the removal of high
frequencies in the wave profile does therefore not affect the simulation much.

3

Notation

v ,

v1
...

vn

 An n-dimensional column vector

⟨r, s⟩ ,
n∑

i=1

risi The standard dot product

∥v∥ ,
√
⟨v, v⟩ The L2-norm of a vector

Dxy , {(x, y) | (x, y, z) ∈ D} Only x- and y-components of the
points in set D

4

Contents

1 Introduction 11

2 Projection of Non-uniform Simplex Meshes onto 2D Uniform
Rectangular Grids 13
2.1 Mathematical Principles . 14

2.1.1 Grid Structures . 14
2.1.2 Approaches to the Point-in-Simplex Problem 15
2.1.3 Sampling Simplex Grids 19
2.1.4 Error Analysis . 22

2.2 Projection Algorithm and Data Structures 24
2.2.1 Rasterization Order 25
2.2.2 The Algorithm . 26

2.3 Optimization for HPC Systems 28
2.3.1 Memory Management 29
2.3.2 Eliminating Resource Contention 31
2.3.3 Load Balancing . 32
2.3.4 Eliminating Random File System Accesses 33

2.4 Evaluation . 35

3 The Effect of Initial Velocity on Tsunami Simulations 36
3.1 Related Work . 36
3.2 Results . 37

4 Depth-filtering 41
4.1 Motivation . 41
4.2 Related Work . 42
4.3 Kajiura’s Filter . 43

4.3.1 Theoretical Explanation 43
4.3.2 Applicability to Real-world Scenarios 45
4.3.3 Numerical Implementation 46
4.3.4 Optimization . 47

5

4.4 Evaluation . 49

5 Conclusion 51

Appendices 56

A Code Repositories 56
A.1 SAMPLER . 56
A.2 sam(oa)2 . 56

6

List of Figures

2.1 Grid indexing . 15
2.2 SeisSol output meshes . 16
2.3 Point inclusion in neighboring simplices 17
2.4 Relative volume error when point-sampling 23
2.5 Distribution of tetrahedron proportions 23
2.6 Simplex rasterization algorithm 29
2.7 Simplex binning . 32
2.8 Simplex distribution across bins 33
2.9 Performance comparison of storage media 34

3.1 Comparison of waves for different initial conditions 39

4.1 Kajiura-filter response . 46
4.2 Kajiura-filter parameters . 49
4.3 Comparison of waves with Kajiura’s Filter 50

7

List of Tables

2.1 Utility functions for simplices 20
2.2 Rasterization methods . 20
2.3 Input-output mappings . 21
2.4 XDMF input files . 25
2.5 Memory footprints of data structures 30

8

List of Algorithms

1 The grid rasterization algorithm 26
2 The simplex rasterization algorithm 27
3 Bounding box (AABB) calculation 28
4 Point-in-simplex check . 28

9

Acknowledgement

I would like to thank my advisors Leonhard Rannabauer and Lukas Krenz
for their great support throughout the writing of this thesis. Their time and
advice have been very valuable and it has been a joy to work with them.

Furthermore, I would like to thank my friends Julien Kollmann, Lukas
Mautner and Markus Schacherbauer, not only for proof-reading this thesis
but also for enduring my rants about Covid-19 and hackers of supercomput-
ers.

I would also like to express my appreciation for the Leibniz Supercom-
puting Centre, the Technical University of Munich and the German system
of education that all enabled me to use the resources needed for this thesis
entirely free of charge.

10

Chapter 1

Introduction

Gaining a better understanding of tsunamis and tsunamigenic earthquakes
has proven difficult many times as computational resources are still valuable
and limited to this date. Nevertheless, modern supercomputers can simulate
such seismic events over large domains in full 3D and with high physical
accuracy [17].

As much as the 3D outputs of such simulations promise to be the per-
fect starting point for tsunami simulators such as Shallow-Water-Equation
(SWE) solvers, it is desirable to minimize the amount of output data in order
to maximize the resources available for the earthquake simulation [18, sec.
6.3]. Additionally, the full simulation of tsunami genesis requires manual
preparation and data which might not always be available, such as the sea-
surface elevation, water velocities and the seafloor displacement over time.

Consequently, the question whether SWE solvers can work with incom-
plete input data without any noticeable loss in precision and accuracy of
their results arises.

To answer this question, an efficient method to project the unstructured
output meshes of the seismic wave propagation simulator SeisSol (http:
//www.seissol.org) onto structured 2D meshes, suitable for the SWE solver
sam(oa)2 (https://gitlab.lrz.de/samoa/samoa), is developed in chap-
ter 2. Using this method, different subsets of the data are extracted from the
original SeisSol outputs and algorithms to augment incomplete sets of data
are explored.

Using a full snapshot of a tsunami after an earthquake as the baseline, we
investigate the effects of including or excluding initial velocities in the water
body and the effects of time-dependent versus static seafloor displacement
in chapter 3.

For cases where only the seafloor displacements are known, Kajiura’s
Filter can be applied to seafloor displacements to better approximate a

11

http://www.seissol.org
http://www.seissol.org
https://gitlab.lrz.de/samoa/samoa

realistic water surface elevation instead of copying the seafloor elevation to
the surface 1:1. This is discussed and evaluated in chapter 4.

12

Chapter 2

Projection of Non-uniform
Simplex Meshes onto 2D
Uniform Rectangular Grids

Definition 2.1 (Rasterization) In this thesis: The process of discretizing
a grid of polygons or polytopes into a raster consisting of rectangles or cubes.

While the generation of tetrahedral meshes is a well-studied problem [20],
the rasterization of such meshes into uniform rectangular grids receives little
academic interest outside of computer graphics. Algorithms for rendering
unstructured meshes can be found in abundance, but the vast majority of
them require massively parallel architectures such as GPUs [5, 6]. Never-
theless, the basic principles of tetrahedron rasterization apply regardless of
architecture. There are two approaches for rasterizing simplex meshes: tile-
order and simplex-order. The former means that iterating over each cell of
the desired raster, overlapping simplices are determined. The latter approach
iterates through the simplices in the unstructured grid and determines the
overlapping cells of the raster. While both approaches are valid, one can
vastly outperform the other in certain applications and vice-versa, due to
their different memory access patterns. This is discussed in-depth in sec-
tion 2.2.1.

For evaluation purposes, Scenario A from [13] is used and is from now
on referred to as ”the ASCETE scenario/test case”. It features a domain of
750 km × 750 km, a flat seafloor at depth −2 km and a planar fault near
the middle of the domain which dips at 16° and intersects the seafloor
surface. The earthquake features maximum and minimum vertical seafloor
displacements of 1.6 m and −1.0 m respectively. The simulated timeframe
is 300 s, beginning with the start of the earthquake. This earthquake has

13

been simulated with SeisSol and the output mesh features 4.6 million tetra-
hedra and 5.5 million additional triangles, and thus can serve as a realistic
benchmark for the algorithms and approaches described in this thesis.

Furthermore, since the seafloor of this model is flat, effects introduced by
uneven bathymetry are ruled out.

2.1 Mathematical Principles
Definition 2.2 ((n-)Simplex) An (n-)simplex σ is the set of points in Rn

spanned by the points in a geometrically independent set S = {a0, . . . , an} of
n + 1 vertices [15, p. 2ff]. More intuitively, the vectors a1 − a0, . . . , an − a0
are linearly independent [15, p. 3].

For this thesis, it is entirely sufficient to know that triangles and tetrahe-
dra are 2-simplices and 3-simplices respectively and unless otherwise noted,
the term ”simplex” is used to exclusively refer to triangles and tetrahedra
in the rest of the thesis. This abstraction will prove to be beneficial when
solving the problems in the upcoming sections.

2.1.1 Grid Structures
To align with common terminology, the naming schemes from [24] are used
throughout the thesis.

In the following sections, only regular grids and unstructured simplex grids
(consisting entirely of either triangles or tetrahedra; called only unstructured
grids from now on) are of relevance.

Every grid has a rectangular (2D) or cuboid (3D) domain

D = Dx ×Dy ×Dz = [xmin;xmax]× [ymin; ymax]× [zmin; zmax] .

Furthermore, regular grids G = (D,∆x,∆y,∆z) have a cell size of ∆x ×
∆y ×∆z with cells being indexed by indices i, j, k and (xmax − xmin) being
divisible by ∆x (analogous for y and z). The domain occupied by cell (i, j, k)
is therefore

SG(i, j, k) = [xG(i);xG(i+ 1)]× [yG(j); yG(j + 1)]× [zG(k); zG(k + 1)]

:= [xmin + i∆x;xmin + (i+ 1)∆x]

× [ymin + j∆y; ymin + (j + 1)∆y]

× [zmin + k∆z; zmin + (k + 1)∆z] .

14

(1,1) (2,1)(0,1)

(1,2)

(1,0)

(2,2)

(2,0)

(0,2)

(0,0)

(a) Regular grid

1
23

4 5

6

7

8

(b) Unstructured grid

Figure 2.1: Indices of cells in a regular grid and an unstructured one. In the
unstructured grid, the vertices V (σ5) of the black simplex are highlighted in
orange. Both grids are 2D for simplicity.

Unstructured grids H = (D,Σ) are indexed with a single index i with
each simplex σi ∈ Σ having an explicit set of vertices V (σi) associated with
it, with Σ being the set of all simplices in H (fig. 2.1).

Both types of grids are required to cover the entirety of Dxy. This is
necessary to ensure that the rasterization approaches in later sections can
rely on finding overlapping simplices for each cell of the regular grid.

While the details of how unstructured grids store data can vary, this
thesis focuses on the format of the grids output by SeisSol:
The three unstructured output grids all occupy the same domain in x- and
y-direction with each of the grids only occupying a part of their combined
z-domain. Furthermore, the variables stored for each simplex cell in these
meshes are evaluated at the respective cell center. The first mesh (”volume”)
is tetrahedral and represents the body of water and the volume of ground
surrounding it. The second (”surface”) and third one (”floor”) are trian-
gular meshes, the former representing the sea surface when at rest and the
latter representing the seafloor. All three meshes are shown in fig. 2.2.

2.1.2 Approaches to the Point-in-Simplex Problem
Instead of trying to compute the exact volume of the intersection between
a tetrahedron and a regular grid cell, which is more compute-intensive, we
simply approximate the intersection by sampling the simplex at the center
of the regular grid cell. With the regular grid cells becoming small in
comparison to the simplices in the unstructured grid, the rasterization error
is minimized as shown in section 2.1.4.

The point-in-simplex problem is well-studied and two approaches are

15

x
z

Figure 2.2: SeisSol output meshes (planar slice). Volume shown in dark
blue/brown with light blue/brown fill, surface in light blue (thick) and floor
in light brown (thick).

particularly common:
• Barycentric Coordinates

• Hesse Normal Form

Barycentric Coordinates

Summarizing [9, sec. 6.1.1], barycentric coordinates are a way to express a
point p as a combination of a triangle’s vertices p0,p1,p2:

p =
2∑

i=0

aipi with a0 + a1 + a2 = 1 . (2.1)

If
∀i ∈ {0, 1, 2} (ai ≥ 0) (2.2)

holds, then p is inside the triangle.
To obtain the coefficients ai, we can solve the following system of linear

equations consisting of the above formulae
p0,x p1,x p2,x
p0,y p1,y p2,y
p0,z p1,z p2,z
1 1 1

a0
a1
a2

 =

px
py
pz
1

 . (2.3)

This approach can be extended to tetrahedra [26, sec. 11.7, sec. 11.9]
which results in the general formulation

p =
n∑

i=0

aipi ,

n∑
i=0

ai = 1; n ∈ {2, 3} (2.4)

16

and if

∀i ∈ {0, . . . , n}. ai ≥ 0 (2.5)

holds, then p is inside of the simplex with vertices p0, . . . , pn.
Note that the inside of a simplex also includes faces, edges and vertices

when using eq. (2.5) (=: inclusive). This, however, leads to a problem: In
non-uniform grids, simplices have neighbors and thus points can be inside
multiple simplices according to the above definition. This is an unwanted
property as special care would need to be taken to correctly average the
values of multiple simplices when rasterizing. A possible remedy would be to
only consider points inside the simplex where all ai > 0 (=: exclusive). This
excludes points on the faces, edges and vertices of the simplex but leaves
these points excluded from all simplices which causes the problem that these
points cannot be associated with any value during rasterization. Figure 2.3
compares these approaches with the Hesse Normal Form approach discussed
next.

(a) BC, inclusive (b) BC, exclusive (c) HNF

Figure 2.3: A point lying on the shared face of two neighboring tetrahedra.
The point is considered to be inside of green tetrahedra and outside of red
ones. BC is short for barycentric coordinates.

Hesse Normal Form

According to [7, p. 540ff], a plane E in R3 can be represented in Hesse
Normal Form (HNF) as

⟨n, x⟩ = −p , (2.6)

with n being a normal vector of E and

∥n∥ = 1 . (2.7)

17

p is a constant and all points x satisfying eq. (2.6) lie in E.
Given three distinct points r, s, t in E, its HNF can be obtained as follows:

n′ = (s− r)× (t− r) , (2.8)

n =
n′

∥n′∥
, (2.9)

p = −⟨n, r⟩ . (2.10)

In eq. (2.8), a normal vector of E is computed as the cross product of two
vectors that span E. Due to the result of the cross product being perpendic-
ular to its (linearly independent, non-zero) arguments, n′ is perpendicular to
the plane as a whole and thus a normal vector of E. Through normalization
of n′ in eq. (2.9), n is obtained as is required by eq. (2.7). To calculate
the constant p, an arbitrary point in E (the choice here being r) is inserted
into eq. (2.6).

With E in HNF, the signed distance of an arbitrary point q to the plane
can now be calculated as shown in [7, p. 541]:

d = ⟨n, q⟩+ p . (2.11)

The last observations missing before we can solve the point-in-simplex
problem are:

• The point m = 1
n+1

n∑
i=0

pi always lies within (not on the edges or faces)
the corresponding n-simplex.

• Two points that have equal-signed distances to E lie on the same side
of E.

Given a tetrahedron σ with its set of vertices V (σ) = {p0, . . . , p3}, the four
planes E0, . . . , E3 can be defined with Ei being the plane spanned by V (σ) \
{pi} for each i. Each of the four planes’ normal vectors ni is now chosen such
that the signed distance of m is positive with respect to Ei:

⟨ni,m⟩+ pi ≥ 0 . (2.12)

Graphically, this means that all of the normal vectors are pointing from the
faces of the tetrahedron to its inside. Points having positive distances di > 0
to each of the planes Ei lie on the positive half-space [7, p. 541] of each plane
and are therefore inside of the tetrahedron. A distance of di = 0 means that
the point lies on the plane Ei. This leads to the same problem the approach
using barycentric coordinates left us at where we have to decide in which of

18

two neighboring simplices a point lies when it is on a plane. However, in
contrast to the barycentric approach, the HNF approach allows us to define
a criterion which assigns points on faces to single distinct tetrahedra using
the direction of ni.

It is trivial that for two non-overlapping tetrahedra that share a common
face spanning a plane F , the respective normal vectors n1 and n2 pointing to
the inside of their tetrahedron have to be the exact opposite of each other:

n1 = −n2 . (2.13)

Both are perpendicular to F , have magnitude 1 and point to different half-
spaces of F . This fact allows the following inclusion/exclusion rule: Let ≼
be a total order of all unit vectors in R3 which shall be defined as

u ≼ v := (u1 ≤ v1)

∨ (u1 = v1) ∧ (u2 ≤ v2)

∨ (u1 = v1) ∧ (u2 = v2) ∧ (u3 ≤ v3) . (2.14)

From eq. (2.13), eq. (2.14) and n1 ̸= 0 follows that

n1 ≺ n2 ⊕ n2 ≺ n1 , (2.15)

with ⊕ being the exclusive-or operator, must always hold.
When given a point in a tetrahedron σ which is lying on one of its faces

(edges), it is considered to be inside σ if and only if ni ≺ −ni holds. ni is the
normal vector of the face as described in eq. (2.12).

The error introduced by choosing one tetrahedron over another when
a point lies exactly between them is minimal since the variables stored in
those tetrahedra are typically samples of a (mostly) continuous function and
therefore do not differ significantly in value. For the case that they do, the
points lying exactly between tetrahedra are still rare compared to those lying
on the insides and thus do not affect the end result significantly.

Using the HNF for lines instead of planes [7, p. 290] this method can be
applied to triangles analogously.

2.1.3 Sampling Simplex Grids
The point-in-simplex check is the first step in rasterization as it determines
which simplices to sample into a regular grid cell. The exact method of
calculating the rasterized value the cell receives is discussed now. To facilitate
the following explanations, the functions in table 2.1 are introduced.

19

Table 2.1: Utility functions for working with simplices.

Definition Solution
tetAtH(x, y, z) = σ ∈ HΣ | (x, y, z) ∈ σ HNF
triAtH(x, y) = σ ∈ HΣ | ∃z ∈ R ((x, y, z) ∈ σ) HNF

q(σ) , The value of variable q in simplex σ given
zAtH(x, y) = z ∈ R | (x, y, z) ∈ triAtH(x, y) to be solved

Table 2.2: The three methods needed for rasterizing the input grids. Only
one method is needed per rasterization of a grid and variable.

Method
Name

Mathematical Representation Description

Standard ras-
terization

qx,y = q(triAtH(x, y)) The value of variable q
in the triangle at point
(x, y)T

Depth raster-
ization

hx,y = −zAtH(x, y) The depth, extracted
from the grid’s geome-
try, at point (x, y)T

Depth
averaging

qx,y;avg =
1

hx,y

0∫
−hx,y

q(tetAtH(x, y, z))dz The average of a vari-
able q over a water col-
umn of height hx,y

Recalling the three SeisSol meshes volume, surface and floor from sec-
tion 2.1.1, the process of mapping the variables the meshes provide to those
desired as outputs is discussed next. In total, three different methods are
required to rasterize all variables of an unstructured grid H. Those methods
are listed in table 2.2.
The outputs needed to initialize all degrees of freedom of an SWE simulation
(see chapter 3 for details) are the bathymetry height b, water height h and
water momentum p. All of these can be derived from the variables we extract:
b, vertical seafloor displacement d, sea surface displacement η and the water
velocity vector v. The conversion of these variables to the ones stated above
is left to the tsunami solver. In table 2.3, the mappings between in- and
output variables and rasterization methods used are listed.
Generally speaking, depth averaging is only needed when rasterizing tetra-
hedra into a 2D grid and depth rasterization is required when extracting
geometric data from triangles. For rasterizing variables from triangles, stan-
dard rasterization is used.

20

Table 2.3: The mappings from inputs to outputs with the respective
rasterization methods.

Output variable Inputs Rasterization method
b floor: mesh geometry Depth rasterization
d floor: W Standard rasterization
η surface: W Standard rasterization
v = (u, v)T volume: u, v Depth averaging

Depth-averaging

The depth averaging method above is a path integral over multiple tetrahedra
and as such, is not computable without further modifications. Therefore,
with H = (D,Σ) and G = (D,∆x,∆y,∆z), we approximate this integral as
a sum of samples of H at G’s cell centers:

q̃x,y;avg =
1

|C|
∑
z∈C

q(tetAtH(x, y, z)) , (2.16)

with C being the set of z-coordinates of cell centers above the bathymetry
height:

C = {z ∈ R | ∃k ∈ N0

(
(z = zmin + (k +

1

2
)∆z) ∧ (z ≥ −hx,y)

)
} . (2.17)

The error introduced by this simplification is discussed in section 2.1.4.

Depth-rasterization

This method extracts the water depth at a certain point p = (x, y) from the
geometry of the unstructured seafloor mesh. To do that, the triangle σ that
overlaps p has to be determined. Then the exact depth at p can be found
by interpolating between the depths at σ’s vertices.

Here, the bathymetric coordinates discussed in section 2.1.2 can be uti-
lized. As explained in [26, ch. 11.4], these coordinates can be used for
interpolating between values at the triangle’s vertices within said triangle.
This is done using the three barycentric coordinates a0, a1, a2 of p which
correspond to σ’s vertices p0,p1,p2. The interpolated z-coordinate at p is
then

zAt(x, y) = a0p0z + a1p1z + a2p2z . (2.18)

21

2.1.4 Error Analysis
By sampling a unstructured grid H only at the cell centers of a regular grid
G = (D,∆x,∆y,∆z) we introduce a numerical error which reduces with the
cell size of G. The exact value of a cell (i, j) in G after rasterization of a
tetrahedral grid is

qi,j;avg =
1

∆x∆y

xG(i+1)∫
xG(i)

yG(j+1)∫
yG(j)

qx,y;avg dy dx (2.19)

and analogously for a triangle grid

qi,j =
1

∆x∆y

xG(i+1)∫
xG(i)

yG(j+1)∫
yG(j)

qx,y dy dx . (2.20)

The method of sampling at cell centers delivers

q̃i,j;avg = q̃xG(i+ 1
2
),yG(j+ 1

2
);avg (2.21)

for tetrahedra and

q̃i,j = qxG(i+ 1
2
),yG(j+ 1

2
) (2.22)

for triangles. The relative error made by point sampling for a given cell of G
is then

fi,j;rel;tet =
qi,j;avg − q̃i,j;avg

qi,j;avg
(2.23)

and

fi,j;rel;tri =
qi,j − q̃i,j

qi,j
(2.24)

respectively. All further relative errors in this thesis are defined analogously.
To find out which ∆x,∆y,∆z are suitable for a given simplex size, we de-

vise the following scenario: With domain D = [0; 1]3 and a tetrahedron σ with
V (σ) = {(0, 0, 0)T , (1, 1, 0)T , (1, 0, 1)T , (0, 1, 1)T}, the unstructured grid H =
(D, {σ, σ001, σ010, σ100, σ111}) and the function G(δ) =

(
D, 1

δ
, 1
δ
, 1
δ

)
producing

regular grids at different granularities δ are defined. σ001, σ010, σ100, σ111 are

22

0 25 50 75 100 125 150 175 200

10−4

10−2

100

1/δ

f r
el

Figure 2.4: The relative error to the volume of the tetrahedron described
in section 2.1.4 when sampled at (1

δ
)3 cell centers.

1.2 2 4 6

5 · 10−2

0.1

lmax/hmin

sh
ar

e
of

te
tr

ah
ed

ra

Figure 2.5: Distribution of tetrahedron aspect ratios in the ASCETE test
case.

the four tetrahedra at the cubic domain’s unoccupied corners which are
chosen such that the domain is completely filled. In the cell σ, the value
1 is stored while all other cells are set to 0. This way, when integrating over
the domain, the expected value is 1

3
, which is the volume of σ.

The relative errors observed for δ ∈ {1/s | s ∈ N ∧ 2 ≤ s ≤ 200} are
shown in fig. 2.4. This scenario does not cover all possible simplices and
particularly disproportionate ones can have much larger sampling errors, e.g.
ones that are so thin in one dimension that they lie completely inbetween cell
centers of a given regular grid and are thus never sampled. However, such
simplices rarely exist in meshes that are used for scientific simulations since
they negatively affect simulation quality [20, ch. 1]. Using the definition of
aspect ratio from [20, sec. 9.1] as a measure for mesh quality we can confirm
that high-aspect-ratio (read: low-quality) tetrahedra occur very rarely in real
meshes (Figure 2.5).

To achieve a relative error of 10−2 on low-aspect-ratio (high-quality)

23

tetrahedra, approximately 503 samples have to be taken for each tetrahedron,
resulting in 5.8·1011 total samples in a scenario like the ASCETE test scenario
which features ≈ 4.6 · 106 tetrahedra.

Additionally, a common property among input grids can reduce the error
further: The functions of which the values are stored in the simplex cells
typically have a low gradient (except for areas near the fault), i.e. their values
differ only slightly between neighboring cells. Thus, when the sampling error
for an individual simplex is large, the sampled value remains accurate as
the whole neighbourhood of the simplex is similar in value. As discucssed
in section 2.1.2, a point sample always lies inside exactly one simplex.

To illustrate this, the tetrahedral cells of the ASCETE scenario are sam-
pled at t = 80 s with ∆x = ∆y = ∆z = 100 m and the relative error between
the variables in the rasterized grid and the input grid is calculated after
integrating them over the whole domain. This yields frel;3d ≈ 1.30 % =
1.3 · 10−2 and frel;2d ≈ 0.17 % = 1.7 · 10−3 for the 3D volume grid and the
2D floor/surface grids respectively. The number of samples was on average
46.83 per tetrahedron.

2.2 Projection Algorithm and Data Structures
The problem of grid rasterization as described in the previous sections lends
itself well to massive parallelization, like it is found in graphics cards. How-
ever, the size of the inputs and outputs of the algorithm (hundreds of giga-
bytes in typical scenarios) and the fact that the program can benefit from
large amounts of RAM, have lead to developing this algorithm for CPU
clusters instead. As later discussed in section 2.3, the systems optimized for
are the CoolMUC21 and CoolMUC32 clusters at the Leibniz Supercomputing
Centre (LRZ).

The current implementation fully utilizes multithreading capabilities of
a single compute node but does not feature multi-node support. This is due
to the language chosen for implementation being Julia3 which, at the time
of writing, has no official support from the Leibniz Supercomputing Centre4

for running on multiple nodes in parallel.
Also, the conscious choice has been made to support running the algo-

rithm on personal computers to facilitate development and to allow for fast
execution on small synthetic scenarios.

1https://doku.lrz.de/display/PUBLIC/CoolMUC-2
2https://doku.lrz.de/display/PUBLIC/CoolMUC-3
3https://julialang.org/
4https://doku.lrz.de/display/PUBLIC/High+Performance+Computing

24

https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://julialang.org/
https://doku.lrz.de/display/PUBLIC/High+Performance+Computing

Table 2.4: The binary input files to the program as referenced by the XDMF
header.

Filename File Contents
geometry.bin The corner points of all simplices in the unstructured grid
topology.bin The tuples of 3/4 corner point IDs that define the

simplices
<varname>.bin The numeric values of variable <varname>, the ordering

being (timestep, simplexID)7

To receive a copy of the code refer to section A.1.

2.2.1 Rasterization Order
As already mentioned in chapter 2, the algorithm can be designed in two
different ways:

• Operating in tile-order, i.e., iterating over the regular grid cells and
finding the overlapping simplices for each one.

• Operating in simplex-order, iterating over the unstructured grid’s sim-
plices and finding the overlapping regular grid cells.

To decide which of these approaches is appropriate for our algorithm, we
have to take a look at the format of the input files: All inputs are given in the
XDMF format5 which features an XML header file. This header points to a
collection of binary files of which the ones shown in table 2.4 are of interest.
The outputs of the algorithm are written in NetCDF format6, with a (timestep,
y, x)7 ordering.

This means that, for accessing the filesystem optimally, i.e., sequentially,
we need to read in simplex-order and write in tile-order.

This is achieved by rasterizing the unstructured grids in simplex-order
to a regular grid kept in memory. When all simplices of a grid have been
rasterized, the in-memory regular grid is then written to the filesystem se-
quentially.

Alternatively, one could read the topology of the unstructured grid into a
data structure like a quad- or octree and then rasterize in tile-order. However,
this has proven to be slower and more memory-intensive than the former
method.

5http://xdmf.org/index.php/Main_Page
6https://www.unidata.ucar.edu/software/netcdf/
7Orderings given as column-major; The right indices iterate faster than the left ones.

25

http://xdmf.org/index.php/Main_Page
https://www.unidata.ucar.edu/software/netcdf/

2.2.2 The Algorithm
The abstraction simplex made in section 2.1 now allows us to develop one
algorithm for the tetrahedra and triangles, with only minor exceptions.

The grids of gridType ∈ {floor, surface, volume} are rasterized after one
another to the same regular grid G.

Algorithm 1 first allocates memory for the cells of grid G to accomodate
each of the rasterized variables. The cells in gridout;vars will receive the
values in the rasterized grid and gridout;cnt counts the simplices that overlap
a particular cell when projected onto the xy-plane. The latter array is only
needed for the tetrahedral volume grid in order to build a running average.

Algorithm 1 The grid rasterization algorithm
1: procedure rasterize(H,G, vars, gridType)
2: (D,Σ)← H
3: (_,∆x,∆y,∆z)← G
4: is3D ← ∃σ ∈ Σ . |V (σ)| = 4

5: ncells;x ←
⌈
|Dx|
∆x

⌉
6: ncells;y ←

⌈
|Dy |
∆y

⌉
7: gridout;vars ← zeros (|vars|, ncels;x, ncells;y)
8: if is3D then
9: gridout;cnt ← zeros (ncels;x, ncells;y)

10: for σ ∈ Σ do
11: rasterizeSimplex(σ,G, gridout;vars, gridout;cnt)
12: end for
13: else
14: for σ ∈ Σ do
15: rasterizeSimplex(σ,G, gridout;vars, null)
16: end for
17: end if
18: return gridout;vars
19: end procedure

Each simplex σ in H, is then rasterized according to algorithm 2. Be-
ginning in line 2, the axis-aligned bounding box (AABB) of the simplex is
calculated using algorithm 3. An AABB of a body is the cartesian product of
the intervals between the minimum and maximum coordinate of the body’s
points along each axis. Then, a sub-grid of Gxy is set up so we can count
how many samples of σ in z-direction fall into each xy-cell. Additionally, the
HNF, as discussed in section 2.1.2, is calculated for each face (edge) of the

26

Algorithm 2 The simplex rasterization algorithm
1: procedure rasterizeSimplex(σ,G, gridout;vars, gridout;cnt)
2: aabb← boundingBox(σ)
3: aabbCells← Gxy ∩ aabbxy
4: aabbCellscnt ← zeros(|aabbCellsy|, |aabbCellsx|)
5: hnfs← {v → HNF (V (σ) \ {v}, v) for v ∈ V (σ)}
6: for (x, y) ∈ aabbCells do
7: if is3D then
8: for z ∈ Gz ∩ aabbz do
9: if pointInSimplex((x, y, z), hnfs) then

10: aabbCellscnt[y, x]+ = 1
11: end if
12: end for
13: else
14: aabbCellscnt[y, x] = 1
15: end if
16: end for
17: for v ∈ vars do
18: if gridType = volume then
19: depthAveraging(gridout;vars, gridout;cnt, aabbCellscnt, v)
20: else if gridType = floor ∧ v = b then ◃ b , bathymetry
21: depthRasterization(gridout;vars, aabbCellscnt, σ, v)
22: else
23: standardRasterization(gridout;vars, aabbCellscnt, v)
24: end if
25: end for
26: end procedure

tetrahedron (triangle).
Now, following line 6, we test whether σ includes each 3D (2D) point

in its AABB respectively. If a point is found to lie within the simplex,
the sub-grid cell’s counter at the point’s (x, y) index is incremented (set
to 1). After all points in the AABB have been processed, each variable
in vars is depth-averaged/depth-rasterized/standard-rasterized according to
the criteria discussed in section 2.1.3 and the result is stored in gridout;vars.

Note that in this algorithm, the values in the list vars do not have an
explicit data type and the only requirement for them is to provide a value
for each simplex. This allows processing an array of timesteps at once for
each variable as the geometry and topology of all grids are time-independent.
This idea will be elaborated on in section 2.3.

27

The above loop over all simplices can furthermore be parallelized with
nthreads threads. Without any other modifications, the threads would, how-
ever, conflict with each other when writing their outputs. In section sec-
tion 2.3.2, mechanisms will be put into place to avoid expensive locking and
synchronization mechanisms. After each simplex has been rasterized, the
final regular grid with rasterized variables is returned and can be written to
the filesystem.

Algorithm 3 Bounding box (AABB) calculation
1: procedure boundingBox(σ)
2: vertices← V (σ)
3: return [minx(vertices);maxx(vertices)]
4: ×[miny(vertices);maxy(vertices)]
5: ×[minz(vertices);maxz(vertices)]
6: end procedure

Furthermore, the point-in-simplex test can be implemented as shown
in algorithm 4. Note that this test fails early, meaning that as soon as
one face (edge) of the simplex is found of which the tested point is on the
outside, the point is rejected. Since most points in the AABB will be outside
the simplex, this can increase the algorithm’s speed significantly.

Algorithm 4 Point-in-simplex check
1: procedure pointInSimplex(q, σ)
2: nV ertices← |V (σ)|
3: for v ∈ V (σ) do
4: (n, p)← HNF (V (σ) \ v, v)
5: if (⟨n, q⟩+ p < 0) ∨ (⟨n, q⟩+ p = 0 ∧ −n ≺ n) then
6: return reject
7: end if
8: end for
9: return accept

10: end procedure

Figure 2.6 shows the algorithm working on one tetrahedron.

2.3 Optimization for HPC Systems
In order to maximize the algorithm’s performance on modern High Perfor-
mance Computing (HPC) systems, a few considerations have to be made.

28

(a) boundingBox (b) pointInSimplex

|1
3

|3
3

|2
3

|1
3

|1
3

|0
3

(c) depthAveraging

Figure 2.6: A simplex being rasterized onto a regular grid (bottom bars)
according to the proposed algorithm. Planar view in y-direction, depth-
averaging is shown. The rasterized variable in the simplex is considered to
be 1 whereas the surroundings of the simplex are 0. The final shown values
in (c) are the depth-average of the shown domain slice.

Some of them can also benefit consumer devices while others are required
due to the high core count and distributed nature of HPC systems.

The CoolMUC2/3 clusters at LRZ feature a core count of 28-64 and RAM
sizes between 64 and 96GiB per node and the algorithm is optimized for
these architectures. Other specifications will be introduced as they become
relevant.

2.3.1 Memory Management
Julia employs a Garbage Collector (GC) and dynamic allocations on the heap
also decrease performance. Therefore it is beneficial to limit the amount of
allocations and thus also GC work [2, ch. II.2].

We pre-allocate buffers/variables that would otherwise be re-instantiated
over and over during rasterization and provide a return buffer to functions as
an argument which is common practice in languages like C. Furthermore, the
in-place variants of algorithms are used where possible for the same reason.
Additionally, we can exploit the large RAM sizes mentioned earlier to work
on multiple timesteps at once, without having to perform rasterization again
for each one.

To establish an understanding of the algorithm’s memory footprint, the
sizes of all relevant data structures are listed in table 2.5.

This memory footprint is much larger than the amount of RAM available
to the nodes of the previously mentioned HPC systems. To solve this issue,
we can run the rasterization algorithm multiple times with only a subset

29

Table 2.5: The memory footprints of the data structures used by the
rasterization algorithm. The example values have been calculated for a
scenario with 7500× 7500 cells in the regular grid, 4.500.000 tetrahedra and
1.000.000 points in the unstructured grid and 2 variables being rasterized
across ntimes = 300 timesteps.
These values are approximations of the ones obtained when rasterizing the
ASCETE scenario with ∆x = ∆y = ∆z = 100 m.

Data struct. Footprint depending on input sizes Ex. value

vars mvars;in = sizeof(Float64) · |vars| · ntimes · |HΣ| 21 GiB

geometry mpoints = sizeof(Float64) · |{p | ∃σ ∈ HΣ . p ∈ V (σ)}| · 3 23 MiB

topology mtopo = sizeof(Int32) · |HΣ| · |V (σ ∈ Σ)| 67 MiB

gridout;cnt mcnt = sizeof(UInt16) · ncells;x · ncells;y 108 MiB

gridout;vars mvars;out = sizeof(Float64) · ncells;x · ncells;y · |vars| · ntimes 252 GiB

misc. mmisc = · · · 4GiB

of the timesteps being processed. These subsets should be kept as large as
possible to reduce the number of iterations of the rasterization algorithm and
therefore the number of repetitions of the same rasterization.

Due to the structure of the algorithm that requires an array for each
simplex that contains its number of samples for each Gxy-cell in its AABB,
it is not easily possible to cache the rasterization data efficiently. While this
array is only instantiated once for each of the nthreads threads and reused
within them, the array would have to be stored for each simplex in order
to to cache the rasterization which is not viable. Thus, the rasterization is
performed multiple times, each time processing one or more timesteps.

We can calculate the maximum number of timesteps that can be processed
per rasterization with a memory budget of mmax as follows:

ntimes;iter =

⌊
mmax −mpoints −mtopo −mcnt −mmisc

(mvars;in +mvars;out) · n−1
times

⌋
, (2.25)

which equates to ⌊46.19⌋ = 46 timesteps per iteration with the example
values from table 2.5 and mmax;1 = 64GiB. With mmax;2 = 96GiB, the
number of timesteps per iteration increases to ⌊84.29⌋ = 84.

Hence, the number of iterations needed is

niterations =

⌈
ntimes

ntimes;iter

⌉
, (2.26)

30

which is 7 for mmax;1 and 4 for mmax;2.

2.3.2 Eliminating Resource Contention
Another optimization that can dramatically increase performance in multi-
threaded applications is the minimization of contention, i.e. a thread having
to wait for resources used by another thread [1, p. 295].

For this section, only write accesses both to RAM and to the filesystem
will be considered as those are the only sources of contention in the discussed
application.

In the algorithm described in section 2.2.2, all input variables, i.e., the
unstructured grid H and the input variables vars are exclusively read from
and never written to. The regular grids containing rasterized variables and
the counter of samples per cell are, however, both read from and written to
by all threads. This necessitates either a locking mechanism, or a method of
ensuring that no two threads access the same area in those grids at the same
time.

A locking mechanism introduces wait times for threads trying to acquire
occupied locks and should therefore be avoided. It turns out that this is
indeed possible:
If the simplices of the unstructured grid are not distributed across threads
in an arbitrary fashion but are instead sorted into nthreads partitions (also
referred to bins or buckets) that do not overlap when projected onto the xy-
plane, each thread can work on its own partition and will exclusively read
from and write to its part of the output grids.

However, in a tetrahedral grid, it is not generally possible to define a
rule to find such partitions because tetrahedra can overlap each other when
projected onto xy.

To fix this issue, three separate partitionings of Dxy called P ,B andR are
defined and processed in sequence in that order. In P , Dxy is partitioned into
axis-aligned rectangular bins which only include the simplices fully inside
them (the left border of the rectangle being included, the right one being
excluded).
The second partitioning B then divides Dxy such that the new partitions are
centered on the edges of the previous ones and will therefore contain almost
all of the simplices that were excluded before.
The residual simplices that spanned multiple partitions in both partition-
ings above are then processed sequentially in R . Figure 2.7 shows these
partitionings and example simplices in them.

We start out with nthreads partitions p1, · · · , pn of the domain Dxy which
are each rectangular and span one or multiple complete columns of the output

31

p1 p2 p3 p4

(a) P = {p1, · · · , pn}

b1 b2 b3

(b) B = {b1, · · · , bn−1}

r

(c) R = {r}

Figure 2.7: The three partitionings of domain Dxy with an example simplex
for each bin.

grid G = (D,∆x,∆y,∆z). These partitions together cover all of Dxy and do
not intersect each other (as required for a valid partitioning).

Next, an additional nthreads−1 rectangular border partitions b1, · · · , bn−1

are defined such that each bi ∈ {b2, · · · , bn−2} spans all columns between
pi’s and pi+1’s middle columns, the left middle column being included, the
right one being excluded. b0 spans all columns from the leftmost one to p2’s
middle column (excluded) and bn−2 spans all columns from pn−1’s middle
column (included) to the rightmost one.

A final partition for residual simplices covering all of Dxy, r, is then
defined.

With these partitionings, all simplices end up in at least one partition:
Partition r contains all simplices in D that are not included in any of the
bins in P and B.

2.3.3 Load Balancing
Maximum throughput is only achieved when all threads take the same time
when processing the partitions in P or B respectively such that idle time
is minimized. Additionally, the r-bin should be (close to) empty as it is
processed by only one thread while the others are idle.

Since the bins in each partitioning have to be non-overlapping and the
partitionings need to be processed after another, it is much easier to statically
balance the loads before rasterization as opposed to a dynamic approach.

The time each thread needs does not translate directly to the number of
simplices that thread has to process:
Since simplices have different sizes and proportions, the number of regular
grid cell centers that have to be tested with the pointInSimplex-function,

32

P B R
0

0.5

1

Bin

re
l.

ru
nt

im
e

of
bi

n

8 threads 28 threads 64 threads 128 threads 256 threads

Figure 2.8: The runtime of each bin (each bin is one column), relative to
the longest bin runtime observed, for different nthreads. For each number
of threads, the bin sizes are different and this is reflected here: the bins
for nthreads = 8 are visible individually while those for nthreads = 256 are
barely distinguishable. These are the distributions as obtained by binning
the volume grid of the ASCETE scenario. The b-bins are appended on the
right of the p-bins and the r-bin is the last value in each plot.

and therefore the computational demand for each simplex, varies.
Figure 2.8 shows that the naive approach of sizing each p-bin equally like

shown in fig. 2.7a already produces reasonably balanced runtimes and thus
no further optimizations are made here.

Another idea for load balancing would be to estimate the actual compu-
tational load (read: runtime) for the different simplex sizes in the grid and
then resize each bin to even out the load even further. This has proven to be
very difficult to do well and the results measured there have not surpassed
those of the naive approach. Therefore these results are not discussed further
here.

2.3.4 Eliminating Random File System Accesses
The last important optimization discussed in this chapter is the elimination
of random file system accesses. The parallel file system used for large in-
and output data at the LRZ has much higher latencies compared to a typical
SSD as found in modern PCs but similarly high bandwidth (when using a
single compute node); This is visualized in fig. 2.9.

While the difference between random and sequential accesses on a modern

33

cm
2-g

pfs

mpp
3-g

pfs

nv
me-s

sd

usb
3-h

dd

104

106

Bandwidth in KiB
s

cm
2-g

pfs

mpp
3-g

pfs

nv
me-s

sd

usb
3-h

dd

104

106

Latency in ns

sequential read random read

Figure 2.9: Comparison of sequential and random read performance of
different storage systems. Error bars show standard deviation over three
separate runs with 2min of runtime each. All performance testing has been
done with fio (Flexible IO-Tester, ver. 3.20, https://github.com/axboe/
fio). ”cm2-gpfs” and ”cm3-gpfs” refer to the GPFS (IBM Spectrum Scale)
filesystem accessed from CoolMUC2/3 respectively.

SSD is almost negligible, accessing storage randomly instead of sequentially
can lead to unacceptably slow performance on the targeted HPC systems.

We already rasterize in simplex-order (see section 2.2.1) for this exact
reason and we can also write the output arrays gridout;vars sequentially. The
only relevant file system accesses left that still need to be optimized are the
ones to vars during rasterization. Since this is done in a multi-threaded
environment these accesses are not sequential despite simplex-order rasteri-
zation: Each thread has its own set of simplices within which it operates and
because of the binning step there is no guarantee that simplices within that
set are a continuous sequence. Additionally, as discussed in section 2.3.3,
the procesing speed varies between simplices and each thread can progress
through its bin at a different rate.

To resolve this issue, instead of accessing the variables in vars through
the file system, we load them into a buffer sequentially before the next
rasterization iteration begins. This data can then be accessed randomly from
RAM with a much smaller performance penalty.

The memory footprint of the vars-buffer is hinted at in table 2.5 but of
course has to be divided by the number of rasterization iterations performed.

34

https://github.com/axboe/fio
https://github.com/axboe/fio

2.4 Evaluation
With all of the abovementioned optimizations, the rasterization algorithm
takes ≈ 21 min to rasterize all 300 timesteps of the ASCETE scenario into
a regular grid of 7500 × 7500 cells on a single CoolMUC-2 node. Please
note that at the time of writing, the program is not able to utilize the full
RAM of the node due to garbage collection issues. Thus, a memory limit of
25GiB has been imposed and the program needs six iterations for each of the
triangle grids and 12 iterations for the tetrahedral grid (see section 2.3.1).

As discussed in section 2.1.4, the relative error between the in- and output
grids, averaged over the whole domain, is≈ 1.3 % when rasterizing tetrahedra
and ≈ 0.17 % when rasterizing triangles. This error might be higher in
timesteps where there are many discontinuities near the fault. Thich is
generally not a problem since the later timesteps (those with the maximum
seafloor displacement or those immediately after the earthquake) are those
that are the starting point for tsunami simulations.

As stated in section 2.2, the program can benefit from distributed paral-
lelization (e.g. by having each cluster node work on a subset of the timesteps)
but this functionality has not been implemented here. The runtime of 21
minutes is fast enough for most use cases and bigger scenarios should be
processed fast enough, too.

35

Chapter 3

The Effect of Initial Velocity on
Tsunami Simulations

The Shallow Water Equations usually require a state vector Q = (b, h, p)T
for each cell of the domain to store the simulation’s state from which the
next timestep can be calculated. b is the bathymetry height, h the height
of the water column and p = hv the two-dimensional momentum vector.
To initialize the simulation these values have to be set for each cell. It is
common practice to only set b and h to the actual initial values and to set v
to 0.

The approach in the previous chapter allows researchers to either only
rasterize the time-dependent vertical seafloor and sea-surface displacements
in each raster cell or to additionally rasterize the depth-averaged water
velocity in the x- and y-directions.

This leads to the question whether or not this additional data improves
tsunami simulation results and therefore if it is advisable or even necessary
to include it as an initial condition.

3.1 Related Work
The debate of whether initial velocities are negligible or not has been long-
lasting and examples for each standpoint have been brought forth:
While [23, 21, 27, 22] come to the conclusion that initial velocities have
an important effect in tsunami genesis by comparing simulation results to
real-world tsunami data, [12] concludes that the effect of initial velocity is
negligible.

36

The case for initial velocities

In [23, 21], Song investigates the 2004 Sumatra-Andaman earthquake and
takes satellite data, such as GPS readings and tsunami heights as well as
seismographic data into account, coming to the conclusion that the initial
momentum introduced by the sloping seafloor has a significant effect on the
resulting tsunami height and energy.

They go on to develop an early inundation prediction method also using
GPS and the DART1 (Deep-ocean Assessment and Reporting of Tsunamis)
network of sensors and validate it using data from the Tohoku 2011 tsunami.
Once again they state the importance of initial velocity for tsunamis, claiming
that initial velocity caused about half of the vertical sea surface displacement
at certain points of measurement. [27, 25]

In [22] they revisit the 2011 and 2004 tsunamis mentioned above and
compare their theory of initial momentum (kinetic energy) making up a
significant portion of tsunamis’ total energy to measured real-world and lab
experiment data. Once again, they find that the consideration of initial
momentum is important for the mentioned tsunamis.

Both of these tsunamis feature a small amount of vertical uplift and a
large amount of horizontal displacement which is assumed to be the cause of
the high initial momentum.

The case against initial velocities

Lotto et al. [12] compare a fully-coupled simulation of an earthquake and
the resulting tsunami with an ordinary shallow-water tsunami simulation
with varying amounts of initial velocity. They show that as this velocity
approaches 0, the results of the SWE simulation have the smallest misfit
compared to the fully-coupled simulation.

3.2 Results
When including velocity data as tsunami simulation inputs, we cannot any-
more utilize time-dependent displacements but rather have to choose one
timestep after the earthquake rupture process is complete as the initial con-
dition. This is because SWE solvers update water impulse and height in
each cell and thus we would either have to overwrite the impulse with the
input data or develop a technique for merging the simulation and input data.
This is not a problem that occurs for time-dependent seafloor displacements

1https://nctr.pmel.noaa.gov/Dart/

37

https://nctr.pmel.noaa.gov/Dart/

since the tsunami simulation is only coupled in one direction: the seafloor
displacements have an effect on the water body but the water has no effect
on the seafloor.

In order to perform the following tsunami simulations, the version of
sam(oa)2 with initial velocity support is needed. Refer to appendix A.2 for
further information.

To evaluate the effect of initial velocity on the resulting simulated tsunami,
simulation runs of the ASCETE scenario with different initial values will be
compared:

(d, η, v) seafloor displacement, surface displacement, and initial
velocity at t = 300 s,

(d, η) seafloor and surface displacement at t = 300 s,

(d, v) seafloor displacement (copied to surface) and initial veloc-
ity at t = 300 s,

(d) seafloor displacement (copied to surface) at t = 300 s,

(d (timedep)) time-dependent seafloor displacements for 0 s ≤ t ≤ 300 s
(copied to surface).

Note that in real-world scenarios, some of these data points might not be
available and thus compromises have to be made, e.g. copying the seafloor
displacements to the surface (see chapter 4).

In theory, the first run in the list is an exact snapshot of the fully-coupled
earthquake-tsunami simulation at t = 300 s and is therefore used as the
baseline for comparison.

Figure 3.1 shows the sea surface elevation along the x- and y-axis which
intersect at the epicenter, at the end of the abovementioned simulation runs.
Note, however, that the start time of some runs had to be shifted in order
to account for the faster propagation of waves with initial velocity compared
to those which first need to build momentum through gravitation. This has
been done by aligning the leading wave peaks from all runs for the latest
timestep available; The shifts are noted in the figure.

The result of this comparison is that it does not seem to matter much
if a tsunami simulation is run with (d, η, v), (d) or (d (timedep)) as ini-
tial conditions. The only combinations that deviate from those three wave
profiles are the ones where either initial velocity was used together with
the bottom deformation copied to the surface or where the seafloor and
sea surface displacements from SeisSol were used but initial velocity was
discarded.

In the case of the (d, v)-scenario, the impulse is much higher than in

38

−325 0 425

−0.4

−0.2

0

0.2

y [km]

η
[m

]

Wave profiles along y-axis

(d, η, v)
(d, η)
(d, v)
(d)

(d (timedep))

−375 0 375

−1

0

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(d, η)
(d, v)
(d)

(d (timedep))

Figure 3.1: Comparison of wave profiles along major axes at t = 868 s (the
last timestep available after shifting start times of some runs). (d, η, v), (d)
and (d (timedep)) agree well with each other while the waves in (d, v) are
of much bigger amplitude and those in (d, η) are of much lower amplitude
and significantly other shape. Start times were adjusted to synchronize wave
profiles at the mentioned timestep: (d, v): 160 s earlier, (d): 32 s later. The
temporal resolution of the outputs is ∼ 4 s which does not allow for perfect
synchronization of these runs. However, this is still enough for qualitative
and rough quantitative comparisons.

39

the other scenarios since the water height is a constant −b = 2000 m (the
displacements are copied to the surface, thus conserving the water height from
before the displacement) but the velocity is taken from timestep t = 300 s
and is thus already quite high. This results in a much too high initial impulse
and therefore this combination of initial conditions is invalid.

As for the (d, η)-scenario, the opposite is the case: The water height is
taken from t = 300 s, i.e. the initial potential energy had 300 s to partly be
turned into kinetic energy, and this kinetic energy is then reset to zero. This
results in a much too shallow wave profile and is also an invalid combination
of initial conditions.

The (d (timedep))-scenario is slightly closer to the (d, η, v)-scenario in
the later timesteps than the (d)-scenario although this might differ from
earthquake to earthquake: The peaks of the wave profiles shown in fig. 3.1
are up to ∼ 5 cm higher in the (d)-run than in the (d, η, v)-run while those
of (d (timedep)) are within 1 cm of (d, η, v). The (d (timedep))-approach is,
in fact, a slightly more realistic approach than only using (d) as the initial
condition since the former already simulates the tsunami while the earthquake
is still in progress. The latter approach represents the earthquake as an
instantaneous event which is, of course, not in line with reality.

Tsunami simulations with initial conditions taken from earlier timesteps
have been performed as well: [13] states that the ASCETE scenario A reaches
almost constant seafloor displacements at t = 80 s with only surface waves
(on the seafloor’s surface, not the sea surface) still travelling through the do-
main. However, the displacements from those surface waves cause significant
artifacts in the wave profile which are not present with either of the initial
conditions described above.

The verdict whether to use initial velocities or not is: If seafloor and sea
surface displacements are known for a timestep shortly after surface waves
have left the perimeter of the earthquake initial velocities can improve the
tsunami simulation slightly. It is possible that some tsunamigenic events such
as those with moving slopes mentioned by Song et al. [23, 21, 27, 25, 22] are
affected significantly by the inclusion or exclusion of initial velocities and
it is also possible that non-SWE tsunami solvers might be affected. These
investigations were, however, not in the scope of this thesis.

If sea surface displacements are unknown, measured initial velocities are
of no use since they cause errors in the initial momentum and thus in the
later wave profile.

Time-dependent seafloor displacements provide a very good approxima-
tion to simulations where all initial conditions are known.

40

Chapter 4

Depth-filtering

4.1 Motivation
Many tsunami simulations use seafloor displacements copied 1:1 to the water
surface as an initial surface displacement. This is, of course, inaccurate as
the water is not displaced strictly in an upwards direction but also horizon-
tally [10].

The direct copying of those displacements leads to high-frequency com-
ponents being present in the surface elevation which can lead to large errors
later in the tsunami simulation due to frequency dispersion [8, 16].

It is worth noting that full 3D approaches such as the simulation of
the water body in SeisSol solve this problem by simulating the acoustic
wave equation for each volume element in the 3D water body [11] and
therefore simulating the effects the seafloor displacement has on the sea
surface accurately.

However, when such simulations cannot be employed or if only part of
their output data is available, one might have to resort to a method of ap-
proximating the real sea surface deformation from the seafloor displacements
given.

This is where depth filtering is used, as first described by [10] for a flat
and infinite seafloor geometry with a method called Kajiura’s Filter in this
thesis. Depth filtering takes the (vertical) seafloor deformation Dij at any
given point as well as the water height Hij and the dispersion time [8] τ as
inputs and outputs the surface displacements ηij – no water velocities are
needed.

41

4.2 Related Work
Kajiura 1963

The original paper [10] describes the mathematical principles behind depth
filtering and shows the restrictions of Kajiura’s Filter. Kajiura provides
an approach for depth filtering during tsunami genesis and propagation,
although we are only interested in the genesis phase. The proposed methods
rely on several assumptions:

1. constant seafloor depth,

2. no lateral boundary (=̂ infinite ocean),

3. instantaneous bottom deformation.

While not all of these (and in fact, none of these) can be applied to
real-world scenarios, there are still scenarios where these assumptions ap-
proximately hold.

Kajiura’s Filter is discussed in detail in section 4.3.1.

Saito & Furuma 2009

Saito and Furuma investigate different methods of simulating tsunami gen-
eration including a full 3D simulation of the Navier-Stokes-Equations and
Kajiura’s Filter [19]. They provide a table which shows the applicability
and necessity of different transformations of the sea surface displacement for
different parameters of the scenario.

They also describe how non-instantaneous bottom displacements can be
used with Kajiura’s Filter.

Glimsdal et al. 2013

The authors of [8] investigate whether the effect of frequency dispersion - i.e.
waves of different wavelengths transporting energy at different speeds [8, p.
1508ff] - is important or negligible for tsunamis.

To do so they employ models for tsunami generation by earthquakes and
landslides and the earthquake model includes depth filtering to get rid of
unnatural high-frequency components in the surface displacements [8, sec.
3.1].

The used depth filter is Kajiura’s Filter and a detailed description of how
to implement it numerically is given. Also, a short comparison with other
methods of obtaining the surface displacements is made.

42

They conclude that tsunamis caused by ”moderate-magnitude earthquakes”
[8, p. 1523], landslides and events with high dispersion times τ have signifi-
cant dispersion effects while ones generated by earthquakes of high magnitude
do not.

This means that for the former tsunamis, the effect of erroneously in-
cluded high-frequency components in the surface displacement will have a
higher effect on the inundation results than for the latter.

Margottini et al. 2013

In [14], Margottini et al. investigate the 1888 Trondheim tsunami which was
caused by a submarine landslide. They employ Kajiura’s filter to obtain more
realistic wave patterns than otherwise possible and then compare different
solvers regarding their ability to handle dispersive effects.

They claim that the simulations with depth-filtered displacements are
more in line with observations of the tsunami compared to previous simula-
tions.

4.3 Kajiura’s Filter
4.3.1 Theoretical Explanation
This chapter will not provide the physical explanations needed to fully un-
derstand depth filtering as this is both outside the scope of this thesis and
explained very thoroughly by Kajiura himself in [10].

Instead, the mathematics necessary to perform depth-filtering are dis-
cussed here.

The Filter

According to [10, p. 541ff], the surface displacement of the water body is
determined by the time and by multiple initial conditions at both the seafloor
and the sea surface:

1. water velocity at surface,

2. initial elevation of surface,

3. surface pressure,

4. elevation magnitude at the bottom,

5. elevation speed at the bottom.

43

We are interested in the special case (c) in [10, p. 541] where an instanta-
neous bottom deformation happens in an otherwise resting water body. This
means that only the elevation magnitude at the bottom remains as an initial
condition.

Kajiura then provides an explicit formula for the initial surface displace-
ment for the abovementioned parameters:

R(r̄) =
1

π

∞∑
n=0

(−1)n(2n+ 1)

((2n+ 1)2 + r̄2)
3
2

(4.1)

where R is the vertical surface displacement at a point (x, y) created by a
vertical displacement of the seafloor at point (x0, y0) with r̄2 = (x − x0)

2 +
(y − y0)

2.
He also shows that the area of influence of a point displacement at the

bottom has a radius relative to the water height H which leads to Margottini
et al. ignoring the influence of bottom displacements on points that are
farther than 5H from the source [14, p. 75].

To get the total surface displacement at (x, y), one simply has to sum up
the contributions R from every bottom displacement in the area of influence.

As we are not working in a continuous domain but rather on a regular
grid, we have to do further steps until we can use this approach. These are
described in detail in [14, p. 75] and [8, p. 1511] and lead to the formula

ηij;kl = σ
∆x∆y

H2
DijR(

r̄2

H2
) (4.2)

with r̄ = (xi−xk)
2+(yj−yl)2 being the distance between two grid points with

indices (i, j) and (k, l) where (i, j) is the point of the bottom deformation
and (k, l) is the point of the resulting surface displacement.

Dij denotes the magnitude of the bottom displacement and σ is chosen
such that the displaced volume at the surface equals the displaced volume at
the bottom.

The final formula for the total surface displacement at a point (k, l) given
all bottom displacements in the area of influence is then (adapted from [8,
p. 1511] to match style with the above formulae):

ηkl =
∑
i

∑
j

∆x∆y

h2
ij

σijDijR(
r̄2

h2
ij

) . (4.3)

Note that Glimsdal et al. permit a variable seafloor height hij which is the-
oretically incorrect as they state themselves, but they also state that eq. (4.3)

44

approximates the correct solution well if the bathymetry has little variation
over the distance of multiple ocean depths [8, p. 1511].

To obtain σi0j0 , we first only consider a scenario with one cell with nonzero
bottom displacement Di0j0 and the cells in its area of influence along with
their resulting surface elevation.

When we build the sum over all surface displacement volumes ∆x∆yηkl
in this area, we get the total volume displaced at the surface. It is clear
that in the case of only one Di0j0 ≠ 0, all of the displacement of the surface
has to come from this one Di0j0 . Since we preserve volume (Kajiura assumes
an incompressible ocean [10]), these two volumes have to be equal, or put
differently:

∆x∆y
∑
k

∑
l

ηkl = ∆x∆yDi0j0

⇐⇒
∑
k

∑
l

ηkl = Di0j0 . (4.4)

From eq. (4.3) and eq. (4.4) we can now obtain σi0j0 :

ηkl =
∑
i

∑
j

∆x∆y

h2
ij

σijDijR(
r̄2

h2
ij

)

=
∆x∆y

h2
i0j0

σi0j0Di0j0R(
r̄2

h2
i0j0

)

⇒ Di0j0 =
∑
k

∑
l

∆x∆y

h2
i0j0

σi0j0Di0j0R(
r̄2

h2
i0j0

)

⇐⇒ σi0j0 =
h2
i0j0

∆x∆y
∑
k

∑
l

R(r̄2

h2
i0j0

)
, (4.5)

which is constant for constant height and can be tabularized for variable
height.

Figure 4.1 shows the Kajiura-filter’s response at the sea surface for a
rectangular bottom deformation on a flat seafloor.

4.3.2 Applicability to Real-world Scenarios
As explained before, Kajiura’s Filter assumes a perfectly flat and infinitely
wide seafloor – which is non-existent in the real world. However, Saito and
Furuma [19] provide a table with constraints for a scenario such that Kajiura’s
filter can be applied with reasonable accuracy. Furthermore, Kajiura expects

45

0 200 400

0

1

2

Seafloor

0 200 400
0

0.1

0.2

0.3

Kajiura′sF ilter

0 200 400

0

1

2

SurfaceResponse

Figure 4.1: Kajiura’s Filter applied on a rectangular displacement of the flat
seafloor (h = 2000m,∆x = 100m). Horizontal axis shows cell index, vertical
axis shows vertical displacement in meters (except for filter kernel). Left:
The bottom displacement (d = 2m in the center 10H

∆x
+1 cells, 0m otherwise).

Middle: The filter kernel (scaled up in y-direction, unit-less). Right: Surface
response.

the deformation at the seafloor to happen instantaneously which is impossible
in the real world. Saito and Margottini [19, 14] therefore propose applying
Kajiura’s Filter on the difference in bottom elevation for each timestep of
the earthquake and adding the filtered contribution to the sea surface in
each of those timesteps while running the tsunami simulation, which can be
interpreted as a series of instantaneous (independent) displacements.

This requires the extension of the used tsunami simulator to allow for said
surface displacement being different from the seafloor displacement. Since
Kajiura’s Filter ensures (via σij) that the displaced volume at the surface
equals the one on the seafloor, we can adjust the water height in each timestep
accordingly:

hij;t+1 = hij;t − (bij;t+1 − bij;t)︸ ︷︷ ︸
∆b

+(ηij;t+1 − ηij;t)︸ ︷︷ ︸
∆η

, (4.6)

with bij;t being the bathymetry (including seafloor displacement) at timestep
t and ηij;t being the surface displacement at that timestep. The incremental
approach with Kajiura’s Filter delivers those differences ∆b and ∆η directly
for each timestep.

4.3.3 Numerical Implementation
The function R from eq. (4.1) is, unfortunately, an infinite sum. However, we
can approximate the value of R with a sum over 0 ≤ n ≤ niter;R instead since

46

the sum’s denominator grows quicker than its numerator. We choose niter;R

such that it is large enough to reduce the error of this simplification to an
acceptable level and small enough to keep computation time at a reasonable
level. The latter constraint is not a problem since we can tabularize R, which
only depends on r̄ which in turn depends on water height and the distance
of ”source” and ”destination” grid point. The evaluation section 4.4 below
gives actual values for niter;R and the resulting filter error.

As stated before, we only need to consider the effect of a bottom displace-
ment for grid points up to nH ·H from its position. Margottini et al. [14] use
nH = 5 which will be shown to introduce a relatively large error in section 4.4.

The table needs to contain values for R in the [0; nH ·H
H

] = [0;nH] range
(or up to

√
n2
H + n2

H when working with a square-shaped area of influence,
which we opt to do). R can then be interpolated between the table’s values
to make the function continuous and to reduce the needed number of table
entries.

Similarly, σ can be tabularized according to eq. (4.5) by its height, as
mentioned before, and interpolation can be applied as well. In scenarios of
constant height, only a single computation of σ is needed.

With these pre-computed values, we can now apply eq. (4.3) to each grid
point. If the scenario has multiple timesteps we have to apply the filter to
the difference in bottom displacement each timestep has to its predecessor
and save the result for each timestep. This yields the difference in surface
displacement which can then be utilized by the tsunami simulator according
to eq. (4.6).

4.3.4 Optimization
FFT-based implementation

The ”naive” implementation of Kajiura’s Filter is unbearably slow because
of its O(n2

x · n2
y · h2) runtime. A better approach is to model the filter as a

convolution of a 2D grid of displacements F and the 2D filter G and to then
make use of the convolution theorem [4, p. 70] to achieve a O(nx lognx ·
ny logny) runtime.

To do this, we first dissect eq. (4.2):
The part fij := σ∆x∆y

H2 Dij is evaluated for each cell of the domain and forms
the matrix F :

47

F :=

 f1,1 . . . f1,ny

...
fnx,1 . . . fnx,ny

while R

(
r̄2

H2

)
is evaluated in the nHH-radius discussed above:

G :=

R(
√
2 · nH) . . . R(nH) . . . R(

√
2 · nH)

...
R(nH) . . . R(0) . . . R(nH)

...
R(
√
2 · nH) . . . R(nH) . . . R(

√
2 · nH)

which is the filter kernel of the convolution. Care has to be taken to add
zero-padding around both matrices to bring both of them to a size of (nx +√
2 ·nH)× (ny +

√
2 ·nH) to avoid the aliasing introduced by the convolution

in frequency space [3, p. 211]. We can then calculate the resulting surface
displacement grid: H = F ∗ G, with ∗ being the discrete 2D convolution
operator.

This, however, requires us to sacrifice the support for variable water
height since the filter G has be constant and its value and size depend on the
water height: |G| =

⌈
2·nHH
∆x

+ 1
⌉
·
⌈
2·nHH
∆y

+ 1
⌉
.

According to the convolution theorem, we can calculate H using the
(Inverse) Fast Fourier Transform ((I)FFT) and a multiplication of the two
Fourier-transformed matrices: H = IFFT (FFT (F) · FFT (G)).

Parameter selection

To establish a valid baseline for the evaluation of the filter on actual earth-
quake scenarios we will first start with finding the best parameters nH and
niter;R for the filter. Figure 4.2 shows possible parameter values and their
relative error in volume compared to the displacement at the seafloor.

Since the runtime of the filter does not depend on h or nH anymore with
the FFT-based implementation, there is no (multiplicative) cost for using
large values of nH . Similarly, R is only tabularized once (or could even be
hardcoded) and thus high niter;R values do not cause a significant increase
in runtime either. Knowing this, nH = 20 and niter;R = 104 will be used

48

5 10 15 20
10−6

10−4

10−2

nH

f r
el

niter;R = 102

niter;R = 103

niter;R = 104

Figure 4.2: The relative errors of the displaced volume at the surface relative
to the seafloor displacement for different parameters.

for the rest of the thesis. Note that for nH = 5 the relative error is always
approximately 4.5% which is sizeable. However, this is a necessary sacrifice to
make when not using the FFT-based implementation (e.g. for non-constant
bathymetry) since nH acts as a multiplicative cost factor in that case.

4.4 Evaluation
The tsunami simulations performed in this section require a modified version
of sam(oa)2 that supports initial velocities and sea surface displacements.
Refer to appendix A.2 for more information.

Now that we have minimized the volume error Kajiura’s Filter introduces,
we can test the filter on the ASCETE scenario:
Figure 4.3 shows that the difference Kajiura’s Filter makes in the ASCETE
scenario is minor. Taking the lower magnifying glass in the y-axis plot as
an example, the height difference between (kaj (timedep)) and (d, η, v) is
5 mm while (d (timedep)) differs by 11 mm from (d, η, v). This is the most
pronounced difference in the whole timestep and Kajiura’s Filter still leads
to a slightly closer approximation than time-dependent displacements over
most of the shown wave profiles.

Since sam(oa)2 and SWE solvers in general do not simulate frequency
dispersion [8, p. 1509], the observed difference might be smaller than it
would be in a dispersive solver [19].

Furthermore, Kajiura’s Filter is not applicable to some scenarios where
a tsunami is generated and thus care needs to be taken to validate its usage
for a given scenario. Saito [19] provides conditions for the valid usage of
Kajiura’s Filter.

49

−325 0 425

−0.6

−0.4

−0.2

0

0.2

y [km]

η
[m

]

Wave profiles along y-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−325 0 425

−0.6

−0.4

−0.2

0

0.2

y [km]

η
[m

]

Wave profiles along y-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−325 0 425

−0.6

−0.4

−0.2

0

0.2

y [km]

η
[m

]
Wave profiles along y-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−325 0 425

−0.6

−0.4

−0.2

0

0.2

y [km]

η
[m

]

Wave profiles along y-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−375 0 375

−1

−0.5

0

0.5

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−375 0 375

−1

−0.5

0

0.5

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−375 0 375

−1

−0.5

0

0.5

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−375 0 375

−1

−0.5

0

0.5

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

−375 0 375

−1

−0.5

0

0.5

1

x [km]

η
[m

]

Wave profiles along x-axis

(d, η, v)
(kaj (timedep))
(d (timedep))

Figure 4.3: Comparison of wave profiles along major axes at t = 868 s (in
order to be comparable with fig. 3.1). All of the wave profiles lie very close
together with Kajiura’s Filter resulting in a slightly closer approximation to
(d, η, v) than (d (timedep)) is.

50

Chapter 5

Conclusion

The rasterization of simplex meshes is a problem mostly solved for highly
parallel architectures (GPUs). Rasterizing on the CPU is necessary for many
HPC systems which do not employ GPUs and it turns out that the process is
fast once file system accesses and memory management have been optimized.

The simplification of only sampling simplices at regular grid cell centers
introduces a rasterization error, which is about 1.3% for tetrahedra when
averaged over the domain of the tested scenario and 0.17% for triangles.

This error is reduced by using higher-quality meshes and with the un-
structured grid’s variables being smooth functions. Even when simplices are
so small that they are not rasterized, their surroundings of similar value will
be and therefore the error is kept small there, too.

Rasterization can be sped up significantly by binning simplices into dis-
junctive buckets such that no thread synchronization is needed and by uti-
lizing the full amount of memory available by processing multiple timesteps
at once.

Initial velocities can lead to a more accurate tsunami simulation. How-
ever, the sea surface displacements and seafloor displacements both have to
be known at the same timestep of these velocities since the initial momentum
of the tsunami gets distorted otherwise. Also, knowing seafloor and sea
surface displacements without the velocity at that point also leads to wrong
initial momentum and thus yields a wildly different simulation result.

Copying only the final seafloor displacements of the tsunamigenic event
to the surface results in an almost identical wave profile across timesteps
but a time delay is introduced when compared to a simulation with initial
velocities. Using time-dependent seafloor displacements is an even better
approximation to using initial velocities because tsunami and earthquake
happen simultaneously instead of after one another.

Depth filtering is a method of approximating the actual sea surface ele-

51

vation when only bottom displacements are known. Kajiura’s Filter is one
approach to depth filtering and shows a better approximation to reality than
copying displacements to the sea surface directly. Still, the effect is small
and, depending on the scenario, might not be of significance. Especially
regarding SWE solvers (or non-dispersive solvers in general), the resulting
removal of high-frequency waves in the sea surface profile does not cause a
visible difference. Furthermore it is not possible to apply Kajiura’s Filter to
every tsunami scenario as it was originally only developed for planar seafloors
of constant depth and instantaneous displacements of it. Multiple researchers
have shown it to work for real-world scenarios too and have achieved favorable
results.

The most accurate initial conditions for tsunamis obtainable from SeisSol
are those where the earthquake’s surface waves have left the domain and
where seafloor displacement, surface displacement and water velocity are
available. Time-dependent displacements deliver the next best result with
Kajiura’s Filter applied and static seafloor displacement is a less accurate
approximation but still has a comparable wave profile.

52

Bibliography

[1] B Andrist and V Sehr. C++ High Performance: Boost and optimize
the performance of your C++17 code. Packt Publishing, 2018. isbn:
9781787124776. url: https://learning-oreilly-com.eaccess.ub.
tum.de/library/view/-/9781787120952/?ar.

[2] Ivo Balbaert, Avik Sengupta, and Malcolm Sherrington. Julia: High
Performance Programming. Packt Publishing Ltd, 2016. isbn: 1787126102.
url: https : / / learning - oreilly - com . eaccess . ub . tum . de /
library/view/-/9781787125704/?ar.

[3] M. Charbit. Digital Signal and Image Processing Using MATLAB.
ISTE. Wiley, 2010. isbn: 9780470394526.

[4] D.E. Dudgeon and R.M. Merser. Multidimensional Digital Signal. Prentice-
Hall Signal Processing. Prentice-Hall, 1995. isbn: 9780132276382.

[5] Kayvon Fatahalian et al. “Data-parallel rasterization of micropolygons
with defocus and motion blur”. In: ACM Press, 2009. doi: 10.1145/
1572769.1572780.

[6] Jorge Gascon et al. “Fast deformation of volume data using tetrahedral
mesh rasterization”. In: ACM Press, 2013. doi: 10.1145/2485895.
2485917.

[7] Walter Gellert et al. The VNR concise encyclopedia of mathematics.
Springer Science & Business Media, 2012. isbn: 9401169829.

[8] S Glimsdal et al. “Dispersion of tsunamis: does it really matter?” In:
Natural Hazards and Earth System Sciences 13 (6 2013), pp. 1507–1526.
issn: 1684-9981. doi: 10.5194/nhess-13-1507-2013.

[9] Steven J Janke. Mathematical structures for computer graphics. John
Wiley & Sons, 2014. isbn: 1118712196. url: https : / / learning .
oreilly . com / library / view / mathematical - structures - for /
9781118712191/.

53

https://learning-oreilly-com.eaccess.ub.tum.de/library/view/-/9781787120952/?ar
https://learning-oreilly-com.eaccess.ub.tum.de/library/view/-/9781787120952/?ar
https://learning-oreilly-com.eaccess.ub.tum.de/library/view/-/9781787125704/?ar
https://learning-oreilly-com.eaccess.ub.tum.de/library/view/-/9781787125704/?ar
https://doi.org/10.1145/1572769.1572780
https://doi.org/10.1145/1572769.1572780
https://doi.org/10.1145/2485895.2485917
https://doi.org/10.1145/2485895.2485917
https://doi.org/10.5194/nhess-13-1507-2013
https://learning.oreilly.com/library/view/mathematical-structures-for/9781118712191/
https://learning.oreilly.com/library/view/mathematical-structures-for/9781118712191/
https://learning.oreilly.com/library/view/mathematical-structures-for/9781118712191/

[10] Kinjiro Kajiura. “The Leading Wave of a Tsunami”. In: 東京大學地震
研究所彙報 = Bulletin of the Earthquake Research Institute, University
of Tokyo 41 (1963), pp. 535–571. issn: 00408972.

[11] Lukas Krenz et al. “Elastic-Acoustic Coupling for 3D Tsunamigenic
Earthquake Simulations with ADER-DG on Unstructured Tetrahedral
Meshes”. en. In: AGU Fall Meeting. American Geophysics Union. San
Francisco, USA, 2019. url: https : / / agu2019fallmeeting - agu .
ipostersessions.com/default.aspx?s=04- 6A- 5E- 23- 1B- D4-
A6-BB-0F-24-BE-65-75-4C-03-23.

[12] Gabriel C Lotto, Gabriel Nava, and Eric M Dunham. “Should tsunami
simulations include a nonzero initial horizontal velocity?” In: Earth,
Planets and Space 69 (1 2017). issn: 1880-5981. doi: 10.1186/s40623-
017-0701-8.

[13] Elizabeth Madden et al. Methods and Test Cases for Linking Physics-
Based Earthquake and Tsunami Models. 2019. doi: 10.31223/osf.io/
rzvn2.

[14] Claudio Margottini, Paolo Canuti, and Kyoji Sassa. Landslide Science
and Practice. Vol. 1. Springer, 2013. isbn: 978-3-642-31426-1 978-3-
642-31427-8. doi: 10.1007/978-3-642-31427-8.

[15] James R Munkres. Elements of algebraic topology. CRC Press, 2018,
pp. 2–6. isbn: 0429962460.

[16] Geir Kleivstul Pedersen. “A note on tsunami generation by earth-
quakes”. In: Preprint series. Mechanics and Applied Mathematics (2001).
url: http://urn.nb.no/URN:NBN:no-27814.

[17] Christian Pelties, Alice-Agnes Gabriel, and J-P Ampuero. “Verification
of an ADER-DG method for complex dynamic rupture problems”. In:
Geoscientific Model Development 3 (2014), pp. 847–866.

[18] Sebastian Rettenberger. “Scalable I/O on Modern Supercomputers for
Simulations on Unstructured Meshes”. 2018. url: http://nbn-resolving.
de / urn / resolver . pl ? urn : nbn : de : bvb : 91 - diss - 20180327 -
1398032-0-6.

[19] Tatsuhiko Saito and Takashi Furumura. “Three-dimensional tsunami
generation simulation due to sea-bottom deformation and its interpre-
tation based on the linear theory”. In: Geophysical Journal Interna-
tional 178 (2 Aug. 2009), pp. 877–888. issn: 0956540X. doi: 10.1111/
j.1365-246X.2009.04206.x. url: https://academic.oup.com/
gji/article-lookup/doi/10.1111/j.1365-246X.2009.04206.x.

54

https://agu2019fallmeeting-agu.ipostersessions.com/default.aspx?s=04-6A-5E-23-1B-D4-A6-BB-0F-24-BE-65-75-4C-03-23
https://agu2019fallmeeting-agu.ipostersessions.com/default.aspx?s=04-6A-5E-23-1B-D4-A6-BB-0F-24-BE-65-75-4C-03-23
https://agu2019fallmeeting-agu.ipostersessions.com/default.aspx?s=04-6A-5E-23-1B-D4-A6-BB-0F-24-BE-65-75-4C-03-23
https://doi.org/10.1186/s40623-017-0701-8
https://doi.org/10.1186/s40623-017-0701-8
https://doi.org/10.31223/osf.io/rzvn2
https://doi.org/10.31223/osf.io/rzvn2
https://doi.org/10.1007/978-3-642-31427-8
http://urn.nb.no/URN:NBN:no-27814
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180327-1398032-0-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180327-1398032-0-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180327-1398032-0-6
https://doi.org/10.1111/j.1365-246X.2009.04206.x
https://doi.org/10.1111/j.1365-246X.2009.04206.x
https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.2009.04206.x
https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.2009.04206.x

[20] Hang Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Gen-
erator”. In: ACM Transactions on Mathematical Software 41 (2 Feb.
2015), pp. 1–36. issn: 0098-3500. doi: 10.1145/2629697. url: https:
//dl.acm.org/doi/10.1145/2629697.

[21] Y Tony Song and Shin-Chan Han. “Satellite observations defying the
long-held tsunami genesis theory”. In: Springer, 2011, pp. 327–342.

[22] Y Tony Song, Ali Mohtat, and Solomon C Yim. “New insights on
tsunami genesis and energy source”. In: Journal of Geophysical Re-
search: Oceans 122 (5 2017), pp. 4238–4256. issn: 2169-9291.

[23] Y Tony Song et al. “The role of horizontal impulses of the faulting
continental slope in generating the 26 December 2004 tsunami”. In:
Ocean Modelling 20 (4 2008), pp. 362–379. issn: 1463-5003.

[24] Don Speray and Steve Kennon. “Volume probes: Interactive data explo-
ration on arbitrary grids”. In: ACM SIGGRAPH Computer Graphics
24.5 (1990), pp. 5–12.

[25] V Titov et al. “Consistent estimates of tsunami energy show promise
for improved early warning”. In: Springer, 2016, pp. 3863–3880.

[26] John Vince. “Barycentric Coordinates”. In: Mathematics for Computer
Graphics. London: Springer London, 2006, pp. 193–221. isbn: 978-1-
84628-283-6. doi: 10.1007/1-84628-283-7_11.

[27] Zhigang Xu and Y Tony Song. “Combining the all-source Green’s
functions and the GPS-derived source functions for fast tsunami pre-
dictions - Illustrated by the March 2011 Japan tsunami”. In: Journal
of Atmospheric and Oceanic Technology 30 (7 2013), pp. 1542–1554.
issn: 0739-0572.

55

https://doi.org/10.1145/2629697
https://dl.acm.org/doi/10.1145/2629697
https://dl.acm.org/doi/10.1145/2629697
https://doi.org/10.1007/1-84628-283-7_11

Appendix A

Code Repositories

A.1 SAMPLER
The code for rasterization and for Kajiura’s Filter is implemented in the
SAMPLER software package found here: https://gitlab.lrz.de/ge73tes/
sampler. The program is released as free software under the GPLv3 license.

A.2 sam(oa)2

Modifications made to sam(oa)2 in order for it to support initial velocities and
surface displacements can be found here: https://gitlab.lrz.de/samoa/
samoa/-/tree/max-bachelor.

56

https://gitlab.lrz.de/ge73tes/sampler
https://gitlab.lrz.de/ge73tes/sampler
https://gitlab.lrz.de/samoa/samoa/-/tree/max-bachelor
https://gitlab.lrz.de/samoa/samoa/-/tree/max-bachelor

	Introduction
	Projection of Non-uniform Simplex Meshes onto 2D Uniform Rectangular Grids
	Mathematical Principles
	Grid Structures
	Approaches to the Point-in-Simplex Problem
	Sampling Simplex Grids
	Error Analysis

	Projection Algorithm and Data Structures
	Rasterization Order
	The Algorithm

	Optimization for HPC Systems
	Memory Management
	Eliminating Resource Contention
	Load Balancing
	Eliminating Random File System Accesses

	Evaluation

	The Effect of Initial Velocity on Tsunami Simulations
	Related Work
	Results

	Depth-filtering
	Motivation
	Related Work
	Kajiura's Filter
	Theoretical Explanation
	Applicability to Real-world Scenarios
	Numerical Implementation
	Optimization

	Evaluation

	Conclusion
	Appendices
	Code Repositories
	SAMPLER
	sam(oa)2

